KnowledgeBoat Logo
|
OPEN IN APP

Chapter 18

Trigonometric Identities

Class - 10 ML Aggarwal Understanding ICSE Mathematics



Exercise 18

Question 1

If A is an acute angle and sin A = 35\dfrac{3}{5}, find all other trigonometric ratios of angle A (using trigonometric identities).

Answer

Given sin A = 35\dfrac{3}{5}

sin2 A + cos2 A = 1

Putting values we get,

(35)2+cos2A=1925+cos2A=1cos2A=1925cos2A=25925cos2A=1625cosA=1625cos A=45.\Rightarrow \Big(\dfrac{3}{5}\Big)^2 + \text{cos}^2A = 1 \\[1em] \Rightarrow \dfrac{9}{25} + \text{cos}^2A = 1 \\[1em] \Rightarrow \text{cos}^2A = 1 - \dfrac{9}{25} \\[1em] \Rightarrow \text{cos}^2A = \dfrac{25 - 9}{25} \\[1em] \Rightarrow \text{cos}^2 A = \dfrac{16}{25} \\[1em] \Rightarrow \text{cos} A = \sqrt{\dfrac{16}{25}} \\[1em] \Rightarrow \text{cos }A = \dfrac{4}{5}.

sec A = 1cos A=145=54\dfrac{1}{\text{cos A}} = \dfrac{1}{\dfrac{4}{5}} = \dfrac{5}{4}.

cosec A = 1sin A=135=53.\dfrac{1}{\text{sin A}} = \dfrac{1}{\dfrac{3}{5}} = \dfrac{5}{3}.

1 + tan2 A = sec2 A

Putting values we get,

1+tan2A=(54)21+tan2A=2516tan2A=25161tan2A=251616tan2A=916tan A=916tan A=34.1 + \text{tan}^2A = \Big(\dfrac{5}{4}\Big)^2 \\[1em] 1 + \text{tan}^2A = \dfrac{25}{16} \\[1em] \text{tan}^2A = \dfrac{25}{16} - 1 \\[1em] \text{tan}^2A = \dfrac{25 - 16}{16} \\[1em] \text{tan}^2A = \dfrac{9}{16} \\[1em] \text{tan }A = \sqrt{\dfrac{9}{16}} \\[1em] \text{tan }A = \dfrac{3}{4}.

1 + cot2 A = cosec2 A

Putting values we get,

1+cot2A=(53)21+cot2A=259cot2A=2591cot2A=2599cot2A=169cot A=169cot A=43.1 + \text{cot}^2A = \Big(\dfrac{5}{3}\Big)^2 \\[1em] 1 + \text{cot}^2A = \dfrac{25}{9} \\[1em] \text{cot}^2A = \dfrac{25}{9} - 1 \\[1em] \text{cot}^2A = \dfrac{25 - 9}{9} \\[1em] \text{cot}^2A = \dfrac{16}{9} \\[1em] \text{cot }A = \sqrt{\dfrac{16}{9}} \\[1em] \text{cot }A = \dfrac{4}{3}.

Hence, the value of,

cos A=45tan A=34cot A=43sec A=54cosec A=53.\text{cos A} = \dfrac{4}{5} \\[1em] \text{tan A} = \dfrac{3}{4} \\[1em] \text{cot A} = \dfrac{4}{3} \\[1em] \text{sec A} = \dfrac{5}{4} \\[1em] \text{cosec A} = \dfrac{5}{3}.

Question 2

If A is an acute angle and sec A = 178\dfrac{17}{8}, find all other trigonometric ratios of angle A (using trigonometric identities).

Answer

Given sec A = 178\dfrac{17}{8}

⇒ cos A = 1sec A=1178=817\dfrac{1}{\text{sec A}} = \dfrac{1}{\dfrac{17}{8}} = \dfrac{8}{17}.

sin2 A + cos2 A = 1

Putting values we get,

sin2A+(817)2=1sin2A+64289=1sin2A=164289sin2A=28964289sin2A=225289sin A=225289sin A=1517.\Rightarrow \text{sin}^2A + \Big(\dfrac{8}{17}\Big)^2 = 1 \\[1em] \Rightarrow \text{sin}^2A + \dfrac{64}{289} = 1 \\[1em] \Rightarrow \text{sin}^2A = 1 - \dfrac{64}{289} \\[1em] \Rightarrow \text{sin}^2A = \dfrac{289 - 64}{289} \\[1em] \Rightarrow \text{sin}^2 A = \dfrac{225}{289} \\[1em] \Rightarrow \text{sin } A = \sqrt{\dfrac{225}{289}} \\[1em] \Rightarrow \text{sin }A = \dfrac{15}{17}.

cosec A = 1sin A=11517=1715.\dfrac{1}{\text{sin A}} = \dfrac{1}{\dfrac{15}{17}} = \dfrac{17}{15}.

1 + tan2 A = sec2 A

Putting values we get,

1+tan2A=(178)21+tan2A=28964tan2A=289641tan2A=2896464tan2A=22564tan A=22564tan A=158.1 + \text{tan}^2A = \Big(\dfrac{17}{8}\Big)^2 \\[1em] 1 + \text{tan}^2A = \dfrac{289}{64} \\[1em] \text{tan}^2A = \dfrac{289}{64} - 1 \\[1em] \text{tan}^2A = \dfrac{289 - 64}{64} \\[1em] \text{tan}^2A = \dfrac{225}{64} \\[1em] \text{tan }A = \sqrt{\dfrac{225}{64}} \\[1em] \text{tan }A = \dfrac{15}{8}.

1 + cot2 A = cosec2 A

Putting values we get,

1+cot2A=(1715)21+cot2A=289225cot2A=2892251cot2A=289225225cot2A=64225cot A=64225cot A=815.1 + \text{cot}^2A = \Big(\dfrac{17}{15}\Big)^2 \\[1em] 1 + \text{cot}^2A = \dfrac{289}{225} \\[1em] \text{cot}^2A = \dfrac{289}{225} - 1 \\[1em] \text{cot}^2A = \dfrac{289 - 225}{225} \\[1em] \text{cot}^2A = \dfrac{64}{225} \\[1em] \text{cot }A = \sqrt{\dfrac{64}{225}} \\[1em] \text{cot } A = \dfrac{8}{15}.

Hence, the value of,

sin A=1517cos A=817tan A=158cot A=815cosec A=1715.\text{sin A} = \dfrac{15}{17} \\[1em] \text{cos A} = \dfrac{8}{17} \\[1em] \text{tan A} = \dfrac{15}{8} \\[1em] \text{cot A} = \dfrac{8}{15} \\[1em] \text{cosec A} = \dfrac{17}{15}.

Question 3

If 12 cosec θ = 13, find the value of 2 sin θ3 cos θ4 sin θ9 cos θ\dfrac{2\text{ sin θ} - 3\text{ cos θ}}{4\text{ sin θ} - 9\text{ cos θ}}.

Answer

Given 12 cosec θ = 13

⇒ cosec θ = 1312\dfrac{13}{12}

1 + cot2 θ = cosec2 θ

Putting values we get,

1+cot2 θ=(1312)21+cot2 θ=169144cot2 θ=1691441cot2 θ=169144144cot2 θ=25144cot θ=25144cot θ=512.1 + \text{cot}^2\spaceθ = \Big(\dfrac{13}{12}\Big)^2 \\[1em] 1 + \text{cot}^2\spaceθ = \dfrac{169}{144} \\[1em] \text{cot}^2\spaceθ = \dfrac{169}{144} - 1 \\[1em] \text{cot}^2\spaceθ = \dfrac{169 - 144}{144} \\[1em] \text{cot}^2\spaceθ = \dfrac{25}{144} \\[1em] \text{cot }θ = \sqrt{\dfrac{25}{144}} \\[1em] \text{cot } θ = \dfrac{5}{12}.

We need to find the value of 2 sin θ3 cos θ4 sin θ9 cos θ\dfrac{2\text{ sin θ} - 3\text{ cos θ}}{4\text{ sin θ} - 9\text{ cos θ}}

Dividing numerator and denominator of above expression by sin θ.

2 sin θ3 cos θ sin θ4 sin θ9 cos θsin θ=23 cot θ49 cot θ=23×51249×512=2544154=85416154=3414=3×44=3.\Rightarrow \dfrac{\dfrac{2\text{ sin θ} - 3\text{ cos θ}}{\text{ sin θ}}}{\dfrac{4\text{ sin θ} - 9\text{ cos θ}}{\text{sin θ}}} \\[1em] = \dfrac{2 - 3\text{ cot θ}}{4 - 9\text{ cot θ}} \\[1em] = \dfrac{2 - 3 \times \dfrac{5}{12}}{4 - 9 \times \dfrac{5}{12}} \\[1em] = \dfrac{2 - \dfrac{5}{4}}{4 - \dfrac{15}{4}} \\[1em] = \dfrac{\dfrac{8 - 5}{4}}{\dfrac{16 - 15}{4}} \\[1em] = \dfrac{\dfrac{3}{4}}{\dfrac{1}{4}} \\[1em] = \dfrac{3 \times 4}{4} \\[1em] = 3.

Hence, the value of the expression is 3.

Question 4(i)

Without using trigonometric tables, evaluate the following:

cos2 26°+cos 64° sin 26°+tan 36°cot 54°.\text{cos}^2 \space 26° + \text{cos 64° sin 26°} + \dfrac{\text{tan 36°}}{\text{cot 54°}}.

Answer

We need to find the value of

cos2 26°+cos 64° sin 26°+tan 36°cot 54°\text{cos}^2\space26° + \text{cos 64° sin 26°} + \dfrac{\text{tan 36°}}{\text{cot 54°}}

The above equation can be written as,

cos2 26°+cos (90 - 26)° sin 26°+tan 36°cot (90 - 36)°\text{cos}^2\space26° + \text{cos (90 - 26)° sin 26°} + \dfrac{\text{tan 36°}}{\text{cot (90 - 36)°}}

As, cos(90 - θ) = sin θ and cot(90 - θ) = tan θ. Using in above equation we get,

cos2 26°+sin 26° sin 26°+tan 36°tan 36°=cos2 26°+sin2 26°+tan 36°tan 36°=1+1[sin2 A+cos2 A=1]=2.\Rightarrow \text{cos}^2\space26° + \text{sin 26° sin 26°} + \dfrac{\text{tan 36°}}{\text{tan 36°}} \\[1em] = \text{cos}^2\space26° + \text{sin}^2\space26° + \dfrac{\text{tan 36°}}{\text{tan 36°}} \\[1em] = 1 + 1 \quad [\because \text{sin}^2\space A + \text{cos}^2\space A = 1] \\[1em] = 2.

Hence, the value of the expression is 2.

Question 4(ii)

Without using trigonometric tables, evaluate the following:

sec 17°cosec 73°+tan 68°cot 22°+cos2 44°+cos2 46°.\dfrac{\text{sec 17°}}{\text{cosec 73°}} + \dfrac{\text{tan 68°}}{\text{cot 22°}} + \text{cos}^2\space 44° + \text{cos}^2\space 46°.

Answer

We need to find the value of

sec 17°cosec 73°+tan 68°cot 22°+cos2 44°+cos2 46°\dfrac{\text{sec 17°}}{\text{cosec 73°}} + \dfrac{\text{tan 68°}}{\text{cot 22°}} + \text{cos}^2\space 44° + \text{cos}^2\space 46°

The above equation can be written as,

sec 17°cosec (90 - 17)°+tan 68°cot (90 - 68)°+cos2 (9046)°+cos2 46°\dfrac{\text{sec 17°}}{\text{cosec (90 - 17)°}} + \dfrac{\text{tan 68°}}{\text{cot (90 - 68)°}} + \text{cos}^2\space (90 - 46)° + \text{cos}^2\space 46°

As, cos(90 - θ) = sin θ, cosec(90 - θ) = sec θ, cot(90 - θ) = tan θ and sin2θ + cos2θ = 1. Using in above equation we get,

sec 17°sec 17°+tan 68°tan 68°+sin2 46°+cos2 46°=1+1+1=3\Rightarrow \dfrac{\text{sec 17°}}{\text{sec 17°}} + \dfrac{\text{tan 68°}}{\text{tan 68°}} + \text{sin}^2\space46° + \text{cos}^2\space46° \\[1em] = 1 + 1 + 1 \\[1em] = 3

Hence, the value of the expression is 3.

Question 5(i)

Without using trigonometric tables, evaluate the following:

sin 65°cos 25°+cos 32°sin 58°sin 28° sec 62°+cosec2 30°\dfrac{\text{sin 65°}}{\text{cos 25°}} + \dfrac{\text{cos 32°}}{\text{sin 58°}} - \text{sin 28° sec 62°} + \text{cosec}^2 \space 30°

Answer

We need to find the value of

sin 65°cos 25°+cos 32°sin 58°sin 28° sec 62°+cosec2 30°\dfrac{\text{sin 65°}}{\text{cos 25°}} + \dfrac{\text{cos 32°}}{\text{sin 58°}} - \text{sin 28° sec 62°} + \text{cosec}^2 \space 30°

As sec θ = 1cos θ\dfrac{1}{\text{cos θ}}

The above equation can be written as,

sin 65°cos (90 - 65)°+cos (90 - 58)°sin 58°sin 28°1cos (90 - 28)°+cosec2 30°\dfrac{\text{sin 65°}}{\text{cos (90 - 65)°}} + \dfrac{\text{cos (90 - 58)°}}{\text{sin 58°}} - \text{sin 28°} \dfrac{1}{\text{cos (90 - 28)°}} + \text{cosec}^2 \space 30°

As, cos(90 - θ) = sin θ and cosec 30° = 2. Using in above equation,

=sin 65°sin 65°+sin 58°sin 58°sin 28°1sin 28°+22=1+11+4=61=5.= \dfrac{\text{sin 65°}}{\text{sin 65°}} + \dfrac{\text{sin 58°}}{\text{sin 58°}} - \text{sin 28°} \dfrac{1}{\text{sin 28°}} + 2^2 \\[1em] = 1 + 1 - 1 + 4 \\[1em] = 6 - 1 \\[1em] = 5.

Hence, the value of the expression is 5.

Question 5(ii)

Without using trigonometric tables, evaluate the following:

sec 29°cosec 61°+2 cot 8° cot 17° cot 45° cot 73° cot 82°3(sin238°+sin252°).\dfrac{\text{sec 29°}}{\text{cosec 61°}} + \text{2 cot 8° cot 17° cot 45° cot 73° cot 82°} - \text{3(sin}^2 38° + \text{sin}^2 52°).

Answer

We need to find the value of

sec 29°cosec 61°+2 cot 8° cot 17° cot 45° cot 73° cot 82°3(sin238°+sin252°)\dfrac{\text{sec 29°}}{\text{cosec 61°}} + \text{2 cot 8° cot 17° cot 45° cot 73° cot 82°} - \text{3(sin}^2 38° + \text{sin}^2 52°)

The above equation can be written as,

sec 29°cosec (90 - 29)°+2 cot 8° cot 17° cot 45° cot (90 - 17)° cot (90 - 8)°3(sin2(9052)°+sin252°)\dfrac{\text{sec 29°}}{\text{cosec (90 - 29)°}} + \text{2 cot 8° cot 17° cot 45° cot (90 - 17)° cot (90 - 8)°} - \text{3(sin}^2 (90 - 52)° + \text{sin}^2 52°)

As, sin(90 - θ) = cos θ, cosec(90 - θ) = sec θ, cot(90 - θ) = tan θ, cot θ.tan θ = 1, cot 45° = 1 and sin2θ + cos2θ = 1. Using this in above equation we get,

sec 29°sec 29°+2 cot 8° cot 17° cot 45° tan 17° tan 8°3(cos252°+sin252°)=1+2 cot 8° tan 8° cot 45° cot 17° tan 17°3(cos252°+sin252°)=1+2×1×1×13(1)=1+23=33=0.\Rightarrow \dfrac{\text{sec 29°}}{\text{sec 29°}} + \text{2 cot 8° cot 17° cot 45° tan 17° tan 8°} - \text{3(cos}^2 52° + \text{sin}^2 52°) \\[1em] = 1 + \text{2 cot 8° tan 8° cot 45° cot 17° tan 17°} - \text{3(cos}^2 52° + \text{sin}^2 52°) \\[1em] = 1 + 2 \times 1 \times 1 \times 1 - 3(1) \\[1em] = 1 + 2 - 3 \\[1em] = 3 - 3 \\[1em] = 0.

Hence, the value of the above expression is 0.

Question 6(i)

Without using trigonometric tables, evaluate the following:

sin 35° cos 55° + cos 35° sin 55°cosec210°tan280°\dfrac{\text{sin 35° cos 55° + cos 35° sin 55°}}{\text{cosec}^2 10° - \text{tan}^2 80°}

Answer

We need to find the value of

sin 35° cos 55° + cos 35° sin 55°cosec210°tan280°\dfrac{\text{sin 35° cos 55° + cos 35° sin 55°}}{\text{cosec}^2 10° - \text{tan}^2 80°}

As, sin(90 - θ) = cos θ, cos(90 - θ) = sin θ, tan(90 - θ) = cot θ, sin2θ + cos2θ = 1 and cosec2θ - cot2θ = 1.

The above equation can be written as,

sin 35° cos (90 - 35)° + cos 35° sin (90 - 35)°cosec210°tan2(9010)°=sin 35° sin 35° + cos 35° cos 35°cosec210°cot210°=sin235°+cos235°cosec210°cot210°=11=1.\Rightarrow\dfrac{\text{sin 35° cos (90 - 35)° + cos 35° sin (90 - 35)°}}{\text{cosec}^2 10° - \text{tan}^2 (90 - 10)°} \\[1em] = \dfrac{\text{sin 35° sin 35° + cos 35° cos 35°}}{\text{cosec}^2 10° - \text{cot}^2 10°} \\[1em] = \dfrac{\text{sin}^2 35° + \text{cos}^2 35°}{\text{cosec}^2 10° - \text{cot}^2 10°} \\[1em] = \dfrac{1}{1} \\[1em] = 1.

Hence, the value of the above expression is 1.

Question 6(ii)

Without using trigonometric tables, evaluate the following:

sin2 34° + sin2 56° + 2 tan 18° tan 72° - cot2 30°.

Answer

We need to find the value of:

sin2 34° + sin2 56° + 2 tan 18° tan 72° - cot2 30°

The above equation can be written as,

sin2 34° + sin2 (90 - 34)° + 2 tan 18° tan (90 - 18)° - cot2 30°.

