KnowledgeBoat Logo
|
OPEN IN APP

Chapter 13

Section Formula and Mid-Point Formula

Class - 10 Concise Mathematics Selina



Exercise 13(A)

Question 1(a)

A point P divides the line segment joining the points A(1, 3) and B(5, 9) in the ratio 1 : 2, the co-ordinates of the point P are :

  1. (73,5)\Big(\dfrac{7}{3}, 5\Big)

  2. (7,53)\Big(7, \dfrac{5}{3}\Big)

  3. (73,53)\Big(\dfrac{7}{3}, \dfrac{5}{3}\Big)

  4. (73,133)\Big(\dfrac{7}{3}, \dfrac{13}{3}\Big)

Answer

Let point P be (x, y).

Given,

m1 : m2 = 1 : 2

By section-formula,

(x, y) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values we get :

(x,y)=(1×5+2×11+2,1×9+2×31+2)=(5+23,9+63)=(73,153)=(73,5).\Rightarrow (x, y) = \Big(\dfrac{1 \times 5 + 2 \times 1}{1 + 2}, \dfrac{1 \times 9 + 2 \times 3}{1 + 2}\Big) \\[1em] = \Big(\dfrac{5 + 2}{3}, \dfrac{9 + 6}{3}\Big) \\[1em] = \Big(\dfrac{7}{3}, \dfrac{15}{3}\Big) \\[1em] = \Big(\dfrac{7}{3}, 5\Big).

Hence, Option 1 is the correct option.

Question 1(b)

AB is a line segment with A = (2, 4) and B = (6, 12). Point P lies on the line segment AB so that P = (3, x), then the ratio AP : PB is :

  1. 3 : 2

  2. 2 : 3

  3. 3 : 1

  4. 1 : 3

AB is a line segment with A = (2, 4) and B = (6, 12). Point P lies on the line segment AB so that P = (3, x), then the ratio AP : PB is : Section Formula and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Answer

Let ratio in which P divides AB be k : 1.

By section-formula,

(x, y) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values we get :

(3,x)=(k×6+1×2k+1,k×12+1×4k+1)(3,x)=(6k+2k+1,12k+4k+1)6k+2k+1=36k+2=3(k+1)6k+2=3k+36k3k=323k=1k=13.\Rightarrow (3, x) = \Big(\dfrac{k \times 6 + 1 \times 2}{k + 1}, \dfrac{k \times 12 + 1 \times 4}{k + 1}\Big) \\[1em] \Rightarrow (3, x) = \Big(\dfrac{6k + 2}{k + 1}, \dfrac{12k + 4}{k + 1}\Big) \\[1em] \Rightarrow \dfrac{6k + 2}{k + 1} = 3 \\[1em] \Rightarrow 6k + 2 = 3(k + 1) \\[1em] \Rightarrow 6k + 2 = 3k + 3 \\[1em] \Rightarrow 6k - 3k = 3 - 2 \\[1em] \Rightarrow 3k = 1 \\[1em] \Rightarrow k = \dfrac{1}{3}.

Substituting value of k in k : 1, we get :

13:1\dfrac{1}{3} : 1

⇒ 1 : 3.

Hence, Option 4 is the correct option.

Question 1(c)

The ratio in which the join of (2, 4) and (10, 12) is divided by the line x = 7 is :

  1. 3 : 5

  2. 5 : 3

  3. 1 : 5

  4. 3 : 1

Answer

Any point on the line x = 7, can be defined as (7, y).

Let point (7, y) divide line joining (2, 4) and (10, 12) in ratio k : 1.

By section-formula,

(x, y) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values we get :

(7,y)=(k×10+1×2k+1,k×12+1×4k+1)(7,y)=(10k+2k+1,12k+4k+1)7=10k+2k+17(k+1)=10k+27k+7=10k+210k7k=723k=5k=53.\Rightarrow (7, y) = \Big(\dfrac{k \times 10 + 1 \times 2}{k + 1}, \dfrac{k \times 12 + 1 \times 4}{k + 1}\Big) \\[1em] \Rightarrow (7, y) = \Big(\dfrac{10k + 2}{k + 1}, \dfrac{12k + 4}{k + 1}\Big) \\[1em] \Rightarrow 7 = \dfrac{10k + 2}{k + 1} \\[1em] \Rightarrow 7(k + 1) = 10k + 2 \\[1em] \Rightarrow 7k + 7 = 10k + 2 \\[1em] \Rightarrow 10k - 7k = 7 - 2 \\[1em] \Rightarrow 3k = 5 \\[1em] \Rightarrow k = \dfrac{5}{3}.

Substituting value of k in k : 1, we get :

53:1\dfrac{5}{3} : 1

⇒ 5 : 3.

Hence, Option 2 is the correct option.

Question 1(d)

The line y = 4 divides the join of points (6, 7) and (4, -1) in the ratio :

  1. 3 : 5

  2. 5 : 3

  3. 1 : 5

  4. 5 : 1

Answer

Any point on the line y = 4, can be defined as (x, 4).

Let point (x, 4) divide line joining (6, 7) and (4, -1) in ratio k : 1.

By section-formula,

(x, y) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values we get :

(x,4)=(k×4+1×6k+1,k×1+1×7k+1)(x,4)=(4k+6k+1,k+7k+1)4=k+7k+14(k+1)=k+74k+4=k+74k+k=745k=3k=35.\Rightarrow (x, 4) = \Big(\dfrac{k \times 4 + 1 \times 6}{k + 1}, \dfrac{k \times -1 + 1 \times 7}{k + 1}\Big) \\[1em] \Rightarrow (x, 4) = \Big(\dfrac{4k + 6}{k + 1}, \dfrac{-k + 7}{k + 1}\Big) \\[1em] \Rightarrow 4 = \dfrac{-k + 7}{k + 1} \\[1em] \Rightarrow 4(k + 1) = -k + 7 \\[1em] \Rightarrow 4k + 4 = -k + 7 \\[1em] \Rightarrow 4k + k = 7 - 4 \\[1em] \Rightarrow 5k = 3 \\[1em] \Rightarrow k = \dfrac{3}{5}.

Substituting value of k in k : 1, we get :

35:1\dfrac{3}{5} : 1

⇒ 3 : 5.

Hence, Option 1 is the correct option.

Question 1(e)

The ratio in which the join of points (-2, 5) and (5, -2) is divided by y-axis is :

  1. 3 : 5

  2. 2 : 5

  3. 5 : 3

  4. 5 : 2

Answer

Any point on y-axis can be defined as (0, y).

Let ratio in which the join of points (-2, 5) and (5, -2) is divided by (0, y) be k : 1.

(0,y)=(k×5+1×2k+1,k×2+1×5k+1)(0,y)=(5k2k+1,2k+5k+1)0=5k2k+15k2=05k=2k=25.\Rightarrow (0, y) = \Big(\dfrac{k \times 5 + 1 \times -2}{k + 1}, \dfrac{k \times -2 + 1 \times 5}{k + 1}\Big) \\[1em] \Rightarrow (0, y) = \Big(\dfrac{5k - 2}{k + 1}, \dfrac{-2k + 5}{k + 1}\Big) \\[1em] \Rightarrow 0 = \dfrac{5k - 2}{k + 1} \\[1em] \Rightarrow 5k - 2 = 0 \\[1em] \Rightarrow 5k = 2 \\[1em] \Rightarrow k = \dfrac{2}{5}.

Substituting value of k in k : 1, we get :

25:1\dfrac{2}{5} : 1

⇒ 2 : 5.

Hence, Option 2 is the correct option.

Question 2

In what ratio does the point (1, a) divide the join of (-1, 4) and (4, -1) ?

Also, find the value of a.

Answer

We know that,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

1=m1×4+m2×1m1+m2m1+m2=4m1m2m2+m2=4m1m12m2=3m1m1m2=23.\Rightarrow 1 = \dfrac{m_1 \times 4 + m_2 \times -1}{m_1 + m_2} \\[1em] \Rightarrow m_1 + m_2 = 4m_1 - m_2 \\[1em] \Rightarrow m_2 + m_2 = 4m_1 - m_1 \\[1em] \Rightarrow 2m_2 = 3m_1 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{2}{3}.

∴ m1 : m2 = 2 : 3.

We know that,

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

a=2×1+3×42+3a=2+125a=105a=2.\Rightarrow a = \dfrac{2 \times -1 + 3 \times 4}{2 + 3} \\[1em] \Rightarrow a = \dfrac{-2 + 12}{5} \\[1em] \Rightarrow a = \dfrac{10}{5} \\[1em] \Rightarrow a = 2.

Hence, ratio = 2 : 3 and a = 2.

Question 3

In what ratio does the point (a, 6) divide the join of (-4, 3) and (2, 8) ?

Also, find the value of a.

Answer

Let ratio in which point (a, 6) divide the join of (-4, 3) and (2, 8) be m1 : m2.

By section formula,

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

6=m1×8+m2×3m1+m26m1+6m2=8m1+3m28m16m1=6m23m22m1=3m2m1m2=32.\Rightarrow 6 = \dfrac{m_1 \times 8 + m_2 \times 3}{m_1 + m_2} \\[1em] \Rightarrow 6m_1 + 6m_2 = 8m_1 + 3m_2 \\[1em] \Rightarrow 8m_1 - 6m_1 = 6m_2 - 3m_2 \\[1em] \Rightarrow 2m_1 = 3m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{3}{2}.

∴ m1 : m2 = 3 : 2.

We know that,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

a=3×2+2×43+2a=685a=25.\Rightarrow a = \dfrac{3 \times 2 + 2 \times -4}{3 + 2} \\[1em] \Rightarrow a = \dfrac{6 - 8}{5} \\[1em] \Rightarrow a = -\dfrac{2}{5}.

Hence, ratio = 3 : 2 and a = 25-\dfrac{2}{5}.

Question 4

In what ratio is the join of (4, 3) and (2, -6) divided by the x-axis. Also, find the co-ordinates of the point of intersection.

Answer

Let the point on x-axis be (x, 0) and required ratio be k : 1.

By formula,

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

0=k×6+1×3k+10=6k+36k=3k=36=12.\Rightarrow 0 = \dfrac{k \times -6 + 1 \times 3}{k + 1} \\[1em] \Rightarrow 0 = -6k + 3 \\[1em] \Rightarrow 6k = 3 \\[1em] \Rightarrow k = \dfrac{3}{6} = \dfrac{1}{2}.

k : 1 = 12:1=1:2.\dfrac{1}{2} : 1 = 1 : 2.

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

x=1×2+2×41+2x=2+83x=103.\Rightarrow x = \dfrac{1 \times 2 + 2 \times 4}{1 + 2} \\[1em] \Rightarrow x = \dfrac{2 + 8}{3} \\[1em] \Rightarrow x = \dfrac{10}{3}.

P = (x, 0) = (103,0).\Big(\dfrac{10}{3}, 0\Big).

Hence, ratio = 1 : 2 and co-ordinates of point of intersection = (103,0).\Big(\dfrac{10}{3}, 0\Big).

Question 5

Find the ratio in which the join of (-4, 7) and (3, 0) is divided by the y-axis. Also, find the co-ordinates of the point of intersection.

Answer

Let the point on y-axis be (0, y) and required ratio be k : 1.

By formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

0=k×3+1×4k+10=3k43k=4k=43.\Rightarrow 0 = \dfrac{k \times 3 + 1 \times -4}{k + 1} \\[1em] \Rightarrow 0 = 3k - 4 \\[1em] \Rightarrow 3k = 4 \\[1em] \Rightarrow k = \dfrac{4}{3}.

k : 1 = 43:1=4:3\dfrac{4}{3} : 1 = 4 : 3.

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

y=4×0+3×74+3y=0+217y=3.\Rightarrow y = \dfrac{4 \times 0 + 3 \times 7}{4 + 3} \\[1em] \Rightarrow y = \dfrac{0 + 21}{7} \\[1em] \Rightarrow y = 3.

P = (0, y) = (0, 3).

Hence, ratio = 4 : 3 and co-ordinates of point of intersection = (0, 3).

Question 6

Points A, B, C and D divide the line segment joining the points (5, -10) and the origin in five equal parts. Find the co-ordinates of B and D.

