Write the order of each of the following matrices :
(i) [ 3 − 5 7 − 6 9 4 ] \begin{bmatrix} 3 & -5 & 7 \\ -6 & 9 & 4 \end{bmatrix} [ 3 − 6 − 5 9 7 4 ]
(ii) [ 2 5 − 3 6 1 − 8 ] \begin{bmatrix} 2 & 5 \\ -3 & 6 \\ 1 & -8 \end{bmatrix} 2 − 3 1 5 6 − 8
(iii) [ 6 4 − 2 ] \begin{bmatrix} 6 \\ 4 \\ -2 \end{bmatrix} 6 4 − 2
(iv) [ 8 − 3 ] \begin{bmatrix} 8 & -3 \end{bmatrix} [ 8 − 3 ]
(v) [ 11 − 8 3 6 ] \begin{bmatrix} 11 & -8 \\ 3 & 6 \end{bmatrix} [ 11 3 − 8 6 ]
(vi) [ 10 ] \begin{bmatrix} 10 \end{bmatrix} [ 10 ]
Answer
(i) The matrix has 2 rows and 3 columns.
Hence, the order of matrix is (2 × 3).
(ii) The matrix has 3 rows and 2 columns.
Hence, the order of matrix is (3 × 2).
(iii) The matrix has 3 rows and 1 column.
Hence, the order of matrix is (3 × 1).
(iv) The matrix has 1 row and 2 columns.
Hence, the order of matrix is (1 × 2).
(v) The matrix has 2 rows and 2 columns.
Hence, the order of matrix is (2 × 2).
(vi) The matrix has 1 row and 1 column.
Hence, the order of matrix is (1 × 1).
Classify the following matrices :
(i) [ 9 3 − 4 ] \begin{bmatrix} 9 \\ 3 \\ -4 \end{bmatrix} 9 3 − 4
(ii) [ 7 − 8 9 4 ] \begin{bmatrix} 7 & -8 \\ 9 & 4 \end{bmatrix} [ 7 9 − 8 4 ]
(iii) [ 8 − 7 2 ] \begin{bmatrix} 8 & -7 & 2 \end{bmatrix} [ 8 − 7 2 ]
(iv) [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ]
(v) [ 6 0 0 0 3 0 0 0 − 2 ] \begin{bmatrix} 6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{bmatrix} 6 0 0 0 3 0 0 0 − 2
(vi) [ 0 0 0 0 0 0 ] \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} [ 0 0 0 0 0 0 ]
Answer
(i) Since, there is only once column and three rows in the matrix.
Hence, it is column matrix of order 3 x 1.
(ii) Since, no. of rows = no. of columns in the matrix.
Hence, it is a square matrix of order 2.
(iii) Since, there is only one row and 3 columns in the matrix.
Hence, it is a row matrix of order 1 x 3.
(iv) Since, there are 2 rows and 2 columns in the matrix.
Also, only the main diagonal element is 1 and the rest elements are zero.
Hence, it is a unit matrix of order 2.
(v) Since, there are 3 rows and 3 columns in the matrix.
Also, all the elements apart from main diagonal is zero.
Hence , it is a diagonal matrix of order 3.
(vi) Since, there are 2 rows and 3 columns in the matrix and all elements are zero.
Hence , it is a zero matrix of order 2 x 3.
Construct a (2 × 3) matrix, whose elements aij are given by aij = (3i − j).
Answer
Given,
aij = (3i − j).
∴ a11 = [3(1) - 1] = 2, a12 = [3(1) - 2] = 1, a13 = [3(1) - 3] = 0.
a21 = [3(2) - 1] = 5, a22 = [3(2) - 2]= 4, a23 = [3(2) - 3] = 3.
Hence, required matrix = [ 2 1 0 5 4 3 ] \begin{bmatrix} 2 & 1 & 0 \\ 5 & 4 & 3 \end{bmatrix} [ 2 5 1 4 0 3 ] .
Construct a (3 × 2) matrix [aij ]3×2 for which aij = (i × j).
Answer
Given,
aij = (i × j)
⇒ a11 = 1 × 1 = 1, a12 = 1 × 2 = 2.
⇒ a21 = 2 × 1 = 2, a22 = 2 × 2 = 4.
⇒ a31 = 3 × 1 = 3, a32 = 3 × 2 = 6.
Hence, required matrix = [ 1 2 2 4 3 6 ] \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix} 1 2 3 2 4 6 .
If a matrix has 4 elements, what are possible orders it can have?
Answer
If a matrix has 4 elements the possible orders are, 1 x 4, 2 x 2, 4 x 1.
Hence, possible orders are 1 x 4, 2 x 2, 4 x 1.
If a matrix has 6 elements, what are the possible orders it can have ?
Answer
If a matrix has 6 elements the possible orders are, 1 × 6, 6 × 1, 2 × 3, 3 × 2.
Hence, possible orders are 1 × 6, 6 × 1, 2 × 3, 3 × 2.
Find the values of a, b, c and d when [ a + 3 4 − 2 b − 6 ] = [ − 1 c − 3 d + 1 2 ] \begin{bmatrix} a + 3 & 4 \\ -2 & b - 6 \end{bmatrix}= \begin{bmatrix} -1 & c - 3 \\ d + 1 & 2 \end{bmatrix} [ a + 3 − 2 4 b − 6 ] = [ − 1 d + 1 c − 3 2 ]
Answer
Given,
[ a + 3 4 − 2 b − 6 ] = [ − 1 c − 3 d + 1 2 ] \begin{bmatrix} a + 3 & 4 \\ -2 & b - 6 \end{bmatrix} =\begin{bmatrix} -1 & c - 3 \\ d + 1 & 2 \end{bmatrix} [ a + 3 − 2 4 b − 6 ] = [ − 1 d + 1 c − 3 2 ]
∴ a + 3 = -1
⇒ a = -1 - 3 = -4.
∴ b - 6 = 2
⇒ b = 6 + 2 = 8
∴ c - 3 = 4
⇒ c = 4 + 3 = 7
∴ d + 1 = -2
⇒ d = -2 - 1 = -3
Hence , a = -4, b = 8, c = 7, d = -3.
Find the values of x and y when [ 5 x + 3 y 2 x − y ] = [ 12 7 ] \begin{bmatrix} 5x + 3y \\ 2x - y \end{bmatrix} =\begin{bmatrix} 12 \\ 7 \end{bmatrix} [ 5 x + 3 y 2 x − y ] = [ 12 7 ]
Answer
Given,
[ 5 x + 3 y 2 x − y ] = [ 12 7 ] \begin{bmatrix} 5x + 3y \\ 2x - y \end{bmatrix} =\begin{bmatrix} 12 \\ 7 \end{bmatrix} [ 5 x + 3 y 2 x − y ] = [ 12 7 ]
∴ 5x + 3y = 12....(1)
∴ 2x - y = 7
y = 2x - 7....(2)
Substituting value of y from equation (2) in equation (1), we get :
⇒ 5x + 3(2x - 7) = 12
⇒ 5x + 6x - 21 = 12
⇒ 11x = 12 + 21
⇒ 11x = 33
⇒ x = 33 11 \dfrac{33}{11} 11 33 = 3.
Substitute value of x in equation (2):
⇒ y = 2x - 7
⇒ y = 2(3) - 7
⇒ y = 6 - 7
⇒ y = -1.
Hence , x = 3 and y = -1.
Find the values of x, y, a and b when [ x + y a − b a + b 2 x − 3 y ] = [ 5 3 − 1 − 5 ] \begin{bmatrix} x + y & a - b \\ a + b & 2x - 3y \end{bmatrix} =\begin{bmatrix} 5 & 3 \\ -1 & -5 \end{bmatrix} [ x + y a + b a − b 2 x − 3 y ] = [ 5 − 1 3 − 5 ]
Answer
Given,
[ x + y a − b a + b 2 x − 3 y ] = [ 5 3 − 1 − 5 ] \begin{bmatrix} x + y & a - b \\ a + b & 2x - 3y \end{bmatrix} =\begin{bmatrix} 5 & 3 \\ -1 & -5 \end{bmatrix} [ x + y a + b a − b 2 x − 3 y ] = [ 5 − 1 3 − 5 ]
∴ x + y = 5
⇒ y = 5 - x ........(1)
∴ 2x - 3y = -5 ........(2)
Substituting value of y from equation(1) in (2), we get :
⇒ 2x - 3(5 - x) = -5
⇒ 2x - 15 + 3x = -5
⇒ 5x - 15 = -5
⇒ 5x = -5 + 15
⇒ 5x = 10
⇒ x = 10 5 \dfrac{10}{5} 5 10 = 2.
Substitute value of x in equation 1 :
⇒ y = 5 - x
⇒ y = 5 - 2
⇒ y = 3.
∴ a - b = 3
⇒ a = 3 + b .........(3)
∴ a + b = -1 .........(4)
Substituting value of a from equation (3) in (4), we get :
⇒ 3 + b + b = -1
⇒ 2b = -1 - 3
⇒ 2b = -4
⇒ b = − 4 2 \dfrac{-4}{2} 2 − 4 = -2.
Substitute value of b in equation (3), we get :
⇒ a = -2 + 3
⇒ a = 1.
Hence, x = 2, y = 3, a = 1, b = -2.
Find the transpose of each of the matrices given below:
(i) A = [ 2 3 5 − 4 ] A = \begin{bmatrix} 2 & 3 \\ 5 & -4 \end{bmatrix} A = [ 2 5 3 − 4 ]
(ii) B = [ 5 7 − 3 ] B = \begin{bmatrix} 5 & 7 & -3 \end{bmatrix} B = [ 5 7 − 3 ]
(iii) C = [ − 2 6 ] C = \begin{bmatrix} -2 \\ 6 \end{bmatrix} C = [ − 2 6 ]
Answer
The matrix otained by interchanging the rows and column of a matrix is called the transpose of the matrix.
(i) Given,
⇒ A = [ 2 3 5 − 4 ] ⇒ A T = [ 2 5 3 − 4 ] . \Rightarrow A = \begin{bmatrix} 2 & 3 \\ 5 & -4 \end{bmatrix} \\[1em] \Rightarrow A^T = \begin{bmatrix} 2 & 5 \\ 3 & -4 \end{bmatrix}. ⇒ A = [ 2 5 3 − 4 ] ⇒ A T = [ 2 3 5 − 4 ] .
Hence, the transpose of matrix A = [ 2 5 3 − 4 ] = \begin{bmatrix} 2 & 5 \\ 3 & -4 \end{bmatrix} = [ 2 3 5 − 4 ] .
(ii) Given,
⇒ B = [ 5 7 − 3 ] ⇒ B T = [ 5 7 − 3 ] . \Rightarrow B = \begin{bmatrix} 5 & 7 & -3 \end{bmatrix} \\[1em] \Rightarrow B^T = \begin{bmatrix} 5 \\ 7 \\ -3 \end{bmatrix}. ⇒ B = [ 5 7 − 3 ] ⇒ B T = 5 7 − 3 .
Hence, the transpose of matrix B = [ 5 7 − 3 ] \begin{bmatrix} 5 \\ 7 \\ -3 \end{bmatrix} 5 7 − 3
(iii) Given,
⇒ C = [ − 2 6 ] ⇒ C T = [ − 2 6 ] \Rightarrow C = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \\[1em] \Rightarrow C^T = \begin{bmatrix} -2 & 6 \\ \end{bmatrix} ⇒ C = [ − 2 6 ] ⇒ C T = [ − 2 6 ]
Hence, the transpose of matrix C = [ − 2 6 ] = \begin{bmatrix} -2 & 6 \\ \end{bmatrix} = [ − 2 6 ] .
If, A = [ 2 − 3 4 ] A = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} A = [ 2 − 3 4 ] , find :
(i) 5A
(ii) (−4)A
(iii) −A
Answer
(i) 5A
⇒ 5 × [ 2 − 3 4 ] ⇒ [ 10 − 15 20 ] \Rightarrow 5 \times \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 10 & -15 & 20 \end{bmatrix} ⇒ 5 × [ 2 − 3 4 ] ⇒ [ 10 − 15 20 ]
Hence, 5A = [ 10 − 15 20 ] \begin{bmatrix} 10 & -15 & 20 \end{bmatrix} [ 10 − 15 20 ] .
(ii) (-4)A
⇒ − 4 × [ 2 − 3 4 ] ⇒ [ − 8 12 − 16 ] \Rightarrow -4 \times \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -8 & 12 & -16 \end{bmatrix} ⇒ − 4 × [ 2 − 3 4 ] ⇒ [ − 8 12 − 16 ]
Hence, (-4)A = [ − 8 12 − 16 ] \begin{bmatrix} -8 & 12 & -16 \end{bmatrix} [ − 8 12 − 16 ] .
(iii) −A
⇒ − 1 × [ 2 − 3 4 ] ⇒ [ − 2 3 − 4 ] \Rightarrow -1 \times \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -2 & 3 & -4 \end{bmatrix} ⇒ − 1 × [ 2 − 3 4 ] ⇒ [ − 2 3 − 4 ]
Hence, −A = [ − 2 3 − 4 ] \begin{bmatrix} -2 & 3 & -4 \end{bmatrix} [ − 2 3 − 4 ] .
If M = [ 6 − 4 ] M = \begin{bmatrix} 6 & -4 \end{bmatrix} M = [ 6 − 4 ] , find:
(i) 3M
(ii) 1 2 M \dfrac{1}{2}M 2 1 M
(iii) −2M
Answer
(i) 3M
⇒ 3 × [ 6 − 4 ] ⇒ [ 18 − 12 ] \Rightarrow 3 \times \begin{bmatrix} 6 & -4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 18 & -12 \end{bmatrix} ⇒ 3 × [ 6 − 4 ] ⇒ [ 18 − 12 ]
Hence, 3M = [ 18 − 12 ] \begin{bmatrix} 18 & -12 \end{bmatrix} [ 18 − 12 ] .
(ii) 1 2 M \dfrac{1}{2}M 2 1 M
⇒ 1 2 × [ 6 − 4 ] ⇒ [ 3 − 2 ] \Rightarrow \dfrac{1}{2} \times \begin{bmatrix} 6 & -4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 & -2 \end{bmatrix} ⇒ 2 1 × [ 6 − 4 ] ⇒ [ 3 − 2 ]
Hence, 1 2 M = [ 3 − 2 ] \dfrac{1}{2}M = \begin{bmatrix} 3 & -2 \end{bmatrix} 2 1 M = [ 3 − 2 ] .
(iii) −2M
⇒ − 2 × [ 6 − 4 ] ⇒ [ − 12 8 ] \Rightarrow -2 \times \begin{bmatrix} 6 & -4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -12 & 8 \end{bmatrix} ⇒ − 2 × [ 6 − 4 ] ⇒ [ − 12 8 ]
Hence, −2M = [ − 12 8 ] \begin{bmatrix} -12 & 8 \end{bmatrix} [ − 12 8 ] .
If C = [ 3 − 6 0 9 ] C = \begin{bmatrix} 3 & -6 \\ 0 & 9 \end{bmatrix} C = [ 3 0 − 6 9 ] , find :
(i) 2C
(ii) 1 3 C \dfrac{1}{3}C 3 1 C
(iii) −C
Answer
(i) 2C
⇒ 2 × [ 3 − 6 0 9 ] ⇒ [ 6 − 12 0 18 ] \Rightarrow 2 \times\begin{bmatrix} 3 & -6 \\ 0 & 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 & -12 \\ 0 & 18 \end{bmatrix} ⇒ 2 × [ 3 0 − 6 9 ] ⇒ [ 6 0 − 12 18 ]
Hence, 2C = [ 6 − 12 0 18 ] \begin{bmatrix} 6 & -12 \\ 0 & 18 \end{bmatrix} [ 6 0 − 12 18 ] .
(ii) 1 3 C \dfrac{1}{3}C 3 1 C
⇒ 1 3 × [ 3 − 6 0 9 ] ⇒ [ 1 − 2 0 3 ] \Rightarrow \dfrac{1}{3} \times\begin{bmatrix} 3 & -6 \\ 0 & 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} ⇒ 3 1 × [ 3 0 − 6 9 ] ⇒ [ 1 0 − 2 3 ]
Hence, 1 3 C = [ 1 − 2 0 3 ] \dfrac{1}{3}C = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} 3 1 C = [ 1 0 − 2 3 ] .
(iii) −C
⇒ − 1 × [ 3 − 6 0 9 ] ⇒ [ − 3 6 0 − 9 ] . \Rightarrow -1 \times\begin{bmatrix} 3 & -6 \\ 0 & 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -3 & 6 \\ 0 & -9 \end{bmatrix}. ⇒ − 1 × [ 3 0 − 6 9 ] ⇒ [ − 3 0 6 − 9 ] .
Hence, -C = [ − 3 6 0 − 9 ] \begin{bmatrix} -3 & 6 \\ 0 & -9 \end{bmatrix} [ − 3 0 6 − 9 ] .
If, 6 M = [ 0 6 − 12 24 ] 6M = \begin{bmatrix} 0 & 6 \\ -12 & 24 \end{bmatrix} 6 M = [ 0 − 12 6 24 ] , find M.
Answer
Given,
⇒ 6 M = [ 0 6 − 12 24 ] ⇒ M = 1 6 × [ 0 6 − 12 24 ] ⇒ M = [ 0 1 − 2 4 ] . \Rightarrow 6M = \begin{bmatrix} 0 & 6 \\ -12 & 24 \end{bmatrix} \\[1em] \Rightarrow M = \dfrac{1}{6} \times \begin{bmatrix} 0 & 6 \\ -12 & 24 \end{bmatrix} \\[1em] \Rightarrow M = \begin{bmatrix} 0 & 1 \\ -2 & 4 \end{bmatrix}. ⇒ 6 M = [ 0 − 12 6 24 ] ⇒ M = 6 1 × [ 0 − 12 6 24 ] ⇒ M = [ 0 − 2 1 4 ] .
Hence, M = [ 0 1 − 2 4 ] \begin{bmatrix} 0 & 1 \\ -2 & 4 \end{bmatrix} [ 0 − 2 1 4 ] .
If A = [ 2 5 − 3 7 ] A = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} A = [ 2 − 3 5 7 ] and B = [ 1 − 3 2 5 ] B = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} B = [ 1 2 − 3 5 ] , find :
(i) A + B
(ii) A − B
(iii) B − A
Answer
(i) Given,
A = [ 2 5 − 3 7 ] A = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} A = [ 2 − 3 5 7 ]
B = [ 1 − 3 2 5 ] B = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} B = [ 1 2 − 3 5 ]
Solving,
⇒ A + B = [ 2 5 − 3 7 ] + [ 1 − 3 2 5 ] ⇒ A + B = [ 2 + 1 5 + ( − 3 ) − 3 + 2 7 + 5 ] ⇒ A + B = [ 3 2 − 1 12 ] . \Rightarrow A + B = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} + \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} \\[1em] \Rightarrow A + B = \begin{bmatrix} 2 + 1 & 5 + (-3) \\ -3 + 2 & 7 + 5 \end{bmatrix}\\[1em] \Rightarrow A + B = \begin{bmatrix} 3 & 2 \\ -1 & 12 \end{bmatrix}. ⇒ A + B = [ 2 − 3 5 7 ] + [ 1 2 − 3 5 ] ⇒ A + B = [ 2 + 1 − 3 + 2 5 + ( − 3 ) 7 + 5 ] ⇒ A + B = [ 3 − 1 2 12 ] .
Hence, A + B = [ 3 2 − 1 12 ] \begin{bmatrix} 3 & 2 \\ -1 & 12 \end{bmatrix} [ 3 − 1 2 12 ] .
(ii) Given,
A = [ 2 5 − 3 7 ] A = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} A = [ 2 − 3 5 7 ]
B = [ 1 − 3 2 5 ] B = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} B = [ 1 2 − 3 5 ]
Solving,
⇒ A − B = [ 2 5 − 3 7 ] − [ 1 − 3 2 5 ] ⇒ [ 2 − 1 5 − ( − 3 ) − 3 − 2 7 − 5 ] ⇒ [ 1 8 − 5 2 ] . \Rightarrow A - B = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} - \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 - 1 & 5 - (-3) \\ -3 - 2 & 7 - 5 \end{bmatrix}\\[1em] \Rightarrow \begin{bmatrix} 1 & 8 \\ -5 & 2 \end{bmatrix}. ⇒ A − B = [ 2 − 3 5 7 ] − [ 1 2 − 3 5 ] ⇒ [ 2 − 1 − 3 − 2 5 − ( − 3 ) 7 − 5 ] ⇒ [ 1 − 5 8 2 ] .
Hence, A - B = [ 1 8 − 5 2 ] \begin{bmatrix} 1 & 8 \\ -5 & 2 \end{bmatrix} [ 1 − 5 8 2 ] .
(iii) Given,
A = [ 2 5 − 3 7 ] A = \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} A = [ 2 − 3 5 7 ]
B = [ 1 − 3 2 5 ] B = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} B = [ 1 2 − 3 5 ]
Solving,
⇒ B − A = [ 1 − 3 2 5 ] − [ 2 5 − 3 7 ] ⇒ [ 1 − 2 − 3 − 5 2 − ( − 3 ) 5 − 7 ] ⇒ [ − 1 − 8 5 − 2 ] . \Rightarrow B - A = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix} - \begin{bmatrix} 2 & 5 \\ -3 & 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 - 2 & -3 - 5 \\ 2 - (-3) & 5 - 7 \end{bmatrix}\\[1em] \Rightarrow \begin{bmatrix} -1 & -8 \\ 5 & -2 \end{bmatrix}. ⇒ B − A = [ 1 2 − 3 5 ] − [ 2 − 3 5 7 ] ⇒ [ 1 − 2 2 − ( − 3 ) − 3 − 5 5 − 7 ] ⇒ [ − 1 5 − 8 − 2 ] .
Hence, B - A = [ − 1 − 8 5 − 2 ] \begin{bmatrix} -1 & -8 \\ 5 & -2 \end{bmatrix} [ − 1 5 − 8 − 2 ] .
If M = [ 2 − 3 4 5 ] M = \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} M = [ 2 4 − 3 5 ] and N = [ − 1 6 3 2 ] N = \begin{bmatrix} -1 & 6 \\ 3 & 2 \end{bmatrix} N = [ − 1 3 6 2 ] , find :
(i) 2M + 5N
(ii) 4N − 3M
Answer
(i) 2M + 5N
Given,
M = [ 2 − 3 4 5 ] M = \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} M = [ 2 4 − 3 5 ]
N = [ − 1 6 3 2 ] N = \begin{bmatrix} -1 & 6 \\ 3 & 2 \end{bmatrix} N = [ − 1 3 6 2 ]
Solving,
⇒ 2 M + 5 N = 2 × [ 2 − 3 4 5 ] + 5 × [ − 1 6 3 2 ] ⇒ [ 4 − 6 8 10 ] + [ − 5 30 15 10 ] ⇒ [ 4 − 5 − 6 + 30 8 + 15 10 + 10 ] ⇒ [ − 1 24 23 20 ] . \Rightarrow 2M + 5N = 2 \times \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} + 5 \times \begin{bmatrix} -1 & 6 \\ 3 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & -6 \\ 8 & 10 \end{bmatrix} + \begin{bmatrix} -5 & 30 \\ 15 & 10 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 - 5 & -6 + 30 \\ 8 + 15 & 10 + 10 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -1 & 24 \\ 23 & 20 \end{bmatrix}. ⇒ 2 M + 5 N = 2 × [ 2 4 − 3 5 ] + 5 × [ − 1 3 6 2 ] ⇒ [ 4 8 − 6 10 ] + [ − 5 15 30 10 ] ⇒ [ 4 − 5 8 + 15 − 6 + 30 10 + 10 ] ⇒ [ − 1 23 24 20 ] .
Hence, 2M + 5N = [ − 1 24 23 20 ] \begin{bmatrix} -1 & 24 \\ 23 & 20 \end{bmatrix} [ − 1 23 24 20 ] .
(ii) 4N − 3M
Given,
M = [ 2 − 3 4 5 ] M = \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} M = [ 2 4 − 3 5 ]
N = [ − 1 6 3 2 ] N = \begin{bmatrix} -1 & 6 \\ 3 & 2 \end{bmatrix} N = [ − 1 3 6 2 ]
Solving,
⇒ 4 N − 3 M = 4 × [ − 1 6 3 2 ] − 3 × [ 2 − 3 4 5 ] ⇒ [ − 4 24 12 8 ] − [ 6 − 9 12 15 ] ⇒ [ − 4 − 6 24 − ( − 9 ) 12 − 12 8 − 15 ] ⇒ [ − 10 33 0 − 7 ] . \Rightarrow 4N − 3M = 4 \times \begin{bmatrix} -1 & 6 \\ 3 & 2 \end{bmatrix} - 3 \times \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -4 & 24 \\ 12 & 8 \end{bmatrix} - \begin{bmatrix} 6 & -9 \\ 12 & 15 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} - 4 - 6 & 24 - (-9) \\ 12 - 12 & 8 - 15 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -10 & 33 \\ 0 & -7 \end{bmatrix}. ⇒ 4 N − 3 M = 4 × [ − 1 3 6 2 ] − 3 × [ 2 4 − 3 5 ] ⇒ [ − 4 12 24 8 ] − [ 6 12 − 9 15 ] ⇒ [ − 4 − 6 12 − 12 24 − ( − 9 ) 8 − 15 ] ⇒ [ − 10 0 33 − 7 ] .
Hence, 4N − 3M = [ − 10 33 0 − 7 ] \begin{bmatrix} -10 & 33 \\ 0 & -7 \end{bmatrix} [ − 10 0 33 − 7 ]
Given, that
A = [ 2 4 3 2 ] , B = [ 1 3 − 2 5 ] , C = [ − 2 5 3 4 ] A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} A = [ 2 3 4 2 ] , B = [ 1 − 2 3 5 ] , C = [ − 2 3 5 4 ] , find :
(i) 2A + 3B
(ii) 3B − 2C
(iii) 3A − 2B + 4C
Answer
(i) 2A + 3B
Given,
A = [ 2 4 3 2 ] A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} A = [ 2 3 4 2 ]
B = [ 1 3 − 2 5 ] B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} B = [ 1 − 2 3 5 ]
⇒ 2 A + 3 B = 2 × [ 2 4 3 2 ] + 3 × [ 1 3 − 2 5 ] = [ 4 8 6 4 ] + [ 3 9 − 6 15 ] = [ 4 + 3 8 + 9 6 − 6 4 + 15 ] = [ 7 17 0 19 ] . \Rightarrow 2A + 3B = 2 \times \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} + 3 \times \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \\[1em] = \begin{bmatrix} 4 & 8 \\ 6 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 9 \\ -6 & 15 \end{bmatrix} \\[1em] = \begin{bmatrix} 4 + 3 & 8 + 9 \\ 6 - 6 & 4 + 15 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 & 17 \\ 0 & 19 \end{bmatrix}. ⇒ 2 A + 3 B = 2 × [ 2 3 4 2 ] + 3 × [ 1 − 2 3 5 ] = [ 4 6 8 4 ] + [ 3 − 6 9 15 ] = [ 4 + 3 6 − 6 8 + 9 4 + 15 ] = [ 7 0 17 19 ] .