As, sin(90 - θ) = cos θ, tan(90 - θ) = cot θ, sin2θ + cos2θ = 1, tan θ.cot θ = 1 and cot 30° = 3\sqrt{3}. Using in above equation we get,

⇒ sin2 34° + cos2 34° + 2 tan 18° cot 18° - 32\sqrt{3}^2

⇒ 1 + 2 - 3 = 0.

Hence, the value of the above expression is 0.

Question 7(i)

Without using trigonometric tables, evaluate the following:

(tan 25°cosec 65°)2+(cot 25°sec 65°)2+2 tan 18° tan 45° tan 72°.\Big(\dfrac{\text{tan 25°}}{\text{cosec 65°}}\Big)^2 + \Big(\dfrac{\text{cot 25°}}{\text{sec 65°}}\Big)^2 + \text{2 tan 18° tan 45° tan 72°}.

Answer

We need to find the value of,

(tan 25°cosec 65°)2+(cot 25°sec 65°)2+\Big(\dfrac{\text{tan 25°}}{\text{cosec 65°}}\Big)^2 + \Big(\dfrac{\text{cot 25°}}{\text{sec 65°}}\Big)^2 + 2 tan 18° tan 45° tan 72°.

The above equation can be written as,

[tan 25°cosec (90 - 25)°]2+[cot 25°sec (90 - 25)°]2+2 tan 18°×1×tan (9018)°\Rightarrow \Big[\dfrac{\text{tan 25°}}{\text{cosec (90 - 25)°}}\Big]^2 + \Big[\dfrac{\text{cot 25°}}{\text{sec (90 - 25)°}}\Big]^2 + 2 \text{ tan } 18° \times 1 \times \text{tan } (90 - 18)° \\[1em]

As, sec(90° - θ) = cosec θ, tan(90° - θ) = cot θ and cosec(90° - θ) = sec θ. Using in above equation we get,

(tan 25°sec 25°)2+(cot 25°cosec 25°)2+2 tan 18°×1×cot 18°(sin 25°cos 25°1cos 25°)2+(cos 25°sin 25°1sin 25°)2+2 tan 18°×1tan 18°sin225°+cos225°+21+2=3.\Rightarrow \Big(\dfrac{\text{tan 25°}}{\text{sec 25°}}\Big)^2 + \Big(\dfrac{\text{cot 25°}}{\text{cosec 25°}}\Big)^2 + 2 \text{ tan } 18° \times 1 \times \text{cot } 18° \\[1em] \Rightarrow \Bigg(\dfrac{\dfrac{\text{sin 25°}}{\text{cos 25°}}}{\dfrac{1}{\text{cos 25°}}}\Bigg)^2 + \Bigg(\dfrac{\dfrac{\text{cos 25°}}{\text{sin 25°}}}{\dfrac{1}{\text{sin 25°}}}\Bigg)^2 + 2\text{ tan } 18° \times \dfrac{1}{\text{tan 18°}} \\[1em] \Rightarrow \text{sin}^2 25° + \text{cos}^2 25° + 2 \\[1em] \Rightarrow 1 + 2 = 3.

Hence, the value of the equation is 3.

Question 7(ii)

Without using trigonometric tables, evaluate the following:

(cos2 25° + cos2 65°) + cosec θ sec(90° - θ) - cot θ tan (90° - θ).

Answer

We need to find the value of,

(cos2 25° + cos2 65°) + cosec θ sec(90° - θ) - cot θ tan (90° - θ).

The above equation can be written as,

⇒ [cos2 25° + cos2 (90 - 25)°] + cosec θ cosec θ - cot θ cot θ

⇒ (cos2 25° + sin2 25°) + cosec θ cosec θ - cot θ cot θ

⇒ 1 + cosec2 θ - cot2 θ

⇒ 1 + 1

⇒ 2.

Hence, the value of the equation is 2.

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

Question 8(i)

(sec A + tan A)(1 - sin A) = cos A.

Answer

The L.H.S of above equation can be written as,

(1cos A+sin Acos A)(1sin A)(1 + sin Acos A)(1 - sin A)1sin2Acos Acos2Acos Acos A.\Rightarrow \Big(\dfrac{\text{1}}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}}\Big)(1 - \text{sin A}) \\[1em] \Rightarrow \Big(\dfrac{\text{1 + sin A}}{\text{cos A}}\Big)\text{(1 - sin A)} \\[1em] \Rightarrow \dfrac{1 - \text{sin}^2 A}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{cos A}} \\[1em] \Rightarrow \text{cos A}.

Since, L.H.S. = cos A = R.H.S. hence, proved that (sec A + tan A)(1 - sin A) = cos A.

Question 8(ii)

(1 + tan2 A)(1 - sin A)(1 + sin A) = 1.

Answer

The L.H.S of above equation can be written as,

⇒ sec2 A.(1 - sin2 A)

⇒ sec2 A.cos 2 A

sec2A.1sec2A=1.\text{sec}^2 A.\dfrac{1}{\text{sec}^2 A} = 1.

Since, L.H.S. = 1 = R.H.S. hence, proved that (1 + tan2 A)(1 - sin A)(1 + sin A) = 1.

Question 9(i)

tan A + cot A = sec A cosec A

Answer

The L.H.S of above equation can be written as,

sin Acos A+cos Asin Asin2A+cos2Acos A.sin A1cos A.sin A1cos A×1sin Asec A. cosec A.\Rightarrow \dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{cos A.sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A.sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} \times \dfrac{1}{\text{sin A}} \\[1em] \Rightarrow \text{sec A. cosec A}.

Since, L.H.S. = sec A.cosec A = R.H.S., hence proved that tan A + cot A = sec A cosec A.

Question 9(ii)

(1 - cos A)(1 + sec A) = tan A sin A.

Answer

The L.H.S. of the equation can be written as,

(1cos A)(1+1cos A)=(1cos A)(1+cos Acos A)=1cos2Acos A=sin2Acos A=sin A sin Acos A=tan A sin A.\Rightarrow (1 - \text{cos A})\Big(1 + \dfrac{1}{\text{cos A}}\Big) \\[1em] = (1 - \text{cos A})\Big(\dfrac{1 + \text{cos A}}{\text{cos A}}\Big) \\[1em] = \dfrac{1 - \text{cos}^2 A}{\text{cos A}} \\[1em] = \dfrac{\text{sin}^2 A}{\text{cos A}} \\[1em] = \dfrac{\text{sin A sin A}}{\text{cos A}} \\[1em] = \text{tan A sin A}.

Since, L.H.S. = R.H.S. hence proved that (1 - cos A)(1 + sec A) = tan A sin A.

Question 10(i)

cot2 A - cos2 A = cot2 A cos2 A

Answer

The L.H.S of above equation can be written as,

cos2Asin2Acos2Acos2Acos2A.sin2Asin2Acos2A(1sin2A)sin2Acos2Asin2A×cos2Acot2A cos2A\Rightarrow \dfrac{\text{cos}^2 A}{\text{sin}^2 A} - \text{cos}^2 A \\[1em] \Rightarrow \dfrac{\text{cos}^2 A - \text{cos}^2A.\text{sin}^2 A}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A(1 - \text{sin}^2 A)}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{sin}^2 A} \times \text{cos}^2 A \\[1em] \Rightarrow \text{cot}^2 A\text{ cos}^2 A

Since, L.H.S. = cot2 A. cos2 A = R.H.S., hence proved that cot2 A - cos2 A = cot2 A cos2 A.

Question 10(ii)

1 + tan 2θ1+sec θ\dfrac{\text{tan }^2 θ}{1 + \text{sec } θ} = sec θ

Answer

The L.H.S of above equation can be written as,

1+tan 2θ1+sec θ1+sec 2θ11+sec θ1+(sec θ1)(sec θ+1)1+sec θ1+sec θ1sec θ.\Rightarrow 1 + \dfrac{\text{tan }^2 θ}{1 + \text{sec } θ} \\[1em] \Rightarrow 1 + \dfrac{\text{sec }^2 θ - 1}{1 + \text{sec } θ} \\[1em] \Rightarrow 1 + \dfrac{(\text{sec } θ - 1)(\text{sec } θ + 1)}{1 + \text{sec } θ} \\[1em] \Rightarrow 1 + \text{sec } θ - 1\\[1em] \Rightarrow \text{sec } θ.

Since, L.H.S. = R.H.S.

Hence, proved 1 + tan 2θ1+sec θ\dfrac{\text{tan }^2 θ}{1 + \text{sec } θ} = sec θ .

Question 10(iii)

1+sec Asec A=sin2A1cos A\dfrac{1 + \text{sec A}}{\text{sec A}} = \dfrac{\text{sin}^2 A}{1 - \text{cos A}}

Answer

The L.H.S of above equation can be written as,

1+1cos A1cos Acos A+1cos A1cos A(cos A+1) cos A cos Acos A+1(1+cos A)×1cos A1cos A1cos2A1cosAsin2A1cos A.\Rightarrow \dfrac{1 + \dfrac{1}{\text{cos A}}}{\dfrac{1}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{cos A} + 1}{\text{cos A}}}{\dfrac{1}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{(\text{cos A} + 1)\text{ cos A}}{\text{ cos A}} \\[1em] \Rightarrow \text{cos A} + 1 \\[1em] \Rightarrow (1 + \text{cos A}) \times \dfrac{1 - \text{cos A}}{1 - \text{cos A}} \\[1em] \Rightarrow \dfrac{1 - \text{cos}^2 A}{1 - \text{cos} A} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A}{1 - \text{cos A}}.

Since, L.H.S. = R.H.S. hence, proved that 1+sec Asec A=sin2A1cos A\dfrac{1 + \text{sec A}}{\text{sec A}} = \dfrac{\text{sin}^2 A}{1 - \text{cos A}}.

Question 10(iv)

Prove the following identity, where the angles involved are acute angles for which the trigonometric ratios are defined:

sin A1 - cos A=cosec A+cot A\dfrac{\text{sin A}}{\text{1 - cos A}} = \text{cosec A} + \text{cot A}

Answer

The R.H.S. of the equation can be written as,

1sin A+cos Asin A1 + cos Asin A1 + cos Asin A×1 - cos A1 - cos A1 - cos2Asin A(1 - cos A)sin2Asin A(1 - cos A)[sin2A+cos2A=1]sin A1 - cos A\Rightarrow \dfrac{1}{\text{sin A}} + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{1 + cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{1 + cos A}}{\text{sin A}} \times \dfrac{\text{1 - cos A}}{\text{1 - cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos}^2 \text{A}}{\text{sin A}(\text{1 - cos A})} \\[1em] \Rightarrow \dfrac{\text{sin}^2 \text{A}}{\text{sin A}(\text{1 - cos A})} \quad [\because \text{sin}^2 \text{A} + \text{cos}^2 \text{A} = 1] \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{1 - cos A}}

Since, RHS = LHS, hence proved that sin A1 - cos A=cosec A+cot A\dfrac{\text{sin A}}{\text{1 - cos A}} = \text{cosec A} + \text{cot A}

Question 11(i)

sin A1 + cos A=1 - cos Asin A\dfrac{\text{sin A}}{\text{1 + cos A}} = \dfrac{\text{1 - cos A}}{\text{sin A}}.

Answer

The L.H.S of above equation can be written as,

sin A1 + cos A×1cos A1cos A sin A(1cos A)(1+cos A)(1cos A)sin A(1cos A)1cos2Asin A(1cos A)sin2A1cos AsinA.\dfrac{\text{sin A}}{\text{1 + cos A}} \times \dfrac{1 - \text{cos A}}{1 - \text{cos A }} \\[1em] \dfrac{\text{sin A}(1 - \text{cos A})}{(1 + \text{cos A})(1 - \text{cos A})} \\[1em] \dfrac{\text{sin A}(1 - \text{cos A})}{1 - \text{cos}^2 A} \\[1em] \dfrac{\text{sin A}(1 - \text{cos A})}{\text{sin}^2 A} \\[1em] \dfrac{1 - \text{cos A}}{\text{sin} A}.

Since, L.H.S. = R.H.S., hence proved that sin A1 + cos A=1 - cos Asin A\dfrac{\text{sin A}}{\text{1 + cos A}} = \dfrac{\text{1 - cos A}}{\text{sin A}}.

Question 11(ii)

1tan2Acot2A1=tan2A\dfrac{1 - \text{tan}^2 A}{\text{cot}^2 A - 1} = \text{tan}^2 A

Answer

The L.H.S. of the equation can be written as,

1sin2Acos2Acos2Asin2A1cos2Asin2Acos2Acos2Asin2Asin2Acos2Asin2Acos2Asin2A×sin2Acos2A1×tan2Atan2A.\Rightarrow \dfrac{1 - \dfrac{\text{sin}^2 A}{\text{cos}^2 A}}{\dfrac{\text{cos}^2 A}{\text{sin}^2 A} - 1} \\[1em] \Rightarrow \dfrac{\dfrac{\text{cos}^2 A - \text{sin}^2 A}{\text{cos}^2 A}}{\dfrac{\text{cos}^2 A - \text{sin}^2 A}{\text{sin}^2 A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A - \text{sin}^2 A}{\text{cos}^2 A - \text{sin}^2 A} \times \dfrac{\text{sin}^2 A}{\text{cos}^2 A} \\[1em] \Rightarrow 1 \times \text{tan}^2 A \\[1em] \Rightarrow \text{tan}^2 A.

Since, L.H.S. = R.H.S. hence, proved that 1tan2Acot2A1=tan2A\dfrac{1 - \text{tan}^2 A}{\text{cot}^2 A - 1} = \text{tan}^2 A.

Question 11(iii)

sin A1 + cos A=cosec A - cot A\dfrac{\text{sin A}}{\text{1 + cos A}} = \text{cosec A - cot A}.

Answer

The R.H.S. of the equation can be written as,

1sin Acos Asin A1 - cos Asin A1 - cos Asin A×1 + cos A1 + cos A1cos2Asin A(1 + cos A)sin2Asin A(1 + cos A)sin A1 + cos A.\Rightarrow \dfrac{1}{\text{sin A}} - \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A}}{\text{sin A}} \times \dfrac{\text{1 + cos A}}{\text{1 + cos A}} \\[1em] \Rightarrow \dfrac{1 - \text{cos}^2 A}{\text{sin A(1 + cos A)}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A}{\text{sin A(1 + cos A)}} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{1 + cos A}}.

Since, R.H.S. = L.H.S. hence, proved that sin A1 + cos A=cosec A - cot A\dfrac{\text{sin A}}{\text{1 + cos A}} = \text{cosec A - cot A}.

Question 11(iv)

(1tan θ1cot θ)2\Big(\dfrac{1 - \text{tan } θ}{1 - \text{cot } θ}\Big)^2 = tan2 θ

Answer

The L.H.S of above equation can be written as,

(1tan θ1cot θ)2(1tan θ11tan θ)2((1tan θ).tan θtan θ1)2((tan θ1).tan θtan θ1)2(tan θ)2tan 2θ.\Rightarrow \Big(\dfrac{1 - \text{tan } θ}{1 - \text{cot } θ}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{1 - \text{tan } θ}{1 - \dfrac{1}{\text{tan } θ}}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{(1 - \text{tan } θ). \text{tan } θ}{\text{tan } θ - 1} \Big)^2 \\[1em] \Rightarrow \Big(\dfrac{-(\text{tan } θ - 1). \text{tan } θ}{\text{tan } θ - 1} \Big)^2 \\[1em] \Rightarrow (-\text{tan } θ)^2 \\[1em] \Rightarrow \text{tan }^2 θ.

Since, L.H.S. = R.H.S.

Hence, proved (1tan θ1cot θ)2\Big(\dfrac{1 - \text{tan } θ}{1 - \text{cot } θ}\Big)^2 = tan2 θ

Question 12(i)

sec A - 1sec A + 1=1 - cos A1 + cos A\dfrac{\text{sec A - 1}}{\text{sec A + 1}} = \dfrac{\text{1 - cos A}}{\text{1 + cos A}}

Answer

The L.H.S. of the equation can be written as,

1cos A11cos A+11cos Acos A1 + cos Acos A(1 - cos A)×cos A(1 + cos A)×cos A1 - cos A1 + cos A.\Rightarrow \dfrac{{\dfrac{1}{\text{cos A}} - 1}}{\dfrac{1}{\text{cos A}} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{1 - \text{cos A}}{\text{cos A}}} {\dfrac{\text{1 + cos A}}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\text{(1 - cos A)} \times \text{cos A}}{\text{(1 + cos A)} \times \text{cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A}}{\text{1 + cos A}}.

Since, L.H.S. = R.H.S. hence, proved that sec A - 1sec A + 1=1 - cos A1 + cos A\dfrac{\text{sec A - 1}}{\text{sec A + 1}} = \dfrac{\text{1 - cos A}}{\text{1 + cos A}}.

Question 12(ii)

tan2θ(sec θ - 1)2=1 + cos θ1 - cos θ\dfrac{\text{tan}^2 θ}{\text{(sec θ - 1)}^2} = \dfrac{\text{1 + cos θ}}{\text{1 - cos θ}}

Answer

The L.H.S. of the equation can be written as,

(sinθcosθ)2(1cosθ1)2sin2θcos2θ(1cosθcosθ)2\Rightarrow \dfrac{\left(\dfrac{\sin\theta}{\cos\theta}\right)^2}{\left(\dfrac{1}{\cos\theta}-1\right)^2} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin}^2 θ}{\text{cos}^2 θ}}{\left(\dfrac{1-\cos\theta}{\cos\theta}\right)^2} \\[1em]

Using (sin2θ=1cos2θ):(\sin^2\theta=1-\cos^2\theta):

1cos2θcos2θ(1cosθ)2cos2θ1cos2θ(1cosθ)2(1cosθ)(1+cosθ)(1cosθ)2(1cosθ)(1+cosθ)(1cosθ)21+cosθ1cosθ\Rightarrow \dfrac{\dfrac{1-\cos^2\theta}{\cos^2\theta}}{\dfrac{(1-\cos\theta)^2}{\cos^2\theta}} \\[1em] \Rightarrow \dfrac{1-\cos^2\theta}{(1-\cos\theta)^2} \\[1em] \Rightarrow \dfrac{(1-\cos\theta)(1+\cos\theta)}{(1-\cos\theta)^2} \\[1em] \Rightarrow \dfrac{\cancel{(1-\cos\theta)}(1+\cos\theta)}{(1-\cos\theta)^{\cancel{2}}} \\[1em] \Rightarrow \dfrac{1 + \cos\theta}{1 - \cos\theta} \\[1em]

Since, L.H.S. = R.H.S. hence, proved that tan2θ(sec θ - 1)2=1 + cos θ1 - cos θ\dfrac{\text{tan}^2 θ}{\text{(sec θ - 1)}^2} = \dfrac{\text{1 + cos θ}}{\text{1 - cos θ}}.