Answer

Let point P = (5, -10) and origin (O) = (0, 0).

Points A, B, C and D divide the line segment PO in 5 equal parts.

From figure,

Points A, B, C and D divide the line segment joining the points (5, -10) and the origin in five equal parts. Find the co-ordinates of B and D. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

B divides the line segment PO in the ratio 2 : 3.

Let B be (a, b).

By formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

a=2×0+3×52+3a=0+155a=155=3.\Rightarrow a = \dfrac{2 \times 0 + 3 \times 5}{2 + 3} \\[1em] \Rightarrow a = \dfrac{0 + 15}{5} \\[1em] \Rightarrow a = \dfrac{15}{5} = 3.

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

b=2×0+3×102+3b=0305b=305=6.\Rightarrow b = \dfrac{2 \times 0 + 3 \times -10}{2 + 3} \\[1em] \Rightarrow b = \dfrac{0 - 30}{5} \\[1em] \Rightarrow b = -\dfrac{30}{5} = -6.

B = (a, b) = (3, -6).

D divides the line segment PO in the ratio 4 : 1.

Let D be (c, d).

By formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

c=4×0+1×54+1c=0+55c=55=1.\Rightarrow c = \dfrac{4 \times 0 + 1 \times 5}{4 + 1} \\[1em] \Rightarrow c = \dfrac{0 + 5}{5} \\[1em] \Rightarrow c = \dfrac{5}{5} = 1.

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

d=4×0+1×104+1d=105d=2.\Rightarrow d = \dfrac{4 \times 0 + 1 \times -10}{4 + 1} \\[1em] \Rightarrow d = -\dfrac{10}{5} \\[1em] \Rightarrow d = -2.

D = (c, d) = (1, -2).

Hence, B = (3, -6) and D = (1, -2).

Question 7

The line joining the points A (-3, -10) and B (-2, 6) is divided by the point P such that PBAB=15\dfrac{PB}{AB} = \dfrac{1}{5}. Find the co-ordinates of P.

Answer

Let co-ordinates of P be (a, b).

The line joining the points A (-3, -10) and B (-2, 6) is divided by the point P such that PB/AB = 1/5. Find the co-ordinates of P. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Given,

PBAB=15\dfrac{PB}{AB} = \dfrac{1}{5}

Let PB = x and AB = 5x.

From figure,

⇒ AB = PA + PB

⇒ 5x = PA + x

⇒ PA = 4x.

PAPB=4xx=41\dfrac{PA}{PB} = \dfrac{4x}{x} = \dfrac{4}{1}.

PA : PB = 4 : 1.

∴ P divides the line segment joining A and B in ratio = 4 : 1.

By formula,

x=m1x2+m2x1m1+m2=4×2+1×34+1=835=115y=m1y2+m2y1m1+m2=4×6+1×104+1=24105=145.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{4 \times -2 + 1 \times -3}{4 + 1} \\[1em] = \dfrac{-8 - 3}{5} \\[1em] = -\dfrac{11}{5} \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{4 \times 6 + 1 \times -10}{4 + 1} \\[1em] = \dfrac{24 - 10}{5} \\[1em] = \dfrac{14}{5}.

Hence, P = (115,145)\Big(-\dfrac{11}{5}, \dfrac{14}{5}\Big).

Question 8

P is a point on the line joining A (4, 3) and B (-2, 6) such that 5AP = 2BP. Find the co-ordinates of P.

Answer

Given,

⇒ 5AP = 2BP

APBP=25\dfrac{AP}{BP} = \dfrac{2}{5}

⇒ AP : PB = 2 : 5.

Let co-ordinates of P be (x, y).

By formula,

x=m1x2+m2x1m1+m2=2×2+5×42+5=4+207=167y=m1y2+m2y1m1+m2=2×6+5×32+5=12+157=277.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{2 \times -2 + 5 \times 4}{2 + 5} \\[1em] = \dfrac{-4 + 20}{7} \\[1em] = \dfrac{16}{7} \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{2 \times 6 + 5 \times 3}{2 + 5} \\[1em] = \dfrac{12 + 15}{7} \\[1em] = \dfrac{27}{7}.

Hence, co-ordinates of P = (167,277).\Big(\dfrac{16}{7}, \dfrac{27}{7}\Big).

Question 9

Calculate the ratio in which the line joining the points (-3, -1) and (5, 7) is divided by the line x = 2. Also, find the co-ordinates of the point of intersection.

Answer

Let point of intersection be (2, y). [∵ any point on the line x = 2 has x co-ordinate = 2]

By formula,

x=m1x2+m2x1m1+m22=m1×5+m2×3m1+m22m1+2m2=5m13m25m12m1=2m2+3m23m1=5m2m1m2=53.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 2 = \dfrac{m_1 \times 5 + m_2 \times -3}{m_1 + m_2} \\[1em] \Rightarrow 2m_1 + 2m_2 = 5m_1 - 3m_2 \\[1em] \Rightarrow 5m_1 - 2m_1 = 2m_2 + 3m_2 \\[1em] \Rightarrow 3m_1 = 5m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{5}{3}.

m1 : m2 = 5 : 3.

y=m1y2+m2y1m1+m2=5×7+3×15+3=3538=328=4.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{5 \times 7 + 3 \times -1}{5 + 3} \\[1em] = \dfrac{35 - 3}{8} \\[1em] = \dfrac{32}{8} \\[1em] = 4.

Hence, co-ordinates of point of intersection = (2, 4) and ratio = 5 : 3.

Question 10

Calculate the ratio in which the line joining A(6, 5) and B(4, -3) is divided by the line y = 2.

Answer

Let point of intersection be (x, 2) [∵ any point on the line y = 2 has y co-ordinate = 2]

By formula,

y=m1y2+m2y1m1+m22=m1×3+m2×5m1+m22m1+2m2=3m1+5m22m1+3m1=5m22m25m1=3m2m1m2=35.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow 2 = \dfrac{m_1 \times -3 + m_2 \times 5}{m_1 + m_2} \\[1em] \Rightarrow 2m_1 + 2m_2 = -3m_1 + 5m_2 \\[1em] \Rightarrow 2m_1 + 3m_1 = 5m_2 - 2m_2 \\[1em] \Rightarrow 5m_1 = 3m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{3}{5}.

m1 : m2 = 3 : 5.

Hence, ratio = 3 : 5.

Question 11

The point P(5, -4) divides the line segment AB, as shown in the figure, in the ratio 2 : 5. Find the co-ordinates of points A and B. Given AP is smaller than BP.

The point P(5, -4) divides the line segment AB, as shown in the figure, in the ratio 2 : 5. Find the co-ordinates of points A and B. Given AP is smaller than BP. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Answer

Since, A is on x-axis, let it co-ordinates be (a, 0) and B is on y-axis so it's co-ordinates (0, b).

By formula,

x=m1x2+m2x1m1+m25=2×0+5×a2+55×7=0+5a5a=35a=355=7y=m1y2+m2y1m1+m24=2×b+5×02+54×7=2b+02b=28b=14.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 5 = \dfrac{2 \times 0 + 5 \times a}{2 + 5} \\[1em] \Rightarrow 5 \times 7 = 0 + 5a \\[1em] \Rightarrow 5a = 35 \\[1em] \Rightarrow a = \dfrac{35}{5} = 7 \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow -4 = \dfrac{2 \times b + 5 \times 0}{2 + 5} \\[1em] \Rightarrow -4 \times 7 = 2b + 0 \\[1em] \Rightarrow 2b = -28 \\[1em] \Rightarrow b = -14.

∴ A = (a, 0) = (7, 0) and

B = (0, b) = (0, -14).

Hence, A = (7, 0) and B = (0, -14).

Question 12

Find the co-ordinates of the points of tri-section of the line joining the points (-3, 0) and (6, 6).

Answer

From figure,

Find the co-ordinates of the points of tri-section of the line joining the points (-3, 0) and (6, 6). Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Let A and B be the points of tri-section of the line joining the points (-3, 0) and (6, 6).

So, A and B divides the segment in three equal parts.

A divides the line segment in ratio 1 : 2. Let co-ordinates of A be (a, b).

By formula,

x=m1x2+m2x1m1+m2a=1×6+2×31+2a=663a=0y=m1y2+m2y1m1+m2b=1×6+2×01+2b=63=2.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow a = \dfrac{1 \times 6 + 2 \times -3}{1 + 2} \\[1em] \Rightarrow a = \dfrac{6 - 6}{3} \\[1em] \Rightarrow a = 0 \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow b = \dfrac{1 \times 6 + 2 \times 0}{1 + 2} \\[1em] \Rightarrow b = \dfrac{6}{3} = 2.

A = (a, b) = (0, 2).

B divides the line segment in ratio 2 : 1. Let co-ordinates of B be (c, d).

By formula,

x=m1x2+m2x1m1+m2c=2×6+1×31+2c=1233c=93=3.y=m1y2+m2y1m1+m2d=2×6+1×02+1d=123=4.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow c = \dfrac{2 \times 6 + 1 \times -3}{1 + 2} \\[1em] \Rightarrow c = \dfrac{12 - 3}{3} \\[1em] \Rightarrow c = \dfrac{9}{3} = 3. \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow d = \dfrac{2 \times 6 + 1 \times 0}{2 + 1} \\[1em] \Rightarrow d = \dfrac{12}{3} = 4.

B = (c, d) = (3, 4).

Hence, points of tri-section are (0, 2) and (3, 4).

Question 13

Show that the line segment joining the points (-5, 8) and (10, -4) is trisected by the co-ordinate axes.

Answer

Let A = (-5, 8) and B = (10, -4)

Let P and Q be points which trisects AB.

Let P (a, b) divide AB in 1 : 2 and Q (c, d) in 2 : 1.

Show that the line segment joining the points (-5, 8) and (10, -4) is trisected by the co-ordinate axes. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

By section formula (for P),

x=m1x2+m2x1m1+m2a=1×10+2×51+2a=10103a=03=0.y=m1y2+m2y1m1+m2b=1×4+2×81+2b=4+163b=123=4.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow a = \dfrac{1 \times 10 + 2 \times -5}{1 + 2} \\[1em] \Rightarrow a = \dfrac{10 - 10}{3} \\[1em] \Rightarrow a = \dfrac{0}{3} = 0. \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow b = \dfrac{1 \times -4 + 2 \times 8}{1 + 2} \\[1em] \Rightarrow b = \dfrac{-4 + 16}{3} \\[1em] \Rightarrow b = \dfrac{12}{3} = 4.

P = (a, b) = (0, 4).

By section formula (for Q),

x=m1x2+m2x1m1+m2c=2×10+1×52+1c=2053c=153=5.y=m1y2+m2y1m1+m2d=2×4+1×82+1d=8+83d=03=0.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow c = \dfrac{2 \times 10 + 1 \times -5}{2 + 1} \\[1em] \Rightarrow c = \dfrac{20 - 5}{3} \\[1em] \Rightarrow c = \dfrac{15}{3} = 5. \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow d = \dfrac{2 \times -4 + 1 \times 8}{2 + 1} \\[1em] \Rightarrow d = \dfrac{-8 + 8}{3} \\[1em] \Rightarrow d = \dfrac{0}{3} = 0.

Q = (c, d) = (5, 0).

Since, x co-ordinate of P = 0, it means P lies on y-axis and y co-ordinate of Q = 0, it means Q lies on x-axis.

Hence, proved that line segment joining the points (-5, 8) and (10, -4) is trisected by the co-ordinate axes.

Question 14

Show that A(3, -2) is a point of trisection of the line-segment joining the points (2, 1) and (5, -8). Also, find the co-ordinates of the other points of trisection.

Answer

Let A divide line-segment joining the points (2, 1) and (5, -8) in m1 : m2.

Show that A(3, -2) is a point of trisection of the line-segment joining the points (2, 1) and (5, -8). Also, find the co-ordinates of the other points of trisection. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

By formula,

x=m1x2+m2x1m1+m23=m1×5+m2×2m1+m23m1+3m2=5m1+2m25m13m1=3m22m22m1=m2m1m2=12m1:m2=1:2.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 3 = \dfrac{m_1 \times 5 + m_2 \times 2}{m_1 + m_2} \\[1em] \Rightarrow 3m_1 + 3m_2 = 5m_1 + 2m_2 \\[1em] \Rightarrow 5m_1 - 3m_1 = 3m_2 - 2m_2 \\[1em] \Rightarrow 2m_1 = m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{1}{2} \\[1em] \Rightarrow m_1 : m_2 = 1 : 2.

