If [ x + 2 7 y + 3 a − 2 ] = [ 4 b − 3 4 3 ] \begin{bmatrix*}[r] x + 2 & 7 \\ y + 3 & a - 2 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & b - 3 \\ 4 & 3 \end{bmatrix*} [ x + 2 y + 3 7 a − 2 ] = [ 4 4 b − 3 3 ] , the value of x, y, a and b are :
x = 2, y = 1, a = 5 and b = 10
x = -2, y = 1, a = 5 and b = 10
x = 2, y = -1, a = 5 and b = 10
x = 2, y = 1, a = -5 and b = 10
Answer
Given,
[ x + 2 7 y + 3 a − 2 ] = [ 4 b − 3 4 3 ] \begin{bmatrix*}[r] x + 2 & 7 \\ y + 3 & a - 2 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & b - 3 \\ 4 & 3 \end{bmatrix*} [ x + 2 y + 3 7 a − 2 ] = [ 4 4 b − 3 3 ] .
∴ x + 2 = 4
⇒ x = 4 - 2 = 2.
∴ y + 3 = 4
⇒ y = 4 - 3 = 1.
∴ b - 3 = 7
⇒ b = 7 + 3 = 10.
∴ a - 2 = 3
⇒ a = 3 + 2 = 5.
Hence, Option 1 is the correct option.
If A = [ 5 − 5 3 − 3 ] and B = [ − 5 5 − 3 3 ] \begin{bmatrix*}[r] 5 & -5 \\ 3 & -3 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] -5 & 5 \\ -3 & 3 \end{bmatrix*} [ 5 3 − 5 − 3 ] and B = [ − 5 − 3 5 3 ] ; the value of matrix (A - B) is :
[ 0 0 0 0 ] \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} [ 0 0 0 0 ]
[ 10 − 10 6 − 6 ] \begin{bmatrix*}[r] 10 & -10 \\ 6 & -6 \end{bmatrix*} [ 10 6 − 10 − 6 ]
[ 10 − 10 − 6 6 ] \begin{bmatrix*}[r] 10 & -10 \\ -6 & 6 \end{bmatrix*} [ 10 − 6 − 10 6 ]
[ − 10 10 − 6 6 ] \begin{bmatrix*}[r] -10 & 10 \\ -6 & 6 \end{bmatrix*} [ − 10 − 6 10 6 ]
Answer
Given,
A = [ 5 − 5 3 − 3 ] and B = [ − 5 5 − 3 3 ] \begin{bmatrix*}[r] 5 & -5 \\ 3 & -3 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] -5 & 5 \\ -3 & 3 \end{bmatrix*} [ 5 3 − 5 − 3 ] and B = [ − 5 − 3 5 3 ]
A − B = [ 5 − 5 3 − 3 ] − [ − 5 5 − 3 3 ] = [ 5 − ( − 5 ) − 5 − 5 3 − ( − 3 ) − 3 − 3 ] = [ 10 − 10 6 − 6 ] A -B = \begin{bmatrix*}[r] 5 & -5 \\ 3 & -3 \end{bmatrix*} - \begin{bmatrix*}[r] -5 & 5 \\ -3 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 5 - (-5) & -5 - 5 \\ 3 - (-3) & -3 - 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 10 & -10 \\ 6 & -6 \end{bmatrix*} A − B = [ 5 3 − 5 − 3 ] − [ − 5 − 3 5 3 ] = [ 5 − ( − 5 ) 3 − ( − 3 ) − 5 − 5 − 3 − 3 ] = [ 10 6 − 10 − 6 ]
Hence, Option 2 is the correct option.
If A = [ 5 5 4 0 ] , B = [ 3 2 1 4 ] and C = [ − 2 3 2 1 ] \begin{bmatrix*}[r] 5 & 5 \\ 4 & 0 \end{bmatrix*}, B = \begin{bmatrix*}[r] 3 & 2 \\ 1 & 4 \end{bmatrix*} \text{ and } C = \begin{bmatrix*}[r] -2 & 3 \\ 2 & 1 \end{bmatrix*} [ 5 4 5 0 ] , B = [ 3 1 2 4 ] and C = [ − 2 2 3 1 ] then matrix (A + B - C) is :
[ 10 4 − 3 3 ] \begin{bmatrix*}[r] 10 & 4 \\ -3 & 3 \end{bmatrix*} [ 10 − 3 4 3 ]
[ − 10 4 3 − 3 ] \begin{bmatrix*}[r] -10 & 4 \\ 3 & -3 \end{bmatrix*} [ − 10 3 4 − 3 ]
[ 10 4 3 3 ] \begin{bmatrix*}[r] 10 & 4 \\ 3 & 3 \end{bmatrix*} [ 10 3 4 3 ]
[ 10 − 4 3 3 ] \begin{bmatrix*}[r] 10 & -4 \\ 3 & 3 \end{bmatrix*} [ 10 3 − 4 3 ]
Answer
Given,
A = [ 5 5 4 0 ] , B = [ 3 2 1 4 ] and C = [ − 2 3 2 1 ] \begin{bmatrix*}[r] 5 & 5 \\ 4 & 0 \end{bmatrix*}, B = \begin{bmatrix*}[r] 3 & 2 \\ 1 & 4 \end{bmatrix*} \text{ and } C = \begin{bmatrix*}[r] -2 & 3 \\ 2 & 1 \end{bmatrix*} [ 5 4 5 0 ] , B = [ 3 1 2 4 ] and C = [ − 2 2 3 1 ]
( A + B − C ) = [ 5 5 4 0 ] + [ 3 2 1 4 ] − [ − 2 3 2 1 ] = [ 5 + 3 − ( − 2 ) 5 + 2 − 3 4 + 1 − 2 0 + 4 − 1 ] = [ 8 + 2 7 − 3 5 − 2 4 − 1 ] = [ 10 4 3 3 ] . (A + B - C) = \begin{bmatrix*}[r] 5 & 5 \\ 4 & 0 \end{bmatrix*} + \begin{bmatrix*}[r] 3 & 2 \\ 1 & 4 \end{bmatrix*} - \begin{bmatrix*}[r] -2 & 3 \\ 2 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 5 + 3 - (-2) & 5 + 2 - 3 \\ 4 + 1 - 2 & 0 + 4 - 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 8 + 2 & 7 - 3 \\ 5 - 2 & 4 - 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 10 & 4 \\ 3 & 3 \end{bmatrix*}. ( A + B − C ) = [ 5 4 5 0 ] + [ 3 1 2 4 ] − [ − 2 2 3 1 ] = [ 5 + 3 − ( − 2 ) 4 + 1 − 2 5 + 2 − 3 0 + 4 − 1 ] = [ 8 + 2 5 − 2 7 − 3 4 − 1 ] = [ 10 3 4 3 ] .
Hence, Option 3 is the correct option.
If A = [ 7 5 − 3 3 ] and B = [ − 2 5 1 0 ] \begin{bmatrix*}[r] 7 & 5 \\ -3 & 3 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] -2 & 5 \\ 1 & 0 \end{bmatrix*} [ 7 − 3 5 3 ] and B = [ − 2 1 5 0 ] , then the matrix P (such that A + P = B) is :
[ 4 0 9 − 3 ] \begin{bmatrix*}[r] 4 & 0 \\ 9 & -3 \end{bmatrix*} [ 4 9 0 − 3 ]
[ 9 0 4 − 2 ] \begin{bmatrix*}[r] 9 & 0 \\ 4 & -2 \end{bmatrix*} [ 9 4 0 − 2 ]
[ − 9 0 4 3 ] \begin{bmatrix*}[r] -9 & 0 \\ 4 & 3 \end{bmatrix*} [ − 9 4 0 3 ]
[ − 9 0 4 − 3 ] \begin{bmatrix*}[r] -9 & 0 \\ 4 & -3 \end{bmatrix*} [ − 9 4 0 − 3 ]
Answer
Given,
⇒ A + P = B
⇒ P = B - A
Substituting values we get :
⇒ P = [ − 2 5 1 0 ] − [ 7 5 − 3 3 ] ⇒ P = [ − 2 − 7 5 − 5 1 − ( − 3 ) 0 − 3 ] ⇒ P = [ − 9 0 4 − 3 ] . \Rightarrow P = \begin{bmatrix*}[r] -2 & 5 \\ 1 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 7 & 5 \\ -3 & 3 \end{bmatrix*} \\[1em] \Rightarrow P = \begin{bmatrix*}[r] -2 - 7 & 5 - 5 \\ 1 - (-3) & 0 - 3 \end{bmatrix*} \\[1em] \Rightarrow P = \begin{bmatrix*}[r] -9 & 0 \\ 4 & -3 \end{bmatrix*}. ⇒ P = [ − 2 1 5 0 ] − [ 7 − 3 5 3 ] ⇒ P = [ − 2 − 7 1 − ( − 3 ) 5 − 5 0 − 3 ] ⇒ P = [ − 9 4 0 − 3 ] .
Hence, Option 4 is the correct option.
The additive inverse of matrix A + B, where
A = [ 4 2 7 − 2 ] and B = [ − 2 1 3 − 4 ] \begin{bmatrix*}[r] 4 & 2 \\ 7 & -2 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] -2 & 1 \\ 3 & -4 \end{bmatrix*} [ 4 7 2 − 2 ] and B = [ − 2 3 1 − 4 ] is :
[ − 2 − 3 − 10 6 ] \begin{bmatrix*}[r] -2 & -3 \\ -10 & 6 \end{bmatrix*} [ − 2 − 10 − 3 6 ]
[ 2 3 − 10 − 6 ] \begin{bmatrix*}[r] 2 & 3 \\ -10 & -6 \end{bmatrix*} [ 2 − 10 3 − 6 ]
[ − 2 − 3 − 10 − 6 ] \begin{bmatrix*}[r] -2 & -3 \\ -10 & -6 \end{bmatrix*} [ − 2 − 10 − 3 − 6 ]
[ − 2 3 10 − 6 ] \begin{bmatrix*}[r] -2 & 3 \\ 10 & -6 \end{bmatrix*} [ − 2 10 3 − 6 ]
Answer
Additive inverse of a matrix M is given by -M.
So, additive inverse of (A + B) = -(A + B).
Substituting values we get :
⇒ − ( A + B ) = − ( [ 4 2 7 − 2 ] + [ − 2 1 3 − 4 ] ) = − ( [ 4 + ( − 2 ) 2 + 1 7 + 3 − 2 + ( − 4 ) ] ) = − ( [ 2 3 10 − 6 ] ) = [ − 2 − 3 − 10 6 ] \Rightarrow -(A + B) = -\Big(\begin{bmatrix*}[r] 4 & 2 \\ 7 & -2 \end{bmatrix*} + \begin{bmatrix*}[r] -2 & 1 \\ 3 & -4 \end{bmatrix*}\Big) \\[1em] = -\Big(\begin{bmatrix*}[r] 4 + (-2) & 2 + 1 \\ 7 + 3 & -2 + (-4) \end{bmatrix*}\Big) \\[1em] = -\Big(\begin{bmatrix*}[r] 2 & 3 \\ 10 & -6 \end{bmatrix*}\Big) \\[1em] = \begin{bmatrix*}[r] -2 & -3 \\ -10 & 6 \end{bmatrix*} ⇒ − ( A + B ) = − ( [ 4 7 2 − 2 ] + [ − 2 3 1 − 4 ] ) = − ( [ 4 + ( − 2 ) 7 + 3 2 + 1 − 2 + ( − 4 ) ] ) = − ( [ 2 10 3 − 6 ] ) = [ − 2 − 10 − 3 6 ]
Hence, Option 1 is the correct option.
State, whether the following statements are true or false. If false, give a reason.
(i) If A and B are two matrices of orders 3 × 2 and 2 × 3 respectively; then their sum A + B is possible.
(ii) The matrices A2 × 3 and B2 × 3 are conformable for subtraction.
(iii) Transpose of a 2 × 1 matrix is a 2 × 1 matrix.
(iv) Transpose of a square matrix is a square matrix.
(v) A column matrix has many columns and only one row.
Answer
(i) False
Reason — For addition the order of both the matrices must be same.
Here, A and B have different orders.
Hence, the statement is false because the orders of both matrices are different.
(ii) True
Reason — For subtraction the order of both the matrices must be same.
Here, A and B have same orders.
Hence, the statement is true.
(iii) False
Reason — On transposing, the no. of rows and columns gets interchanged.
Hence, transpose of a 2 × 1 matrix will be of order 1 × 2.
Hence, the statement is false.
(iv) True
Reason — The transpose of a square matrix is also a square matrix.
Hence, the statement is true.
(v) False
Reason — A column matrix has only one column and can have many rows.
Hence, the statement is false.
Solve for a, b and c; if :
[ − 4 a + 5 3 2 ] = [ b + 4 2 3 c − 1 ] \begin{bmatrix} -4 & a + 5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} b + 4 & 2 \\ 3 & c - 1 \end{bmatrix} [ − 4 3 a + 5 2 ] = [ b + 4 3 2 c − 1 ]
Answer
Given, [ − 4 a + 5 3 2 ] = [ b + 4 2 3 c − 1 ] \begin{bmatrix} -4 & a + 5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} b + 4 & 2 \\ 3 & c - 1 \end{bmatrix} [ − 4 3 a + 5 2 ] = [ b + 4 3 2 c − 1 ]
By definition of equality of matrices we get,
-4 = b + 4 ⇒ b = -4 - 4 = -8,
a + 5 = 2 ⇒ a = 2 - 5 = -3,
2 = c - 1 ⇒ c = 2 + 1 = 3.
Hence, a = -3, b = -8 and c = 3.
Solve for a, b and c; if :
[ a a − b b + c 0 ] = [ 3 − 1 2 0 ] \begin{bmatrix} a & a - b \\ b + c & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} [ a b + c a − b 0 ] = [ 3 2 − 1 0 ]
Answer
Given, [ a a − b b + c 0 ] = [ 3 − 1 2 0 ] \begin{bmatrix} a & a - b \\ b + c & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} [ a b + c a − b 0 ] = [ 3 2 − 1 0 ]
By definition of equality of matrices we get,
a = 3,
a - b = -1 ⇒ 3 - b = -1 [∵ a = 3] ⇒ b = 3 + 1 = 4
b + c = 2 ⇒ 4 + c = 2 ⇒ c = -2.
Hence, a = 3, b = 4 and c = -2.
Wherever possible, write each of the following as a single matrix.
(i) [ 1 2 3 4 ] + [ − 1 − 2 1 − 7 ] \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} -1 & -2 \\ 1 & -7 \end{bmatrix} [ 1 3 2 4 ] + [ − 1 1 − 2 − 7 ]
(ii) [ 2 3 4 5 6 7 ] − [ 0 2 3 6 − 1 0 ] \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 3 \\ 6 & -1 & 0 \end{bmatrix} [ 2 5 3 6 4 7 ] − [ 0 6 2 − 1 3 0 ]
(iii) [ 0 1 2 4 6 7 ] + [ 3 4 6 8 ] \begin{bmatrix} 0 & 1 & 2 \\ 4 & 6 & 7 \end{bmatrix} + \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} [ 0 4 1 6 2 7 ] + [ 3 6 4 8 ]
Answer
(i) Given,
⇒ [ 1 2 3 4 ] + [ − 1 − 2 1 − 7 ] ⇒ [ 1 + ( − 1 ) 2 + ( − 2 ) 3 + 1 4 + ( − 7 ) ] ⇒ [ 0 0 4 − 3 ] . \phantom{\Rightarrow} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} -1 & -2 \\ 1 & -7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 + (-1) & 2 + (-2) \\ 3 + 1 & 4 + (-7) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 & 0 \\ 4 & -3 \end{bmatrix}. ⇒ [ 1 3 2 4 ] + [ − 1 1 − 2 − 7 ] ⇒ [ 1 + ( − 1 ) 3 + 1 2 + ( − 2 ) 4 + ( − 7 ) ] ⇒ [ 0 4 0 − 3 ] .
Hence, resultant matrix = [ 0 0 4 − 3 ] \begin{bmatrix} 0 & 0 \\ 4 & -3 \end{bmatrix} [ 0 4 0 − 3 ] .
(ii) Given,
⇒ [ 2 3 4 5 6 7 ] − [ 0 2 3 6 − 1 0 ] ⇒ [ 2 − 0 3 − 2 4 − 3 5 − 6 6 − ( − 1 ) 7 − 0 ] ⇒ [ 2 1 1 − 1 7 7 ] . \phantom{\Rightarrow} \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 3 \\ 6 & -1 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 - 0 & 3 - 2 & 4 - 3 \\ 5 - 6 & 6 - (-1) & 7 - 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 & 1 & 1 \\ -1 & 7 & 7 \end{bmatrix}. ⇒ [ 2 5 3 6 4 7 ] − [ 0 6 2 − 1 3 0 ] ⇒ [ 2 − 0 5 − 6 3 − 2 6 − ( − 1 ) 4 − 3 7 − 0 ] ⇒ [ 2 − 1 1 7 1 7 ] .
Hence, resultant matrix = [ 2 1 1 − 1 7 7 ] \begin{bmatrix} 2 & 1 & 1 \\ -1 & 7 & 7 \end{bmatrix} [ 2 − 1 1 7 1 7 ] .
(iii) Given,
[ 0 1 2 4 6 7 ] + [ 3 4 6 8 ] \begin{bmatrix} 0 & 1 & 2 \\ 4 & 6 & 7 \end{bmatrix} + \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} [ 0 4 1 6 2 7 ] + [ 3 6 4 8 ]
The above calculation is not possible because for addition the order of both matrices must be equal.
Find, x and y from the following equations :
[ 5 2 − 1 y − 1 ] − [ 1 x − 1 2 − 3 ] = [ 4 7 − 3 2 ] \begin{bmatrix} 5 & 2 \\ -1 & y - 1 \end{bmatrix} - \begin{bmatrix} 1 & x - 1 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ -3 & 2 \end{bmatrix} [ 5 − 1 2 y − 1 ] − [ 1 2 x − 1 − 3 ] = [ 4 − 3 7 2 ]
Answer
Given,
⇒ [ 5 2 − 1 y − 1 ] − [ 1 x − 1 2 − 3 ] = [ 4 7 − 3 2 ] ⇒ [ 5 − 1 2 − ( x − 1 ) − 1 − 2 y − 1 − ( − 3 ) ] = [ 4 7 − 3 2 ] ⇒ [ 4 3 − x − 3 y + 2 ] = [ 4 7 − 3 2 ] \Rightarrow \begin{bmatrix} 5 & 2 \\ -1 & y - 1 \end{bmatrix} - \begin{bmatrix} 1 & x - 1 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ -3 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 - 1 & 2 - (x - 1) \\ -1 - 2 & y - 1 - (-3) \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ -3 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 3 - x \\ -3 & y + 2 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ -3 & 2 \end{bmatrix} \\[1em] ⇒ [ 5 − 1 2 y − 1 ] − [ 1 2 x − 1 − 3 ] = [ 4 − 3 7 2 ] ⇒ [ 5 − 1 − 1 − 2 2 − ( x − 1 ) y − 1 − ( − 3 ) ] = [ 4 − 3 7 2 ] ⇒ [ 4 − 3 3 − x y + 2 ] = [ 4 − 3 7 2 ]
By definition of equality of matrices we get,
⇒ 3 - x = 7 ⇒ x = 3 - 7 = -4.
⇒ y + 2 = 2 ⇒ y = 0.
Hence, x = -4 and y = 0.
Find, x and y from the following equations :
[ − 8 x ] + [ y − 2 ] = [ − 3 2 ] \begin{bmatrix} -8 & x \end{bmatrix} + \begin{bmatrix} y & -2 \end{bmatrix} = \begin{bmatrix} -3 & 2 \end{bmatrix} [ − 8 x ] + [ y − 2 ] = [ − 3 2 ]
Answer
Given,
⇒ [ − 8 x ] + [ y − 2 ] = [ − 3 2 ] ⇒ [ − 8 + y x + ( − 2 ) ] = [ − 3 2 ] \Rightarrow \begin{bmatrix} -8 & x \end{bmatrix} + \begin{bmatrix} y & -2 \end{bmatrix} = \begin{bmatrix} -3 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -8 + y & x + (-2) \end{bmatrix} = \begin{bmatrix} -3 & 2 \end{bmatrix} ⇒ [ − 8 x ] + [ y − 2 ] = [ − 3 2 ] ⇒ [ − 8 + y x + ( − 2 ) ] = [ − 3 2 ]
By definition of equality of matrices we get,
-8 + y = -3 ⇒ y = -3 + 8 = 5.
x - 2 = 2 ⇒ x = 2 + 2 = 4.
Hence, x = 4 and y = 5.
Given : M = [ 5 − 3 − 2 4 ] \begin{bmatrix} 5 & -3 \\ -2 & 4 \end{bmatrix} [ 5 − 2 − 3 4 ] , find its transpose matrix Mt . If possible, find :
(i) M + Mt
(ii) Mt - M
Answer
M = [ 5 − 3 − 2 4 ] \begin{bmatrix} 5 & -3 \\ -2 & 4 \end{bmatrix} [ 5 − 2 − 3 4 ]
Mt = [ 5 − 2 − 3 4 ] \begin{bmatrix} 5 & -2 \\ -3 & 4 \end{bmatrix} [ 5 − 3 − 2 4 ]
(i)
M + M t = [ 5 − 3 − 2 4 ] + [ 5 − 2 − 3 4 ] = [ 5 + 5 − 3 + ( − 2 ) − 2 + ( − 3 ) 4 + 4 ] = [ 10 − 5 − 5 8 ] . M + M^t = \begin{bmatrix} 5 & -3 \\ -2 & 4 \end{bmatrix} + \begin{bmatrix} 5 & -2 \\ -3 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 5 + 5 & -3 + (-2) \\ -2 + (-3) & 4 + 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 10 & -5 \\ -5 & 8 \end{bmatrix}. M + M t = [ 5 − 2 − 3 4 ] + [ 5 − 3 − 2 4 ] = [ 5 + 5 − 2 + ( − 3 ) − 3 + ( − 2 ) 4 + 4 ] = [ 10 − 5 − 5 8 ] .
Hence, M + M t = [ 10 − 5 − 5 8 ] . M + M^t = \begin{bmatrix} 10 & -5 \\ -5 & 8 \end{bmatrix}. M + M t = [ 10 − 5 − 5 8 ] .
(ii)
M t − M = [ 5 − 2 − 3 4 ] − [ 5 − 3 − 2 4 ] = [ 5 − 5 − 2 − ( − 3 ) − 3 − ( − 2 ) 4 − 4 ] = [ 0 1 − 1 0 ] . M^t - M = \begin{bmatrix} 5 & -2 \\ -3 & 4 \end{bmatrix} - \begin{bmatrix} 5 & -3 \\ -2 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 5 - 5 & -2 - (-3) \\ -3 - (-2) & 4 - 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}. M t − M = [ 5 − 3 − 2 4 ] − [ 5 − 2 − 3 4 ] = [ 5 − 5 − 3 − ( − 2 ) − 2 − ( − 3 ) 4 − 4 ] = [ 0 − 1 1 0 ] .
Hence, Mt - M = [ 0 1 − 1 0 ] . \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}. [ 0 − 1 1 0 ] .
Given A = [ 2 − 3 ] , B = [ 0 2 ] and C = [ − 1 4 ] ; \begin{bmatrix} 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 \end{bmatrix} \text{ and C} = \begin{bmatrix} -1 & 4 \end{bmatrix}; [ 2 − 3 ] , B = [ 0 2 ] and C = [ − 1 4 ] ; find the matrix X in each of the following :
(i) X + B = C - A
(ii) A - X = B + C
Answer
(i) Given,
⇒ X + B = C - A
⇒ X = C - A - B
Substituting values of A, B and C in above equation we get,
⇒ X = [ − 1 4 ] − [ 2 − 3 ] − [ 0 2 ] = [ − 1 − 2 − 0 4 − ( − 3 ) − 2 ] = [ − 3 5 ] . \Rightarrow X = \begin{bmatrix} -1 & 4 \end{bmatrix} - \begin{bmatrix} 2 & -3 \end{bmatrix} - \begin{bmatrix} 0 & 2 \end{bmatrix} \\[1em] = \begin{bmatrix} -1 - 2 - 0 & 4 - (-3) - 2 \end{bmatrix} \\[1em] = \begin{bmatrix} -3 & 5 \end{bmatrix}. ⇒ X = [ − 1 4 ] − [ 2 − 3 ] − [ 0 2 ] = [ − 1 − 2 − 0 4 − ( − 3 ) − 2 ] = [ − 3 5 ] .
Hence, X = [ − 3 5 ] . \begin{bmatrix} -3 & 5 \end{bmatrix}. [ − 3 5 ] .
(ii) Given,
⇒ A - X = B + C
⇒ X = A - (B + C)
Substituting values of A, B and C in above equation we get,
⇒ X = [ 2 − 3 ] − ( [ 0 2 ] + [ − 1 4 ] ) = [ 2 − 3 ] − ( [ 0 + ( − 1 ) 2 + 4 ] ) = [ 2 − 3 ] − [ − 1 6 ] = [ 2 − ( − 1 ) − 3 − 6 ] = [ 3 − 9 ] . \Rightarrow X = \begin{bmatrix} 2 & -3 \end{bmatrix} - \Big(\begin{bmatrix} 0 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 4 \end{bmatrix}\Big) \\[1em] = \begin{bmatrix} 2 & -3 \end{bmatrix} - \Big(\begin{bmatrix} 0 + (-1) & 2 + 4 \end{bmatrix}\Big) \\[1em] = \begin{bmatrix} 2 & -3 \end{bmatrix} - \begin{bmatrix} -1 & 6 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 - (-1) & -3 - 6 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 & -9 \end{bmatrix}. ⇒ X = [ 2 − 3 ] − ( [ 0 2 ] + [ − 1 4 ] ) = [ 2 − 3 ] − ( [ 0 + ( − 1 ) 2 + 4 ] ) = [ 2 − 3 ] − [ − 1 6 ] = [ 2 − ( − 1 ) − 3 − 6 ] = [ 3 − 9 ] .
Hence, X = [ 3 − 9 ] \begin{bmatrix} 3 & -9 \end{bmatrix} [ 3 − 9 ] .
Given A = [ − 1 0 2 − 4 ] and B = [ 3 − 3 − 2 0 ] \begin{bmatrix} -1 & 0 \\ 2 & -4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & -3 \\ -2 & 0 \end{bmatrix} [ − 1 2 0 − 4 ] and B = [ 3 − 2 − 3 0 ] ; find the matrix X in each of the following :
(i) A + X = B
(ii) A - X = B
(iii) X - B = A
Answer
(i) Given,
⇒ A + X = B
⇒ X = B - A
⇒ X = [ 3 − 3 − 2 0 ] − [ − 1 0 2 − 4 ] = [ 3 − ( − 1 ) − 3 − 0 − 2 − 2 0 − ( − 4 ) ] = [ 4 − 3 − 4 4 ] . \Rightarrow X = \begin{bmatrix} 3 & -3 \\ -2 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 \\ 2 & -4 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 - (-1) & -3 - 0 \\ -2 - 2 & 0 - (-4) \end{bmatrix} \\[1em] = \begin{bmatrix} 4 & -3 \\ -4 & 4 \end{bmatrix}. ⇒ X = [ 3 − 2 − 3 0 ] − [ − 1 2 0 − 4 ] = [ 3 − ( − 1 ) − 2 − 2 − 3 − 0 0 − ( − 4 ) ] = [ 4 − 4 − 3 4 ] .