Question 12(iii)

(1 + tan A)2 + (1 - tan A)2 = 2 sec2 A.

Answer

The L.H.S of the equation can be written as,

⇒ 1 + tan2 A + 2 tan A + 1 + tan2 A - 2 tan A

⇒ 2(1 + tan2 A)

⇒ 2 sec2 A.

Since, L.H.S. = R.H.S hence, proved that (1 + tan A)2 + (1 - tan A)2 = 2 sec2 A.

Question 12(iv)

sec2 A + cosec2 A = sec2 A cosec2 A.

Answer

The L.H.S of the equation can be written as,

1cos2A+1sin2Asin2A+cos2Acos2A. sin2A1cos2A. sin2Asec2A.cosec2A\Rightarrow \dfrac{1}{\text{cos}^2 A} + \dfrac{1}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A +\text{cos}^2 A}{\text{cos}^2 A .\text{ sin}^2 A} \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 A .\text{ sin}^2 A} \\[1em] \Rightarrow \text{sec}^2 A. \text{cosec}^2 A

Since, L.H.S. = R.H.S hence, proved that sec2 A + cosec2 A = sec2 A cosec2 A.

Question 13(i)

1 + sin Acos A+cos A1 + sin A=2 sec A\dfrac{\text{1 + sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = 2\text{ sec A}

Answer

The L.H.S of the equation can be written as,

(1+sin A)2+cos2Acos A(1 + sin A)1+sin2A+2sin A+cos2Acos A(1 + sin A)1+sin2A+cos2A+2sin Acos A(1 + sin A)1+1+2sin Acos A(1 + sin A)2+2sin Acos A(1 + sin A)2(1+sin A)cos A(1 + sin A)2cos A2 sec A.\Rightarrow \dfrac{(1 + \text{sin A})^2 + \text{cos}^2 A}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{1 + \text{sin}^2 A + 2\text{sin A} + \text{cos}^2 A}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{1 + \text{sin}^2 A + \text{cos}^2 A + 2\text{sin A}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{1 + 1 + 2\text{sin A}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{2 + 2\text{sin A}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{2(1 + \text{sin A})}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{2}{\text{cos A}} \\[1em] \Rightarrow 2\text{ sec A}.

Since, L.H.S. = R.H.S. hence proved that 1 + sin Acos A+cos A1 + sin A=2 sec A\dfrac{\text{1 + sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = 2\text{ sec A}.

Question 13(ii)

tan Asec A - 1+tan Asec A + 1=2 cosec A\dfrac{\text{tan A}}{\text{sec A - 1}} + \dfrac{\text{tan A}}{\text{sec A + 1}} = 2 \text{ cosec A}

Answer

The L.H.S of the equation can be written as,

tan A(1sec A - 1+1sec A + 1)tan A[sec A + 1 + sec A - 1(sec A - 1)(sec A + 1)]tan A(2 sec Asec2A1)tan A(2 sec Atan2A)2 sec Atan A21cos Asin Acos A2sin A2 cosec A.\Rightarrow \text{tan A}\Big(\dfrac{1}{\text{sec A - 1}} + \dfrac{1}{\text{sec A + 1}}\Big) \\[1em] \Rightarrow \text{tan A}\Big[\dfrac{\text{sec A + 1 + sec A - 1}}{\text{(sec A - 1)(sec A + 1)}}\Big] \\[1em] \Rightarrow \text{tan A}\Big(\dfrac{\text{2 sec A}}{\text{sec}^2 A - 1}\Big) \\[1em] \Rightarrow \text{tan A}\Big(\dfrac{\text{2 sec A}}{\text{tan}^2 A}\Big) \\[1em] \Rightarrow \dfrac{\text{2 sec A}}{\text{tan A}} \\[1em] \Rightarrow \dfrac{2\dfrac{1}{\text{cos A}}}{\dfrac{\text{sin A}}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{2}{\text{sin A}} \\[1em] \Rightarrow \text{2 cosec A}.

Since, L.H.S. = R.H.S. hence, proved that tan Asec A - 1+tan Asec A + 1=2 cosec A\dfrac{\text{tan A}}{\text{sec A - 1}} + \dfrac{\text{tan A}}{\text{sec A + 1}} = 2 \text{ cosec A}.

Question 14(i)

cosec Acosec A - 1+cosec Acosec A + 1=2 sec2A\dfrac{\text{cosec A}}{\text{cosec A - 1}} + \dfrac{\text{cosec A}}{\text{cosec A + 1}} = 2 \text{ sec}^2 A

Answer

The L.H.S of the equation can be written as,

cosec A(1cosec A - 1+1cosec A + 1)cosec A[cosec A + 1 + cosec A - 1(cosec A - 1)(cosec A + 1)]cosec A(2 cosec Acosec2A1)cosec A(2 cosec Acot2A)2 cosec2Acot2A21sin2Acos2Asin2A2cos2A2 sec2A.\Rightarrow \text{cosec A}\Big(\dfrac{1}{\text{cosec A - 1}} + \dfrac{1}{\text{cosec A + 1}}\Big) \\[1em] \Rightarrow \text{cosec A}\Big[\dfrac{\text{cosec A + 1 + cosec A - 1}}{\text{(cosec A - 1)(cosec A + 1)}}\Big] \\[1em] \Rightarrow \text{cosec A}\Big(\dfrac{\text{2 cosec A}}{\text{cosec}^2 A - 1}\Big) \\[1em] \Rightarrow \text{cosec A}\Big(\dfrac{\text{2 cosec A}}{\text{cot}^2 A}\Big) \\[1em] \Rightarrow \dfrac{\text{2 cosec}^2 A}{\text{cot}^2 A} \\[1em] \Rightarrow \dfrac{2\dfrac{1}{\text{sin}^2 A}}{\dfrac{\text{cos}^2 A}{\text{sin}^2 A}} \\[1em] \Rightarrow \dfrac{2}{\text{cos}^2 A} \\[1em] \Rightarrow \text{2 sec}^2 A.

Since, L.H.S. = R.H.S. hence, proved that cosec Acosec A - 1+cosec Acosec A + 1=2 sec2A\dfrac{\text{cosec A}}{\text{cosec A - 1}} + \dfrac{\text{cosec A}}{\text{cosec A + 1}} = 2 \text{ sec}^2 A.

Question 14(ii)

cot A - tan A=2 cos2A1sin A cos A\text{cot A - tan A} = \dfrac{2\space\text{cos}^2 A - 1}{\text{sin A cos A}}

Answer

The L.H.S of the equation can be written as,

cos Asin Asin Acos Acos2Asin2Asin A cos Acos2A(1 - cos2A)sin A cos Acos2A+cos2A1sin A cos A2cos2A1sin A cos A\Rightarrow \dfrac{\text{cos A}}{\text{sin A}} - \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A - \text{sin}^2 A}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A - \text{(1 - cos}^2 A)}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A + \text{cos}^2 A - 1}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{2\text{cos}^2 A - 1}{\text{sin A cos A}} \\[1em]

Since, L.H.S. = R.H.S. hence, proved that cot A - tan A = 2cos2A1sin A cos A\dfrac{2\text{cos}^2 A - 1}{\text{sin A cos A}}.

Question 14(iii)

cot A - 12sec2A=cot A1 + tan A\dfrac{\text{cot A - 1}}{2 - \text{sec}^2 A} = \dfrac{\text{cot A}}{\text{1 + tan A}}.

Answer

The L.H.S of the equation can be written as,

cos Asin A121cos2Acos Asin Asin A2cos2A1cos2Acos2A(cos A - sin A)sin A(2cos2A1)cos2A(cos A - sin A)sin A[2cos2A(sin2A+cos2A)]cos2A(cos A - sin A)sin A(2cos2Asin2Acos2A))cos2A(cos A - sin A)sin A(2cos2Asin2Acos2A))cos2A(cos A - sin A)sin A(cos2Asin2A)cos2A(cos A - sin A)sin A(cos A - sin A)(cos A + sin A)cos2Asin A(cos A + sin A)cos A . cos Asin A(cos A + sin A)cot A. cos A(cos A + sin A)cot A. cos Acos Acos A + sin Acos Acot A1 + tan A.\Rightarrow \dfrac{\dfrac{\text{cos A}}{\text{sin A}} - 1}{2 - \dfrac{1}{\text{cos}^2 A}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{cos A} - \text{sin A}}{\text{sin A}}}{\dfrac{2 \text{cos}^2 A - 1}{\text{cos}^2 A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A (\text{cos A - sin A})}{\text{sin A}(2\text{cos}^2 A - 1)} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A (\text{cos A - sin A})}{\text{sin A}[2\text{cos}^2 A - (\text{sin}^2 A + \text{cos}^2 A)]} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A (\text{cos A - sin A})}{\text{sin A}(2\text{cos}^2 A - \text{sin}^2 A - \text{cos}^2 A))} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A (\text{cos A - sin A})}{\text{sin A}(2\text{cos}^2 A - \text{sin}^2 A - \text{cos}^2 A))} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A (\text{cos A - sin A})}{\text{sin A}(\text{cos}^2 A - \text{sin}^2 A)} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A (\text{cos A - sin A})}{\text{sin A}(\text{cos A - sin A}) (\text{cos A + sin A})} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{sin A(cos A + sin A)}} \\[1em] \Rightarrow \dfrac{\text{cos A . cos A}}{\text{sin A(cos A + sin A)}} \\[1em] \Rightarrow \dfrac{\text{cot A. cos A}}{\text{(cos A + sin A)}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{cot A. cos A}}{\text{cos A}}}{\dfrac{\text{cos A + sin A}}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\text{cot A}}{\text{1 + tan A}}.

Since, L.H.S. = R.H.S. hence, proved that cot A - 12sec2A=cot A1 + tan A\dfrac{\text{cot A - 1}}{2 - \text{sec}^2 A} = \dfrac{\text{cot A}}{\text{1 + tan A}}.

Question 14(iv)

11+sin θ+11sin θ\dfrac{1}{1 + \text{sin } θ} + \dfrac{1}{1 - \text{sin } θ} = 2 sec2 θ

Answer

The L.H.S of above equation can be written as,

11+sin θ+11sin θ1×(1sin θ)+1×(1+sin θ)(1+sin θ)×(1sin θ)1sin θ+1+sin θ12(sin θ)221sin 2θ2cos 2θ2 sec 2θ\Rightarrow \dfrac{1}{1 + \text{sin } θ} + \dfrac{1}{1 - \text{sin } θ} \\[1em] \Rightarrow \dfrac{1 \times (1 - \text{sin } θ) + 1 \times (1 + \text{sin } θ)}{(1 + \text{sin } θ) \times (1 - \text{sin } θ)} \\[1em] \Rightarrow \dfrac{1 - \text{sin } θ + 1 + \text{sin } θ}{1^2 - (\text{sin } θ)^2} \\[1em] \Rightarrow \dfrac{2}{1 - \text{sin }^2 θ} \\[1em] \Rightarrow \dfrac{2}{\text{cos }^2 θ} \\[1em] \Rightarrow 2\text{ sec }^2 θ

Since, L.H.S. = R.H.S.

Hence, proved 11+sin θ+11sin θ\dfrac{1}{1 + \text{sin } θ} + \dfrac{1}{1 - \text{sin } θ} = 2 sec2 θ

Question 15(i)

tan2 θ - sin2 θ = tan2 θ sin2 θ

Answer

The L.H.S of the equation can be written as,

sin2θcos2θsin2θsin2θsin2θ.cos2θcos2θsin2θ(1 - cos2θ)cos2θtan2θ. sin2θ\Rightarrow \dfrac{\text{sin}^2 θ}{\text{cos}^2 θ} - \text{sin}^2 θ \\[1em] \Rightarrow \dfrac{\text{sin}^2 θ - \text{sin}^2 θ. \text{cos}^2 θ}{\text{cos}^2 θ} \\[1em] \Rightarrow \dfrac{\text{sin}^2 θ(\text{1 - cos}^2 θ)}{\text{cos}^2 θ} \\[1em] \Rightarrow \text{tan}^2 θ. \text{ sin}^ 2 θ

Since, L.H.S. = R.H.S. hence, proved that tan2 θ - sin2 θ = tan2 θ sin2 θ.

Question 15(ii)

cos θ1 - tan θsin2θcos θ - sin θ=cos θ + sin θ\dfrac{\text{cos θ}}{\text{1 - tan θ}} - \dfrac{\text{sin}^2 θ}{\text{cos θ - sin θ}} = \text{cos θ + sin θ}.

Answer

The L.H.S of the equation can be written as,

cos θ1 - tan θsin2θcos θ - sin θcos θ1sin θcos θsin2θcos θ - sin θcos2θcos θ - sin θsin2θcos θ - sin θcos2θsin2θcos θ - sin θ(cos θ - sin θ)(cos θ + sin θ)cos θ - sin θcos θ + sin θ.\Rightarrow \dfrac{\text{cos θ}}{\text{1 - tan θ}} - \dfrac{\text{sin}^2 θ}{\text{cos θ - sin θ}} \\[1em] \Rightarrow \dfrac{\text{cos θ}}{{1 - \dfrac{\text{sin θ}}{\text{cos θ}}}} - \dfrac{\text{sin}^2 θ}{\text{cos θ - sin θ}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 θ}{\text{cos θ - sin θ}} - \dfrac{\text{sin}^2 θ}{\text{cos θ - sin θ}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 θ - \text{sin}^2 θ}{\text{cos θ - sin θ}} \\[1em] \Rightarrow \dfrac{\text{(cos θ - sin θ)(cos θ + sin θ)}}{\text{cos θ - sin θ}} \\[1em] \Rightarrow \text{cos θ + sin θ}.

Since, L.H.S. = R.H.S. hence, proved that cos θ1 - tan θsin2θcos θ - sin θ=cos θ + sin θ\dfrac{\text{cos θ}}{\text{1 - tan θ}} - \dfrac{\text{sin}^2 θ}{\text{cos θ - sin θ}} = \text{cos θ + sin θ}.

Question 16

Prove that:

(1+sin θ)2+(1sin θ)22 cos 2θ\dfrac{(1 + \text{sin }θ)^2 + (1 - \text{sin }θ)^2}{2\text{ cos }^2θ} = sec2θ + tan2θ

Answer

The L.H.S of above equation can be written as,

(1+sin θ)2+(1sin θ)22cos 2θ1+sin 2θ+2sin θ+1+sin 2θ2sin θ2cos 2θ2+2sin 2θ2cos 2θ2(1+sin 2θ)2cos 2θ1+sin 2θcos 2θ1cos 2θ+sin 2θcos 2θsec θ2+tan 2θ\Rightarrow \dfrac{(1 + \text{sin }θ)^2 + (1 - \text{sin }θ)^2}{2\text{cos }^2θ} \\[1em] \Rightarrow\dfrac{1 + \text{sin }^2θ + 2\text{sin }θ + 1 + \text{sin }^2θ - 2\text{sin }θ}{2\text{cos }^2θ}\\[1em] \Rightarrow\dfrac{2 + 2\text{sin }^2θ}{2\text{cos }^2θ}\\[1em] \Rightarrow\dfrac{2(1 + \text{sin }^2θ)}{2\text{cos }^2θ}\\[1em] \Rightarrow\dfrac{1 + \text{sin }^2θ}{\text{cos }^2θ}\\[1em] \Rightarrow\dfrac{1}{\text{cos }^2θ} + \dfrac{\text{sin }^2θ}{\text{cos }^2θ}\\[1em] \Rightarrow \text{sec }θ^2 + \text{tan }^2θ\\[1em]

Since, L.H.S. = sec2θ + tan2θ = R.H.S.

Hence, proved (1+sin θ)2+(1sin θ)22cos 2θ\dfrac{(1 + \text{sin }θ)^2 + (1 - \text{sin }θ)^2}{2\text{cos }^2θ} = sec2θ + tan2θ.

Question 17(i)

cosec4 θ - cosec2 θ = cot4 θ + cot2 θ

Answer

The L.H.S of the equation can be written as,

⇒ cosec2 θ(cosec2 θ - 1)
⇒ cosec2 θ. cot2 θ
⇒ (1 + cot2 θ). cot2 θ
⇒ cot2 θ + cot4 θ.

Since, L.H.S. = R.H.S. hence, proved that cosec4 θ - cosec2 θ = cot4 θ + cot2 θ.

Question 17(ii)

2 sec2 θ - sec4 θ - 2 cosec2 θ + cosec4 θ = cot4 θ - tan4 θ.

Answer

The L.H.S of the equation can be written as,

⇒ 2(1 + tan2 θ) - (sec2 θ)2 - 2(1 + cot2 θ) + (cosec2 θ)2
⇒ 2 + 2tan2 θ - (1 + tan2 θ)2 - 2 - 2cot2 θ + (1 + cot2 θ)2
⇒ 2 + 2tan2 θ - (1 + tan4 θ + 2tan2 θ) - 2 - 2cot2 θ + (1 + cot4 θ + 2cot2 θ)
⇒ 2 + 2tan2 θ - 1 - tan4 θ - 2tan2 θ - 2 - 2cot2 θ + 1 + cot4 θ + 2cot2 θ
⇒ 2 - 2 + 2tan2 θ - 2tan2 θ + 2cot2 θ - 2cot2 θ + 1 - 1 + cot4 θ - tan4 θ
⇒ cot4 θ - tan4 θ.

Since, L.H.S. = R.H.S. hence, proved that 2 sec2 θ - sec4 θ - 2 cosec2 θ + cosec4 θ = cot4 θ - tan4 θ.

Question 18(i)

1 + cos θ - sin2θsin θ(1 + cos θ)=cot θ\dfrac{\text{1 + cos θ - sin}^2 \text{θ}}{\text{sin θ(1 + cos θ)}} = \text{cot θ}

Answer

The L.H.S of the equation can be written as,

1 + cos θ - (1 - cos2θ)sin θ(1 + cos θ)11+cos2θ+cos θsin θ(1 + cos θ)cos θ(cos θ + 1)sin θ(1 + cos θ)cos θsin θcot θ.\Rightarrow \dfrac{\text{1 + cos θ - (1 - cos}^2 θ)}{\text{sin θ(1 + cos θ)}} \\[1em] \Rightarrow \dfrac{1 - 1 + \text{cos}^2 θ + \text{cos } θ}{\text{sin θ(1 + cos θ)}} \\[1em] \Rightarrow \dfrac{\text{cos θ(cos θ + 1)}}{\text{sin θ(1 + cos θ)}} \\[1em] \Rightarrow \dfrac{\text{cos θ}}{\text{sin θ}} \\[1em] \Rightarrow \text{cot θ}.