Hence, 2A + 3B = [ 7 17 0 19 ] \begin{bmatrix} 7 & 17 \\ 0 & 19 \end{bmatrix} [ 7 0 17 19 ] .
(ii) 3B − 2C
Given,
B = [ 1 3 − 2 5 ] B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} B = [ 1 − 2 3 5 ]
C = [ − 2 5 3 4 ] C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} C = [ − 2 3 5 4 ]
Solving,
⇒ 3 B − 2 C = 3 × [ 1 3 − 2 5 ] − 2 × [ − 2 5 3 4 ] ⇒ [ 3 9 − 6 15 ] − [ − 4 10 6 8 ] ⇒ [ 3 − ( − 4 ) 9 − 10 − 6 − 6 15 − 8 ] ⇒ [ 7 − 1 − 12 7 ] \Rightarrow 3B − 2C = 3 \times \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} - 2 \times \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 & 9 \\ -6 & 15 \end{bmatrix} - \begin{bmatrix} -4 & 10 \\ 6 & 8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 - (-4) & 9 - 10 \\ -6 - 6 & 15 - 8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 7 & -1 \\ -12 & 7 \end{bmatrix} ⇒ 3 B − 2 C = 3 × [ 1 − 2 3 5 ] − 2 × [ − 2 3 5 4 ] ⇒ [ 3 − 6 9 15 ] − [ − 4 6 10 8 ] ⇒ [ 3 − ( − 4 ) − 6 − 6 9 − 10 15 − 8 ] ⇒ [ 7 − 12 − 1 7 ]
Hence, 3B − 2C = [ 7 − 1 − 12 7 ] \begin{bmatrix} 7 & -1 \\ -12 & 7 \end{bmatrix} [ 7 − 12 − 1 7 ] .
(iii) 3A − 2B + 4C
Given,
A = [ 2 4 3 2 ] A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} A = [ 2 3 4 2 ]
B = [ 1 3 − 2 5 ] B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} B = [ 1 − 2 3 5 ]
C = [ − 2 5 3 4 ] C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} C = [ − 2 3 5 4 ]
Solving,
⇒ 3 A − 2 B + 4 C = 3 × [ 2 4 3 2 ] − 2 × [ 1 3 − 2 5 ] + 4 × [ − 2 5 3 4 ] ⇒ [ 6 12 9 6 ] − [ 2 6 − 4 10 ] + [ − 8 20 12 16 ] ⇒ [ 6 − 2 12 − 6 9 − ( − 4 ) 6 − 10 ] + [ − 8 20 12 16 ] ⇒ [ 4 6 13 − 4 ] + [ − 8 20 12 16 ] ⇒ [ 4 − 8 6 + 20 13 + 12 − 4 + 16 ] ⇒ [ − 4 26 25 12 ] . \Rightarrow 3A − 2B + 4C = 3 \times \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - 2 \times \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} + 4 \times \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 & 12 \\ 9 & 6 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ -4 & 10 \end{bmatrix} + \begin{bmatrix} -8 & 20 \\ 12 & 16 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 - 2 & 12 - 6 \\ 9 - (-4) & 6 - 10 \end{bmatrix} + \begin{bmatrix} -8 & 20 \\ 12 & 16 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 6 \\ 13 & -4 \end{bmatrix} + \begin{bmatrix} -8 & 20 \\ 12 & 16 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 - 8 & 6 + 20 \\ 13 + 12 & -4 + 16 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -4 & 26 \\ 25 & 12 \end{bmatrix}. ⇒ 3 A − 2 B + 4 C = 3 × [ 2 3 4 2 ] − 2 × [ 1 − 2 3 5 ] + 4 × [ − 2 3 5 4 ] ⇒ [ 6 9 12 6 ] − [ 2 − 4 6 10 ] + [ − 8 12 20 16 ] ⇒ [ 6 − 2 9 − ( − 4 ) 12 − 6 6 − 10 ] + [ − 8 12 20 16 ] ⇒ [ 4 13 6 − 4 ] + [ − 8 12 20 16 ] ⇒ [ 4 − 8 13 + 12 6 + 20 − 4 + 16 ] ⇒ [ − 4 25 26 12 ] .
Hence, 3A − 2B + 4C = [ − 4 26 25 12 ] \begin{bmatrix} -4 & 26 \\ 25 & 12 \end{bmatrix} [ − 4 25 26 12 ] .
Let A = [ 0 1 5 − 1 ] , B = [ 1 − 3 0 − 2 ] , C = [ 2 − 5 4 0 ] . A = \begin{bmatrix} 0 & 1 \\ 5 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 \\ 0 & -2 \end{bmatrix}, C = \begin{bmatrix} 2 & -5 \\ 4 & 0 \end{bmatrix}. A = [ 0 5 1 − 1 ] , B = [ 1 0 − 3 − 2 ] , C = [ 2 4 − 5 0 ] . Find (3A + 4B − 5C).
Answer
Given,
A = [ 0 1 5 − 1 ] A = \begin{bmatrix} 0 & 1 \\ 5 & -1 \end{bmatrix} A = [ 0 5 1 − 1 ]
B = [ 1 − 3 0 − 2 ] B = \begin{bmatrix} 1 & -3 \\ 0 & -2 \end{bmatrix} B = [ 1 0 − 3 − 2 ]
C = [ 2 − 5 4 0 ] C = \begin{bmatrix} 2 & -5 \\ 4 & 0 \end{bmatrix} C = [ 2 4 − 5 0 ]
⇒ 3 A + 4 B − 5 C = 3 × [ 0 1 5 − 1 ] + 4 × [ 1 − 3 0 − 2 ] − 5 × [ 2 − 5 4 0 ] ⇒ [ 0 3 15 − 3 ] + [ 4 − 12 0 − 8 ] − [ 10 − 25 20 0 ] ⇒ [ 0 + 4 3 − 12 15 + 0 − 3 − 8 ] − [ 10 − 25 20 0 ] ⇒ [ 4 − 9 15 − 11 ] − [ 10 − 25 20 0 ] ⇒ [ 4 − 10 − 9 − ( − 25 ) 15 − 20 − 11 − 0 ] ⇒ [ − 6 16 − 5 − 11 ] . \Rightarrow 3A + 4B − 5C = 3 \times \begin{bmatrix} 0 & 1 \\ 5 & -1 \end{bmatrix} + 4 \times \begin{bmatrix} 1 & -3 \\ 0 & -2 \end{bmatrix} - 5 \times \begin{bmatrix} 2 & -5 \\ 4 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 & 3 \\ 15 & -3 \end{bmatrix} + \begin{bmatrix} 4 & -12 \\ 0 & -8 \end{bmatrix} - \begin{bmatrix} 10 & -25 \\ 20 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 + 4 & 3 - 12 \\ 15 + 0 & -3 - 8 \end{bmatrix} - \begin{bmatrix} 10 & -25 \\ 20 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & -9 \\ 15 & -11 \end{bmatrix} - \begin{bmatrix} 10 & -25 \\ 20 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 - 10 & -9 - (-25) \\ 15 - 20 & -11 - 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -6 & 16 \\ -5 & -11 \end{bmatrix}. ⇒ 3 A + 4 B − 5 C = 3 × [ 0 5 1 − 1 ] + 4 × [ 1 0 − 3 − 2 ] − 5 × [ 2 4 − 5 0 ] ⇒ [ 0 15 3 − 3 ] + [ 4 0 − 12 − 8 ] − [ 10 20 − 25 0 ] ⇒ [ 0 + 4 15 + 0 3 − 12 − 3 − 8 ] − [ 10 20 − 25 0 ] ⇒ [ 4 15 − 9 − 11 ] − [ 10 20 − 25 0 ] ⇒ [ 4 − 10 15 − 20 − 9 − ( − 25 ) − 11 − 0 ] ⇒ [ − 6 − 5 16 − 11 ] .
Hence, 3A + 4B − 5C = [ − 6 16 − 5 − 11 ] \begin{bmatrix} -6 & 16 \\ -5 & -11 \end{bmatrix} [ − 6 − 5 16 − 11 ] .
Find a matrix X such that X + [ 4 6 − 3 7 ] = [ 3 1 − 5 − 2 ] . X + \begin{bmatrix} 4 & 6 \\ -3 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -5 & -2 \end{bmatrix}. X + [ 4 − 3 6 7 ] = [ 3 − 5 1 − 2 ] .
Answer
Given,
⇒ X + [ 4 6 − 3 7 ] = [ 3 1 − 5 − 2 ] ⇒ X = [ 3 1 − 5 − 2 ] − [ 4 6 − 3 7 ] = [ 3 − 4 1 − 6 − 5 − ( − 3 ) − 2 − 7 ] = [ − 1 − 5 − 2 − 9 ] . \Rightarrow X + \begin{bmatrix} 4 & 6 \\ -3 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -5 & -2 \end{bmatrix} \\[1em] \Rightarrow X = \begin{bmatrix} 3 & 1 \\ -5 & -2 \end{bmatrix} - \begin{bmatrix} 4 & 6 \\ -3 & 7 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 - 4& 1 - 6 \\ -5 - (-3) & -2 - 7 \end{bmatrix} \\[1em] = \begin{bmatrix} -1 & -5 \\ -2 & -9 \end{bmatrix}. ⇒ X + [ 4 − 3 6 7 ] = [ 3 − 5 1 − 2 ] ⇒ X = [ 3 − 5 1 − 2 ] − [ 4 − 3 6 7 ] = [ 3 − 4 − 5 − ( − 3 ) 1 − 6 − 2 − 7 ] = [ − 1 − 2 − 5 − 9 ] .
Hence, X = [ − 1 − 5 − 2 − 9 ] \begin{bmatrix} -1 & -5 \\ -2 & -9 \end{bmatrix} [ − 1 − 2 − 5 − 9 ] .
If A = [ − 2 3 4 5 ] A = \begin{bmatrix} -2 & 3 \\ 4 & 5 \end{bmatrix} A = [ − 2 4 3 5 ] and B = [ 5 2 − 7 3 ] B = \begin{bmatrix} 5 & 2 \\ -7 & 3 \end{bmatrix} B = [ 5 − 7 2 3 ] , find a matrix C such that A + B − C = 0.
Answer
Given,
A = [ − 2 3 4 5 ] A = \begin{bmatrix} -2 & 3 \\ 4 & 5 \end{bmatrix} A = [ − 2 4 3 5 ]
B = [ 5 2 − 7 3 ] B = \begin{bmatrix} 5 & 2 \\ -7 & 3 \end{bmatrix} B = [ 5 − 7 2 3 ]
Since,
⇒ A + B - C = 0
⇒ C = A + B
⇒ C = [ − 2 3 4 5 ] + [ 5 2 − 7 3 ] = [ − 2 + 5 3 + 2 4 − 7 5 + 3 ] = [ 3 5 − 3 8 ] \Rightarrow C = \begin{bmatrix} -2 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 5 & 2 \\ -7 & 3 \end{bmatrix} \\[1em] = \begin{bmatrix} -2 + 5 & 3 + 2 \\ 4 - 7 & 5 + 3 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 & 5 \\ -3 & 8 \end{bmatrix} ⇒ C = [ − 2 4 3 5 ] + [ 5 − 7 2 3 ] = [ − 2 + 5 4 − 7 3 + 2 5 + 3 ] = [ 3 − 3 5 8 ]
Hence, C = [ 3 5 − 3 8 ] \begin{bmatrix} 3 & 5 \\ -3 & 8 \end{bmatrix} [ 3 − 3 5 8 ]
Given A = [ 2 − 1 2 0 ] , B = [ − 3 2 4 0 ] , C = [ 1 0 0 2 ] , A = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, A = [ 2 2 − 1 0 ] , B = [ − 3 4 2 0 ] , C = [ 1 0 0 2 ] , find the matrix X such that A + X = 2B + C.
Answer
Given,
A = [ 2 − 1 2 0 ] , B = [ − 3 2 4 0 ] , C = [ 1 0 0 2 ] A = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} A = [ 2 2 − 1 0 ] , B = [ − 3 4 2 0 ] , C = [ 1 0 0 2 ]
⇒ A + X = 2B + C
⇒ X = 2B + C - A
⇒ X = 2 × [ − 3 2 4 0 ] + [ 1 0 0 2 ] − [ 2 − 1 2 0 ] = [ − 6 4 8 0 ] + [ 1 0 0 2 ] − [ 2 − 1 2 0 ] = [ − 6 + 1 4 + 0 8 + 0 0 + 2 ] − [ 2 − 1 2 0 ] = [ − 5 4 8 2 ] − [ 2 − 1 2 0 ] = [ − 5 − 2 4 − ( − 1 ) ( 8 − 2 ) 2 − 0 ] = [ − 7 5 6 2 ] . \Rightarrow X = 2 \times \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -6 & 4 \\ 8 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -6 + 1 & 4 + 0 \\ 8 + 0 & 0 + 2 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -5 & 4 \\ 8 & 2 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -5 - 2 & 4 - (-1) \\ (8 - 2) & 2 - 0 \end{bmatrix} \\[1em] = \begin{bmatrix} -7 & 5 \\ 6 & 2 \end{bmatrix}. ⇒ X = 2 × [ − 3 4 2 0 ] + [ 1 0 0 2 ] − [ 2 2 − 1 0 ] = [ − 6 8 4 0 ] + [ 1 0 0 2 ] − [ 2 2 − 1 0 ] = [ − 6 + 1 8 + 0 4 + 0 0 + 2 ] − [ 2 2 − 1 0 ] = [ − 5 8 4 2 ] − [ 2 2 − 1 0 ] = [ − 5 − 2 ( 8 − 2 ) 4 − ( − 1 ) 2 − 0 ] = [ − 7 6 5 2 ] .
Hence, X = [ − 7 5 6 2 ] . \begin{bmatrix} -7 & 5 \\ 6 & 2 \end{bmatrix}. [ − 7 6 5 2 ] .
If [ 1 4 − 2 3 ] + 2 M = 3 [ 3 2 0 − 3 ] , \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix} + 2M = 3 \begin{bmatrix} 3 & 2 \\ 0 & -3 \end{bmatrix}, [ 1 − 2 4 3 ] + 2 M = 3 [ 3 0 2 − 3 ] , find the matrix M.
Answer
Solving,
⇒ [ 1 4 − 2 3 ] + 2 M = 3 [ 3 2 0 − 3 ] ⇒ [ 1 4 − 2 3 ] + 2 M = [ 9 6 0 − 9 ] ⇒ 2 M = [ 9 6 0 − 9 ] − [ 1 4 − 2 3 ] ⇒ M = 1 2 [ 9 − 1 6 − 4 0 − ( − 2 ) − 9 − 3 ] ⇒ M = 1 2 [ 8 2 2 − 12 ] ⇒ M = [ 4 1 1 − 6 ] . \Rightarrow \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix} + 2M = 3\begin{bmatrix} 3 & 2 \\ 0 & -3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix} + 2M = \begin{bmatrix} 9 & 6 \\ 0 & -9 \end{bmatrix} \\[1em] \Rightarrow 2M = \begin{bmatrix} 9 & 6 \\ 0 & -9 \end{bmatrix} - \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix} \\[1em] \Rightarrow M = \dfrac{1}{2} \begin{bmatrix} 9 - 1 & 6 - 4 \\ 0 - (-2) & -9 - 3 \end{bmatrix} \\[1em] \Rightarrow M = \dfrac{1}{2} \begin{bmatrix} 8 & 2 \\ 2 & -12 \end{bmatrix} \\[1em] \Rightarrow M = \begin{bmatrix} 4 & 1 \\ 1 & -6 \end{bmatrix}. ⇒ [ 1 − 2 4 3 ] + 2 M = 3 [ 3 0 2 − 3 ] ⇒ [ 1 − 2 4 3 ] + 2 M = [ 9 0 6 − 9 ] ⇒ 2 M = [ 9 0 6 − 9 ] − [ 1 − 2 4 3 ] ⇒ M = 2 1 [ 9 − 1 0 − ( − 2 ) 6 − 4 − 9 − 3 ] ⇒ M = 2 1 [ 8 2 2 − 12 ] ⇒ M = [ 4 1 1 − 6 ] .
Hence, M = [ 4 1 1 − 6 ] \begin{bmatrix} 4 & 1 \\ 1 & -6 \end{bmatrix} [ 4 1 1 − 6 ] .
If A = [ 6 2 5 − 4 ] and B = [ 1 2 − 5 1 ] , A = \begin{bmatrix} 6 & 2 \\ 5 & -4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}, A = [ 6 5 2 − 4 ] and B = [ 1 − 5 2 1 ] , find a matrix X such that 2A + 3B − 5X = 0.
Answer
Given,
A = [ 6 2 5 − 4 ] and B = [ 1 2 − 5 1 ] A = \begin{bmatrix} 6 & 2 \\ 5 & -4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix} A = [ 6 5 2 − 4 ] and B = [ 1 − 5 2 1 ] .
⇒ 2A + 3B − 5X = 0
⇒ 2A + 3B = 5X
⇒ X = 1 5 \dfrac{1}{5} 5 1 (2A + 3B)
Substituting values of A and B, we get :
⇒ X = 1 5 ( 2 × [ 6 2 5 − 4 ] + 3 × [ 1 2 − 5 1 ] ) = 1 5 ( [ 12 4 10 − 8 ] + [ 3 6 − 15 3 ] ) = 1 5 ( [ 12 + 3 4 + 6 10 + ( − 15 ) − 8 + 3 ] ) = 1 5 [ 15 10 − 5 − 5 ] = [ 3 2 − 1 − 1 ] . \Rightarrow X = \dfrac{1}{5} \Big(2 \times \begin{bmatrix} 6 & 2 \\ 5 & -4 \end{bmatrix} + 3 \times \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}\Big) \\[1em] = \dfrac{1}{5} \Big(\begin{bmatrix} 12 & 4 \\ 10 & -8 \end{bmatrix} + \begin{bmatrix} 3 & 6 \\ -15 & 3 \end{bmatrix}\Big) \\[1em] = \dfrac{1}{5} \Big(\begin{bmatrix} 12 + 3 & 4 + 6 \\ 10 + (-15) & -8 + 3 \end{bmatrix}\Big) \\[1em] = \dfrac{1}{5}\begin{bmatrix} 15 & 10 \\ -5 & -5 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix}. ⇒ X = 5 1 ( 2 × [ 6 5 2 − 4 ] + 3 × [ 1 − 5 2 1 ] ) = 5 1 ( [ 12 10 4 − 8 ] + [ 3 − 15 6 3 ] ) = 5 1 ( [ 12 + 3 10 + ( − 15 ) 4 + 6 − 8 + 3 ] ) = 5 1 [ 15 − 5 10 − 5 ] = [ 3 − 1 2 − 1 ] .
Hence, X = [ 3 2 − 1 − 1 ] \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} [ 3 − 1 2 − 1 ] .
If Y = [ 1 2 − 1 5 ] Y = \begin{bmatrix} 1 & 2 \\ -1 & 5 \end{bmatrix} Y = [ 1 − 1 2 5 ] ,
Find a matrix X such that 2X + Y = [ 5 0 − 3 3 ] . \begin{bmatrix} 5 & 0 \\ -3 & 3 \end{bmatrix}. [ 5 − 3 0 3 ] .
Answer
Given,
Y = [ 1 2 − 1 5 ] ⇒ 2 X + Y = [ 5 0 − 3 3 ] ⇒ 2 X = [ 5 0 − 3 3 ] − Y ⇒ X = 1 2 ( [ 5 0 − 3 3 ] − Y ) Y = \begin{bmatrix} 1 & 2 \\ -1 & 5 \end{bmatrix} \\[1em] \Rightarrow 2X + Y = \begin{bmatrix} 5 & 0 \\ -3 & 3 \end{bmatrix} \\[1em] \Rightarrow 2X = \begin{bmatrix} 5 & 0 \\ -3 & 3 \end{bmatrix} - Y \\[1em] \Rightarrow X = \dfrac{1}{2} \Big(\begin{bmatrix} 5 & 0 \\ -3 & 3 \end{bmatrix} - Y\Big) Y = [ 1 − 1 2 5 ] ⇒ 2 X + Y = [ 5 − 3 0 3 ] ⇒ 2 X = [ 5 − 3 0 3 ] − Y ⇒ X = 2 1 ( [ 5 − 3 0 3 ] − Y )
Substituting value of Y, we get :
⇒ X = 1 2 ( [ 5 0 − 3 3 ] − [ 1 2 − 1 5 ] ) = 1 2 [ 5 − 1 0 − 2 − 3 − ( − 1 ) 3 − 5 ] = 1 2 [ 4 − 2 − 2 − 2 ] = [ 2 − 1 − 1 − 1 ] . \Rightarrow X = \dfrac{1}{2} \Big(\begin{bmatrix} 5 & 0 \\ -3 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ -1 & 5 \end{bmatrix}\Big) \\[1em] = \dfrac{1}{2}\begin{bmatrix} 5 - 1 & 0 - 2 \\ -3 - (-1) & 3 - 5 \end{bmatrix} \\[1em] = \dfrac{1}{2}\begin{bmatrix} 4 & -2 \\ -2 & -2 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 & -1 \\ -1 & -1 \end{bmatrix}. ⇒ X = 2 1 ( [ 5 − 3 0 3 ] − [ 1 − 1 2 5 ] ) = 2 1 [ 5 − 1 − 3 − ( − 1 ) 0 − 2 3 − 5 ] = 2 1 [ 4 − 2 − 2 − 2 ] = [ 2 − 1 − 1 − 1 ] .
Hence, X = [ 2 − 1 − 1 − 1 ] . \begin{bmatrix} 2 & -1 \\ -1 & -1 \end{bmatrix}. [ 2 − 1 − 1 − 1 ] .
Find matrices A and B such that
A + B = [ 5 4 7 3 ] and A − B = [ 11 2 − 1 7 ] . A + B = \begin{bmatrix} 5 & 4 \\ 7 & 3 \end{bmatrix} \text{ and } A - B = \begin{bmatrix} 11 & 2 \\ -1 & 7 \end{bmatrix}. A + B = [ 5 7 4 3 ] and A − B = [ 11 − 1 2 7 ] .
Answer
Given,
A + B = [ 5 4 7 3 ] . . . . ( 1 ) A + B = \begin{bmatrix} 5 & 4 \\ 7 & 3 \end{bmatrix}....(1) A + B = [ 5 7 4 3 ] .... ( 1 )
A − B = [ 11 2 − 1 7 ] . . . . ( 2 ) A - B = \begin{bmatrix} 11 & 2 \\ -1 & 7 \end{bmatrix}....(2) A − B = [ 11 − 1 2 7 ] .... ( 2 )
Adding equations (1) and (2), we get :
⇒ ( A + B ) + ( A − B ) = [ 5 4 7 3 ] + [ 11 2 − 1 7 ] ⇒ A + B + A − B = [ 5 + 11 4 + 2 7 + ( − 1 ) 3 + 7 ] ⇒ 2 A = [ 16 6 6 10 ] ⇒ A = 1 2 [ 16 6 6 10 ] ⇒ A = [ 8 3 3 5 ] . \Rightarrow (A + B) + (A - B) = \begin{bmatrix} 5 & 4 \\ 7 & 3 \end{bmatrix} + \begin{bmatrix} 11 & 2 \\ -1 & 7 \end{bmatrix} \\[1em] \Rightarrow A + B + A - B = \begin{bmatrix} 5 + 11 & 4 + 2 \\ 7 + (-1) & 3 + 7 \end{bmatrix} \\[1em] \Rightarrow 2A = \begin{bmatrix} 16 & 6 \\ 6 & 10 \end{bmatrix} \\[1em] \Rightarrow A = \dfrac{1}{2} \begin{bmatrix} 16 & 6 \\ 6 & 10 \end{bmatrix} \\[1em] \Rightarrow A = \begin{bmatrix} 8 & 3 \\ 3 & 5 \end{bmatrix}. ⇒ ( A + B ) + ( A − B ) = [ 5 7 4 3 ] + [ 11 − 1 2 7 ] ⇒ A + B + A − B = [ 5 + 11 7 + ( − 1 ) 4 + 2 3 + 7 ] ⇒ 2 A = [ 16 6 6 10 ] ⇒ A = 2 1 [ 16 6 6 10 ] ⇒ A = [ 8 3 3 5 ] .
Substituting value of A in equation (1), we get :
⇒ [ 8 3 3 5 ] + B = [ 5 4 7 3 ] ⇒ B = [ 5 4 7 3 ] − [ 8 3 3 5 ] ⇒ B = [ 5 − 8 4 − 3 7 − 3 3 − 5 ] ⇒ B = [ − 3 1 4 − 2 ] . \Rightarrow \begin{bmatrix} 8 & 3 \\ 3 & 5 \end{bmatrix} + B = \begin{bmatrix} 5 & 4 \\ 7 & 3 \end{bmatrix} \\[1em] \Rightarrow B = \begin{bmatrix} 5 & 4 \\ 7 & 3 \end{bmatrix} - \begin{bmatrix} 8 & 3 \\ 3 & 5 \end{bmatrix} \\[1em] \Rightarrow B = \begin{bmatrix} 5 - 8 & 4 - 3 \\ 7 - 3 & 3 - 5 \end{bmatrix} \\[1em] \Rightarrow B = \begin{bmatrix} -3 & 1 \\ 4 & -2 \end{bmatrix}. ⇒ [ 8 3 3 5 ] + B = [ 5 7 4 3 ] ⇒ B = [ 5 7 4 3 ] − [ 8 3 3 5 ] ⇒ B = [ 5 − 8 7 − 3 4 − 3 3 − 5 ] ⇒ B = [ − 3 4 1 − 2 ] .
Hence, A = [ 8 3 3 5 ] \begin{bmatrix} 8 & 3 \\ 3 & 5 \end{bmatrix} [ 8 3 3 5 ] and B = [ − 3 1 4 − 2 ] \begin{bmatrix} -3 & 1 \\ 4 & -2 \end{bmatrix} [ − 3 4 1 − 2 ] .
Compute: 6 [ 4 − 5 3 2 ] − 3 [ 2 − 3 − 1 4 ] 6 \begin{bmatrix} 4 & -5 \\ 3 & 2 \end{bmatrix} - 3\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} 6 [ 4 3 − 5 2 ] − 3 [ 2 − 1 − 3 4 ]
Answer
Solving,
⇒ 6 [ 4 − 5 3 2 ] − 3 [ 2 − 3 − 1 4 ] = [ 24 − 30 18 12 ] − [ 6 − 9 − 3 12 ] = [ 24 − 6 − 30 − ( − 9 ) 18 − ( − 3 ) 12 − 12 ] = [ 18 − 21 21 0 ] . \Rightarrow 6 \begin{bmatrix} 4 & -5 \\ 3 & 2 \end{bmatrix} - 3\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 24 & -30 \\ 18 & 12 \end{bmatrix} - \begin{bmatrix} 6 & -9 \\ -3 & 12 \end{bmatrix} \\[1em] = \begin{bmatrix} 24 - 6 & -30 - (-9) \\ 18 - (-3) & 12 - 12 \end{bmatrix} \\[1em] = \begin{bmatrix} 18 & -21 \\ 21 & 0 \end{bmatrix}. ⇒ 6 [ 4 3 − 5 2 ] − 3 [ 2 − 1 − 3 4 ] = [ 24 18 − 30 12 ] − [ 6 − 3 − 9 12 ] = [ 24 − 6 18 − ( − 3 ) − 30 − ( − 9 ) 12 − 12 ] = [ 18 21 − 21 0 ] .