Hence, X = [ 4 − 3 − 4 4 ] . \begin{bmatrix} 4 & -3 \\ -4 & 4 \end{bmatrix}. [ 4 − 4 − 3 4 ] .
(ii) Given,
⇒ A - X = B
⇒ X = A - B
⇒ X = [ − 1 0 2 − 4 ] − [ 3 − 3 − 2 0 ] = [ − 1 − 3 0 − ( − 3 ) 2 − ( − 2 ) − 4 − 0 ] = [ − 4 3 4 − 4 ] . \Rightarrow X = \begin{bmatrix} -1 & 0 \\ 2 & -4 \end{bmatrix} - \begin{bmatrix} 3 & -3 \\ -2 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -1 - 3 & 0 - (-3) \\ 2 - (-2) & -4 - 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -4 & 3 \\ 4 & -4 \end{bmatrix}. ⇒ X = [ − 1 2 0 − 4 ] − [ 3 − 2 − 3 0 ] = [ − 1 − 3 2 − ( − 2 ) 0 − ( − 3 ) − 4 − 0 ] = [ − 4 4 3 − 4 ] .
Hence, X = [ − 4 3 4 − 4 ] . \begin{bmatrix} -4 & 3 \\ 4 & -4 \end{bmatrix}. [ − 4 4 3 − 4 ] .
(iii) Given,
⇒ X - B = A
⇒ X = A + B
⇒ X = [ − 1 0 2 − 4 ] + [ 3 − 3 − 2 0 ] = [ − 1 + 3 0 + ( − 3 ) 2 + ( − 2 ) − 4 + 0 ] = [ 2 − 3 0 − 4 ] . \Rightarrow X = \begin{bmatrix} -1 & 0 \\ 2 & -4 \end{bmatrix} + \begin{bmatrix} 3 & -3 \\ -2 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -1 + 3 & 0 + (-3) \\ 2 + (-2) & -4 + 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 & -3 \\ 0 & -4 \end{bmatrix}. ⇒ X = [ − 1 2 0 − 4 ] + [ 3 − 2 − 3 0 ] = [ − 1 + 3 2 + ( − 2 ) 0 + ( − 3 ) − 4 + 0 ] = [ 2 0 − 3 − 4 ] .
Hence, X = [ 2 − 3 0 − 4 ] . \begin{bmatrix} 2 & -3 \\ 0 & -4 \end{bmatrix}. [ 2 0 − 3 − 4 ] .
If 4 [ 5 x ] − 5 [ y − 2 ] = [ 10 22 ] 4\begin{bmatrix*}[r] 5 & x \end{bmatrix*} - 5\begin{bmatrix*}[r] y & -2 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 22 \end{bmatrix*} 4 [ 5 x ] − 5 [ y − 2 ] = [ 10 22 ] , the values of x and y are :
x = 2 and y = 3
x = 3 and y = 2
x = -3 and y = 2
x = 3 and y = -2
Answer
Given,
⇒ 4 [ 5 x ] − 5 [ y − 2 ] = [ 10 22 ] ⇒ [ 20 4 x ] − [ 5 y − 10 ] = [ 10 22 ] ⇒ [ 20 − 5 y 4 x − ( − 10 ) ] = [ 10 22 ] ⇒ [ 20 − 5 y 4 x + 10 ] = [ 10 22 ] \Rightarrow 4\begin{bmatrix*}[r] 5 & x \end{bmatrix*} - 5\begin{bmatrix*}[r] y & -2 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 22 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 20 & 4x \end{bmatrix*} - \begin{bmatrix*}[r] 5y & -10 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 22 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 20 - 5y & 4x - (-10) \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 22 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 20 - 5y & 4x + 10 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 22 \end{bmatrix*} ⇒ 4 [ 5 x ] − 5 [ y − 2 ] = [ 10 22 ] ⇒ [ 20 4 x ] − [ 5 y − 10 ] = [ 10 22 ] ⇒ [ 20 − 5 y 4 x − ( − 10 ) ] = [ 10 22 ] ⇒ [ 20 − 5 y 4 x + 10 ] = [ 10 22 ]
∴ 20 - 5y = 10 and 4x + 10 = 22
⇒ 5y = 20 - 10 and 4x = 22 - 10
⇒ 5y = 10 and 4x = 12
⇒ y = 2 and x = 3.
Hence, Option 2 is the correct option.
If A = [ − 3 − 7 0 − 8 ] and A − B = [ 6 4 − 3 0 ] \begin{bmatrix*}[r] -3 & -7 \\ 0 & -8 \end{bmatrix*}\text{ and } A - B = \begin{bmatrix*}[r] 6 & 4 \\ -3 & 0 \end{bmatrix*} [ − 3 0 − 7 − 8 ] and A − B = [ 6 − 3 4 0 ] , then matrix B is :
[ 9 11 − 3 18 ] \begin{bmatrix*}[r] 9 & 11 \\ -3 & 18 \end{bmatrix*} [ 9 − 3 11 18 ]
[ − 9 − 11 3 8 ] \begin{bmatrix*}[r] -9 & -11 \\ 3 & 8 \end{bmatrix*} [ − 9 3 − 11 8 ]
[ 9 − 11 − 3 8 ] \begin{bmatrix*}[r] 9 & -11 \\ -3 & 8 \end{bmatrix*} [ 9 − 3 − 11 8 ]
[ − 9 − 11 − 3 − 8 ] \begin{bmatrix*}[r] -9 & -11 \\ -3 & -8 \end{bmatrix*} [ − 9 − 3 − 11 − 8 ]
Answer
Given,
A - B = [ 6 4 − 3 0 ] \begin{bmatrix*}[r] 6 & 4 \\ -3 & 0 \end{bmatrix*} [ 6 − 3 4 0 ]
Substituting value of A in above equation we get :
⇒ [ − 3 − 7 0 − 8 ] − B = [ 6 4 − 3 0 ] ⇒ B = [ − 3 − 7 0 − 8 ] − [ 6 4 − 3 0 ] ⇒ B = [ − 3 − 6 − 7 − 4 0 − ( − 3 ) − 8 − 0 ] ⇒ B = [ − 9 − 11 3 − 8 ] \Rightarrow \begin{bmatrix*}[r] -3 & -7 \\ 0 & -8 \end{bmatrix*} - B = \begin{bmatrix*}[r] 6 & 4 \\ -3 & 0 \end{bmatrix*} \\[1em] \Rightarrow B = \begin{bmatrix*}[r] -3 & -7 \\ 0 & -8 \end{bmatrix*} - \begin{bmatrix*}[r] 6 & 4 \\ -3 & 0 \end{bmatrix*} \\[1em] \Rightarrow B = \begin{bmatrix*}[r] -3 - 6 & -7 - 4 \\ 0 - (-3) & -8 - 0 \end{bmatrix*} \\[1em] \Rightarrow B = \begin{bmatrix*}[r] -9 & -11 \\ 3 & -8 \end{bmatrix*} ⇒ [ − 3 0 − 7 − 8 ] − B = [ 6 − 3 4 0 ] ⇒ B = [ − 3 0 − 7 − 8 ] − [ 6 − 3 4 0 ] ⇒ B = [ − 3 − 6 0 − ( − 3 ) − 7 − 4 − 8 − 0 ] ⇒ B = [ − 9 3 − 11 − 8 ]
Hence, Option 4 is the correct option.
If I is a unit matrix of order 2 and M + 4I = [ 8 − 3 4 2 ] \begin{bmatrix*}[r] 8 & -3 \\ 4 & 2 \end{bmatrix*} [ 8 4 − 3 2 ] , then matrix M is :
[ 4 3 4 − 2 ] \begin{bmatrix*}[r] 4 & 3 \\ 4 & -2 \end{bmatrix*} [ 4 4 3 − 2 ]
[ 4 3 4 2 ] \begin{bmatrix*}[r] 4 & 3 \\ 4 & 2 \end{bmatrix*} [ 4 4 3 2 ]
[ 4 − 3 − 4 2 ] \begin{bmatrix*}[r] 4 & -3 \\ -4 & 2 \end{bmatrix*} [ 4 − 4 − 3 2 ]
[ 4 − 3 4 − 2 ] \begin{bmatrix*}[r] 4 & -3 \\ 4 & -2 \end{bmatrix*} [ 4 4 − 3 − 2 ]
Answer
As, I is a unit matrix of order 2.
∴ I = [ 1 0 0 1 ] \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} [ 1 0 0 1 ]
Given,
⇒ M + 4 I = [ 8 − 3 4 2 ] ⇒ M + 4 [ 1 0 0 1 ] = [ 8 − 3 4 2 ] ⇒ M + [ 4 0 0 4 ] = [ 8 − 3 4 2 ] ⇒ M = [ 8 − 3 4 2 ] − [ 4 0 0 4 ] ⇒ M = [ 8 − 4 − 3 − 0 4 − 0 2 − 4 ] ⇒ M = [ 4 − 3 4 − 2 ] . \Rightarrow M + 4I = \begin{bmatrix*}[r] 8 & -3 \\ 4 & 2 \end{bmatrix*} \\[1em] \Rightarrow M + 4\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 8 & -3 \\ 4 & 2 \end{bmatrix*} \\[1em] \Rightarrow M + \begin{bmatrix*}[r] 4 & 0 \\ 0 & 4 \end{bmatrix*} = \begin{bmatrix*}[r] 8 & -3 \\ 4 & 2 \end{bmatrix*} \\[1em] \Rightarrow M = \begin{bmatrix*}[r] 8 & -3 \\ 4 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 4 & 0 \\ 0 & 4 \end{bmatrix*} \\[1em] \Rightarrow M = \begin{bmatrix*}[r] 8 - 4 & -3 - 0 \\ 4 - 0 & 2 - 4 \end{bmatrix*} \\[1em] \Rightarrow M = \begin{bmatrix*}[r] 4 & -3 \\ 4 & -2 \end{bmatrix*}. ⇒ M + 4 I = [ 8 4 − 3 2 ] ⇒ M + 4 [ 1 0 0 1 ] = [ 8 4 − 3 2 ] ⇒ M + [ 4 0 0 4 ] = [ 8 4 − 3 2 ] ⇒ M = [ 8 4 − 3 2 ] − [ 4 0 0 4 ] ⇒ M = [ 8 − 4 4 − 0 − 3 − 0 2 − 4 ] ⇒ M = [ 4 4 − 3 − 2 ] .
Hence, Option 4 is the correct option.
If 2 [ 3 x 0 1 ] + 3 [ 1 3 y 2 ] = [ z − 7 15 8 ] 2\begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} + 3\begin{bmatrix*}[r] 1 & 3 \\ y & 2 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} 2 [ 3 0 x 1 ] + 3 [ 1 y 3 2 ] = [ z 15 − 7 8 ] , the values of x, y and z are :
x = 8, y = -5 and z = 9
x = -8, y = 5 and z = 9
x = -8, y = -5 and z = -9
x = -8, y = 5 and z = -9
Answer
Given,
⇒ 2 [ 3 x 0 1 ] + 3 [ 1 3 y 2 ] = [ z − 7 15 8 ] ⇒ [ 6 2 x 0 2 ] + [ 3 9 3 y 6 ] = [ z − 7 15 8 ] ⇒ [ 6 + 3 2 x + 9 0 + 3 y 2 + 6 ] = [ z − 7 15 8 ] ⇒ [ 9 2 x + 9 3 y 8 ] = [ z − 7 15 8 ] \Rightarrow 2\begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} + 3\begin{bmatrix*}[r] 1 & 3 \\ y & 2 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 & 2x \\ 0 & 2 \end{bmatrix*} + \begin{bmatrix*}[r] 3 & 9 \\ 3y & 6 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 + 3 & 2x + 9 \\ 0 + 3y & 2 + 6 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 & 2x + 9 \\ 3y & 8 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} \\[1em] ⇒ 2 [ 3 0 x 1 ] + 3 [ 1 y 3 2 ] = [ z 15 − 7 8 ] ⇒ [ 6 0 2 x 2 ] + [ 3 3 y 9 6 ] = [ z 15 − 7 8 ] ⇒ [ 6 + 3 0 + 3 y 2 x + 9 2 + 6 ] = [ z 15 − 7 8 ] ⇒ [ 9 3 y 2 x + 9 8 ] = [ z 15 − 7 8 ]
From above equation we get :
⇒ z = 9, 3y = 15 and 2x + 9 = -7
⇒ z = 9, y = 15 3 \dfrac{15}{3} 3 15 and 2x = -7 - 9
⇒ z = 9, y = 5 and 2x = -16
⇒ z = 9, y = 5 and x = − 16 2 -\dfrac{16}{2} − 2 16
⇒ z = 9, y = 5 and x = -8.
Hence, Option 2 is the correct option.
Given A = [ 4 7 3 − 2 ] and B = [ 1 2 − 1 4 ] \begin{bmatrix*}[r] 4 & 7 \\ 3 & -2 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] 1 & 2 \\ -1 & 4 \end{bmatrix*} [ 4 3 7 − 2 ] and B = [ 1 − 1 2 4 ] , then A - 2B is :
[ − 2 3 5 − 10 ] \begin{bmatrix*}[r] -2 & 3 \\ 5 & -10 \end{bmatrix*} [ − 2 5 3 − 10 ]
[ − 2 − 3 − 5 10 ] \begin{bmatrix*}[r] -2 & -3 \\ -5 & 10 \end{bmatrix*} [ − 2 − 5 − 3 10 ]
[ 2 3 5 − 10 ] \begin{bmatrix*}[r] 2 & 3 \\ 5 & -10 \end{bmatrix*} [ 2 5 3 − 10 ]
[ 2 3 5 10 ] \begin{bmatrix*}[r] 2 & 3 \\ 5 & 10 \end{bmatrix*} [ 2 5 3 10 ]
Answer
Substituting values of A and B in A - 2B, we get :
⇒ A − 2 B = [ 4 7 3 − 2 ] − 2 [ 1 2 − 1 4 ] = [ 4 7 3 − 2 ] − [ 2 4 − 2 8 ] = [ 4 − 2 7 − 4 3 − ( − 2 ) − 2 − 8 ] = [ 2 3 3 + 2 − 10 ] = [ 2 3 5 − 10 ] . \Rightarrow A - 2B = \begin{bmatrix*}[r] 4 & 7 \\ 3 & -2 \end{bmatrix*} - 2\begin{bmatrix*}[r] 1 & 2 \\ -1 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 7 \\ 3 & -2 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & 4 \\ -2 & 8 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 - 2 & 7 - 4 \\ 3 - (-2) & -2 - 8 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 3 \\ 3 + 2 & -10 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 3 \\ 5 & -10 \end{bmatrix*}. ⇒ A − 2 B = [ 4 3 7 − 2 ] − 2 [ 1 − 1 2 4 ] = [ 4 3 7 − 2 ] − [ 2 − 2 4 8 ] = [ 4 − 2 3 − ( − 2 ) 7 − 4 − 2 − 8 ] = [ 2 3 + 2 3 − 10 ] = [ 2 5 3 − 10 ] .
Hence, Option 3 is the correct option.
Find x and y if :
(i) 3 [ 4 x ] + 2 [ y − 3 ] = [ 10 0 ] 3\begin{bmatrix*}[r] 4 & x \end{bmatrix*} + 2\begin{bmatrix*}[r] y & -3 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 0 \end{bmatrix*} 3 [ 4 x ] + 2 [ y − 3 ] = [ 10 0 ]
(ii) x [ − 1 2 ] − 4 [ − 2 y ] = [ 7 − 8 ] x\begin{bmatrix*}[r] -1 \\ 2 \end{bmatrix*} - 4\begin{bmatrix*}[r] -2 \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ -8 \end{bmatrix*} x [ − 1 2 ] − 4 [ − 2 y ] = [ 7 − 8 ]
Answer
(i) Given,
⇒ 3 [ 4 x ] + 2 [ y − 3 ] = [ 10 0 ] ⇒ [ 12 3 x ] + [ 2 y − 6 ] = [ 10 0 ] ⇒ [ 12 + 2 y 3 x + ( − 6 ) ] = [ 10 0 ] ⇒ [ 12 + 2 y 3 x − 6 ] = [ 10 0 ] \Rightarrow 3\begin{bmatrix*}[r] 4 & x \end{bmatrix*} + 2\begin{bmatrix*}[r] y & -3 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 12 & 3x \end{bmatrix*} + \begin{bmatrix*}[r] 2y & -6 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 12 + 2y & 3x + (-6) \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 12 + 2y & 3x - 6 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 0 \end{bmatrix*} ⇒ 3 [ 4 x ] + 2 [ y − 3 ] = [ 10 0 ] ⇒ [ 12 3 x ] + [ 2 y − 6 ] = [ 10 0 ] ⇒ [ 12 + 2 y 3 x + ( − 6 ) ] = [ 10 0 ] ⇒ [ 12 + 2 y 3 x − 6 ] = [ 10 0 ]
By equality of matrices we get,
12 + 2y = 10 ⇒ 2y = 10 - 12 ⇒ 2y = -2 ⇒ y = -1.
3x - 6 = 0 ⇒ 3x = 6 ⇒ x = 2
Hence, x = 2 and y = -1.
(ii) Given,
⇒ x [ − 1 2 ] − 4 [ − 2 y ] = [ 7 − 8 ] ⇒ [ − x 2 x ] − [ − 8 4 y ] = [ 7 − 8 ] ⇒ [ − x − ( − 8 ) 2 x − 4 y ] = [ 7 − 8 ] ⇒ [ − x + 8 2 x − 4 y ] = [ 7 − 8 ] \Rightarrow x\begin{bmatrix*}[r] -1 \\ 2 \end{bmatrix*} - 4\begin{bmatrix*}[r] -2 \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ -8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -x \\ 2x \end{bmatrix*} - \begin{bmatrix*}[r] -8 \\ 4y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ -8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -x -(-8) \\ 2x - 4y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ -8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -x + 8 \\ 2x - 4y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ -8 \end{bmatrix*} ⇒ x [ − 1 2 ] − 4 [ − 2 y ] = [ 7 − 8 ] ⇒ [ − x 2 x ] − [ − 8 4 y ] = [ 7 − 8 ] ⇒ [ − x − ( − 8 ) 2 x − 4 y ] = [ 7 − 8 ] ⇒ [ − x + 8 2 x − 4 y ] = [ 7 − 8 ]
By definition of equality of matrices we get,
-x + 8 = 7 ........(i)
2x - 4y = -8 ......(ii)
Solving eq. (i) we get,
⇒ x = 8 - 7 = 1.
Substituting x = 1 in eq. (ii) we get,
⇒ 2x - 4y = -8 ⇒ 2(1) - 4y = -8 ⇒ 2 - 4y = -8 ⇒ 4y = 2 + 8 ⇒ 4y = 10 ⇒ y = 10 4 = 5 2 = 2.5 \dfrac{10}{4} = \dfrac{5}{2} = 2.5 4 10 = 2 5 = 2.5 .
Hence, x = 1 and y = 2.5
Given A = [ 2 1 3 0 ] , B = [ 1 1 5 2 ] and C = [ − 3 − 1 0 0 ] \begin{bmatrix*}[r] 2 & 1 \\ 3 & 0 \end{bmatrix*}, B = \begin{bmatrix*}[r] 1 & 1 \\ 5 & 2 \end{bmatrix*} \text{ and } C = \begin{bmatrix*}[r] -3 & -1 \\ 0 & 0 \end{bmatrix*} [ 2 3 1 0 ] , B = [ 1 5 1 2 ] and C = [ − 3 0 − 1 0 ] ; find :
(i) 2A - 3B + C
(ii) A + 2C - B
Answer
(i) Given,
2A - 3B + C
Substituting values of A, B and C in above equation we get,
⇒ 2 A − 3 B + C = 2 [ 2 1 3 0 ] − 3 [ 1 1 5 2 ] + [ − 3 − 1 0 0 ] = [ 4 2 6 0 ] − [ 3 3 15 6 ] + [ − 3 − 1 0 0 ] = [ 4 − 3 + ( − 3 ) 2 − 3 + ( − 1 ) 6 − 15 + 0 0 − 6 + 0 ] = [ − 2 − 2 − 9 − 6 ] . \Rightarrow 2A - 3B + C = 2\begin{bmatrix*}[r] 2 & 1 \\ 3 & 0 \end{bmatrix*} - 3\begin{bmatrix*}[r] 1 & 1 \\ 5 & 2 \end{bmatrix*} + \begin{bmatrix*}[r] -3 & -1 \\ 0 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 2 \\ 6 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 3 \\ 15 & 6 \end{bmatrix*} + \begin{bmatrix*}[r] -3 & -1 \\ 0 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 - 3 + (-3) & 2 - 3 + (-1) \\ 6 - 15 + 0 & 0 - 6 + 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -2 & -2 \\ -9 & -6 \end{bmatrix*}. ⇒ 2 A − 3 B + C = 2 [ 2 3 1 0 ] − 3 [ 1 5 1 2 ] + [ − 3 0 − 1 0 ] = [ 4 6 2 0 ] − [ 3 15 3 6 ] + [ − 3 0 − 1 0 ] = [ 4 − 3 + ( − 3 ) 6 − 15 + 0 2 − 3 + ( − 1 ) 0 − 6 + 0 ] = [ − 2 − 9 − 2 − 6 ] .
Hence 2A - 3B + C = [ − 2 − 2 − 9 − 6 ] . \begin{bmatrix*}[r] -2 & -2 \\ -9 & -6 \end{bmatrix*}. [ − 2 − 9 − 2 − 6 ] .
(ii) Given,
A + 2C - B
Substituting values of A, B and C in above equation we get,
⇒ [ 2 1 3 0 ] + 2 [ − 3 − 1 0 0 ] − [ 1 1 5 2 ] = [ 2 1 3 0 ] + [ − 6 − 2 0 0 ] − [ 1 1 5 2 ] = [ 2 + ( − 6 ) − 1 1 + ( − 2 ) − 1 3 + 0 − 5 0 + 0 − 2 ] = [ − 5 − 2 − 2 − 2 ] . \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ 3 & 0 \end{bmatrix*} + 2\begin{bmatrix*}[r] -3 & -1 \\ 0 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 1 \\ 5 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 1 \\ 3 & 0 \end{bmatrix*} + \begin{bmatrix*}[r] -6 & -2 \\ 0 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 1 \\ 5 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 + (-6) - 1 & 1 + (-2) - 1 \\ 3 + 0 - 5 & 0 + 0 - 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -5 & -2 \\ -2 & -2 \end{bmatrix*}. ⇒ [ 2 3 1 0 ] + 2 [ − 3 0 − 1 0 ] − [ 1 5 1 2 ] = [ 2 3 1 0 ] + [ − 6 0 − 2 0 ] − [ 1 5 1 2 ] = [ 2 + ( − 6 ) − 1 3 + 0 − 5 1 + ( − 2 ) − 1 0 + 0 − 2 ] = [ − 5 − 2 − 2 − 2 ] .
Hence, A + 2C - B = [ − 5 − 2 − 2 − 2 ] . \begin{bmatrix*}[r] -5 & -2 \\ -2 & -2 \end{bmatrix*}. [ − 5 − 2 − 2 − 2 ] .
If [ 4 − 2 4 0 ] + 3 A = [ − 2 − 2 1 − 3 ] \begin{bmatrix*}[r] 4 & -2 \\ 4 & 0 \end{bmatrix*} + 3A = \begin{bmatrix*}[r] -2 & -2 \\ 1 & -3 \end{bmatrix*} [ 4 4 − 2 0 ] + 3 A = [ − 2 1 − 2 − 3 ] ; find A.
Answer
Given,
⇒ [ 4 − 2 4 0 ] + 3 A = [ − 2 − 2 1 − 3 ] ⇒ 3 A = [ − 2 − 2 1 − 3 ] − [ 4 − 2 4 0 ] ⇒ 3 A = [ − 2 − 4 − 2 − ( − 2 ) 1 − 4 − 3 − 0 ] ⇒ 3 A = [ − 6 0 − 3 − 3 ] ⇒ A = 1 3 [ − 6 0 − 3 − 3 ] ⇒ A = [ − 2 0 − 1 − 1 ] . \Rightarrow \begin{bmatrix*}[r] 4 & -2 \\ 4 & 0 \end{bmatrix*} + 3A = \begin{bmatrix*}[r] -2 & -2 \\ 1 & -3 \end{bmatrix*} \\[1em] \Rightarrow 3A = \begin{bmatrix*}[r] -2 & -2 \\ 1 & -3 \end{bmatrix*} - \begin{bmatrix*}[r] 4 & -2 \\ 4 & 0 \end{bmatrix*} \\[1em] \Rightarrow 3A = \begin{bmatrix*}[r] -2 - 4 & -2 - (-2) \\ 1 - 4 & -3 - 0 \end{bmatrix*} \\[1em] \Rightarrow 3A = \begin{bmatrix*}[r] -6 & 0 \\ -3 & -3 \end{bmatrix*} \\[1em] \Rightarrow A = \dfrac{1}{3}\begin{bmatrix*}[r] -6 & 0 \\ -3 & -3 \end{bmatrix*} \\[1em] \Rightarrow A = \begin{bmatrix*}[r] -2 & 0 \\ -1 & -1 \end{bmatrix*}. ⇒ [ 4 4 − 2 0 ] + 3 A = [ − 2 1 − 2 − 3 ] ⇒ 3 A = [ − 2 1 − 2 − 3 ] − [ 4 4 − 2 0 ] ⇒ 3 A = [ − 2 − 4 1 − 4 − 2 − ( − 2 ) − 3 − 0 ] ⇒ 3 A = [ − 6 − 3 0 − 3 ] ⇒ A = 3 1 [ − 6 − 3 0 − 3 ] ⇒ A = [ − 2 − 1 0 − 1 ] .
Hence, A = [ − 2 0 − 1 − 1 ] \begin{bmatrix*}[r] -2 & 0 \\ -1 & -1 \end{bmatrix*} [ − 2 − 1 0 − 1 ] .
Given A = [ 1 4 2 3 ] and B = [ − 4 − 1 − 3 − 2 ] \begin{bmatrix*}[r] 1 & 4 \\ 2 & 3 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] -4 & -1 \\ -3 & -2 \end{bmatrix*} [ 1 2 4 3 ] and B = [ − 4 − 3 − 1 − 2 ]
(i) find the matrix 2A + B
(ii) find a matrix C such that :
C + B = [ 0 0 0 0 ] \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} [ 0 0 0 0 ]
Answer
(i)
2 A + B = 2 [ 1 4 2 3 ] + [ − 4 − 1 − 3 − 2 ] = [ 2 8 4 6 ] + [ − 4 − 1 − 3 − 2 ] = [ 2 + ( − 4 ) 8 + ( − 1 ) 4 + ( − 3 ) 6 + ( − 2 ) ] = [ − 2 7 1 4 ] . 2A + B = 2\begin{bmatrix*}[r] 1 & 4 \\ 2 & 3 \end{bmatrix*} + \begin{bmatrix*}[r] -4 & -1 \\ -3 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 8 \\ 4 & 6 \end{bmatrix*} + \begin{bmatrix*}[r] -4 & -1 \\ -3 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 + (-4) & 8 + (-1) \\ 4 + (-3) & 6 + (-2) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -2 & 7 \\ 1 & 4 \end{bmatrix*}. 2 A + B = 2 [ 1 2 4 3 ] + [ − 4 − 3 − 1 − 2 ] = [ 2 4 8 6 ] + [ − 4 − 3 − 1 − 2 ] = [ 2 + ( − 4 ) 4 + ( − 3 ) 8 + ( − 1 ) 6 + ( − 2 ) ] = [ − 2 1 7 4 ] .