Since, L.H.S. = R.H.S. hence, proved that 1 + cos θ - sin2θsin θ(1 + cos θ)\dfrac{\text{1 + cos θ - sin}^2 θ}{\text{sin θ(1 + cos θ)}} = cot θ.

Question 18(ii)

tan3 θ1tan θ1=sec2 θ+tan θ.\dfrac{\text{tan}^3 \text{ θ} - 1}{\text{tan θ} - 1} = \text{sec}^2 \text{ θ} + \text{tan θ}.

Answer

As, a3 - b3 = (a - b)(a2 + ab + b2)

∴ tan3 θ - (1)3 = (tan θ - 1)(tan2 θ + tan θ + 1)

The L.H.S. of the equation can be written as,

(tan θ - 1)(tan2 θ+tan θ + 1)tan θ - 1tan2 θ+tan θ + 1sec2 θ1+1+tan θsec2 θ+tan θ\Rightarrow \dfrac{\text{(tan θ - 1)}(\text{tan}^2 \text{ θ} + \text{tan θ + 1})}{\text{tan θ - 1}} \\[1em] \Rightarrow \text{tan}^2 \text{ θ} + \text{tan θ + 1} \\[1em] \Rightarrow \text{sec}^2 \text{ θ} - 1 + 1 + \text{tan θ} \\[1em] \Rightarrow \text{sec}^2 \text{ θ} + \text{tan θ}

Since, L.H.S. = R.H.S. hence, proved that tan3 θ1tan θ - 1\dfrac{\text{tan}^3 \text{ θ} - 1}{\text{tan θ - 1}} = sec2 θ + tan θ.

Question 19(i)

1 + cosec Acosec A=cos2 A1 - sin A\dfrac{\text{1 + cosec A}}{\text{cosec A}} = \dfrac{\text{cos}^2 \text{ A}}{\text{1 - sin A}}

Answer

The L.H.S. of the equation can be written as,

1 + cosec Acosec A1+1sin A1sin Asin A + 1sin A1sin Asin A(sin A + 1)sin Asin A + 1\Rightarrow \dfrac{\text{1 + cosec A}}{\text{cosec A}} \\[1em] \Rightarrow \dfrac{1 + \dfrac{1}{\text{sin A}}}{\dfrac{1}{\text{sin A}}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin A + 1}}{\text{sin A}}}{\dfrac{1}{\text{sin A}}} \\[1em] \Rightarrow \dfrac{\text{sin A(sin A + 1)}}{\text{sin A}} \\[1em] \Rightarrow \text{sin A + 1}

The R.H.S. of the equation can be written as,

1sin2A1sin A(1 - sin A)(1 + sin A)1 - sin A1 + sin A\Rightarrow \dfrac{1 - \text{sin}^2 A}{1 - \text{sin A}} \\[1em] \Rightarrow \dfrac{\text{(1 - sin A)(1 + sin A)}}{\text{1 - sin A}} \\[1em] \Rightarrow \text{1 + sin A}

Since, L.H.S. = R.H.S. hence, proved that 1 + cosec Acosec A=cos2 A1 - sin A\dfrac{\text{1 + cosec A}}{\text{cosec A}} = \dfrac{\text{cos}^2 \text{ A}}{\text{1 - sin A}}

Question 19(ii)

1cos A1 + cos A=sin A1 + cos A\sqrt{\dfrac{1 - \text{cos A}}{\text{1 + cos A}}} = \dfrac{\text{sin A}}{\text{1 + cos A}}

Answer

The L.H.S. of the equation can be written as,

(1cos A)(1+cos A)(1 + cos A)(1 + cos A)(1cos2A)(1 + cos A)2sin2A(1 + cos A)2sin A1 + cos A.\Rightarrow \sqrt{\dfrac{(1 - \text{cos A})(1 + \text{cos A})}{\text{(1 + cos A)(1 + \text{cos A})}}} \\[1em] \Rightarrow \sqrt{\dfrac{(1 - \text{cos}^2 A)}{\text{(1 + cos A)}^2}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{sin}^2 A}{\text{(1 + cos A)}^2}} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{1 + cos A}}.

Since, L.H.S. = R.H.S. hence, proved that 1cos A1 + cos A=sin A1 + cos A\sqrt{\dfrac{1 - \text{cos A}}{\text{1 + cos A}}} = \dfrac{\text{sin A}}{\text{1 + cos A}}

Question 20(i)

1 + sin A1 - sin A=tan A + sec A\sqrt{\dfrac{\text{1 + sin A}}{\text{1 - sin A}}} = \text{tan A + sec A}

Answer

The L.H.S. of the equation can be written as,

(1 + sin A)(1 + sin A)(1 - sin A)(1 + sin A)(1 + sin A)2(1 - sin2A)(1 + sin A)2cos2A1 + sin Acos A1cos A+sin Acos Asec A + tan A\Rightarrow \sqrt{\dfrac{\text{(1 + sin A)(1 + sin A)}}{\text{(1 - sin A)(1 + sin A)}}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 + sin A)}^2}{\text{(1 - sin}^2 A)}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 + sin A)}^2}{\text{cos}^2 A}} \\[1em] \Rightarrow \dfrac{\text{1 + sin A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \text{sec A + tan A}

Since, L.H.S. = R.H.S. hence, proved that 1 + sin A1 - sin A\sqrt{\dfrac{\text{1 + sin A}}{\text{1 - sin A}}} = tan A + sec A

Question 20(ii)

1 - cos A1 + cos A=cosec A - cot A\sqrt{\dfrac{\text{1 - cos A}}{\text{1 + cos A}}} = \text{cosec A - cot A}

Answer

The L.H.S. of the equation can be written as,

(1 - cos A)(1 - cos A)(1 + cos A)(1 - cos A)(1 - cos A)2(1 - cos2A)(1 - cos A)2sin2A1 - cos Asin A1sin Acos Asin Acosec A - cot A.\Rightarrow \sqrt{\dfrac{\text{(1 - cos A)(1 - cos A)}}{\text{(1 + cos A)(1 - cos A)}}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 - cos A)}^2}{\text{(1 - cos}^2 A)}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 - cos A)}^2}{\text{sin}^2 A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}} - \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \text{cosec A - cot A}.

Since, L.H.S. = R.H.S. hence, proved that 1 - cos A1 + cos A\sqrt{\dfrac{\text{1 - cos A}}{\text{1 + cos A}}} = cosec A - cot A.

Question 21(i)

sec A - 1sec A + 1+sec A + 1sec A - 1=2 cosec A\sqrt{\dfrac{\text{sec A - 1}}{\text{sec A + 1}}} + \sqrt{\dfrac{\text{sec A + 1}}{\text{sec A - 1}}} = \text{2 cosec A}

Answer

The L.H.S. of the equation can be written as,

(sec A - 1)2+(sec A + 1)2(sec A + 1)(sec A - 1)sec A - 1 + sec A + 1sec2A12 sec Atan2A2 sec Atan A2cos Asin Acos A2sin A2 cosec A\Rightarrow \dfrac{\sqrt{(\text{sec A - 1})^2} + \sqrt{(\text{sec A + 1})^2}}{\sqrt{\text{(sec A + 1)(sec A - 1)}}} \\[1em] \Rightarrow \dfrac{\text{sec A - 1 + sec A + 1}}{\sqrt{\text{sec}^2 A - 1}} \\[1em] \Rightarrow \dfrac{\text{2 sec A}}{\sqrt{\text{tan}^2 A}} \\[1em] \Rightarrow \dfrac{\text{2 sec A}}{\text{tan A}} \\[1em] \Rightarrow \dfrac{\dfrac{2}{\text{cos A}}}{\dfrac{\text{sin A}}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{2}{\text{sin A}} \\[1em] \Rightarrow 2\text{ cosec A}

Since, L.H.S. = R.H.S. hence, proved that sec A - 1sec A + 1+sec A + 1sec A - 1\sqrt{\dfrac{\text{sec A - 1}}{\text{sec A + 1}}} + \sqrt{\dfrac{\text{sec A + 1}}{\text{sec A - 1}}} = 2 cosec A.

Question 21(ii)

cos A cot A1 - sin A=1 + cosec A\dfrac{\text{cos A cot A}}{\text{1 - sin A}} = \text{1 + cosec A}

Answer

The L.H.S. of the equation can be written as,

cos A×cos Asin A1sin Acos2Asin A(1 - sin A)1 - sin2Asin A(1 - sin A)(1 - sin A)(1 + sin A)sin A(1 - sin A)1 + sin Asin A1sin A+sin Asin Acosec A + 1\Rightarrow \dfrac{\text{cos A} \times \dfrac{\text{cos A}}{\text{sin A}}}{1 - \text{sin A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{sin A(1 - sin A)}} \\[1em] \Rightarrow \dfrac{\text{1 - sin}^2 A}{\text{sin A(1 - sin A)}} \\[1em] \Rightarrow \dfrac{\text{(1 - sin A)(1 + sin A)}}{\text{sin A(1 - sin A)}} \\[1em] \Rightarrow \dfrac{\text{1 + sin A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}} + \dfrac{\text{sin A}}{\text{sin A}} \\[1em] \Rightarrow \text{cosec A + 1}

Since, L.H.S. = R.H.S. hence, proved that cos A cot A1 - sin A\dfrac{\text{cos A cot A}}{\text{1 - sin A}} = 1 + cosec A.

Question 22(i)

1 + tan Asin A+1 + cot Acos A=2(sec A + cosec A)\dfrac{\text{1 + tan A}}{\text{sin A}} + \dfrac{\text{1 + cot A}}{\text{cos A}} = \text{2(sec A + cosec A)}

Answer

The L.H.S. of the equation can be written as,

1+sin Acos Asin A+1+cos Asin Acos Acos A(1+sin Acos A)+sin A(1+cos Asin A)sin A cos Acos A + sin A + sin A + cos Asin A cos A2(cos A + sin A)sin A cos A2(cos Asin A cos A+sin Asin A cos A)2(1sin A+1cos A)2(cosec A + sec A).\Rightarrow \dfrac{1 + \dfrac{\text{sin A}}{\text{cos A}}}{\text{sin A}} + \dfrac{1 + \dfrac{\text{cos A}}{\text{sin A}}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{cos A}\Big(1 + \dfrac{\text{sin A}}{\text{cos A}}\Big) + \text{sin A}\Big(1 + \dfrac{\text{cos A}}{\text{sin A}}\Big)}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{cos A + sin A + sin A + cos A}}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{2(cos A + sin A)}}{\text{sin A cos A}} \\[1em] \Rightarrow 2\Big(\dfrac{\text{cos A}}{\text{sin A cos A}} + \dfrac{\text{sin A}}{\text{sin A cos A}}\Big) \\[1em] \Rightarrow 2\Big(\dfrac{1}{\text{sin A}} + \dfrac{1}{\text{cos A}}\Big) \\[1em] \Rightarrow 2\text{(cosec A + sec A)}.

Since, L.H.S. = R.H.S. hence, proved that 1 + tan Asin A+1 + cot Acos A\dfrac{\text{1 + tan A}}{\text{sin A}} + \dfrac{\text{1 + cot A}}{\text{cos A}} = 2(sec A + cosec A).

Question 22(ii)

sin A1+cot Acos A1+tan A\dfrac{\text{sin }A}{1 + \text{cot }A} - \dfrac{\text{cos }A}{1 + \text{tan }A} = sin A - cos A

Answer

The L.H.S of above equation can be written as,

sin A(1+cot A)cos A(1+tan A)sin A(1+cos Asin A)cos A(1+sin Acos A)sin A(sin A+cos Asin A)cos A(cos A+sin Acos A)sin A×sin Asin A+cos Acos A×cos Acos A+sin Asin 2Acos 2Asin A+cos A(sin Acos A)(sin A+cos A)sin A+cos Asin Acos A.\Rightarrow \dfrac{\text{sin }A}{(1 + \text{cot }A)} - \dfrac{\text{cos }A}{(1 + \text{tan }A)} \\[1em] \Rightarrow \dfrac{\text{sin }A}{\Big(1 + \dfrac{\text{cos }A}{\text{sin }A}\Big)} - \dfrac{\text{cos }A}{\Big(1 + \dfrac{\text{sin }A}{\text{cos }A}\Big)} \\[1em] \Rightarrow \dfrac{\text{sin }A}{\Big(\dfrac{\text{sin }A + \text{cos }A}{\text{sin }A}\Big)} - \dfrac{\text{cos }A}{\Big(\dfrac{\text{cos }A + \text{sin }A}{\text{cos }A} \Big)} \\[1em] \Rightarrow \dfrac{\text{sin }A \times \text{sin }A}{\text{sin }A + \text{cos }A} - \dfrac{\text{cos }A \times \text{cos }A}{\text{cos }A + \text{sin }A} \\[1em] \Rightarrow \dfrac{\text{sin }^2A - \text{cos }^2A}{\text{sin }A + \text{cos }A}\\[1em] \Rightarrow \dfrac{(\text{sin }A - \text{cos }A)(\text{sin }A + \text{cos }A)}{\text{sin }A + \text{cos }A}\\[1em] \Rightarrow \text{sin }A - \text{cos }A.

Since, L.H.S. = R.H.S.

Hence, proved sin A(1+cot A)cos A(1+tan A)\dfrac{\text{sin }A}{(1 + \text{cot }A)} - \dfrac{\text{cos }A}{(1 + \text{tan }A)} = sin A - cos A

Question 22(iii)

sec4 A - tan4 A = 1 + 2 tan2 A

Answer

The L.H.S. of the equation can be written as,

⇒ (sec2 A - tan2 A)(sec2 A + tan2 A)

⇒ 1 × (sec2 A + tan2 A)

⇒ (sec2 A + tan2 A)

⇒ (1 + tan2 A + tan2 A)

⇒ 1 + 2 tan2 A

Since, L.H.S. = R.H.S. hence, proved that sec4 A - tan4 A = 1 + 2tan2 A.

Question 23(i)

cosec6 A - cot6 A = 3cot2 A cosec2 A + 1.

Answer

a3 - b3 = (a - b)3 + 3ab(a - b)

∴ L.H.S. of the equation can be written as,

⇒ cosec6 A - cot6 A = (cosec2 A - cot2 A )3 + 3cosec2 A cot2 A(cosec2 A - cot2 A)

⇒ 13 + 3cosec2 A cot2 A × 1
⇒ 1 + 3cosec2 A cot2 A

Since, L.H.S. = R.H.S. hence, proved that cosec6 A - cot6 A = 3cot2 A cosec2 A + 1.

Question 23(ii)

sec6 A - tan6 A = 1 + 3 tan2 A + 3 tan4 A.

Answer

a3 - b3 = (a - b)3 + 3ab(a - b)

∴ L.H.S. of the equation can be written as,

⇒ sec6 A - tan6 A = (sec2 A - tan2 A)3 + 3sec2 A tan2 A(sec2 A - tan2 A)

⇒ 13 + 3sec2 A tan2 A × 1

⇒ 1 + 3sec2 A tan2 A

⇒ 1 + 3(1 + tan2 A)tan2 A

⇒ 1 + 3(tan4 A + tan2 A)

⇒ 1 + 3 tan2 A + 3 tan4 A

Since, L.H.S. = R.H.S. hence, proved that sec6 A - tan6 A = 1 + 3tan2 A + 3tan4 A.

Question 24(i)

cot θ + cosec θ - 1cot θ - cosec θ + 1=1 + cos θsin θ\dfrac{\text{cot θ + cosec θ - 1}}{\text{cot θ - cosec θ + 1}} = \dfrac{\text{1 + cos θ}}{\text{sin θ}}.

Answer

L.H.S. of the equation can be written as,

cos θsin θ+1sin θ1cos θsin θ1sin θ+1cos θ + 1 - sin θsin θcos θ - 1 + sin θsin θcos θ + 1 - sin θcos θ - 1 + sin θcos θ + (1 - sin θ)cos θ - (1 - sin θ)cos θ + (1 - sin θ)cos θ - (1 - sin θ)×cos θ + (1 - sin θ)cos θ + (1 - sin θ)[cos θ + (1 - sin θ)]2cos2θ(1 - sin θ)2cos2 θ+(1 - sin θ)2+2cos θ(1 - sin θ)cos2 θ(1+sin2θ2sin θ)cos2θ+sin2θ+1+2cos θ - 2sin θ - 2 sin θ cos θcos2 θ1sin2θ+2sin θ1+1+2cos θ - 2sin θ - 2 sin θ cos θ1sin2θ1sin2θ+2 sin θ2+2cos θ - 2sin θ - 2sin θ cos θ2sin θ - 2sin2θ2(1 + cos θ) - 2sin θ(1 + cos θ)2sin θ(1 - sin θ)(1 + cos θ)(2 - 2sin θ)2sin θ(1 - sin θ)2(1 + cos θ)(1 - sin θ)2sin θ(1 - sin θ)1 + cos θsin θ.]\Rightarrow \dfrac{\dfrac{\text{cos θ}}{\text{sin θ}} + \dfrac{1}{\text{sin θ}} - 1}{\dfrac{\text{cos θ}}{\text{sin θ}} - \dfrac{1}{\text{sin θ}} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{\text{cos θ + 1 - sin θ}}{\text{sin θ}}}{\dfrac{\text{cos θ - 1 + sin θ}}{\text{sin θ}}} \\[1em] \Rightarrow \dfrac{{\text{cos θ + 1 - sin θ}}}{\text{cos θ - 1 + sin θ}} \\[1em] \Rightarrow \dfrac{{\text{cos θ + (1 - sin θ)}}}{\text{cos θ - (1 - sin θ)}} \\[1em] \Rightarrow \dfrac{{\text{cos θ + (1 - sin θ)}}}{\text{cos θ - (1 - sin θ)}} \times \dfrac{{\text{cos θ + (1 - sin θ)}}}{{\text{cos θ + (1 - sin θ)}}} \\[1em] \Rightarrow \dfrac{[\text{cos θ + (1 - sin θ)}]^2}{\text{cos}^2 θ - (\text{1 - sin θ})^2} \\[1em] \Rightarrow \dfrac{\text{cos}^2 \text{ θ} + \text{(1 - sin θ)}^2 + 2\text{cos θ(1 - sin θ)}}{\text{cos}^2 \text{ θ} - (1 + \text{sin}^2 θ - \text{2sin θ})} \\[1em] \Rightarrow \dfrac{\text{cos}^2 θ + \text{sin}^2 θ + 1 + \text{2cos θ - 2sin θ - 2 sin θ cos θ}}{\text{cos}^2 \text{ θ} - 1 - \text{sin}^2 θ + \text{2sin θ}} \\[1em] \Rightarrow \dfrac{1 + 1 + \text{2cos θ - 2sin θ - 2 sin θ cos θ}}{1 - \text{sin}^2 θ - 1 - \text{sin}^2 θ + \text{2 sin θ}} \\[1em] \Rightarrow \dfrac{2 + \text{2cos θ - 2sin θ - 2sin θ cos θ}}{\text{2sin θ - 2sin}^2 θ} \\[1em] \Rightarrow \dfrac{\text{2(1 + cos θ) - 2sin θ(1 + cos θ)}}{\text{2sin θ(1 - sin θ)}} \\[1em] \Rightarrow \dfrac{\text{(1 + cos θ)(2 - 2sin θ)}}{\text{2sin θ(1 - sin θ)}} \\[1em] \Rightarrow \dfrac{\text{2(1 + cos θ)(1 - sin θ)}}{\text{2sin θ(1 - sin θ)}} \\[1em] \Rightarrow \dfrac{\text{1 + cos θ}}{\text{sin θ}}.]