Hence, resultant matrix = [ 18 − 21 21 0 ] . \begin{bmatrix} 18 & -21 \\ 21 & 0 \end{bmatrix}. [ 18 21 − 21 0 ] .
Simplify : sin A [ sin A − cos A cos A sin A ] + cos A [ cos A sin A − sin A cos A ] \sin A \begin{bmatrix} \sin A & -\cos A \\ \cos A & \sin A \end{bmatrix} + \cos A \begin{bmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{bmatrix} sin A [ sin A cos A − cos A sin A ] + cos A [ cos A − sin A sin A cos A ] .
Answer
Solving,
⇒ sin A [ sin A − cos A cos A sin A ] + cos A [ cos A sin A − sin A cos A ] ⇒ [ sin 2 A − cos A sin A sin A cos A sin 2 A ] + [ cos 2 A sin A cos A − sin A cos A cos 2 A ] ⇒ [ sin 2 A + cos 2 A − cos A sin A + sin A cos A sin A cos A − sin A cos A sin 2 A + cos 2 A ] ⇒ [ 1 0 0 1 ] . \Rightarrow \sin A \begin{bmatrix} \sin A & -\cos A \\ \cos A & \sin A \end{bmatrix} + \cos A \begin{bmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} \sin^2 A & -\cos A \sin A \\ \sin A \cos A & \sin^2 A \end{bmatrix} + \begin{bmatrix} \cos^2 A & \sin A \cos A \\ -\sin A \cos A & \cos^2 A \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} \sin^2 A + \cos^2 A & -\cos A \sin A + \sin A \cos A \\ \sin A \cos A - \sin A \cos A & \sin^2 A + \cos^2 A \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. ⇒ sin A [ sin A cos A − cos A sin A ] + cos A [ cos A − sin A sin A cos A ] ⇒ [ sin 2 A sin A cos A − cos A sin A sin 2 A ] + [ cos 2 A − sin A cos A sin A cos A cos 2 A ] ⇒ [ sin 2 A + cos 2 A sin A cos A − sin A cos A − cos A sin A + sin A cos A sin 2 A + cos 2 A ] ⇒ [ 1 0 0 1 ] .
Hence, resultant matrix = [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ] .
Show that :
cos θ [ cos θ sin θ − sin θ cos θ ] + sin θ [ sin θ − cos θ cos θ sin θ ] = [ 1 0 0 1 ] \cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} cos θ [ cos θ − sin θ sin θ cos θ ] + sin θ [ sin θ cos θ − cos θ sin θ ] = [ 1 0 0 1 ]
Answer
Solving L.H.S.,
⇒ cos θ [ cos θ sin θ − sin θ cos θ ] + sin θ [ sin θ − cos θ cos θ sin θ ] ⇒ [ cos 2 θ sin θ cos θ − sin θ cos θ cos 2 θ ] + [ sin 2 θ − cos θ sin θ sin θ cos θ sin 2 θ ] ⇒ [ cos 2 θ + sin 2 θ sin θ cos θ − cos θ sin θ − sin θ cos θ + sin θ cos θ cos 2 θ + sin 2 θ ] ⇒ [ 1 0 0 1 ] . \Rightarrow \cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos^2 \theta \end{bmatrix} + \begin{bmatrix} \sin^2 \theta & -\cos \theta \sin \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} \cos^2 \theta + \sin^2 \theta & \sin \theta \cos \theta - \cos \theta \sin \theta \\ -\sin \theta \cos \theta + \sin \theta \cos \theta & \cos^2 \theta + \sin^2 \theta \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. ⇒ cos θ [ cos θ − sin θ sin θ cos θ ] + sin θ [ sin θ cos θ − cos θ sin θ ] ⇒ [ cos 2 θ − sin θ cos θ sin θ cos θ cos 2 θ ] + [ sin 2 θ sin θ cos θ − cos θ sin θ sin 2 θ ] ⇒ [ cos 2 θ + sin 2 θ − sin θ cos θ + sin θ cos θ sin θ cos θ − cos θ sin θ cos 2 θ + sin 2 θ ] ⇒ [ 1 0 0 1 ] .
Hence, resultant matrix = [ 1 0 0 1 ] . \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. [ 1 0 0 1 ] .
If, 3 [ 2 x 1 0 ] + 2 [ 4 3 y 2 ] = [ z − 3 15 4 ] 3 \begin{bmatrix} 2 & x \\ 1 & 0 \end{bmatrix} + 2 \begin{bmatrix} 4 & 3 \\ y & 2 \end{bmatrix} =\begin{bmatrix} z & -3 \\ 15 & 4 \end{bmatrix} 3 [ 2 1 x 0 ] + 2 [ 4 y 3 2 ] = [ z 15 − 3 4 ] , find the values of x, y, and z.
Answer
Solving,
⇒ 3 [ 2 x 1 0 ] + 2 [ 4 3 y 2 ] = [ z − 3 15 4 ] ⇒ [ 6 3 x 3 0 ] + [ 8 6 2 y 4 ] = [ z − 3 15 4 ] ⇒ [ 6 + 8 3 x + 6 3 + 2 y 0 + 4 ] = [ z − 3 15 4 ] ⇒ [ 14 3 x + 6 3 + 2 y 4 ] = [ z − 3 15 4 ] . \Rightarrow 3 \begin{bmatrix} 2 & x \\ 1 & 0 \end{bmatrix} + 2 \begin{bmatrix} 4 & 3 \\ y & 2 \end{bmatrix} =\begin{bmatrix} z & -3 \\ 15 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 & 3x \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 8 & 6 \\ 2y & 4 \end{bmatrix} =\begin{bmatrix} z & -3 \\ 15 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 + 8 & 3x + 6 \\ 3 + 2y & 0 + 4 \end{bmatrix} =\begin{bmatrix} z & -3 \\ 15 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 14 & 3x + 6 \\ 3 + 2y & 4 \end{bmatrix} =\begin{bmatrix} z & -3 \\ 15 & 4 \end{bmatrix}. ⇒ 3 [ 2 1 x 0 ] + 2 [ 4 y 3 2 ] = [ z 15 − 3 4 ] ⇒ [ 6 3 3 x 0 ] + [ 8 2 y 6 4 ] = [ z 15 − 3 4 ] ⇒ [ 6 + 8 3 + 2 y 3 x + 6 0 + 4 ] = [ z 15 − 3 4 ] ⇒ [ 14 3 + 2 y 3 x + 6 4 ] = [ z 15 − 3 4 ] .
∴ z = 14
∴ 3x + 6 = -3
⇒ 3x = -3 - 6
⇒ 3x = -9
⇒ x = − 9 3 \dfrac{-9}{3} 3 − 9
⇒ x = -3
∴ 3 + 2y = 15
⇒ 2y = 15 - 3
⇒ 2y = 12
⇒ y = 12 2 \dfrac{12}{2} 2 12
⇒ y = 6.
Hence, x = -3, y = 6 and z = 14.
If 3 [ 5 6 2 x ] − [ 8 y 0 8 ] = [ 7 8 6 7 ] 3\begin{bmatrix} 5 & 6 \\ 2 & x \end{bmatrix} - \begin{bmatrix} 8 & y \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 6 & 7 \end{bmatrix} 3 [ 5 2 6 x ] − [ 8 0 y 8 ] = [ 7 6 8 7 ] find the values of x and y.
Answer
Given,
3 [ 5 6 2 x ] − [ 8 y 0 8 ] = [ 7 8 6 7 ] 3\begin{bmatrix} 5 & 6 \\ 2 & x \end{bmatrix} - \begin{bmatrix} 8 & y \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 6 & 7 \end{bmatrix} 3 [ 5 2 6 x ] − [ 8 0 y 8 ] = [ 7 6 8 7 ]
Solving,
⇒ 3 [ 5 6 2 x ] − [ 8 y 0 8 ] = [ 7 8 6 7 ] ⇒ [ 15 18 6 3 x ] − [ 8 y 0 8 ] = [ 7 8 6 7 ] ⇒ [ 15 − 8 18 − y 6 − 0 3 x − 8 ] = [ 7 8 6 7 ] ⇒ [ 7 18 − y 6 3 x − 8 ] = [ 7 8 6 7 ] . \Rightarrow 3\begin{bmatrix} 5 & 6 \\ 2 & x \end{bmatrix} - \begin{bmatrix} 8 & y \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 6 & 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 15 & 18 \\ 6 & 3x \end{bmatrix} - \begin{bmatrix} 8 & y \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 6 & 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 15 - 8 & 18 - y \\ 6 - 0 & 3x - 8 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 6 & 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 7 & 18 - y \\ 6 & 3x - 8 \end{bmatrix} = \begin{bmatrix} 7 & 8 \\ 6 & 7 \end{bmatrix}. ⇒ 3 [ 5 2 6 x ] − [ 8 0 y 8 ] = [ 7 6 8 7 ] ⇒ [ 15 6 18 3 x ] − [ 8 0 y 8 ] = [ 7 6 8 7 ] ⇒ [ 15 − 8 6 − 0 18 − y 3 x − 8 ] = [ 7 6 8 7 ] ⇒ [ 7 6 18 − y 3 x − 8 ] = [ 7 6 8 7 ] .
∴ 18 - y = 8
⇒ y = 18 - 8
⇒ y = 10.
∴ 3x - 8 = 7
⇒ 3x = 7 + 8
⇒ 3x = 15
⇒ x = 15 3 \dfrac{15}{3} 3 15
⇒ x = 5.
Hence, x = 5, y = 10.
If 2 [ 3 4 5 x ] + [ 1 y 0 1 ] = [ 7 0 10 5 ] 2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} 2 [ 3 5 4 x ] + [ 1 0 y 1 ] = [ 7 10 0 5 ] find the values of x and y.
Answer
Given,
2 [ 3 4 5 x ] + [ 1 y 0 1 ] = [ 7 0 10 5 ] 2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} 2 [ 3 5 4 x ] + [ 1 0 y 1 ] = [ 7 10 0 5 ]
Solving,
⇒ [ 6 8 10 2 x ] + [ 1 y 0 1 ] = [ 7 0 10 5 ] ⇒ [ 6 + 1 8 + y 10 + 0 2 x + 1 ] = [ 7 0 10 5 ] ⇒ [ 7 8 + y 10 2 x + 1 ] = [ 7 0 10 5 ] . \Rightarrow \begin{bmatrix} 6 & 8 \\ 10 & 2x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 + 1 & 8 + y \\ 10 + 0 & 2x + 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 7 & 8 + y \\ 10 & 2x + 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}. ⇒ [ 6 10 8 2 x ] + [ 1 0 y 1 ] = [ 7 10 0 5 ] ⇒ [ 6 + 1 10 + 0 8 + y 2 x + 1 ] = [ 7 10 0 5 ] ⇒ [ 7 10 8 + y 2 x + 1 ] = [ 7 10 0 5 ] .
∴ 8 + y = 0
⇒ y = -8
∴ 2x + 1 = 5
⇒ 2x = 5 - 1
⇒ 2x = 4
⇒ x = 4 2 \dfrac{4}{2} 2 4
⇒ x = 2.
Hence, x = 2, y = -8.
Find the value of x and y if 2 [ x 7 9 y − 5 ] + [ 6 − 7 4 5 ] = [ 10 7 22 15 ] . 2 \begin{bmatrix} x & 7 \\ 9 & y - 5 \end{bmatrix} + \begin{bmatrix} 6 & -7 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 10 & 7 \\ 22 & 15 \end{bmatrix}. 2 [ x 9 7 y − 5 ] + [ 6 4 − 7 5 ] = [ 10 22 7 15 ] .
Answer
Given,
2 [ x 7 9 y − 5 ] + [ 6 − 7 4 5 ] = [ 10 7 22 15 ] . 2 \begin{bmatrix} x & 7 \\ 9 & y - 5 \end{bmatrix} + \begin{bmatrix} 6 & -7 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 10 & 7 \\ 22 & 15 \end{bmatrix}. 2 [ x 9 7 y − 5 ] + [ 6 4 − 7 5 ] = [ 10 22 7 15 ] .
Solving,
⇒ [ 2 x 14 18 2 y − 10 ] + [ 6 − 7 4 5 ] = [ 10 7 22 15 ] ⇒ [ 2 x + 6 14 − 7 18 + 4 2 y − 10 + 5 ] = [ 10 7 22 15 ] ⇒ [ 2 x + 6 7 22 2 y − 5 ] = [ 10 7 22 15 ] . \Rightarrow \begin{bmatrix} 2x & 14 \\ 18 & 2y - 10 \end{bmatrix} + \begin{bmatrix} 6 & -7 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 10 & 7 \\ 22 & 15 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x + 6 & 14 - 7 \\ 18 + 4 & 2y - 10 + 5 \end{bmatrix} = \begin{bmatrix} 10 & 7 \\ 22 & 15 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x + 6 & 7 \\ 22 & 2y - 5 \end{bmatrix} = \begin{bmatrix} 10 & 7 \\ 22 & 15 \end{bmatrix}. ⇒ [ 2 x 18 14 2 y − 10 ] + [ 6 4 − 7 5 ] = [ 10 22 7 15 ] ⇒ [ 2 x + 6 18 + 4 14 − 7 2 y − 10 + 5 ] = [ 10 22 7 15 ] ⇒ [ 2 x + 6 22 7 2 y − 5 ] = [ 10 22 7 15 ] .
∴ 2x + 6 = 10
⇒ 2x = 10 - 6
⇒ 2x = 4
⇒ x = 4 2 \dfrac{4}{2} 2 4
⇒ x = 2.
∴ 2y - 5 = 15
⇒ 2y = 15 + 5
⇒ 2y = 20
⇒ y = 20 2 \dfrac{20}{2} 2 20
⇒ y = 10.
Hence, x = 2, y = 10.
Given A = [ 1 − 2 1 2 1 3 ] A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix} A = [ 1 2 − 2 1 1 3 ] and B = [ 2 1 3 2 1 1 ] B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix} B = 2 3 1 1 2 1 ,
(i) Write down the product matrix AB.
(ii) Would it be possible to form the product matrix BA? If so, compute BA; if not, give reasons why it is not possible.
Answer
(i) Given,
A = [ 1 − 2 1 2 1 3 ] A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix} A = [ 1 2 − 2 1 1 3 ] and B = [ 2 1 3 2 1 1 ] B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix} B = 2 3 1 1 2 1
Solving,
A B = [ 1 − 2 1 2 1 3 ] × [ 2 1 3 2 1 1 ] = [ ( 1 ) ( 2 ) + ( − 2 ) ( 3 ) + ( 1 ) ( 1 ) ( 1 ) ( 1 ) + ( − 2 ) ( 2 ) + ( 1 ) ( 1 ) ( 2 ) ( 2 ) + ( 1 ) ( 3 ) + ( 3 ) ( 1 ) ( 2 ) ( 1 ) + ( 1 ) ( 2 ) + ( 3 ) ( 1 ) ] = [ 2 − 6 + 1 1 − 4 + 1 4 + 3 + 3 2 + 2 + 3 ] = [ − 3 − 2 10 7 ] . AB = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix} \\[1em] = \begin{bmatrix} (1)(2) + (-2)(3) + (1)(1) & (1)(1) + (-2)(2) + (1)(1) \\ (2)(2) + (1)(3) + (3)(1) & (2)(1) + (1)(2) + (3)(1) \end{bmatrix} \\[1em] = \begin{bmatrix} 2 - 6 + 1 & 1 - 4 + 1 \\ 4 + 3 + 3 & 2 + 2 + 3 \end{bmatrix} \\[1em] = \begin{bmatrix} -3 & -2 \\ 10 & 7 \end{bmatrix}. A B = [ 1 2 − 2 1 1 3 ] × 2 3 1 1 2 1 = [ ( 1 ) ( 2 ) + ( − 2 ) ( 3 ) + ( 1 ) ( 1 ) ( 2 ) ( 2 ) + ( 1 ) ( 3 ) + ( 3 ) ( 1 ) ( 1 ) ( 1 ) + ( − 2 ) ( 2 ) + ( 1 ) ( 1 ) ( 2 ) ( 1 ) + ( 1 ) ( 2 ) + ( 3 ) ( 1 ) ] = [ 2 − 6 + 1 4 + 3 + 3 1 − 4 + 1 2 + 2 + 3 ] = [ − 3 10 − 2 7 ] .
Hence, AB = [ − 3 − 2 10 7 ] \begin{bmatrix} -3 & -2 \\ 10 & 7 \end{bmatrix} [ − 3 10 − 2 7 ] .
(ii) Yes, it is possible.
The number of columns in B equals the number of rows in A . The resulting matrix BA will be a 3×3 matrix.
B A = [ 2 1 3 2 1 1 ] × [ 1 − 2 1 2 1 3 ] = [ ( 2 ) ( 1 ) + ( 1 ) ( 2 ) ( 2 ) ( − 2 ) + ( 1 ) ( 1 ) ( 2 ) ( 1 ) + ( 1 ) ( 3 ) ( 3 ) ( 1 ) + ( 2 ) ( 2 ) ( 3 ) ( − 2 ) + ( 2 ) ( 1 ) ( 3 ) ( 1 ) + ( 2 ) ( 3 ) ( 1 ) ( 1 ) + ( 1 ) ( 2 ) ( 1 ) ( − 2 ) + ( 1 ) ( 1 ) ( 1 ) ( 1 ) + ( 1 ) ( 3 ) ] = [ 2 + 2 − 4 + 1 2 + 3 3 + 4 − 6 + 2 3 + 6 1 + 2 − 2 + 1 1 + 3 ] = [ 4 − 3 5 7 − 4 9 3 − 1 4 ] . BA = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \\[1em] = \begin{bmatrix} (2)(1) + (1)(2) & (2)(-2) + (1)(1) & (2)(1) + (1)(3) \\ (3)(1) + (2)(2) & (3)(-2) + (2)(1) & (3)(1) + (2)(3) \\ (1)(1) + (1)(2) & (1)(-2) + (1)(1) & (1)(1) + (1)(3) \end{bmatrix} \\[1em] = \begin{bmatrix} 2 + 2 & -4 + 1 & 2 + 3 \\ 3 + 4 & -6 + 2 & 3 + 6 \\ 1 + 2 & -2 + 1 & 1 + 3 \end{bmatrix} \\[1em] = \begin{bmatrix} 4 & -3 & 5 \\ 7 & -4 & 9 \\ 3 & -1 & 4 \end{bmatrix}. B A = 2 3 1 1 2 1 × [ 1 2 − 2 1 1 3 ] = ( 2 ) ( 1 ) + ( 1 ) ( 2 ) ( 3 ) ( 1 ) + ( 2 ) ( 2 ) ( 1 ) ( 1 ) + ( 1 ) ( 2 ) ( 2 ) ( − 2 ) + ( 1 ) ( 1 ) ( 3 ) ( − 2 ) + ( 2 ) ( 1 ) ( 1 ) ( − 2 ) + ( 1 ) ( 1 ) ( 2 ) ( 1 ) + ( 1 ) ( 3 ) ( 3 ) ( 1 ) + ( 2 ) ( 3 ) ( 1 ) ( 1 ) + ( 1 ) ( 3 ) = 2 + 2 3 + 4 1 + 2 − 4 + 1 − 6 + 2 − 2 + 1 2 + 3 3 + 6 1 + 3 = 4 7 3 − 3 − 4 − 1 5 9 4 .
Hence, BA = [ 4 − 3 5 7 − 4 9 3 − 1 4 ] \begin{bmatrix} 4 & -3 & 5 \\ 7 & -4 & 9 \\ 3 & -1 & 4 \end{bmatrix} 4 7 3 − 3 − 4 − 1 5 9 4 .
Let A = [ 1 3 2 − 1 ] \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} [ 1 2 3 − 1 ] and B = [ 2 − 3 ] \begin{bmatrix} 2 \\ -3 \end{bmatrix} [ 2 − 3 ]
(i) Show that AB exists and write its order.
(ii) Find AB.
Answer
(i) Given,
A = [ 1 3 2 − 1 ] \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} [ 1 2 3 − 1 ] (order 2 × 2)
B = [ 2 − 3 ] \begin{bmatrix} 2 \\ -3 \end{bmatrix} [ 2 − 3 ] (order 2 × 1)
For matrix multiplication :
The number of columns in the first matrix (A) must equal the number of rows in the second matrix(B).
Since the number of columns in A (2) equals the number of rows in B (2), the product AB exists.
Resultant matrix order = No. of rows in A × No. of columns in B.
Hence, order of matrix AB 2 × 1.
(ii) A B = [ 1 3 2 − 1 ] × [ 2 − 3 ] = [ ( 1 ) ( 2 ) + ( 3 ) ( − 3 ) ( 2 ) ( 2 ) + ( − 1 ) ( − 3 ) ] = [ 2 − 9 4 + 3 ] = [ − 7 7 ] . AB = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \times \begin{bmatrix} 2 \\ -3 \end{bmatrix} \\[1em] = \begin{bmatrix} (1)(2) + (3)(-3) \\ (2)(2) + (-1)(-3) \end{bmatrix} \\[1em] = \begin{bmatrix} 2 - 9 \\ 4 + 3 \end{bmatrix} \\[1em] = \begin{bmatrix} -7 \\ 7 \end{bmatrix}. A B = [ 1 2 3 − 1 ] × [ 2 − 3 ] = [ ( 1 ) ( 2 ) + ( 3 ) ( − 3 ) ( 2 ) ( 2 ) + ( − 1 ) ( − 3 ) ] = [ 2 − 9 4 + 3 ] = [ − 7 7 ] .
Hence, AB = [ − 7 7 ] . \begin{bmatrix} -7 \\ 7 \end{bmatrix}. [ − 7 7 ] .
Let M = [ 1 − 2 ] \begin{bmatrix} 1 & -2 \end{bmatrix} [ 1 − 2 ] and N = [ 2 1 − 1 2 ] \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} [ 2 − 1 1 2 ]
(i) Show that MN exists and write its order.
(ii) Find MN.
(iii) Does NM exist? Give reasons.
Answer
(i) Given,
For matrix multiplication :
Number of columns in the first matrix must be equal to number of rows in the second matrix.
We know that,
The number of rows in resultant matrix equals to number of rows in first matrix and number of columns in resultant matrix equals to number of columns in second matrix.
M 1 × 2 × N 2 × 2 = M N 1 × 2 M_{1 \times 2} \times N_{2 \times 2} = MN_{1 \times 2} M 1 × 2 × N 2 × 2 = M N 1 × 2
Hence, MN exists and order of MN = 1 × 2.
(ii) M N = [ 1 − 2 ] × [ 2 1 − 1 2 ] = [ ( 1 ) ( 2 ) + ( − 2 ) ( − 1 ) ( 1 ) ( 1 ) + ( − 2 ) ( 2 ) ] = [ 2 + 2 1 − 4 ] = [ 4 − 3 ] . MN = \begin{bmatrix} 1 & -2 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \\[1em] = \begin{bmatrix} (1)(2) + (-2)(-1) & (1)(1) + (-2)(2) \end{bmatrix} \\[1em] = \begin{bmatrix} 2 + 2 & 1 - 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 4 & -3 \end{bmatrix}. MN = [ 1 − 2 ] × [ 2 − 1 1 2 ] = [ ( 1 ) ( 2 ) + ( − 2 ) ( − 1 ) ( 1 ) ( 1 ) + ( − 2 ) ( 2 ) ] = [ 2 + 2 1 − 4 ] = [ 4 − 3 ] .
Hence, MN = [ 4 − 3 ] . \begin{bmatrix} 4 & -3 \end{bmatrix}. [ 4 − 3 ] .
(iii)
For matrix multiplication :
Number of columns in the second matrix must be equal to number of rows in the first matrix.
N 2 × 2 × M 1 × 2 N_{2 \times 2} \times M_{1 \times 2} N 2 × 2 × M 1 × 2
Not possible because Number of columns in the second matrix ≠Number of rows in the first matrix.
Hence, NM does not exists.
Let A = [ 2 3 ] \begin{bmatrix} 2 & 3 \end{bmatrix} [ 2 3 ] and B = [ − 2 1 ] \begin{bmatrix} -2 \\ 1 \end{bmatrix} [ − 2 1 ]
Show that AB and BA both exist. Write the order of each.
(i) Find AB.
(ii) Find BA.
Answer
Given,
A = [ 2 3 ] \begin{bmatrix} 2 & 3 \end{bmatrix} [ 2 3 ] B = [ − 2 1 ] \begin{bmatrix} -2 \\ 1 \end{bmatrix} [ − 2 1 ]
For matrix multiplication :
Number of columns in the first matrix (A) = Number of rows in the second matrix(B).
Since the number of columns in A (2) equals the number of rows in B (2), the product AB exists.
Resultant matrix order = No. of rows in A × No. of columns in B.
A 1 × 2 × B 2 × 1 = A B 1 × 1 A_{1 \times 2} \times B_{2 \times 1} = AB_{1 \times 1} A 1 × 2 × B 2 × 1 = A B 1 × 1
∴ Order of matrix AB will be 1 × 1.
Since the number of columns in B (1) equals the number of rows in A (1), the product AB exists.
Resultant matrix order = No. of rows in B × No. of columns in A.
∴ m = 2 and n = 2.
Hence, order of matrix AB 1 × 1 and BA 2 × 2.
(i) A B = [ 2 3 ] × [ − 2 1 ] = [ ( 2 ) ( − 2 ) + ( 3 ) ( 1 ) ] = [ − 4 + 3 ] = [ − 1 ] . AB = \begin{bmatrix} 2 & 3 \end{bmatrix} \times \begin{bmatrix} -2 \\ 1 \end{bmatrix} \\[1em] = \begin{bmatrix} (2)(-2) + (3)(1) \end{bmatrix} \\[1em] = \begin{bmatrix} -4 + 3 \end{bmatrix} \\[1em] = \begin{bmatrix} -1 \end{bmatrix}. A B = [ 2 3 ] × [ − 2 1 ] = [ ( 2 ) ( − 2 ) + ( 3 ) ( 1 ) ] = [ − 4 + 3 ] = [ − 1 ] .
Hence, AB = [ − 1 ] \begin{bmatrix} -1 \end{bmatrix} [ − 1 ] .
(ii) For matrix multiplication :
Number of columns in the first matrix (B) = Number of rows in the second matrix(A).
Since the number of columns in B (1) equals the number of rows in A (1), the product BA exists.