Hence, 2A + B = [ − 2 7 1 4 ] \begin{bmatrix*}[r] -2 & 7 \\ 1 & 4 \end{bmatrix*} [ − 2 1 7 4 ] .
(ii) Given,
⇒ C + B = [ 0 0 0 0 ] ⇒ C = [ 0 0 0 0 ] − B ⇒ C = [ 0 0 0 0 ] − [ − 4 − 1 − 3 − 2 ] ⇒ C = [ 0 − ( − 4 ) 0 − ( − 1 ) 0 − ( − 3 ) 0 − ( − 2 ) ] ⇒ C = [ 4 1 3 2 ] . \Rightarrow C + B = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em] \Rightarrow C = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} - B \\[1em] \Rightarrow C = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] -4 & -1 \\ -3 & -2 \end{bmatrix*} \\[1em] \Rightarrow C = \begin{bmatrix*}[r] 0 - (-4) & 0 - (-1) \\ 0 - (-3) & 0 - (-2) \end{bmatrix*} \\[1em] \Rightarrow C = \begin{bmatrix*}[r] 4 & 1 \\ 3 & 2 \end{bmatrix*}. ⇒ C + B = [ 0 0 0 0 ] ⇒ C = [ 0 0 0 0 ] − B ⇒ C = [ 0 0 0 0 ] − [ − 4 − 3 − 1 − 2 ] ⇒ C = [ 0 − ( − 4 ) 0 − ( − 3 ) 0 − ( − 1 ) 0 − ( − 2 ) ] ⇒ C = [ 4 3 1 2 ] .
Hence, C = [ 4 1 3 2 ] \begin{bmatrix*}[r] 4 & 1 \\ 3 & 2 \end{bmatrix*} [ 4 3 1 2 ] .
If 2 [ 3 x 0 1 ] + 3 [ 1 3 y 2 ] = [ z − 7 15 8 ] 2\begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} + 3\begin{bmatrix*}[r] 1 & 3 \\ y & 2 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} 2 [ 3 0 x 1 ] + 3 [ 1 y 3 2 ] = [ z 15 − 7 8 ] ; find the values of x, y and z.
Answer
Given,
⇒ 2 [ 3 x 0 1 ] + 3 [ 1 3 y 2 ] = [ z − 7 15 8 ] ⇒ [ 6 2 x 0 2 ] + [ 3 9 3 y 6 ] = [ z − 7 15 8 ] ⇒ [ 6 + 3 2 x + 9 0 + 3 y 2 + 6 ] = [ z − 7 15 8 ] ⇒ [ 9 2 x + 9 3 y 8 ] = [ z − 7 15 8 ] \Rightarrow 2\begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} + 3\begin{bmatrix*}[r] 1 & 3 \\ y & 2 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 & 2x \\ 0 & 2 \end{bmatrix*} + \begin{bmatrix*}[r] 3 & 9 \\ 3y & 6 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 + 3 & 2x + 9 \\ 0 + 3y & 2 + 6 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 & 2x + 9 \\ 3y & 8 \end{bmatrix*} = \begin{bmatrix*}[r] z & -7 \\ 15 & 8 \end{bmatrix*} ⇒ 2 [ 3 0 x 1 ] + 3 [ 1 y 3 2 ] = [ z 15 − 7 8 ] ⇒ [ 6 0 2 x 2 ] + [ 3 3 y 9 6 ] = [ z 15 − 7 8 ] ⇒ [ 6 + 3 0 + 3 y 2 x + 9 2 + 6 ] = [ z 15 − 7 8 ] ⇒ [ 9 3 y 2 x + 9 8 ] = [ z 15 − 7 8 ]
By definition of equality of matrices we get,
z = 9,
2x + 9 = -7 ⇒ 2x = -7 - 9 ⇒ 2x = -16 ⇒ x = -8,
3y = 15 ⇒ y = 5.
Hence, x = -8, y = 5 and z = 9.
Given A = [ − 3 6 0 − 9 ] \begin{bmatrix*}[r] -3 & 6 \\ 0 & -9 \end{bmatrix*} [ − 3 0 6 − 9 ] and At is its transpose matrix. Find :
(i) 2A + 3At
(ii) 2At - 3A
(iii) 1 2 A − 1 3 A t \dfrac{1}{2}A - \dfrac{1}{3}A^t 2 1 A − 3 1 A t
(iv) A t − 1 3 A A^t - \dfrac{1}{3}A A t − 3 1 A
Answer
A = [ − 3 6 0 − 9 ] and A t = [ − 3 0 6 − 9 ] A = \begin{bmatrix*}[r] -3 & 6 \\ 0 & -9 \end{bmatrix*} \text{ and } A^t = \begin{bmatrix*}[r] -3 & 0 \\ 6 & -9 \end{bmatrix*} A = [ − 3 0 6 − 9 ] and A t = [ − 3 6 0 − 9 ] .
(i) Substituting value of A and At in 2A + 3At we get,
⇒ 2 A + 3 A t = 2 [ − 3 6 0 − 9 ] + 3 [ − 3 0 6 − 9 ] = [ − 6 12 0 − 18 ] + [ − 9 0 18 − 27 ] = [ − 6 + ( − 9 ) 12 + 0 0 + 18 − 18 + ( − 27 ) ] = [ − 15 12 18 − 45 ] . \Rightarrow 2A + 3A^t = 2\begin{bmatrix*}[r] -3 & 6 \\ 0 & -9 \end{bmatrix*} + 3\begin{bmatrix*}[r] -3 & 0 \\ 6 & -9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 & 12 \\ 0 & -18 \end{bmatrix*} + \begin{bmatrix*}[r] -9 & 0 \\ 18 & -27 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 + (-9) & 12 + 0 \\ 0 + 18 & -18 + (-27) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -15 & 12 \\ 18 & -45 \end{bmatrix*}. ⇒ 2 A + 3 A t = 2 [ − 3 0 6 − 9 ] + 3 [ − 3 6 0 − 9 ] = [ − 6 0 12 − 18 ] + [ − 9 18 0 − 27 ] = [ − 6 + ( − 9 ) 0 + 18 12 + 0 − 18 + ( − 27 ) ] = [ − 15 18 12 − 45 ] .
Hence, 2A + 3At = [ − 15 12 18 − 45 ] . \begin{bmatrix*}[r] -15 & 12 \\ 18 & -45 \end{bmatrix*}. [ − 15 18 12 − 45 ] .
(ii) Substituting value of A and At in 2At - 3A we get,
⇒ 2 A t − 3 A = 2 [ − 3 0 6 − 9 ] − 3 [ − 3 6 0 − 9 ] = [ − 6 0 12 − 18 ] − [ − 9 18 0 − 27 ] = [ − 6 − ( − 9 ) 0 − 18 12 − 0 − 18 − ( − 27 ) ] = [ 3 − 18 12 9 ] . \Rightarrow 2A^t - 3A = 2\begin{bmatrix*}[r] -3 & 0 \\ 6 & -9 \end{bmatrix*} - 3\begin{bmatrix*}[r] -3 & 6 \\ 0 & -9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 & 0 \\ 12 & -18 \end{bmatrix*} - \begin{bmatrix*}[r] -9 & 18 \\ 0 & -27 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 - (-9) & 0 - 18 \\ 12 - 0 & -18 - (-27) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 3 & -18 \\ 12 & 9 \end{bmatrix*}. ⇒ 2 A t − 3 A = 2 [ − 3 6 0 − 9 ] − 3 [ − 3 0 6 − 9 ] = [ − 6 12 0 − 18 ] − [ − 9 0 18 − 27 ] = [ − 6 − ( − 9 ) 12 − 0 0 − 18 − 18 − ( − 27 ) ] = [ 3 12 − 18 9 ] .
Hence, 2 A t − 3 A = [ 3 − 18 12 9 ] . 2A^t - 3A = \begin{bmatrix*}[r] 3 & -18 \\ 12 & 9 \end{bmatrix*}. 2 A t − 3 A = [ 3 12 − 18 9 ] .
(iii) Substituting value of A and At in 1 2 A − 1 3 A t \dfrac{1}{2}A - \dfrac{1}{3}A^t 2 1 A − 3 1 A t we get,
⇒ 1 2 A − 1 3 A t = 1 2 [ − 3 6 0 − 9 ] − 1 3 [ − 3 0 6 − 9 ] = [ − 3 2 3 0 − 9 2 ] − [ − 1 0 2 − 3 ] = [ − 3 2 − ( − 1 ) 3 − 0 0 − 2 − 9 2 − ( − 3 ) ] = [ − 3 2 + 1 3 − 2 − 9 2 + 3 ] = [ − 1 2 3 − 2 − 3 2 ] \Rightarrow \dfrac{1}{2}A - \dfrac{1}{3}A^t = \dfrac{1}{2}\begin{bmatrix*}[r] -3 & 6 \\ 0 & -9 \end{bmatrix*} - \dfrac{1}{3}\begin{bmatrix*}[r] -3 & 0 \\ 6 & -9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -\dfrac{3}{2} & 3 \\ 0 & -\dfrac{9}{2} \end{bmatrix*} - \begin{bmatrix*}[r] -1 & 0 \\ 2 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -\dfrac{3}{2} - (-1) & 3 - 0 \\ 0 - 2 & -\dfrac{9}{2} - (-3) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -\dfrac{3}{2} + 1 & 3 \\ -2 & -\dfrac{9}{2} + 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -\dfrac{1}{2} & 3 \\ -2 & -\dfrac{3}{2} \end{bmatrix*} ⇒ 2 1 A − 3 1 A t = 2 1 [ − 3 0 6 − 9 ] − 3 1 [ − 3 6 0 − 9 ] = − 2 3 0 3 − 2 9 − [ − 1 2 0 − 3 ] = − 2 3 − ( − 1 ) 0 − 2 3 − 0 − 2 9 − ( − 3 ) = − 2 3 + 1 − 2 3 − 2 9 + 3 = − 2 1 − 2 3 − 2 3
Hence, 1 2 A − 1 3 A t = [ − 1 2 3 − 2 − 3 2 ] . \dfrac{1}{2}A - \dfrac{1}{3}A^t = \begin{bmatrix*}[r] -\dfrac{1}{2} & 3 \\ -2 & -\dfrac{3}{2} \end{bmatrix*}. 2 1 A − 3 1 A t = − 2 1 − 2 3 − 2 3 .
(iv) Substituting value of A and At in A t − 1 3 A A^t - \dfrac{1}{3}A A t − 3 1 A we get,
⇒ A t − 1 3 A = [ − 3 0 6 − 9 ] − 1 3 [ − 3 6 0 − 9 ] = [ − 3 0 6 − 9 ] − [ − 1 2 0 − 3 ] = [ − 3 − ( − 1 ) 0 − 2 6 − 0 − 9 − ( − 3 ) ] = [ − 2 − 2 6 − 6 ] . \Rightarrow A^t - \dfrac{1}{3}A = \begin{bmatrix*}[r] -3 & 0 \\ 6 & -9 \end{bmatrix*} - \dfrac{1}{3}\begin{bmatrix*}[r] -3 & 6 \\ 0 & -9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -3 & 0 \\ 6 & -9 \end{bmatrix*} - \begin{bmatrix*}[r] -1 & 2 \\ 0 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -3 - (-1) & 0 - 2 \\ 6 - 0 & -9 - (-3) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -2 & -2 \\ 6 & -6 \end{bmatrix*}. ⇒ A t − 3 1 A = [ − 3 6 0 − 9 ] − 3 1 [ − 3 0 6 − 9 ] = [ − 3 6 0 − 9 ] − [ − 1 0 2 − 3 ] = [ − 3 − ( − 1 ) 6 − 0 0 − 2 − 9 − ( − 3 ) ] = [ − 2 6 − 2 − 6 ] .
Hence, A t − 1 3 A = [ − 2 − 2 6 − 6 ] . A^t - \dfrac{1}{3}A = \begin{bmatrix*}[r] -2 & -2 \\ 6 & -6 \end{bmatrix*}. A t − 3 1 A = [ − 2 6 − 2 − 6 ] .
Given A = [ 1 1 − 2 0 ] and B = [ 2 − 1 1 1 ] \begin{bmatrix*}[r] 1 & 1 \\ -2 & 0 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] 2 & -1 \\ 1 & 1 \end{bmatrix*} [ 1 − 2 1 0 ] and B = [ 2 1 − 1 1 ] .
Solve for matrix X :
(i) X + 2A = B
(ii) 3x + B + 2A = 0
(iii) 3A - 2X = X - 2B.
Answer
(i) Given,
⇒ X + 2 A = B ⇒ X = B − 2 A ⇒ X = [ 2 − 1 1 1 ] − 2 [ 1 1 − 2 0 ] ⇒ X = [ 2 − 1 1 1 ] − [ 2 2 − 4 0 ] ⇒ X = [ 2 − 2 − 1 − 2 1 − ( − 4 ) 1 − 0 ] ⇒ X = [ 0 − 3 5 1 ] \Rightarrow X + 2A = B \\[1em] \Rightarrow X = B - 2A \\[1em] \Rightarrow X = \begin{bmatrix*}[r] 2 & -1 \\ 1 & 1 \end{bmatrix*} - 2\begin{bmatrix*}[r] 1 & 1 \\ -2 & 0 \end{bmatrix*} \\[1em] \Rightarrow X = \begin{bmatrix*}[r] 2 & -1 \\ 1 & 1 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & 2 \\ -4 & 0 \end{bmatrix*} \\[1em] \Rightarrow X = \begin{bmatrix*}[r] 2 - 2 & -1 - 2 \\ 1 - (-4) & 1 - 0 \end{bmatrix*} \\[1em] \Rightarrow X = \begin{bmatrix*}[r] 0 & -3 \\ 5 & 1 \end{bmatrix*} ⇒ X + 2 A = B ⇒ X = B − 2 A ⇒ X = [ 2 1 − 1 1 ] − 2 [ 1 − 2 1 0 ] ⇒ X = [ 2 1 − 1 1 ] − [ 2 − 4 2 0 ] ⇒ X = [ 2 − 2 1 − ( − 4 ) − 1 − 2 1 − 0 ] ⇒ X = [ 0 5 − 3 1 ]
Hence, X = [ 0 − 3 5 1 ] . \begin{bmatrix*}[r] 0 & -3 \\ 5 & 1 \end{bmatrix*}. [ 0 5 − 3 1 ] .
(ii) Given,
⇒ 3 X + B + 2 A = 0 ⇒ 3 X = − ( B + 2 A ) ⇒ 3 X = − ( [ 2 − 1 1 1 ] + 2 [ 1 1 − 2 0 ] ) ⇒ 3 X = − ( [ 2 − 1 1 1 ] + [ 2 2 − 4 0 ] ) ⇒ 3 X = − ( [ 2 + 2 − 1 + 2 1 + ( − 4 ) 1 + 0 ] ) ⇒ 3 X = − ( [ 4 1 − 3 1 ] ) ⇒ X = − 1 3 ( [ 4 1 − 3 1 ] ) ⇒ X = [ − 4 3 − 1 3 1 − 1 3 ] \Rightarrow 3X + B + 2A = 0 \\[1em] \Rightarrow 3X = -(B + 2A) \\[1em] \Rightarrow 3X = -\Big(\begin{bmatrix*}[r] 2 & -1 \\ 1 & 1 \end{bmatrix*} + 2\begin{bmatrix*}[r] 1 & 1 \\ -2 & 0 \end{bmatrix*}\Big) \\[1em] \Rightarrow 3X = -\Big(\begin{bmatrix*}[r] 2 & -1 \\ 1 & 1 \end{bmatrix*} + \begin{bmatrix*}[r] 2 & 2 \\ -4 & 0 \end{bmatrix*}\Big) \\[1em] \Rightarrow 3X = -\Big(\begin{bmatrix*}[r] 2 + 2 & -1 + 2 \\ 1 + (-4) & 1 + 0 \end{bmatrix*}\Big) \\[1em] \Rightarrow 3X = -\Big(\begin{bmatrix*}[r] 4 & 1 \\ -3 & 1 \end{bmatrix*}\Big) \\[1em] \Rightarrow X = -\dfrac{1}{3}\Big(\begin{bmatrix*}[r] 4 & 1 \\ -3 & 1 \end{bmatrix*}\Big) \\[1em] \Rightarrow X = \begin{bmatrix*}[r] -\dfrac{4}{3} & -\dfrac{1}{3} \\ 1 & -\dfrac{1}{3} \end{bmatrix*} ⇒ 3 X + B + 2 A = 0 ⇒ 3 X = − ( B + 2 A ) ⇒ 3 X = − ( [ 2 1 − 1 1 ] + 2 [ 1 − 2 1 0 ] ) ⇒ 3 X = − ( [ 2 1 − 1 1 ] + [ 2 − 4 2 0 ] ) ⇒ 3 X = − ( [ 2 + 2 1 + ( − 4 ) − 1 + 2 1 + 0 ] ) ⇒ 3 X = − ( [ 4 − 3 1 1 ] ) ⇒ X = − 3 1 ( [ 4 − 3 1 1 ] ) ⇒ X = − 3 4 1 − 3 1 − 3 1
Hence, X = [ − 4 3 − 1 3 1 − 1 3 ] \begin{bmatrix*}[r] -\dfrac{4}{3} & -\dfrac{1}{3} \\ 1 & -\dfrac{1}{3} \end{bmatrix*} − 3 4 1 − 3 1 − 3 1 .
(iii) Given,
⇒ 3 A − 2 X = X − 2 B ⇒ X + 2 X = 3 A + 2 B ⇒ 3 X = 3 A + 2 B ⇒ 3 X = 3 [ 1 1 − 2 0 ] + 2 [ 2 − 1 1 1 ] ⇒ 3 X = [ 3 3 − 6 0 ] + [ 4 − 2 2 2 ] ⇒ 3 X = [ 3 + 4 3 + ( − 2 ) − 6 + 2 0 + 2 ] ⇒ 3 X = [ 7 1 − 4 2 ] ⇒ X = 1 3 [ 7 1 − 4 2 ] ⇒ X = [ 7 3 1 3 − 4 3 2 3 ] . \Rightarrow 3A - 2X = X - 2B \\[1em] \Rightarrow X + 2X = 3A + 2B \\[1em] \Rightarrow 3X = 3A + 2B \\[1em] \Rightarrow 3X = 3\begin{bmatrix*}[r] 1 & 1 \\ -2 & 0 \end{bmatrix*} + 2\begin{bmatrix*}[r] 2 & -1 \\ 1 & 1 \end{bmatrix*} \\[1em] \Rightarrow 3X = \begin{bmatrix*}[r] 3 & 3 \\ -6 & 0 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & -2 \\ 2 & 2 \end{bmatrix*} \\[1em] \Rightarrow 3X = \begin{bmatrix*}[r] 3 + 4 & 3 + (-2) \\ -6 + 2 & 0 + 2 \end{bmatrix*} \\[1em] \Rightarrow 3X = \begin{bmatrix*}[r] 7 & 1 \\ -4 & 2 \end{bmatrix*} \\[1em] \Rightarrow X = \dfrac{1}{3}\begin{bmatrix*}[r] 7 & 1 \\ -4 & 2 \end{bmatrix*} \\[1em] \Rightarrow X = \begin{bmatrix*}[r] \dfrac{7}{3} & \dfrac{1}{3} \\ -\dfrac{4}{3} & \dfrac{2}{3} \end{bmatrix*}. ⇒ 3 A − 2 X = X − 2 B ⇒ X + 2 X = 3 A + 2 B ⇒ 3 X = 3 A + 2 B ⇒ 3 X = 3 [ 1 − 2 1 0 ] + 2 [ 2 1 − 1 1 ] ⇒ 3 X = [ 3 − 6 3 0 ] + [ 4 2 − 2 2 ] ⇒ 3 X = [ 3 + 4 − 6 + 2 3 + ( − 2 ) 0 + 2 ] ⇒ 3 X = [ 7 − 4 1 2 ] ⇒ X = 3 1 [ 7 − 4 1 2 ] ⇒ X = 3 7 − 3 4 3 1 3 2 .
Hence, X = [ 7 3 1 3 − 4 3 2 3 ] . \begin{bmatrix*}[r] \dfrac{7}{3} & \dfrac{1}{3} \\ -\dfrac{4}{3} & \dfrac{2}{3} \end{bmatrix*}. 3 7 − 3 4 3 1 3 2 .
If I is the unit matrix of order 2 × 2; find the matrix M such that :
5M + 3I = 4 [ 2 − 5 0 − 3 ] 4\begin{bmatrix*}[r] 2 & -5 \\ 0 & -3 \end{bmatrix*} 4 [ 2 0 − 5 − 3 ]
Answer
I = [ 1 0 0 1 ] \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} [ 1 0 0 1 ]
Given,
⇒ 5 M + 3 I = 4 [ 2 − 5 0 − 3 ] ⇒ 5 M + 3 [ 1 0 0 1 ] = [ 8 − 20 0 − 12 ] ⇒ 5 M + [ 3 0 0 3 ] = [ 8 − 20 0 − 12 ] ⇒ 5 M = [ 8 − 20 0 − 12 ] − [ 3 0 0 3 ] ⇒ 5 M = [ 8 − 3 − 20 − 0 0 − 0 − 12 − 3 ] ⇒ 5 M = [ 5 − 20 0 − 15 ] ⇒ M = 1 5 [ 5 − 20 0 − 15 ] ⇒ M = [ 1 − 4 0 − 3 ] . \Rightarrow 5M + 3I = 4\begin{bmatrix*}[r] 2 & -5 \\ 0 & -3 \end{bmatrix*} \\[1em] \Rightarrow 5M + 3\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 8 & -20 \\ 0 & -12 \end{bmatrix*} \\[1em] \Rightarrow 5M + \begin{bmatrix*}[r] 3 & 0 \\ 0 & 3 \end{bmatrix*} = \begin{bmatrix*}[r] 8 & -20 \\ 0 & -12 \end{bmatrix*} \\[1em] \Rightarrow 5M = \begin{bmatrix*}[r] 8 & -20 \\ 0 & -12 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 0 \\ 0 & 3 \end{bmatrix*} \\[1em] \\[1em] \Rightarrow 5M = \begin{bmatrix*}[r] 8 - 3 & -20 - 0 \\ 0 - 0 & -12 - 3 \end{bmatrix*} \\[1em] \Rightarrow 5M = \begin{bmatrix*}[r] 5 & -20 \\ 0 & -15 \end{bmatrix*} \\[1em] \Rightarrow M = \dfrac{1}{5}\begin{bmatrix*}[r] 5 & -20 \\ 0 & -15 \end{bmatrix*} \\[1em] \Rightarrow M = \begin{bmatrix*}[r] 1 & -4 \\ 0 & -3 \end{bmatrix*}. ⇒ 5 M + 3 I = 4 [ 2 0 − 5 − 3 ] ⇒ 5 M + 3 [ 1 0 0 1 ] = [ 8 0 − 20 − 12 ] ⇒ 5 M + [ 3 0 0 3 ] = [ 8 0 − 20 − 12 ] ⇒ 5 M = [ 8 0 − 20 − 12 ] − [ 3 0 0 3 ] ⇒ 5 M = [ 8 − 3 0 − 0 − 20 − 0 − 12 − 3 ] ⇒ 5 M = [ 5 0 − 20 − 15 ] ⇒ M = 5 1 [ 5 0 − 20 − 15 ] ⇒ M = [ 1 0 − 4 − 3 ] .
Hence, M = [ 1 − 4 0 − 3 ] . \begin{bmatrix*}[r] 1 & -4 \\ 0 & -3 \end{bmatrix*}. [ 1 0 − 4 − 3 ] .
If A is a matrix of order m × 3, B is a matrix of order 3 × 2 and R is a matrix of order 5 × n such that AB = R, the values of m and n are :
m = -5 and n = -2
m = 5 and n = 2
m = 5 and n = -2
m = 2 and n = 5
Answer
Given,
AB = R
Am × 3 B3 × 2 = R5 × n
We know that,
For matrix multiplication :
No. of columns in A must be equal to the number of rows in B.
Resultant matrix order = No. of rows in A × No. of columns in B.
∴ m = 5 and n = 2.
Hence, Option 2 is the correct option.
If A = [ 4 x 0 1 ] , B = [ 2 12 0 1 ] \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*}, B = \begin{bmatrix*}[r] 2 & 12 \\ 0 & 1 \end{bmatrix*} [ 4 0 x 1 ] , B = [ 2 0 12 1 ] and A = B2 , the value of x is :
38
-6
-36
36
Answer
Substituting value of A and B in A = B2 , we get :
⇒ [ 4 x 0 1 ] = [ 2 12 0 1 ] [ 2 12 0 1 ] ⇒ [ 4 x 0 1 ] = [ 2 × 2 + 12 × 0 2 × 12 + 12 × 1 0 × 2 + 1 × 0 0 × 12 + 1 × 1 ] ⇒ [ 4 x 0 1 ] = [ 4 + 0 24 + 12 0 + 0 0 + 1 ] ⇒ [ 4 x 0 1 ] = [ 4 36 0 1 ] \Rightarrow \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 12 \\ 0 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 2 & 12 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 2 \times 2 + 12 \times 0 & 2 \times 12 + 12 \times 1 \\ 0 \times 2 + 1 \times 0 & 0 \times 12 + 1 \times 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 + 0 & 24 + 12 \\ 0 + 0 & 0 + 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} ⇒ [ 4 0 x 1 ] = [ 2 0 12 1 ] [ 2 0 12 1 ] ⇒ [ 4 0 x 1 ] = [ 2 × 2 + 12 × 0 0 × 2 + 1 × 0 2 × 12 + 12 × 1 0 × 12 + 1 × 1 ] ⇒ [ 4 0 x 1 ] = [ 4 + 0 0 + 0 24 + 12 0 + 1 ] ⇒ [ 4 0 x 1 ] = [ 4 0 36 1 ]
∴ x = 36.
Hence, Option 4 is the correct option.
A, B and C are three matrices each of order 5; the order of matrix CA + B2 is :
5 × 4
5 × 5
4 × 5
5 × 3
Answer
Let resultant matrix of CA be R.
C5 × 5 × A5 × 5 = Rm × n
We know that,
For matrix multiplication :
No. of columns in C must be equal to the number of rows in A.
Resultant matrix order = No. of rows in C × No. of columns in A.
∴ m = 5 and n = 5.