Since, A divides line-segment joining the points (2, 1) and (5, -8) in 1 : 2.

Hence, proved A is a point of tri-section.

Let another point of tri-section be B(a, b). So, it will divide the line segment in 2 : 1.

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

a=2×5+1×22+1a=10+23a=4.\Rightarrow a = \dfrac{2 \times 5 + 1 \times 2}{2 + 1} \\[1em] \Rightarrow a = \dfrac{10 + 2}{3} \\[1em] \Rightarrow a = 4.

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

b=2×8+1×12+1b=16+13b=153=5.\Rightarrow b = \dfrac{2 \times -8 + 1 \times 1}{2 + 1} \\[1em] \Rightarrow b = \dfrac{-16 + 1}{3} \\[1em] \Rightarrow b = -\dfrac{15}{3} = -5.

B = (a, b) = (4, -5).

Hence, co-ordinate of other point of trisection = (4, -5).

Question 15

The line segment joining the points M(5, 7) and N(-3, 2) is intersected by the y-axis at point L. Write down the abscissa of L. Hence, find the ratio in which L divides MN. Also, find the co-ordinates of L.

Answer

Since, L lies on y-axis let its co-ordinates be (0, y).

Let L divide MN in ratio m1 : m2.

By formula,

x=m1x2+m2x1m1+m20=m1×3+m2×5m1+m20=3m1+5m23m1=5m2m1m2=53.\Rightarrow x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 0 = \dfrac{m_1 \times -3 + m_2 \times 5}{m_1 + m_2} \\[1em] \Rightarrow 0 = -3m_1 + 5m_2 \\[1em] \Rightarrow 3m_1 = 5m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{5}{3}.

m1 : m2 = 5 : 3.

By formula,

y=m1y2+m2y1m1+m2y=5×2+3×75+3y=10+218y=318.\Rightarrow y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow y = \dfrac{5 \times 2 + 3 \times 7}{5 + 3} \\[1em] \Rightarrow y = \dfrac{10 + 21}{8} \\[1em] \Rightarrow y = \dfrac{31}{8}.

Hence, abscissa of L = 0, m1 : m2 = 5 : 3 and co-ordinates of L = (0,318)\Big(0, \dfrac{31}{8}\Big).

Question 16

A(-3, 4), B(3, -1) and C(-2, 4) are the vertices of a triangle ABC. Find the length of line segment AP, where point P lies inside BC, such that BP : PC = 2 : 3.

Answer

Given,

BP : PC = 2 : 3.

So, P divides the line segment BC in ratio 2 : 3.

Let co-ordinates of P be (x, y).

A(-3, 4), B(3, -1) and C(-2, 4) are the vertices of a triangle ABC. Find the length of line segment AP, where point P lies inside BC, such that BP : PC = 2 : 3. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

x=m1x2+m2x1m1+m2=2×2+3×32+3=4+95=55=1.\therefore x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{2 \times -2 + 3 \times 3}{2 + 3} \\[1em] = \dfrac{-4 + 9}{5} \\[1em] = \dfrac{5}{5} = 1.

and

y=m1y2+m2y1m1+m2=2×4+3×12+3=835=55=1.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{2 \times 4 + 3 \times -1}{2 + 3} \\[1em] = \dfrac{8 - 3}{5} \\[1em] = \dfrac{5}{5} = 1.

P = (x, y) = (1, 1).

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

AP=[1(3)]2+(14)2=(4)2+(3)2=16+9=25=5 units.AP = \sqrt{[1 - (-3)]^2 + (1 - 4)^2} \\[1em] = \sqrt{(4)^2 + (-3)^2} \\[1em] = \sqrt{16 + 9} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}.

Hence, AP = 5 units.

Question 17

The line segment joining A(2, 3) and B(6, -5) is intercepted by x-axis at the point K. Write down the ordinate of the point K. Hence, find the ratio in which K divides AB. Also, find the co-ordinates of the point K.

Answer

Since, point K lies on x-axis. Its co-ordinates be (x, 0).

Let ratio in which K divides AB be m1 : m2.

By section-formula,

y=m1y2+m2y1m1+m20=m1×5+m2×3m1+m20=5m1+3m25m1=3m2m1m2=35.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow 0 = \dfrac{m_1 \times -5 + m_2 \times 3}{m_1 + m_2} \\[1em] \Rightarrow 0 = -5m_1 + 3m_2 \\[1em] \Rightarrow 5m_1 = 3m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{3}{5}.

m1 : m2 = 3 : 5.

Substituting value for x co-ordinate,

x=m1x2+m2x1m1+m2=3×6+5×23+5=18+108=288=72=312.\Rightarrow x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 6 + 5 \times 2}{3 + 5} \\[1em] = \dfrac{18 + 10}{8} \\[1em] = \dfrac{28}{8} \\[1em] = \dfrac{7}{2} = 3\dfrac{1}{2}.

Hence, ordinate of K = 0, ratio in which K divides AB = 3 : 5 and K = (312,0).\Big(3\dfrac{1}{2}, 0\Big).

Question 18

The line segment joining A(4, 7) and B(-6, -2) is intercepted by the y-axis at the point K. Write down the abscissa of the point K. Hence, find the ratio in which K divides AB. Also, find the co-ordinates of the point K.

Answer

Since, point K lies on y-axis. Its co-ordinates be (0, y).

Let ratio in which K divides AB be m1 : m2.

By section-formula,

x=m1x2+m2x1m1+m20=m1×6+m2×4m1+m20=6m1+4m26m1=4m2m1m2=46=23.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 0 = \dfrac{m_1 \times -6 + m_2 \times 4}{m_1 + m_2} \\[1em] \Rightarrow 0 = -6m_1 + 4m_2 \\[1em] \Rightarrow 6m_1 = 4m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{4}{6} = \dfrac{2}{3}.

m1 : m2 = 2 : 3.

Substituting value for y co-ordinate,

y=m1y2+m2y1m1+m2=2×2+3×72+3=4+215=175.\Rightarrow y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{2 \times -2 + 3 \times 7}{2 + 3} \\[1em] = \dfrac{-4 + 21}{5} \\[1em] = \dfrac{17}{5}.

Hence, abscissa of K = 0, ratio in which K divides AB = 2 : 3 and K = (0,175).\Big(0, \dfrac{17}{5}\Big).

Question 19

The line joining P(-4, 5) and Q(3, 2) intersects the y-axis at point R. PM and QN are perpendiculars from P and Q on the x-axis. Find :

(i) the ratio PR : RQ.

(ii) the co-ordinates of R.

(iii) the area of the quadrilateral PMNQ.

Answer

(i) Since, R lies on y-axis. Let its co-ordinates be (0, y).

Let R divide PQ in ratio m1 : m2.

The line joining P(-4, 5) and Q(3, 2) intersects the y-axis at point R. PM and QN are perpendiculars from P and Q on the x-axis. Find the ratio PR : RQ, the co-ordinates of R, the area of the quadrilateral PMNQ. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

By section formula,

x=m1x2+m2x1m1+m20=m1×3+m2×4m1+m23m14m2=03m1=4m2m1m2=43.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 0 = \dfrac{m_1 \times 3 + m_2 \times -4}{m_1 + m_2} \\[1em] \Rightarrow 3m_1 - 4m_2 = 0 \\[1em] \Rightarrow 3m_1 = 4m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{4}{3}.

m1 : m2 = 4 : 3.

Hence, PR : RQ = 4 : 3.

(ii) Substituting m1 : m2 = 4 : 3 in section formula we get,

y=m1y2+m2y1m1+m2=4×2+3×54+3=8+157=237=327y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{4 \times 2 + 3 \times 5}{4 + 3} \\[1em] = \dfrac{8 + 15}{7} \\[1em] = \dfrac{23}{7} \\[1em] = 3\dfrac{2}{7}

R = (0, y) = (0,327)\Big(0, 3\dfrac{2}{7}\Big).

Hence, co-ordinates of R = (0,327)\Big(0, 3\dfrac{2}{7}\Big).

(iii) From graph,

PMNQ is a trapezium and 1 block = 1 unit.

Area of trapezium = 12×\dfrac{1}{2} \times (Sum of || sides) × Distance between them

=12×(PM+QN)×MN=12×(5+2)×7=12×7×7=12×49=24.5= \dfrac{1}{2} \times (PM + QN) \times MN \\[1em] = \dfrac{1}{2} \times (5 + 2) \times 7 \\[1em] = \dfrac{1}{2} \times 7 \times 7 \\[1em] = \dfrac{1}{2} \times 49 \\[1em] = 24.5

Hence, area of PMNQ = 24.5 sq. units.

Question 20

In the given figure, line APB meets the x-axis at point A and y-axis at point B. P is the point (-4, 2) and AP : PB = 1 : 2. Find the co-ordinates of A and B.

In the given figure, line APB meets the x-axis at point A and y-axis at point B. P is the point (-4, 2) and AP : PB = 1 : 2. Find the co-ordinates of A and B. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Answer

Since, A lies on x-axis its co-ordinates be (x, 0) and B lies on y-axis its co-ordinates be (0, y).

Given, AP : PB = 1 : 2.

By section formula,

x=m1x2+m2x1m1+m24=1×0+2×x1+24×3=2x2x=12x=6.y=m1y2+m2y1m1+m22=1×y+2×01+22×3=yy=6.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow -4 = \dfrac{1 \times 0 + 2 \times x}{1 + 2} \\[1em] \Rightarrow -4 \times 3 = 2x \\[1em] \Rightarrow 2x = -12 \\[1em] \Rightarrow x = -6. \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow 2 = \dfrac{1 \times y + 2 \times 0}{1 + 2} \\[1em] \Rightarrow 2 \times 3 = y \\[1em] \Rightarrow y = 6.

A = (x, 0) = (-6, 0) and B = (0, y) = (0, 6).

Hence, A = (-6, 0) and B = (0, 6).

Question 21

Given a line segment AB joining the points A(-4, 6) and B(8, 3). Find :

(i) the ratio in which line segment AB is divided by y-axis.

(ii) the co-ordinates of the point of intersection.

(iii) equation of perpendicular bisector of AB.

Answer

(i) Let the y-axis divide AB in the ratio m1 : m2.

By section-formula, the x-coordinate = (m1x2+m2x1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big)

Since, the x-coordinate on y-axis is 0. Putting value in above formula we get :

0=m1×8+m2×4m1+m28m14m2=08m1=4m2m1m2=48=12m1:m2=1:2.\Rightarrow 0 = \dfrac{m_1 \times 8 + m_2 \times -4}{m_1 + m_2} \\[1em] \Rightarrow 8m_1 - 4m_2 = 0 \\[1em] \Rightarrow 8m_1 = 4m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{4}{8} = \dfrac{1}{2} \\[1em] \Rightarrow m_1 : m_2 = 1 : 2.

Hence, required ratio = 1 : 2.

(ii) The x-coordinate equals to zero on y-axis.

By section formula, the y-coordinate = (m1y2+m2y1m1+m2)\Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting value in above formula, we get :

y=1×3+2×61+2=3+123=153=5.\Rightarrow y = \dfrac{1 \times 3 + 2 \times 6}{1 + 2} \\[1em] = \dfrac{3 + 12}{3} \\[1em] = \dfrac{15}{3} \\[1em] = 5.

Hence, the coordinates of the point of intersection are (0, 5).

(iii) By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Let M be the mid-point of AB.

M = ((4)+82,6+32)=(42,92)=(2,92)\Big(\dfrac{(-4) + 8}{2}, \dfrac{6 + 3}{2}\Big) = \Big(\dfrac{4}{2}, \dfrac{9}{2}\Big) = \Big(2, \dfrac{9}{2}\Big).

Slope of AB = 368(4)=312=14\dfrac{3 - 6}{8 - (-4)} = \dfrac{-3}{12} = -\dfrac{1}{4}

We know that,

Product of slope of perpendicular lines = -1.