A B 2 × 1 × B 1 × 2 = B A 2 × 2 AB_{2 \times 1} \times B_{1 \times 2} = BA_{2 \times 2} A B 2 × 1 × B 1 × 2 = B A 2 × 2
B A = [ − 2 1 ] × [ 2 3 ] = [ ( − 2 ) ( 2 ) ( − 2 ) ( 3 ) ( 1 ) ( 2 ) ( 1 ) ( 3 ) ] = [ − 4 − 6 2 3 ] BA = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 2 & 3 \end{bmatrix} \\[1em] = \begin{bmatrix} (-2)(2) & (-2)(3) \\ (1)(2) & (1)(3) \end{bmatrix} \\[1em] = \begin{bmatrix} -4 & -6 \\ 2 & 3 \end{bmatrix} \\[1em] B A = [ − 2 1 ] × [ 2 3 ] = [ ( − 2 ) ( 2 ) ( 1 ) ( 2 ) ( − 2 ) ( 3 ) ( 1 ) ( 3 ) ] = [ − 4 2 − 6 3 ]
Hence, BA = [ − 4 − 6 2 3 ] \begin{bmatrix} -4 & -6 \\ 2 & 3 \end{bmatrix} [ − 4 2 − 6 3 ] .
Let A = [ 1 3 2 − 1 ] \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} [ 1 2 3 − 1 ] and B = [ 2 1 0 3 ] \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} [ 2 0 1 3 ]
(i) Find AB.
(ii) Find BA.
(iii) Is AB = BA?
Answer
(i) Solving AB,
⇒ [ 1 3 2 − 1 ] × [ 2 1 0 3 ] ⇒ [ 1 × 2 + 3 × 0 1 × 1 + 3 × 3 2 × 2 + ( − 1 ) × 0 2 × 1 + ( − 1 ) × 3 ] ⇒ [ 2 + 0 1 + 9 4 + 0 2 + ( − 3 ) ] ⇒ [ 2 10 4 − 1 ] . \Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 \times 2 + 3 \times 0 & 1 \times 1 + 3 \times 3 \\ 2 \times 2 + (-1) \times 0 & 2 \times 1 + (-1) \times 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 + 0 & 1 + 9 \\ 4 + 0 & 2 + (-3) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 & 10 \\ 4 & -1 \end{bmatrix}. ⇒ [ 1 2 3 − 1 ] × [ 2 0 1 3 ] ⇒ [ 1 × 2 + 3 × 0 2 × 2 + ( − 1 ) × 0 1 × 1 + 3 × 3 2 × 1 + ( − 1 ) × 3 ] ⇒ [ 2 + 0 4 + 0 1 + 9 2 + ( − 3 ) ] ⇒ [ 2 4 10 − 1 ] .
Hence, AB = [ 2 10 4 − 1 ] \begin{bmatrix} 2 & 10 \\ 4 & -1 \end{bmatrix} [ 2 4 10 − 1 ] .
(ii) Solving BA,
⇒ [ 2 1 0 3 ] × [ 1 3 2 − 1 ] ⇒ [ 2 × 1 + 1 × 2 2 × 3 + 1 × ( − 1 ) 0 × 1 + 3 × 2 0 × 3 + 3 × ( − 1 ) ] ⇒ [ 2 + 2 6 + ( − 1 ) 0 + 6 0 + ( − 3 ) ] ⇒ [ 4 5 6 − 3 ] . \Rightarrow \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \times 1 + 1 \times 2 & 2 \times 3 + 1 \times (-1) \\ 0 \times 1 + 3 \times 2 & 0 \times 3 + 3 \times (-1) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 + 2 & 6 + (-1) \\ 0 + 6 & 0 + (-3) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 5 \\ 6 & -3 \end{bmatrix}. ⇒ [ 2 0 1 3 ] × [ 1 2 3 − 1 ] ⇒ [ 2 × 1 + 1 × 2 0 × 1 + 3 × 2 2 × 3 + 1 × ( − 1 ) 0 × 3 + 3 × ( − 1 ) ] ⇒ [ 2 + 2 0 + 6 6 + ( − 1 ) 0 + ( − 3 ) ] ⇒ [ 4 6 5 − 3 ] .
Hence, BA = [ 4 5 6 − 3 ] \begin{bmatrix} 4 & 5 \\ 6 & -3 \end{bmatrix} [ 4 6 5 − 3 ] .
(iii) As calculated above,
AB ≠ BA
Hence, AB ≠ BA.
Let A = [ 5 − 1 6 2 ] \begin{bmatrix} 5 & -1 \\ 6 & 2 \end{bmatrix} [ 5 6 − 1 2 ] and B = [ 2 1 − 3 4 ] \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} [ 2 − 3 1 4 ] , show that AB ≠ BA.
Answer
Solving AB,
⇒ [ 5 − 1 6 2 ] × [ 2 1 − 3 4 ] ⇒ [ 5 × 2 + ( − 1 ) × ( − 3 ) 5 × 1 + ( − 1 ) × 4 6 × 2 + 2 × ( − 3 ) 6 × 1 + 2 × 4 ] ⇒ [ 10 + 3 5 + ( − 4 ) 12 + ( − 6 ) 6 + 8 ] ⇒ [ 13 1 6 14 ] . \Rightarrow \begin{bmatrix} 5 & -1 \\ 6 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 \times 2 + (-1) \times (-3) & 5 \times 1 + (-1) \times 4 \\ 6 \times 2 + 2 \times (-3) & 6 \times 1 + 2 \times 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 10 + 3 & 5 + (-4) \\ 12 + (-6) & 6 + 8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 13 & 1 \\ 6 & 14 \end{bmatrix}. ⇒ [ 5 6 − 1 2 ] × [ 2 − 3 1 4 ] ⇒ [ 5 × 2 + ( − 1 ) × ( − 3 ) 6 × 2 + 2 × ( − 3 ) 5 × 1 + ( − 1 ) × 4 6 × 1 + 2 × 4 ] ⇒ [ 10 + 3 12 + ( − 6 ) 5 + ( − 4 ) 6 + 8 ] ⇒ [ 13 6 1 14 ] .
AB = [ 13 1 6 14 ] \begin{bmatrix} 13 & 1 \\ 6 & 14 \end{bmatrix} [ 13 6 1 14 ]
Solving BA,
⇒ [ 2 1 − 3 4 ] × [ 5 − 1 6 2 ] ⇒ [ 2 × 5 + 1 × 6 2 × ( − 1 ) + 1 × 2 − 3 × 5 + 4 × 6 − 3 × ( − 1 ) + 4 × 2 ] ⇒ [ 10 + 6 − 2 + 2 − 15 + 24 3 + 8 ] ⇒ [ 16 0 9 11 ] . \Rightarrow \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} \times \begin{bmatrix} 5 & -1 \\ 6 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \times 5 + 1 \times 6 & 2 \times (-1) + 1 \times 2 \\ -3 \times 5 + 4 \times 6 & -3 \times (-1) + 4 \times 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 10 + 6 & -2 + 2 \\ -15 + 24 & 3 + 8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 16 & 0 \\ 9 & 11 \end{bmatrix}. ⇒ [ 2 − 3 1 4 ] × [ 5 6 − 1 2 ] ⇒ [ 2 × 5 + 1 × 6 − 3 × 5 + 4 × 6 2 × ( − 1 ) + 1 × 2 − 3 × ( − 1 ) + 4 × 2 ] ⇒ [ 10 + 6 − 15 + 24 − 2 + 2 3 + 8 ] ⇒ [ 16 9 0 11 ] .
BA = [ 16 0 9 11 ] \begin{bmatrix} 16 & 0 \\ 9 & 11 \end{bmatrix} [ 16 9 0 11 ]
AB ≠ BA.
Hence, proved that AB ≠ BA.
Let A = [ − 1 2 3 4 ] \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} [ − 1 3 2 4 ] and B = [ 3 − 2 − 4 5 ] \begin{bmatrix} 3 & -2 \\ -4 & 5 \end{bmatrix} [ 3 − 4 − 2 5 ] . Find the matrix (AB + BA).
Answer
Solving AB,
⇒ [ − 1 2 3 4 ] × [ 3 − 2 − 4 5 ] ⇒ [ − 1 × 3 + 2 × ( − 4 ) − 1 × ( − 2 ) + 2 × 5 3 × 3 + 4 × ( − 4 ) 3 × ( − 2 ) + 4 × 5 ] ⇒ [ − 3 + ( − 8 ) 2 + 10 9 + ( − 16 ) ( − 6 ) + 20 ] ⇒ [ − 11 12 − 7 14 ] . \Rightarrow \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 3 & -2 \\ -4 & 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -1 \times 3 + 2 \times (-4) & -1 \times (-2) + 2 \times 5 \\ 3 \times 3 + 4 \times (-4) & 3 \times (-2) + 4 \times 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -3 + (-8) & 2 + 10 \\ 9 + (-16) & (-6) + 20 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -11 & 12 \\ -7 & 14 \end{bmatrix}. ⇒ [ − 1 3 2 4 ] × [ 3 − 4 − 2 5 ] ⇒ [ − 1 × 3 + 2 × ( − 4 ) 3 × 3 + 4 × ( − 4 ) − 1 × ( − 2 ) + 2 × 5 3 × ( − 2 ) + 4 × 5 ] ⇒ [ − 3 + ( − 8 ) 9 + ( − 16 ) 2 + 10 ( − 6 ) + 20 ] ⇒ [ − 11 − 7 12 14 ] .
AB = [ − 11 12 − 7 14 ] \begin{bmatrix} -11 & 12 \\ -7 & 14 \end{bmatrix} [ − 11 − 7 12 14 ]
Solving BA,
⇒ [ 3 − 2 − 4 5 ] × [ − 1 2 3 4 ] ⇒ [ 3 × ( − 1 ) + ( − 2 ) × 3 3 × 2 + ( − 2 ) × 4 − 4 × ( − 1 ) + 5 × 3 − 4 × 2 + 5 × 4 ] ⇒ [ − 3 + ( − 6 ) 6 + ( − 8 ) 4 + 15 − 8 + 20 ] ⇒ [ − 9 − 2 19 12 ] . \Rightarrow \begin{bmatrix} 3 & -2 \\ -4 & 5 \end{bmatrix} \times \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 \times (-1) + (-2) \times 3 & 3 \times 2 + (-2) \times 4 \\ -4 \times (-1) + 5 \times 3 & -4 \times 2 + 5 \times 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -3 + (-6) & 6 + (-8) \\ 4 + 15 & -8 + 20 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -9 & -2 \\ 19 & 12 \end{bmatrix}. ⇒ [ 3 − 4 − 2 5 ] × [ − 1 3 2 4 ] ⇒ [ 3 × ( − 1 ) + ( − 2 ) × 3 − 4 × ( − 1 ) + 5 × 3 3 × 2 + ( − 2 ) × 4 − 4 × 2 + 5 × 4 ] ⇒ [ − 3 + ( − 6 ) 4 + 15 6 + ( − 8 ) − 8 + 20 ] ⇒ [ − 9 19 − 2 12 ] .
BA = [ − 9 − 2 19 12 ] \begin{bmatrix} -9 & -2 \\ 19 & 12 \end{bmatrix} [ − 9 19 − 2 12 ]
Now, AB + BA
⇒ [ − 11 12 − 7 14 ] + [ − 9 − 2 19 12 ] ⇒ [ − 11 + ( − 9 ) 12 + ( − 2 ) − 7 + 19 14 + 12 ] ⇒ [ − 20 10 12 26 ] . \Rightarrow \begin{bmatrix} -11 & 12 \\ -7 & 14 \end{bmatrix} + \begin{bmatrix} -9 & -2 \\ 19 & 12 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -11 + (-9) & 12 + (-2) \\ -7 + 19 & 14 + 12 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -20 & 10 \\ 12 & 26 \end{bmatrix}. ⇒ [ − 11 − 7 12 14 ] + [ − 9 19 − 2 12 ] ⇒ [ − 11 + ( − 9 ) − 7 + 19 12 + ( − 2 ) 14 + 12 ] ⇒ [ − 20 12 10 26 ] .
Hence, (AB + BA) = [ − 20 10 12 26 ] \begin{bmatrix} -20 & 10 \\ 12 & 26 \end{bmatrix} [ − 20 12 10 26 ] .
If A = [ 1 2 2 4 ] \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} [ 1 2 2 4 ] , B = [ 2 1 3 2 ] \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} [ 2 3 1 2 ] , and C = [ − 2 7 5 − 1 ] \begin{bmatrix} -2 & 7 \\ 5 & -1 \end{bmatrix} [ − 2 5 7 − 1 ] , show that AB = AC.
Answer
Let's find AB,
⇒ [ 1 2 2 4 ] × [ 2 1 3 2 ] ⇒ [ 1 × 2 + 2 × 3 1 × 1 + 2 × 2 2 × 2 + 4 × 3 2 × 1 + 4 × 2 ] ⇒ [ 2 + 6 1 + 4 4 + 12 2 + 8 ] ⇒ [ 8 5 16 10 ] . \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 \times 2 + 2 \times 3 & 1 \times 1 + 2 \times 2 \\ 2 \times 2 + 4 \times 3 & 2 \times 1 + 4 \times 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 + 6 & 1 + 4 \\ 4 + 12 & 2 + 8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8 & 5 \\ 16 & 10 \end{bmatrix}. ⇒ [ 1 2 2 4 ] × [ 2 3 1 2 ] ⇒ [ 1 × 2 + 2 × 3 2 × 2 + 4 × 3 1 × 1 + 2 × 2 2 × 1 + 4 × 2 ] ⇒ [ 2 + 6 4 + 12 1 + 4 2 + 8 ] ⇒ [ 8 16 5 10 ] .
Let's find AC,
⇒ [ 1 2 2 4 ] × [ − 2 7 5 − 1 ] ⇒ [ 1 × ( − 2 ) + 2 × 5 1 × 7 + 2 × ( − 1 ) 2 × ( − 2 ) + 4 × 5 2 × 7 + 4 × ( − 1 ) ] ⇒ [ − 2 + 10 7 + ( − 2 ) − 4 + 20 14 + ( − 4 ) ] ⇒ [ 8 5 16 10 ] . \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} -2 & 7 \\ 5 & -1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 \times (-2) + 2 \times 5 & 1 \times 7 + 2 \times (-1) \\ 2 \times (-2) + 4 \times 5 & 2 \times 7 + 4 \times (-1) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -2 + 10 & 7 + (-2) \\ -4 + 20 & 14 + (-4) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8 & 5 \\ 16 & 10 \end{bmatrix}. ⇒ [ 1 2 2 4 ] × [ − 2 5 7 − 1 ] ⇒ [ 1 × ( − 2 ) + 2 × 5 2 × ( − 2 ) + 4 × 5 1 × 7 + 2 × ( − 1 ) 2 × 7 + 4 × ( − 1 ) ] ⇒ [ − 2 + 10 − 4 + 20 7 + ( − 2 ) 14 + ( − 4 ) ] ⇒ [ 8 16 5 10 ] .
Hence, proved that AB = AC.
Let A = [ 4 1 2 3 ] \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} [ 4 2 1 3 ] , B = [ 2 1 − 3 0 ] \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} [ 2 − 3 1 0 ] , and C = [ − 3 − 1 2 2 ] \begin{bmatrix} -3 & -1 \\ 2 & 2 \end{bmatrix} [ − 3 2 − 1 2 ] .
Verify that: (AB)C = A(BC).
Answer
Solving (AB)C,
⇒ ( [ 4 1 2 3 ] × [ 2 1 − 3 0 ] ) × [ − 3 − 1 2 2 ] ⇒ [ 4 × 2 + 1 × ( − 3 ) 4 × 1 + 1 × 0 2 × 2 + 3 × ( − 3 ) 2 × 1 + 3 × 0 ] × [ − 3 − 1 2 2 ] ⇒ [ 8 + ( − 3 ) 4 + 0 4 + ( − 9 ) 2 + 0 ] × [ − 3 − 1 2 2 ] ⇒ [ 5 4 − 5 2 ] × [ − 3 − 1 2 2 ] ⇒ [ 5 × ( − 3 ) + 4 × 2 5 × ( − 1 ) + 4 × 2 − 5 × ( − 3 ) + 2 × 2 − 5 × ( − 1 ) + 2 × 2 ] ⇒ [ − 15 + 8 − 5 + 8 15 + 4 5 + 4 ] ⇒ [ − 7 3 19 9 ] . ∴ ( A B ) C = [ − 7 3 19 9 ] \Rightarrow \Big(\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix}\Big) \times \begin{bmatrix} -3 & -1 \\ 2 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 \times 2 + 1 \times (-3) & 4 \times 1 + 1 \times 0 \\ 2 \times 2 + 3 \times (-3) & 2 \times 1 + 3 \times 0 \end{bmatrix} \times \begin{bmatrix} -3 & -1 \\ 2 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8 + (-3) & 4 + 0 \\ 4 + (-9) & 2 + 0 \end{bmatrix} \times \begin{bmatrix} -3 & -1 \\ 2 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 & 4 \\ -5 & 2 \end{bmatrix} \times \begin{bmatrix} -3 & -1 \\ 2 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 \times (-3) + 4 \times 2 & 5 \times (-1) + 4 \times 2 \\ -5 \times (-3) + 2 \times 2 & -5 \times (-1) + 2 \times 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -15 + 8 & -5 + 8 \\ 15 + 4 & 5 + 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -7 & 3 \\ 19 & 9 \end{bmatrix}. \\[1em] \therefore (AB)C = \begin{bmatrix} -7 & 3 \\ 19 & 9 \end{bmatrix} ⇒ ( [ 4 2 1 3 ] × [ 2 − 3 1 0 ] ) × [ − 3 2 − 1 2 ] ⇒ [ 4 × 2 + 1 × ( − 3 ) 2 × 2 + 3 × ( − 3 ) 4 × 1 + 1 × 0 2 × 1 + 3 × 0 ] × [ − 3 2 − 1 2 ] ⇒ [ 8 + ( − 3 ) 4 + ( − 9 ) 4 + 0 2 + 0 ] × [ − 3 2 − 1 2 ] ⇒ [ 5 − 5 4 2 ] × [ − 3 2 − 1 2 ] ⇒ [ 5 × ( − 3 ) + 4 × 2 − 5 × ( − 3 ) + 2 × 2 5 × ( − 1 ) + 4 × 2 − 5 × ( − 1 ) + 2 × 2 ] ⇒ [ − 15 + 8 15 + 4 − 5 + 8 5 + 4 ] ⇒ [ − 7 19 3 9 ] . ∴ ( A B ) C = [ − 7 19 3 9 ]
Solving A(BC),
⇒ [ 4 1 2 3 ] × ( [ 2 1 − 3 0 ] × [ − 3 − 1 2 2 ] ) \[ 1 e m ] ⇒ [ 4 1 2 3 ] × [ 2 × ( − 3 ) + 1 × 2 2 × ( − 1 ) + 1 × 2 − 3 × ( − 3 ) + 0 × 2 − 3 × ( − 1 ) + 0 × 2 ] \[ 1 e m ] ⇒ [ 4 1 2 3 ] × [ − 6 + 2 − 2 + 2 9 + 0 3 + 0 ] \[ 1 e m ] ⇒ [ 4 1 2 3 ] × [ − 4 0 9 3 ] ⇒ [ 4 × ( − 4 ) + 1 × 9 4 × 0 + 1 × 3 2 × ( − 4 ) + 3 × 9 2 × 0 + 3 × 3 ] ⇒ [ − 16 + 9 0 + 3 − 8 + 27 0 + 9 ] ⇒ [ − 7 3 19 9 ] . ∴ A ( B C ) = [ − 7 3 19 9 ] \Rightarrow \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \times \Big(\begin{bmatrix} 2 & 1 \\ -3 & 0 \end{bmatrix} \times \begin{bmatrix} -3 & -1 \\ 2 & 2 \end{bmatrix}\Big) \[1em] \Rightarrow \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 \times (-3) + 1 \times 2 & 2 \times (-1) + 1 \times 2 \\ -3 \times (-3) + 0 \times 2 & -3 \times (-1) + 0 \times 2 \end{bmatrix} \[1em] \Rightarrow \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} -6 + 2 & -2 + 2 \\ 9 + 0 & 3 + 0 \end{bmatrix} \[1em] \Rightarrow \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} -4 & 0 \\ 9 & 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 \times (-4) + 1 \times 9 & 4 \times 0 + 1 \times 3 \\ 2 \times (-4) + 3 \times 9 & 2 \times 0 + 3 \times 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -16 + 9 & 0 + 3 \\ -8 + 27 & 0 + 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -7 & 3 \\ 19 & 9 \end{bmatrix}. \\[1em] \therefore A(BC) = \begin{bmatrix} -7 & 3 \\ 19 & 9 \end{bmatrix} ⇒ [ 4 2 1 3 ] × ( [ 2 − 3 1 0 ] × [ − 3 2 − 1 2 ] ) \[ 1 e m ] ⇒ [ 4 2 1 3 ] × [ 2 × ( − 3 ) + 1 × 2 − 3 × ( − 3 ) + 0 × 2 2 × ( − 1 ) + 1 × 2 − 3 × ( − 1 ) + 0 × 2 ] \[ 1 e m ] ⇒ [ 4 2 1 3 ] × [ − 6 + 2 9 + 0 − 2 + 2 3 + 0 ] \[ 1 e m ] ⇒ [ 4 2 1 3 ] × [ − 4 9 0 3 ] ⇒ [ 4 × ( − 4 ) + 1 × 9 2 × ( − 4 ) + 3 × 9 4 × 0 + 1 × 3 2 × 0 + 3 × 3 ] ⇒ [ − 16 + 9 − 8 + 27 0 + 3 0 + 9 ] ⇒ [ − 7 19 3 9 ] . ∴ A ( BC ) = [ − 7 19 3 9 ]
Hence, proved that (AB)C = A(BC).
Let A = [ 3 4 − 1 2 ] \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} [ 3 − 1 4 2 ] , B = [ 5 0 2 − 3 ] \begin{bmatrix} 5 & 0 \\ 2 & -3 \end{bmatrix} [ 5 2 0 − 3 ] , and C = [ 2 − 1 4 0 ] \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix} [ 2 4 − 1 0 ]
Compute:
(i) A(B + C)
(ii) (AB + AC)
(iii) Is A(B + C) = (AB + AC)?
Answer
(i) A(B + C)
⇒ [ 3 4 − 1 2 ] × ( [ 5 0 2 − 3 ] + [ 2 − 1 4 0 ] ) ⇒ [ 3 4 − 1 2 ] × [ 5 + 2 0 − 1 2 + 4 − 3 + 0 ] ⇒ [ 3 4 − 1 2 ] × [ 7 − 1 6 − 3 ] ⇒ [ 3 × 7 + 4 × 6 3 × ( − 1 ) + 4 × ( − 3 ) − 1 × 7 + 2 × 6 − 1 × ( − 1 ) + 2 × ( − 3 ) ] ⇒ [ 21 + 24 − 3 + ( − 12 ) − 7 + 12 1 + ( − 6 ) ] = [ 45 − 15 5 − 5 ] . \Rightarrow \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} \times \Big(\begin{bmatrix} 5 & 0 \\ 2 & -3 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix}\Big) \\[1em] \Rightarrow \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 5 + 2 & 0 - 1 \\ 2 + 4 & -3 + 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 7 & -1 \\ 6 & -3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 \times 7 + 4 \times 6 & 3 \times (-1) + 4 \times (-3) \\ -1 \times 7 + 2 \times 6 & -1 \times (-1) + 2 \times (-3) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 21 + 24 & -3 + (-12) \\ -7 + 12 & 1 + (-6) \end{bmatrix} \\[1em] = \begin{bmatrix} 45 & -15 \\ 5 & -5 \end{bmatrix}. ⇒ [ 3 − 1 4 2 ] × ( [ 5 2 0 − 3 ] + [ 2 4 − 1 0 ] ) ⇒ [ 3 − 1 4 2 ] × [ 5 + 2 2 + 4 0 − 1 − 3 + 0 ] ⇒ [ 3 − 1 4 2 ] × [ 7 6 − 1 − 3 ] ⇒ [ 3 × 7 + 4 × 6 − 1 × 7 + 2 × 6 3 × ( − 1 ) + 4 × ( − 3 ) − 1 × ( − 1 ) + 2 × ( − 3 ) ] ⇒ [ 21 + 24 − 7 + 12 − 3 + ( − 12 ) 1 + ( − 6 ) ] = [ 45 5 − 15 − 5 ] .
Hence, A(B + C) = [ 45 − 15 5 − 5 ] \begin{bmatrix} 45 & -15 \\ 5 & -5 \end{bmatrix} [ 45 5 − 15 − 5 ]
(ii) (AB + AC)
⇒ A B = [ 3 4 − 1 2 ] × [ 5 0 2 − 3 ] = [ 3 × 5 + 4 × 2 3 × 0 + 4 × ( − 3 ) − 1 × 5 + 2 × 2 − 1 × 0 + 2 × ( − 3 ) ] = [ 15 + 8 0 + ( − 12 ) − 5 + 4 0 + ( − 6 ) ] = [ 23 − 12 − 1 − 6 ] ⇒ A C = [ 3 4 − 1 2 ] × [ 2 − 1 4 0 ] = [ 3 × 2 + 4 × 4 3 × ( − 1 ) + 4 × 0 − 1 × 2 + 2 × 4 − 1 × ( − 1 ) + 2 × 0 ] = [ 6 + 16 − 3 + 0 − 2 + 8 1 + 0 ] = [ 22 − 3 6 1 ] ⇒ A B + A C = [ 23 − 12 − 1 − 6 ] + [ 22 − 3 6 1 ] = [ 23 + 22 − 12 − 3 − 1 + 6 − 6 + 1 ] = [ 45 − 15 5 − 5 ] . \Rightarrow AB = \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 5 & 0 \\ 2 & -3 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 \times 5 + 4 \times 2 & 3 \times 0 + 4 \times (-3) \\ -1 \times 5 + 2 \times 2 & -1 \times 0 + 2\times(-3) \end{bmatrix} \\[1em] = \begin{bmatrix} 15 + 8 & 0 + (-12) \\ -5 + 4 & 0 + (-6) \end{bmatrix}\\[1em] = \begin{bmatrix} 23 & -12 \\ -1 & -6 \end{bmatrix} \\[1em] \Rightarrow AC = \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 \times 2 + 4 \times 4 & 3\times(-1) + 4 \times 0 \\ -1 \times 2 + 2 \times 4 & -1\times(-1) + 2 \times 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 6 + 16 & -3 + 0 \\ -2 + 8 & 1 + 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 22 & -3 \\ 6 & 1 \end{bmatrix} \\[1em] \Rightarrow AB + AC = \begin{bmatrix} 23 & -12 \\ -1 & -6 \end{bmatrix} + \begin{bmatrix} 22 & -3 \\ 6 & 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 23 + 22 & -12 - 3 \\ -1 + 6 & -6 + 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 45 & -15 \\ 5 & -5 \end{bmatrix}. ⇒ A B = [ 3 − 1 4 2 ] × [ 5 2 0 − 3 ] = [ 3 × 5 + 4 × 2 − 1 × 5 + 2 × 2 3 × 0 + 4 × ( − 3 ) − 1 × 0 + 2 × ( − 3 ) ] = [ 15 + 8 − 5 + 4 0 + ( − 12 ) 0 + ( − 6 ) ] = [ 23 − 1 − 12 − 6 ] ⇒ A C = [ 3 − 1 4 2 ] × [ 2 4 − 1 0 ] = [ 3 × 2 + 4 × 4 − 1 × 2 + 2 × 4 3 × ( − 1 ) + 4 × 0 − 1 × ( − 1 ) + 2 × 0 ] = [ 6 + 16 − 2 + 8 − 3 + 0 1 + 0 ] = [ 22 6 − 3 1 ] ⇒ A B + A C = [ 23 − 1 − 12 − 6 ] + [ 22 6 − 3 1 ] = [ 23 + 22 − 1 + 6 − 12 − 3 − 6 + 1 ] = [ 45 5 − 15 − 5 ] .