∴ Order of matrix R will be 5 × 5.
Let resultant matrix of B2 be S.
B5 × 5 × B5 × 5 = Sg × h
Resultant matrix order = No. of rows in B × No. of columns in B.
∴ g = 5 and h = 5.
∴ Order of matrix S will be 5 × 5.
⇒ CA + B2
⇒ R + S
Addition of matrix possible between matrix of same order and same is the order of resultant matrix.
Hence, resultant matrix's order = 5 × 5
Hence, Option 2 is the correct option.
If A = [ 5 − 2 7 0 ] and B = [ 8 3 ] \begin{bmatrix*}[r] 5 & -2 \\ 7 & 0 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] 8 \\ 3 \end{bmatrix*} [ 5 7 − 2 0 ] and B = [ 8 3 ] , then which of the following is not possible ?
A2
AB
BA
15A
Answer
BA is not possible because no. of columns in B (1) is not equal to the no. of rows in A (2).
Hence, Option 3 is the correct option.
If A = [ 1 0 1 1 ] , B = [ 0 1 1 0 ] and C = [ 1 1 0 0 ] \begin{bmatrix*}[r] 1 & 0 \\ 1 & 1 \end{bmatrix*}, B = \begin{bmatrix*}[r] 0 & 1 \\ 1 & 0 \end{bmatrix*}\text{ and C} = \begin{bmatrix*}[r] 1 & 1 \\ 0 & 0 \end{bmatrix*} [ 1 1 0 1 ] , B = [ 0 1 1 0 ] and C = [ 1 0 1 0 ] , the matrix A2 + 2B - 3C is :
[ − 2 − 1 4 1 ] \begin{bmatrix*}[r] -2 & -1 \\ 4 & 1 \end{bmatrix*} [ − 2 4 − 1 1 ]
[ 2 − 1 4 1 ] \begin{bmatrix*}[r] 2 & -1 \\ 4 & 1 \end{bmatrix*} [ 2 4 − 1 1 ]
[ 2 1 4 1 ] \begin{bmatrix*}[r] 2 & 1 \\ 4 & 1 \end{bmatrix*} [ 2 4 1 1 ]
[ 2 1 − 4 − 1 ] \begin{bmatrix*}[r] 2 & 1 \\ -4 & -1 \end{bmatrix*} [ 2 − 4 1 − 1 ]
Answer
Substituting values of A, B and C in A2 + 2B - 3C, we get :
⇒ A 2 + 2 B − 3 C = [ 1 0 1 1 ] [ 1 0 1 1 ] + 2 [ 0 1 1 0 ] − 3 [ 1 1 0 0 ] = [ 1 × 1 + 0 × 1 1 × 0 + 0 × 1 1 × 1 + 1 × 1 1 × 0 + 1 × 1 ] + [ 0 2 2 0 ] − [ 3 3 0 0 ] = [ 1 + 0 0 + 0 1 + 1 0 + 1 ] + [ 0 2 2 0 ] − [ 3 3 0 0 ] = [ 1 0 2 1 ] + [ 0 2 2 0 ] − [ 3 3 0 0 ] = [ 1 + 0 − 3 0 + 2 − 3 2 + 2 − 0 1 + 0 − 0 ] = [ − 2 − 1 4 1 ] \Rightarrow A^2 + 2B - 3C = \begin{bmatrix*}[r] 1 & 0 \\ 1 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 0 \\ 1 & 1 \end{bmatrix*} + 2\begin{bmatrix*}[r] 0 & 1 \\ 1 & 0 \end{bmatrix*} - 3\begin{bmatrix*}[r] 1 & 1 \\ 0 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 0 \times 1 & 1 \times 0 + 0 \times 1 \\ 1 \times 1 + 1 \times 1 & 1 \times 0 + 1 \times 1 \end{bmatrix*} + \begin{bmatrix*}[r] 0 & 2 \\ 2 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 3 \\ 0 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 0 & 0 + 0 \\ 1 + 1 & 0 + 1 \end{bmatrix*} + \begin{bmatrix*}[r] 0 & 2 \\ 2 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 3 \\ 0 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*} + \begin{bmatrix*}[r] 0 & 2 \\ 2 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 3 \\ 0 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 0 - 3 & 0 + 2 - 3 \\ 2 + 2 - 0 & 1 + 0 - 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -2 & -1 \\ 4 & 1 \end{bmatrix*} ⇒ A 2 + 2 B − 3 C = [ 1 1 0 1 ] [ 1 1 0 1 ] + 2 [ 0 1 1 0 ] − 3 [ 1 0 1 0 ] = [ 1 × 1 + 0 × 1 1 × 1 + 1 × 1 1 × 0 + 0 × 1 1 × 0 + 1 × 1 ] + [ 0 2 2 0 ] − [ 3 0 3 0 ] = [ 1 + 0 1 + 1 0 + 0 0 + 1 ] + [ 0 2 2 0 ] − [ 3 0 3 0 ] = [ 1 2 0 1 ] + [ 0 2 2 0 ] − [ 3 0 3 0 ] = [ 1 + 0 − 3 2 + 2 − 0 0 + 2 − 3 1 + 0 − 0 ] = [ − 2 4 − 1 1 ]
Hence, Option 1 is the correct option.
Evaluate : if possible :
[ 3 2 ] [ 2 0 ] \begin{bmatrix*}[r] 3 & 2 \\ \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ 0 \end{bmatrix*} [ 3 2 ] [ 2 0 ]
Answer
[ 3 2 ] [ 2 0 ] \begin{bmatrix*}[r] 3 & 2 \\ \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ 0 \end{bmatrix*} [ 3 2 ] [ 2 0 ]
For matrix multiplication, the no. of columns in first matrix should be equal to no. of rows in the second matrix.
Hence, matrix multiplication is possible.
⇒ [ 3 2 ] [ 2 0 ] = [ 3 × 2 + 2 × 0 ] = [ 6 ] . \Rightarrow \begin{bmatrix*}[r] 3 & 2 \\ \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ 0 \end{bmatrix*} = \begin{bmatrix*}[r] 3 \times 2 + 2 \times 0 \\ \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6 \\ \end{bmatrix*}. ⇒ [ 3 2 ] [ 2 0 ] = [ 3 × 2 + 2 × 0 ] = [ 6 ] .
Hence, [ 3 2 ] [ 2 0 ] = [ 6 ] . \begin{bmatrix*}[r] 3 & 2 \\ \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ 0 \end{bmatrix*} = \begin{bmatrix*}[r] 6 \end{bmatrix*}. [ 3 2 ] [ 2 0 ] = [ 6 ] .
Evaluate : if possible :
[ 1 − 2 ] [ − 2 3 − 1 4 ] \begin{bmatrix*}[r] 1 & -2 \\ \end{bmatrix*}\begin{bmatrix*}[r] -2 & 3 \\ -1 & 4 \end{bmatrix*} [ 1 − 2 ] [ − 2 − 1 3 4 ]
Answer
[ 1 − 2 ] [ − 2 3 − 1 4 ] \begin{bmatrix*}[r] 1 & -2 \\ \end{bmatrix*}\begin{bmatrix*}[r] -2 & 3 \\ -1 & 4 \end{bmatrix*} [ 1 − 2 ] [ − 2 − 1 3 4 ]
For matrix multiplication, the no. of columns in first matrix should be equal to no. of rows in the second matrix.
⇒ [ 1 − 2 ] [ − 2 3 − 1 4 ] = [ 1 × ( − 2 ) + ( − 2 ) × ( − 1 ) 1 × 3 + ( − 2 ) × 4 ] = [ − 2 + 2 3 + ( − 8 ) ] = [ 0 − 5 ] . \Rightarrow \begin{bmatrix*}[r] 1 & -2 \\ \end{bmatrix*}\begin{bmatrix*}[r] -2 & 3 \\ -1 & 4 \end{bmatrix*} = \begin{bmatrix*}[r] 1 \times (-2) + (-2) \times (-1) & 1 \times 3 + (-2) \times 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -2 + 2 & 3 + (-8) \\ \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 & -5 \\ \end{bmatrix*}. ⇒ [ 1 − 2 ] [ − 2 − 1 3 4 ] = [ 1 × ( − 2 ) + ( − 2 ) × ( − 1 ) 1 × 3 + ( − 2 ) × 4 ] = [ − 2 + 2 3 + ( − 8 ) ] = [ 0 − 5 ] .
Hence, [ 1 − 2 ] [ − 2 3 − 1 4 ] = [ 0 − 5 ] . \begin{bmatrix*}[r] 1 & -2 \\ \end{bmatrix*}\begin{bmatrix*}[r] -2 & 3 \\ -1 & 4 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -5 \\ \end{bmatrix*}. [ 1 − 2 ] [ − 2 − 1 3 4 ] = [ 0 − 5 ] .
Evaluate : if possible :
[ 6 4 3 − 1 ] [ − 1 3 ] \begin{bmatrix*}[r] 6 & 4 \\ 3 & -1 \end{bmatrix*}\begin{bmatrix*}[r] -1 \\ 3 \end{bmatrix*} [ 6 3 4 − 1 ] [ − 1 3 ]
Answer
[ 6 4 3 − 1 ] [ − 1 3 ] \begin{bmatrix*}[r] 6 & 4 \\ 3 & -1 \end{bmatrix*}\begin{bmatrix*}[r] -1 \\ 3 \end{bmatrix*} [ 6 3 4 − 1 ] [ − 1 3 ]
For matrix multiplication, the no. of columns in first matrix should be equal to no. of rows in the second matrix.
⇒ [ 6 4 3 − 1 ] [ − 1 3 ] = [ 6 × ( − 1 ) + 4 × 3 3 × ( − 1 ) + ( − 1 ) × 3 ] = [ − 6 + 12 − 3 + ( − 3 ) ] = [ 6 − 6 ] . \Rightarrow \begin{bmatrix*}[r] 6 & 4 \\ 3 & -1 \end{bmatrix*}\begin{bmatrix*}[r] -1 \\ 3 \end{bmatrix*} = \begin{bmatrix*}[r] 6 \times (-1) + 4 \times 3 \\ 3 \times (-1) + (-1) \times 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 + 12 \\ -3 + (-3) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6 \\ -6 \end{bmatrix*}. ⇒ [ 6 3 4 − 1 ] [ − 1 3 ] = [ 6 × ( − 1 ) + 4 × 3 3 × ( − 1 ) + ( − 1 ) × 3 ] = [ − 6 + 12 − 3 + ( − 3 ) ] = [ 6 − 6 ] .
Hence, [ 6 4 3 − 1 ] [ − 1 3 ] = [ 6 − 6 ] . \begin{bmatrix*}[r] 6 & 4 \\ 3 & -1 \end{bmatrix*}\begin{bmatrix*}[r] -1 \\ 3 \end{bmatrix*} = \begin{bmatrix*}[r] 6 \\ -6 \end{bmatrix*}. [ 6 3 4 − 1 ] [ − 1 3 ] = [ 6 − 6 ] .
Evaluate : if possible :
[ 6 4 3 − 1 ] [ − 1 3 ] \begin{bmatrix*}[r] 6 & 4 \\ 3 & -1 \end{bmatrix*}\begin{bmatrix*}[r] -1 & 3 \\ \end{bmatrix*} [ 6 3 4 − 1 ] [ − 1 3 ]
Answer
[ 6 4 3 − 1 ] [ − 1 3 ] \begin{bmatrix*}[r] 6 & 4 \\ 3 & -1 \end{bmatrix*}\begin{bmatrix*}[r] -1 & 3 \\ \end{bmatrix*} [ 6 3 4 − 1 ] [ − 1 3 ]
For matrix multiplication, the no. of columns in first matrix should be equal to no. of rows in the second matrix.
The above matrix multiplication is not possible as the no. of columns in first matrix is not equal to no. of rows in the second matrix.
If A = [ 0 2 5 − 2 ] , B = [ 1 − 1 3 2 ] \begin{bmatrix*}[r] 0 & 2 \\ 5 & -2 \end{bmatrix*}, B = \begin{bmatrix*}[r] 1 & -1 \\ 3 & 2 \end{bmatrix*} [ 0 5 2 − 2 ] , B = [ 1 3 − 1 2 ] and I is a unit matrix of order 2 × 2, find :
(i) AB
(ii) BA
(iii) AI
Answer
(i) Substituting value in AB,
⇒ A B = [ 0 2 5 − 2 ] [ 1 − 1 3 2 ] ⇒ [ 0 × 1 + 2 × 3 0 × ( − 1 ) + 2 × 2 5 × 1 + ( − 2 ) × 3 5 × ( − 1 ) + ( − 2 ) × 2 ] ⇒ [ 0 + 6 0 + 4 5 − 6 − 5 − 4 ] ⇒ [ 6 4 − 1 − 9 ] . \Rightarrow AB = \begin{bmatrix*}[r] 0 & 2 \\ 5 & -2 \end{bmatrix*}\begin{bmatrix*}[r] 1 & -1 \\ 3 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 \times 1 + 2 \times 3 & 0 \times (-1) + 2 \times 2 \\ 5 \times 1 + (-2) \times 3 & 5 \times (-1) + (-2) \times 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 + 6 & 0 + 4 \\ 5 - 6 & -5 - 4 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 & 4 \\ -1 & -9 \end{bmatrix*}. ⇒ A B = [ 0 5 2 − 2 ] [ 1 3 − 1 2 ] ⇒ [ 0 × 1 + 2 × 3 5 × 1 + ( − 2 ) × 3 0 × ( − 1 ) + 2 × 2 5 × ( − 1 ) + ( − 2 ) × 2 ] ⇒ [ 0 + 6 5 − 6 0 + 4 − 5 − 4 ] ⇒ [ 6 − 1 4 − 9 ] .
Hence, AB = [ 6 4 − 1 − 9 ] . \begin{bmatrix*}[r] 6 & 4 \\ -1 & -9 \end{bmatrix*}. [ 6 − 1 4 − 9 ] .
(ii) Substituting value in BA,
⇒ B A = [ 1 − 1 3 2 ] [ 0 2 5 − 2 ] = [ 1 × 0 + ( − 1 ) × 5 1 × 2 + ( − 1 ) × ( − 2 ) 3 × 0 + 2 × 5 3 × 2 + 2 × ( − 2 ) ] = [ 0 − 5 2 + 2 0 + 10 6 − 4 ] = [ − 5 4 10 2 ] . \Rightarrow BA = \begin{bmatrix*}[r] 1 & -1 \\ 3 & 2 \end{bmatrix*}\begin{bmatrix*}[r] 0 & 2 \\ 5 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 0 + (-1) \times 5 & 1 \times 2 + (-1) \times (-2) \\ 3 \times 0 + 2 \times 5 & 3 \times 2 + 2 \times (-2) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 - 5 & 2 + 2 \\ 0 + 10 & 6 - 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -5 & 4 \\ 10 & 2 \end{bmatrix*}. ⇒ B A = [ 1 3 − 1 2 ] [ 0 5 2 − 2 ] = [ 1 × 0 + ( − 1 ) × 5 3 × 0 + 2 × 5 1 × 2 + ( − 1 ) × ( − 2 ) 3 × 2 + 2 × ( − 2 ) ] = [ 0 − 5 0 + 10 2 + 2 6 − 4 ] = [ − 5 10 4 2 ] .
Hence, BA = [ − 5 4 10 2 ] . \begin{bmatrix*}[r] -5 & 4 \\ 10 & 2 \end{bmatrix*}. [ − 5 10 4 2 ] .
(iii) Substituting value in AI,
⇒ A I = [ 0 2 5 − 2 ] [ 1 0 0 1 ] = [ 0 × 1 + 2 × 0 0 × 0 + 2 × 1 5 × 1 + ( − 2 ) × 0 5 × 0 + ( − 2 ) × 1 ] = [ 0 2 5 − 2 ] = A \Rightarrow AI = \begin{bmatrix*}[r] 0 & 2 \\ 5 & -2 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 \times 1 + 2 \times 0 & 0 \times 0 + 2 \times 1 \\ 5 \times 1 + (-2) \times 0 & 5 \times 0 + (-2) \times 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 & 2 \\ 5 & -2 \end{bmatrix*} = A ⇒ A I = [ 0 5 2 − 2 ] [ 1 0 0 1 ] = [ 0 × 1 + 2 × 0 5 × 1 + ( − 2 ) × 0 0 × 0 + 2 × 1 5 × 0 + ( − 2 ) × 1 ] = [ 0 5 2 − 2 ] = A
Hence, AI = matrix A.
If A = [ 3 x 0 1 ] and B = [ 9 16 0 − y ] \begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} \text{ and B }= \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} [ 3 0 x 1 ] and B = [ 9 0 16 − y ] , find x and y when A2 = B.
Answer
Given,
⇒ A 2 = B ⇒ [ 3 x 0 1 ] [ 3 x 0 1 ] = [ 9 16 0 − y ] ⇒ [ 3 × 3 + x × 0 3 × x + x × 1 0 × 3 + 1 × 0 0 × x + 1 × 1 ] = [ 9 16 0 − y ] ⇒ [ 9 + 0 3 x + x 0 + 0 0 + 1 ] = [ 9 16 0 − y ] ⇒ [ 9 4 x 0 1 ] = [ 9 16 0 − y ] \Rightarrow A^2 = B \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 \times 3 + x \times 0 & 3 \times x + x \times 1 \\ 0 \times 3 + 1 \times 0 & 0 \times x + 1 \times 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 + 0 & 3x + x \\ 0 + 0 & 0 + 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 & 4x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} ⇒ A 2 = B ⇒ [ 3 0 x 1 ] [ 3 0 x 1 ] = [ 9 0 16 − y ] ⇒ [ 3 × 3 + x × 0 0 × 3 + 1 × 0 3 × x + x × 1 0 × x + 1 × 1 ] = [ 9 0 16 − y ] ⇒ [ 9 + 0 0 + 0 3 x + x 0 + 1 ] = [ 9 0 16 − y ] ⇒ [ 9 0 4 x 1 ] = [ 9 0 16 − y ]
By definition of equality of matrices we get,
4x = 16 ⇒ x = 4.
1 = -y ⇒ y = -1.
Hence, x = 4 and y = -1.
Find x and y, if :
[ x 0 − 3 1 ] [ 1 1 0 y ] = [ 2 2 − 3 − 2 ] \begin{bmatrix*}[r] x & 0 \\ -3 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 1 \\ 0 & y \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 2 \\ -3 & -2 \end{bmatrix*} [ x − 3 0 1 ] [ 1 0 1 y ] = [ 2 − 3 2 − 2 ]
Answer
Given,
⇒ [ x 0 − 3 1 ] [ 1 1 0 y ] = [ 2 2 − 3 − 2 ] ⇒ [ x × 1 + 0 × 0 x × 1 + 0 × y − 3 × 1 + 1 × 0 − 3 × 1 + 1 × y ] = [ 2 2 − 3 − 2 ] ⇒ [ x + 0 x + 0 − 3 + 0 − 3 + y ] = [ 2 2 − 3 − 2 ] ⇒ [ x x − 3 − 3 + y ] = [ 2 2 − 3 − 2 ] \Rightarrow \begin{bmatrix*}[r] x & 0 \\ -3 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 1 \\ 0 & y \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 2 \\ -3 & -2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x \times 1 + 0 \times 0 & x \times 1 + 0 \times y \\ -3 \times 1 + 1 \times 0 & -3 \times 1 + 1 \times y \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 2 \\ -3 & -2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x + 0 & x + 0 \\ -3 + 0 & -3 + y \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 2 \\ -3 & -2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x & x \\ -3 & -3 + y \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 2 \\ -3 & -2 \end{bmatrix*} ⇒ [ x − 3 0 1 ] [ 1 0 1 y ] = [ 2 − 3 2 − 2 ] ⇒ [ x × 1 + 0 × 0 − 3 × 1 + 1 × 0 x × 1 + 0 × y − 3 × 1 + 1 × y ] = [ 2 − 3 2 − 2 ] ⇒ [ x + 0 − 3 + 0 x + 0 − 3 + y ] = [ 2 − 3 2 − 2 ] ⇒ [ x − 3 x − 3 + y ] = [ 2 − 3 2 − 2 ]
By definition of equality of matrices we get,
x = 2
-3 + y = -2 ⇒ y = -2 + 3 ⇒ y = 1.
Hence, x = 2 and y = 1.
If A = [ 1 3 2 4 ] , B = [ 1 2 4 3 ] and C = [ 4 3 1 2 ] \begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}, B = \begin{bmatrix*}[r] 1 & 2 \\ 4 & 3 \end{bmatrix*} \text{ and } C = \begin{bmatrix*}[r] 4 & 3 \\ 1 & 2 \end{bmatrix*} [ 1 2 3 4 ] , B = [ 1 4 2 3 ] and C = [ 4 1 3 2 ] , find :
(i) (AB)C
(ii) A(BC)
Is A(BC) = (AB)C ?
Answer
(i) Substituting value of A, B and C in (AB)C we get,
⇒ ( [ 1 3 2 4 ] [ 1 2 4 3 ] ) [ 4 3 1 2 ] = ( [ 1 × 1 + 3 × 4 1 × 2 + 3 × 3 2 × 1 + 4 × 4 2 × 2 + 4 × 3 ] ) [ 4 3 1 2 ] = ( [ 1 + 12 2 + 9 2 + 16 4 + 12 ] ) [ 4 3 1 2 ] = [ 13 11 18 16 ] [ 4 3 1 2 ] = [ 13 × 4 + 11 × 1 13 × 3 + 11 × 2 18 × 4 + 16 × 1 18 × 3 + 16 × 2 ] = [ 52 + 11 39 + 22 72 + 16 54 + 32 ] = [ 63 61 88 86 ] . \Rightarrow \Big(\begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 2 \\ 4 & 3 \end{bmatrix*}\Big)\begin{bmatrix*}[r] 4 & 3 \\ 1 & 2 \end{bmatrix*} \\[1em] = \Big(\begin{bmatrix*}[r] 1 \times 1 + 3 \times 4 & 1 \times 2 + 3 \times 3 \\ 2 \times 1 + 4 \times 4 & 2 \times 2 + 4 \times 3 \end{bmatrix*}\Big)\begin{bmatrix*}[r] 4 & 3 \\ 1 & 2 \end{bmatrix*} \\[1em] = \Big(\begin{bmatrix*}[r] 1 + 12 & 2 + 9 \\ 2 + 16 & 4 + 12 \end{bmatrix*}\Big)\begin{bmatrix*}[r] 4 & 3 \\ 1 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 13 & 11 \\ 18 & 16 \end{bmatrix*}\begin{bmatrix*}[r] 4 & 3 \\ 1 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 13 \times 4 + 11 \times 1 & 13 \times 3 + 11 \times 2 \\ 18 \times 4 + 16 \times 1 & 18 \times 3 + 16 \times 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 52 + 11 & 39 + 22 \\ 72 + 16 & 54 + 32 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 63 & 61 \\ 88 & 86 \end{bmatrix*}. ⇒ ( [ 1 2 3 4 ] [ 1 4 2 3 ] ) [ 4 1 3 2 ] = ( [ 1 × 1 + 3 × 4 2 × 1 + 4 × 4 1 × 2 + 3 × 3 2 × 2 + 4 × 3 ] ) [ 4 1 3 2 ] = ( [ 1 + 12 2 + 16 2 + 9 4 + 12 ] ) [ 4 1 3 2 ] = [ 13 18 11 16 ] [ 4 1 3 2 ] = [ 13 × 4 + 11 × 1 18 × 4 + 16 × 1 13 × 3 + 11 × 2 18 × 3 + 16 × 2 ] = [ 52 + 11 72 + 16 39 + 22 54 + 32 ] = [ 63 88 61 86 ] .
Hence, (AB)C = [ 63 61 88 86 ] . \begin{bmatrix*}[r] 63 & 61 \\ 88 & 86 \end{bmatrix*}. [ 63 88 61 86 ] .
(ii) Substituting value of A, B and C in A(BC) we get,
⇒ [ 1 3 2 4 ] ( [ 1 2 4 3 ] [ 4 3 1 2 ] ) = [ 1 3 2 4 ] ( [ 1 × 4 + 2 × 1 1 × 3 + 2 × 2 4 × 4 + 3 × 1 4 × 3 + 3 × 2 ] ) = [ 1 3 2 4 ] [ 4 + 2 3 + 4 16 + 3 12 + 6 ] = [ 1 3 2 4 ] [ 6 7 19 18 ] = [ 1 × 6 + 3 × 19 1 × 7 + 3 × 18 2 × 6 + 4 × 19 2 × 7 + 4 × 18 ] = [ 6 + 57 7 + 54 12 + 76 14 + 72 ] = [ 63 61 88 86 ] \Rightarrow \begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}\Big(\begin{bmatrix*}[r] 1 & 2 \\ 4 & 3 \end{bmatrix*}\begin{bmatrix*}[r] 4 & 3 \\ 1 & 2 \end{bmatrix*}\Big) \\[1em] = \begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}\Big(\begin{bmatrix*}[r] 1 \times 4 + 2\times 1 & 1 \times 3 + 2 \times 2 \\ 4 \times 4 + 3 \times 1 & 4 \times 3 + 3 \times 2 \end{bmatrix*}\Big) \\[1em] = \begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 4 + 2 & 3 + 4 \\ 16 + 3 & 12 + 6 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 6 & 7 \\ 19 & 18 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 6 + 3 \times 19 & 1 \times 7 + 3 \times 18 \\ 2 \times 6 + 4 \times 19 & 2 \times 7 + 4 \times 18 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6 + 57 & 7 + 54 \\ 12 + 76 & 14 + 72 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 63 & 61 \\ 88 & 86 \end{bmatrix*} ⇒ [ 1 2 3 4 ] ( [ 1 4 2 3 ] [ 4 1 3 2 ] ) = [ 1 2 3 4 ] ( [ 1 × 4 + 2 × 1 4 × 4 + 3 × 1 1 × 3 + 2 × 2 4 × 3 + 3 × 2 ] ) = [ 1 2 3 4 ] [ 4 + 2 16 + 3 3 + 4 12 + 6 ] = [ 1 2 3 4 ] [ 6 19 7 18 ] = [ 1 × 6 + 3 × 19 2 × 6 + 4 × 19 1 × 7 + 3 × 18 2 × 7 + 4 × 18 ] = [ 6 + 57 12 + 76 7 + 54 14 + 72 ] = [ 63 88 61 86 ]
Hence, A(BC) = [ 63 61 88 86 ] \begin{bmatrix*}[r] 63 & 61 \\ 88 & 86 \end{bmatrix*} [ 63 88 61 86 ] .
Hence, A(BC) = (AB)C.
Let A = [ 2 1 0 − 2 ] , B = [ 4 1 − 3 − 2 ] and C = [ − 3 2 − 1 4 ] \begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*}, B = \begin{bmatrix*}[r] 4 & 1 \\ -3 & -2 \end{bmatrix*} \text{ and C }= \begin{bmatrix*}[r] -3 & 2 \\ -1 & 4 \end{bmatrix*} [ 2 0 1 − 2 ] , B = [ 4 − 3 1 − 2 ] and C = [ − 3 − 1 2 4 ] . Find A2 + AC - 5B.