Let slope of perpendicular bisector be h.

∴ h × 14-\dfrac{1}{4} = -1

⇒ h = 4.

By point-slope form,

Equation : y - y1 = m(x - x1)

⇒ y - 92\dfrac{9}{2} = 4(x - 2)

2y92\dfrac{2y - 9}{2} = 4(x - 2)

⇒ 2y - 9 = 8(x - 2)

⇒ 2y - 9 = 8x - 16

⇒ 2y - 8x - 9 + 16 = 0

⇒ 2y - 8x + 7 = 0

⇒ 8x - 2y = 7.

Hence, equation of perpendicular bisector of AB is 8x - 2y = 7.

Question 22

If P(-b, 9a - 2) divides the line segment joining the points A(-3, 3a + 1) and B(5, 8a) in the ratio 3 : 1, find the values of a and b.

Answer

By section-formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

b=3×5+1×33+1b=1534b=124=3b=3y=m1y2+m2y1m1+m2\Rightarrow -b = \dfrac{3 \times 5 + 1 \times -3}{3 + 1} \\[1em] \Rightarrow -b = \dfrac{15 - 3}{4} \\[1em] \Rightarrow -b = \dfrac{12}{4} = 3 \\[1em] \Rightarrow b = -3 \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

9a2=3×8a+1×(3a+1)3+19a2=24a+3a+149a2=27a+1436a8=27a+19a=9a=1.\Rightarrow 9a - 2 = \dfrac{3 \times 8a + 1 \times (3a + 1)}{3 + 1} \\[1em] \Rightarrow 9a - 2 = \dfrac{24a + 3a + 1}{4} \\[1em] \Rightarrow 9a - 2 = \dfrac{27a + 1}{4} \\[1em] \Rightarrow 36a - 8 = 27a + 1 \\[1em] \Rightarrow 9a = 9 \\[1em] \Rightarrow a = 1.

Hence, a = 1 and b = -3.

Exercise 13(B)

Question 1(a)

Point A(3, 4) is the center of a circle. If one of its diameters has one end as (7, 8); the other end of this diameter is :

  1. (1, 0)

  2. (0, 1)

  3. (-1, 0)

  4. (0, -1)

Answer

Given,

A(3, 4) is center and let B(7, 8) be one end of the diameter.

Let other end of diameter be C(x, y).

Point A(3, 4) is the center of a circle. If one of its diameters has one end as (7, 8); the other end of this diameter is : Section Formula and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

By mid-point formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

From figure,

A is the mid-point of BC.

(3,4)=(x+72,y+82)x+72=3 and y+82=4x+7=6 and y+8=8x=67 and y=88x=1 and y=0.\therefore (3, 4) = \Big(\dfrac{x + 7}{2}, \dfrac{y + 8}{2}\Big) \\[1em] \Rightarrow \dfrac{x + 7}{2} = 3 \text{ and } \dfrac{y + 8}{2} = 4 \\[1em] \Rightarrow x + 7 = 6 \text{ and } y + 8 = 8 \\[1em] \Rightarrow x = 6 - 7 \text{ and } y = 8 - 8 \\[1em] \Rightarrow x = -1 \text{ and } y = 0.

∴ C = (-1, 0).

Hence, Option 3 is the correct option.

Question 1(b)

Point A lies on x-axis and point B lies on y-axis. If P(2, -2) bisects the line segment AB, the co-ordinates of A are :

  1. (4, 0)

  2. (0, 4)

  3. (-4, 0)

  4. (0, -4)

Answer

Given,

Point A lies on x-axis.

∴ Let point A be (x, 0).

Point B lies on y-axis.

∴ Let point B be (0, y).

P(2, -2) bisects the line segment AB or P is the mid-point of AB.

By mid-point formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get :

(2,2)=(x+02,0+y2)(2,2)=(x2,y2)x2=2 and y2=2x=4 and y=4.\Rightarrow (2, -2) = \Big(\dfrac{x + 0}{2}, \dfrac{0 + y}{2}\Big) \\[1em] \Rightarrow (2, -2) = \Big(\dfrac{x}{2}, \dfrac{y}{2}\Big) \\[1em] \Rightarrow \dfrac{x}{2} = 2 \text{ and } \dfrac{y}{2} = -2 \\[1em] \Rightarrow x = 4 \text{ and } y = -4.

Co-ordinates of A = (x, 0) = (4, 0).

Hence, Option 1 is the correct option.

Question 1(c)

In parallelogram ABCD, A = (6, 0), B = (12, -4) and C = (4, -4); then the co-ordinates of vertex D are :

  1. (2, 0)

  2. (-2, 0)

  3. (0, 2)

  4. (0, -2)

Answer

Let co-ordinates of vertex D be (x, y).

We know that,

Diagonal of parallelogram bisect each other.

From figure,

In parallelogram ABCD, A = (6, 0), B = (12, -4) and C = (4, -4); then the co-ordinates of vertex D are : Section Formula and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

O (a, b) is the mid-point of AC.

By mid-point formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get :

(a,b)=(6+42,0+(4)2)=(102,42)=(5,2).\Rightarrow (a, b) = \Big(\dfrac{6 + 4}{2}, \dfrac{0 + (-4)}{2}\Big) \\[1em] = \Big(\dfrac{10}{2}, \dfrac{-4}{2}\Big) \\[1em] = (5, -2).

From figure,

O is also the mid-point of BD.

(5,2)=(12+x2,4+y2)12+x2=5 and 4+y2=212+x=10 and 4+y=4x=1012 and y=4+4x=2 and y=0.\therefore (5, -2) = \Big(\dfrac{12 + x}{2}, \dfrac{-4 + y}{2}\Big) \\[1em] \Rightarrow \dfrac{12 + x}{2} = 5 \text{ and } \dfrac{-4 + y}{2} = -2 \\[1em] \Rightarrow 12 + x = 10 \text{ and } -4 + y = -4 \\[1em] \Rightarrow x = 10 - 12 \text{ and } y = -4 + 4 \\[1em] \Rightarrow x = -2 \text{ and } y = 0.

D = (-2, 0).

Hence, Option 2 is the correct option.

Question 1(d)

The point P(2, -7) is reflected in the point (0, 3); the co-ordinates of the image of point P are :

  1. (2, 13)

  2. (2, -13)

  3. (-2, -13)

  4. (-2, 13)

Answer

Let point P on reflection in the point (0, 3) becomes P'(x, y).

So, (0, 3) will be the mid-point of PP'.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get :

(0,3)=(2+x2,7+y2)0=2+x2 and 3=7+y22+x=0 and 7+y=6x=2 and y=6+7x=2 and y=13.\Rightarrow (0, 3) = \Big(\dfrac{2 + x}{2}, \dfrac{-7 + y}{2}\Big) \\[1em] \Rightarrow 0 = \dfrac{2 + x}{2} \text{ and } 3 = \dfrac{-7 + y}{2} \\[1em] \Rightarrow 2 + x = 0 \text{ and } -7 + y = 6 \\[1em] \Rightarrow x = -2 \text{ and } y = 6 + 7 \\[1em] \Rightarrow x = -2 \text{ and } y = 13.

P' = (-2, 13).

Hence, Option 4 is the correct option.

Question 1(e)

The co-ordinates of the centroid of a triangle with vertices (-6, -3), (0, 0) and (12, -6) are :

  1. (2, 3)

  2. (-2, 3)

  3. (2, -3)

  4. (-2, -3)

Answer

By formula,

Centroid of triangle = (x1+x2+x33,y1+y2+y33)\Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big)

Substituting values we get :

Centroid =(6+0+123,3+0+(6)3)=(63,93)=(2,3).\text{Centroid } = \Big(\dfrac{-6 + 0 + 12}{3}, \dfrac{-3 + 0 + (-6)}{3}\Big) \\[1em] = \Big(\dfrac{6}{3}, \dfrac{-9}{3}\Big) \\[1em] = (2, -3).

Hence, Option 3 is the correct option.

Question 2

Points A and B have co-ordinates (3, 5) and (x, y) respectively. The mid-point of AB is (2, 3). Find the values of x and y.

Answer

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Given, M = (2, 3)

Substituting values in above formula,

(2,3)=(3+x2,5+y2)2=3+x2 and 3=5+y24=3+x and 6=5+yx=1 and y=1.(2, 3) = \Big(\dfrac{3 + x}{2}, \dfrac{5 + y}{2}\Big) \\[1em] \therefore 2 = \dfrac{3 + x}{2} \text{ and } 3 = \dfrac{5 + y}{2} \\[1em] \Rightarrow 4 = 3 + x \text{ and } 6 = 5 + y \\[1em] \Rightarrow x = 1 \text{ and } y = 1.

Hence, x = 1 and y = 1.

Question 3

Given M is the mid-point of AB, find the co-ordinates of:

(i) A; if M = (1, 7) and B = (-5, 10),

(ii) B; if A = (3, -1) and M = (-1, 3).

Answer

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

(i) Let co-ordinates of A = (x, y).

Substituting values in above formula we get,

(1,7)=[x+(5)2,y+102]1=x52 and 7=y+1022=x5 and 14=y+10x=7 and y=4.(1, 7) = \Big[\dfrac{x + (-5)}{2}, \dfrac{y + 10}{2}\Big] \\[1em] \therefore 1 = \dfrac{x - 5}{2} \text{ and } 7 = \dfrac{y + 10}{2} \\[1em] \Rightarrow 2 = x - 5 \text{ and } 14 = y + 10 \\[1em] \Rightarrow x = 7 \text{ and } y = 4.

A = (x, y) = (7, 4).

Hence, co-ordinates of A = (7, 4).

(ii) Let co-ordinates of B = (x, y).

Substituting values in above formula we get,

(1,3)=(3+x2,1+y2)1=3+x2 and 3=y122=x+3 and 6=y1x=5 and y=7.(-1, 3) = \Big(\dfrac{3 + x}{2}, \dfrac{-1 + y}{2}\Big) \\[1em] \therefore -1 = \dfrac{3 + x}{2} \text{ and } 3 = \dfrac{y - 1}{2} \\[1em] \Rightarrow -2 = x + 3 \text{ and } 6 = y - 1 \\[1em] \Rightarrow x = -5 \text{ and } y = 7.

B = (x, y) = (-5, 7).

Hence, co-ordinates of B = (-5, 7).

Question 4

P(-3, 2) is the mid-point of line segment AB as shown in the given figure. Find the co-ordinates of points A and B.

P(-3, 2) is the mid-point of line segment AB as shown in the given figure. Find the co-ordinates of points A and B. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Answer

Since, A lie on y-axis, let its co-ordinates be (0, y) and B lie on x-axis, let its co-ordinates be (x, 0).

P is mid-point of AB.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

P=(0+x2,y+02)(3,2)=(x2,y2)3=x2 and 2=y2x=6 and y=4.P = \Big(\dfrac{0 + x}{2}, \dfrac{y + 0}{2}\Big) \\[1em] \Rightarrow (-3, 2) = \Big(\dfrac{x}{2}, \dfrac{y}{2}\Big) \\[1em] \therefore -3 = \dfrac{x}{2} \text{ and } 2 = \dfrac{y}{2} \\[1em] \Rightarrow x = -6 \text{ and } y = 4.

A = (0, y) = (0, 4) and B = (x, 0) = (-6, 0).

Hence, the co-ordinates of points A and B are (0, 4) and (-6, 0).

Question 5

(-5, 2), (3, -6) and (7, 4) are the vertices of a triangle. Find the length of its median through the vertex (3, -6).

Answer

Let A = (3, -6), B = (-5, 2) and C = (7, 4).

(-5, 2), (3, -6) and (7, 4) are the vertices of a triangle. Find the length of its median through the vertex (3, -6). Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

From figure, AD is the median.

Since, AD is median so, BD = DC.

Thus, D is mid-point of BC.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting value we get,

D=(5+72,2+42)=(22,62)=(1,3).D = \Big(\dfrac{-5 + 7}{2}, \dfrac{2 + 4}{2}\Big) \\[1em] = \Big(\dfrac{2}{2}, \dfrac{6}{2}\Big) \\[1em] = (1, 3).