Hence, (AB + AC) = [ 45 − 15 5 − 5 ] \begin{bmatrix} 45 & -15 \\ 5 & -5 \end{bmatrix} [ 45 5 − 15 − 5 ]
(iii) As calculated,
A ( B + C ) = ( A B + A C ) = [ 45 − 15 5 − 5 ] . A(B + C) = (AB + AC)= \begin{bmatrix} 45 & -15 \\ 5 & -5 \end{bmatrix}. A ( B + C ) = ( A B + A C ) = [ 45 5 − 15 − 5 ] .
Hence, A(B + C) = (AB + AC).
Let A = [ 5 7 3 2 ] \begin{bmatrix} 5 & 7 \\ 3 & 2 \end{bmatrix} [ 5 3 7 2 ] , B = [ 3 − 2 − 4 0 ] \begin{bmatrix} 3 & -2 \\ -4 & 0 \end{bmatrix} [ 3 − 4 − 2 0 ] and C = [ 2 − 3 1 4 ] \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} [ 2 1 − 3 4 ]
Compute :
(i) (A - B)C
(ii) AC - BC
(iii) Is (A - B)C = AC - BC ?
Answer
(i) (A - B)C
⇒ ( [ 5 7 3 2 ] − [ 3 − 2 − 4 0 ] ) × [ 2 − 3 1 4 ] ⇒ [ 5 − 3 7 − ( − 2 ) 3 − ( − 4 ) 2 − 0 ] × [ 2 − 3 1 4 ] ⇒ [ 2 9 7 2 ] × [ 2 − 3 1 4 ] ⇒ [ ( 2 ) ( 2 ) + ( 9 ) ( 1 ) ( 2 ) ( − 3 ) + ( 9 ) ( 4 ) ( 7 ) ( 2 ) + ( 2 ) ( 1 ) ( 7 ) ( − 3 ) + ( 2 ) ( 4 ) ] ⇒ [ 4 + 9 − 6 + 36 14 + 2 − 21 + 8 ] ⇒ [ 13 30 16 − 13 ] . \Rightarrow \Big(\begin{bmatrix} 5 & 7 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 3 & -2 \\ -4 & 0 \end{bmatrix}\Big) \times \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 - 3 & 7 - (-2) \\ 3 - (-4) & 2 - 0 \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 & 9 \\ 7 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (2)(2) + (9)(1) & (2)(-3) + (9)(4) \\ (7)(2) + (2)(1) & (7)(-3) + (2)(4) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 + 9 & -6 + 36 \\ 14 + 2 & -21 + 8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 13 & 30 \\ 16 & -13 \end{bmatrix}. ⇒ ( [ 5 3 7 2 ] − [ 3 − 4 − 2 0 ] ) × [ 2 1 − 3 4 ] ⇒ [ 5 − 3 3 − ( − 4 ) 7 − ( − 2 ) 2 − 0 ] × [ 2 1 − 3 4 ] ⇒ [ 2 7 9 2 ] × [ 2 1 − 3 4 ] ⇒ [ ( 2 ) ( 2 ) + ( 9 ) ( 1 ) ( 7 ) ( 2 ) + ( 2 ) ( 1 ) ( 2 ) ( − 3 ) + ( 9 ) ( 4 ) ( 7 ) ( − 3 ) + ( 2 ) ( 4 ) ] ⇒ [ 4 + 9 14 + 2 − 6 + 36 − 21 + 8 ] ⇒ [ 13 16 30 − 13 ] .
Hence, (A - B)C = [ 13 30 16 − 13 ] . \begin{bmatrix} 13 & 30 \\ 16 & -13 \end{bmatrix}. [ 13 16 30 − 13 ] .
(ii) AC - BC
⇒ A C = [ 5 7 3 2 ] × [ 2 − 3 1 4 ] = [ ( 5 ) ( 2 ) + ( 7 ) ( 1 ) ( 5 ) ( − 3 ) + ( 7 ) ( 4 ) ( 3 ) ( 2 ) + ( 2 ) ( 1 ) ( 3 ) ( − 3 ) + ( 2 ) ( 4 ) ] = [ 10 + 7 − 15 + 28 6 + 2 − 9 + 8 ] = [ 17 13 8 − 1 ] ⇒ B C = [ 3 − 2 − 4 0 ] × [ 2 − 3 1 4 ] = [ ( 3 ) ( 2 ) + ( − 2 ) ( 1 ) ( 3 ) ( − 3 ) + ( − 2 ) ( 4 ) ( − 4 ) ( 2 ) + ( 0 ) ( 1 ) ( − 4 ) ( − 3 ) + ( 0 ) ( 4 ) ] = [ 6 − 2 − 9 − 8 − 8 + 0 12 + 0 ] = [ 4 − 17 − 8 12 ] ⇒ A C − B C = [ 17 13 8 − 1 ] − [ 4 − 17 − 8 12 ] = [ 17 − 4 13 − ( − 17 ) 8 − ( − 8 ) − 1 − 12 ] = [ 13 30 16 − 13 ] . \Rightarrow AC = \begin{bmatrix} 5 & 7 \\ 3 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} (5)(2) + (7)(1) & (5)(-3) + (7)(4) \\ (3)(2) + (2)(1) & (3)(-3) + (2)(4) \end{bmatrix} \\[1em] = \begin{bmatrix} 10 + 7 & -15 + 28 \\ 6 + 2 & -9 + 8 \end{bmatrix} \\[1em] = \begin{bmatrix} 17 & 13 \\ 8 & -1 \end{bmatrix} \\[1em] \Rightarrow BC = \begin{bmatrix} 3 & -2 \\ -4 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} (3)(2) + (-2)(1) & (3)(-3) + (-2)(4) \\ (-4)(2) + (0)(1) & (-4)(-3) + (0)(4) \end{bmatrix} \\[1em] = \begin{bmatrix} 6 - 2 & -9 - 8 \\ -8 + 0 & 12 + 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 4 & -17 \\ -8 & 12 \end{bmatrix} \\[1em] \Rightarrow AC - BC = \begin{bmatrix} 17 & 13 \\ 8 & -1 \end{bmatrix} - \begin{bmatrix} 4 & -17 \\ -8 & 12 \end{bmatrix} \\[1em] = \begin{bmatrix} 17 - 4 & 13 - (-17) \\ 8 - (-8) & -1 - 12 \end{bmatrix} \\[1em] = \begin{bmatrix} 13 & 30 \\ 16 & -13 \end{bmatrix}. ⇒ A C = [ 5 3 7 2 ] × [ 2 1 − 3 4 ] = [ ( 5 ) ( 2 ) + ( 7 ) ( 1 ) ( 3 ) ( 2 ) + ( 2 ) ( 1 ) ( 5 ) ( − 3 ) + ( 7 ) ( 4 ) ( 3 ) ( − 3 ) + ( 2 ) ( 4 ) ] = [ 10 + 7 6 + 2 − 15 + 28 − 9 + 8 ] = [ 17 8 13 − 1 ] ⇒ BC = [ 3 − 4 − 2 0 ] × [ 2 1 − 3 4 ] = [ ( 3 ) ( 2 ) + ( − 2 ) ( 1 ) ( − 4 ) ( 2 ) + ( 0 ) ( 1 ) ( 3 ) ( − 3 ) + ( − 2 ) ( 4 ) ( − 4 ) ( − 3 ) + ( 0 ) ( 4 ) ] = [ 6 − 2 − 8 + 0 − 9 − 8 12 + 0 ] = [ 4 − 8 − 17 12 ] ⇒ A C − BC = [ 17 8 13 − 1 ] − [ 4 − 8 − 17 12 ] = [ 17 − 4 8 − ( − 8 ) 13 − ( − 17 ) − 1 − 12 ] = [ 13 16 30 − 13 ] .
Hence, AC - BC = [ 13 30 16 − 13 ] . \begin{bmatrix} 13 & 30 \\ 16 & -13 \end{bmatrix}. [ 13 16 30 − 13 ] .
(ii) Yes, (A - B)C = AC - BC = [ 13 30 16 − 13 ] . \begin{bmatrix} 13 & 30 \\ 16 & -13 \end{bmatrix}. [ 13 16 30 − 13 ] .
Hence, (A - B)C = AC - BC .
Given A = [ 3 − 2 − 1 4 ] \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} [ 3 − 1 − 2 4 ] , B = [ 6 1 ] \begin{bmatrix} 6 \\ 1 \end{bmatrix} [ 6 1 ] , C = [ − 4 5 ] \begin{bmatrix} -4 \\ 5 \end{bmatrix} [ − 4 5 ] , and D = [ 2 2 ] \begin{bmatrix} 2 \\ 2 \end{bmatrix} [ 2 2 ] . Find AB + 2C – 4D.
Answer
Solving for AB,
⇒ A B = [ 3 − 2 − 1 4 ] × [ 6 1 ] = [ ( 3 ) ( 6 ) + ( − 2 ) ( 1 ) ( − 1 ) ( 6 ) + ( 4 ) ( 1 ) ] = [ 18 − 2 − 6 + 4 ] = [ 16 − 2 ] . \Rightarrow AB = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} \times \begin{bmatrix} 6 \\ 1 \end{bmatrix} \\[1em] = \begin{bmatrix} (3)(6) + (-2)(1) \\ (-1)(6) + (4)(1) \end{bmatrix} \\[1em] = \begin{bmatrix} 18 - 2 \\ -6 + 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 16 \\ -2 \end{bmatrix}. ⇒ A B = [ 3 − 1 − 2 4 ] × [ 6 1 ] = [ ( 3 ) ( 6 ) + ( − 2 ) ( 1 ) ( − 1 ) ( 6 ) + ( 4 ) ( 1 ) ] = [ 18 − 2 − 6 + 4 ] = [ 16 − 2 ] .
Substituting values in AB + 2C – 4D,we get :
⇒ [ 16 − 2 ] + 2 × [ − 4 5 ] − 4 × [ 2 2 ] = [ 16 − 2 ] + [ − 8 10 ] − [ 8 8 ] = [ 16 + ( − 8 ) − 2 + 10 ] − [ 8 8 ] = [ 8 8 ] − [ 8 8 ] = [ 0 0 ] . \Rightarrow \begin{bmatrix} 16 \\ -2 \end{bmatrix} + 2 \times \begin{bmatrix} -4 \\ 5 \end{bmatrix} - 4 \times \begin{bmatrix} 2 \\ 2 \end{bmatrix} \\[1em] = \begin{bmatrix} 16 \\ -2 \end{bmatrix} + \begin{bmatrix} -8 \\ 10 \end{bmatrix} - \begin{bmatrix} 8 \\ 8 \end{bmatrix} \\[1em] = \begin{bmatrix} 16 + (-8) \\ -2 + 10 \end{bmatrix} - \begin{bmatrix} 8 \\ 8 \end{bmatrix} \\[1em] = \begin{bmatrix} 8 \\ 8 \end{bmatrix} - \begin{bmatrix} 8 \\ 8 \end{bmatrix} \\[1em] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. ⇒ [ 16 − 2 ] + 2 × [ − 4 5 ] − 4 × [ 2 2 ] = [ 16 − 2 ] + [ − 8 10 ] − [ 8 8 ] = [ 16 + ( − 8 ) − 2 + 10 ] − [ 8 8 ] = [ 8 8 ] − [ 8 8 ] = [ 0 0 ] .
Hence, AB + 2C – 4D = [ 0 0 ] . \begin{bmatrix} 0 \\ 0 \end{bmatrix}. [ 0 0 ] .
Given A = [ 1 0 2 1 ] \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} [ 1 2 0 1 ] and B = [ 2 3 − 1 0 ] \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} [ 2 − 1 3 0 ] .Find (A2 + AB + B2 ).
Answer
Solving A2 ,
⇒ A 2 = [ 1 0 2 1 ] × [ 1 0 2 1 ] = [ ( 1 ) ( 1 ) + ( 0 ) ( 2 ) ( 1 ) ( 0 ) + ( 0 ) ( 1 ) ( 2 ) ( 1 ) + ( 1 ) ( 2 ) ( 2 ) ( 0 ) + ( 1 ) ( 1 ) ] = [ 1 + 0 0 + 0 2 + 2 0 + 1 ] = [ 1 0 4 1 ] . \Rightarrow A^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \\[1em] = \begin{bmatrix} (1)(1) + (0)(2) & (1)(0) + (0)(1) \\ (2)(1) + (1)(2) & (2)(0) + (1)(1) \end{bmatrix} \\[1em] = \begin{bmatrix} 1 + 0 & 0 + 0 \\ 2 + 2 & 0 + 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}. ⇒ A 2 = [ 1 2 0 1 ] × [ 1 2 0 1 ] = [ ( 1 ) ( 1 ) + ( 0 ) ( 2 ) ( 2 ) ( 1 ) + ( 1 ) ( 2 ) ( 1 ) ( 0 ) + ( 0 ) ( 1 ) ( 2 ) ( 0 ) + ( 1 ) ( 1 ) ] = [ 1 + 0 2 + 2 0 + 0 0 + 1 ] = [ 1 4 0 1 ] .
Solving AB,
⇒ A B = [ 1 0 2 1 ] × [ 2 3 − 1 0 ] = [ ( 1 ) ( 2 ) + ( 0 ) ( − 1 ) ( 1 ) ( 3 ) + ( 0 ) ( 0 ) ( 2 ) ( 2 ) + ( 1 ) ( − 1 ) ( 2 ) ( 3 ) + ( 1 ) ( 0 ) ] = [ 2 + 0 3 + 0 4 − 1 6 + 0 ] = [ 2 3 3 6 ] . \Rightarrow AB = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} (1)(2) + (0)(-1) & (1)(3) + (0)(0) \\ (2)(2) + (1)(-1) & (2)(3) + (1)(0) \end{bmatrix} \\[1em] = \begin{bmatrix} 2 + 0 & 3 + 0 \\ 4 - 1 & 6 + 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}. ⇒ A B = [ 1 2 0 1 ] × [ 2 − 1 3 0 ] = [ ( 1 ) ( 2 ) + ( 0 ) ( − 1 ) ( 2 ) ( 2 ) + ( 1 ) ( − 1 ) ( 1 ) ( 3 ) + ( 0 ) ( 0 ) ( 2 ) ( 3 ) + ( 1 ) ( 0 ) ] = [ 2 + 0 4 − 1 3 + 0 6 + 0 ] = [ 2 3 3 6 ] .
Solving B2 ,
⇒ B 2 = [ 2 3 − 1 0 ] × [ 2 3 − 1 0 ] = [ ( 2 ) ( 2 ) + ( 3 ) ( − 1 ) ( 2 ) ( 3 ) + ( 3 ) ( 0 ) ( − 1 ) ( 2 ) + ( 0 ) ( − 1 ) ( − 1 ) ( 3 ) + ( 0 ) ( 0 ) ] = [ 4 − 3 6 + 0 − 2 + 0 − 3 + 0 ] = [ 1 6 − 2 − 3 ] . \Rightarrow B^2 = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} (2)(2) + (3)(-1) & (2)(3) + (3)(0) \\ (-1)(2) + (0)(-1) & (-1)(3) + (0)(0) \end{bmatrix} \\[1em] = \begin{bmatrix} 4 - 3 & 6 + 0 \\ -2 + 0 & -3 + 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 1 & 6 \\ -2 & -3 \end{bmatrix}. ⇒ B 2 = [ 2 − 1 3 0 ] × [ 2 − 1 3 0 ] = [ ( 2 ) ( 2 ) + ( 3 ) ( − 1 ) ( − 1 ) ( 2 ) + ( 0 ) ( − 1 ) ( 2 ) ( 3 ) + ( 3 ) ( 0 ) ( − 1 ) ( 3 ) + ( 0 ) ( 0 ) ] = [ 4 − 3 − 2 + 0 6 + 0 − 3 + 0 ] = [ 1 − 2 6 − 3 ] .
A2 + AB + B2
⇒ [ 1 0 4 1 ] + [ 2 3 3 6 ] + [ 1 6 − 2 − 3 ] ⇒ [ 1 + 2 + 1 0 + 3 + 6 4 + 3 + ( − 2 ) 1 + 6 + ( − 3 ) ] ⇒ [ 4 9 5 4 ] . \Rightarrow \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ -2 & -3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 + 2 + 1 & 0 + 3 + 6 \\ 4 + 3 + (-2) & 1 + 6 + (-3) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 9 \\ 5 & 4 \end{bmatrix}. ⇒ [ 1 4 0 1 ] + [ 2 3 3 6 ] + [ 1 − 2 6 − 3 ] ⇒ [ 1 + 2 + 1 4 + 3 + ( − 2 ) 0 + 3 + 6 1 + 6 + ( − 3 ) ] ⇒ [ 4 5 9 4 ] .
Hence, A2 + AB + B2 = [ 4 9 5 4 ] . \begin{bmatrix} 4 & 9 \\ 5 & 4 \end{bmatrix}. [ 4 5 9 4 ] .
Let A = [ 4 − 2 6 − 3 ] \begin{bmatrix} 4 & -2 \\ 6 & -3 \end{bmatrix} [ 4 6 − 2 − 3 ] , B = [ 0 2 1 − 1 ] \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} [ 0 1 2 − 1 ] , and C = [ − 2 3 1 − 1 ] \begin{bmatrix} -2 & 3 \\ 1 & -1 \end{bmatrix} [ − 2 1 3 − 1 ]
Find (A2 – A + BC).
Answer
(i) A2 – A + BC
Solving A2 ,
⇒ A 2 = [ 4 − 2 6 − 3 ] × [ 4 − 2 6 − 3 ] ⇒ [ 4 × 4 + ( − 2 ) × 6 4 × ( − 2 ) + ( − 2 ) × ( − 3 ) 6 × 4 + ( − 3 ) × 6 6 × ( − 2 ) + ( − 3 ) × ( − 3 ) ] ⇒ [ 16 − 12 − 8 + 6 24 − 18 − 12 + 9 ] ⇒ [ 4 − 2 6 − 3 ] . \Rightarrow A^2 = \begin{bmatrix} 4 & -2 \\ 6 & -3 \end{bmatrix} \times \begin{bmatrix} 4 & -2 \\ 6 & -3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4\times4 + (-2)\times6 & 4\times(-2) + (-2)\times(-3) \\ 6\times4 + (-3)\times6 & 6\times(-2) + (-3)\times(-3) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 16 - 12 & -8 + 6 \\ 24 - 18 & -12 + 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & -2 \\ 6 & -3 \end{bmatrix}. ⇒ A 2 = [ 4 6 − 2 − 3 ] × [ 4 6 − 2 − 3 ] ⇒ [ 4 × 4 + ( − 2 ) × 6 6 × 4 + ( − 3 ) × 6 4 × ( − 2 ) + ( − 2 ) × ( − 3 ) 6 × ( − 2 ) + ( − 3 ) × ( − 3 ) ] ⇒ [ 16 − 12 24 − 18 − 8 + 6 − 12 + 9 ] ⇒ [ 4 6 − 2 − 3 ] .
Solving BC,
⇒ B C = [ 0 2 1 − 1 ] × [ − 2 3 1 − 1 ] ⇒ [ 0 × ( − 2 ) + 2 × 1 0 × 3 + 2 × ( − 1 ) 1 × ( − 2 ) + ( − 1 ) × 1 1 × 3 + ( − 1 ) × ( − 1 ) ] ⇒ [ 2 − 2 − 3 4 ] . \Rightarrow BC = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} -2 & 3 \\ 1 & -1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0\times(-2) + 2 \times 1 & 0 \times 3 + 2\times(-1) \\ 1\times(-2) + (-1) \times 1 & 1 \times 3 + (-1)\times(-1) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 & -2 \\ -3 & 4 \end{bmatrix}. ⇒ BC = [ 0 1 2 − 1 ] × [ − 2 1 3 − 1 ] ⇒ [ 0 × ( − 2 ) + 2 × 1 1 × ( − 2 ) + ( − 1 ) × 1 0 × 3 + 2 × ( − 1 ) 1 × 3 + ( − 1 ) × ( − 1 ) ] ⇒ [ 2 − 3 − 2 4 ] .
Solving A2 – A + BC
⇒ [ 4 − 2 6 − 3 ] − [ 4 − 2 6 − 3 ] + [ 2 − 2 − 3 4 ] ⇒ [ 0 0 0 0 ] + [ 2 − 2 − 3 4 ] ⇒ [ 2 − 2 − 3 4 ] . \Rightarrow \begin{bmatrix} 4 & -2 \\ 6 & -3 \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ 6 & -3 \end{bmatrix} + \begin{bmatrix} 2 & -2 \\ -3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & -2 \\ -3 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 & -2 \\ -3 & 4 \end{bmatrix}. ⇒ [ 4 6 − 2 − 3 ] − [ 4 6 − 2 − 3 ] + [ 2 − 3 − 2 4 ] ⇒ [ 0 0 0 0 ] + [ 2 − 3 − 2 4 ] ⇒ [ 2 − 3 − 2 4 ] .
Hence, (A2 – A + BC) = [ 2 − 2 − 3 4 ] \begin{bmatrix} 2 & -2 \\ -3 & 4 \end{bmatrix} [ 2 − 3 − 2 4 ]
If A = [ 2 3 5 7 ] \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} [ 2 5 3 7 ] , B = [ 0 4 − 1 7 ] \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix} [ 0 − 1 4 7 ] , and C = [ 1 0 − 1 4 ] \begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix} [ 1 − 1 0 4 ] ,
Find AC + B2 – 10C.
Answer
Solving AC,
⇒ A C = [ 2 3 5 7 ] × [ 1 0 − 1 4 ] ⇒ [ 2 × 1 + 3 × ( − 1 ) 2 × 0 + 3 × 4 5 × 1 + 7 × ( − 1 ) 5 × 0 + 7 × 4 ] ⇒ [ 2 − 3 0 + 12 5 − 7 0 + 28 ] ⇒ [ − 1 12 − 2 28 ] . \Rightarrow AC = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \times 1 + 3 \times (-1) & 2 \times 0 + 3 \times 4 \\ 5 \times 1 + 7 \times (-1) & 5 \times 0 + 7 \times 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 - 3 & 0 + 12 \\ 5 - 7 & 0 + 28 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -1 & 12 \\ -2 & 28 \end{bmatrix}. ⇒ A C = [ 2 5 3 7 ] × [ 1 − 1 0 4 ] ⇒ [ 2 × 1 + 3 × ( − 1 ) 5 × 1 + 7 × ( − 1 ) 2 × 0 + 3 × 4 5 × 0 + 7 × 4 ] ⇒ [ 2 − 3 5 − 7 0 + 12 0 + 28 ] ⇒ [ − 1 − 2 12 28 ] .
AC = [ − 1 12 − 2 28 ] \begin{bmatrix} -1 & 12 \\ -2 & 28 \end{bmatrix} [ − 1 − 2 12 28 ]
Solving B2 ,
⇒ B 2 = [ 0 4 − 1 7 ] × [ 0 4 − 1 7 ] ⇒ [ 0 × 0 + 4 × ( − 1 ) 0 × 4 + 4 × 7 − 1 × 0 + 7 × ( − 1 ) − 1 × 4 + 7 × 7 ] ⇒ [ − 4 28 − 7 − 4 + 49 ] ⇒ [ − 4 28 − 7 45 ] . \Rightarrow B^2 = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix} \times \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 \times 0 + 4 \times (-1) & 0 \times 4 + 4 \times 7 \\ -1 \times 0 + 7 \times (-1) & -1 \times 4 + 7 \times 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -4 & 28 \\ -7 & -4 + 49 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -4 & 28 \\ -7 & 45 \end{bmatrix}. ⇒ B 2 = [ 0 − 1 4 7 ] × [ 0 − 1 4 7 ] ⇒ [ 0 × 0 + 4 × ( − 1 ) − 1 × 0 + 7 × ( − 1 ) 0 × 4 + 4 × 7 − 1 × 4 + 7 × 7 ] ⇒ [ − 4 − 7 28 − 4 + 49 ] ⇒ [ − 4 − 7 28 45 ] .
Solving 10C,
⇒ 10 C = 10 × [ 1 0 − 1 4 ] ⇒ [ 10 0 − 10 40 ] . \Rightarrow 10C = 10 \times \begin{bmatrix} 1 & 0 \\ -1 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 10 & 0 \\ -10 & 40 \end{bmatrix}. ⇒ 10 C = 10 × [ 1 − 1 0 4 ] ⇒ [ 10 − 10 0 40 ] .
Now, AC + B2 – 10C
⇒ [ − 1 12 − 2 28 ] + [ − 4 28 − 7 45 ] − [ 10 0 − 10 40 ] ⇒ [ − 5 40 − 9 73 ] − [ 10 0 − 10 40 ] ⇒ [ − 5 − 10 40 − 0 − 9 − ( − 10 ) 73 − 40 ] ⇒ [ − 15 40 1 33 ] . \Rightarrow \begin{bmatrix} -1 & 12 \\ -2 & 28 \end{bmatrix} + \begin{bmatrix} -4 & 28 \\ -7 & 45 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ -10 & 40 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -5 & 40 \\ -9 & 73 \end{bmatrix} - \begin{bmatrix} 10 & 0 \\ -10 & 40 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -5 - 10 & 40 - 0 \\ -9 - (-10) & 73 - 40 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -15 & 40 \\ 1 & 33 \end{bmatrix}. ⇒ [ − 1 − 2 12 28 ] + [ − 4 − 7 28 45 ] − [ 10 − 10 0 40 ] ⇒ [ − 5 − 9 40 73 ] − [ 10 − 10 0 40 ] ⇒ [ − 5 − 10 − 9 − ( − 10 ) 40 − 0 73 − 40 ] ⇒ [ − 15 1 40 33 ] .
Hence, (AC + B2 – 10C) = [ − 15 40 1 33 ] \begin{bmatrix} -15 & 40 \\ 1 & 33 \end{bmatrix} [ − 15 1 40 33 ]
If A = [ 2 5 1 3 ] \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} [ 2 1 5 3 ] , B = [ 4 − 2 − 1 3 ] \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} [ 4 − 1 − 2 3 ] , and I is the identity matrix of the same order and At is the transpose of A, find (At B + BI).