Answer
Substituting values of A, B and C in A2 + AC - 5B we get,
⇒ [ 2 1 0 − 2 ] [ 2 1 0 − 2 ] + [ 2 1 0 − 2 ] [ − 3 2 − 1 4 ] − 5 [ 4 1 − 3 − 2 ] = [ 2 × 2 + 1 × 0 2 × 1 + 1 × ( − 2 ) 0 × 2 + ( − 2 ) × 0 0 × 1 + ( − 2 ) × ( − 2 ) ] + [ 2 × ( − 3 ) + 1 × ( − 1 ) 2 × 2 + 1 × 4 0 × ( − 3 ) + ( − 2 ) × ( − 1 ) 0 × 2 + ( − 2 ) × 4 ] − [ 20 5 − 15 − 10 ] = [ 4 + 0 2 − 2 0 + 0 0 + 4 ] + [ − 6 − 1 4 + 4 0 + 2 0 − 8 ] − [ 20 5 − 15 − 10 ] = [ 4 0 0 4 ] + [ − 7 8 2 − 8 ] − [ 20 5 − 15 − 10 ] = [ 4 + ( − 7 ) − 20 0 + 8 − 5 0 + 2 − ( − 15 ) 4 + ( − 8 ) − ( − 10 ) ] = [ − 23 3 17 6 ] \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*}\begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*} + \begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*}\begin{bmatrix*}[r] -3 & 2 \\ -1 & 4 \end{bmatrix*} - 5\begin{bmatrix*}[r] 4 & 1 \\ -3 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 2 + 1 \times 0 & 2 \times 1 + 1 \times (-2) \\ 0 \times 2 + (-2) \times 0 & 0 \times 1 + (-2) \times (-2) \end{bmatrix*} \\[1em] + \begin{bmatrix*}[r] 2 \times (-3) + 1 \times (-1) & 2 \times 2 + 1 \times 4 \\ 0 \times (-3) + (-2) \times (-1) & 0 \times 2 + (-2) \times 4 \end{bmatrix*} \\[1em] - \begin{bmatrix*}[r] 20 & 5 \\ -15 & -10 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 + 0 & 2 - 2 \\ 0 + 0 & 0 + 4 \end{bmatrix*} + \begin{bmatrix*}[r] -6 - 1 & 4 + 4 \\ 0 + 2 & 0 - 8 \end{bmatrix*} - \begin{bmatrix*}[r] 20 & 5 \\ -15 & -10 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 0 \\ 0 & 4 \end{bmatrix*} + \begin{bmatrix*}[r] -7 & 8 \\ 2 & -8 \end{bmatrix*} - \begin{bmatrix*}[r] 20 & 5 \\ -15 & -10 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 + (-7) - 20 & 0 + 8 - 5 \\ 0 + 2 - (-15) & 4 + (-8) - (-10) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -23 & 3 \\ 17 & 6 \end{bmatrix*} ⇒ [ 2 0 1 − 2 ] [ 2 0 1 − 2 ] + [ 2 0 1 − 2 ] [ − 3 − 1 2 4 ] − 5 [ 4 − 3 1 − 2 ] = [ 2 × 2 + 1 × 0 0 × 2 + ( − 2 ) × 0 2 × 1 + 1 × ( − 2 ) 0 × 1 + ( − 2 ) × ( − 2 ) ] + [ 2 × ( − 3 ) + 1 × ( − 1 ) 0 × ( − 3 ) + ( − 2 ) × ( − 1 ) 2 × 2 + 1 × 4 0 × 2 + ( − 2 ) × 4 ] − [ 20 − 15 5 − 10 ] = [ 4 + 0 0 + 0 2 − 2 0 + 4 ] + [ − 6 − 1 0 + 2 4 + 4 0 − 8 ] − [ 20 − 15 5 − 10 ] = [ 4 0 0 4 ] + [ − 7 2 8 − 8 ] − [ 20 − 15 5 − 10 ] = [ 4 + ( − 7 ) − 20 0 + 2 − ( − 15 ) 0 + 8 − 5 4 + ( − 8 ) − ( − 10 ) ] = [ − 23 17 3 6 ]
Hence, A2 + AC - 5B = [ − 23 3 17 6 ] \begin{bmatrix*}[r] -23 & 3 \\ 17 & 6 \end{bmatrix*} [ − 23 17 3 6 ] .
If M = [ 1 2 2 1 ] \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} [ 1 2 2 1 ] and I is a unit matrix of the same order as that of M; show that :
M2 = 2M + 3I
Answer
I = [ 1 0 0 1 ] \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} [ 1 0 0 1 ]
M = [ 1 2 2 1 ] \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} [ 1 2 2 1 ]
L.H.S. = M 2 = [ 1 2 2 1 ] [ 1 2 2 1 ] = [ 1 × 1 + 2 × 2 1 × 2 + 2 × 1 2 × 1 + 1 × 2 2 × 2 + 1 × 1 ] = [ 1 + 4 2 + 2 2 + 2 4 + 1 ] = [ 5 4 4 5 ] R.H.S. = 2 M + 3 I = 2 [ 1 2 2 1 ] + 3 [ 1 0 0 1 ] = [ 2 4 4 2 ] + [ 3 0 0 3 ] = [ 2 + 3 4 + 0 4 + 0 2 + 3 ] = [ 5 4 4 5 ] . \text{L.H.S. }= M^2 = \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 2 \times 2 & 1 \times 2 + 2 \times 1 \\ 2 \times 1 + 1 \times 2 & 2 \times 2 + 1 \times 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 4 & 2 + 2 \\ 2 + 2 & 4 + 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 5 & 4 \\ 4 & 5 \end{bmatrix*} \\[1em] \text{R.H.S.} = 2M + 3I \\[1em] = 2\begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} + 3\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 4 \\ 4 & 2 \end{bmatrix*} + \begin{bmatrix*}[r] 3 & 0 \\ 0 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 + 3 & 4 + 0 \\ 4 + 0 & 2 + 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 5 & 4 \\ 4 & 5 \end{bmatrix*}. L.H.S. = M 2 = [ 1 2 2 1 ] [ 1 2 2 1 ] = [ 1 × 1 + 2 × 2 2 × 1 + 1 × 2 1 × 2 + 2 × 1 2 × 2 + 1 × 1 ] = [ 1 + 4 2 + 2 2 + 2 4 + 1 ] = [ 5 4 4 5 ] R.H.S. = 2 M + 3 I = 2 [ 1 2 2 1 ] + 3 [ 1 0 0 1 ] = [ 2 4 4 2 ] + [ 3 0 0 3 ] = [ 2 + 3 4 + 0 4 + 0 2 + 3 ] = [ 5 4 4 5 ] .
Since, L.H.S. = R.H.S.
Hence, proved that M2 = 2M + 3I.
If A = [ a 0 0 2 ] , B = [ 0 − b 1 0 ] , M = [ 1 − 1 1 1 ] \begin{bmatrix*}[r] a & 0 \\ 0 & 2 \end{bmatrix*}, B = \begin{bmatrix*}[r] 0 & -b \\ 1 & 0 \end{bmatrix*}, M = \begin{bmatrix*}[r] 1 & -1 \\ 1 & 1 \end{bmatrix*} [ a 0 0 2 ] , B = [ 0 1 − b 0 ] , M = [ 1 1 − 1 1 ] and BA = M2 , find the values of a and b.
Answer
Given,
⇒ B A = M 2 ⇒ [ 0 − b 1 0 ] [ a 0 0 2 ] = [ 1 − 1 1 1 ] [ 1 − 1 1 1 ] ⇒ [ 0 × a + ( − b ) × 0 0 × 0 + ( − b ) × 2 1 × a + 0 × 0 1 × 0 + 0 × 2 ] = [ 1 × 1 + ( − 1 ) × 1 1 × ( − 1 ) + ( − 1 ) × 1 1 × 1 + 1 × 1 1 × ( − 1 ) + 1 × 1 ] ⇒ [ 0 0 − 2 b a + 0 0 ] = [ 1 − 1 − 1 − 1 1 + 1 − 1 + 1 ] ⇒ [ 0 − 2 b a 0 ] = [ 0 − 2 2 0 ] \Rightarrow BA = M^2 \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 & -b \\ 1 & 0 \end{bmatrix*}\begin{bmatrix*}[r] a & 0 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & -1 \\ 1 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & -1 \\ 1 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 \times a + (-b) \times 0 & 0 \times 0 + (-b) \times 2 \\ 1 \times a + 0 \times 0 & 1 \times 0 + 0 \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 \times 1 + (-1) \times 1 & 1 \times (-1) + (-1) \times 1 \\ 1 \times 1 + 1 \times 1 & 1 \times (-1) + 1 \times 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 & 0 - 2b \\ a + 0 & 0 \end{bmatrix*} = \begin{bmatrix*}[r] 1 - 1 & -1 - 1 \\ 1 + 1 & -1 + 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 & -2b \\ a & 0 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -2 \\ 2 & 0 \end{bmatrix*} ⇒ B A = M 2 ⇒ [ 0 1 − b 0 ] [ a 0 0 2 ] = [ 1 1 − 1 1 ] [ 1 1 − 1 1 ] ⇒ [ 0 × a + ( − b ) × 0 1 × a + 0 × 0 0 × 0 + ( − b ) × 2 1 × 0 + 0 × 2 ] = [ 1 × 1 + ( − 1 ) × 1 1 × 1 + 1 × 1 1 × ( − 1 ) + ( − 1 ) × 1 1 × ( − 1 ) + 1 × 1 ] ⇒ [ 0 a + 0 0 − 2 b 0 ] = [ 1 − 1 1 + 1 − 1 − 1 − 1 + 1 ] ⇒ [ 0 a − 2 b 0 ] = [ 0 2 − 2 0 ]
By definition of equality of matrices we get,
-2b = -2 ⇒ b = 1.
a = 2.
Hence, a = 2 and b = 1.
Find the matrix A, if B = [ 2 1 0 1 ] and B 2 = B + 1 2 A \begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*} \text{ and } B^2 = B + \dfrac{1}{2}A [ 2 0 1 1 ] and B 2 = B + 2 1 A .
Answer
Given,
⇒ B 2 = B + 1 2 A \Rightarrow B^2 = B + \dfrac{1}{2}A ⇒ B 2 = B + 2 1 A
Substituting value of B in above equation we get,
⇒ [ 2 1 0 1 ] [ 2 1 0 1 ] = [ 2 1 0 1 ] + 1 2 A ⇒ [ 2 × 2 + 1 × 0 2 × 1 + 1 × 1 0 × 2 + 1 × 0 0 × 1 + 1 × 1 ] = [ 2 1 0 1 ] + 1 2 A ⇒ [ 4 + 0 2 + 1 0 0 + 1 ] = [ 2 1 0 1 ] + 1 2 A ⇒ [ 4 3 0 1 ] = [ 2 1 0 1 ] + 1 2 A ⇒ 1 2 A = [ 4 3 0 1 ] − [ 2 1 0 1 ] ⇒ 1 2 A = [ 4 − 2 3 − 1 0 − 0 1 − 1 ] ⇒ 1 2 A = [ 2 2 0 0 ] ⇒ A = 2 [ 2 2 0 0 ] ⇒ A = [ 4 4 0 0 ] . \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*} + \dfrac{1}{2}A \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 2 + 1 \times 0 & 2 \times 1 + 1 \times 1\ 0 \times 2 + 1 \times 0 & 0 \times 1 + 1 \times 1 \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*} + \dfrac{1}{2}A \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 + 0 & 2 + 1 \\ 0 & 0 + 1 \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*} + \dfrac{1}{2}A \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*} + \dfrac{1}{2}A \\[1em] \Rightarrow \dfrac{1}{2}A = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & 1 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \dfrac{1}{2}A = \begin{bmatrix*}[r] 4 - 2 & 3 - 1 \\ 0 - 0 & 1 - 1 \end{bmatrix*} \\[1em] \Rightarrow \dfrac{1}{2}A = \begin{bmatrix*}[r] 2 & 2 \\ 0 & 0 \end{bmatrix*} \\[1em] \Rightarrow A = 2\begin{bmatrix*}[r] 2 & 2 \\ 0 & 0 \end{bmatrix*} \\[1em] \Rightarrow A = \begin{bmatrix*}[r] 4 & 4 \\ 0 & 0 \end{bmatrix*}. ⇒ [ 2 0 1 1 ] [ 2 0 1 1 ] = [ 2 0 1 1 ] + 2 1 A ⇒ [ 2 × 2 + 1 × 0 2 × 1 + 1 × 1 0 × 2 + 1 × 0 0 × 1 + 1 × 1 ] = [ 2 0 1 1 ] + 2 1 A ⇒ [ 4 + 0 0 2 + 1 0 + 1 ] = [ 2 0 1 1 ] + 2 1 A ⇒ [ 4 0 3 1 ] = [ 2 0 1 1 ] + 2 1 A ⇒ 2 1 A = [ 4 0 3 1 ] − [ 2 0 1 1 ] ⇒ 2 1 A = [ 4 − 2 0 − 0 3 − 1 1 − 1 ] ⇒ 2 1 A = [ 2 0 2 0 ] ⇒ A = 2 [ 2 0 2 0 ] ⇒ A = [ 4 0 4 0 ] .
Hence, A = [ 4 4 0 0 ] . \begin{bmatrix*}[r] 4 & 4 \\ 0 & 0 \end{bmatrix*}. [ 4 0 4 0 ] .
If A = [ − 1 1 a b ] \begin{bmatrix*}[r] -1 & 1 \\ a & b \end{bmatrix*} [ − 1 a 1 b ] and A2 = I, find a and b.
Answer
Given, A2 = I
∴ [ − 1 1 a b ] [ − 1 1 a b ] = [ 1 0 0 1 ] ⇒ [ − 1 × − 1 + 1 × a − 1 × 1 + 1 × b a × ( − 1 ) + b × a a × 1 + b × b ] = [ 1 0 0 1 ] ⇒ [ 1 + a − 1 + b − a + a b a + b 2 ] = [ 1 0 0 1 ] \therefore \begin{bmatrix*}[r] -1 & 1 \\ a & b \end{bmatrix*}\begin{bmatrix*}[r] -1 & 1 \\ a & b \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -1 \times -1 + 1 \times a & -1 \times 1 + 1 \times b \\ a \times (-1) + b \times a & a \times 1 + b \times b \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 + a & -1 + b \\ -a + ab & a + b^2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} ∴ [ − 1 a 1 b ] [ − 1 a 1 b ] = [ 1 0 0 1 ] ⇒ [ − 1 × − 1 + 1 × a a × ( − 1 ) + b × a − 1 × 1 + 1 × b a × 1 + b × b ] = [ 1 0 0 1 ] ⇒ [ 1 + a − a + ab − 1 + b a + b 2 ] = [ 1 0 0 1 ]
By definition of equality of matrices we get,
1 + a = 1 ⇒ a = 0.
-1 + b = 0 ⇒ b = 1.
Hence, a = 0 and b = 1
Solve for x and y :
[ 2 5 5 2 ] [ x y ] = [ − 7 14 ] \begin{bmatrix*}[r] 2 & 5 \\ 5 & 2 \end{bmatrix*}\begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] -7 \\ 14 \end{bmatrix*} [ 2 5 5 2 ] [ x y ] = [ − 7 14 ]
Answer
Given,
⇒ [ 2 5 5 2 ] [ x y ] = [ − 7 14 ] ⇒ [ 2 × x + 5 × y 5 × x + 2 × y ] = [ − 7 14 ] ⇒ [ 2 x + 5 y 5 x + 2 y ] = [ − 7 14 ] \Rightarrow \begin{bmatrix*}[r] 2 & 5 \\ 5 & 2 \end{bmatrix*}\begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] -7 \\ 14 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times x + 5 \times y \\ 5 \times x + 2 \times y \end{bmatrix*} = \begin{bmatrix*}[r] -7 \\ 14 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x + 5y \\ 5x + 2y \end{bmatrix*} = \begin{bmatrix*}[r] -7 \\ 14 \end{bmatrix*} ⇒ [ 2 5 5 2 ] [ x y ] = [ − 7 14 ] ⇒ [ 2 × x + 5 × y 5 × x + 2 × y ] = [ − 7 14 ] ⇒ [ 2 x + 5 y 5 x + 2 y ] = [ − 7 14 ]
By definition of equality of matrices we get,
2x + 5y = -7
⇒ 2x = -(7 + 5y)
⇒ x = − ( 7 + 5 y ) 2 \dfrac{-(7 + 5y)}{2} 2 − ( 7 + 5 y ) ......(i)
5x + 2y = 14
Substituting value of x from (i) in above equation we get,
⇒ 5 × − ( 7 + 5 y ) 2 + 2 y = 14 ⇒ − 35 − 25 y 2 + 2 y = 14 ⇒ − 35 − 25 y + 4 y 2 = 14 ⇒ − 35 − 21 y = 28 ⇒ − 21 y = 28 + 35 ⇒ − 21 y = 63 ⇒ y = − 3. \Rightarrow 5 \times \dfrac{-(7 + 5y)}{2} + 2y = 14 \\[1em] \Rightarrow \dfrac{-35 - 25y}{2} + 2y = 14 \\[1em] \Rightarrow \dfrac{-35 - 25y + 4y}{2} = 14 \\[1em] \Rightarrow -35 - 21y = 28 \\[1em] \Rightarrow -21y = 28 + 35 \\[1em] \Rightarrow -21y = 63 \\[1em] \Rightarrow y = -3. ⇒ 5 × 2 − ( 7 + 5 y ) + 2 y = 14 ⇒ 2 − 35 − 25 y + 2 y = 14 ⇒ 2 − 35 − 25 y + 4 y = 14 ⇒ − 35 − 21 y = 28 ⇒ − 21 y = 28 + 35 ⇒ − 21 y = 63 ⇒ y = − 3.
Substituting y = -3 in (i) we get,
x = − ( 7 + 5 ( − 3 ) ) 2 = − ( 7 − 15 ) 2 = 8 2 = 4 x = \dfrac{-(7 + 5(-3))}{2} = \dfrac{-(7 - 15)}{2} = \dfrac{8}{2} = 4 x = 2 − ( 7 + 5 ( − 3 )) = 2 − ( 7 − 15 ) = 2 8 = 4 .
Hence, x = 4 and y = -3.
Solve for x and y :
[ x + y x − 4 ] [ − 1 − 2 2 2 ] = [ − 7 − 11 ] \begin{bmatrix*}[r] x + y & x - 4 \end{bmatrix*}\begin{bmatrix*}[r] -1 & -2 \\ 2 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] -7 & -11 \end{bmatrix*} [ x + y x − 4 ] [ − 1 2 − 2 2 ] = [ − 7 − 11 ]
Answer
Given,
⇒ [ x + y x − 4 ] [ − 1 − 2 2 2 ] = [ − 7 − 11 ] ⇒ [ ( x + y ) × − 1 + ( x − 4 ) × 2 ( x + y ) × − 2 + ( x − 4 ) × 2 ] = [ − 7 − 11 ] ⇒ [ − x − y + 2 x − 8 − 2 x − 2 y + 2 x − 8 ] = [ − 7 − 11 ] ⇒ [ x − y − 8 − 2 y − 8 ] = [ − 7 − 11 ] \Rightarrow \begin{bmatrix*}[r] x + y & x - 4 \end{bmatrix*}\begin{bmatrix*}[r] -1 & -2 \\ 2 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] -7 & -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] (x + y) \times -1 + (x - 4) \times 2 & (x + y) \times -2 + (x - 4) \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] -7 & -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -x - y + 2x - 8 & -2x - 2y + 2x - 8 \end{bmatrix*} = \begin{bmatrix*}[r] -7 & -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x - y - 8 & - 2y - 8 \end{bmatrix*} = \begin{bmatrix*}[r] -7 & -11 \end{bmatrix*} ⇒ [ x + y x − 4 ] [ − 1 2 − 2 2 ] = [ − 7 − 11 ] ⇒ [ ( x + y ) × − 1 + ( x − 4 ) × 2 ( x + y ) × − 2 + ( x − 4 ) × 2 ] = [ − 7 − 11 ] ⇒ [ − x − y + 2 x − 8 − 2 x − 2 y + 2 x − 8 ] = [ − 7 − 11 ] ⇒ [ x − y − 8 − 2 y − 8 ] = [ − 7 − 11 ]
By definition of equality of matrices we get,
-2y - 8 = -11
⇒ -2y = -3
⇒ y = 3 2 \dfrac{3}{2} 2 3 .
x - y - 8 = -7
⇒ x - y = 1
⇒ x = 1 + y
⇒ x = 1 + 3 2 = 5 2 1 + \dfrac{3}{2} = \dfrac{5}{2} 1 + 2 3 = 2 5 .
Hence, x = 5 2 , y = 3 2 . x = \dfrac{5}{2}, y = \dfrac{3}{2}. x = 2 5 , y = 2 3 .
Solve for x and y :
[ − 2 0 3 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] \begin{bmatrix*}[r] -2 & 0 \\ 3 & 1 \end{bmatrix*}\begin{bmatrix*}[r] -1 \\ 2x \end{bmatrix*} + 3\begin{bmatrix*}[r] -2 \\ 1 \end{bmatrix*} = 2\begin{bmatrix*}[r] y \\ 3 \end{bmatrix*} [ − 2 3 0 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] .
Answer
Given,
⇒ [ − 2 0 3 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] ⇒ [ − 2 × − 1 + 0 × 2 x 3 × ( − 1 ) + 1 × 2 x ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 − 3 + 2 x ] + [ − 6 3 ] = [ 2 y 6 ] [ 2 + ( − 6 ) − 3 + 2 x + 3 ] = [ 2 y 6 ] [ − 4 2 x ] = [ 2 y 6 ] \Rightarrow \begin{bmatrix*}[r] -2 & 0 \\ 3 & 1 \end{bmatrix*}\begin{bmatrix*}[r] -1 \\ 2x \end{bmatrix*} + 3\begin{bmatrix*}[r] -2 \\ 1 \end{bmatrix*} = 2\begin{bmatrix*}[r] y \\ 3 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -2 \times -1 + 0 \times 2x \\ 3 \times (-1) + 1 \times 2x \end{bmatrix*} + \begin{bmatrix*}[r] -6 \\ 3 \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \\ -3 + 2x \end{bmatrix*} + \begin{bmatrix*}[r] -6 \\ 3 \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} \\[1em] \begin{bmatrix*}[r] 2 + (-6) \\ -3 + 2x + 3 \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} \\[1em] \begin{bmatrix*}[r] -4 \\ 2x \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} ⇒ [ − 2 3 0 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] ⇒ [ − 2 × − 1 + 0 × 2 x 3 × ( − 1 ) + 1 × 2 x ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 − 3 + 2 x ] + [ − 6 3 ] = [ 2 y 6 ] [ 2 + ( − 6 ) − 3 + 2 x + 3 ] = [ 2 y 6 ] [ − 4 2 x ] = [ 2 y 6 ]
By definition of equality of matrices we get,
2y = -4 ⇒ y = -2.
2x = 6 ⇒ x = 3.
Hence, x = 3 and y = -2.
In each case given below, find :
(a) the order of matrix M.
(b) the matrix M.
(i) M × [ 1 1 0 2 ] = [ 1 2 ] M \times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} =\begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} M × [ 1 0 1 2 ] = [ 1 2 ]
(ii) [ 1 4 2 1 ] × M = [ 13 5 ] \begin{bmatrix*}[r] 1 & 4 \\ 2 & 1 \end{bmatrix*} \times M = \begin{bmatrix*}[r] 13 \\ 5 \end{bmatrix*} [ 1 2 4 1 ] × M = [ 13 5 ]
Answer
(i) Let order of matrix M be a × b.
M a × b × [ 1 1 0 2 ] 2 × 2 = [ 1 2 ] 1 × 2 M_{a \times b} \times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*}_{2 \times 2} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*}_{1 \times 2} M a × b × [ 1 0 1 2 ] 2 × 2 = [ 1 2 ] 1 × 2
Since, the product of matrices is possible, only when the number of columns in the first matrix is equal to the number of rows in the second.
∴ b = 2
Also, the no. of rows of product (resulting) matrix is equal to no. of rows of first matrix.
∴ a = 1
Order of matrix M = a × b = 1 × 2.
Let M = [ x y ] \begin{bmatrix*}[r] x & y \end{bmatrix*} [ x y ] .
⇒ [ x y ] × [ 1 1 0 2 ] = [ 1 2 ] ⇒ [ x × 1 + y × 0 x × 1 + y × 2 ] = [ 1 2 ] ⇒ [ x x + 2 y ] = [ 1 2 ] \Rightarrow \begin{bmatrix*}[r] x & y \end{bmatrix*} \times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} =\begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x \times 1 + y \times 0 & x \times 1 + y \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x & x + 2y \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} ⇒ [ x y ] × [ 1 0 1 2 ] = [ 1 2 ] ⇒ [ x × 1 + y × 0 x × 1 + y × 2 ] = [ 1 2 ] ⇒ [ x x + 2 y ] = [ 1 2 ]
By definition of equality of matrices we get,
x = 1
x + 2y = 2 ⇒ 1 + 2y = 2 ⇒ 2y = 1 ⇒ y = 1 2 \dfrac{1}{2} 2 1 .
∴ M = [ x y ] = [ 1 1 2 ] \begin{bmatrix*}[r] x & y \end{bmatrix*} = \begin{bmatrix*}[r] 1 & \dfrac{1}{2} \end{bmatrix*} [ x y ] = [ 1 2 1 ] .
Hence, M = [ 1 1 2 ] . \begin{bmatrix*}[r] 1 & \dfrac{1}{2} \end{bmatrix*}. [ 1 2 1 ] .
(ii) Let order of matrix M be a × b.
i.e. [ 1 4 2 1 ] 2 × 2 × M a × b = [ 13 5 ] 2 × 1 \begin{bmatrix*}[r] 1 & 4 \\ 2 & 1 \end{bmatrix*}_{2 \times 2} \times M_{a \times b} = \begin{bmatrix*}[r] 13 \\ 5 \end{bmatrix*}_{2 \times 1} [ 1 2 4 1 ] 2 × 2 × M a × b = [ 13 5 ] 2 × 1
Since product of matrix is possible, only when the number of columns in the first matrix is equal to no. of rows in second.
∴ a = 2.
Also the no. of columns of product (resulting matrix) is equal to no. of columns of second matrix.
∴ b = 1.
Hence, order of matrix = 2 × 1.
Let M = [ x y ] \begin{bmatrix*}[r] x \\ y \end{bmatrix*} [ x y ]
⇒ [ 1 4 2 1 ] × [ x y ] = [ 13 5 ] ⇒ [ 1 × x + 4 × y 2 × x + 1 × y ] = [ 13 5 ] ⇒ [ x + 4 y 2 x + y ] = [ 13 5 ] \Rightarrow \begin{bmatrix*}[r] 1 & 4 \\ 2 & 1 \end{bmatrix*} \times \begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 13 \\ 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 \times x + 4 \times y \\ 2 \times x + 1 \times y \end{bmatrix*} = \begin{bmatrix*}[r] 13 \\ 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x + 4y \\ 2x + y \end{bmatrix*} = \begin{bmatrix*}[r] 13 \\ 5 \end{bmatrix*} ⇒ [ 1 2 4 1 ] × [ x y ] = [ 13 5 ] ⇒ [ 1 × x + 4 × y 2 × x + 1 × y ] = [ 13 5 ] ⇒ [ x + 4 y 2 x + y ] = [ 13 5 ]
By definition of equality of matrices we get,
x + 4y = 13 ⇒ x = 13 - 4y ......(i)
2x + y = 5 ⇒ 2(13 - 4y) + y = 5 ⇒ 26 - 8y + y = 5 ⇒ -7y = -21 ⇒ y = 3.