Since, L.H.S. = R.H.S. hence proved that cot θ + cosec θ - 1cot θ - cosec θ + 1=1 + cos θsin θ\dfrac{\text{cot θ + cosec θ - 1}}{\text{cot θ - cosec θ + 1}} = \dfrac{\text{1 + cos θ}}{\text{sin θ}}.

Question 24(ii)

sin θcot θ + cosec θ=2+sin θcot θ - cosec θ\dfrac{\text{sin θ}}{\text{cot θ + cosec θ}} = 2 + \dfrac{\text{sin θ}}{\text{cot θ - cosec θ}}

Answer

L.H.S. of the equation can be written as,

sin θcos θ + 1sin θsin2θ1 + cos θ1 - cos2θ1 + cos θ(1 - cos θ)(1 + cos θ)1 + cos θ1 - cos θ.\Rightarrow \dfrac{\text{sin θ}}{\dfrac{\text{cos θ + 1}}{\text{sin θ}}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 θ}{\text{1 + cos θ}} \\[1em] \Rightarrow \dfrac{\text{1 - cos}^2 θ}{\text{1 + cos θ}} \\[1em] \Rightarrow \dfrac{\text{(1 - cos θ)(1 + cos θ)}}{\text{1 + cos θ}} \\[1em] \Rightarrow \text{1 - cos θ}.

R.H.S. of the equation can be written as,

2+sin θcos θsin θ1sin θ2+sin2θcos θ - 12(cos θ - 1)+sin2θcos θ - 12(cos θ - 1)+1 - cos2θcos θ - 12(cos θ - 1) + (1 + cos θ)(1 - cos θ)cos θ - 12(cos θ - 1) - (cos θ - 1)(1 + cos θ)cos θ - 1(cos θ - 1)[2 - (1 + cos θ)]cos θ - 12 - 1 - cos θ1 - cos θ\Rightarrow 2 + \dfrac{\text{sin θ}}{\dfrac{\text{cos θ}}{\text{sin θ}} - \dfrac{1}{\text{sin θ}}} \\[1em] \Rightarrow 2 + \dfrac{\text{sin}^2 θ}{\text{cos θ - 1}} \\[1em] \Rightarrow \dfrac{\text{2(cos θ - 1)} + \text{sin}^2 θ}{\text{cos θ - 1}} \\[1em] \Rightarrow \dfrac{\text{2(cos θ - 1)} + \text{1 - cos}^2 θ}{\text{cos θ - 1}} \\[1em] \Rightarrow \dfrac{\text{2(cos θ - 1) + (1 + cos θ)(1 - cos θ)}}{\text{cos θ - 1}} \\[1em] \Rightarrow \dfrac{\text{2(cos θ - 1) - (cos θ - 1)(1 + cos θ)}}{\text{cos θ - 1}} \\[1em] \Rightarrow \dfrac{\text{(cos θ - 1)[2 - (1 + cos θ)]}}{\text{cos θ - 1}} \\[1em] \Rightarrow \text{2 - 1 - cos θ} \\[1em] \Rightarrow \text{1 - cos θ}

Since, L.H.S. = 1 - cos θ = R.H.S. hence proved that,

sin θcot θ + cosec θ=2+sin θcot θ - cosec θ\dfrac{\text{sin θ}}{\text{cot θ + cosec θ}} = 2 + \dfrac{\text{sin θ}}{\text{cot θ - cosec θ}}.

Question 25(i)

(sin θ + cos θ)(sec θ + cosec θ) = 2 + sec θ cosec θ.

Answer

L.H.S. of the equation can be written as,

(sin θ + cos θ)(1cos θ+1sin θ)(sin θ + cos θ)(sin θ + cos θ)sin θ cos θsin2θ+cos2θ+2 sin θ cos θsin θ cos θ1+2 sin θ cos θsin θ cos θ1sin θ cos θ+2 sin θ cos θsin θ cos θcosec θ sec θ+2.\Rightarrow \text{(sin θ + cos θ)}\Big(\dfrac{1}{\text{cos θ}} + \dfrac{1}{\text{sin θ}}\Big) \\[1em] \Rightarrow \dfrac{\text{(sin θ + cos θ)(sin θ + cos θ)}}{\text{sin θ cos θ}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 θ + \text{cos}^2 θ + \text{2 sin θ cos θ}}{\text{sin θ cos θ}} \\[1em] \Rightarrow \dfrac{1 + \text{2 sin θ cos θ}}{\text{sin θ cos θ}} \\[1em] \Rightarrow \dfrac{1}{\text{sin θ cos θ}} + \dfrac{\text{2 sin θ cos θ}}{\text{sin θ cos θ}} \\[1em] \Rightarrow \text{cosec θ sec θ} + 2.

Since, L.H.S. = R.H.S. hence proved that, (sin θ + cos θ)(sec θ + cosec θ) = 2 + sec θ cosec θ.

Question 25(ii)

(cosec A - sin A)(sec A - cos A)sec2 A = tan A.

Answer

L.H.S. of the equation can be written as,

(1sin Asin A)(1cos Acos A)×1cos2A(1 - sin2Asin A)(1 - cos2Acos A)×1cos2A\Rightarrow \Big(\dfrac{1}{\text{sin A}} - \text{sin A}\Big)\Big(\dfrac{1}{\text{cos A}} - \text{cos A}\Big) \times \dfrac{1}{\text{cos}^2 A} \\[1em] \Rightarrow \Big(\dfrac{\text{1 - sin}^2 A}{\text{sin A}}\Big)\Big(\dfrac{\text{1 - cos}^2 A}{\text{cos A}}\Big) \times \dfrac{1}{\text{cos}^2 A} \\[1em]

As 1 - sin2 A = cos2 A and 1 - cos2 A = sin2 A.

cos2A sin2Asin A cos A×1cos2Acos2A sin2Acos3A sinA\Rightarrow \dfrac{\text{cos}^2 A \text{ sin}^2 A}{\text{sin A cos A}} \times \dfrac{1}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A \text{ sin}^2 A}{\text{cos}^3 A \text{ sin} A} \\[1em]

Dividing numerator and denominator by sin A cos A.

sin A cos Acos2Asin Acos Atan A\Rightarrow \dfrac{\text{sin A cos A}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \text{tan A}

Since, L.H.S. = R.H.S. hence proved that, (cosec A - sin A)(sec A - cos A)sec2 A = tan A.

Question 26(i)

sin3A+cos3Asin A + cos A+sin3Acos3Asin A - cos A=2\dfrac{\text{sin}^3 A + \text{cos}^3 A}{\text{sin A + cos A}} + \dfrac{\text{sin}^3 A - \text{cos}^3 A}{\text{sin A - cos A}} = 2.

Answer

We know that,

a3 + b3 = (a + b)(a2 - ab + b2).

and

a3 - b3 = (a - b)(a2 + ab + b2).

Using above formulas, the L.H.S. of the equation can be written as,

(sin A + cos A)(sin2Asin A cos A + cos2A)sin A + cos A+(sin A - cos A)(sin2A+sin A cos A + cos2A)sin A - cos A(sin A + cos A)(sin2Asin A cos A + cos2A)(sin A + cos A)+(sin A - cos A)(sin2A+sin A cos A + cos2A)(sin A - cos A)sin2A+cos2Asin A cos A+sin2A+cos2A+sin A cos A1+12.\Rightarrow \dfrac{\text{(sin A + cos A)(sin}^2 A - \text{sin A cos A + cos}^2 A)}{\text{sin A + cos A}} + \dfrac{\text{(sin A - cos A)(sin}^2 A + \text{sin A cos A + cos}^2 A)}{\text{sin A - cos A}} \\[1em] \Rightarrow \dfrac{\cancel{\text{(sin A + cos A)}}\text{(sin}^2 A - \text{sin A cos A + cos}^2 A)}{\cancel{\text{(sin A + cos A)}}} + \dfrac{\cancel{\text{(sin A - cos A)}} \text{(sin}^2 A + \text{sin A cos A + cos}^2 A)}{\cancel{\text{(sin A - cos A)}}} \\[1em] \Rightarrow \text{sin}^2 A + \text{cos}^2 A - \text{sin A cos A} + \text{sin}^2 A + \text{cos}^2 A + \text{sin A cos A} \\[1em] \Rightarrow 1 + 1 \\[1em] \Rightarrow 2.

Since, L.H.S. = R.H.S. hence proved that, sin3A+cos3Asin A + cos A+sin3Acos3Asin A - cos A=2\dfrac{\text{sin}^3 A + \text{cos}^3 A}{\text{sin A + cos A}} + \dfrac{\text{sin}^3 A - \text{cos}^3 A}{\text{sin A - cos A}} = 2.

Question 26(ii)

tan2A1 + tan2A+cot2A1 + cot2A=1.\dfrac{\text{tan}^2 A}{\text{1 + tan}^2 A} + \dfrac{\text{cot}^2 A}{\text{1 + cot}^2 A} = 1.

Answer

The L.H.S. of the equation can be written as,

tan2A1 + tan2A+1tan2A1+1tan2A=tan2A1 + tan2A+1tan2Atan2A+1tan2A=tan2A1 + tan2A+1tan2A+1=tan2A+1tan2A+11.\Rightarrow \dfrac{\text{tan}^2 A}{\text{1 + tan}^2 A} + \dfrac{\dfrac{1}{\text{tan}^2 A}}{1 + \dfrac{1}{\text{tan}^2 A}} \\[1em] = \dfrac{\text{tan}^2 A}{\text{1 + tan}^2 A} + \dfrac{\dfrac{1}{\text{tan}^2 A}}{\dfrac{\text{tan}^2 A + 1}{\text{tan}^2 A}} \\[1em] = \dfrac{\text{tan}^2 A}{\text{1 + tan}^2 A} + \dfrac{1}{\text{tan}^2 A + 1} \\[1em] = \dfrac{\text{tan}^2 A + 1}{\text{tan}^2 A + 1} \\[1em] 1.

Since, L.H.S. = R.H.S. hence proved that, tan2A1 + tan2A+cot2A1 + cot2A=1.\dfrac{\text{tan}^2 A}{\text{1 + tan}^2 A} + \dfrac{\text{cot}^2 A}{\text{1 + cot}^2 A} = 1.

Question 27(i)

1sec A + tan A1cos A=1cos A1sec A - tan A\dfrac{1}{\text{sec A + tan A}} - \dfrac{1}{\text{cos A}} = \dfrac{1}{\text{cos A}} - \dfrac{1}{\text{sec A - tan A}}

Answer

The equation can be written as,

1sec A + tan A+1sec A - tan A=2cos A\dfrac{1}{\text{sec A + tan A}} + \dfrac{1}{\text{sec A - tan A}} = \dfrac{2}{\text{cos A}}

The L.H.S. of the equation can be written as,

sec A - tan A + sec A + tan A(sec A - tan A)(sec A + tan A)=2 sec Asec2Atan2A=2 sec A=2cos A.\Rightarrow \dfrac{\text{sec A - tan A + sec A + tan A}}{\text{(sec A - tan A)(sec A + tan A)}} \\[1em] = \dfrac{\text{2 sec A}}{\text{sec}^2 A - \text{tan}^2 A} \\[1em] = \text{2 sec A} \\[1em] = \dfrac{2}{\text{cos A}}.

Since, L.H.S. = R.H.S. hence proved that,

1sec A + tan A1cos A=1cos A1sec A - tan A\dfrac{1}{\text{sec A + tan A}} - \dfrac{1}{\text{cos A}} = \dfrac{1}{\text{cos A}} - \dfrac{1}{\text{sec A - tan A}}.

Question 27(ii)

(sin A + sec A)2 + (cos A + cosec A)2 = (1 + sec A cosec A)2.

Answer

The L.H.S. of the equation can be written as,

sin2A+sec2A+2 sin A sec A+cos2A+cosec2A+2 cos A cosec A=sin2A+cos2A+sec2A+cosec2A+2 sin Acos A+2 cos Asin A=1+1cos2A+1sin2A+2sin2A+2cos2Asin A cos A=1+sin2A+cos2Asin2A cos2A+2(sin2A+cos2A)sin A cos A=1+1sin2A cos2A+2sin A cos A=(1+1sin A cos A)2=(1 + sec A cosec A)2.\Rightarrow \text{sin}^2 A + \text{sec}^2 A + \text{2 sin A sec A} + \text{cos}^2 A + \text{cosec}^2 A + \text{2 cos A cosec A} \\[1em] = \text{sin}^2 A + \text{cos}^2 A + \text{sec}^2 A + \text{cosec}^2 A + \dfrac{\text{2 sin A}}{\text{cos A}} + \dfrac{\text{2 cos A}}{\text{sin A}} \\[1em] = 1 + \dfrac{1}{\text{cos}^2 A} + \dfrac{1}{\text{sin}^2 A} + \dfrac{\text{2sin}^2 A + \text{2cos}^2 A}{\text{sin A cos A}} \\[1em] = 1 + \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin}^2 A \text{ cos}^2 A} + \dfrac{2(\text{sin}^2 A + \text{cos}^2 A)}{\text{sin A cos A}} \\[1em] = 1 + \dfrac{1}{\text{sin}^2 A \text{ cos}^2 A} + \dfrac{2}{{\text{sin A cos A}}} \\[1em] = \Big(1 + \dfrac{1}{\text{sin A cos A}}\Big)^2 \\[1em] = \Big(\text{1 + sec A cosec A}\Big)^2.

Since, L.H.S. = R.H.S. hence proved that, (sin A + sec A)2 + (cos A + cosec A)2 = (1 + sec A cosec A)2.

Question 27(iii)

tan A + sin Atan A - sin A=sec A + 1sec A - 1.\dfrac{\text{tan A + sin A}}{\text{tan A - sin A}} = \dfrac{\text{sec A + 1}}{\text{sec A - 1}}.

Answer

The L.H.S. of the equation can be written as,

sin Acos A+sin Asin Acos Asin A=sin A(1cos A+1)sin A(1cos A1)=(1cos A+1)(1cos A1)=sec A + 1sec A - 1\Rightarrow \dfrac{\dfrac{\text{sin A}}{\text{cos A}} + \text{sin A}}{\dfrac{\text{sin A}}{\text{cos A}} - \text{sin A}} \\[1em] = \dfrac{\text{sin A}\Big(\dfrac{1}{\text{cos A}} + 1\Big)}{\text{sin A}\Big(\dfrac{1}{\text{cos A}} - 1\Big)} \\[1em] = \dfrac{\Big(\dfrac{1}{\text{cos A}} + 1\Big)}{\Big(\dfrac{1}{\text{cos A}} - 1\Big)} \\[1em] = \dfrac{\text{sec A + 1}}{\text{sec A - 1}}

Since, L.H.S. = R.H.S. hence proved that, tan A + sin Atan A - sin A=sec A + 1sec A - 1.\dfrac{\text{tan A + sin A}}{\text{tan A - sin A}} = \dfrac{\text{sec A + 1}}{\text{sec A - 1}}.

Question 28

If sin θ + cos θ = 2\sqrt{2} sin(90° - θ), show that cot θ = 2\sqrt{2} + 1.

Answer

Given,

    sin θ + cos θ = 2\sqrt{2} sin(90° - θ)
⇒ sin θ + cos θ = 2\sqrt{2} cos θ

Dividing both sides by sin θ

⇒ 1 + cot θ = 2\sqrt{2} cot θ
⇒ 1 = 2\sqrt{2} cot θ - cot θ
⇒ 1 = cot θ(2\sqrt{2} - 1)
⇒ cot θ = 121\dfrac{1}{\sqrt{2} - 1}

Rationalizing,

cot θ=121×2+12+1cot θ=2+121=2+1.⇒ \text{cot θ} = \dfrac{1}{\sqrt{2} - 1} \times \dfrac{\sqrt{2} + 1}{\sqrt{2} + 1} \\[1em] ⇒ \text{cot θ} = \dfrac{\sqrt{2} + 1}{2 - 1} = \sqrt{2} + 1.

Hence, proved that cot θ = 2\sqrt{2} + 1.

Question 29

If 7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ.

Answer

Given,

⇒ 7 sin2 θ + 3 cos2 θ = 4

⇒ 4 sin2 θ + 3 sin2 θ + 3 cos2 θ = 4

⇒ 4 sin2 θ + 3(sin2 θ + cos2 θ) = 4

⇒ 4 sin2 θ + 3 = 4

⇒ 4 sin2 θ = 4 - 3

⇒ 4 sin2 θ = 1

⇒ sin2 θ = 14\dfrac{1}{4}

Taking square root of both the sides we get,

⇒ sin θ = 14\sqrt{\dfrac{1}{4}}

⇒ sin θ = 12\dfrac{1}{2}

∴ θ = 30°.

Hence, the value of θ = 30°.

Question 30

If sec θ + tan θ = m and sec θ - tan θ = n, prove that mn = 1.

Answer

mn = (sec θ + tan θ)(sec θ - tan θ)

mn = (sec2 θ - tan2 θ)

By, trigonometric identities sec2 θ - tan2 θ = 1.

∴ mn = 1.

Hence, proved that mn = 1.

Question 31

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 - y2 = a2 - b2.

Answer

Given,

x = a sec θ + b tan θ and y = a tan θ + b sec θ.