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Substituting values we get,

AD=(13)2+[3(6)]2=(2)2+(9)2=4+81=85=9.22AD = \sqrt{(1 - 3)^2 + [3 - (-6)]^2} \\[1em] = \sqrt{(-2)^2 + (9)^2} \\[1em] = \sqrt{4 + 81} \\[1em] = \sqrt{85} \\[1em] = 9.22

Hence, the length of its median through the vertex (3, -6) = 9.22 units.

Question 6

Given a line ABCD in which AB = BC = CD, B = (0, 3) and C = (1, 8). Find the co-ordinates of A and D.

Answer

Let co-ordinates of A be (x, y) and D be (p, q).

Given a line ABCD in which AB = BC = CD, B = (0, 3) and C = (1, 8). Find the co-ordinates of A and D. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Since, AB = BC.

B is the mid-point of AC.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

B=(x+12,y+82)(0,3)=(x+12,y+82)0=x+12 and 3=y+82x+1=0 and y+8=6x=1 and y=2.\Rightarrow B = \Big(\dfrac{x + 1}{2}, \dfrac{y + 8}{2}\Big) \\[1em] \Rightarrow (0, 3) = \Big(\dfrac{x + 1}{2}, \dfrac{y + 8}{2}\Big) \\[1em] \Rightarrow 0 = \dfrac{x + 1}{2} \text{ and } 3 = \dfrac{y + 8}{2} \\[1em] \Rightarrow x + 1 = 0 \text{ and } y + 8 = 6 \\[1em] \Rightarrow x = -1 \text{ and } y = -2.

A = (x, y) = (-1, -2).

Since, BC = CD.

C is mid-point of BD.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

C=(0+p2,3+q2)(1,8)=(p2,3+q2)1=p2 and 8=3+q2p=2 and 3+q=16p=2 and q=13.\Rightarrow C = \Big(\dfrac{0 + p}{2}, \dfrac{3 + q}{2}\Big) \\[1em] \Rightarrow (1, 8) = \Big(\dfrac{p}{2}, \dfrac{3 + q}{2}\Big) \\[1em] \Rightarrow 1 = \dfrac{p}{2} \text{ and } 8 = \dfrac{3 + q}{2} \\[1em] \Rightarrow p = 2 \text{ and } 3 + q = 16 \\[1em] \Rightarrow p = 2 \text{ and } q = 13.

D = (p, q) = (2, 13).

Hence, the co-ordinates of A = (-1, -2) and D = (2, 13).

Question 7

A (2, 5), B (1, 0), C(-4, 3) and D (-3, 8) are the vertices of quadrilateral ABCD. Find the co-ordinates of the mid-points of AC and BD. Give a special name to the quadrilateral.

Answer

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

A (2, 5), B (1, 0), C(-4, 3) and D (-3, 8) are the vertices of quadrilateral ABCD. Find the co-ordinates of the mid-points of AC and BD. Give a special name to the quadrilateral. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Let mid-point of AC be E.

Substituting value we get,

E=[2+(4)2,5+32]=(22,82)=(1,4).E = \Big[\dfrac{2 + (-4)}{2}, \dfrac{5 + 3}{2}\Big] \\[1em] = \Big(-\dfrac{2}{2}, \dfrac{8}{2}\Big) \\[1em] = (-1, 4).

Let mid-point of BD be F.

Substituting value we get,

F=[1+(3)2,0+82]=(22,82)=(1,4).F = \Big[\dfrac{1 + (-3)}{2}, \dfrac{0 + 8}{2}\Big] \\[1em] = \Big(-\dfrac{2}{2}, \dfrac{8}{2}\Big) \\[1em] = (-1, 4).

Thus, the co-ordinates of the mid-points of AC and BD are same i.e., AC and BD bisect each other.

∴ ABCD is a parallelogram.

Hence, the co-ordinates of the mid-points of AC = (-1, 4) and BD = (-1, 4) and ABCD is a parallelogram.

Question 8

P (4, 2) and Q (-1, 5) are the vertices of parallelogram PQRS and (-3, 2) are the co-ordinates of the point of intersection of the diagonals. Find co-ordinates of R and S.

Answer

We know that diagonals of a parallelogram bisect each other.

Let co-ordinates of R= (a, b) and S = (c, d).

From figure,

P (4, 2) and Q (-1, 5) are the vertices of parallelogram PQRS and (-3, 2) are the co-ordinates of the point of intersection of the diagonals. Find co-ordinates of R and S. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

O is the mid-point of PR.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting value we get,

(3,2)=(4+a2,2+b2)3=4+a2 and 2=2+b24+a=6 and 2+b=4a=10 and b=2.\Rightarrow (-3, 2) = \Big(\dfrac{4 + a}{2}, \dfrac{2 + b}{2}\Big) \\[1em] \Rightarrow -3 = \dfrac{4 + a}{2} \text{ and } 2 = \dfrac{2 + b}{2} \\[1em] \Rightarrow 4 + a = -6 \text{ and } 2 + b = 4 \\[1em] \Rightarrow a = -10 \text{ and } b = 2.

R = (a, b) = (-10, 2).

O is also the mid-point of QS,

(3,2)=(1+c2,5+d2)3=1+c2 and 2=5+d21+c=6 and 5+d=4c=5 and d=1.\Rightarrow (-3, 2) = \Big(\dfrac{-1 + c}{2}, \dfrac{5 + d}{2}\Big) \\[1em] \Rightarrow -3 = \dfrac{-1 + c}{2} \text{ and } 2 = \dfrac{5 + d}{2} \\[1em] \Rightarrow -1 + c = -6 \text{ and } 5 + d = 4 \\[1em] \Rightarrow c = -5 \text{ and } d = -1.

S = (c, d) = (-5, -1).

Hence, the co-ordinates of R = (-10, 2) and S = (-5, -1).

Question 9

The points (2, -1), (-1, 4) and (-2, 2) are mid-points of the sides of a triangle. Find its vertices.

Answer

Let D = (2, -1), E = (-1, 4) and F = (-2, 2).

The points (2, -1), (-1, 4) and (-2, 2) are mid-points of the sides of a triangle. Find its vertices. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Let A(x1, y1), B(x2, y2) and C(x3, y3) be the vertices of △ABC.

Mid-point of AB, i.e. D(2, -1).

2=x1+x22 and 1=y1+y22\therefore 2 = \dfrac{x_1 + x_2}{2} \text{ and } -1 = \dfrac{y_1 + y_2}{2}

⇒ x1 + x2 = 4 ........(1)

⇒ y1 + y2 = -2 ........(2)

Mid-point of BC, i.e. E(-1, 4).

1=x2+x32 and 4=y2+y32\therefore -1 = \dfrac{x_2 + x_3}{2} \text{ and } 4 = \dfrac{y_2 + y_3}{2}

⇒ x2 + x3 = -2 ........(3)

⇒ y2 + y3 = 8 ........(4)

Mid-point of AC, i.e. F(-2, 2).

2=x1+x32 and 2=y1+y32\therefore -2 = \dfrac{x_1 + x_3}{2} \text{ and } 2 = \dfrac{y_1 + y_3}{2}

⇒ x1 + x3 = -4 ........(5)

⇒ y1 + y3 = 4 ........(6)

Adding 1, 3 and 5 we get,

⇒ x1 + x2 + x2 + x3 + x1 + x3 = 4 + (-2) + (-4)

⇒ 2(x1 + x2 + x3) = -2

⇒ x1 + x2 + x3 = -1.

From (1),

⇒ 4 + x3 = -1

⇒ x3 = -5.

Substituting value of x3 in (5) we get,

⇒ x1 + (-5) = -4

⇒ x1 = 1.

Substituting value of x3 in (3) we get,

⇒ x2 + (-5) = -2

⇒ x2 = 3.

Adding (2), (4) and (6) we get,

⇒ y1 + y2 + y2 + y3 + y1 + y3 = -2 + 8 + 4

⇒ 2(y1 + y2 + y3) = 10

⇒ y1 + y2 + y3 = 5

From (2)

⇒ -2 + y3 = 5

⇒ y3 = 7.

Substituting value of y3 in (4) we get,

⇒ y2 + 7 = 8

⇒ y2 = 1.

Substituting value of y3 in (6) we get,

⇒ y1 + 7 = 4

⇒ y1 = -3.

A = (x1, y1) = (1, -3), B = (x2, y2) = (3, 1), C = (x3, y3) = (-5, 7).

Hence, A = (1, -3), B = (3, 1) and C = (-5, 7).

Question 10

Points A(-5, x), B(y, 7) and C(1, -3) are collinear (i.e. lie on same straight line) such that AB = BC. Calculate the values of x and y.

Answer

Since, A, B and C are collinear and AB = BC.

We can say that B is the mid-point of AC.

Points A(-5, x), B(y, 7) and C(1, -3) are collinear (i.e. lie on same straight line) such that AB = BC. Calculate the values of x and y. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting value we get,

B=(5+12,x+(3)2)(y,7)=(42,x32)y=42 and 7=x32y=2 and x3=14y=2 and x=17.\Rightarrow B = \Big(\dfrac{-5 + 1}{2}, \dfrac{x + (-3)}{2}\Big) \\[1em] \Rightarrow (y, 7) = \Big(\dfrac{-4}{2}, \dfrac{x - 3}{2}\Big) \\[1em] \Rightarrow y = \dfrac{-4}{2} \text{ and } 7 = \dfrac{x - 3}{2} \\[1em] \Rightarrow y = -2 \text{ and } x - 3 = 14 \\[1em] \Rightarrow y = -2 \text{ and } x = 17.

Hence, x = 17 and y = -2.

Question 11

Points P(a, -4), Q(-2, b) and R(0, 2) are collinear. If Q lies between P and R, such that PR = 2QR, calculate the values of a and b.

Answer

From figure,

Points P(a, -4), Q(-2, b) and R(0, 2) are collinear. If Q lies between P and R, such that PR = 2QR, calculate the values of a and b. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

PR = PQ + QR

Given,

⇒ PR = 2QR

⇒ PQ +QR = 2QR

⇒ PQ = QR.

∴ Q is the mid-point of P and R.

By formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting value we get,

Q=(a+02,4+22)(2,b)=(a2,22)2=a2 and b=22a=4 and b=1.\Rightarrow Q = \Big(\dfrac{a + 0}{2}, \dfrac{-4 + 2}{2}\Big) \\[1em] \Rightarrow (-2, b) = \Big(\dfrac{a}{2}, \dfrac{-2}{2}\Big) \\[1em] \Rightarrow -2 = \dfrac{a}{2} \text{ and } b = \dfrac{-2}{2} \\[1em] \Rightarrow a = -4 \text{ and } b = -1.

Hence, a = -4 and b = -1.

Question 12

The co-ordinates of the centroid of a triangle PQR are (2, -5). If Q = (-6, 5) and R = (11, 8); calculate the co-ordinates of vertex P.

Answer

Let co-ordinates of P = (x, y).

Centroid of the triangle is given by (G) = (x1+x2+x33,y1+y2+y33)\Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big)

Substituting values we get,

(2,5)=(x+(6)+113,y+5+83)2=x6+113 and 5=y+1336=x+5 and 15=y+13x=1 and y=28.\Rightarrow (2, -5) = \Big(\dfrac{x + (-6) + 11}{3}, \dfrac{y + 5 + 8}{3}\Big) \\[1em] \Rightarrow 2 = \dfrac{x - 6 + 11}{3} \text{ and } -5 = \dfrac{y + 13}{3} \\[1em] \Rightarrow 6 = x + 5 \text{ and } -15 = y + 13 \\[1em] \Rightarrow x = 1 \text{ and } y = -28.

P = (x, y) = (1, -28).

Hence, co-ordinates of P = (1, -28).

Question 13

A (5, x), B(-4, 3) and C (y, -2) are the vertices of the triangle ABC whose centroid is the origin. Calculate the values of x and y.