⇒ x = 13 - 4y = 13 - 4(3) = 13 - 12 = 1.
∴ M = [ x y ] = [ 1 3 ] . \therefore M = \begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 1 \\ 3 \end{bmatrix*}. ∴ M = [ x y ] = [ 1 3 ] .
Hence, M = [ 1 3 ] . M = \begin{bmatrix*}[r] 1 \\ 3 \end{bmatrix*}. M = [ 1 3 ] .
If A = [ 2 x 0 1 ] and B = [ 4 36 0 1 ] ; \begin{bmatrix*}[r] 2 & x \\ 0 & 1 \end{bmatrix*} \text{and } B = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*}; [ 2 0 x 1 ] and B = [ 4 0 36 1 ] ; find the value of x, given that : A2 = B.
Answer
Given,
⇒ A2 = B
⇒ [ 2 x 0 1 ] [ 2 x 0 1 ] = [ 4 36 0 1 ] ⇒ [ 2 × 2 + x × 0 2 × x + x × 1 0 × 2 + 1 × 0 0 × x + 1 × 1 ] = [ 4 36 0 1 ] ⇒ [ 4 + 0 2 x + x 0 0 + 1 ] = [ 4 36 0 1 ] ⇒ [ 4 3 x 0 1 ] = [ 4 36 0 1 ] \Rightarrow \begin{bmatrix*}[r] 2 & x \\ 0 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 2 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 2 + x \times 0 & 2 \times x + x \times 1 \\ 0 \times 2 + 1 \times 0 & 0 \times x + 1 \times 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 + 0 & 2x + x \\ 0 & 0 + 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 3x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} ⇒ [ 2 0 x 1 ] [ 2 0 x 1 ] = [ 4 0 36 1 ] ⇒ [ 2 × 2 + x × 0 0 × 2 + 1 × 0 2 × x + x × 1 0 × x + 1 × 1 ] = [ 4 0 36 1 ] ⇒ [ 4 + 0 0 2 x + x 0 + 1 ] = [ 4 0 36 1 ] ⇒ [ 4 0 3 x 1 ] = [ 4 0 36 1 ]
By definition of equality of matrices we get,
3x = 36 ⇒ x = 12.
Hence, x = 12.
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
Answer
Since, AB = BA = B and B is not a zero matrix.
It means that A is a unit or identity matrix.
Given A = [ 3 0 0 4 ] , B = [ a b 0 c ] \begin{bmatrix*}[r] 3 & 0 \\ 0 & 4 \end{bmatrix*}, B = \begin{bmatrix*}[r] a & b \\ 0 & c \end{bmatrix*} [ 3 0 0 4 ] , B = [ a 0 b c ] and that AB = A + B; find the values of a, b and c.
Answer
Given,
⇒ A B = A + B ⇒ [ 3 0 0 4 ] [ a b 0 c ] = [ 3 0 0 4 ] + [ a b 0 c ] ⇒ [ 3 × a + 0 × 0 3 × b + 0 × c 0 × a + 4 × 0 0 × b + 4 × c ] = [ 3 + a b 0 4 + c ] ⇒ [ 3 a 3 b 0 4 c ] = [ 3 + a b 0 4 + c ] \Rightarrow AB = A + B \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 & 0 \\ 0 & 4 \end{bmatrix*}\begin{bmatrix*}[r] a & b \\ 0 & c \end{bmatrix*} = \begin{bmatrix*}[r] 3 & 0 \\ 0 & 4 \end{bmatrix*} + \begin{bmatrix*}[r] a & b \\ 0 & c \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 \times a + 0 \times 0 & 3 \times b + 0 \times c \\ 0 \times a + 4 \times 0 & 0 \times b + 4 \times c \end{bmatrix*} = \begin{bmatrix*}[r] 3 + a & b \\ 0 & 4 + c \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3a & 3b \\ 0 & 4c \end{bmatrix*} = \begin{bmatrix*}[r] 3 + a & b \\ 0 & 4 + c \end{bmatrix*} ⇒ A B = A + B ⇒ [ 3 0 0 4 ] [ a 0 b c ] = [ 3 0 0 4 ] + [ a 0 b c ] ⇒ [ 3 × a + 0 × 0 0 × a + 4 × 0 3 × b + 0 × c 0 × b + 4 × c ] = [ 3 + a 0 b 4 + c ] ⇒ [ 3 a 0 3 b 4 c ] = [ 3 + a 0 b 4 + c ]
By definition of equality of matrices we get,
3a = 3 + a ⇒ 3a - a = 3 ⇒ 2a = 3 ⇒ a = 3 2 \dfrac{3}{2} 2 3 .
3b = b ⇒ b = 0.
4c = 4 + c ⇒ 4c - c = 4 ⇒ 3c = 4 ⇒ c = 4 3 \dfrac{4}{3} 3 4
Hence, a = 3 2 , b = 0 and c = 4 3 \dfrac{3}{2}, b = 0 \text{ and c} = \dfrac{4}{3} 2 3 , b = 0 and c = 3 4 .
If A = [ 2 1 1 3 ] and B = [ 3 − 11 ] \begin{bmatrix*}[r] 2 & 1 \\ 1 & 3 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] 3 \\ -11 \end{bmatrix*} [ 2 1 1 3 ] and B = [ 3 − 11 ] find the matrix X such that AX = B.
Answer
Given,
⇒ A X = B ⇒ [ 2 1 1 3 ] X = [ 3 − 11 ] \Rightarrow AX = B \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ 1 & 3 \end{bmatrix*}X = \begin{bmatrix*}[r] 3 \\ -11 \end{bmatrix*} ⇒ A X = B ⇒ [ 2 1 1 3 ] X = [ 3 − 11 ]
X will be a matrix of order 2 × 1. So, let X = [ a b ] \begin{bmatrix*}[r] a \\ b \end{bmatrix*} [ a b ] .
⇒ [ 2 1 1 3 ] [ a b ] = [ 3 − 11 ] ⇒ [ 2 × a + 1 × b 1 × a + 3 × b ] = [ 3 − 11 ] ⇒ [ 2 a + b a + 3 b ] = [ 3 − 11 ] \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ 1 & 3 \end{bmatrix*}\begin{bmatrix*}[r] a \\ b \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times a + 1 \times b \\ 1 \times a + 3 \times b \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2a + b \\ a + 3b \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ -11 \end{bmatrix*} ⇒ [ 2 1 1 3 ] [ a b ] = [ 3 − 11 ] ⇒ [ 2 × a + 1 × b 1 × a + 3 × b ] = [ 3 − 11 ] ⇒ [ 2 a + b a + 3 b ] = [ 3 − 11 ]
By definition of equality of matrices we get,
2a + b = 3 ⇒ b = 3 - 2a .......(i)
a + 3b = -11
Substituting value of b from (i) in above equation we get,
⇒ a + 3(3 - 2a) = -11 ⇒ a + 9 - 6a = -11 ⇒ -5a = -11 - 9 ⇒ -5a = -20 ⇒ a = 4.
b = 3 - 2a = 3 - 2(4) = 3 - 8 = -5.
Hence, X = [ a b ] = [ 4 − 5 ] . \begin{bmatrix*}[r] a \\ b \end{bmatrix*} = \begin{bmatrix*}[r] 4 \\ -5 \end{bmatrix*}. [ a b ] = [ 4 − 5 ] .
If M = [ 4 1 − 1 2 ] \begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*} [ 4 − 1 1 2 ] , show that : 6M - M2 = 9I; where I is a 2 × 2 unit matrix.
Answer
M 2 = [ 4 1 − 1 2 ] [ 4 1 − 1 2 ] = [ 4 × 4 + 1 × ( − 1 ) 4 × 1 + 1 × 2 − 1 × 4 + 2 × ( − 1 ) − 1 × 1 + 2 × 2 ] = [ 16 − 1 4 + 2 − 4 + ( − 2 ) − 1 + 4 ] = [ 15 6 − 6 3 ] . M^2 = \begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*}\begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 \times 4 + 1 \times (-1) & 4 \times 1 + 1 \times 2 \\ -1 \times 4 + 2 \times (-1) & -1 \times 1 + 2 \times 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 16 - 1 & 4 + 2 \\ -4 + (-2) & -1 + 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 15 & 6 \\ -6 & 3 \end{bmatrix*}. M 2 = [ 4 − 1 1 2 ] [ 4 − 1 1 2 ] = [ 4 × 4 + 1 × ( − 1 ) − 1 × 4 + 2 × ( − 1 ) 4 × 1 + 1 × 2 − 1 × 1 + 2 × 2 ] = [ 16 − 1 − 4 + ( − 2 ) 4 + 2 − 1 + 4 ] = [ 15 − 6 6 3 ] .
Substituting value of M2 in L.H.S. of 6M - M2 = 9I,
= 6 [ 4 1 − 1 2 ] − [ 15 6 − 6 3 ] = [ 24 6 − 6 12 ] − [ 15 6 − 6 3 ] = [ 24 − 15 6 − 6 − 6 − ( − 6 ) 12 − 3 ] = [ 9 0 0 9 ] = 9 [ 1 0 0 1 ] = 9 I \phantom{=} 6\begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 15 & 6 \\ -6 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 24 & 6 \\ -6 & 12 \end{bmatrix*} - \begin{bmatrix*}[r] 15 & 6 \\ -6 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 24 - 15 & 6 - 6 \\ -6 - (-6) & 12 - 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 9 & 0 \\ 0 & 9 \end{bmatrix*} \\[1em] = 9\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = 9\text{I} = 6 [ 4 − 1 1 2 ] − [ 15 − 6 6 3 ] = [ 24 − 6 6 12 ] − [ 15 − 6 6 3 ] = [ 24 − 15 − 6 − ( − 6 ) 6 − 6 12 − 3 ] = [ 9 0 0 9 ] = 9 [ 1 0 0 1 ] = 9 I
Since, L.H.S. = R.H.S.
Hence, proved that 6M - M2 = 9I.
If P = [ 2 6 3 9 ] and Q = [ 3 x y 2 ] \begin{bmatrix*}[r] 2 & 6 \\ 3 & 9 \end{bmatrix*} \text{ and Q} = \begin{bmatrix*}[r] 3 & x \\ y & 2 \end{bmatrix*} [ 2 3 6 9 ] and Q = [ 3 y x 2 ] , find x and y such that PQ = null matrix.
Answer
Given,
PQ = null matrix.
∴ [ 2 6 3 9 ] [ 3 x y 2 ] = [ 0 0 0 0 ] ⇒ [ 2 × 3 + 6 × y 2 × x + 6 × 2 3 × 3 + 9 × y 3 × x + 9 × 2 ] = [ 0 0 0 0 ] ⇒ [ 6 + 6 y 2 x + 12 9 + 9 y 3 x + 18 ] = [ 0 0 0 0 ] . \therefore \begin{bmatrix*}[r] 2 & 6 \\ 3 & 9 \end{bmatrix*}\begin{bmatrix*}[r] 3 & x \\ y & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 3 + 6 \times y & 2 \times x + 6 \times 2 \\ 3 \times 3 + 9 \times y & 3 \times x + 9 \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 + 6y & 2x + 12 \\ 9 + 9y & 3x + 18 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*}. ∴ [ 2 3 6 9 ] [ 3 y x 2 ] = [ 0 0 0 0 ] ⇒ [ 2 × 3 + 6 × y 3 × 3 + 9 × y 2 × x + 6 × 2 3 × x + 9 × 2 ] = [ 0 0 0 0 ] ⇒ [ 6 + 6 y 9 + 9 y 2 x + 12 3 x + 18 ] = [ 0 0 0 0 ] .
By definition of equality of matrices we get,
6 + 6y = 0 ⇒ 6y = -6 ⇒ y = -1.
2x + 12 = 0 ⇒ 2x = -12 ⇒ x = -6.
Hence, x = -6 and y = -1.
Evaluate :
[ 2 c o s 60 ° − 2 s i n 30 ° − t a n 45 ° c o s 0 ° ] [ c o t 45 ° c o s e c 30 ° s e c 60 ° s i n 90 ° ] \begin{bmatrix*}[r] 2cos60° & -2sin30° \\ -tan 45° & cos0° \end{bmatrix*}\begin{bmatrix*}[r] cot 45° & cosec 30° \\ sec60° & sin 90° \end{bmatrix*} [ 2 cos 60° − t an 45° − 2 s in 30° cos 0° ] [ co t 45° sec 60° cosec 30° s in 90° ]
Answer
Given,
⇒ [ 2 c o s 60 ° − 2 s i n 30 ° − t a n 45 ° c o s 0 ° ] [ c o t 45 ° c o s e c 30 ° s e c 60 ° s i n 90 ° ] ⇒ [ 2 × 1 2 − 2 × 1 2 − 1 1 ] [ 1 2 2 1 ] ⇒ [ 1 − 1 − 1 1 ] [ 1 2 2 1 ] ⇒ [ 1 × 1 + ( − 1 ) × 2 1 × 2 + ( − 1 ) × 1 − 1 × 1 + 1 × 2 − 1 × 2 + 1 × 1 ] ⇒ [ 1 − 2 2 − 1 − 1 + 2 − 2 + 1 ] ⇒ [ − 1 1 1 − 1 ] . \Rightarrow \begin{bmatrix*}[r] 2cos60° & -2sin30° \\ -tan 45° & cos0° \end{bmatrix*}\begin{bmatrix*}[r] cot 45° & cosec 30° \\ sec60° & sin 90° \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times \dfrac{1}{2} & -2 \times \dfrac{1}{2} \\ -1 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 & -1 \\ -1 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 \times 1 + (-1) \times 2 & 1 \times 2 + (-1) \times 1 \\ -1 \times 1 + 1 \times 2 & -1 \times 2 + 1 \times 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 - 2 & 2 - 1 \\ -1 + 2 & -2 + 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -1 & 1 \\ 1 & -1 \end{bmatrix*}. ⇒ [ 2 cos 60° − t an 45° − 2 s in 30° cos 0° ] [ co t 45° sec 60° cosec 30° s in 90° ] ⇒ [ 2 × 2 1 − 1 − 2 × 2 1 1 ] [ 1 2 2 1 ] ⇒ [ 1 − 1 − 1 1 ] [ 1 2 2 1 ] ⇒ [ 1 × 1 + ( − 1 ) × 2 − 1 × 1 + 1 × 2 1 × 2 + ( − 1 ) × 1 − 1 × 2 + 1 × 1 ] ⇒ [ 1 − 2 − 1 + 2 2 − 1 − 2 + 1 ] ⇒ [ − 1 1 1 − 1 ] .
Hence, [ 2 c o s 60 ° − 2 s i n 30 ° − t a n 45 ° c o s 0 ° ] [ c o t 45 ° c o s e c 30 ° s e c 60 ° s i n 90 ° ] = [ − 1 1 1 − 1 ] . \begin{bmatrix*}[r] 2cos60° & -2sin30° \\ -tan 45° & cos0° \end{bmatrix*}\begin{bmatrix*}[r] cot 45° & cosec 30° \\ sec60° & sin 90° \end{bmatrix*} = \begin{bmatrix*}[r] -1 & 1 \\ 1 & -1 \end{bmatrix*}. [ 2 cos 60° − t an 45° − 2 s in 30° cos 0° ] [ co t 45° sec 60° cosec 30° s in 90° ] = [ − 1 1 1 − 1 ] .
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 × 2.
(i) A + B = B + A
(ii) A - B = B - A
(iii) (B.C).A = B.(C.A)
(iv) (A + B).C = A.C + B.C
(v) A.(B - C) = A.B - A.C
(vi) (A - B).C = A.C - B.C
(vii) A2 - B2 = (A + B)(A - B)
(viii) (A - B)2 = A2 - 2A.B + B2 .
Answer
(i) A + B = B + A
The above statement is true because addition of matrices is commutative.
(ii) A - B = B - A
The above statement is false because subtraction of matrices is not commutative.
(iii) (B.C).A = B.(C.A)
The above statement is true because multiplication of matrices is associative.
(iv) (A + B).C = A.C + B.C
The above statement is true because multiplication of matrices is distributive over addition.
(v) A.(B - C) = A.B - A.C
The above statement is true because multiplication of matrices is distributive over subtraction.
(vi) (A - B).C = A.C - B.C
The above statement is true because multiplication of matrices is distributive over subtraction.
(vii) A2 - B2 = (A + B)(A - B)
The above statement is false because laws of algebra for factorization and expansion are not applicable to matrices.
(viii) (A - B)2 = A2 - 2A.B + B2
The above statement is false because laws of algebra for factorization and expansion are not applicable to matrices.
If a matrix A = [ 0 1 2 − 1 ] \begin{bmatrix*}[r] 0 & 1 \\ 2 & -1 \end{bmatrix*} [ 0 2 1 − 1 ] and matrix B = [ 3 1 ] \begin{bmatrix*}[r] 3 \\ 1 \end{bmatrix*} [ 3 1 ] , then which of the following is possible :
A + B
A - B
AB
BA
Answer
Since, addition and subtraction of matrices requires each matrix to be of same order.
∴ A + B and A - B are not possible.
AB is possible because no. of columns in A (2) is equal to no. of rows in B (2).
BA is not possible because no. of columns in B (1) is not equal to no. of rows in A (2).
Hence, Option 3 is the correct option.
If M × [ 3 2 − 1 0 ] = [ 3 − 1 ] \begin{bmatrix*}[r] 3 & 2 \\ -1 & 0 \end{bmatrix*} = \begin{bmatrix*}[r] 3 & -1 \end{bmatrix*} [ 3 − 1 2 0 ] = [ 3 − 1 ] , the order of matrix M is :
2 × 2
2 × 1
1 × 2
1 × 3
Answer
We know that,
For matrix multiplication :
No. of columns in 1st matrix must be equal to the number of rows in 2nd matrix.
Resultant matrix order = No. of rows in 1st matrix × No. of columns in 2nd matrix.
Let order of matrix M be a × b.
⇒ Ma × b × [ 3 2 − 1 0 ] < e m > 2 × 2 = [ 3 − 1 ] < / e m > 1 × 2 \begin{bmatrix*}[r] 3 & 2 \\ -1 & 0 \end{bmatrix*}<em>{2 \times 2} = \begin{bmatrix*}[r] 3 & -1 \end{bmatrix*}</em>{1 \times 2} [ 3 − 1 2 0 ] < e m > 2 × 2 = [ 3 − 1 ] < / e m > 1 × 2
b = 2 and a = 1.
Order of matrix M = 1 × 2.
Hence, Option 3 is the correct option.
If [ 2 x − y x + y ] = [ 9 9 ] \begin{bmatrix*}[r] 2x - y \\ x + y \end{bmatrix*} = \begin{bmatrix*}[r] 9 \\ 9 \end{bmatrix*} [ 2 x − y x + y ] = [ 9 9 ] , the value of x and y are :
x = 3 and y = 3
x = 3 and y = 9
x = 3 and y = 6
x = 6 and y = 3
Answer
Given,
[ 2 x − y x + y ] = [ 9 9 ] \begin{bmatrix*}[r] 2x - y \\ x + y \end{bmatrix*} = \begin{bmatrix*}[r] 9 \\ 9 \end{bmatrix*} [ 2 x − y x + y ] = [ 9 9 ]
⇒ 2x - y = 9 .......(1)
⇒ x + y = 9 ........(2)
Adding equation (1) and (2), we get :
⇒ 2x - y + x + y = 9 + 9
⇒ 3x = 18
⇒ x = 18 3 \dfrac{18}{3} 3 18 = 6.
Substituting value of x in equation (2), we get :
⇒ 6 + y = 9
⇒ y = 9 - 6 = 3.
Hence, Option 4 is the correct option.
If matrix A = [ x − y x + y y − x y + x ] \begin{bmatrix*}[r] x - y & x + y \\ y - x & y + x \end{bmatrix*} [ x − y y − x x + y y + x ] and matrix B = [ x + y y − x x − y y + x ] \begin{bmatrix*}[r] x + y & y - x \\ x - y & y + x \end{bmatrix*} [ x + y x − y y − x y + x ] , then A + B is :
[ 2 y 2 x 0 2 ( x + y ) ] \begin{bmatrix*}[r] 2y & 2x \\ 0 & 2(x + y) \end{bmatrix*} [ 2 y 0 2 x 2 ( x + y ) ]
[ 2 x 2 ( x + y ) 0 0 ] \begin{bmatrix*}[r] 2x & 2(x + y) \\ 0 & 0 \end{bmatrix*} [ 2 x 0 2 ( x + y ) 0 ]
[ 2 x 2 y 0 2 ( x + y ) ] \begin{bmatrix*}[r] 2x & 2y \\ 0 & 2(x + y) \end{bmatrix*} [ 2 x 0 2 y 2 ( x + y ) ]
[ 2 x − 2 y 2 y 0 0 ] \begin{bmatrix*}[r] 2x - 2y & 2y \\ 0 & 0 \end{bmatrix*} [ 2 x − 2 y 0 2 y 0 ]
Answer
Substituting values of A and B in A + B, we get :
⇒ A + B = [ x − y x + y y − x y + x ] + [ x + y y − x x − y y + x ] = [ x − y + x + y x + y + y − x y − x + x − y y + x + y + x ] = [ 2 x 2 y 0 2 ( x + y ) ] . \Rightarrow A + B = \begin{bmatrix*}[r] x - y & x + y \\ y - x & y + x \end{bmatrix*} + \begin{bmatrix*}[r] x + y & y - x \\ x - y & y + x \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] x - y + x + y & x + y + y - x \\ y - x + x - y & y + x + y + x \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2x & 2y \\ 0 & 2(x + y) \end{bmatrix*}. ⇒ A + B = [ x − y y − x x + y y + x ] + [ x + y x − y y − x y + x ] = [ x − y + x + y y − x + x − y x + y + y − x y + x + y + x ] = [ 2 x 0 2 y 2 ( x + y ) ] .
Hence, Option 3 is the correct option.
Event A : Order of matrix A is 3 × 5.
Event B : Order of matrix B is 5 × 3.
Event C : Order of matrix C is 3 × 3.
Product of which two matrices gives a square matrix.
AB and AC
AB and BC
BA and BC
AB and BA
Answer
We know that,
Resultant matrix order = No. of rows in 1st matrix × No. of columns in 2nd matrix.
Resultant matrix (P) on multiplication of AB has order = 3 × 3.
Resultant matrix (Q) on multiplication of BA has order = 5 × 5.
Both P and Q are square matrix of order 3 and 5 respectively.
Hence, Option 4 is the correct option.
Two matrices A and B each of order 2 x 2.
Assertion (A) : A X B = 0 ⇒ A = 0 or B = 0.
Reason (R) : Let A = [ 2 2 5 5 ] A = \begin{bmatrix*}[r] 2 & 2 \\ 5 & 5 \end{bmatrix*} A = [ 2 5 2 5 ] ≠ 0 and B = [ − 4 3 4 − 3 ] B = \begin{bmatrix*}[r] -4 & 3 \\ 4 & -3 \end{bmatrix*} B = [ − 4 4 3 − 3 ] ≠ 0 but A x B = [ 2 2 5 5 ] [ − 4 3 4 − 3 ] \begin{bmatrix*}[r] 2 & 2 \\ 5 & 5 \end{bmatrix*}\begin{bmatrix*}[r] -4 & 3 \\ 4 & -3 \end{bmatrix*} [ 2 5 2 5 ] [ − 4 4 3 − 3 ] = 0.
A is true, R is false.
A is false, R is true.
Both A and R are true and R is correct reason for A.
Both A and R are true and R is incorrect reason for A.
Answer
It is not necessarily true in case of matrices that if A X B = 0
Then, either A = 0 or B = 0.
So, assertion (A) is false.
According to reason, A = [ 2 2 5 5 ] A = \begin{bmatrix*}[r] 2 & 2 \\ 5 & 5 \end{bmatrix*} A = [ 2 5 2 5 ] and B = [ − 4 3 4 − 3 ] B = \begin{bmatrix*}[r] -4 & 3 \\ 4 & -3 \end{bmatrix*} B = [ − 4 4 3 − 3 ]
⇒ A B = [ 2 2 5 5 ] . [ − 4 3 4 − 3 ] = [ 2 × ( − 4 ) + 2 × 4 2 × 3 + 2 × ( − 3 ) 5 × ( − 4 ) + 5 × 4 5 × 3 + 5 × ( − 3 ) ] = [ − 8 + 8 6 − 6 − 20 + 20 15 − 15 ] = [ 0 0 0 0 ] \Rightarrow AB = \begin{bmatrix*}[r] 2 & 2 \\ 5 & 5 \end{bmatrix*}.\begin{bmatrix*}[r] -4 & 3 \\ 4 & -3 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 2 \times (-4) + 2 \times 4 & 2 \times 3 + 2 \times (-3)\ 5 \times (-4) + 5 \times 4 & 5 \times 3 + 5 \times (-3) \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] -8 + 8 & 6 - 6\ -20 + 20 & 15 - 15 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 0 & 0\ 0 & 0 \end{bmatrix*}\\[1em] ⇒ A B = [ 2 5 2 5 ] . [ − 4 4 3 − 3 ] = [ 2 × ( − 4 ) + 2 × 4 2 × 3 + 2 × ( − 3 ) 5 × ( − 4 ) + 5 × 4 5 × 3 + 5 × ( − 3 ) ] = [ − 8 + 8 6 − 6 − 20 + 20 15 − 15 ] = [ 0 0 0 0 ]
So, reason (R) is true.
Hence, option 2 is the correct option.
Matrix A = [ x y ] \begin{bmatrix*}[r] x & y \end{bmatrix*} [ x y ] and Matrix B = [ a b ] \begin{bmatrix*}[r] a \\ b \end{bmatrix*} [ a b ] .
Assertion (A) : Product BA is possible and order of resulting matrix is 2 x 2.
Reason (R) : The product BA of two matrices A and B is possible only if number of rows in matrix B Is same as number of columns in matrix A.
A is true, R is false.
A is false, R is true.
Both A and R are true and R is correct reason for A.
Both A and R are true and R is incorrect reason for A.
Answer
∴ Order of matrix A = 1 x 2
∴ Order of matrix B = 2 x 1
Since product of matrix is possible, only when the number of columns in the first matrix is equal to number of rows in second.
Since,
Number of columns in B = 1
Number of rows in A = 1
∴ Product BA is possible.
We know that,
The no. of rows in the resulting matrix is equal to the no. of rows in first matrix and no. of columns equals to the no. of columns in second matrix.
∴ Order of matrix BA = 2 x 2
So, assertion is true. But reason says the product BA is possible only if number of rows in matrix B is same as number of columns in matrix A, which is false.