∴ x2 - y2 = (a sec θ + b tan θ)2 - (tan θ + b sec θ)2

⇒ x2 - y2 = a2 sec2 θ + b2 tan2 θ + 2ab sec θ tan θ - (a2 tan2 θ + b2 sec 2 θ + 2ab sec θ tan θ)

⇒ x2 - y2 = a2 sec2 θ + b2 tan2 θ + 2ab sec θ tan θ - a2 tan2 θ - b2 sec 2 θ - 2ab sec θ tan θ

⇒ x2 - y2 = a2(sec2 θ - tan2 θ) - b2(sec2 θ - tan2 θ)

⇒ x2 - y2 = a2 - b2.

Hence, proved that x2 - y2 = a2 - b2.

Question 32

If x = h + a cos θ and y = k + a sin θ, prove that (x - h)2 + (y - k)2 = a2.

Answer

Given, x = h + a cos θ and y = k + a sin θ

∴ (x - h)2 + (y - k)2 = (h + a cos θ - h)2 + (k + a sin θ - k)2
⇒ (x - h)2 + (y - k)2 = (a cos θ)2 + (a sin θ)2
⇒ (x - h)2 + (y - k)2 = a2 cos2 θ + a2 sin2 θ
⇒ (x - h)2 + (y - k)2 = a2 (cos2 θ + sin2 θ)
⇒ (x - h)2 + (y - k)2 = a2.

Hence, proved that (x - h)2 + (y - k)2 = a2.

Multiple Choice Questions

Question 1

cot2 θ1sin2 θ\text{cot}^2 \text{ θ} - \dfrac{1}{\text{sin}^2 \text{ θ}} is equal to

  1. 1

  2. -1

  3. sin2 θ

  4. sec2 θ

Answer

Given,

cot2 θ1sin2 θ\text{cot}^2 \text{ θ} - \dfrac{1}{\text{sin}^2 \text{ θ}}

The equation can be written as,

cos2 θsin2 θ1sin2 θcos2 θ1sin2 θ(1cos2 θ)sin2 θsin2 θsin2 θ1.\Rightarrow \dfrac{\text{cos}^2 \text{ θ}}{\text{sin}^2 \text{ θ}} - \dfrac{1}{\text{sin}^2 \text{ θ}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 \text{ θ} - 1}{\text{sin}^2 \text{ θ}} \\[1em] \Rightarrow \dfrac{-(1 - \text{cos}^2 \text{ θ})}{\text{sin}^2 \text{ θ}} \\[1em] \Rightarrow \dfrac{-\text{sin}^2 \text{ θ}}{\text{sin}^2 \text{ θ}} \\[1em] \Rightarrow -1.

Hence, Option 2 is the correct option.

Question 2

(sec2 θ - 1)(1 - cosec2 θ) is equal to

  1. -1

  2. 1

  3. 0

  4. 2

Answer

Given, (sec2 θ - 1)(1 - cosec2 θ)

By using trigonometric identities the equation can be written as,

tan2 θ(cot2 θ)tan2 θ×1tan2 θ1.\Rightarrow \text{tan}^2 \text{ θ} (-\text{cot}^2 \text{ θ}) \\[1em] \Rightarrow \text{tan}^2 \text{ θ} \times \dfrac{-1}{\text{tan}^2 \text{ θ}} \\[1em] \Rightarrow -1.

Hence, Option 1 is the correct option.

Question 3

tan2 θ1 + tan2 θ\dfrac{\text{tan}^2 \text{ θ}}{\text{1 + tan}^2 \text{ θ}} is equal to

  1. 2sin2 θ

  2. 2cos2 θ

  3. sin2 θ

  4. cos2 θ

Answer

Given, tan2 θ1 + tan2 θ\dfrac{\text{tan}^2 \text{ θ}}{\text{1 + tan}^2 \text{ θ}}

On solving,

sin2 θcos2 θ1+sin2 θcos2 θsin2 θcos2 θcos2 θ+sin2 θcos2 θsin2 θ cos2 θcos2 θ(cos2 θ+sin2 θ)sin2 θ.\Rightarrow \dfrac{\dfrac{\text{sin}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}}{1 + \dfrac{\text{sin}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}}{\dfrac{\text{cos}^2 \text{ θ} + \text{sin}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 \text{ θ} \text{ cos}^2 \text{ θ}}{\text{cos}^2 \text{ θ} (\text{cos}^2 \text{ θ} + \text{sin}^2 \text{ θ})} \\[1em] \Rightarrow \text{sin}^2 \text{ θ}.

Hence, Option 3 is the correct option.

Question 4

(cos θ + sin θ)2 + (cos θ - sin θ)2 is equal to

  1. -2

  2. 0

  3. 1

  4. 2

Answer

Given, (cos θ + sin θ)2 + (cos θ - sin θ)2

On solving,

⇒ cos2 θ + sin2 θ + 2cos θ sin θ + cos2 θ + sin2 θ - 2cos θ sin θ
⇒ 2(cos2 θ + sin2 θ)
⇒ 2.

Hence, Option 4 is the correct option.

Question 5

(sec A + tan A)(1 - sin A) is equal to

  1. sec A

  2. sin A

  3. cosec A

  4. cos A

Answer

Given, (sec A + tan A)(1 - sin A)

On solving,

(1cos A+sin Acos A)(1sin A)(1 + sin A)(1 - sin A)cos A1 - sin2Acos Acos2Acos Acos A.\Rightarrow \Big(\dfrac{1}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}}\Big)(1 - \text{sin A}) \\[1em] \Rightarrow \dfrac{\text{(1 + sin A)(1 - sin A)}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - sin}^2 A}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{cos A}} \\[1em] \Rightarrow \text{cos A}.

Hence, Option 4 is the correct option.

Question 6

1+tan2A1+cot2A\dfrac{1 + \text{tan}^2 A}{1 + \text{cot}^2 A} is equal to

  1. sec2 A

  2. -1

  3. cot2 A

  4. tan2 A

Answer

Given, 1+tan2A1+cot2A\dfrac{1 + \text{tan}^2 A}{1 + \text{cot}^2 A}.

By using trigonometric identities the above equation can be written as,

sec2Acosec2A1cos2A1sin2Asin2Acos2Atan2A\Rightarrow \dfrac{\text{sec}^2 A}{\text{cosec}^2 A} \\[1em] \Rightarrow \dfrac{\dfrac{1}{\text{cos}^2 A}}{\dfrac{1}{\text{sin}^2 A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A}{\text{cos}^2 A} \\[1em] \Rightarrow \text{tan}^2 A

Hence, Option 4 is the correct option.

Question 7

If sec θ - tan θ = k, then the value of sec θ + tan θ is

  1. 1 - 1k\dfrac{1}{\text{k}}

  2. 1 - k

  3. 1 + k

  4. 1k\dfrac{1}{\text{k}}

Answer

We know that,

⇒ sec2 θ - tan2 θ = 1

∴ (sec θ - tan θ)(sec θ + tan θ) = 1
⇒ k (sec θ + tan θ) = 1
⇒ (sec θ + tan θ) = 1k\dfrac{1}{k}

Hence, Option 4 is the correct option.

Question 8

If θ is an acute angle of a right triangle, then the value of

sin θ cos(90° - θ) + cos θ sin (90° - θ) is

  1. 0

  2. 2 sin θ cos θ

  3. 1

  4. 2 sin2 θ

Answer

Since, θ is an acute angle triangle,

cos(90° - θ) = sin θ and sin(90° - θ) = cos θ.

Using above values in sin θ cos(90° - θ) + cos θ sin (90° - θ) we get,

⇒ sin θ sin θ + cos θ cos θ
⇒ sin2 θ + cos2 θ
⇒ 1.

Hence, Option 3 is the correct option.

Question 9

The value of cos 65° sin 25° + sin 65° cos 25° is

  1. 0

  2. 1

  3. 2

  4. 4

Answer

Since, angles are acute in the equation,

∴ cos(90° - θ) = sin θ and sin(90° - θ) = cos θ

Using above values in cos 65° sin 25° + sin 65° cos 25° we get,

⇒ cos 65° sin (90 - 65)° + sin 65° cos (90 - 65)°
⇒ cos 65° cos 65° + sin 65° sin 65°
⇒ cos2 65° + sin2 65°
⇒ 1.

Hence, Option 2 is the correct option.

Question 10

The value of 3 tan2 26° - 3 cosec2 64° is

  1. 0

  2. 3

  3. -3

  4. -1

Answer

Solving 3 tan2 26° - 3 cosec2 64°,

⇒ 3 tan2 26° - 3 cosec2 (90 - 26)°
⇒ 3 tan2 26° - 3 sec2 26°
⇒ 3(tan2 26° - sec2 26°)
⇒ 3 × -1
⇒ -3.

Hence, Option 3 is the correct option.

Question 11

Statement (i) : sin2 θ + cos2 θ = 1

Statement (ii) : cosec2 θ + cot2 θ = 1

Which of the following is valid ?

  1. only (i)

  2. only (ii)

  3. both (i) and (ii)

  4. neither (i) nor (ii)

Answer

Trigonometry identity :

sin2 θ + cos2 θ = 1

cosec2 θ - cot2 θ = 1

∴ Only statement (i) is correct.

Hence, Option 1 is the correct option.

Assertion Reason Type Questions

Question 1

Assertion (A): sec2 23° - tan2 23° = 1.

Reason (R): cos 60° = 12\dfrac{1}{\sqrt{2}}

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

According to assertion, sec2 23° - tan2 23° = 1

Solving L.H.S of above equation,

sec223°tan223°1cos223°sin223°cos223°1sin223°cos223°cos223°cos223°1.\Rightarrow \text{sec}^2 23° - \text{tan}^2 23° \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 23°} - \dfrac{\text{sin}^2 23°}{\text{cos}^2 23°} \\[1em] \Rightarrow \dfrac{1 - \text{sin}^2 23°}{\text{cos}^2 23°} \\[1em] \Rightarrow \dfrac{\text{cos}^2 23°}{\text{cos}^2 23°} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

∴ Assertion (A) is true.

According to standard trigonometric values, the correct evaluation is:

cos 60° = 12\dfrac{1}{2}
​ ∴ Reason (R) is false.

∴ Assertion (A) is true, Reason (R) is false.

Hence, option 1 is the correct option.

Question 2

Assertion (A): For 0 < θ ≤ 90°, cosec θ - cot θ and cosec θ + cot θ are reciprocals of each other.

Reason (R): cosec2 θ - cot2 θ = 1

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Solving,

cosec 2θcot 2θ1sin 2θcos 2θsin 2θ1cos 2θsin 2θsin 2θsin 2θ1.\Rightarrow \text{cosec }^2 θ - \text{cot }^2 θ \\[1em] \Rightarrow \dfrac{1}{\text{sin }^2 θ} - \dfrac{\text{cos }^2 θ}{\text{sin }^2 θ} \\[1em] \Rightarrow \dfrac{1 - \text{cos }^2 θ}{\text{sin }^2 θ}\\[1em] \Rightarrow \dfrac{\text{sin }^2 θ}{\text{sin }^2 θ}\\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

So, cosec2 θ - cot2 θ = 1, the condition 0 < θ ≤ 90° ensures that both cosec θ and cot θ are defined and non-zero, making the statement valid.

∴ Reason (R) is true.

⇒ cosec2 θ - cot2 θ = 1

⇒ (cosec θ - cot θ)(cosec θ + cot θ) = 1

⇒ (cosec θ - cot θ) = 1cosec θ + cot θ\dfrac{1}{\text{cosec θ + cot θ}}

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Question 3

Assertion (A): cosec2 54° - cot2 54° = 1.

Reason (R): cosec2 θ - cot2 θ = 1 for all values of θ, 0° < θ ≤ 90°.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Solving,

cosec 2θcot 2θ1sin 2θcos 2θsin 2θ1cos 2θsin 2θsin 2θsin 2θ1.\Rightarrow \text{cosec }^2 θ - \text{cot }^2 θ\\[1em] \Rightarrow \dfrac{1}{\text{sin }^2 θ} - \dfrac{\text{cos }^2 θ}{\text{sin }^2 θ}\\[1em] \Rightarrow \dfrac{1 - \text{cos }^2 θ}{\text{sin }^2 θ}\\[1em] \Rightarrow \dfrac{\text{sin }^2 θ}{\text{sin }^2 θ}\\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

So, cosec2 θ - cot2 θ = 1, the condition 0 < θ ≤ 90° ensures that both cosec θ and cot θ are defined and non-zero, making the statement valid.

∴ Reason (R) is true.

When θ = 54° and 0° < 54° ≤ 90°

So, cosec2 54° - cot2 54° = 1.

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Question 4

Assertion (A): 1 + sec2 θ = tan2 θ is a trigonometric identity.

Reason (R): An equation involving trigonometric ratio of an angle is called trigonometric identity if it is true for all values of the angles involved.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

An equation involving trigonometric ratios is a trigonometric identity if it holds true for all possible values of the angles involved.

∴ Reason (R) is true.

1 + tan2 θ = sec2 θ is a correct trigonometric identity.

∴ Assertion (A) is false.

∴ Assertion (A) is false, Reason (R) is true.

Hence, option 2 is the correct option.

Chapter Test

Question 1(i)

If θ is an acute angle and cosec θ = 5\sqrt{5} find the value of cot θ - cos θ.

Answer

sin θ = 1cosec θ=15\dfrac{1}{\text{cosec θ}} = \dfrac{1}{\sqrt{5}},

cos2 θ = 1 - sin2 θ = 1 - (15)2=115=45.\Big(\dfrac{1}{\sqrt{5}}\Big)^2 = 1 - \dfrac{1}{5} = \dfrac{4}{5}.

cos θ = 45\sqrt{\dfrac{4}{5}} = 25\dfrac{2}{\sqrt{5}}.

cot θ = cos θsin θ=2515\dfrac{\text{cos θ}}{\text{sin θ}} = \dfrac{\dfrac{2}{\sqrt{5}}}{\dfrac{1}{\sqrt{5}}} = 2.

cot θ - cos θ=225=2(115)=2(51)5.\text{cot θ - cos θ} = 2 - \dfrac{2}{\sqrt{5}} \\[1em] = 2\Big(1 - \dfrac{1}{\sqrt{5}}\Big) \\[1em] = \dfrac{2(\sqrt{5} - 1)}{\sqrt{5}}.

Hence, the value of cot θ - cos θ = 2(51)5\dfrac{2(\sqrt{5} - 1)}{\sqrt{5}}.

Question 1(ii)

If θ is an acute angle and tan θ = 815\dfrac{8}{15}, find the value of sec θ + cosec θ.

Answer

sec2 θ = 1 + tan2 θ

sec2 θ = 1 + (815)2\Big(\dfrac{8}{15}\Big)^2

sec2 θ = 1 + 64225=225+64225=289225\dfrac{64}{225} = \dfrac{225 + 64}{225} = \dfrac{289}{225}.

sec θ = 289225=1715\sqrt{\dfrac{289}{225}} = \dfrac{17}{15}.

cot θ = 1tan θ=1815=158.\dfrac{1}{\text{tan θ}} = \dfrac{1}{\dfrac{8}{15}} = \dfrac{15}{8}.

cosec2 θ = 1 + cot2 θ

cosec2 θ = 1 + (158)2\Big(\dfrac{15}{8}\Big)^2

cosec2 θ = 1 + 22564=64+22564=28964\dfrac{225}{64} = \dfrac{64 + 225}{64} = \dfrac{289}{64}.

cosec θ = 28964=178\sqrt{\dfrac{289}{64}} = \dfrac{17}{8}.

sec θ + cosec θ=1715+178=17×8+17×15120=136+255120=391120=331120.\text{sec θ + cosec θ} = \dfrac{17}{15} + \dfrac{17}{8} \\[1em] = \dfrac{17 \times 8 + 17 \times 15}{120} \\[1em] = \dfrac{136 + 255}{120} \\[1em] = \dfrac{391}{120} \\[1em] = 3\dfrac{31}{120}.

Hence, the value of expression sec θ + cosec θ = 331120.3\dfrac{31}{120}.

Question 2(i)

Evaluate the following :

2×(cos220°+cos270°sin225°+sin265°)2 \times \Big(\dfrac{\text{cos}^2 20° + \text{cos}^2 70°}{\text{sin}^2 25° + \text{sin}^2 65°}\Big) - tan 45° + tan 13° tan 23° tan 30° tan 67° tan 77°

Answer

Since, angles are acute in the equation,

∴ cos(90° - θ) = sin θ, sin(90° - θ) = cos θ and tan(90° - θ) = cot θ.

Using above equations in

2 x (cos220°+cos270°sin225°+sin265°)\Big(\dfrac{\text{cos}^2 20° + \text{cos}^2 70°}{\text{sin}^2 25° + \text{sin}^2 65°}\Big) - tan 45° + tan 13° tan 23° tan 30° tan 67° tan 77°

= 2 x (cos220°+cos2(9020)°sin225°+sin2(9025)°)\Big(\dfrac{\text{cos}^2 20° + \text{cos}^2 (90 - 20)°}{\text{sin}^2 25° + \text{sin}^2 (90 - 25)°}\Big) - tan 45° + tan 13° tan 23° tan 30° tan (90 - 23)° tan (90 - 13)°

= 2 x (cos220°+sin220°sin225°+cos225°)\Big(\dfrac{\text{cos}^2 20° + \text{sin}^2 20°}{\text{sin}^2 25° + \text{cos}^2 25°}\Big) - tan 45° + tan 13° tan 23° tan 30° cot 23° cot 13°

= 2 x 1 - 1 + tan 13° cot 13° tan 23° cot 23° tan 30°

= 1 + 1 x 13\dfrac{1}{\sqrt{3}}

= 3+13\dfrac{\sqrt{3} + 1}{\sqrt{3}}

= (3+1)33×3\dfrac{(\sqrt{3} + 1)\sqrt{3}}{\sqrt{3} \times \sqrt{3}}

= 3+33\dfrac{3 + \sqrt{3}}{\sqrt{3}}.

Hence, the value of the expression is 3+33\dfrac{3 + \sqrt{3}}{\sqrt{3}}.

Question 2(ii)

Evaluate the following :

sin222°+sin268°cos222°+cos268°\dfrac{\text{sin}^2 22° + \text{sin}^2 68°}{\text{cos}^2 22° + \text{cos}^2 68°} + sin2 63° + cos 63° sin 27°

Answer

Since, angles are acute in the equation,

∴ cos(90° - θ) = sin θ, sin(90° - θ) = cos θ.