Answer

Centroid of the triangle is given by (G) = (x1+x2+x33,y1+y2+y33)\Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big)

Substituting values we get,

(0,0)=[5+(4)+y3,x+3+(2)3]0=54+y3 and 0=x+3230=y+1 and 0=x+1y=1 and x=1.\Rightarrow (0, 0) = \Big[\dfrac{5 + (-4) + y}{3}, \dfrac{x + 3 + (-2)}{3}\Big] \\[1em] \Rightarrow 0 = \dfrac{5 - 4 + y}{3} \text{ and } 0 = \dfrac{x + 3 - 2}{3} \\[1em] \Rightarrow 0 = y + 1 \text{ and } 0 = x + 1 \\[1em] \Rightarrow y = -1 \text{ and } x = -1.

Hence, x = -1 and y = -1.

Test Yourself

Question 1(a)

If P(4, 3) is mid-point of line segment AB, then

  1. A = (6, 0), B = (0, 8)

  2. A = (8, 6), B = (8, 0)

  3. A = (6, 8), B = (0, 6)

  4. A = (8, 0) and B = (0, 6)

If P(4, 3) is mid-point of line segment AB, then. Section Formula and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Answer

From figure,

A lies on x-axis and B lies on y-axis.

Let co-ordinates of A be (x, 0) and B be (0, y).

Given,

P(4, 3) is mid-point of line segment AB.

By mid-point formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get :

(4,3)=(x+02,0+y2)(4,3)=(x2,y2)x2=4 and y2=3x=8 and y=6.\Rightarrow (4, 3) = \Big(\dfrac{x + 0}{2}, \dfrac{0 + y}{2}\Big) \\[1em] \Rightarrow (4, 3) = \Big(\dfrac{x}{2}, \dfrac{y}{2}\Big) \\[1em] \Rightarrow \dfrac{x}{2} = 4 \text{ and } \dfrac{y}{2} = 3 \\[1em] \Rightarrow x = 8 \text{ and } y = 6.

A = (x, 0) = (8, 0),

B = (0, y) = (0, 6).

Hence, Option 4 is the correct option.

Question 1(b)

Points A and B have co-ordinates (4, y) and (x, 8). The mid-point of AB = (0, 0); the values of x and y are :

  1. x = -4, y = 8

  2. x = 4, y = -8

  3. x = -4, y = -8

  4. x = 4, y = 8

Answer

By mid-point formula,

Mid-point = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get :

(0,0)=(4+x2,y+82)x+42=0 and y+82=0x+4=0 and y+8=0x=4 and y=8.\Rightarrow (0, 0) = \Big(\dfrac{4 + x}{2}, \dfrac{y + 8}{2}\Big) \\[1em] \Rightarrow \dfrac{x + 4}{2} = 0 \text{ and } \dfrac{y + 8}{2} = 0 \\[1em] \Rightarrow x + 4 = 0 \text{ and } y + 8 = 0 \\[1em] \Rightarrow x = -4 \text{ and } y = -8.

Hence, Option 3 is the correct option.

Question 1(c)

Two vertices of a triangle are (-5, 3) and (4, -7). If centroid of the triangle is (-1, 2) then the third vertex is :

  1. (-2, 7)

  2. (-2, 10)

  3. (-2, -10)

  4. (0, -2)

Answer

Let third vertex be (x, y).

By formula,

Centroid of triangle = (x1+x2+x33,y1+y2+y33)\Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big)

Substituting values we get :

(1,2)=((5)+4+x3,3+(7)+y3)(1,2)=(x13,y43)1=x13 and 2=y43x1=3 and y4=6x=3+1 and y=6+4x=2 and y=10.\Rightarrow (-1, 2) = \Big(\dfrac{(-5) + 4 + x}{3}, \dfrac{3 + (-7) + y}{3}\Big) \\[1em] \Rightarrow (-1, 2) = \Big(\dfrac{x - 1}{3}, \dfrac{y - 4}{3}\Big) \\[1em] \Rightarrow -1 = \dfrac{x - 1}{3} \text{ and } 2 = \dfrac{y - 4}{3} \\[1em] \Rightarrow x - 1 = -3 \text{ and } y - 4 = 6 \\[1em] \Rightarrow x = -3 + 1 \text{ and } y = 6 + 4 \\[1em] \Rightarrow x = -2 \text{ and } y = 10.

Third vertex = (-2, 10).

Hence, Option 2 is the correct option.

Question 1(d)

Points A, B, C and D divide the join of O(0, 0) and P(0, 10) into five equal parts. The co-ordinates of point D are :

Points A, B, C and D divide the join of O(0, 0) and P(0, 10) into five equal parts. The co-ordinates of point D are : Section Formula and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.
  1. (10, 8)

  2. (-8, 0)

  3. (-10, 0)

  4. (0, 8)

Answer

From figure,

D divides the line segment OP in the ratio 4 : 1.

Let co-ordinates of D be (x, y).

By section-formula,

(x, y) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values we get :

(x,y)=(4×0+1×04+1,4×10+1×04+1)=(05,405)=(0,8).\Rightarrow (x, y) = \Big(\dfrac{4 \times 0 + 1 \times 0}{4 + 1}, \dfrac{4 \times 10 + 1\times 0}{4 + 1}\Big) \\[1em] = \Big(\dfrac{0}{5}, \dfrac{40}{5}\Big) \\[1em] = (0, 8).

Hence, Option 4 is the correct option.

Question 1(e)

Line segment joining points (4, 3) and (1, -2) is divided by the point (y, 0) in the ratio :

  1. 2 : 3

  2. 3 : 2

  3. 3 : 4

  4. 4 : 2

Answer

Let (y, 0) divide the line segment joining the points (4, 3) and (1, -2) in the ratio k : 1.

By section-formula,

(x, y) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values for y-coordinate :

0=k×2+1×3k+12k+3=02k=3k=32.\Rightarrow 0 = \dfrac{k \times -2 + 1 \times 3}{k + 1} \\[1em] \Rightarrow -2k + 3 = 0 \\[1em] \Rightarrow 2k = 3 \\[1em] \Rightarrow k = \dfrac{3}{2}.

Substituting value of k in k : 1, we get :

32:1\dfrac{3}{2} : 1

⇒ 3 : 2.

Hence, Option 2 is the correct option.

Question 1(f)

The point P divides the line segment joining the point (1, 2) and (-1, 2) internally in the ratio 1 : 2.

Assertion (A) : The co-ordinates of point P = (1, 6)

Reason (R) : If point P divides the line segment joining the points (x1, y1) and (x2, y2) in the ratio m1 : m2 then :

P = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

  1. A is true, R is false.

  2. A is false, R is true.

  3. Both A and R are true and R is correct reason for A.

  4. Both A and R are true and R is incorrect reason for A.

Answer

We know that,

If point P divides the line segment joining the points (x1, y1) and (x2, y2) in the ratio m1 : m2, then :

Co-ordinates of P = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

So, reason (R) is true.

Here, (x1, y1) = (1, 2) and (x2, y2) = (-1, 2)

m1 : m2 = 1 : 2

Substituting the values, we get :

P=[1×(1)+2×11+2,1×2+2×21+2]=(1+23,2+43)=(13,63)=(13,2)\Rightarrow \text{P} = \Big[\dfrac{1\times (-1) + 2\times 1}{1 + 2}, \dfrac{1 \times 2 + 2 \times 2}{1 + 2}\Big]\\[1em] = \Big(\dfrac{-1 + 2}{3}, \dfrac{2 + 4}{3}\Big)\\[1em] = \Big(\dfrac{1}{3}, \dfrac{6}{3}\Big)\\[1em] = \Big(\dfrac{1}{3}, 2\Big)\\[1em]

So, assertion (A) is false.

Hence, option 2 is the correct option.

Question 1(g)

Point P(x, y) is equidistant from points A(7, 1) and B(3, 5).

Statement 1: x = 7+32\dfrac{7 + 3}{2} and y = 1+52\dfrac{1 + 5}{2}.

Statement 2: (x - 7)2 + (y - 1)2 = (x - 3)2 + (y - 5)2.

  1. Both the statement are true.

  2. Both the statement are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

It is given that point P(x, y) is equidistant from points A(7, 1) and B(3, 5).

If a point is equidistant from two points it is not necessary that it will be the mid-point of the two points, sp we cannot use mid-point formula to find the co-ordinates of P.

So, statement 1 is false.

Using distance formula,

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

⇒ PA = PB

(x7)2+(y1)2=(x3)2+(y5)2\Rightarrow \sqrt{(x - 7)^2 + (y - 1)^2} = \sqrt{(x - 3)^2 + (y - 5)^2}

⇒ (x - 7)2 + (y - 1)2 = (x - 3)2 + (y - 5)2

So, statement 2 is true.

Hence, option 4 is the correct option.

Question 2

Given a triangle ABC in which A = (4, -4), B = (0, 5) and C = (5, 10). A point P lies on BC such that BP : PC = 3 : 2. Find the length of line segment AP.

Answer

Let the co-ordinates of P be (x, y)

x=m1x2+m2x1m1+m2=3×5+2×03+2=15+03=153=5.\therefore x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 5 + 2 \times 0}{3 + 2} \\[1em] = \dfrac{15 + 0}{3} \\[1em] = \dfrac{15}{3} = 5.

and,

y=m1y2+m2y1m1+m2=3×10+2×53+2=30+105=405=8.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 10 + 2 \times 5}{3 + 2} \\[1em] = \dfrac{30 + 10}{5} \\[1em] = \dfrac{40}{5} = 8.

P = (x, y) = (5, 8).

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

AP=(54)2+(8(4))2=12+122=1+144=145=12.04AP = \sqrt{(5 - 4)^2 + (8 - (-4))^2} \\[1em] = \sqrt{1^2 + 12^2} \\[1em] = \sqrt{1 + 144} \\[1em] = \sqrt{145} \\[1em] = 12.04

Hence, AP = 12.04 units.

Question 3

A(20, 0) and B (10, -20) are two fixed points. Find the co-ordinates of the point P in AB such that : 3PB = AB. Also, find the co-ordinates of some other point Q in AB such that AB = 6AQ.

Answer

From figure,

A(20, 0) and B (10, -20) are two fixed points. Find the co-ordinates of the point P in AB such that : 3PB = AB. Also, find the co-ordinates of some other point Q in AB such that AB = 6AQ. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

⇒ AB = AP + PB

⇒ 3PB = AP + PB

⇒ AP = 2PB

APPB=21\dfrac{AP}{PB} = \dfrac{2}{1}

⇒ AP : PB = 2 : 1.

Let the co-ordinates of P be (x, y)

x=m1x2+m2x1m1+m2=2×10+1×202+1=20+203=403.\therefore x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{2 \times 10 + 1 \times 20}{2 + 1} \\[1em] = \dfrac{20 + 20}{3} \\[1em] = \dfrac{40}{3}.

and,

y=m1y2+m2y1m1+m2=2×20+1×02+1=40+03=403.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{2 \times -20 + 1 \times 0}{2 + 1} \\[1em] = \dfrac{-40 + 0}{3} \\[1em] = \dfrac{-40}{3}.

From figure,

⇒ AB = AQ + QB

⇒ 6AQ = AQ + QB

⇒ QB = 5AQ

AQQB=15\dfrac{AQ}{QB} = \dfrac{1}{5}

⇒ AQ : QB = 1 : 5.

Let the co-ordinates of Q be (p, q)

p=m1x2+m2x1m1+m2=1×10+5×201+5=10+1006=1106=553.\therefore p = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{1 \times 10 + 5 \times 20}{1 + 5} \\[1em] = \dfrac{10 + 100}{6} \\[1em] = \dfrac{110}{6} = \dfrac{55}{3}.

and,

q=m1y2+m2y1m1+m2=1×20+5×01+5=20+06=103.q = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{1 \times -20 + 5 \times 0}{1 + 5} \\[1em] = \dfrac{-20 + 0}{6} \\[1em] = \dfrac{-10}{3}.

Hence, P = (403,403) and Q=(553,103)\Big(\dfrac{40}{3}, -\dfrac{40}{3}\Big) \text{ and Q} = \Big(\dfrac{55}{3}, -\dfrac{10}{3}\Big).

Question 4

A(-8, 0), B(0, 16) and C(0, 0) are the vertices of a triangle ABC. Point P lies on AB and Q lies on AC such that AP : PB = 3 : 5 and AQ : QC = 3 : 5.

Show that : PQ = 38\dfrac{3}{8}BC.