Hence, option 1 is the correct option.
A, B and C are three matrices each of order 2 x 2.
Statement 1 : If A x B = A x C ⇒ B = C
Statement 2 : Cancellation law is applicable in matrix multiplication.
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
We know that,
Matrix multiplication does not satisfy the cancellation law.
∴ Statement 2 is false.
Thus, if A x B = A x C, we cannot conclude that B = C.
∴ Statement 1 is false.
Hence, option 2 is the correct option.
Matrix A = [ 2 − 2 − 2 0 ] \begin{bmatrix*}[r] 2 & -2\ -2 & 0 \end{bmatrix*} [ 2 − 2 − 2 0 ] and matrix B = [ 5 5 5 5 ] \begin{bmatrix*}[r] 5 & 5\ 5 & 5 \end{bmatrix*} [ 5 5 5 5 ]
Statement 1 : AB = 0
Statement 2 : AB = 0, even if A ≠ 0 and B ≠ 0.
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given,
Matrix A = [ 2 − 2 − 2 0 ] \begin{bmatrix*}[r] 2 & -2\ -2 & 0 \end{bmatrix*} [ 2 − 2 − 2 0 ] and matrix B = [ 5 5 5 5 ] \begin{bmatrix*}[r] 5 & 5\ 5 & 5 \end{bmatrix*} [ 5 5 5 5 ]
⇒ A B = [ 2 − 2 − 2 0 ] . [ 5 5 5 5 ] = [ 2 × 5 + ( − 2 ) × 5 2 × 5 + ( − 2 ) × 5 ( − 2 ) × 5 + 0 × 5 ( − 2 ) × 5 + 0 × 5 ] = [ 10 − 10 10 − 10 − 10 + 0 − 10 + 0 ] = [ 0 0 − 10 − 10 ] \Rightarrow AB = \begin{bmatrix*}[r] 2 & -2\ -2 & 0 \end{bmatrix*}. \begin{bmatrix*}[r] 5 & 5\ 5 & 5 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 2 \times 5 + (-2) \times 5 & 2 \times 5 + (-2) \times 5\ (-2) \times 5 + 0 \times 5 & (-2) \times 5 + 0 \times 5 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 10 - 10 & 10 - 10\ -10 + 0 & -10 + 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 0 & 0\ -10 & -10 \end{bmatrix*} ⇒ A B = [ 2 − 2 − 2 0 ] . [ 5 5 5 5 ] = [ 2 × 5 + ( − 2 ) × 5 2 × 5 + ( − 2 ) × 5 ( − 2 ) × 5 + 0 × 5 ( − 2 ) × 5 + 0 × 5 ] = [ 10 − 10 10 − 10 − 10 + 0 − 10 + 0 ] = [ 0 0 − 10 − 10 ]
So, AB ≠ 0
∴ Statement 1 is false.
Lets take A = [ 1 − 1 2 − 2 ] and B = [ 3 3 3 3 ] \text{ A } = \begin{bmatrix*}[r] 1 & -1\ 2 & -2 \end{bmatrix*} \text{ and B } = \begin{bmatrix*}[r] 3 & 3 \\ 3 & 3 \end{bmatrix*} A = [ 1 − 1 2 − 2 ] and B = [ 3 3 3 3 ]
A B = [ 1 − 1 2 − 2 ] . [ 3 3 3 3 ] = [ 1 × 3 + ( − 1 ) × 3 1 × 3 + ( − 1 ) × 3 2 × 3 + ( − 2 ) × 3 2 × 3 + ( − 2 ) × 3 ] = [ 3 − 3 3 − 3 6 − 6 6 − 6 ] = [ 0 0 0 0 ] AB = \begin{bmatrix*}[r] 1 & -1\ 2 & -2 \end{bmatrix*} . \begin{bmatrix*}[r] 3 & 3 \\ 3 & 3 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 1 \times 3 + (-1) \times 3 & 1 \times 3 + (-1) \times 3\ 2 \times 3 + (-2) \times 3 & 2 \times 3 + (-2) \times 3\end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 3 - 3 & 3 - 3\ 6 - 6 & 6 - 6 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 0 & 0\ 0 & 0 \end{bmatrix*}\\[1em] A B = [ 1 − 1 2 − 2 ] . [ 3 3 3 3 ] = [ 1 × 3 + ( − 1 ) × 3 1 × 3 + ( − 1 ) × 3 2 × 3 + ( − 2 ) × 3 2 × 3 + ( − 2 ) × 3 ] = [ 3 − 3 3 − 3 6 − 6 6 − 6 ] = [ 0 0 0 0 ]
Hence, it is proved that AB can be equal to 0, even if A ≠ 0 and B ≠ 0.
∴ Statement 2 is true.
Hence, option 4 is the correct option.
Find x and y, if :
[ 3 − 2 − 1 4 ] [ 2 x 1 ] + 2 [ − 4 5 ] = 4 [ 2 y ] \begin{bmatrix*}[r] 3 & -2 \\ -1 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 2x \\ 1 \end{bmatrix*} + 2\begin{bmatrix*}[r] -4 \\ 5 \end{bmatrix*} = 4\begin{bmatrix*}[r] 2 \\ y \end{bmatrix*} [ 3 − 1 − 2 4 ] [ 2 x 1 ] + 2 [ − 4 5 ] = 4 [ 2 y ]
Answer
Given,
⇒ [ 3 − 2 − 1 4 ] [ 2 x 1 ] + 2 [ − 4 5 ] = 4 [ 2 y ] ⇒ [ 3 × 2 x + ( − 2 ) × 1 − 1 × 2 x + 4 × 1 ] + [ − 8 10 ] = [ 8 4 y ] ⇒ [ 6 x − 2 − 2 x + 4 ] + [ − 8 10 ] = [ 8 4 y ] ⇒ [ 6 x − 2 + ( − 8 ) − 2 x + 4 + 10 ] = [ 8 4 y ] ⇒ [ 6 x − 10 − 2 x + 14 ] = [ 8 4 y ] \Rightarrow \begin{bmatrix*}[r] 3 & -2 \\ -1 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 2x \\ 1 \end{bmatrix*} + 2\begin{bmatrix*}[r] -4 \\ 5 \end{bmatrix*} = 4\begin{bmatrix*}[r] 2 \\ y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 \times 2x + (-2) \times 1 \\ -1 \times 2x + 4 \times 1 \end{bmatrix*} + \begin{bmatrix*}[r] -8 \\ 10 \end{bmatrix*} = \begin{bmatrix*}[r] 8 \\ 4y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6x - 2 \\ -2x + 4 \end{bmatrix*} + \begin{bmatrix*}[r] -8 \\ 10 \end{bmatrix*} = \begin{bmatrix*}[r] 8 \\ 4y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6x - 2 + (-8) \\ -2x + 4 + 10 \end{bmatrix*} = \begin{bmatrix*}[r] 8 \\ 4y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6x - 10 \\ -2x + 14 \end{bmatrix*} = \begin{bmatrix*}[r] 8 \\ 4y \end{bmatrix*} ⇒ [ 3 − 1 − 2 4 ] [ 2 x 1 ] + 2 [ − 4 5 ] = 4 [ 2 y ] ⇒ [ 3 × 2 x + ( − 2 ) × 1 − 1 × 2 x + 4 × 1 ] + [ − 8 10 ] = [ 8 4 y ] ⇒ [ 6 x − 2 − 2 x + 4 ] + [ − 8 10 ] = [ 8 4 y ] ⇒ [ 6 x − 2 + ( − 8 ) − 2 x + 4 + 10 ] = [ 8 4 y ] ⇒ [ 6 x − 10 − 2 x + 14 ] = [ 8 4 y ]
By definition of equality of matrices we get,
6x - 10 = 8 ⇒ 6x = 18 ⇒ x = 3
-2x + 14 = 4y ⇒ -2(3) + 14 = 4y ⇒ -6 + 14 = 4y ⇒ 8 = 4y ⇒ y = 2.
Hence, x = 3 and y = 2.
Find x and y, if :
[ 3 x 8 ] [ 1 4 3 7 ] − 3 [ 2 − 7 ] = 5 [ 3 2 y ] \begin{bmatrix*}[r] 3x & 8 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 4 \\ 3 & 7 \end{bmatrix*} - 3\begin{bmatrix*}[r] 2 & -7 \end{bmatrix*} = 5\begin{bmatrix*}[r] 3 & 2y \end{bmatrix*} [ 3 x 8 ] [ 1 3 4 7 ] − 3 [ 2 − 7 ] = 5 [ 3 2 y ]
Answer
Given,
⇒ [ 3 x × 1 + 8 × 3 3 x × 4 + 8 × 7 ] − [ 6 − 21 ] = [ 15 10 y ] ⇒ [ 3 x + 24 12 x + 56 ] − [ 6 − 21 ] = [ 15 10 y ] ⇒ [ 3 x + 24 − 6 12 x + 56 − ( − 21 ) ] = [ 15 10 y ] ⇒ [ 3 x + 18 12 x + 77 ] = [ 15 10 y ] \Rightarrow \begin{bmatrix*}[r] 3x \times 1 + 8 \times 3 & 3x \times 4 + 8 \times 7 \end{bmatrix*} - \begin{bmatrix*}[r] 6 & -21 \end{bmatrix*} = \begin{bmatrix*}[r] 15 & 10y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3x + 24 & 12x + 56 \end{bmatrix*} - \begin{bmatrix*}[r] 6 & -21 \end{bmatrix*} = \begin{bmatrix*}[r] 15 & 10y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3x + 24 - 6 & 12x + 56 - (-21) \end{bmatrix*} = \begin{bmatrix*}[r] 15 & 10y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3x + 18 & 12x + 77 \end{bmatrix*} = \begin{bmatrix*}[r] 15 & 10y \end{bmatrix*} ⇒ [ 3 x × 1 + 8 × 3 3 x × 4 + 8 × 7 ] − [ 6 − 21 ] = [ 15 10 y ] ⇒ [ 3 x + 24 12 x + 56 ] − [ 6 − 21 ] = [ 15 10 y ] ⇒ [ 3 x + 24 − 6 12 x + 56 − ( − 21 ) ] = [ 15 10 y ] ⇒ [ 3 x + 18 12 x + 77 ] = [ 15 10 y ]
By definition of equality of matrices we get,
3x + 18 = 15 ⇒ 3x = -3 ⇒ x = -1.
12x + 77 = 10y ⇒ 12(-1) + 77 = 10y ⇒ 65 = 10y ⇒ y = 6.5
Hence, x = -1 and y = 6.5
If [ x y ] [ x y ] = [ 25 ] and [ − x y ] [ 2 x y ] = [ − 2 ] \begin{bmatrix*}[r] x & y \end{bmatrix*}\begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 25 \end{bmatrix*} \text{ and } \begin{bmatrix*}[r] -x & y \end{bmatrix*}\begin{bmatrix*}[r] 2x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] -2 \end{bmatrix*} [ x y ] [ x y ] = [ 25 ] and [ − x y ] [ 2 x y ] = [ − 2 ] ;
find x and y, if :
(i) x, y ∈ W (whole numbers)
(ii) x, y ∈ Z (integers)
Answer
Given,
⇒ [ x y ] [ x y ] = [ 25 ] ⇒ [ x × x + y × y ] = [ 25 ] ⇒ [ x 2 + y 2 ] = [ 25 ] \Rightarrow \begin{bmatrix*}[r] x & y \end{bmatrix*}\begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 25 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x \times x + y \times y \end{bmatrix*} = \begin{bmatrix*}[r] 25 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x^2 + y^2 \end{bmatrix*} = \begin{bmatrix*}[r] 25 \end{bmatrix*} ⇒ [ x y ] [ x y ] = [ 25 ] ⇒ [ x × x + y × y ] = [ 25 ] ⇒ [ x 2 + y 2 ] = [ 25 ]
By definition of equality of matrices we get,
x2 + y2 = 25 ⇒ x2 = 25 - y2 ......(i)
Given,
⇒ [ − x y ] [ 2 x y ] = [ − 2 ] ⇒ [ − x × 2 x + y × y ] = [ − 2 ] ⇒ [ − 2 x 2 + y 2 ] = [ − 2 ] \Rightarrow \begin{bmatrix*}[r] -x & y \end{bmatrix*}\begin{bmatrix*}[r] 2x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] -2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -x \times 2x + y \times y \end{bmatrix*} = \begin{bmatrix*}[r] -2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -2x^2 + y^2 \end{bmatrix*} = \begin{bmatrix*}[r] -2 \end{bmatrix*} ⇒ [ − x y ] [ 2 x y ] = [ − 2 ] ⇒ [ − x × 2 x + y × y ] = [ − 2 ] ⇒ [ − 2 x 2 + y 2 ] = [ − 2 ]
By definition of equality of matrices we get,
-2x2 + y2 = -2 ......(ii)
Substituting value of x2 from (i) in (ii) we get,
⇒ -2(25 - y2 ) + y2 = -2 ⇒ -50 + 2y2 + y2 = -2 ⇒ 3y2 = -2 + 50 ⇒ 3y2 = 48 ⇒ y2 = 16 ⇒ y = ± 4.
⇒ x2 = 25 - y2 ⇒ x2 = 25 - 16 ⇒ x2 = 9 ⇒ x = ± 3.
(i) Since, x, y ∈ W
∴ x = 3, y = 4.
Hence, x = 3 and y = 4.
(ii) Since, x, y ∈ Z
∴ x = ±3, y = ±4.
Hence, x = ±3 and y = ±4.
Evaluate :
[ c o s 45 ° s i n 30 ° 2 c o s 0 ° s i n 0 ° ] [ s i n 45 ° c o s 90 ° s i n 90 ° c o t 45 ° ] \begin{bmatrix*}[r] cos 45° & sin 30° \\ \sqrt{2}cos 0° & sin 0° \end{bmatrix*}\begin{bmatrix*}[r] sin 45° & cos 90° \\ sin 90° & cot 45° \end{bmatrix*} [ cos 45° 2 cos 0° s in 30° s in 0° ] [ s in 45° s in 90° cos 90° co t 45° ]
Answer
Given,
⇒ [ c o s 45 ° s i n 30 ° 2 c o s 0 ° s i n 0 ° ] [ s i n 45 ° c o s 90 ° s i n 90 ° c o t 45 ° ] ⇒ [ 1 2 1 2 2 ( 1 ) 0 ] [ 1 2 0 1 1 ] ⇒ [ 1 2 1 2 2 0 ] [ 1 2 0 1 1 ] ⇒ [ 1 2 × 1 2 + 1 2 × 1 1 2 × 0 + 1 2 × 1 2 × 1 2 + 0 × 1 2 × 0 + 0 × 1 ] ⇒ [ 1 2 + 1 2 0 + 1 2 1 + 0 0 + 0 ] ⇒ [ 1 1 2 1 0 ] ⇒ [ 1 0.5 1 0 ] \Rightarrow \begin{bmatrix*}[r] cos 45° & sin 30° \\ \sqrt{2}cos 0° & sin 0° \end{bmatrix*}\begin{bmatrix*}[r] sin 45° & cos 90° \\ sin 90° & cot 45° \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] \dfrac{1}{\sqrt{2}} & \dfrac{1}{2} \\ \sqrt{2}(1) & 0 \end{bmatrix*}\begin{bmatrix*}[r] \dfrac{1}{\sqrt{2}} & 0 \\ 1 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] \dfrac{1}{\sqrt{2}} & \dfrac{1}{2} \\ \sqrt{2} & 0 \end{bmatrix*}\begin{bmatrix*}[r] \dfrac{1}{\sqrt{2}} & 0 \\ 1 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] \dfrac{1}{\sqrt{2}} \times \dfrac{1}{\sqrt{2}} + \dfrac{1}{2} \times 1 & \dfrac{1}{\sqrt{2}} \times 0 + \dfrac{1}{2} \times 1 \\ \sqrt{2} \times \dfrac{1}{\sqrt{2}} + 0 \times 1 & \sqrt{2} \times 0 + 0 \times 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] \dfrac{1}{2} + \dfrac{1}{2} & 0 + \dfrac{1}{2} \\ 1 + 0 & 0 + 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 & \dfrac{1}{2} \\ 1 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 & 0.5 \\ 1 & 0 \end{bmatrix*} ⇒ [ cos 45° 2 cos 0° s in 30° s in 0° ] [ s in 45° s in 90° cos 90° co t 45° ] ⇒ 2 1 2 ( 1 ) 2 1 0 2 1 1 0 1 ⇒ 2 1 2 2 1 0 2 1 1 0 1 ⇒ 2 1 × 2 1 + 2 1 × 1 2 × 2 1 + 0 × 1 2 1 × 0 + 2 1 × 1 2 × 0 + 0 × 1 ⇒ [ 2 1 + 2 1 1 + 0 0 + 2 1 0 + 0 ] ⇒ [ 1 1 2 1 0 ] ⇒ [ 1 1 0.5 0 ]
Hence, [ c o s 45 ° s i n 30 ° 2 c o s 0 ° s i n 0 ° ] [ s i n 45 ° c o s 90 ° s i n 90 ° c o t 45 ° ] = [ 1 0.5 1 0 ] . \begin{bmatrix*}[r] cos 45° & sin 30° \\ \sqrt{2}cos 0° & sin 0° \end{bmatrix*}\begin{bmatrix*}[r] sin 45° & cos 90° \\ sin 90° & cot 45° \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0.5 \\ 1 & 0 \end{bmatrix*}. [ cos 45° 2 cos 0° s in 30° s in 0° ] [ s in 45° s in 90° cos 90° co t 45° ] = [ 1 1 0.5 0 ] .
If A = [ 0 − 1 4 − 3 ] , B = [ − 5 6 ] \begin{bmatrix*}[r] 0 & -1 \\ 4 & -3 \end{bmatrix*}, B = \begin{bmatrix*}[r] -5 \\ 6 \end{bmatrix*} [ 0 4 − 1 − 3 ] , B = [ − 5 6 ] and 3A × M = 2B; find matrix M.
Answer
Let order of matrix M be a × b.
Given,
⇒ 3 A × M = 2 B . . . . . . . ( i ) ⇒ 3 [ 0 − 1 4 − 3 ] < e m > 2 × 2 × M < / e m > a × b = 2 [ − 5 6 ] 2 × 1 \Rightarrow 3A \times M = 2B .......(i) \\[1em] \Rightarrow 3\begin{bmatrix*}[r] 0 & -1 \\ 4 & -3 \end{bmatrix*}<em>{2 \times 2} \times M</em>{a \times b} = 2\begin{bmatrix*}[r] -5 \\ 6 \end{bmatrix*}_{2 \times 1} ⇒ 3 A × M = 2 B ....... ( i ) ⇒ 3 [ 0 4 − 1 − 3 ] < e m > 2 × 2 × M < / e m > a × b = 2 [ − 5 6 ] 2 × 1
Since product of matrix is possible, only when the number of columns in the first matrix is equal to no. of rows in second.
∴ a = 2.
Also the no. of columns of product (resulting matrix) is equal to no. of columns of second matrix.
∴ b = 1.
Hence, order of matrix M = 2 × 1.
Let M = [ a b ] \begin{bmatrix*}[r] a \\ b \end{bmatrix*} [ a b ]
Substituting value of A, M and B in (i) we get,
⇒ 3 [ 0 − 1 4 − 3 ] × [ a b ] = 2 [ − 5 6 ] ⇒ [ 0 − 3 12 − 9 ] × [ a b ] = [ − 10 12 ] ⇒ [ 0 × a + ( − 3 ) × b 12 × a + ( − 9 ) × b ] = [ − 10 12 ] ⇒ [ − 3 b 12 a − 9 b ] = [ − 10 12 ] \Rightarrow 3\begin{bmatrix*}[r] 0 & -1 \\ 4 & -3 \end{bmatrix*} \times \begin{bmatrix*}[r] a \\ b \end{bmatrix*} = 2\begin{bmatrix*}[r] -5 \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 & -3 \\ 12 & -9 \end{bmatrix*} \times \begin{bmatrix*}[r] a \\ b \end{bmatrix*} = \begin{bmatrix*}[r] -10 \\ 12 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 \times a + (-3) \times b \\ 12 \times a + (-9) \times b \end{bmatrix*} = \begin{bmatrix*}[r] -10 \\ 12 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -3b \\ 12a - 9b \end{bmatrix*} = \begin{bmatrix*}[r] -10 \\ 12 \end{bmatrix*} ⇒ 3 [ 0 4 − 1 − 3 ] × [ a b ] = 2 [ − 5 6 ] ⇒ [ 0 12 − 3 − 9 ] × [ a b ] = [ − 10 12 ] ⇒ [ 0 × a + ( − 3 ) × b 12 × a + ( − 9 ) × b ] = [ − 10 12 ] ⇒ [ − 3 b 12 a − 9 b ] = [ − 10 12 ]
By definition of equality of matrices we get,
-3b = -10 ⇒ b = 10 3 \dfrac{10}{3} 3 10 ....(i)
12a - 9b = 12
Substituting value of b from (i) in above equation we get,
⇒ 12 a − 9 × 10 3 = 12 ⇒ 12 a − 30 = 12 ⇒ 12 a = 42 ⇒ a = 7 2 . \Rightarrow 12a - 9 \times \dfrac{10}{3} = 12 \\[1em] \Rightarrow 12a - 30 = 12 \\[1em] \Rightarrow 12a = 42 \\[1em] \Rightarrow a = \dfrac{7}{2}. ⇒ 12 a − 9 × 3 10 = 12 ⇒ 12 a − 30 = 12 ⇒ 12 a = 42 ⇒ a = 2 7 .
∴ [ a b ] = [ 7 2 10 3 ] . \therefore \begin{bmatrix*}[r] a \\ b \end{bmatrix*} = \begin{bmatrix*}[r] \dfrac{7}{2} \\ \dfrac{10}{3} \end{bmatrix*}. ∴ [ a b ] = 2 7 3 10 .
Hence, M = [ 7 2 10 3 ] . \begin{bmatrix*}[r] \dfrac{7}{2} \\ \dfrac{10}{3} \end{bmatrix*}. 2 7 3 10 .
Find x and y if : [ x 3 x y 4 y ] [ 2 1 ] = [ 5 12 ] \begin{bmatrix*}[r] x & 3x \\ y & 4y \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ 1 \end{bmatrix*} = \begin{bmatrix*}[r] 5 \\ 12 \end{bmatrix*} [ x y 3 x 4 y ] [ 2 1 ] = [ 5 12 ] .
Answer
⇒ [ x 3 x y 4 y ] [ 2 1 ] = [ 5 12 ] ⇒ [ x × 2 + 3 x × 1 y × 2 + 4 y × 1 ] = [ 5 12 ] ⇒ [ 5 x 6 y ] = [ 5 12 ] \Rightarrow \begin{bmatrix*}[r] x & 3x \\ y & 4y \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ 1 \end{bmatrix*} = \begin{bmatrix*}[r] 5 \\ 12 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x \times 2 + 3x \times 1 \\ y \times 2 + 4y \times 1 \end{bmatrix*}= \begin{bmatrix*}[r] 5 \\ 12 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 5x \\ 6y \end{bmatrix*}= \begin{bmatrix*}[r] 5 \\ 12 \end{bmatrix*} \\[1em] ⇒ [ x y 3 x 4 y ] [ 2 1 ] = [ 5 12 ] ⇒ [ x × 2 + 3 x × 1 y × 2 + 4 y × 1 ] = [ 5 12 ] ⇒ [ 5 x 6 y ] = [ 5 12 ]
By definition of equality of matrices we get,
5x = 5 ⇒ x = 1.
6y = 12 ⇒ y = 2.
Hence, x = 1 and y = 2.
If matrix X = [ − 3 4 2 − 3 ] [ 2 − 2 ] and 2X - 3Y = [ 10 − 8 ] \begin{bmatrix*}[r] -3 & 4 \\ 2 & -3 \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ -2 \end{bmatrix*} \text{ and 2X - 3Y} = \begin{bmatrix*}[r] 10 \\ -8 \end{bmatrix*} [ − 3 2 4 − 3 ] [ 2 − 2 ] and 2X - 3Y = [ 10 − 8 ] , find the matrix 'X' and matrix 'Y'.
Answer
Given,
X = [ − 3 4 2 − 3 ] [ 2 − 2 ] = [ − 3 × 2 + 4 × ( − 2 ) 2 × 2 + ( − 3 ) × ( − 2 ) ] = [ − 6 + ( − 8 ) 4 + 6 ] = [ − 14 10 ] . X = \begin{bmatrix*}[r] -3 & 4 \\ 2 & -3 \end{bmatrix*}\begin{bmatrix*}[r] 2 \\ -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -3 \times 2 + 4 \times (-2) \\ 2 \times 2 + (-3) \times (-2) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 + (-8) \\ 4 + 6 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -14 \\ 10 \end{bmatrix*}. X = [ − 3 2 4 − 3 ] [ 2 − 2 ] = [ − 3 × 2 + 4 × ( − 2 ) 2 × 2 + ( − 3 ) × ( − 2 ) ] = [ − 6 + ( − 8 ) 4 + 6 ] = [ − 14 10 ] .
Given,
⇒ 2 X − 3 Y = [ 10 − 8 ] ⇒ 2 [ − 14 10 ] − 3 Y = [ 10 − 8 ] ⇒ [ − 28 20 ] − 3 Y = [ 10 − 8 ] ⇒ 3 Y = [ − 28 20 ] − [ 10 − 8 ] ⇒ 3 Y = [ − 28 − 10 20 − ( − 8 ) ] ⇒ 3 Y = [ − 38 28 ] ⇒ Y = 1 3 [ − 38 28 ] . \Rightarrow 2X - 3Y = \begin{bmatrix*}[r] 10 \\ -8 \end{bmatrix*} \\[1em] \Rightarrow 2\begin{bmatrix*}[r] -14 \\ 10 \end{bmatrix*} - 3Y = \begin{bmatrix*}[r] 10 \\ -8 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -28 \\ 20 \end{bmatrix*} - 3Y = \begin{bmatrix*}[r] 10 \\ -8 \end{bmatrix*} \\[1em] \Rightarrow 3Y = \begin{bmatrix*}[r] -28 \\ 20 \end{bmatrix*} - \begin{bmatrix*}[r] 10 \\ -8 \end{bmatrix*} \\[1em] \Rightarrow 3Y = \begin{bmatrix*}[r] -28 - 10 \\ 20 - (-8) \end{bmatrix*} \\[1em] \Rightarrow 3Y = \begin{bmatrix*}[r] -38 \\ 28 \end{bmatrix*} \\[1em] \Rightarrow Y = \dfrac{1}{3}\begin{bmatrix*}[r] -38 \\ 28 \end{bmatrix*}. ⇒ 2 X − 3 Y = [ 10 − 8 ] ⇒ 2 [ − 14 10 ] − 3 Y = [ 10 − 8 ] ⇒ [ − 28 20 ] − 3 Y = [ 10 − 8 ] ⇒ 3 Y = [ − 28 20 ] − [ 10 − 8 ] ⇒ 3 Y = [ − 28 − 10 20 − ( − 8 ) ] ⇒ 3 Y = [ − 38 28 ] ⇒ Y = 3 1 [ − 38 28 ] .