Answer
Given,
A = [ 2 5 1 3 ] \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} [ 2 1 5 3 ]
A T = [ 2 1 5 3 ] A^T = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} A T = [ 2 5 1 3 ]
Solving AT B,
⇒ [ 2 1 5 3 ] × [ 4 − 2 − 1 3 ] ⇒ [ 2 × 4 + 1 × ( − 1 ) 2 × ( − 2 ) + 1 × 3 5 × 4 + 3 × ( − 1 ) 5 × ( − 2 ) + 3 × 3 ] ⇒ [ 7 − 1 17 − 1 ] . \Rightarrow \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \times \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \times 4 + 1 \times (-1) & 2 \times (-2) + 1 \times 3 \\ 5 \times 4 + 3 \times (-1) & 5 \times (-2) + 3 \times 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 7 & -1 \\ 17 & -1 \end{bmatrix}. ⇒ [ 2 5 1 3 ] × [ 4 − 1 − 2 3 ] ⇒ [ 2 × 4 + 1 × ( − 1 ) 5 × 4 + 3 × ( − 1 ) 2 × ( − 2 ) + 1 × 3 5 × ( − 2 ) + 3 × 3 ] ⇒ [ 7 17 − 1 − 1 ] .
Solving BI,
⇒ [ 4 − 2 − 1 3 ] × I ⇒ [ 4 − 2 − 1 3 ] × [ 1 0 0 1 ] ⇒ [ 4 × 1 + ( − 2 ) × 0 4 × 0 + ( − 2 ) × 1 ( − 1 ) × 1 + 3 × 0 ( − 1 ) × 0 + 3 × 1 ] ⇒ [ 4 − 2 − 1 3 ] . \Rightarrow \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \times I \\[1em] \Rightarrow \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 \times 1 + (-2) \times 0 & 4 \times 0 + (-2) \times 1 \\ (-1) \times 1 + 3 \times 0 & (-1) \times 0 + 3 \times 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}. ⇒ [ 4 − 1 − 2 3 ] × I ⇒ [ 4 − 1 − 2 3 ] × [ 1 0 0 1 ] ⇒ [ 4 × 1 + ( − 2 ) × 0 ( − 1 ) × 1 + 3 × 0 4 × 0 + ( − 2 ) × 1 ( − 1 ) × 0 + 3 × 1 ] ⇒ [ 4 − 1 − 2 3 ] .
Now, AT B + BI
⇒ [ 7 − 1 17 − 1 ] + [ 4 − 2 − 1 3 ] ⇒ [ 7 + 4 − 1 + ( − 2 ) 17 + ( − 1 ) − 1 + 3 ] ⇒ [ 11 − 3 16 2 ] . \Rightarrow \begin{bmatrix} 7 & -1 \\ 17 & -1 \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 7 + 4 & -1 + (-2) \\ 17 + (-1) & -1 + 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 11 & -3 \\ 16 & 2 \end{bmatrix}. ⇒ [ 7 17 − 1 − 1 ] + [ 4 − 1 − 2 3 ] ⇒ [ 7 + 4 17 + ( − 1 ) − 1 + ( − 2 ) − 1 + 3 ] ⇒ [ 11 16 − 3 2 ] .
Hence, (AT B + BI) = [ 11 − 3 16 2 ] \begin{bmatrix} 11 & -3 \\ 16 & 2 \end{bmatrix} [ 11 16 − 3 2 ]
If A = [ 3 1 − 1 2 ] \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} [ 3 − 1 1 2 ] , show that A2 – 5A + 7I = 0.
Answer
Solving A2 ,
⇒ A 2 = [ 3 1 − 1 2 ] × [ 3 1 − 1 2 ] ⇒ [ 3 × 3 + 1 × ( − 1 ) 3 × 1 + 1 × 2 − 1 × 3 + 2 × ( − 1 ) − 1 × 1 + 2 × 2 ] ⇒ [ 9 − 1 3 + 2 − 3 − 2 − 1 + 4 ] ⇒ [ 8 5 − 5 3 ] . \Rightarrow A^2 = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 \times 3 + 1 \times (-1) & 3 \times 1 + 1 \times 2 \\ -1 \times 3 + 2 \times (-1) & -1 \times 1 + 2 \times 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 9 - 1 & 3 + 2 \\ -3 - 2 & -1 + 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}. ⇒ A 2 = [ 3 − 1 1 2 ] × [ 3 − 1 1 2 ] ⇒ [ 3 × 3 + 1 × ( − 1 ) − 1 × 3 + 2 × ( − 1 ) 3 × 1 + 1 × 2 − 1 × 1 + 2 × 2 ] ⇒ [ 9 − 1 − 3 − 2 3 + 2 − 1 + 4 ] ⇒ [ 8 − 5 5 3 ] .
Solving 5A,
⇒ 5 A = 5 × [ 3 1 − 1 2 ] ⇒ [ 15 5 − 5 10 ] . \Rightarrow 5A = 5 \times \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix}. ⇒ 5 A = 5 × [ 3 − 1 1 2 ] ⇒ [ 15 − 5 5 10 ] .
Solving 7I,
⇒ 7 I = 7 × [ 1 0 0 1 ] ⇒ [ 7 0 0 7 ] . \Rightarrow 7I = 7 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}. ⇒ 7 I = 7 × [ 1 0 0 1 ] ⇒ [ 7 0 0 7 ] .
Now, A2 – 5A + 7I
⇒ [ 8 5 − 5 3 ] − [ 15 5 − 5 10 ] + [ 7 0 0 7 ] ⇒ [ 8 − ( 15 ) + 7 5 − ( 5 ) + 0 − 5 − 5 + 0 3 − ( 10 ) + 7 ] ⇒ [ 0 0 0 0 ] . \Rightarrow \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8 - (15) + 7 & 5 - (5) + 0 \\ -5 - 5 + 0 & 3 - (10) + 7 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. ⇒ [ 8 − 5 5 3 ] − [ 15 − 5 5 10 ] + [ 7 0 0 7 ] ⇒ [ 8 − ( 15 ) + 7 − 5 − 5 + 0 5 − ( 5 ) + 0 3 − ( 10 ) + 7 ] ⇒ [ 0 0 0 0 ] .
Hence, A2 – 5A + 7I = [ 0 0 0 0 ] \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} [ 0 0 0 0 ] .
If A = [ 4 1 − 1 2 ] \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} [ 4 − 1 1 2 ] , show that 6A – A2 = 9I.
Answer
Solving A2 ,
⇒ A 2 = [ 4 1 − 1 2 ] × [ 4 1 − 1 2 ] ⇒ [ 4 × 4 + 1 × ( − 1 ) 4 × 1 + 1 × 2 − 1 × 4 + 2 × ( − 1 ) − 1 × 1 + 2 × 2 ] ⇒ [ 16 − 1 4 + 2 − 4 − 2 − 1 + 4 ] ⇒ [ 15 6 − 6 3 ] . \Rightarrow A^2 = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 \times 4 + 1 \times (-1) & 4 \times 1 + 1 \times 2 \\ -1 \times 4 + 2 \times (-1) & -1 \times 1 + 2 \times 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 16 - 1 & 4 + 2 \\ -4 - 2 & -1 + 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 15 & 6 \\ -6 & 3 \end{bmatrix}. ⇒ A 2 = [ 4 − 1 1 2 ] × [ 4 − 1 1 2 ] ⇒ [ 4 × 4 + 1 × ( − 1 ) − 1 × 4 + 2 × ( − 1 ) 4 × 1 + 1 × 2 − 1 × 1 + 2 × 2 ] ⇒ [ 16 − 1 − 4 − 2 4 + 2 − 1 + 4 ] ⇒ [ 15 − 6 6 3 ] .
Solving 6A,
⇒ 6 A = 6 × [ 4 1 − 1 2 ] ⇒ [ 24 6 − 6 12 ] . \Rightarrow 6A = 6 \times \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 24 & 6 \\ -6 & 12 \end{bmatrix}. ⇒ 6 A = 6 × [ 4 − 1 1 2 ] ⇒ [ 24 − 6 6 12 ] .
Now, 6A – A2
⇒ [ 24 6 − 6 12 ] − [ 15 6 − 6 3 ] ⇒ [ 24 − 15 6 − 6 − 6 − ( − 6 ) 12 − 3 ] ⇒ [ 9 0 0 9 ] ⇒ 9 [ 1 0 0 1 ] = 9 I . \Rightarrow \begin{bmatrix} 24 & 6 \\ -6 & 12 \end{bmatrix} - \begin{bmatrix} 15 & 6 \\ -6 & 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 24 - 15 & 6 - 6 \\ -6 - (-6) & 12 - 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix} \\[1em] \Rightarrow 9\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 9I. ⇒ [ 24 − 6 6 12 ] − [ 15 − 6 6 3 ] ⇒ [ 24 − 15 − 6 − ( − 6 ) 6 − 6 12 − 3 ] ⇒ [ 9 0 0 9 ] ⇒ 9 [ 1 0 0 1 ] = 9 I .
Hence, proved that 6A – A2 = 9I.
If A = [ 1 3 2 4 ] \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} [ 1 2 3 4 ] , B = [ 1 2 2 4 ] \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} [ 1 2 2 4 ] , C = [ 4 1 1 5 ] \begin{bmatrix} 4 & 1 \\ 1 & 5 \end{bmatrix} [ 4 1 1 5 ] and I = [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ] , find A(B + C) – 14I.
Answer
Solving A(B + C),
⇒ [ 1 3 2 4 ] × ( [ 1 2 2 4 ] + [ 4 1 1 5 ] ) ⇒ [ 1 3 2 4 ] × [ 1 + 4 2 + 1 2 + 1 4 + 5 ] ⇒ [ 1 3 2 4 ] × [ 5 3 3 9 ] ⇒ [ 1 × 5 + 3 × 3 1 × 3 + 3 × 9 2 × 5 + 4 × 3 2 × 3 + 4 × 9 ] ⇒ [ 5 + 9 3 + 27 10 + 12 6 + 36 ] ⇒ [ 14 30 22 42 ] . \Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \times \Big(\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 4 & 1 \\ 1 & 5 \end{bmatrix}\Big) \\[1em] \Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 1+4 & 2+1 \\ 2+1 & 4+5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 5 & 3 \\ 3 & 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 \times 5 + 3 \times 3 & 1 \times 3 + 3 \times 9 \\ 2 \times 5 + 4 \times 3 & 2 \times 3 + 4 \times 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 + 9 & 3 + 27 \\ 10 + 12 & 6 + 36 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 14 & 30 \\ 22 & 42 \end{bmatrix}. ⇒ [ 1 2 3 4 ] × ( [ 1 2 2 4 ] + [ 4 1 1 5 ] ) ⇒ [ 1 2 3 4 ] × [ 1 + 4 2 + 1 2 + 1 4 + 5 ] ⇒ [ 1 2 3 4 ] × [ 5 3 3 9 ] ⇒ [ 1 × 5 + 3 × 3 2 × 5 + 4 × 3 1 × 3 + 3 × 9 2 × 3 + 4 × 9 ] ⇒ [ 5 + 9 10 + 12 3 + 27 6 + 36 ] ⇒ [ 14 22 30 42 ] .
Solving 14I,
⇒ 14 × [ 1 0 0 1 ] ⇒ [ 14 0 0 14 ] . \Rightarrow 14 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}. ⇒ 14 × [ 1 0 0 1 ] ⇒ [ 14 0 0 14 ] .
Now, A(B + C) – 14I
⇒ [ 14 30 22 42 ] − [ 14 0 0 14 ] ⇒ [ 14 − 14 30 − 0 22 − 0 42 − 14 ] ⇒ [ 0 30 22 28 ] . \Rightarrow \begin{bmatrix} 14 & 30 \\ 22 & 42 \end{bmatrix} - \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 14 - 14 & 30 - 0 \\ 22 - 0 & 42 - 14 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 & 30 \\ 22 & 28 \end{bmatrix}. ⇒ [ 14 22 30 42 ] − [ 14 0 0 14 ] ⇒ [ 14 − 14 22 − 0 30 − 0 42 − 14 ] ⇒ [ 0 22 30 28 ] .
Hence, A(B + C) – 14I = [ 0 30 22 28 ] \begin{bmatrix} 0 & 30 \\ 22 & 28 \end{bmatrix} [ 0 22 30 28 ] .
If A = [ 0 1 1 0 ] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} [ 0 1 1 0 ] , show that A2 = I.
Answer
Solving A2 ,
⇒ A 2 = [ 0 1 1 0 ] × [ 0 1 1 0 ] ⇒ [ 0 × 0 + 1 × 1 0 × 1 + 1 × 0 1 × 0 + 0 × 1 1 × 1 + 0 × 0 ] ⇒ [ 0 + 1 0 + 0 0 + 0 1 + 0 ] ⇒ [ 1 0 0 1 ] . \Rightarrow A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 \times 0 + 1 \times 1 & 0 \times 1 + 1 \times 0 \\ 1 \times 0 + 0 \times 1 & 1 \times 1 + 0 \times 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 + 1 & 0 + 0 \\ 0 + 0 & 1 + 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. ⇒ A 2 = [ 0 1 1 0 ] × [ 0 1 1 0 ] ⇒ [ 0 × 0 + 1 × 1 1 × 0 + 0 × 1 0 × 1 + 1 × 0 1 × 1 + 0 × 0 ] ⇒ [ 0 + 1 0 + 0 0 + 0 1 + 0 ] ⇒ [ 1 0 0 1 ] .
Hence, proved that A2 = I.
If A = [ a b b 2 − a 2 − a b ] \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} [ ab − a 2 b 2 − ab ] , show that A2 = 0.
Answer
Solving A2 ,
⇒ A 2 = [ a b b 2 − a 2 − a b ] × [ a b b 2 − a 2 − a b ] ⇒ [ a b × a b + b 2 × ( − a 2 ) a b × b 2 + b 2 × ( − a b ) ( − a 2 ) × a b + ( − a b ) × ( − a 2 ) ( − a 2 ) × b 2 + ( − a b ) × ( − a b ) ] ⇒ [ a 2 b 2 − a 2 b 2 a b 3 − a b 3 − a 3 b + a 3 b − a 2 b 2 + a 2 b 2 ] ⇒ [ 0 0 0 0 ] . \Rightarrow A^2 = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \times \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} ab \times ab + b^2 \times (-a^2) & ab \times b^2 + b^2 \times (-ab) \\ (-a^2) \times ab + (-ab) \times (-a^2) & (-a^2) \times b^2 + (-ab) \times (-ab) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} a^2 b^2 - a^2 b^2 & a b^3 - a b^3 \\ - a^3 b + a^3 b & - a^2 b^2 + a^2 b^2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. ⇒ A 2 = [ ab − a 2 b 2 − ab ] × [ ab − a 2 b 2 − ab ] ⇒ [ ab × ab + b 2 × ( − a 2 ) ( − a 2 ) × ab + ( − ab ) × ( − a 2 ) ab × b 2 + b 2 × ( − ab ) ( − a 2 ) × b 2 + ( − ab ) × ( − ab ) ] ⇒ [ a 2 b 2 − a 2 b 2 − a 3 b + a 3 b a b 3 − a b 3 − a 2 b 2 + a 2 b 2 ] ⇒ [ 0 0 0 0 ] .
Hence, proved that A2 = 0.
If A = [ 2 − 3 a b ] \begin{bmatrix} 2 & -3 \\ a & b \end{bmatrix} [ 2 a − 3 b ] , find a and b so that A2 = I.
Answer
Solving A2 ,
⇒ A 2 = [ 2 − 3 a b ] × [ 2 − 3 a b ] ⇒ [ 2 × 2 + ( − 3 ) × a 2 × ( − 3 ) + ( − 3 ) × b a × 2 + b × a a × ( − 3 ) + b × b ] ⇒ [ 4 − 3 a − 6 − 3 b 2 a + a b − 3 a + b 2 ] . \Rightarrow A^2 = \begin{bmatrix} 2 & -3 \\ a & b \end{bmatrix} \times \begin{bmatrix} 2 & -3 \\ a & b \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \times 2 + (-3) \times a & 2 \times (-3) + (-3) \times b \\ a \times 2 + b \times a & a \times (-3) + b \times b \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 - 3a & -6 - 3b \\ 2a + ab & -3a + b^2 \end{bmatrix}. ⇒ A 2 = [ 2 a − 3 b ] × [ 2 a − 3 b ] ⇒ [ 2 × 2 + ( − 3 ) × a a × 2 + b × a 2 × ( − 3 ) + ( − 3 ) × b a × ( − 3 ) + b × b ] ⇒ [ 4 − 3 a 2 a + ab − 6 − 3 b − 3 a + b 2 ] .
Given,
A2 = I,
[ 4 − 3 a − 6 − 3 b 2 a + a b − 3 a + b 2 ] = [ 1 0 0 1 ] . \begin{bmatrix} 4 - 3a & -6 - 3b \\ 2a + ab & -3a + b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. [ 4 − 3 a 2 a + ab − 6 − 3 b − 3 a + b 2 ] = [ 1 0 0 1 ] .
∴ 4 - 3a = 1,
⇒ -3a = -3
⇒ a = 1.
∴ -6 - 3b = 0,
⇒ -3b = 6
⇒ b = -2.
Hence, a = 1 and b = -2.
If A = [ 2 12 0 1 ] \begin{bmatrix} 2 & 12 \\ 0 & 1 \end{bmatrix} [ 2 0 12 1 ] and B = [ 4 x 0 1 ] \begin{bmatrix} 4 & x \\ 0 & 1 \end{bmatrix} [ 4 0 x 1 ] and A2 = B, find the value of x.
Answer
Let's find A2 ,
⇒ A 2 = [ 2 12 0 1 ] × [ 2 12 0 1 ] ⇒ [ 2 × 2 + 12 × 0 2 × 12 + 12 × 1 0 × 2 + 1 × 0 0 × 12 + 1 × 1 ] ⇒ [ 4 24 + 12 0 1 ] ⇒ [ 4 36 0 1 ] . \Rightarrow A^2 = \begin{bmatrix} 2 & 12 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 12 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \times 2 + 12 \times 0 & 2 \times 12 + 12 \times 1 \\ 0 \times 2 + 1 \times 0 & 0 \times 12 + 1 \times 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 24 + 12 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 36 \\ 0 & 1 \end{bmatrix}. ⇒ A 2 = [ 2 0 12 1 ] × [ 2 0 12 1 ] ⇒ [ 2 × 2 + 12 × 0 0 × 2 + 1 × 0 2 × 12 + 12 × 1 0 × 12 + 1 × 1 ] ⇒ [ 4 0 24 + 12 1 ] ⇒ [ 4 0 36 1 ] .
Since, A2 = B,
⇒ [ 4 36 0 1 ] = [ 4 x 0 1 ] \Rightarrow \begin{bmatrix} 4 & 36 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & x \\ 0 & 1 \end{bmatrix} ⇒ [ 4 0 36 1 ] = [ 4 0 x 1 ]
∴ x = 36
Hence, x = 36.
Find matrix A such that A × [ 2 3 4 5 ] \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} [ 2 4 3 5 ] = [ 0 − 4 10 3 ] \begin{bmatrix} 0 & -4 \\ 10 & 3 \end{bmatrix} [ 0 10 − 4 3 ] .
Answer
Let B = [ 2 3 4 5 ] \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} [ 2 4 3 5 ] Then, AB = [ 0 − 4 10 3 ] \begin{bmatrix} 0 & -4 \\ 10 & 3 \end{bmatrix} [ 0 10 − 4 3 ]
Since AB exists, we have:
Number of columns of A = Number of rows in B = 2
Number of rows of A = Number of rows in AB = 2
Order of A is 2 × 2
Let A = [ a b c d ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} [ a c b d ] .
Then,
⇒ [ a b c d ] × [ 2 3 4 5 ] = [ 0 − 4 10 3 ] ⇒ [ 2 a + 4 b 3 a + 5 b 2 c + 4 d 3 c + 5 d ] = [ 0 − 4 10 3 ] . \Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -4 \\ 10 & 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2a + 4b & 3a + 5b \\ 2c + 4d & 3c + 5d \end{bmatrix} =\begin{bmatrix} 0 & -4 \\ 10 & 3 \end{bmatrix}. ⇒ [ a c b d ] × [ 2 4 3 5 ] = [ 0 10 − 4 3 ] ⇒ [ 2 a + 4 b 2 c + 4 d 3 a + 5 b 3 c + 5 d ] = [ 0 10 − 4 3 ] .
Solving for a and b:
∴ 2a + 4b = 0
⇒ 2(a + 2b) = 0
⇒ a + 2b = 0
⇒ a = -2b ......(1)
∴ 3a + 5b = -4
Substituting value of a from equation(1) in 3a + 5b = -4, we get:
⇒ 3(-2b) + 5b = -4
⇒ -6b + 5b = -4
⇒ -b = -4
⇒ b = 4.
Substituting value of b in equation 1, we get,
⇒ a = -2(4)
⇒ a = -8.
Solving for c and d:
∴ 2c + 4d = 10
⇒ 2(c + 2d) = 10
⇒ c + 2d = 5
⇒ c = 5 - 2d .......(2)
∴ 3c + 5d = 3
Substituting value of c from equation (2) in 3c + 5d = 3, we get :
⇒ 3c + 5d = 3
⇒ 3(5 - 2d) + 5d = 3
⇒ 15 - 6d + 5d = 3
⇒ 15 - d = 3
⇒ d = 15 - 3
⇒ d = 12.
Substituting value of d in equation (2), we get,
⇒ c = 5 - 2(12)
⇒ c = 5 - 24
⇒ c = -19.
∴ A = [ a b c d ] = [ − 8 4 − 19 12 ] \therefore A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -8 & 4 \\ -19 & 12 \end{bmatrix} ∴ A = [ a c b d ] = [ − 8 − 19 4 12 ] .
Hence, A = [ − 8 4 − 19 12 ] \begin{bmatrix} -8 & 4 \\ -19 & 12 \end{bmatrix} [ − 8 − 19 4 12 ] .
Find matrix X such that [ 5 − 7 − 2 3 ] \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} [ 5 − 2 − 7 3 ] X = [ − 16 − 6 7 2 ] \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix} [ − 16 7 − 6 2 ] .
Answer
Let Y = [ 5 − 7 − 2 3 ] \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} [ 5 − 2 − 7 3 ] .
Then, YX = [ − 16 − 6 7 2 ] \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix} [ − 16 7 − 6 2 ]
Since YX exists, we have:
Number of rows of X = Number of columns in Y = 2
Number of columns of X = Number of columns in YX = 2
Order of X is 2 × 2.
Let X = [ a b c d ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} [ a c b d ] .
Then,
⇒ [ 5 − 7 − 2 3 ] × [ a b c d ] = [ − 16 − 6 7 2 ] ⇒ [ 5 a − 7 c 5 b − 7 d − 2 a + 3 c − 2 b + 3 d ] = [ − 16 − 6 7 2 ] \Rightarrow \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix}= \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5a - 7c & 5b - 7d \\ -2a + 3c & -2b + 3d \end{bmatrix} = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix} \\[1em] ⇒ [ 5 − 2 − 7 3 ] × [ a c b d ] = [ − 16 7 − 6 2 ] ⇒ [ 5 a − 7 c − 2 a + 3 c 5 b − 7 d − 2 b + 3 d ] = [ − 16 7 − 6 2 ]
Solving for a and c :
∴ -2a + 3c = 7
⇒ 2a = 3c - 7
⇒ a = 3 c − 7 2 \dfrac{3c - 7}{2} 2 3 c − 7 ...(1)
∴ 5a - 7c = -16 .......(2)
Substituting value of a from equation (1) in (2), we get :
⇒ 5 ( 3 c − 7 2 ) − 7 c = − 16 ⇒ ( 15 c − 35 2 ) − 7 c = − 16 ⇒ 15 c − 35 2 − 7 c × 2 2 = − 16 ⇒ 15 c − 35 − 14 c 2 = − 16 ⇒ c − 35 2 = − 16 ⇒ c − 35 = − 16 × 2 ⇒ c − 35 = − 32 ⇒ c = − 32 + 35 ⇒ c = 3. \Rightarrow 5\Big(\dfrac{3c - 7}{2}\Big) - 7c = -16 \\[1em] \Rightarrow \Big(\dfrac{15c - 35}{2}\Big) - 7c = -16 \\[1em] \Rightarrow \dfrac{15c - 35}{2} - \dfrac{7c \times 2}{2} = -16 \\[1em] \Rightarrow \dfrac{15c - 35 - 14c}{2} = -16 \\[1em] \Rightarrow \dfrac{c - 35}{2} = -16 \\[1em] \Rightarrow c - 35 = -16 \times 2 \\[1em] \Rightarrow c - 35 = -32 \\[1em] \Rightarrow c = -32 + 35 \\[1em] \Rightarrow c = 3. ⇒ 5 ( 2 3 c − 7 ) − 7 c = − 16 ⇒ ( 2 15 c − 35 ) − 7 c = − 16 ⇒ 2 15 c − 35 − 2 7 c × 2 = − 16 ⇒ 2 15 c − 35 − 14 c = − 16 ⇒ 2 c − 35 = − 16 ⇒ c − 35 = − 16 × 2 ⇒ c − 35 = − 32 ⇒ c = − 32 + 35 ⇒ c = 3.
Substituting value of c in equation (1), we get:
⇒ a = 3 ( 3 ) − 7 2 \dfrac{3(3) - 7}{2} 2 3 ( 3 ) − 7
⇒ a = 9 − 7 2 \dfrac{9 - 7}{2} 2 9 − 7
⇒ a = 2 2 \dfrac{2}{2} 2 2
⇒ a = 1.
Solving for b and d:
∴ -2b + 3d = 2
⇒ 2b = 3d - 2
⇒ b = 3 d − 2 2 \dfrac{3d - 2}{2} 2 3 d − 2 ....(3)
∴ 5b - 7d = -6 ......(4)
Substituting value of b from equation (3) in (4), we get:
⇒ 5 ( 3 d − 2 2 ) − 7 d = − 6 ⇒ ( 15 d − 10 2 ) − 7 d = − 6 ⇒ 15 d − 10 2 − 7 d × 2 2 = − 6 ⇒ 15 d − 10 − 14 d 2 = − 6 ⇒ d − 10 2 = − 6 ⇒ d − 10 = − 6 × 2 ⇒ d − 10 = − 12 ⇒ d = − 12 + 10 ⇒ d = − 2. \Rightarrow 5\Big(\dfrac{3d - 2}{2}\Big) - 7d = -6 \\[1em] \Rightarrow \Big(\dfrac{15d - 10}{2}\Big) - 7d = -6 \\[1em] \Rightarrow \dfrac{15d - 10}{2} - \dfrac{7d \times 2}{2} = -6 \\[1em] \Rightarrow \dfrac{15d - 10 - 14d}{2} = -6 \\[1em] \Rightarrow \dfrac{d - 10}{2} = -6 \\[1em] \Rightarrow d - 10 = -6 \times 2 \\[1em] \Rightarrow d - 10 = -12 \\[1em] \Rightarrow d = -12 + 10 \\[1em] \Rightarrow d = -2. ⇒ 5 ( 2 3 d − 2 ) − 7 d = − 6 ⇒ ( 2 15 d − 10 ) − 7 d = − 6 ⇒ 2 15 d − 10 − 2 7 d × 2 = − 6 ⇒ 2 15 d − 10 − 14 d = − 6 ⇒ 2 d − 10 = − 6 ⇒ d − 10 = − 6 × 2 ⇒ d − 10 = − 12 ⇒ d = − 12 + 10 ⇒ d = − 2.