Answer

The triangle is shown in the figure below:

A(-8, 0), B(0, 16) and C(0, 0) are the vertices of a triangle ABC. Point P lies on AB and Q lies on AC such that AP : PB = 3 : 5 and AQ : QC = 3 : 5. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Let the co-ordinates of P be (x, y)

x=m1x2+m2x1m1+m2=3×0+5×83+5=0408=408=5.\therefore x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 0 + 5 \times -8}{3 + 5} \\[1em] = \dfrac{0 - 40}{8} \\[1em] = \dfrac{-40}{8} = -5.

and,

y=m1y2+m2y1m1+m2=3×16+5×03+5=48+08=6.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 16 + 5 \times 0}{3 + 5} \\[1em] = \dfrac{48 + 0}{8} \\[1em] = 6.

P = (x, y) = (-5, 6).

Let the co-ordinates of Q be (m, n)

m=m1x2+m2x1m1+m2=3×0+5×83+5=0408=408=5.\therefore m = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 0 + 5 \times -8}{3 + 5} \\[1em] = \dfrac{0 - 40}{8} \\[1em] = \dfrac{-40}{8} = -5.

and,

n=m1y2+m2y1m1+m2=3×0+5×03+5=0+08=0.n = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 0 + 5 \times 0}{3 + 5} \\[1em] = \dfrac{0 + 0}{8} \\[1em] = 0.

Q = (m, n) = (-5, 0).

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

PQ=(5(5))2+(06)2=02+(6)2=36=6 units.BC=(00)2+(016)2=02+(16)2=256=16 units.PQ = \sqrt{(-5 - (-5))^2 + (0 - 6)^2} \\[1em] = \sqrt{0^2 + (-6)^2} \\[1em] = \sqrt{36} \\[1em] = 6 \text{ units}. \\[1em] BC = \sqrt{(0 - 0)^2 + (0 - 16)^2} \\[1em] = \sqrt{0^2 + (-16)^2} \\[1em] = \sqrt{256} \\[1em] = 16 \text{ units}.

⇒ BC = 16 units

38BC=16×38\dfrac{3}{8}BC = 16 \times \dfrac{3}{8} = 6 units = PQ.

Hence, proved that PQ = 38\dfrac{3}{8}BC.

Question 5

A line segment joining A (1,53)\Big(-1, \dfrac{5}{3}\Big) and B(a, 5) is divided in the ratio 1 : 3 at P, the point where the line segment AB intersects the y-axis.

(i) Calculate the value of 'a'.

(ii) Calculate the co-ordinates of 'P'.

Answer

(i) Since, P is the point where the line segment AB intersects the y-axis.

Let P = (0, y).

Since, P divides AB in the ratio 1 : 3.

0=m1x2+m2x1m1+m20=1×a+3×11+30=a340=a3a=3.\therefore 0 = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 0 = \dfrac{1 \times a + 3 \times -1}{1 + 3} \\[1em] \Rightarrow 0 = \dfrac{a - 3}{4} \\[1em] \Rightarrow 0 = a - 3 \\[1em] \Rightarrow a = 3. \\[1em]

Hence, a = 3.

(ii) By section formula,

y=m1y2+m2y1m1+m2=1×5+3×531+3=5+54=104=52=212.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{1 \times 5 + 3 \times \dfrac{5}{3}}{1 + 3} \\[1em] = \dfrac{5 + 5}{4} \\[1em] = \dfrac{10}{4} = \dfrac{5}{2} = 2\dfrac{1}{2}.

P = (0, y) = (0,212)\Big(0, 2\dfrac{1}{2}\Big).

Hence, co-ordinates of P = (0,212)\Big(0, 2\dfrac{1}{2}\Big).

Question 6

In what ratio is the line joining A(0, 3) and B (4, -1) divided by the x-axis ?

Write the co-ordinates of the point where AB intersects the x-axis.

Answer

Let AB intersect x-axis at P. So, co-ordinates of P = (x, 0).

Let ratio be m1 : m2.

By section formula,

y=m1y2+m2y1m1+m20=m1×1+m2×3m1+m20=m1+3m2m1=3m2m1m2=31.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] \Rightarrow 0 = \dfrac{m_1 \times -1 + m_2 \times 3}{m_1 + m_2} \\[1em] \Rightarrow 0 = -m_1 + 3m_2 \\[1em] \Rightarrow m_1 = 3m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{3}{1}.

m1 : m2 = 3 : 1.

x=m1x2+m2x1m1+m2=3×4+1×03+1=12+04=124=3.x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{3 \times 4 + 1 \times 0}{3 + 1} \\[1em] = \dfrac{12 + 0}{4} \\[1em] = \dfrac{12}{4} = 3. \\[1em]

P = (x, 0) = (3, 0).

Hence, co-ordinates of P = (3, 0) and ratio = 3 : 1.

Question 7

The mid-point of the segment AB, as shown in diagram, is C(4, -3). Write down the co-ordinates of A and B.

AB is a line segment with A = (2, 4) and B = (6, 12). Point P lies on the line segment AB so that P = (3, x), then the ratio AP : PB is : Section Formula and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Answer

Since, A lies on x-axis, its co-ordinates be (x, 0) and B lies on y-axis , its co-ordinates be (0, y).

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

(4,3)=(x+02,0+y2)4=x2 and 3=y2x=8 and y=6.\Rightarrow (4, -3) = \Big(\dfrac{x + 0}{2}, \dfrac{0 + y}{2}\Big) \\[1em] \therefore 4 = \dfrac{x}{2} \text{ and } -3 = \dfrac{y}{2} \\[1em] \Rightarrow x = 8 \text{ and } y = -6.

Hence, A = (8, 0) and B = (0, -6).

Question 8

AB is a diameter of a circle with center C = (-2, 5). If A = (3, -7), find

(i) the length of radius AC.

(ii) the co-ordinates of B.

Answer

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

AC=[3(2)]2+[75]2=(3+2)2+(12)2=25+144=169=13 units.AC = \sqrt{[3 - (-2)]^2 + [-7 - 5]^2} \\[1em] = \sqrt{(3 + 2)^2 + (-12)^2} \\[1em] = \sqrt{25 + 144} \\[1em] = \sqrt{169} \\[1em] = 13 \text{ units}.

Hence, radius = 13 units.

(ii) Since, AB is diameter and C is center of circle so,

C is the mid-point of AB.

Let B = (x, y).

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

(2,5)=(3+x2,7+y2)2=3+x2 and 5=7+y2x+3=4 and 7+y=10x=7 and y=17.\Rightarrow (-2, 5) = \Big(\dfrac{3 + x}{2}, \dfrac{-7 + y}{2}\Big) \\[1em] \therefore -2 = \dfrac{3 + x}{2} \text{ and } 5 = \dfrac{-7 + y}{2} \\[1em] \Rightarrow x + 3 = -4 \text{ and } -7 + y = 10 \\[1em] \Rightarrow x = -7 \text{ and } y = 17.

Hence, co-ordinates of B = (-7, 17).

Question 9

The mid-point of the line segment joining (4a, 2b - 3) and (-4, 3b) is (2, -2a). Find the values of a and b.

Answer

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

(2,2a)=(4a+(4)2,2b3+3b2)2=4a42 and 2a=5b324a4=4 and 5b3=4a4a=8 and 5b=4a+3a=2 and 5b=4(2)+3a=2 and 5b=5a=2 and b=1.\Rightarrow (2, -2a) = \Big(\dfrac{4a + (-4)}{2}, \dfrac{2b - 3 + 3b}{2}\Big) \\[1em] \therefore 2 = \dfrac{4a - 4}{2} \text{ and } -2a = \dfrac{5b - 3}{2} \\[1em] \Rightarrow 4a - 4 = 4 \text{ and } 5b - 3 = -4a \\[1em] \Rightarrow 4a = 8 \text{ and } 5b = -4a + 3 \\[1em] \Rightarrow a = 2 \text{ and } 5b = -4(2) + 3 \\[1em] \Rightarrow a = 2 \text{ and } 5b = -5 \\[1em] \Rightarrow a = 2 \text{ and } b = -1.

Hence, a = 2 and b = -1.

Question 10

(i) Write down the co-ordinates of the point P that divides the line joining A(-4, 1) and B(17, 10) in the ratio 1 : 2.

(ii) Calculate the distance OP, where O is the origin.

(iii) In what ratio does the y-axis divide the line AB ?

Answer

(i) Let the co-ordinates of P be (x, y)

x=m1x2+m2x1m1+m2=1×17+2×41+2=17+(8)3=93=3.\therefore x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] = \dfrac{1 \times 17 + 2 \times -4}{1 + 2} \\[1em] = \dfrac{17 + (-8)}{3} \\[1em] = \dfrac{9}{3} = 3.

and,

y=m1y2+m2y1m1+m2=1×10+2×11+2=10+23=123=4.y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} \\[1em] = \dfrac{1 \times 10 + 2 \times 1}{1 + 2} \\[1em] = \dfrac{10 + 2}{3} \\[1em] = \dfrac{12}{3} = 4.

P = (x, y) = (3, 4).

Hence, co-ordinates of point P = (3, 4).

(ii) Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

OP=(30)2+(40)2=(3)2+(4)2=9+16=25=5 units.OP = \sqrt{(3 - 0)^2 + (4 - 0)^2} \\[1em] = \sqrt{(3)^2 + (4)^2} \\[1em] = \sqrt{9 + 16} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}.

Hence, OP = 5 units.

(iii) Let point Q (0, z) on y-axis divide line AB in ratio m1 : m2.

By section formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

0=m1×17+m2×4m1+m20=17m14m24m2=17m1m1m2=417.\Rightarrow 0 = \dfrac{m_1 \times 17 + m_2 \times -4}{m_1 + m_2} \\[1em] \Rightarrow 0 = 17m_1 - 4m_2 \\[1em] \Rightarrow 4m_2 = 17m_1 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{4}{17}.

m1 : m2 = 4 : 17.

Hence, ratio in which the y-axis divide the line AB = 4 : 17.

Question 11

Prove that the points A(-5, 4); B(-1, -2) and C(5, 2) are the vertices of an isosceles right angled triangle. Find the co-ordinates of D so that ABCD is a square.

Answer

The points are shown in the figure below:

Prove that the points A(-5, 4); B(-1, -2) and C(5, 2) are the vertices of an isosceles right angled triangle. Find the co-ordinates of D so that ABCD is a square. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

AB=[1(5)]2+[24]2=[1+5]2+[6]2=[4]2+36=16+36=52.BC=[5(1)]2+[2(2)]2=[5+1]2+[4]2=[6]2+16=36+16=52.AC=[5(5)]2+[24]2=[5+5]2+[2]2=[10]2+4=100+4=104.AB2+BC2=(52)2+(52)2=52+52=104=AC2.AB = \sqrt{[-1 - (-5)]^2 + [-2 - 4]^2} \\[1em] = \sqrt{[-1 + 5]^2 + [-6]^2} \\[1em] = \sqrt{[4]^2 + 36} \\[1em] = \sqrt{16 + 36} \\[1em] = \sqrt{52}. \\[1em] BC = \sqrt{[5 - (-1)]^2 + [2 - (-2)]^2} \\[1em] = \sqrt{[5 + 1]^2 + [4]^2} \\[1em] = \sqrt{[6]^2 + 16} \\[1em] = \sqrt{36 + 16} \\[1em] = \sqrt{52}. \\[1em] AC = \sqrt{[5 - (-5)]^2 + [2 - 4]^2} \\[1em] = \sqrt{[5 + 5]^2 + [-2]^2} \\[1em] = \sqrt{[10]^2 + 4} \\[1em] = \sqrt{100 + 4} \\[1em] = \sqrt{104}. \\[1em] AB^2 + BC^2 = (\sqrt{52})^2 + (\sqrt{52})^2 \\[1em] = 52 + 52 \\[1em] = 104 = AC^2.

Since, AB = BC and AC2 = AB2 + BC2.

Hence, proved that ABC is an isosceles right angled triangle.

Since, diagonals of square bisect each other so,

Mid-point of AC = Mid-point of BD = O.