Hence, X = [ − 14 10 ] and Y = 1 3 [ − 38 28 ] \begin{bmatrix*}[r] -14 \\ 10 \end{bmatrix*} \text{ and Y} = \dfrac{1}{3}\begin{bmatrix*}[r] -38 \\ 28 \end{bmatrix*} [ − 14 10 ] and Y = 3 1 [ − 38 28 ] .
If A = [ 2 5 1 3 ] , B = [ 4 − 2 − 1 3 ] \begin{bmatrix*}[r] 2 & 5 \\ 1 & 3 \end{bmatrix*}, B = \begin{bmatrix*}[r] 4 & -2 \\ -1 & 3 \end{bmatrix*} [ 2 1 5 3 ] , B = [ 4 − 1 − 2 3 ] and I is the identity matric of same order and At is transpose of matrix A, find At .B + BI.
Answer
A = [ 2 5 1 3 ] , A t = [ 2 1 5 3 ] , I = [ 1 0 0 1 ] A = \begin{bmatrix*}[r] 2 & 5 \\ 1 & 3 \end{bmatrix*}, A^t = \begin{bmatrix*}[r] 2 & 1 \\ 5 & 3 \end{bmatrix*}, I = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} A = [ 2 1 5 3 ] , A t = [ 2 5 1 3 ] , I = [ 1 0 0 1 ] .
⇒ A t . B + B I = [ 2 1 5 3 ] [ 4 − 2 − 1 3 ] + [ 4 − 2 − 1 3 ] [ 1 0 0 1 ] = [ 2 × 4 + 1 × ( − 1 ) 2 × ( − 2 ) + 1 × 3 5 × 4 + 3 × ( − 1 ) 5 × ( − 2 ) + 3 × 3 ] + [ 4 × 1 + ( − 2 ) × 0 4 × 0 + ( − 2 ) × 1 − 1 × 1 + 3 × 0 − 1 × 0 + 3 × 1 ] = [ 8 − 1 − 4 + 3 20 − 3 − 10 + 9 ] + [ 4 + 0 0 − 2 − 1 + 0 0 + 3 ] = [ 7 − 1 17 − 1 ] + [ 4 − 2 − 1 3 ] = [ 7 + 4 − 1 + ( − 2 ) 17 + ( − 1 ) − 1 + 3 ] = [ 11 − 3 16 2 ] . \Rightarrow A^t.B + BI = \begin{bmatrix*}[r] 2 & 1 \\ 5 & 3 \end{bmatrix*}\begin{bmatrix*}[r] 4 & -2 \\ -1 & 3 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & -2 \\ -1 & 3 \end{bmatrix*} \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 4 + 1 \times (-1) & 2 \times (-2) + 1 \times 3 \\ 5 \times 4 + 3 \times (-1) & 5 \times (-2) + 3 \times 3 \end{bmatrix*} + \begin{bmatrix*}[r] 4 \times 1 + (-2) \times 0 & 4 \times 0 + (-2) \times 1 \\ -1 \times 1 + 3 \times 0 & -1 \times 0 + 3 \times 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 8 - 1 & -4 + 3 \\ 20 - 3 & -10 + 9 \end{bmatrix*} + \begin{bmatrix*}[r] 4 + 0 & 0 - 2 \\ -1 + 0 & 0 + 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 7 & -1 \\ 17 & -1 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & -2 \\ -1 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 7 + 4 & -1 + (-2) \\ 17 + (-1) & -1 + 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 11 & -3 \\ 16 & 2 \end{bmatrix*}. ⇒ A t . B + B I = [ 2 5 1 3 ] [ 4 − 1 − 2 3 ] + [ 4 − 1 − 2 3 ] [ 1 0 0 1 ] = [ 2 × 4 + 1 × ( − 1 ) 5 × 4 + 3 × ( − 1 ) 2 × ( − 2 ) + 1 × 3 5 × ( − 2 ) + 3 × 3 ] + [ 4 × 1 + ( − 2 ) × 0 − 1 × 1 + 3 × 0 4 × 0 + ( − 2 ) × 1 − 1 × 0 + 3 × 1 ] = [ 8 − 1 20 − 3 − 4 + 3 − 10 + 9 ] + [ 4 + 0 − 1 + 0 0 − 2 0 + 3 ] = [ 7 17 − 1 − 1 ] + [ 4 − 1 − 2 3 ] = [ 7 + 4 17 + ( − 1 ) − 1 + ( − 2 ) − 1 + 3 ] = [ 11 16 − 3 2 ] .
Hence, A t . B + B I = [ 11 − 3 16 2 ] . A^t.B + BI = \begin{bmatrix*}[r] 11 & -3 \\ 16 & 2 \end{bmatrix*}. A t . B + B I = [ 11 16 − 3 2 ] .
Let A = [ 1 0 2 1 ] , B = [ 2 3 − 1 0 ] . \begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*}, B = \begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*}. [ 1 2 0 1 ] , B = [ 2 − 1 3 0 ] . Find A2 + AB + B2 .
Answer
A 2 = [ 1 0 2 1 ] [ 1 0 2 1 ] = [ 1 × 1 + 0 × 2 1 × 0 + 0 × 1 2 × 1 + 1 × 2 2 × 0 + 1 × 1 ] = [ 1 + 0 0 + 0 2 + 2 0 + 1 ] = [ 1 0 4 1 ] B 2 = [ 2 3 − 1 0 ] [ 2 3 − 1 0 ] = [ 2 × 2 + 3 × ( − 1 ) 2 × 3 + 3 × 0 − 1 × 2 + 0 × ( − 1 ) − 1 × 3 + 0 × 0 ] = [ 4 − 3 6 + 0 − 2 + 0 − 3 + 0 ] = [ 1 6 − 2 − 3 ] . A^2 = \begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 0 \times 2 & 1 \times 0 + 0 \times 1 \\ 2 \times 1 + 1 \times 2 & 2 \times 0 + 1 \times 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 0 & 0 + 0 \\ 2 + 2 & 0 + 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 4 & 1 \end{bmatrix*} \\[1em] B^2 = \begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*}\begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 2 + 3 \times (-1) & 2 \times 3 + 3 \times 0 \\ -1 \times 2 + 0 \times (-1) & -1 \times 3 + 0 \times 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 - 3 & 6 + 0 \\ -2 + 0 & -3 + 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 6 \\ -2 & -3 \end{bmatrix*}. A 2 = [ 1 2 0 1 ] [ 1 2 0 1 ] = [ 1 × 1 + 0 × 2 2 × 1 + 1 × 2 1 × 0 + 0 × 1 2 × 0 + 1 × 1 ] = [ 1 + 0 2 + 2 0 + 0 0 + 1 ] = [ 1 4 0 1 ] B 2 = [ 2 − 1 3 0 ] [ 2 − 1 3 0 ] = [ 2 × 2 + 3 × ( − 1 ) − 1 × 2 + 0 × ( − 1 ) 2 × 3 + 3 × 0 − 1 × 3 + 0 × 0 ] = [ 4 − 3 − 2 + 0 6 + 0 − 3 + 0 ] = [ 1 − 2 6 − 3 ] .
Substituting value of A2 and B2 in A2 + AB + B2 we get,
A 2 + A B + B 2 = [ 1 0 4 1 ] + [ 1 0 2 1 ] [ 2 3 − 1 0 ] + [ 1 6 − 2 − 3 ] = [ 1 0 4 1 ] + [ 1 × 2 + 0 × ( − 1 ) 1 × 3 + 0 × 0 2 × 2 + 1 × ( − 1 ) 2 × 3 + 1 × 0 ] + [ 1 6 − 2 − 3 ] = [ 1 0 4 1 ] + [ 2 + 0 3 + 0 4 − 1 6 + 0 ] + [ 1 6 − 2 − 3 ] = [ 1 0 4 1 ] + [ 2 3 3 6 ] + [ 1 6 − 2 − 3 ] = [ 1 + 2 + 1 0 + 3 + 6 4 + 3 + ( − 2 ) 1 + 6 + ( − 3 ) ] = [ 4 9 5 4 ] . A^2 + AB + B^2 = \begin{bmatrix*}[r] 1 & 0 \\ 4 & 1 \end{bmatrix*} + \begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*} + \begin{bmatrix*}[r] 1 & 6 \\ -2 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 4 & 1 \end{bmatrix*} + \begin{bmatrix*}[r] 1 \times 2 + 0 \times (-1) & 1 \times 3 + 0 \times 0 \\ 2 \times 2 + 1 \times (-1) & 2 \times 3 + 1 \times 0 \end{bmatrix*} + \begin{bmatrix*}[r] 1 & 6 \\ -2 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 4 & 1 \end{bmatrix*} + \begin{bmatrix*}[r] 2 + 0 & 3 + 0 \\ 4 - 1 & 6 + 0 \end{bmatrix*} + \begin{bmatrix*}[r] 1 & 6 \\ -2 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 4 & 1 \end{bmatrix*} + \begin{bmatrix*}[r] 2 & 3 \\ 3 & 6 \end{bmatrix*} + \begin{bmatrix*}[r] 1 & 6 \\ -2 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 2 + 1 & 0 + 3 + 6 \\ 4 + 3 + (-2) & 1 + 6 + (-3) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 9 \\ 5 & 4 \end{bmatrix*}. A 2 + A B + B 2 = [ 1 4 0 1 ] + [ 1 2 0 1 ] [ 2 − 1 3 0 ] + [ 1 − 2 6 − 3 ] = [ 1 4 0 1 ] + [ 1 × 2 + 0 × ( − 1 ) 2 × 2 + 1 × ( − 1 ) 1 × 3 + 0 × 0 2 × 3 + 1 × 0 ] + [ 1 − 2 6 − 3 ] = [ 1 4 0 1 ] + [ 2 + 0 4 − 1 3 + 0 6 + 0 ] + [ 1 − 2 6 − 3 ] = [ 1 4 0 1 ] + [ 2 3 3 6 ] + [ 1 − 2 6 − 3 ] = [ 1 + 2 + 1 4 + 3 + ( − 2 ) 0 + 3 + 6 1 + 6 + ( − 3 ) ] = [ 4 5 9 4 ] .
Hence, A2 + AB + B2 = [ 4 9 5 4 ] . \begin{bmatrix*}[r] 4 & 9 \\ 5 & 4 \end{bmatrix*}. [ 4 5 9 4 ] .
If A = [ 3 a − 4 8 ] , B = [ c 4 − 3 0 ] , C = [ − 1 4 3 b ] \begin{bmatrix*}[r] 3 & a \\ -4 & 8 \end{bmatrix*}, B = \begin{bmatrix*}[r] c & 4 \\ -3 & 0 \end{bmatrix*}, C = \begin{bmatrix*}[r] -1 & 4 \\ 3 & b \end{bmatrix*} [ 3 − 4 a 8 ] , B = [ c − 3 4 0 ] , C = [ − 1 3 4 b ] and 3A - 2C = 6B, find the values of a, b and c.
Answer
Given,
⇒ 3 A − 2 C = 6 B ⇒ 3 [ 3 a − 4 8 ] − 2 [ − 1 4 3 b ] = 6 [ c 4 − 3 0 ] ⇒ [ 9 3 a − 12 24 ] − [ − 2 8 6 2 b ] = [ 6 c 24 − 18 0 ] ⇒ [ 9 − ( − 2 ) 3 a − 8 − 12 − 6 24 − 2 b ] = [ 6 c 24 − 18 0 ] ⇒ [ 11 3 a − 8 − 18 24 − 2 b ] = [ 6 c 24 − 18 0 ] \Rightarrow 3A - 2C = 6B \\[1em] \Rightarrow 3\begin{bmatrix*}[r] 3 & a \\ -4 & 8 \end{bmatrix*} - 2\begin{bmatrix*}[r] -1 & 4 \\ 3 & b \end{bmatrix*} = 6\begin{bmatrix*}[r] c & 4 \\ -3 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 & 3a \\ -12 & 24 \end{bmatrix*} - \begin{bmatrix*}[r] -2 & 8 \\ 6 & 2b \end{bmatrix*} = \begin{bmatrix*}[r] 6c & 24 \\ -18 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 - (-2) & 3a - 8 \\ -12 - 6 & 24 - 2b \end{bmatrix*} = \begin{bmatrix*}[r] 6c & 24 \\ -18 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 11 & 3a - 8 \\ -18 & 24 - 2b \end{bmatrix*} = \begin{bmatrix*}[r] 6c & 24 \\ -18 & 0 \end{bmatrix*} ⇒ 3 A − 2 C = 6 B ⇒ 3 [ 3 − 4 a 8 ] − 2 [ − 1 3 4 b ] = 6 [ c − 3 4 0 ] ⇒ [ 9 − 12 3 a 24 ] − [ − 2 6 8 2 b ] = [ 6 c − 18 24 0 ] ⇒ [ 9 − ( − 2 ) − 12 − 6 3 a − 8 24 − 2 b ] = [ 6 c − 18 24 0 ] ⇒ [ 11 − 18 3 a − 8 24 − 2 b ] = [ 6 c − 18 24 0 ]
By definition of equality of matrices we get,
6c = 11 ⇒ c = 11 6 = 1 5 6 . \dfrac{11}{6} = 1\dfrac{5}{6}. 6 11 = 1 6 5 .
3a - 8 = 24 ⇒ 3a = 32 ⇒ a = 32 3 = 10 2 3 \dfrac{32}{3} = 10\dfrac{2}{3} 3 32 = 10 3 2
24 - 2b = 0 ⇒ 2b = 24 ⇒ b = 12.
Hence, a = 10 2 3 , b = 12 , c = 1 5 6 . 10\dfrac{2}{3}, b = 12, c = 1\dfrac{5}{6}. 10 3 2 , b = 12 , c = 1 6 5 .
Given A = [ p 0 0 2 ] , B = [ 0 − q 1 0 ] , C = [ 2 − 2 2 2 ] \begin{bmatrix*}[r] p & 0 \\ 0 & 2 \end{bmatrix*}, B = \begin{bmatrix*}[r] 0 & -q \\ 1 & 0 \end{bmatrix*}, C = \begin{bmatrix*}[r] 2 & -2 \\ 2 & 2 \end{bmatrix*} [ p 0 0 2 ] , B = [ 0 1 − q 0 ] , C = [ 2 2 − 2 2 ] and BA = C2 . Find the values of p and q.
Answer
Given,
⇒ B A = C 2 ⇒ [ 0 − q 1 0 ] [ p 0 0 2 ] = [ 2 − 2 2 2 ] [ 2 − 2 2 2 ] ⇒ [ 0 × p + ( − q ) × 0 0 × 0 + ( − q ) × 2 1 × p + 0 × 0 1 × 0 + 0 × 2 ] = [ 2 × 2 + ( − 2 ) × 2 2 × ( − 2 ) + ( − 2 ) × 2 2 × 2 + 2 × 2 2 × ( − 2 ) + 2 × 2 ] ⇒ [ 0 − 2 q p 0 ] = [ 0 − 8 8 0 ] \Rightarrow BA = C^2 \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 & -q \\ 1 & 0 \end{bmatrix*}\begin{bmatrix*}[r] p & 0 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 2 & -2 \\ 2 & 2 \end{bmatrix*}\begin{bmatrix*}[r] 2 & -2 \\ 2 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 \times p + (-q) \times 0 & 0 \times 0 + (-q) \times 2 \\ 1 \times p + 0 \times 0 & 1 \times 0 + 0 \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] 2 \times 2 + (-2) \times 2 & 2 \times (-2) + (-2) \times 2 \\ 2 \times 2 + 2 \times 2 & 2 \times (-2) + 2 \times 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 & -2q \\ p & 0 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -8 \\ 8 & 0 \end{bmatrix*} ⇒ B A = C 2 ⇒ [ 0 1 − q 0 ] [ p 0 0 2 ] = [ 2 2 − 2 2 ] [ 2 2 − 2 2 ] ⇒ [ 0 × p + ( − q ) × 0 1 × p + 0 × 0 0 × 0 + ( − q ) × 2 1 × 0 + 0 × 2 ] = [ 2 × 2 + ( − 2 ) × 2 2 × 2 + 2 × 2 2 × ( − 2 ) + ( − 2 ) × 2 2 × ( − 2 ) + 2 × 2 ] ⇒ [ 0 p − 2 q 0 ] = [ 0 8 − 8 0 ]
By definition of equality of matrices we get,
-2q = -8 ⇒ q = 4.
p = 8.
Hence, p = 8 and q = 4.
Evaluate : [ 4 s i n 30 ° 2 c o s 60 ° s i n 90 ° 2 c o s 0 ° ] [ 4 5 5 4 ] \begin{bmatrix*}[r] 4 sin 30° & 2cos 60° \\ sin 90° & 2 cos 0° \end{bmatrix*}\begin{bmatrix*}[r] 4 & 5 \\ 5 & 4 \end{bmatrix*} [ 4 s in 30° s in 90° 2 cos 60° 2 cos 0° ] [ 4 5 5 4 ] .
Answer
⇒ [ 4 s i n 30 ° 2 c o s 60 ° s i n 90 ° 2 c o s 0 ° ] [ 4 5 5 4 ] = [ 4 × 1 2 2 × 1 2 1 2 × 1 ] [ 4 5 5 4 ] = [ 2 1 1 2 ] [ 4 5 5 4 ] = [ 2 × 4 + 1 × 5 2 × 5 + 1 × 4 1 × 4 + 2 × 5 1 × 5 + 2 × 4 ] = [ 8 + 5 10 + 4 4 + 10 5 + 8 ] = [ 13 14 14 13 ] . \Rightarrow \begin{bmatrix*}[r] 4 sin 30° & 2cos 60° \\ sin 90° & 2 cos 0° \end{bmatrix*}\begin{bmatrix*}[r] 4 & 5 \\ 5 & 4 \end{bmatrix*} = \begin{bmatrix*}[r] 4 \times \dfrac{1}{2} & 2 \times \dfrac{1}{2} \\ 1 & 2 \times 1 \end{bmatrix*}\begin{bmatrix*}[r] 4 & 5 \\ 5 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 1 \\ 1 & 2 \end{bmatrix*}\begin{bmatrix*}[r] 4 & 5 \\ 5 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 4 + 1 \times 5 & 2 \times 5 + 1 \times 4 \\ 1 \times 4 + 2 \times 5 & 1 \times 5 + 2 \times 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 8 + 5 & 10 + 4 \\ 4 + 10 & 5 + 8 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 13 & 14 \\ 14 & 13 \end{bmatrix*}. ⇒ [ 4 s in 30° s in 90° 2 cos 60° 2 cos 0° ] [ 4 5 5 4 ] = [ 4 × 2 1 1 2 × 2 1 2 × 1 ] [ 4 5 5 4 ] = [ 2 1 1 2 ] [ 4 5 5 4 ] = [ 2 × 4 + 1 × 5 1 × 4 + 2 × 5 2 × 5 + 1 × 4 1 × 5 + 2 × 4 ] = [ 8 + 5 4 + 10 10 + 4 5 + 8 ] = [ 13 14 14 13 ] .
Hence, [ 4 s i n 30 ° 2 c o s 60 ° s i n 90 ° 2 c o s 0 ° ] [ 4 5 5 4 ] = [ 13 14 14 13 ] . \begin{bmatrix*}[r] 4 sin 30° & 2cos 60° \\ sin 90° & 2 cos 0° \end{bmatrix*}\begin{bmatrix*}[r] 4 & 5 \\ 5 & 4 \end{bmatrix*} = \begin{bmatrix*}[r] 13 & 14 \\ 14 & 13 \end{bmatrix*}. [ 4 s in 30° s in 90° 2 cos 60° 2 cos 0° ] [ 4 5 5 4 ] = [ 13 14 14 13 ] .
Given A = [ 2 0 − 1 7 ] and I = [ 1 0 0 1 ] \begin{bmatrix*}[r] 2 & 0 \\ -1 & 7 \end{bmatrix*} \text{ and } I = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} [ 2 − 1 0 7 ] and I = [ 1 0 0 1 ] and A2 = 9A + mI. Find m.
Answer
Given,
⇒ A 2 = 9 A + m I ⇒ [ 2 0 − 1 7 ] [ 2 0 − 1 7 ] = 9 [ 2 0 − 1 7 ] + m [ 1 0 0 1 ] ⇒ [ 2 × 2 + 0 × ( − 1 ) 2 × 0 + 0 × 7 − 1 × 2 + 7 × ( − 1 ) − 1 × 0 + 7 × 7 ] = [ 18 0 − 9 63 ] + [ m 0 0 m ] ⇒ [ 4 0 − 9 49 ] = [ 18 0 − 9 63 ] + [ m 0 0 m ] ⇒ [ m 0 0 m ] = [ 4 0 − 9 49 ] − [ 18 0 − 9 63 ] ⇒ [ m 0 0 m ] = [ 4 − 18 0 − 0 − 9 − ( − 9 ) 49 − 63 ] ⇒ [ m 0 0 m ] = [ − 14 0 0 − 14 ] \Rightarrow A^2 = 9A + mI \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 & 0 \\ -1 & 7 \end{bmatrix*}\begin{bmatrix*}[r] 2 & 0 \\ -1 & 7 \end{bmatrix*} = 9\begin{bmatrix*}[r] 2 & 0 \\ -1 & 7 \end{bmatrix*} + m\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 2 + 0 \times (-1) & 2 \times 0 + 0 \times 7 \\ -1 \times 2 + 7 \times (-1) & -1 \times 0 + 7 \times 7 \end{bmatrix*} = \begin{bmatrix*}[r] 18 & 0 \\ -9 & 63 \end{bmatrix*} + \begin{bmatrix*}[r] m & 0 \\ 0 & m \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 0 \\ -9 & 49 \end{bmatrix*} = \begin{bmatrix*}[r] 18 & 0 \\ -9 & 63 \end{bmatrix*} + \begin{bmatrix*}[r] m & 0 \\ 0 & m \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] m & 0 \\ 0 & m \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 0 \\ -9 & 49 \end{bmatrix*} - \begin{bmatrix*}[r] 18 & 0 \\ -9 & 63 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] m & 0 \\ 0 & m \end{bmatrix*} = \begin{bmatrix*}[r] 4 - 18 & 0 - 0 \\ -9 - (-9) & 49 - 63 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] m & 0 \\ 0 & m \end{bmatrix*} = \begin{bmatrix*}[r] -14 & 0 \\ 0 & -14 \end{bmatrix*} ⇒ A 2 = 9 A + m I ⇒ [ 2 − 1 0 7 ] [ 2 − 1 0 7 ] = 9 [ 2 − 1 0 7 ] + m [ 1 0 0 1 ] ⇒ [ 2 × 2 + 0 × ( − 1 ) − 1 × 2 + 7 × ( − 1 ) 2 × 0 + 0 × 7 − 1 × 0 + 7 × 7 ] = [ 18 − 9 0 63 ] + [ m 0 0 m ] ⇒ [ 4 − 9 0 49 ] = [ 18 − 9 0 63 ] + [ m 0 0 m ] ⇒ [ m 0 0 m ] = [ 4 − 9 0 49 ] − [ 18 − 9 0 63 ] ⇒ [ m 0 0 m ] = [ 4 − 18 − 9 − ( − 9 ) 0 − 0 49 − 63 ] ⇒ [ m 0 0 m ] = [ − 14 0 0 − 14 ]
By definition of equality of matrices we get,
⇒ m = -14.
Hence, m = -14.
Given matrix A = [ 4 s i n 30 ° c o s 0 ° c o s 0 ° 4 s i n 30 ° ] and B = [ 4 5 ] \begin{bmatrix*}[r] 4 sin 30° & cos 0° \\ cos 0° & 4 sin 30° \end{bmatrix*}\text{ and } B = \begin{bmatrix*}[r] 4 \\ 5 \end{bmatrix*} [ 4 s in 30° cos 0° cos 0° 4 s in 30° ] and B = [ 4 5 ] . If AX = B,
(i) write the order of matrix X.
(ii) find the matrix 'X'.
Answer
(i) Let order of matrix X be a × b.
i.e. [ 4 s i n 30 ° c o s 0 ° c o s 0 ° 4 s i n 30 ° ] 2 × 2 × X a × b = [ 4 5 ] 2 × 1 \begin{bmatrix*}[r] 4 sin 30° & cos 0° \\ cos 0° & 4 sin 30° \end{bmatrix*}_{2 \times 2} \times X_{a \times b} = \begin{bmatrix*}[r] 4 \\ 5 \end{bmatrix*}_{2 \times 1} [ 4 s in 30° cos 0° cos 0° 4 s in 30° ] 2 × 2 × X a × b = [ 4 5 ] 2 × 1
Since product of matrix is possible, only when the number of columns in the first matrix is equal to no. of rows in second.
∴ a = 2.
Also the no. of columns of product (resulting matrix) is equal to no. of columns of second matrix.
∴ b = 1.
Hence, order of matrix X = 2 × 1.
(ii) Let matrix X = [ x y ] \begin{bmatrix*}[r] x \\ y \end{bmatrix*} [ x y ]
Given,
⇒ A X = B ⇒ [ 4 s i n 30 ° c o s 0 ° c o s 0 ° 4 s i n 30 ° ] [ x y ] = [ 4 5 ] ⇒ [ 4 × 1 2 1 1 4 × 1 2 ] [ x y ] = [ 4 5 ] ⇒ [ 2 1 1 2 ] [ x y ] = [ 4 5 ] ⇒ [ 2 x + y x + 2 y ] = [ 4 5 ] \Rightarrow AX = B \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 sin 30° & cos 0° \\ cos 0° & 4 sin 30° \end{bmatrix*}\begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 4 \\ 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 \times \dfrac{1}{2} & 1 \\ 1 & 4 \times \dfrac{1}{2} \end{bmatrix*}\begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 4 \\ 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ 1 & 2 \end{bmatrix*}\begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 4 \\ 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x + y \\ x + 2y \end{bmatrix*} = \begin{bmatrix*}[r] 4 \\ 5 \end{bmatrix*} ⇒ A X = B ⇒ [ 4 s in 30° cos 0° cos 0° 4 s in 30° ] [ x y ] = [ 4 5 ] ⇒ 4 × 2 1 1 1 4 × 2 1 [ x y ] = [ 4 5 ] ⇒ [ 2 1 1 2 ] [ x y ] = [ 4 5 ] ⇒ [ 2 x + y x + 2 y ] = [ 4 5 ]
By definition of equality of matrices we get,
2x + y = 4 ⇒ y = 4 - 2x .......(i)
x + 2y = 5
Substituting value of y from (i) in above equation we get,
⇒ x + 2(4 - 2x) = 5 ⇒ x + 8 - 4x = 5 ⇒ -3x = 5 - 8 ⇒ -3x = -3 ⇒ x = 1.
⇒ y = 4 - 2x = 4 - 2(1) = 2.
∴ X = [ x y ] = [ 1 2 ] \therefore X = \begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 1 \\ 2 \end{bmatrix*} ∴ X = [ x y ] = [ 1 2 ]
Hence, X = [ 1 2 ] . \begin{bmatrix*}[r] 1 \\ 2 \end{bmatrix*}. [ 1 2 ] .