Substituting value of d in equation (3), we get:
⇒ b = 3 ( − 2 ) − 2 2 \dfrac{3(-2) - 2}{2} 2 3 ( − 2 ) − 2
⇒ b = − 6 − 2 2 \dfrac{-6 - 2}{2} 2 − 6 − 2
⇒ b = − 8 2 \dfrac{-8}{2} 2 − 8
⇒ b = -4.
∴ X = [ 1 − 4 3 − 2 ] \therefore X = \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix} ∴ X = [ 1 3 − 4 − 2 ] .
Hence, X = [ 1 − 4 3 − 2 ] \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix} [ 1 3 − 4 − 2 ] .
Let A be a matrix such that A × [ 3 2 − 1 5 ] \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix} [ 3 − 1 2 5 ] = [ 9 − 11 ] \begin{bmatrix} 9 & -11 \end{bmatrix} [ 9 − 11 ] .
(i) Write the order of A.
(ii) Find A.
Answer
(i) Let B = [ 3 2 − 1 5 ] \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix} [ 3 − 1 2 5 ] Then, AB = [ 9 − 11 ] \begin{bmatrix} 9 & -11 \end{bmatrix} [ 9 − 11 ]
Order of B = 2 × 2
Order of AB = 1 × 2
Since AB exists, we have:
Number of columns in A = Number of rows in B = 2
Number of rows of A = Number of rows in AB = 1
Order of A is 1 × 2.
A 1 × 2 × B 2 × 2 = A B 1 × 2 A_{1 \times 2} \times B_{2 \times 2} = AB_{1 \times 2} A 1 × 2 × B 2 × 2 = A B 1 × 2
Hence, order of A is 1 × 2.
(ii) Let A = [ a b ] \begin{bmatrix} a & b \end{bmatrix} [ a b ] .
Then,
⇒ [ a b ] × [ 3 2 − 1 5 ] = [ 9 − 11 ] ⇒ [ 3 a − b 2 a + 5 b ] = [ 9 − 11 ] . \Rightarrow \begin{bmatrix} a & b \end{bmatrix} \times \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 9 & -11 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3a - b & 2a + 5b \end{bmatrix} = \begin{bmatrix} 9 & -11 \end{bmatrix}. ⇒ [ a b ] × [ 3 − 1 2 5 ] = [ 9 − 11 ] ⇒ [ 3 a − b 2 a + 5 b ] = [ 9 − 11 ] .
Solving for a and b:
∴ 3a - b = 9
⇒ b = 3a - 9 ....(1)
∴ 2a + 5b = -11 ...(2)
Substituting value of b from equation (1) in (2), we get :
⇒ 2a + 5(3a - 9) = -11
⇒ 2a + 15a - 45 = -11
⇒ 17a = -11 + 45
⇒ 17a = 34
⇒ a = 34 17 \dfrac{34}{17} 17 34
⇒ a = 2.
Substituting value of a in equation (1), we get :
⇒ b = 3(2) - 9
⇒ b = 6 - 9
⇒ b = -3.
∴ A = [ 2 − 3 ] \therefore A = \begin{bmatrix} 2 & -3 \end{bmatrix} ∴ A = [ 2 − 3 ] .
Hence, A = [ 2 − 3 ] \begin{bmatrix} 2 & -3 \end{bmatrix} [ 2 − 3 ] .
Given [ 4 2 − 1 1 ] \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} [ 4 − 1 2 1 ] M = 6I, where M is a matrix and I is the unit matrix of order 2 × 2
(i) State the order of matrix M.
(ii) Find the matrix M.
Answer
(i) Let N = [ 4 2 − 1 1 ] \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} [ 4 − 1 2 1 ]
Given, NM = 6I
NM = [ 6 0 0 6 ] \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} [ 6 0 0 6 ]
Order of N = 2 × 2
Order of NM = 2 × 2
Since NM exists, we have:
Number of rows of M = Number of columns in N = 2
Number of columns of M = Number of columns in NM = 2
Order of M is 2 × 2.
M 2 × 2 × N 2 × 2 = M N 2 × 2 M_{2 \times 2} \times N_{2 \times 2} = MN_{2 \times 2} M 2 × 2 × N 2 × 2 = M N 2 × 2
Hence, order of M is 2 × 2.
(ii) Let M = [ a b c d ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} [ a c b d ] .
Then,
⇒ [ 4 2 − 1 1 ] × [ a b c d ] = 6 [ 1 0 0 1 ] ⇒ [ 4 a + 2 c 4 b + 2 d − a + c − b + d ] = [ 6 0 0 6 ] . \Rightarrow \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 6\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4a + 2c & 4b + 2d \\ -a + c & -b + d \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}. ⇒ [ 4 − 1 2 1 ] × [ a c b d ] = 6 [ 1 0 0 1 ] ⇒ [ 4 a + 2 c − a + c 4 b + 2 d − b + d ] = [ 6 0 0 6 ] .
Solving for a and c :
∴ -a + c = 0
⇒ c = a....(1)
∴ 4a + 2c = 6
⇒ 2(2a + c = 3)
⇒ 2a + c = 3...(2)
Substituting value of c from equation (1) in 2a + c = 3, we get:
⇒ 2a + a = 3
⇒ 3a = 3
⇒ a = 3 3 \dfrac{3}{3} 3 3
⇒ a = 1
Hence, a = c = 1
Solving for b and d:
∴ -b + d = 6
⇒ d = b + 6...(3)
∴ 4b + 2d = 0
⇒ 2(2b + d) = 0
⇒ 2b + d = 0...(4)
Substituting value of d from equation (3) in 2b + d = 0, we get:
⇒ 2b + b + 6 = 0
⇒ 3b + 6 = 0
⇒ 3b = -6
⇒ b = − 6 3 \dfrac{-6}{3} 3 − 6
⇒ b = -2
Substituting value of b in equation(3), we get:
⇒ d = -2 + 6
⇒ d = 4
Hence, M = [ 1 − 2 1 4 ] . \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}. [ 1 1 − 2 4 ] .
Let A be a matrix such that [ 5 − 2 1 3 ] \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} [ 5 1 − 2 3 ] × A = [ 4 11 ] \begin{bmatrix} 4 \\ 11 \end{bmatrix} [ 4 11 ] .
(i) Write the order of A.
(ii) Find A.
Answer
(i) Let B = [ 5 − 2 1 3 ] \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} [ 5 1 − 2 3 ] Then, BA = [ 4 11 ] \begin{bmatrix} 4 \\ 11 \end{bmatrix} [ 4 11 ]
Order of B = 2 × 2
Order of BA = 2 × 1
Since BA exists, we have:
Number of rows of A = Number of columns in B = 2
Number of columns of A = Number of columns in BA = 1
Order of A is 2 × 1.
B 2 × 2 × A 2 × 1 = B A 2 × 1 B_{2 \times 2} \times A_{2 \times 1} = BA_{2 \times 1} B 2 × 2 × A 2 × 1 = B A 2 × 1
Hence, order of A is 2 × 1.
(ii) Let A = [ x y ] \begin{bmatrix} x \\ y \end{bmatrix} [ x y ] .
Then,
⇒ [ 5 − 2 1 3 ] × [ x y ] = [ 4 11 ] ⇒ [ 5 x − 2 y x + 3 y ] = [ 4 11 ] . \Rightarrow \begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5x - 2y \\ x + 3y \end{bmatrix} = \begin{bmatrix} 4 \\ 11 \end{bmatrix}. ⇒ [ 5 1 − 2 3 ] × [ x y ] = [ 4 11 ] ⇒ [ 5 x − 2 y x + 3 y ] = [ 4 11 ] .
Solving for x and y:
∴ 5x - 2y = 4... (1)
∴ x + 3y = 11
⇒ x = 11 - 3y....(2)
Substituting value of d from equation (2) in 5x - 2y = 4, we get:
⇒ 5(11 - 3y) - 2y = 4
⇒ 55 - 15y - 2y = 4
⇒ 55 - 17y = 4
⇒ 17y = 55 - 4
⇒ 17y = 51
⇒ y = 51 17 \dfrac{51}{17} 17 51
⇒ y = 3
Substituting value of y in equation (2), we get:
⇒ x = 11 - 3(3)
⇒ x = 11 - 9
⇒ x = 2
Hence, A = [ 2 3 ] . \begin{bmatrix} 2 \\ 3 \end{bmatrix}. [ 2 3 ] .
Let A = [ 2 − 1 − 3 4 ] \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix} [ 2 − 3 − 1 4 ] and B = [ 8 − 17 ] \begin{bmatrix} 8 \\ -17 \end{bmatrix} [ 8 − 17 ] . Find a matrix C such that AC = B.
Answer
A = [ 2 − 1 − 3 4 ] \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix} [ 2 − 3 − 1 4 ] and B = [ 8 − 17 ] \begin{bmatrix} 8 \\ -17 \end{bmatrix} [ 8 − 17 ]
Given,
AC = B
Order of A = 2 × 2
Order of AC = Order of B = 2 × 1
Since AC exists, we have :
Number of rows of C = Number of columns in A = 2
Number of columns of C = Number of columns in B = 1
Order of C is 2 × 1.
Let C = [ x y ] \begin{bmatrix} x \\ y \end{bmatrix} [ x y ]
AC = B
⇒ [ 2 − 1 − 3 4 ] × [ x y ] = [ 8 − 17 ] ⇒ [ 2 x − y − 3 x + 4 y ] = [ 8 − 17 ] . \Rightarrow \begin{bmatrix} 2 & -1 \\ -3 & 4 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -17 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x - y \\ -3x + 4y \end{bmatrix} = \begin{bmatrix} 8 \\ -17 \end{bmatrix}. ⇒ [ 2 − 3 − 1 4 ] × [ x y ] = [ 8 − 17 ] ⇒ [ 2 x − y − 3 x + 4 y ] = [ 8 − 17 ] .
∴ 2x - y = 8
⇒ y = 2x - 8 .......(1)
∴ -3x + 4y = -17
Substituting value of y from equation(1) in -3x + 4y = -17, we get:
⇒ -3x + 4(2x - 8) = -17
⇒ -3x + 8x - 32 = -17
⇒ 5x - 32 = -17
⇒ 5x = -17 + 32
⇒ 5x = 15
⇒ x = 15 5 \dfrac{15}{5} 5 15
⇒ x = 3.
Substituting value of x in equation (1), we get :
⇒ y = 2(3) - 8
⇒ y = 6 - 8
⇒ y = -2.
Hence, C = [ 3 − 2 ] . \begin{bmatrix} 3 \\ -2 \end{bmatrix}. [ 3 − 2 ] .
Let A = [ 3 2 − 1 1 ] \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix} [ 3 − 1 2 1 ] and B = [ 14 3 2 4 ] \begin{bmatrix} 14 & 3\ 2 & 4 \end{bmatrix} [ 14 3 2 4 ] . Find a matrix C such that AC = B.
Answer
A = [ 3 2 − 1 1 ] \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix} [ 3 − 1 2 1 ] and B = [ 14 3 2 4 ] \begin{bmatrix} 14 & 3\ 2 & 4 \end{bmatrix} [ 14 3 2 4 ]
Given,
AC = B
Order of A = 2 × 2
Order of AC = Order of B = 2 × 2
Since AC exists, we have:
Number of rows of C = Number of columns in A = 2
Number of columns of C = Number of columns in B = 2
Order of C is 2 × 2.
Let C = [ a b c d ] \begin{bmatrix} a & b\ c & d \end{bmatrix} [ a b c d ]
AC = B
⇒ [ 3 2 − 1 1 ] × [ a b c d ] = [ 14 3 2 4 ] ⇒ [ 3 a + 2 c 3 b + 2 d − a + c − b + d ] = [ 14 3 2 4 ] . \Rightarrow \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix} \times \begin{bmatrix} a & b\ c & d \end{bmatrix} = \begin{bmatrix} 14 & 3\ 2 & 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3a + 2c & 3b + 2d \\ -a + c & -b + d \end{bmatrix} = \begin{bmatrix} 14 & 3\ 2 & 4 \end{bmatrix}. ⇒ [ 3 − 1 2 1 ] × [ a b c d ] = [ 14 3 2 4 ] ⇒ [ 3 a + 2 c − a + c 3 b + 2 d − b + d ] = [ 14 3 2 4 ] .
Solving for a and c:
∴ -a + c = 2
⇒ c = a + 2 ...(1)
∴ 3a + 2c = 14 ......(2)
Substituting value of c from equation(1) in (2), we get :
⇒ 3a + 2(a + 2) = 14
⇒ 3a + 2a + 4 = 14
⇒ 5a = 14 - 4
⇒ 5a = 10
⇒ a = 10 5 \dfrac{10}{5} 5 10
⇒ a = 2.
Substituting value of a in equation (1), we get :
⇒ c = 2 + 2
⇒ c = 4.
Solving for b and d :
∴ -b + d = 4
⇒ d = b + 4 .......(3)
∴ 3b + 2d = 3 .......(4)
Substituting value of d from equation (3) in (4), we get:
⇒ 3b + 2(b + 4) = 3
⇒ 3b + 2b + 8 = 3
⇒ 5b + 8 = 3
⇒ 5b = 3 - 8
⇒ 5b = -5
⇒ b = − 5 5 \dfrac{-5}{5} 5 − 5
⇒ b = -1.
Substituting value of b in equation (3), we get :
⇒ d = -1 + 4
⇒ d = 3.
Hence, C = [ 2 − 1 4 3 ] . \begin{bmatrix} 2 & -1\ 4 & 3 \end{bmatrix}. [ 2 − 1 4 3 ] .
If A = [ 1 3 3 4 ] \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} [ 1 3 3 4 ] and B = [ − 2 1 − 3 2 ] \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix} [ − 2 − 3 1 2 ] and A2 – 5B2 = 5C. Find matrix C, where C is a 2 × 2 matrix.
Answer
Given,
A = [ 1 3 2 4 ] \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} [ 1 2 3 4 ] and B = [ − 2 1 − 3 2 ] \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix} [ − 2 − 3 1 2 ]
Solving for A2 :
⇒ A 2 = [ 1 3 2 4 ] × [ 1 3 2 4 ] = [ ( 1 ) ( 1 ) + ( 3 ) ( 2 ) ( 1 ) ( 3 ) + ( 3 ) ( 4 ) ( 2 ) ( 1 ) + ( 4 ) ( 2 ) ( 2 ) ( 3 ) + ( 4 ) ( 4 ) ] = [ 1 + 6 3 + 12 2 + 8 6 + 16 ] = [ 7 15 10 22 ] . \Rightarrow A^2 = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} (1)(1) + (3)(2) & (1)(3) + (3)(4) \\ (2)(1) + (4)(2) & (2)(3) + (4)(4) \end{bmatrix} \\[1em] = \begin{bmatrix} 1 + 6 & 3 + 12 \\ 2 + 8 & 6 + 16 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 & 15 \\ 10 & 22 \end{bmatrix}. ⇒ A 2 = [ 1 2 3 4 ] × [ 1 2 3 4 ] = [ ( 1 ) ( 1 ) + ( 3 ) ( 2 ) ( 2 ) ( 1 ) + ( 4 ) ( 2 ) ( 1 ) ( 3 ) + ( 3 ) ( 4 ) ( 2 ) ( 3 ) + ( 4 ) ( 4 ) ] = [ 1 + 6 2 + 8 3 + 12 6 + 16 ] = [ 7 10 15 22 ] .
Solving for 5B2 :
⇒ 5 B 2 = 5 ( [ − 2 1 − 3 2 ] × [ − 2 1 − 3 2 ] ) = 5 ( [ ( − 2 ) ( − 2 ) + ( 1 ) ( − 3 ) ( − 2 ) ( 1 ) + ( 1 ) ( 2 ) ( − 3 ) ( − 2 ) + ( 2 ) ( − 3 ) ( − 3 ) ( 1 ) + ( 2 ) ( 2 ) ] ) = 5 [ 4 − 3 − 2 + 2 6 − 6 − 3 + 4 ] = 5 [ 1 0 0 1 ] = [ 5 0 0 5 ] . \Rightarrow 5B^2 = 5\Big(\begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix} \times \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix}\Big) \\[1em] = 5\Big(\begin{bmatrix} (-2)(-2) + (1)(-3) & (-2)(1) + (1)(2) \\ (-3)(-2) + (2)(-3) & (-3)(1) + (2)(2) \end{bmatrix}\Big) \\[1em] = 5\begin{bmatrix} 4 - 3 & -2 + 2 \\ 6 - 6 & -3 + 4 \end{bmatrix} \\[1em] = 5\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}. ⇒ 5 B 2 = 5 ( [ − 2 − 3 1 2 ] × [ − 2 − 3 1 2 ] ) = 5 ( [ ( − 2 ) ( − 2 ) + ( 1 ) ( − 3 ) ( − 3 ) ( − 2 ) + ( 2 ) ( − 3 ) ( − 2 ) ( 1 ) + ( 1 ) ( 2 ) ( − 3 ) ( 1 ) + ( 2 ) ( 2 ) ] ) = 5 [ 4 − 3 6 − 6 − 2 + 2 − 3 + 4 ] = 5 [ 1 0 0 1 ] = [ 5 0 0 5 ] .
Solving for A2 – 5B2 = 5C:
⇒ [ 7 15 10 22 ] − [ 5 0 0 5 ] = 5 C ⇒ [ 7 − 5 15 − 0 10 − 0 22 − 5 ] = 5 C ⇒ 1 5 [ 2 15 15 17 ] = C ⇒ [ 2 5 3 3 17 5 ] = C \Rightarrow \begin{bmatrix} 7 & 15 \\ 10 & 22 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = 5C \\[1em] \Rightarrow \begin{bmatrix} 7 - 5 & 15 - 0 \\ 10 - 0 & 22 - 5 \end{bmatrix} = 5C \\[1em] \Rightarrow \dfrac{1}{5} \begin{bmatrix} 2 & 15 \\ 15 & 17 \end{bmatrix} = C \\[1em] \Rightarrow \begin{bmatrix} \dfrac{2}{5} & 3 \\ 3 & \dfrac{17}{5} \end{bmatrix} = C ⇒ [ 7 10 15 22 ] − [ 5 0 0 5 ] = 5 C ⇒ [ 7 − 5 10 − 0 15 − 0 22 − 5 ] = 5 C ⇒ 5 1 [ 2 15 15 17 ] = C ⇒ 5 2 3 3 5 17 = C
Hence, C = [ 2 5 3 3 17 5 ] \begin{bmatrix} \dfrac{2}{5} & 3 \\ 3 & \dfrac{17}{5} \end{bmatrix} 5 2 3 3 5 17
Given matrix B = [ 1 1 8 3 ] \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix} [ 1 8 1 3 ] . Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X × [ a b ] \begin{bmatrix} a \\ b \end{bmatrix} [ a b ] = [ 5 50 ] \begin{bmatrix} 5 \\ 50 \end{bmatrix} [ 5 50 ] .
Answer
Given,
B = [ 1 1 8 3 ] \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix} [ 1 8 1 3 ]
X = B2 - 4B
Solving for B2 :
⇒ B 2 = [ 1 1 8 3 ] × [ 1 1 8 3 ] = [ ( 1 ) ( 1 ) + ( 1 ) ( 8 ) ( 1 ) ( 1 ) + ( 1 ) ( 3 ) ( 8 ) ( 1 ) + ( 3 ) ( 8 ) ( 8 ) ( 1 ) + ( 3 ) ( 3 ) ] = [ 1 + 8 1 + 3 8 + 24 8 + 9 ] = [ 9 4 32 17 ] . \Rightarrow B^2 = \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix} \\[1em] = \begin{bmatrix} (1)(1) + (1)(8) & (1)(1) + (1)(3) \\ (8)(1) + (3)(8) & (8)(1) + (3)(3) \end{bmatrix} \\[1em] = \begin{bmatrix} 1 + 8 & 1 + 3 \\ 8 + 24 & 8 + 9 \end{bmatrix} \\[1em] = \begin{bmatrix} 9 & 4 \\ 32 & 17 \end{bmatrix}. ⇒ B 2 = [ 1 8 1 3 ] × [ 1 8 1 3 ] = [ ( 1 ) ( 1 ) + ( 1 ) ( 8 ) ( 8 ) ( 1 ) + ( 3 ) ( 8 ) ( 1 ) ( 1 ) + ( 1 ) ( 3 ) ( 8 ) ( 1 ) + ( 3 ) ( 3 ) ] = [ 1 + 8 8 + 24 1 + 3 8 + 9 ] = [ 9 32 4 17 ] .
Solving for 4B:
⇒ 4 B = 4 [ 1 1 8 3 ] = [ 4 4 32 12 ] . \Rightarrow 4B = 4\begin{bmatrix} 1 & 1 \\ 8 & 3 \end{bmatrix} \\[1em] = \begin{bmatrix} 4 & 4 \\ 32 & 12 \end{bmatrix}. ⇒ 4 B = 4 [ 1 8 1 3 ] = [ 4 32 4 12 ] .
Now X = B2 - 4B:
⇒ X = [ 9 4 32 17 ] − [ 4 4 32 12 ] = [ 9 − 4 4 − 4 32 − 32 17 − 12 ] = [ 5 0 0 5 ] . \Rightarrow X = \begin{bmatrix} 9 & 4 \\ 32 & 17 \end{bmatrix} - \begin{bmatrix} 4 & 4 \\ 32 & 12 \end{bmatrix} \\[1em] = \begin{bmatrix} 9 - 4 & 4 - 4 \\ 32 - 32 & 17 - 12 \end{bmatrix} \\[1em] = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}. ⇒ X = [ 9 32 4 17 ] − [ 4 32 4 12 ] = [ 9 − 4 32 − 32 4 − 4 17 − 12 ] = [ 5 0 0 5 ] .
Hence, X = [ 5 0 0 5 ] . \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}. [ 5 0 0 5 ] .
Now,
⇒ X × [ a b ] = [ 5 50 ] ⇒ [ 5 0 0 5 ] × [ a b ] = [ 5 50 ] ⇒ [ 5 a + 0 0 a + 5 b ] = [ 5 50 ] . \Rightarrow X \times \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ 50 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \times \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ 50 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5a + 0 \\ 0a + 5b \end{bmatrix} = \begin{bmatrix} 5 \\ 50 \end{bmatrix}. ⇒ X × [ a b ] = [ 5 50 ] ⇒ [ 5 0 0 5 ] × [ a b ] = [ 5 50 ] ⇒ [ 5 a + 0 0 a + 5 b ] = [ 5 50 ] .
Solving for a and b:
∴ 5a = 5
a = 5 5 \dfrac{5}{5} 5 5
a = 1.
∴ 5b = 50
b = 50 5 \dfrac{50}{5} 5 50
b = 10.
Hence, a = 1 and b = 10.
Evaluate without using tables :
[ 2 cos 60 ∘ − 2 sin 30 ∘ − tan 45 ∘ cos 0 ∘ ] × [ cot 45 ∘ cosec 30 ∘ sec 60 ∘ sin 90 ∘ ] \begin{bmatrix} 2 \cos 60^\circ & -2 \sin 30^\circ \\ -\tan 45^\circ & \cos 0^\circ \end{bmatrix} \times \begin{bmatrix} \cot 45^\circ & \cosec 30^\circ \\ \sec 60^\circ & \sin 90^\circ \end{bmatrix} [ 2 cos 6 0 ∘ − tan 4 5 ∘ − 2 sin 3 0 ∘ cos 0 ∘ ] × [ cot 4 5 ∘ sec 6 0 ∘ cosec 3 0 ∘ sin 9 0 ∘ ]
Answer
Solving,
⇒ [ 2 cos 60 ∘ − 2 sin 30 ∘ − tan 45 ∘ cos 0 ∘ ] × [ cot 45 ∘ cosec 30 ∘ sec 60 ∘ sin 90 ∘ ] ⇒ [ 2 × 1 2 − 2 × 1 2 − 1 1 ] × [ 1 2 2 1 ] ⇒ [ 1 − 1 − 1 1 ] × [ 1 2 2 1 ] ⇒ [ ( 1 ) ( 1 ) + ( − 1 ) ( 2 ) ( 1 ) ( 2 ) + ( − 1 ) ( 1 ) ( − 1 ) ( 1 ) + ( 1 ) ( 2 ) ( − 1 ) ( 2 ) + ( 1 ) ( 1 ) ] ⇒ [ 1 − 2 2 − 1 − 1 + 2 − 2 + 1 ] ⇒ [ − 1 1 1 − 1 ] . \Rightarrow \begin{bmatrix} 2 \cos 60^\circ & -2 \sin 30^\circ \\ -\tan 45^\circ & \cos 0^\circ \end{bmatrix} \times \begin{bmatrix} \cot 45^\circ & \cosec 30^\circ \\ \sec 60^\circ & \sin 90^\circ \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \times \dfrac{1}{2} & -2 \times \dfrac{1}{2} \\ -1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (1)(1) + (-1)(2) & (1)(2) + (-1)(1) \\ (-1)(1) + (1)(2) & (-1)(2) + (1)(1) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 - 2 & 2 - 1 \\ -1 + 2 & -2 + 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}. ⇒ [ 2 cos 6 0 ∘ − tan 4 5 ∘ − 2 sin 3 0 ∘ cos 0 ∘ ] × [ cot 4 5 ∘ sec 6 0 ∘ cosec 3 0 ∘ sin 9 0 ∘ ] ⇒ [ 2 × 2 1 − 1 − 2 × 2 1 1 ] × [ 1 2 2 1 ] ⇒ [ 1 − 1 − 1 1 ] × [ 1 2 2 1 ] ⇒ [ ( 1 ) ( 1 ) + ( − 1 ) ( 2 ) ( − 1 ) ( 1 ) + ( 1 ) ( 2 ) ( 1 ) ( 2 ) + ( − 1 ) ( 1 ) ( − 1 ) ( 2 ) + ( 1 ) ( 1 ) ] ⇒ [ 1 − 2 − 1 + 2 2 − 1 − 2 + 1 ] ⇒ [ − 1 1 1 − 1 ] .
Hence, [ 2 cos 60 ∘ − 2 sin 30 ∘ − tan 45 ∘ cos 0 ∘ ] × [ cot 45 ∘ cosec 30 ∘ sec 60 ∘ sin 90 ∘ ] = [ − 1 1 1 − 1 ] \begin{bmatrix} 2 \cos 60^\circ & -2 \sin 30^\circ \\ -\tan 45^\circ & \cos 0^\circ \end{bmatrix} \times \begin{bmatrix} \cot 45^\circ & \cosec 30^\circ \\ \sec 60^\circ & \sin 90^\circ \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} [ 2 cos 6 0 ∘ − tan 4 5 ∘ − 2 sin 3 0 ∘ cos 0 ∘ ] × [ cot 4 5 ∘ sec 6 0 ∘ cosec 3 0 ∘ sin 9 0 ∘ ] = [ − 1 1 1 − 1 ]
If A = [ 2 6 3 9 ] \begin{bmatrix} 2 & 6 \\ 3 & 9 \end{bmatrix} [ 2 3 6 9 ] , B = [ 3 x y 2 ] \begin{bmatrix} 3 & x \\ y & 2 \end{bmatrix} [ 3 y x 2 ] and AB = 0, find the values of x and y.