O=(5+52,4+22)=(02,62)=(0,3).O = \Big(\dfrac{-5 + 5}{2}, \dfrac{4 + 2}{2}\Big) \\[1em] = \Big(\dfrac{0}{2}, \dfrac{6}{2}\Big) \\[1em] = (0, 3).

Let co-ordinates of D = (x, y).

O=(1+x2,2+y2)(0,3)=(1+x2,2+y2)0=1+x2 and 3=2+y21+x=0 and 2+y=6x=1 and y=8.\therefore O = \Big(\dfrac{-1 + x}{2}, \dfrac{-2 + y}{2}\Big) \\[1em] \Rightarrow (0, 3) = \Big(\dfrac{-1 + x}{2}, \dfrac{-2 + y}{2}\Big) \\[1em] \Rightarrow 0 = \dfrac{-1 + x}{2} \text{ and } 3 = \dfrac{-2 + y}{2} \\[1em] \Rightarrow -1 + x = 0 \text{ and } -2 + y = 6 \\[1em] \Rightarrow x = 1 \text{ and } y = 8.

D = (x, y) = (1, 8).

Hence, co-ordinates of D = (1, 8).

Question 12

M is the mid-point of the line segment joining the points A(-3, 7) and B(9, -1). Find the co-ordinates of point M. Further, if R(2, 2) divides the line segment joining M and the origin in the ratio p : q, find the ratio p : q.

Answer

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

M=(3+92,7+(1)2)=(62,62)=(3,3).M = \Big(\dfrac{-3 + 9}{2}, \dfrac{7 + (-1)}{2}\Big) \\[1em] = \Big(\dfrac{6}{2}, \dfrac{6}{2}\Big) \\[1em] = (3, 3).

Given, R(2, 2) divides the line segment joining M and the origin in the ratio p : q.

By section formula,

x=m1x2+m2x1m1+m2\Rightarrow x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

2=p×0+q×3p+q2(p+q)=0+3q2p+2q=3q2p=qpq=12.\Rightarrow 2 = \dfrac{p \times 0 + q \times 3}{p + q} \\[1em] \Rightarrow 2(p + q) = 0 + 3q \\[1em] \Rightarrow 2p + 2q = 3q \\[1em] \Rightarrow 2p = q \\[1em] \Rightarrow \dfrac{p}{q} = \dfrac{1}{2}.

p : q = 1 : 2.

Hence, M = (3, 3) and p : q = 1 : 2.

Question 13

Calculate the ratio in which the line joining A(-4, 2) and B(3, 6) is divided by point P(x, 3). Also, find (i) x (ii) length of AP.

Answer

Let ratio be m1 : m2.

By section formula,

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

3=m1×6+m2×2m1+m23m1+3m2=6m1+2m2m2=3m1m1m2=13.3 = \dfrac{m_1 \times 6 + m_2 \times 2}{m_1 + m_2} \\[1em] \Rightarrow 3m_1 + 3m_2 = 6m_1 + 2m_2 \\[1em] \Rightarrow m_2 = 3m_1 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{1}{3}.

m1 : m2 = 1 : 3.

(i) By section formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

x=1×3+3×41+3x=3124x=94.\Rightarrow x = \dfrac{1 \times 3 + 3 \times -4}{1 + 3} \\[1em] \Rightarrow x = \dfrac{3 - 12}{4} \\[1em] \Rightarrow x = -\dfrac{9}{4}.

Hence, x = 94-\dfrac{9}{4}.

(ii) Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

AP=[94(4)]2+[32]2=[94+4]2+[1]2=[9+164]2+1=[74]2+1=4916+1=49+1616=6516=654.AP = \sqrt{\Big[-\dfrac{9}{4} - (-4)\Big]^2 + [3 - 2]^2} \\[1em] = \sqrt{\Big[-\dfrac{9}{4} + 4\Big]^2 + [1]^2} \\[1em] = \sqrt{\Big[\dfrac{-9 + 16}{4}\Big]^2 + 1} \\[1em] = \sqrt{\Big[\dfrac{7}{4}\Big]^2 + 1} \\[1em] = \sqrt{\dfrac{49}{16} + 1} \\[1em] = \sqrt{\dfrac{49 + 16}{16}} \\[1em] = \sqrt{\dfrac{65}{16}} \\[1em] = \dfrac{\sqrt{65}}{4}.

Hence, AP = 654.\dfrac{\sqrt{65}}{4}.

Question 14

Find the ratio in which the line 2x + y = 4 divides the line segment joining the points P(2, -2) and Q(3, 7).

Answer

Let ratio in which 2x + y = 4 divides the line segment joining the points P(2, -2) and Q(3, 7) be k : 1 at point (x, y).

By section formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

x=k×3+1×2k+1x(k+1)=3k+2x=3k+2k+1.\Rightarrow x = \dfrac{k \times 3 + 1 \times 2}{k + 1} \\[1em] \Rightarrow x(k + 1) = 3k + 2 \\[1em] \Rightarrow x = \dfrac{3k + 2}{k + 1}.

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

y=k×7+1×2k+1y(k+1)=7k2y=7k2k+1.\Rightarrow y = \dfrac{k \times 7 + 1 \times -2}{k + 1} \\[1em] \Rightarrow y(k + 1) = 7k - 2 \\[1em] \Rightarrow y = \dfrac{7k - 2}{k + 1}.

Substituting value of x and y in 2x + y = 4.

2(3k+2k+1)+7k2k+1=46k+4k+1+7k2k+1=46k+4+7k2k+1=413k+2=4k+49k=2k=29.k:1=29:1=2:9.\Rightarrow 2 \Big(\dfrac{3k + 2}{k + 1}\Big) + \dfrac{7k - 2}{k + 1} = 4 \\[1em] \Rightarrow \dfrac{6k + 4}{k + 1} + \dfrac{7k - 2}{k + 1} = 4 \\[1em] \Rightarrow \dfrac{6k + 4 + 7k - 2}{k + 1} = 4 \\[1em] \Rightarrow 13k + 2 = 4k + 4 \\[1em] \Rightarrow 9k = 2 \\[1em] \Rightarrow k = \dfrac{2}{9}. \\[1em] \Rightarrow k : 1 = \dfrac{2}{9} : 1 = 2 : 9.

Hence, ratio in which the line 2x + y = 4 divides the line segment joining the points P(2, -2) and Q(3, 7) = 2 : 9.

Question 15

If the abscissa of a point P is 2, find the ratio in which this point divides the line segment joining the points (-4, 3) and (6, 3). Also, find the co-ordinates of point P.

Answer

Let point P be (2, y) and ratio in which it divides line segment joining the points (-4, 3) and (6, 3) be m1 : m2.

By section formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

2=m1×6+m2×4m1+m22m1+2m2=6m14m22m2+4m2=6m12m16m2=4m1m1m2=64=32.\Rightarrow 2 = \dfrac{m_1 \times 6 + m_2 \times -4}{m_1 + m_2} \\[1em] \Rightarrow 2m_1 + 2m_2 = 6m_1 - 4m_2 \\[1em] \Rightarrow 2m_2 + 4m_2 = 6m_1 - 2m_1 \\[1em] \Rightarrow 6m_2 = 4m_1 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{6}{4} = \dfrac{3}{2}.

m1 : m2 = 3 : 2.

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

y=3×3+2×33+2y=9+65y=155=3.\Rightarrow y = \dfrac{3 \times 3 + 2 \times 3}{3 + 2} \\[1em] \Rightarrow y = \dfrac{9 + 6}{5} \\[1em] \Rightarrow y = \dfrac{15}{5} = 3.

P = (2, y) = (2, 3).

Hence, ratio = 3 : 2 and co-ordinates of P = (2, 3).

Question 16

Find the image of the point A(5, -3) under reflection in the point P(-1, 3).

Answer

Let image be B(x, y).

Since, A is reflected in P to become B. So, P is mid-point of AB.

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

P=(5+x2,3+y2)(1,3)=(5+x2,3+y2)1=5+x2 and 3=3+y2x+5=2 and y3=6x=7 and y=9.\Rightarrow P = \Big(\dfrac{5 + x}{2}, \dfrac{-3 + y}{2}\Big) \\[1em] \Rightarrow (-1, 3) = \Big(\dfrac{5 + x}{2}, \dfrac{-3 + y}{2}\Big) \\[1em] \therefore -1 = \dfrac{5 + x}{2} \text{ and } 3 = \dfrac{-3 + y}{2} \\[1em] \Rightarrow x + 5 = -2 \text{ and } y - 3 = 6 \\[1em] \Rightarrow x = -7 \text{ and } y = 9.

B = (x, y) = (-7, 9).

Hence, image of the point A(5, -3) under reflection in the point P(-1, 3) is (-7, 9).

Question 17

M is the mid-point of the line segment joining the points A(0, 4) and B(6, 0). M also divides the line segment OP in the ratio 1 : 3. Find :

(i) co-ordinates of M

(ii) co-ordinates of P

(iii) length of BP

M is the mid-point of the line segment joining the points A(0, 4) and B(6, 0). M also divides the line segment OP in the ratio 1 : 3. Find co-ordinates of M, co-ordinates of P, length of BP. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Answer

(i) By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

Substituting values we get,

M=(0+62,4+02)=(62,42)=(3,2).M = \Big(\dfrac{0 + 6}{2}, \dfrac{4 + 0}{2}\Big) \\[1em] = \Big(\dfrac{6}{2}, \dfrac{4}{2}\Big) \\[1em] = (3, 2).

Hence, M = (3, 2).

(ii) Let co-ordinates of P be (x, y).

Given, M divides the line segment OP in the ratio 1 : 3.

By section formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting values we get,

3=1×x+3×01+33=x4x=12.y=m1y2+m2y1m1+m2\Rightarrow 3 = \dfrac{1 \times x + 3 \times 0}{1 + 3} \\[1em] \Rightarrow 3 = \dfrac{x}{4} \\[1em] \Rightarrow x = 12. \\[1em] y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting values we get,

2=1×y+3×01+32=y4y=8.\Rightarrow 2 = \dfrac{1 \times y + 3 \times 0}{1 + 3} \\[1em] \Rightarrow 2 = \dfrac{y}{4} \\[1em] \Rightarrow y = 8.

P = (x, y) = (12, 8).

Hence, co-ordinates of P = (12, 8).

(iii) Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

BP=(126)2+(80)2=(6)2+(8)2=36+64=100=10 units.BP = \sqrt{(12 - 6)^2 + (8 - 0)^2} \\[1em] = \sqrt{(6)^2 + (8)^2} \\[1em] = \sqrt{36 + 64} \\[1em] = \sqrt{100} = 10 \text{ units}. \\[1em]

Hence, BP = 10 units.

Question 18

A(3, 1), B(y, 4) and C(1, x) are vertices of triangle ABC and G(3, 4) is its centroid. Find the values of x and y. Also, find the length of side BC.

Answer

Centroid of the triangle is given by (G) = (x1+x2+x33,y1+y2+y33)\Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big)

Substituting values we get,

G1=(3+y+13,1+4+x3)(3,4)=(y+43,x+53)3=y+43 and 4=x+53y+4=9 and 12=x+5y=5 and x=7.\Rightarrow G_1 = \Big(\dfrac{3 + y + 1}{3}, \dfrac{1 + 4 + x}{3}\Big) \\[1em] \Rightarrow (3, 4) = \Big(\dfrac{y + 4}{3}, \dfrac{x + 5}{3}\Big) \\[1em] \Rightarrow 3 = \dfrac{y + 4}{3} \text{ and } 4 = \dfrac{x + 5}{3} \\[1em] \Rightarrow y + 4 = 9 \text{ and } 12 = x + 5 \\[1em] \Rightarrow y = 5 \text{ and } x = 7.

B = (y, 4) = (5, 4) and C = (1, x) = (1, 7).

Distance between two points = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

BC=(15)2+(74)2=(4)2+(3)2=16+9=25=5 units.BC = \sqrt{(1 - 5)^2 + (7 - 4)^2} \\[1em] = \sqrt{(-4)^2 + (3)^2} \\[1em] = \sqrt{16 + 9} \\[1em] = \sqrt{25} = 5 \text{ units}. \\[1em]

Hence, x = 7, y = 5 and BC = 5 units.

PrevNext