Using above equations in

sin222°+sin268°cos222°+cos268°\dfrac{\text{sin}^2 22° + \text{sin}^2 68°}{\text{cos}^2 22° + \text{cos}^2 68°} + sin2 63° + cos 63° sin 27°

= sin222°+sin2(9022)°cos222°+cos2(9022)°\dfrac{\text{sin}^2 22° + \text{sin}^2 (90 - 22)°}{\text{cos}^2 22° + \text{cos}^2 (90 - 22)°} + sin2 63° +cos 63° sin (90 - 63)°

= sin222°+cos222°cos222°+sin222°\dfrac{\text{sin}^2 22° + \text{cos}^2 22°}{\text{cos}^2 22° + \text{sin}^2 22°} + sin2 63° + cos 63° cos 63°

= 11\dfrac{1}{1} + sin2 63° + cos2 63°

= 1 + 1

= 2.

Hence, the value of expression is 2.

Question 3

If 43\dfrac{4}{3} (sec2 59° - cot2 31°) - 23\dfrac{2}{3} sin 90° + 3 tan2 56° tan2 34° = x3\dfrac{x}{3}, then find the value of x.

Answer

Solving the L.H.S of above equation using trigonometric identities,

43\dfrac{4}{3}[sec2 59° - cot2 (90 - 59)°] - 23\dfrac{2}{3} sin 90° + 3 tan2 56° tan2 (90 - 56)°

= 43\dfrac{4}{3}(sec2 59° - tan2 59°) - 23\dfrac{2}{3} sin 90° + 3 tan2 56° cot2 56°

= 43\dfrac{4}{3} x 1 - 23\dfrac{2}{3} x 1 + 3 x 1

= 43\dfrac{4}{3} - 23\dfrac{2}{3} + 3

= 23\dfrac{2}{3} + 3

= 113\dfrac{11}{3}.

Comparing it with R.H.S i.e.,

113=x3\dfrac{11}{3} = \dfrac{x}{3}

x = 11.

Hence, the value of x = 11.

Question 4(i)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

cos A1 - sin A+cos A1 + sin A=2 sec A.\dfrac{\text{cos A}}{\text{1 - sin A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = \text{2 sec A}.

Answer

Solving L.H.S.,

cos A(1 + sin A) + cos A(1 - sin A)(1 - sin A)(1 + sin A)=cos A + cos A sin A + cos A - cos A sin A1sin2A=2 cos Acos2A=2cos A=2 sec A.\Rightarrow \dfrac{\text{cos A(1 + sin A) + \text{cos A(1 - sin A)}}}{\text{(1 - sin A)(1 + sin A)}} \\[1em] = \dfrac{\text{cos A + cos A sin A + cos A - cos A sin A}}{1 - \text{sin}^2 A} \\[1em] = \dfrac{2\text{ cos A}}{\text{cos}^2 A} \\[1em] = \dfrac{2}{\text{cos A}} \\[1em] = 2\text{ sec A}.

Since, L.H.S. = R.H.S. hence, proved that cos A1 - sin A+cos A1 + sin A=2 sec A\dfrac{\text{cos A}}{\text{1 - sin A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = 2\text{ sec A}.

Question 4(ii)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

cos Acosec A + 1+cos Acosec A - 1=2 tan A\dfrac{\text{cos A}}{\text{cosec A + 1}} + \dfrac{\text{cos A}}{\text{cosec A - 1}} = \text{2 tan A}.

Answer

Solving L.H.S.,

cos A(cosec A - 1) + cos A(cosec A + 1)(cosec A - 1)(cosec A + 1)=cos A cosec A - cos A + cos A cosec A + cos Acosec2A1=2 cos A ×1sin Acot2A=2cot Acot2A=2cot A=2 tan A.\Rightarrow \dfrac{\text{cos A(cosec A - 1) + \text{cos A(cosec A + 1)}}}{\text{(cosec A - 1)(cosec A + 1)}} \\[1em] = \dfrac{\text{cos A cosec A - cos A + cos A cosec A + cos A}}{\text{cosec}^2 A - 1} \\[1em] = \dfrac{2\text{ cos A } \times \dfrac{1}{\text{sin A}}}{\text{cot}^2 A} \\[1em] = \dfrac{2\text{cot A}}{\text{cot}^2 A} \\[1em] = \dfrac{2}{\text{cot A}} \\[1em] = 2 \text{ tan A}.

Since, L.H.S. = R.H.S. hence, proved that cos Acosec A + 1+cos Acosec A - 1=2 tan A\dfrac{\text{cos A}}{\text{cosec A + 1}} + \dfrac{\text{cos A}}{\text{cosec A - 1}} = 2 \text{ tan A}.

Question 4(iii)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

(cos θ - sin θ)(1 + tan θ)2cos2 θ1=sec θ.\dfrac{\text{(cos θ - sin θ)(1 + tan θ)}}{2\text{cos}^2 \text{ θ} - 1} = \text{sec θ}.

Answer

Solving L.H.S.,

(cos θ - sin θ)(1+sin θcos θ)2 cos2 θ1=(cos θ - sin θ)(cos θ + sin θ)cos θ2 cos2 θ1=cos2 θsin2θcos θ(2 cos2 θ1)=cos2 θ(1cos2 θ)cos θ(2 cos2 θ1)=cos2 θ+cos2 θ1cos θ(2 cos2 θ1)=(2 cos2 θ1)cos θ(2 cos2 θ1)=1cos θ=sec θ.\Rightarrow \dfrac{\text{(cos θ - sin θ)}(1 + \dfrac{\text{sin θ}}{\text{cos θ}})}{\text{2 cos}^2 \text{ θ} - 1} \\[1em] = \dfrac{\dfrac{\text{(cos θ - sin θ)(cos θ + sin θ)}}{\text{cos θ}}}{\text{2 cos}^2 \text{ θ} - 1} \\[1em] = \dfrac{\text{cos}^2 \text{ θ} - \text{sin}^2 θ}{\text{cos θ}(\text{2 cos}^2 \text{ θ} - 1)} \\[1em] = \dfrac{\text{cos}^2 \text{ θ} - (1 - \text{cos}^2 \text{ θ})}{\text{cos θ(2 cos}^2 \text{ θ} - 1)} \\[1em] = \dfrac{\text{cos}^2 \text{ θ} + \text{cos}^2 \text{ θ} - 1}{\text{cos θ(2 cos}^2 \text{ θ} - 1)} \\[1em] = \dfrac{\text{(2 cos}^2 \text{ θ} - 1)}{\text{cos θ(2 cos}^2 \text{ θ} - 1)} \\[1em] = \dfrac{1}{\text{cos θ}} \\[1em] = \text{sec θ}.

Since, L.H.S. = R.H.S. hence, proved that (cos θ - sin θ)(1 + tan θ)2 cos2 θ=sec θ\dfrac{\text{(cos θ - sin θ)(1 + tan θ)}}{2\text{ cos}^2 \text{ θ}} = \text{sec θ}.

Question 5(i)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

sin2 θ + cos4 θ = cos2 θ + sin4 θ.

Answer

Solving L.H.S.,

⇒ sin2 θ + cos4 θ

= 1 - cos2 θ + (cos2 θ)2

= 1 - cos2 θ + (1 - sin2 θ)2

= 1 - cos2 θ + 1 + sin4 θ - 2sin2 θ

= 1 - cos2 θ + 1 + sin4 θ - 2(1 - cos2 θ)

= 2 - cos2 θ + sin4 θ - 2 + 2cos2 θ

= 2cos2 θ - cos2 θ + sin4 θ

= cos2 θ + sin4 θ.

Since, L.H.S. = R.H.S. hence, proved that sin2 θ + cos4 θ = cos2 θ + sin4 θ.

Question 5(ii)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

cot θcosec θ + 1+cosec θ + 1cot θ=2 sec θ.\dfrac{\text{cot θ}}{\text{cosec θ + 1}} + \dfrac{\text{cosec θ + 1}}{\text{cot θ}} = \text{2 sec θ}.

Answer

Solving L.H.S.,

cot2 θ+(cosec θ + 1)2(cot θ)(cosec θ + 1)=cot2 θ+cosec2 θ+1+2 cosec θ(cot θ)(cosec θ + 1)=cot2 θ+1+cosec2 θ+2 cosec θ(cot θ)(cosec θ + 1)=cosec2 θ+cosec2 θ+2 cosec θ(cot θ)(cosec θ + 1)=2 cosec2 θ+2 cosec θ(cot θ)(cosec θ + 1)=2 cosec θ(cosec θ + 1)(cot θ)(cosec θ + 1)=2 cosec θcot θ=2sin θcos θsin θ=2cos θ=2 sec θ.\Rightarrow \dfrac{\text{cot}^2 \text{ θ} + \text{(cosec θ + 1)}^2}{\text{(cot θ)(cosec θ + 1)}} \\[1em] = \dfrac{\text{cot}^2 \text{ θ} + \text{cosec}^2 \text{ θ} + 1 + \text{2 cosec θ}}{\text{(cot θ)(cosec θ + 1)}} \\[1em] = \dfrac{\text{cot}^2 \text{ θ} + 1 + \text{cosec}^2 \text{ θ} + \text{2 cosec θ}}{\text{(cot θ)(cosec θ + 1)}} \\[1em] = \dfrac{\text{cosec}^2 \text{ θ} + \text{cosec}^2 \text{ θ} + \text{2 cosec θ}}{\text{(cot θ)(cosec θ + 1)}} \\[1em] = \dfrac{2\text{ cosec}^2 \text{ θ} + \text{2 cosec θ}}{\text{(cot θ)(cosec θ + 1)}} \\[1em] = \dfrac{\text{2 cosec θ(cosec θ + 1)}}{\text{(cot θ)(cosec θ + 1)}} \\[1em] = \dfrac{\text{2 cosec θ}}{\text{cot θ}} \\[1em] = \dfrac{\dfrac{2}{\text{sin θ}}}{\dfrac{\text{cos θ}}{\text{sin θ}}} \\[1em] = \dfrac{2}{\text{cos θ}} \\[1em] = 2\text{ sec θ}.

Since, L.H.S. = R.H.S hence proved that cot θcosec θ + 1+cosec θ + 1cot θ=2 sec θ\dfrac{\text{cot θ}}{\text{cosec θ + 1}} + \dfrac{\text{cosec θ + 1}}{\text{cot θ}} = 2\text{ sec θ}.

Question 5(iii)

Prove the following trigonometry identity :

(sin θ + cos θ)(cosec θ - sec θ) = cosec θ.sec θ - 2 tan θ

Answer

Solving,

(sin θ + cos θ)(cosec θ - sec θ)(sin θ + cos θ)×(1sin θ1cos θ)(sin θ + cos θ)×(cos θ - sin θsin θ cos θ)cos2θsin2θsin θ. cos θ1 - 2 sin2 θsin θ.cos θ[cos2 θ=1sin2 θ]1sin θ.cos θ2 sin2 θsin θ.cos θcosec θ.sec θ2 sin2 θsin θ.cos θcosec θ.sec θ - 2 tan θ.\phantom{\Rightarrow} \text{(sin θ + cos θ)(cosec θ - sec θ)} \\[1em] \Rightarrow \text{(sin θ + cos θ)} \times \Big(\dfrac{1}{\text{sin θ}} - \dfrac{1}{\text{cos θ}}\Big) \\[1em] \Rightarrow \text{(sin θ + cos θ)} \times \Big(\dfrac{\text{cos θ - sin θ}}{\text{sin θ cos θ}}\Big) \\[1em] \Rightarrow \dfrac{\text{cos}^2 θ - \text{sin}^2 θ}{\text{sin θ. cos θ}} \\[1em] \Rightarrow \dfrac{\text{1 - 2 sin}^2 \text{ θ}}{\text{sin θ.cos θ}} \quad [\because \text{cos}^2 \text{ θ} = 1 - \text{sin}^2 \text{ θ}] \\[1em] \Rightarrow \dfrac{1}{\text{sin θ.cos θ}} - \dfrac{\text{2 sin}^2 \text{ θ}}{\text{sin θ.cos θ}} \\[1em] \Rightarrow \text{cosec θ.sec θ} - \dfrac{\text{2 sin}^2 \text{ θ}}{\text{sin θ.cos θ}} \\[1em] \Rightarrow \text{cosec θ.sec θ - 2 tan θ}.

Hence, proved that (sin θ + cos θ)(cosec θ - sec θ) = cosec θ.sec θ - 2 tan θ.

Question 6(i)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

sec4 A(1 - sin4 A) - 2 tan2 A = 1.

Answer

Solving L.H.S.,

1cos4A(1 + sin 2A)(1 - sin2A)2sin2Acos2A=(1 + sin2A)cos2Acos4A2sin2Acos2A=1+sin2Acos2A2sin2Acos2A=1+sin2A2sin2Acos2A=1sin2Acos2A=cos2Acos2A=1.\Rightarrow \dfrac{1}{\text{cos}^4 A}\text{(1 + sin }^2 A)\text{(1 - sin}^2 A) - \dfrac{2\text{sin}^2 A}{\text{cos}^2 A} \\[1em] = \dfrac{\text{(1 + sin}^2 A)\text{cos}^2 A}{{\text{cos}^4 A}} - \dfrac{2\text{sin}^2 A}{\text{cos}^2 A} \\[1em] = \dfrac{1 + \text{sin}^2 A}{\text{cos}^2 A} - \dfrac{2\text{sin}^2 A}{\text{cos}^2 A} \\[1em] = \dfrac{1 + \text{sin}^2 A - 2\text{sin}^2 A}{\text{cos}^2 A} \\[1em] = \dfrac{1 - \text{sin}^2 A}{\text{cos}^2 A} \\[1em] = \dfrac{\text{cos}^2 A}{\text{cos}^2 A} \\[1em] = 1.

Since, L.H.S. = R.H.S. hence proved that sec4 A(1 - sin4 A) - 2tan2 A = 1.

Question 6(ii)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

1sin A + cos A + 1+1sin A + cos A - 1=sec A + cosec A.\dfrac{1}{\text{sin A + cos A + 1}} + \dfrac{1}{\text{sin A + cos A - 1}} = \text{sec A + cosec A}.

Answer

Solving L.H.S.,

1sin A + cos A + 1+1sin A + cos A - 1=sin A + cos A - 1 + sin A + cos A + 1(sin A + cos A + 1)(sin A + cos A - 1)=2(sin A + cos A)(sin A + cos A)21=2(sin A + cos A)sin2A+cos2A+2 sin A cos A1=2 sin A + 2 cos A11+2 sin A cos A=2 sin A + 2 cos A2 sin A cos A=2 sin A2 sin A cos A+2 cos A2 sin A cos A=1cos A+1sin A=sec A + cosec A.\Rightarrow \dfrac{1}{\text{sin A + cos A + 1}} + \dfrac{1}{\text{sin A + cos A - 1}} \\[1em] = \dfrac{\text{sin A + cos A - 1 + sin A + cos A + 1}}{\text{(sin A + cos A + 1)}\text{(sin A + cos A - 1)}} \\[1em] = \dfrac{2\text{(sin A + cos A)}}{\text{(sin A + cos A)}^2 - 1} \\[1em] = \dfrac{2\text{(sin A + cos A)}}{\text{sin}^2 A + \text{cos}^2 A + \text{2 sin A cos A} - 1} \\[1em] = \dfrac{\text{2 sin A + 2 cos A}}{1 - 1 + \text{2 sin A cos A}} \\[1em] = \dfrac{\text{2 sin A + 2 cos A}}{\text{2 sin A cos A}} \\[1em] = \dfrac{\text{2 sin A}}{\text{2 sin A cos A}} + \dfrac{\text{2 cos A}}{\text{2 sin A cos A}} \\[1em] = \dfrac{1}{\text{cos A}} + \dfrac{1}{\text{sin A}} \\[1em] = \text{sec A + cosec A}.

Since, L.H.S. = R.H.S. hence proved that 1sin A + cos A + 1+1sin A + cos A - 1=sec A + cosec A\dfrac{1}{\text{sin A + cos A + 1}} + \dfrac{1}{\text{sin A + cos A - 1}} = \text{sec A + cosec A}.

Question 7(i)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

sin3 θ+cos3 θsin θ + cos θ+sin θ cos θ=1.\dfrac{\text{sin}^3 \text{ θ} + \text{cos}^3 \text{ θ}}{\text{sin θ + cos θ}} + \text{sin θ cos θ} = 1.

Answer

Solving L.H.S.,

sin3 θ+cos3 θsin θ + cos θ+sin θ cos θ=(sin θ + cos θ)(sin2 θ+cos2 θsin θ cos θ)sin θ + cos θ+sin θ cos θ=sin2 θ+cos2 θsin θ cos θ + sin θ cos θ=1.\Rightarrow \dfrac{\text{sin}^3 \text{ θ} + \text{cos}^3 \text{ θ}}{\text{sin θ + cos θ}} + \text{sin θ cos θ} \\[1em] = \dfrac{\text{(sin θ + cos θ)}(\text{sin}^2 \text{ θ} + \text{cos}^2 \text{ θ} - \text{sin θ cos θ})}{\text{sin θ + cos θ}} + \text{sin θ cos θ} \\[1em] = \text{sin}^2 \text{ θ} + \text{cos}^2 \text{ θ} - \text{sin θ cos θ + sin θ cos θ} \\[1em] = 1.

Since, L.H.S. = R.H.S. hence proved that sin3 θ+cos3 θsin θ + cos θ+sin θ cos θ=1\dfrac{\text{sin}^3 \text{ θ} + \text{cos}^3 \text{ θ}}{\text{sin θ + cos θ}} + \text{sin θ cos θ} = 1.

Question 7(ii)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

(sec A - tan A)2(1 + sin A) = 1 - sin A.

Answer

Solving L.H.S.,

(1cos Asin Acos A)2(1+sin A)=(1 - sin Acos A)2(1 + sin A)=(1 - sin A)2(1 + sin A)1 - sin2A=(1 - sin A)2(1 + sin A)(1 - sin A)(1 + sin A)=1 - sin A.\Rightarrow \Big(\dfrac{1}{\text{cos A}} - \dfrac{\text{sin A}}{\text{cos A}}\Big)^2(1 + \text{sin A}) \\[1em] = \Big(\dfrac{\text{1 - sin A}}{\text{cos A}}\Big)^2\text{(1 + sin A)} \\[1em] = \dfrac{\text{(1 - sin A)}^2\text{(1 + sin A)}}{\text{1 - sin}^2 A} \\[1em] = \dfrac{\text{(1 - sin A)}^2\text{(1 + sin A)}}{\text{(1 - sin A)(1 + sin A)}} \\[1em] = \text{1 - sin A}.

Since, L.H.S. = R.H.S. hence proved that (sec A - tan A)2(1 + sin A) = 1 - sin A.

Question 8(i)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

cos A1 - tan Asin2Acos A - sin A=sin A + cos A.\dfrac{\text{cos A}}{\text{1 - tan A}} - \dfrac{\text{sin}^2 A}{\text{cos A - sin A}} = \text{sin A + cos A}.

Answer

Solving L.H.S.,

cos A1sin Acos Asin2Acos A - sin A=cos Acos A - sin Acos Asin2Acos A - sin A=cos2Acos A - sin Asin2Acos A - sin A=cos2Asin2Acos A - sin A=(cos A - sin A)(cos A + sin A)(cos A - sin A)=cos A + sin A.\Rightarrow \dfrac{\text{cos A}}{1 - \dfrac{\text{sin A}}{\text{cos A}}} - \dfrac{\text{sin}^2 A}{\text{cos A - sin A}} \\[1em] = \dfrac{\text{cos A}}{\dfrac{\text{cos A - sin A}}{\text{cos A}}} - \dfrac{\text{sin}^2 A}{\text{cos A - sin A}} \\[1em] = \dfrac{\text{cos}^2 A}{\text{cos A - sin A}} - \dfrac{\text{sin}^2 A}{\text{cos A - sin A}} \\[1em] = \dfrac{\text{cos}^2 A - \text{sin}^2 A}{\text{cos A - sin A}} \\[1em] = \dfrac{\text{(cos A - sin A)(cos A + sin A)}}{\text{(cos A - sin A)}} \\[1em] = \text{cos A + sin A}.

Since, L.H.S. = R.H.S. hence proved that cos A1 - tan Asin2Acos A - sin A=sin A + cos A\dfrac{\text{cos A}}{\text{1 - tan A}} - \dfrac{\text{sin}^2 A}{\text{cos A - sin A}} = \text{sin A + cos A}.

Question 8(ii)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

(sec A - cosec A)(1 + tan A + cot A) = tan A sec A - cot A cosec A.

Answer

Solving L.H.S.,

(sec A - cosec A)(1 + tan A + cot A)=(1cos A1sin A)(1+sin Acos A+cos Asin A)=(sin A - cos Asin A cos A)(sin A cos A+sin2A+cos2Asin A cos A)=(sin A - cos A)(sin A cos A + 1)sin2A cos2A\Rightarrow \text{(sec A - cosec A)(1 + tan A + cot A)} \\[1em] = \Big(\dfrac{1}{\text{cos A}} - \dfrac{1}{\text{sin A}}\Big)\Big(1 + \dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}}\Big) \\[1em] = \Big(\dfrac{\text{sin A - cos A}}{\text{sin A cos A}}\Big)\Big(\dfrac{\text{sin A cos A} + \text{sin}^2 A + \text{cos}^2 A}{\text{sin A cos A}} \Big) \\[1em] = \dfrac{(\text{sin A - cos A})(\text{sin A cos A + 1})}{\text{sin}^2 A \space \text{cos}^2 A} \\[1em]

Now solving R.H.S.,

tan A sec A - cot A cosec A=sin Acos A×1cos Acos Asin A×1sin A=sin Acos2Acos Asin2A=sin3Acos3Asin2A cos2A=(sin A - cos A)(sin2A+cos2A+sin A cos A)sin2A cos2A=(sin A - cos A)(sin A cos A + 1)sin2A cos2A.\Rightarrow \text{tan A sec A - cot A cosec A} \\[1em] = \dfrac{\text{sin A}}{\text{cos A}} \times \dfrac{1}{\text{cos A}} - \dfrac{\text{cos A}}{\text{sin A}} \times \dfrac{1}{\text{sin A}} \\[1em] = \dfrac{\text{sin A}}{\text{cos}^2 A} - \dfrac{\text{cos A}}{\text{sin}^2 A} \\[1em] = \dfrac{\text{sin}^3 A - \text{cos}^3 A}{\text{sin}^2 A \text{ cos}^2 A} \\[1em] = \dfrac{\text{(sin A - cos A)(sin}^2 A + \text{cos}^2 A + \text{sin A cos A})}{\text{sin}^2 A \text{ cos}^2 A} \\[1em] = \dfrac{(\text{sin A - cos A})(\text{sin A cos A + 1})}{\text{sin}^2 A \space \text{cos}^2 A}.

Since, L.H.S. = R.H.S. hence proved that (sec A - cosec A)(1 + tan A + cot A) = tan A sec A - cot A cosec A.

Question 8(iii)

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

tan2 θtan2 θ1+cosec2 θsec2 θcosec2 θ=1sin2 θcos2 θ\dfrac{\text{tan}^2 \text{ θ}}{\text{tan}^2 \text{ θ} - 1} + \dfrac{\text{cosec}^2 \text{ θ}}{\text{sec}^2 \text{ θ} - \text{cosec}^2 \text{ θ}} = \dfrac{1}{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}}.

Answer

Solving L.H.S.,

sin2 θcos2 θsin2 θcos2 θ1+1sin2 θ1cos2 θ1sin2 θ=sin2 θcos2 θsin2 θcos2 θcos2 θ+1sin2 θsin2 θcos2 θcos2 θ sin2 θ=sin2 θsin2 θcos2 θ+1sin2 θcos2 θcos2 θ=sin2 θsin2 θcos2 θ+cos2 θsin2 θcos2 θ=sin2 θ+cos2 θsin2 θcos2 θ=1sin2 θcos2 θ.\Rightarrow \dfrac{\dfrac{\text{sin}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}}{\dfrac{\text{sin}^2 \text{ θ}}{\text{cos}^2 \text{ θ}} - 1} + \dfrac{\dfrac{1}{\text{sin}^2 \text{ θ}}}{\dfrac{1}{\text{cos}^2 \text{ θ}} - \dfrac{1}{\text{sin}^2 \text{ θ}}} \\[1em] = \dfrac{\dfrac{\text{sin}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}}{\dfrac{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}} + \dfrac{\dfrac{1}{\text{sin}^2 \text{ θ}}}{\dfrac{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}}{\text{cos}^2 \text{ θ} \text{ sin}^2 \text{ θ}}} \\[1em] = \dfrac{\text{sin}^2 \text{ θ}}{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}} + \dfrac{1}{\dfrac{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}}{\text{cos}^2 \text{ θ}}} \\[1em] = \dfrac{\text{sin}^2 \text{ θ}}{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}} + \dfrac{\text{cos}^2 \text{ θ}}{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}} \\[1em] = \dfrac{\text{sin}^2 \text{ θ} + \text{cos}^2 \text{ θ}}{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}} \\[1em] = \dfrac{1}{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}}.

Since, L.H.S. = R.H.S. hence proved that,

tan2 θtan2 θ1+cosec2 θsec2 θcosec2 θ=1sin2 θcos2 θ\dfrac{\text{tan}^2 \text{ θ}}{\text{tan}^2 \text{ θ} - 1} + \dfrac{\text{cosec}^2 \text{ θ}}{\text{sec}^2 \text{ θ} - \text{cosec}^2 \text{ θ}} = \dfrac{1}{\text{sin}^2 \text{ θ} - \text{cos}^2 \text{ θ}}.

Question 9

sin A + cos Asin A - cos A+sin A - cos Asin A + cos A=2sin 2Acos 2A=212cos 2A=2 sec 2Atan 2A1\dfrac{\text{sin A + cos A}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}} = \dfrac{2}{\text{sin }^2A - \text{cos }^2A} = \dfrac{2}{1 - 2\text{cos }^2A} = \dfrac{2\text{ sec }^2A}{\text{tan }^2A - 1}

Answer

Given,

sin A + cos Asin A - cos A+sin A - cos Asin A + cos A(sin A + cos A)2+(sin A - cos A)2(sinAcosA)(sin A + cos A)sin2A+cos2A+2sin A.cos A+sin2A+cos2A2sin A.cos Asin2Acos2A2sin2A+2cos2Asin2Acos2A2(1cos2A)+2cos2Asin2Acos2A22cos2A+2cos2Asin2Acos2A2sin2Acos2A\Rightarrow \dfrac{\text{sin A + cos A}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}}\\[1em] \Rightarrow \dfrac{\text{(sin A + cos A)}^2 + \text{(sin A - cos A)}^2}{(\text{sin} A - \text{cos} A)(\text{sin A + cos A})}\\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A + 2\text{sin A.cos A} + \text{sin}^2 A + \text{cos}^2 A - 2\text{sin A.cos A}}{\text{sin}^2 A - \text{cos}^2 A}\\[1em] \Rightarrow \dfrac{2\text{sin}^2 A + 2\text{cos}^2 A}{\text{sin}^2 A - \text{cos}^2 A}\\[1em] \Rightarrow \dfrac{2(1 - \text{cos}^2 A) + 2\text{cos}^2 A}{\text{sin}^2 A - \text{cos}^2 A}\\[1em] \Rightarrow \dfrac{2 - 2\text{cos}^2 A + 2\text{cos}^2 A}{\text{sin}^2 A - \text{cos}^2 A}\\[1em] \Rightarrow \dfrac{2}{\text{sin}^2 A - \text{cos}^2 A}

So proved,

sin A + cos Asin A - cos A+sin A - cos Asin A + cos A=2sin 2Acos 2A\dfrac{\text{sin A + cos A}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}} = \dfrac{2}{\text{sin }^2A - \text{cos }^2A}

Now,

2sin2Acos2A2(1cos2A)cos2A21cos2Acos2A212cos2A\Rightarrow \dfrac{2}{\text{sin}^2 A - \text{cos}^2 A}\\[1em] \Rightarrow \dfrac{2}{(1 - \text{cos}^2 A) - \text{cos}^2 A}\\[1em] \Rightarrow \dfrac{2}{1 - \text{cos}^2 A - \text{cos}^2 A}\\[1em] \Rightarrow \dfrac{2}{1 - 2\text{cos}^2 A}

So proved,

sin A + cos Asin A - cos A+sin A - cos Asin A + cos A=212cos2A\dfrac{\text{sin A + cos A}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}} = \dfrac{2}{1 - 2\text{cos}^2 A}

Now,

2sin2Acos2A\Rightarrow \dfrac{2}{\text{sin}^2 A - \text{cos}^2 A}

Dividing numerator and denominator by cos2 A, we get :

2cos2Asin2Acos2Acos2Acos2A2sec2Atan2A1\Rightarrow \dfrac{\dfrac{2}{\text{cos}^2 A}}{\dfrac{\text{sin}^2 A}{\text{cos}^2 A} - \dfrac{\text{cos}^2 A}{\text{cos}^2 A}}\\[1em] \Rightarrow \dfrac{2\text{sec}^2 A}{\text{tan}^2 A - 1}\\[1em]

So proved,

sin A + cos Asin A - cos A+sin A - cos Asin A + cos A=2sec 2Atan 2A1\dfrac{\text{sin A + cos A}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}} = \dfrac{2\text{sec }^2A}{\text{tan }^2A - 1}

Hence, proved that

sin A + cos Asin A - cos A+sin A - cos Asin A + cos A=2sin 2Acos 2A=212cos 2A=2sec 2Atan 2A1\dfrac{\text{sin A + cos A}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}} = \dfrac{2}{\text{sin }^2A - \text{cos }^2A} = \dfrac{2}{1 - 2\text{cos }^2A} = \dfrac{2\text{sec }^2A}{\text{tan }^2A - 1}.

Question 10

Prove the following identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

2(sin6 θ + cos6 θ) - 3(sin4 θ + cos4 θ) + 1 = 0.

Answer

Solving L.H.S.,

⇒ 2[(sin2 θ)3 + (cos2 θ)3] - 3[(sin2 θ)2 + (cos2 θ)2] + 1

⇒ 2[(sin2 θ + cos2 θ)3 - 3sin2 θ cos2 θ(sin2 θ + cos2 θ)] - 3[(sin2 θ + cos2 θ)2 - 2sin2 θ cos2 θ)] + 1

⇒ 2[(1)3 - 3sin2 θ cos2 θ(1)] - 3[(1)2 - 2sin2 θ cos2 θ)] + 1

⇒ 2 - 6sin2 θ cos2 θ - 3 + 6sin2 θ cos2 θ + 1

⇒ 2 - 3 + 1 - 6sin2 θ cos2 θ + 6sin2 θ cos2 θ

⇒ 3 - 3

⇒ 0.

Since, L.H.S. = R.H.S. hence, proved that 2(sin6 θ + cos6 θ) - 3(sin4 θ + cos4 θ) + 1 = 0.

Question 11

If cot θ + cos θ = m and cot θ - cos θ = n, then prove that (m2 - n2)2 = 16 mn.

Answer

Given,

cot θ + cos θ = m ....(i)
cot θ - cos θ = n ....(ii)

Adding (i) and (ii) we get,

⇒ m + n = cot θ + cos θ + cot θ - cos θ
⇒ m + n = 2 cot θ
⇒ 2 cot θ = m + n
⇒ cot θ = m+n2\dfrac{m + n}{2}.

∴ tan θ = 2m+n\dfrac{2}{m + n} ....(iii)

Subtracting (ii) from (i) we get,

m - n = cot θ + cos θ - cot θ + cos θ
m - n = 2 cos θ
cos θ = mn2\dfrac{m - n}{2}.

∴ sec θ = 2mn\dfrac{2}{m - n} ....(iv)

Squaring and subtracting (iii) from (iv),

sec2 θtan2 θ=(2mn)2(2m+n)21=4(mn)24(m+n)24[1(mn)21(m+n)2]=14[(m+n)2(mn)2(m+n)2(mn)2]=14[m2+n2+2mnm2n2+2mn(m+n)(mn)(m+n)(mn)]=14[m2+n2+2mnm2n2+2mn(m2n2)(m2n2)]=14×4mn(m2n2)2=116mn=(m2n2)2.\Rightarrow \text{sec}^2 \text{ θ} - \text{tan}^2 \text{ θ} = \Big(\dfrac{2}{m - n}\Big)^2 - \Big(\dfrac{2}{m + n}\Big)^2 \\[1em] \Rightarrow 1 = \dfrac{4}{(m - n)^2} - \dfrac{4}{(m + n)^2} \\[1em] \Rightarrow 4\Big[\dfrac{1}{(m - n)^2} - \dfrac{1}{(m + n)^2}\Big] = 1 \\[1em] \Rightarrow 4\Big[\dfrac{(m + n)^2 - (m - n)^2}{(m + n)^2(m - n)^2}\Big] = 1 \\[1em] \Rightarrow 4\Big[\dfrac{m^2 + n^2 + 2mn - m^2 - n^2 + 2mn}{(m + n)(m - n)(m + n)(m - n)} \Big] = 1 \\[1em] \Rightarrow 4\Big[\dfrac{\cancel{m^2} + \cancel{n^2} + 2mn - \cancel{m^2} - \cancel{n^2} + 2mn}{(m^2 - n^2)(m^2 - n^2)} \Big] = 1 \\[1em] \Rightarrow 4 \times \dfrac{4mn}{(m^2 - n^2)^2} = 1 \\[1em] \Rightarrow 16 mn = (m^2 - n^2)^2.

Hence, proved that (m2 - n2)2 = 16 mn.

Question 12(i)

When 0° < θ < 90°, solve the following equation:

2 cos2 θ + sin θ - 2 = 0

Answer

Given,

2 cos2 θ + sin θ - 2 = 0

On Solving,

⇒ 2(1 - sin2 θ) + sin θ - 2 = 0

= 2 - 2 sin2 θ + sin θ - 2 = 0

= sin θ -2 sin2 θ = 0

= sin θ (1 - 2 sin θ) = 0

So, either sin θ = 0 or 1 - 2 sin θ = 0

If, sin θ = 0
sin θ = sin 0°
θ = 0°.

Given, θ > 0° hence, θ = 0° is not possible.

∴ 1 - 2 sin θ = 0

⇒ 1 = 2 sin θ

⇒ sin θ = 12\dfrac{1}{2}

⇒ sin θ = 30°.

Hence, the value of θ = 30°.

Question 12(ii)

When 0° < θ < 90°, solve the following equation:

3 cos θ = 2 sin2 θ

Answer

Given,

3 cos θ = 2 sin2 θ

On Solving,

⇒ 3 cos θ = 2(1 - cos2 θ)

⇒ 3 cos θ = 2 - 2cos2 θ

⇒ 2 cos2 θ + 3 cos θ - 2 = 0

⇒ 2 cos2 θ + 4 cos θ - cos θ - 2 = 0

⇒ 2 cos θ(cos θ + 2) - 1(cos θ + 2) = 0

⇒ (2 cos θ - 1)(cos θ + 2) = 0

⇒ 2 cos θ - 1 = 0 or cos θ + 2 = 0

⇒ cos θ = 12\dfrac{1}{2} or cos θ = -2.

But cos θ = -2 is not possible.

∴ cos θ = 12\dfrac{1}{2}

⇒ cos θ = cos 60°

⇒ θ = 60°.

Hence, the value of θ = 60°.

Question 12(iii)

When 0° < θ < 90°, solve the following equation:

sec2 θ - 2 tan θ = 0

Answer

Given,

sec2 θ - 2 tan θ = 0

On Solving,

⇒ 1 + tan2 θ - 2 tan θ = 0

⇒ tan2 θ - 2 tan θ + 1 = 0

⇒ (tan θ - 1)2 = 0

⇒ tan θ - 1 = 0

⇒ tan θ = 1

⇒ tan θ = tan 45°

⇒ θ = 45°.

Hence, the value of θ = 45°.

Question 12(iv)

When 0° < θ < 90°, solve the following equation:

tan2 θ = 3 (sec θ - 1).

Answer

Given,

tan2 θ = 3 (sec θ - 1)

On Solving,

⇒ sec2 θ - 1 = 3 sec θ - 3

⇒ sec2 θ - 1 - 3 sec θ + 3 = 0

⇒ sec2 θ - 3 sec θ + 2 = 0

⇒ sec2 θ - 2 sec θ - sec θ + 2 = 0

⇒ sec θ (sec θ - 2) - 1(sec θ - 2) = 0

⇒ (sec θ - 1)(sec θ - 2) = 0

⇒ sec θ - 1 = 0 or sec θ - 2 = 0

⇒ sec θ = 1 or sec θ = 2.

If, sec θ = 1
sec θ = sec 0°
θ = 0°.

Given, θ > 0° hence, θ = 0° is not possible.

∴ sec θ = 2

⇒ sec θ = sec 60°

⇒ θ = 60°.

Hence, the value of θ = 60°.

PrevNext