Answer
Given,
A = [ 2 6 3 9 ] \begin{bmatrix} 2 & 6 \\ 3 & 9 \end{bmatrix} [ 2 3 6 9 ] , B = [ 3 x y 2 ] \begin{bmatrix} 3 & x \\ y & 2 \end{bmatrix} [ 3 y x 2 ]
AB = 0
⇒ [ 2 6 3 9 ] × [ 3 x y 2 ] = [ 0 0 0 0 ] ⇒ [ ( 2 ) ( 3 ) + 6 y 2 x + ( 6 ) ( 2 ) ( 3 ) ( 3 ) + 9 y 3 x + ( 9 ) ( 2 ) ] = [ 0 0 0 0 ] ⇒ [ 6 + 6 y 2 x + 12 9 + 9 y 3 x + 18 ] = [ 0 0 0 0 ] \Rightarrow \begin{bmatrix} 2 & 6 \\ 3 & 9 \end{bmatrix} \times \begin{bmatrix} 3 & x \\ y & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (2)(3) + 6y & 2x + (6)(2) \\ (3)(3) + 9y & 3x + (9)(2) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 + 6y & 2x + 12 \\ 9 + 9y & 3x + 18 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} ⇒ [ 2 3 6 9 ] × [ 3 y x 2 ] = [ 0 0 0 0 ] ⇒ [ ( 2 ) ( 3 ) + 6 y ( 3 ) ( 3 ) + 9 y 2 x + ( 6 ) ( 2 ) 3 x + ( 9 ) ( 2 ) ] = [ 0 0 0 0 ] ⇒ [ 6 + 6 y 9 + 9 y 2 x + 12 3 x + 18 ] = [ 0 0 0 0 ]
Solve for x and y:
∴ 6 + 6y = 0
⇒ 6y = -6
⇒ y = − 6 6 \dfrac{-6}{6} 6 − 6
⇒ y = -1.
∴ 2x + 12 = 0
⇒ 2x = -12
⇒ x = − 12 2 \dfrac{-12}{2} 2 − 12
⇒ x = -6.
Hence, x = -6 and y = -1.
If [ − 3 2 0 − 5 ] \begin{bmatrix} -3 & 2 \\ 0 & -5 \end{bmatrix} [ − 3 0 2 − 5 ] [ x 2 ] \begin{bmatrix} x \\ 2 \end{bmatrix} [ x 2 ] = [ − 5 y ] \begin{bmatrix} -5 \\ y \end{bmatrix} [ − 5 y ] , find the values of x and y.
Answer
Given,
[ − 3 2 0 − 5 ] \begin{bmatrix} -3 & 2 \\ 0 & -5 \end{bmatrix} [ − 3 0 2 − 5 ] [ x 2 ] \begin{bmatrix} x \\ 2 \end{bmatrix} [ x 2 ] = [ − 5 y ] \begin{bmatrix} -5 \\ y \end{bmatrix} [ − 5 y ]
Solving:
⇒ [ ( − 3 ) ( x ) + ( 2 ) ( 2 ) ( 0 ) ( x ) + ( − 5 ) ( 2 ) ] = [ − 5 y ] ⇒ [ − 3 x + 4 − 10 ] = [ − 5 y ] . \Rightarrow \begin{bmatrix} (-3)(x) + (2)(2) \\ (0)(x) + (-5)(2) \end{bmatrix} = \begin{bmatrix} -5 \\ y \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -3x + 4 \\ -10 \end{bmatrix} = \begin{bmatrix} -5 \\ y \end{bmatrix}. ⇒ [ ( − 3 ) ( x ) + ( 2 ) ( 2 ) ( 0 ) ( x ) + ( − 5 ) ( 2 ) ] = [ − 5 y ] ⇒ [ − 3 x + 4 − 10 ] = [ − 5 y ] .
∴ y = -10
∴ -3x + 4 = -5
⇒ -3x = -5 - 4
⇒ -3x = -9
⇒ x = − 9 − 3 \dfrac{-9}{-3} − 3 − 9
⇒ x = 3.
Hence, x = 3 and y = -10.
If [ 1 2 3 3 ] [ x 0 0 y ] = [ x 0 9 0 ] \begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} x & 0 \\ 9 & 0 \end{bmatrix} [ 1 3 2 3 ] [ x 0 0 y ] = [ x 9 0 0 ] , find the values of x and y.
Answer
⇒ [ 1 2 3 3 ] × [ x 0 0 y ] = [ x 0 9 0 ] ⇒ [ ( 1 ) ( x ) + ( 2 ) ( 0 ) ( 1 ) ( 0 ) + ( 2 ) ( y ) ( 3 ) ( x ) + ( 3 ) ( 0 ) ( 3 ) ( 0 ) + ( 3 ) ( y ) ] = [ x 0 9 0 ] ⇒ [ x + 2 2 y 3 x 3 y ] = [ x 0 9 0 ] \Rightarrow \begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix} \times \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} x & 0 \\ 9 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (1)(x) + (2)(0) & (1)(0) + (2)(y) \\ (3)(x) + (3)(0) & (3)(0) + (3)(y) \end{bmatrix} = \begin{bmatrix} x & 0 \\ 9 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} x + 2 & 2y \\ 3x & 3y \end{bmatrix} = \begin{bmatrix} x & 0 \\ 9 & 0 \end{bmatrix} ⇒ [ 1 3 2 3 ] × [ x 0 0 y ] = [ x 9 0 0 ] ⇒ [ ( 1 ) ( x ) + ( 2 ) ( 0 ) ( 3 ) ( x ) + ( 3 ) ( 0 ) ( 1 ) ( 0 ) + ( 2 ) ( y ) ( 3 ) ( 0 ) + ( 3 ) ( y ) ] = [ x 9 0 0 ] ⇒ [ x + 2 3 x 2 y 3 y ] = [ x 9 0 0 ]
Solving for x and y:
∴ 3x = 9
⇒ x = 9 3 \dfrac{9}{3} 3 9
⇒ x = 3.
∴ 2y = 0
⇒ y = 0.
Hence, x = 3 and y = 0.
If [ 2 x x y 3 y ] [ 3 2 ] = [ 16 9 ] \begin{bmatrix} 2x & x \\ y & 3y \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix} [ 2 x y x 3 y ] [ 3 2 ] = [ 16 9 ] , find the values of x and y.
Answer
Solving,
⇒ [ 2 x x y 3 y ] [ 3 2 ] = [ 16 9 ] ⇒ [ ( 2 x ) ( 3 ) + ( x ) ( 2 ) ( y ) ( 3 ) + ( 3 y ) ( 2 ) ] = [ 16 9 ] ⇒ [ 6 x + 2 x 3 y + 6 y ] = [ 16 9 ] ⇒ [ 8 x 9 y ] = [ 16 9 ] . \Rightarrow \begin{bmatrix} 2x & x \\ y & 3y \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (2x)(3) + (x)(2) \\ (y)(3) + (3y)(2) \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6x + 2x \\ 3y + 6y \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8x \\ 9y \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix}. ⇒ [ 2 x y x 3 y ] [ 3 2 ] = [ 16 9 ] ⇒ [ ( 2 x ) ( 3 ) + ( x ) ( 2 ) ( y ) ( 3 ) + ( 3 y ) ( 2 ) ] = [ 16 9 ] ⇒ [ 6 x + 2 x 3 y + 6 y ] = [ 16 9 ] ⇒ [ 8 x 9 y ] = [ 16 9 ] .
Solving for x and y:
∴ 8x = 16
⇒ x = 16 8 \dfrac{16}{8} 8 16
⇒ x = 2.
∴ 9y = 9
⇒ y = 9 9 \dfrac{9}{9} 9 9
⇒ y = 1.
Hence, x = 2 and y = 1.
Given that A = [ 3 0 0 2 ] \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} [ 3 0 0 2 ] , B = [ a b 0 c ] \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} [ a 0 b c ] and AB = (A + B), find the values of a, b, and c.
Answer
Solving AB:
⇒ [ 3 0 0 2 ] × [ a b 0 c ] ⇒ [ ( 3 ) ( a ) + ( 0 ) ( 0 ) ( 3 ) ( b ) + ( 0 ) ( c ) ( 0 ) ( a ) + ( 2 ) ( 0 ) ( 0 ) ( b ) + ( 2 ) ( c ) ] ⇒ [ 3 a 3 b 0 2 c ] . \Rightarrow \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (3)(a) + (0)(0) & (3)(b) + (0)(c) \\ (0)(a) + (2)(0) & (0)(b) + (2)(c) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3a & 3b \\ 0 & 2c \end{bmatrix}. ⇒ [ 3 0 0 2 ] × [ a 0 b c ] ⇒ [ ( 3 ) ( a ) + ( 0 ) ( 0 ) ( 0 ) ( a ) + ( 2 ) ( 0 ) ( 3 ) ( b ) + ( 0 ) ( c ) ( 0 ) ( b ) + ( 2 ) ( c ) ] ⇒ [ 3 a 0 3 b 2 c ] .
Solving A + B:
⇒ [ 3 0 0 2 ] + [ a b 0 c ] ⇒ [ 3 + a b 0 2 + c ] . \Rightarrow \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 3 + a & b \\ 0 & 2 + c \end{bmatrix}. ⇒ [ 3 0 0 2 ] + [ a 0 b c ] ⇒ [ 3 + a 0 b 2 + c ] .
Given,
AB = A + B
⇒ [ 3 a 3 b 0 2 c ] = [ 3 + a b 0 2 + c ] \Rightarrow \begin{bmatrix} 3a & 3b \\ 0 & 2c \end{bmatrix} = \begin{bmatrix} 3 + a & b \\ 0 & 2 + c \end{bmatrix} ⇒ [ 3 a 0 3 b 2 c ] = [ 3 + a 0 b 2 + c ]
∴ 3a = 3 + a
⇒ 3a - a = 3
⇒ 2a = 3
⇒ a = 3 2 \dfrac{3}{2} 2 3
∴ 3b = b
⇒ 3b - b = 0
⇒ 2b = 0
⇒ b = 0
∴ 2c = 2 + c
⇒ 2c - c = 2
⇒ c = 2.
Hence, values of a = 3 2 \dfrac{3}{2} 2 3 , b = 0 c = 2.
Find x and y if [ 2 x x y 3 y ] \begin{bmatrix} 2x & x \\ y & 3y \end{bmatrix} [ 2 x y x 3 y ] [ 3 2 ] \begin{bmatrix} 3 \\ 2 \end{bmatrix} [ 3 2 ] = [ 16 9 ] \begin{bmatrix} 16 \\ 9 \end{bmatrix} [ 16 9 ] .
Answer
Solving,
⇒ [ 2 x x y 3 y ] [ 3 2 ] = [ 16 9 ] ⇒ [ ( 2 x ) ( 3 ) + ( x ) ( 2 ) ( y ) ( 3 ) + ( 3 y ) ( 2 ) ] = [ 16 9 ] ⇒ [ 6 x + 2 x 3 y + 6 y ] = [ 16 9 ] ⇒ [ 8 x 9 y ] = [ 16 9 ] . \Rightarrow \begin{bmatrix} 2x & x \\ y & 3y \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (2x)(3) + (x)(2) \\ (y)(3) + (3y)(2) \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6x + 2x \\ 3y + 6y \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8x \\ 9y \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix}. ⇒ [ 2 x y x 3 y ] [ 3 2 ] = [ 16 9 ] ⇒ [ ( 2 x ) ( 3 ) + ( x ) ( 2 ) ( y ) ( 3 ) + ( 3 y ) ( 2 ) ] = [ 16 9 ] ⇒ [ 6 x + 2 x 3 y + 6 y ] = [ 16 9 ] ⇒ [ 8 x 9 y ] = [ 16 9 ] .
∴ 8x = 16
⇒ x = 16 8 \dfrac{16}{8} 8 16
⇒ x = 2.
∴ 9y = 9
⇒ y = 9 9 \dfrac{9}{9} 9 9
⇒ y = 1.
Hence, x = 2 and y = 1.
Given A = [ 2 0 − 1 7 ] \begin{bmatrix} 2 & 0 \\ -1 & 7 \end{bmatrix} [ 2 − 1 0 7 ] and I = [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ] and A2 = 9A + mI. Find m.
Answer
Given,
A = [ 2 0 − 1 7 ] \begin{bmatrix} 2 & 0 \\ -1 & 7 \end{bmatrix} [ 2 − 1 0 7 ] and I = [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ]
⇒ A 2 = [ 2 0 − 1 7 ] × [ 2 0 − 1 7 ] = [ ( 2 ) ( 2 ) + ( 0 ) ( − 1 ) ( 2 ) ( 0 ) + ( 0 ) ( 7 ) ( − 1 ) ( 2 ) + ( 7 ) ( − 1 ) ( − 1 ) ( 0 ) + ( 7 ) ( 7 ) ] = [ 4 + 0 0 + 0 − 2 − 7 0 + 49 ] = [ 4 0 − 9 49 ] . \Rightarrow A^2 = \begin{bmatrix} 2 & 0 \\ -1 & 7 \end{bmatrix} \times \begin{bmatrix} 2 & 0 \\ -1 & 7 \end{bmatrix} \\[1em] = \begin{bmatrix} (2)(2) + (0)(-1) & (2)(0) + (0)(7) \\ (-1)(2) + (7)(-1) & (-1)(0) + (7)(7) \end{bmatrix} \\[1em] = \begin{bmatrix} 4 + 0 & 0 + 0 \\ -2 - 7 & 0 + 49 \end{bmatrix} \\[1em] = \begin{bmatrix} 4 & 0 \\ -9 & 49 \end{bmatrix}. ⇒ A 2 = [ 2 − 1 0 7 ] × [ 2 − 1 0 7 ] = [ ( 2 ) ( 2 ) + ( 0 ) ( − 1 ) ( − 1 ) ( 2 ) + ( 7 ) ( − 1 ) ( 2 ) ( 0 ) + ( 0 ) ( 7 ) ( − 1 ) ( 0 ) + ( 7 ) ( 7 ) ] = [ 4 + 0 − 2 − 7 0 + 0 0 + 49 ] = [ 4 − 9 0 49 ] .
Solving for A2 = 9A + mI:
⇒ [ 4 0 − 9 49 ] = 9 [ 2 0 − 1 7 ] + m [ 1 0 0 1 ] ⇒ [ 4 0 − 9 49 ] = [ 18 0 − 9 63 ] + m [ 1 0 0 1 ] ⇒ [ 4 0 − 9 49 ] − [ 18 0 − 9 63 ] = [ m 0 0 m ] ⇒ [ 4 − 18 0 − 0 − 9 − ( − 9 ) 49 − 63 ] = [ m 0 0 m ] ⇒ [ − 14 0 0 − 14 ] = [ m 0 0 m ] . \Rightarrow \begin{bmatrix} 4 & 0 \\ -9 & 49 \end{bmatrix} = 9\begin{bmatrix} 2 & 0 \\ -1 & 7 \end{bmatrix} + m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 0 \\ -9 & 49 \end{bmatrix} = \begin{bmatrix} 18 & 0 \\ -9 & 63 \end{bmatrix} + m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 & 0 \\ -9 & 49 \end{bmatrix} - \begin{bmatrix} 18 & 0 \\ -9 & 63 \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 4 - 18 & 0 - 0 \\ -9 - (-9) & 49 - 63 \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -14 & 0 \\ 0 & -14 \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}. ⇒ [ 4 − 9 0 49 ] = 9 [ 2 − 1 0 7 ] + m [ 1 0 0 1 ] ⇒ [ 4 − 9 0 49 ] = [ 18 − 9 0 63 ] + m [ 1 0 0 1 ] ⇒ [ 4 − 9 0 49 ] − [ 18 − 9 0 63 ] = [ m 0 0 m ] ⇒ [ 4 − 18 − 9 − ( − 9 ) 0 − 0 49 − 63 ] = [ m 0 0 m ] ⇒ [ − 14 0 0 − 14 ] = [ m 0 0 m ] .
∴ m = -14.
Hence, m = -14.
If A = [ 3 x 0 1 ] \begin{bmatrix} 3 & x \\ 0 & 1 \end{bmatrix} [ 3 0 x 1 ] and B = [ 9 − 16 0 − y ] \begin{bmatrix} 9 & -16 \\ 0 & -y \end{bmatrix} [ 9 0 − 16 − y ] , find x and y when A2 = B.
Answer
Given,
A = [ 3 x 0 1 ] \begin{bmatrix} 3 & x \\ 0 & 1 \end{bmatrix} [ 3 0 x 1 ] and B = [ 9 − 16 0 − y ] \begin{bmatrix} 9 & -16 \\ 0 & -y \end{bmatrix} [ 9 0 − 16 − y ]
Solving A2 :
⇒ A 2 = [ 3 x 0 1 ] × [ 3 x 0 1 ] = [ ( 3 ) ( 3 ) + ( x ) ( 0 ) ( 3 ) ( x ) + ( x ) ( 1 ) ( 0 ) ( 3 ) + ( 1 ) ( 0 ) ( 0 ) ( x ) + ( 1 ) ( 1 ) ] = [ 9 + 0 3 x + x 0 + 0 0 + 1 ] = [ 9 4 x 0 1 ] . \Rightarrow A^2 = \begin{bmatrix} 3 & x \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 & x \\ 0 & 1 \end{bmatrix} \\[1em] = \begin{bmatrix} (3)(3) + (x)(0) & (3)(x) + (x)(1) \\ (0)(3) + (1)(0) & (0)(x) + (1)(1) \end{bmatrix} \\[1em] = \begin{bmatrix} 9 + 0 & 3x + x \\ 0 + 0 & 0 + 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 9 & 4x \\ 0 & 1 \end{bmatrix}. ⇒ A 2 = [ 3 0 x 1 ] × [ 3 0 x 1 ] = [ ( 3 ) ( 3 ) + ( x ) ( 0 ) ( 0 ) ( 3 ) + ( 1 ) ( 0 ) ( 3 ) ( x ) + ( x ) ( 1 ) ( 0 ) ( x ) + ( 1 ) ( 1 ) ] = [ 9 + 0 0 + 0 3 x + x 0 + 1 ] = [ 9 0 4 x 1 ] .
Solving for x and y:
A2 = B
⇒ [ 9 4 x 0 1 ] = [ 9 − 16 0 − y ] \Rightarrow \begin{bmatrix} 9 & 4x \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 & -16 \\ 0 & -y \end{bmatrix} ⇒ [ 9 0 4 x 1 ] = [ 9 0 − 16 − y ]
∴ 4x = -16
⇒ x = − 16 4 \dfrac{-16}{4} 4 − 16
⇒ x = -4.
∴ -y = 1
⇒ y = -1.
Hence, x = -4 and y = -1.
Find x and y if [ − 2 0 3 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] \begin{bmatrix} -2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2x \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} y \\ 3 \end{bmatrix} [ − 2 3 0 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] .
Answer
⇒ [ − 2 0 3 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] ⇒ [ ( − 2 ) ( − 1 ) + ( 0 ) ( 2 x ) ( 3 ) ( − 1 ) + ( 1 ) ( 2 x ) ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 + 0 − 3 + 2 x ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 2 x − 3 ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 + ( − 6 ) 2 x − 3 + 3 ] = [ 2 y 6 ] ⇒ [ − 4 2 x ] = [ 2 y 6 ] . \Rightarrow \begin{bmatrix} -2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2x \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} y \\ 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (-2)(-1) + (0)(2x) \\ (3)(-1) + (1)(2x) \end{bmatrix} + \begin{bmatrix} -6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2y \\ 6 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 + 0 \\ -3 + 2x \end{bmatrix} + \begin{bmatrix} -6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2y \\ 6 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 \\ 2x - 3 \end{bmatrix} + \begin{bmatrix} -6 \\ 3 \end{bmatrix} = \begin{bmatrix} 2y \\ 6 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 + (-6) \\ 2x - 3 + 3 \end{bmatrix} = \begin{bmatrix} 2y \\ 6 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -4 \\ 2x \end{bmatrix} = \begin{bmatrix} 2y \\ 6 \end{bmatrix}. ⇒ [ − 2 3 0 1 ] [ − 1 2 x ] + 3 [ − 2 1 ] = 2 [ y 3 ] ⇒ [ ( − 2 ) ( − 1 ) + ( 0 ) ( 2 x ) ( 3 ) ( − 1 ) + ( 1 ) ( 2 x ) ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 + 0 − 3 + 2 x ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 2 x − 3 ] + [ − 6 3 ] = [ 2 y 6 ] ⇒ [ 2 + ( − 6 ) 2 x − 3 + 3 ] = [ 2 y 6 ] ⇒ [ − 4 2 x ] = [ 2 y 6 ] .
∴ 2y = -4
⇒ y = − 4 2 \dfrac{-4}{2} 2 − 4
⇒ y = -2.
∴ 2x = 6
x = 6 2 \dfrac{6}{2} 2 6
⇒ x = 3.
Hence, x = 3 and y = -2.
If A = [ 3 0 5 1 ] \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} [ 3 5 0 1 ] and B = [ − 4 2 1 0 ] \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} [ − 4 1 2 0 ] , find A2 – 2AB + B2 .
Answer
Given,
A = [ 3 0 5 1 ] \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} [ 3 5 0 1 ] and B = [ − 4 2 1 0 ] \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} [ − 4 1 2 0 ]
Solving for A2 :
⇒ A 2 = [ 3 0 5 1 ] × [ 3 0 5 1 ] = [ ( 3 ) ( 3 ) + ( 0 ) ( 5 ) ( 3 ) ( 0 ) + ( 0 ) ( 1 ) ( 5 ) ( 3 ) + ( 1 ) ( 5 ) ( 5 ) ( 0 ) + ( 1 ) ( 1 ) ] = [ 9 + 0 0 + 0 15 + 5 0 + 1 ] = [ 9 0 20 1 ] . \Rightarrow A^2 = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} \\[1em] = \begin{bmatrix} (3)(3) + (0)(5) & (3)(0) + (0)(1) \\ (5)(3) + (1)(5) & (5)(0) + (1)(1) \end{bmatrix} \\[1em] = \begin{bmatrix} 9 + 0 & 0 + 0 \\ 15 + 5 & 0 + 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 9 & 0 \\ 20 & 1 \end{bmatrix}. ⇒ A 2 = [ 3 5 0 1 ] × [ 3 5 0 1 ] = [ ( 3 ) ( 3 ) + ( 0 ) ( 5 ) ( 5 ) ( 3 ) + ( 1 ) ( 5 ) ( 3 ) ( 0 ) + ( 0 ) ( 1 ) ( 5 ) ( 0 ) + ( 1 ) ( 1 ) ] = [ 9 + 0 15 + 5 0 + 0 0 + 1 ] = [ 9 20 0 1 ] .
Solving for B2 :
⇒ B 2 = [ − 4 2 1 0 ] × [ − 4 2 1 0 ] = [ ( − 4 ) ( − 4 ) + ( 2 ) ( 1 ) ( − 4 ) ( 2 ) + ( 2 ) ( 0 ) ( 1 ) ( − 4 ) + ( 0 ) ( 1 ) ( 1 ) ( 2 ) + ( 0 ) ( 0 ) ] = [ 16 + 2 − 8 + 0 − 4 + 0 2 + 0 ] = [ 18 − 8 − 4 2 ] . \Rightarrow B^2 = \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix} \\[1em] = \begin{bmatrix} (-4)(-4) + (2)(1) & (-4)(2) + (2)(0) \\ (1)(-4) + (0)(1) & (1)(2) + (0)(0) \end{bmatrix} \\[1em] = \begin{bmatrix} 16 + 2 & -8 + 0 \\ -4 + 0 & 2 + 0 \end{bmatrix} \\[1em] = \begin{bmatrix} 18 & -8 \\ -4 & 2 \end{bmatrix}. ⇒ B 2 = [ − 4 1 2 0 ] × [ − 4 1 2 0 ] = [ ( − 4 ) ( − 4 ) + ( 2 ) ( 1 ) ( 1 ) ( − 4 ) + ( 0 ) ( 1 ) ( − 4 ) ( 2 ) + ( 2 ) ( 0 ) ( 1 ) ( 2 ) + ( 0 ) ( 0 ) ] = [ 16 + 2 − 4 + 0 − 8 + 0 2 + 0 ] = [ 18 − 4 − 8 2 ] .
Solving for 2AB:
⇒ 2 A B = 2 ( [ 3 0 5 1 ] × [ − 4 2 1 0 ] ) = 2 [ ( 3 ) ( − 4 ) + ( 0 ) ( 1 ) ( 3 ) ( 2 ) + ( 0 ) ( 0 ) ( 5 ) ( − 4 ) + ( 1 ) ( 1 ) ( 5 ) ( 2 ) + ( 1 ) ( 0 ) ] = 2 [ − 12 + 0 6 + 0 − 20 + 1 10 + 0 ] = 2 [ − 12 6 − 19 10 ] = [ − 24 12 − 38 20 ] . \Rightarrow 2AB = 2 \Big(\begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix} \times \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix}\Big) \\[1em] = 2\begin{bmatrix} (3)(-4) + (0)(1) & (3)(2) + (0)(0) \\ (5)(-4) + (1)(1) & (5)(2) + (1)(0) \end{bmatrix} \\[1em] = 2\begin{bmatrix} -12 + 0 & 6 + 0 \\ -20 + 1 & 10 + 0 \end{bmatrix} \\[1em] = 2\begin{bmatrix} -12 & 6 \\ -19 & 10 \end{bmatrix} \\[1em] = \begin{bmatrix} -24 & 12 \\ -38 & 20 \end{bmatrix}. ⇒ 2 A B = 2 ( [ 3 5 0 1 ] × [ − 4 1 2 0 ] ) = 2 [ ( 3 ) ( − 4 ) + ( 0 ) ( 1 ) ( 5 ) ( − 4 ) + ( 1 ) ( 1 ) ( 3 ) ( 2 ) + ( 0 ) ( 0 ) ( 5 ) ( 2 ) + ( 1 ) ( 0 ) ] = 2 [ − 12 + 0 − 20 + 1 6 + 0 10 + 0 ] = 2 [ − 12 − 19 6 10 ] = [ − 24 − 38 12 20 ] .
A2 – 2AB + B2
⇒ [ 9 0 20 1 ] − [ − 24 12 − 38 20 ] + [ 18 − 8 − 4 2 ] ⇒ [ 9 − ( − 24 ) 0 − 12 20 − ( − 38 ) 1 − 20 ] + [ 18 − 8 − 4 2 ] ⇒ [ 33 − 12 58 − 19 ] + [ 18 − 8 − 4 2 ] ⇒ [ 33 + 18 − 12 − 8 58 − 4 − 19 + 2 ] ⇒ [ 51 − 20 54 − 17 ] . \Rightarrow \begin{bmatrix} 9 & 0 \\ 20 & 1 \end{bmatrix} - \begin{bmatrix} -24 & 12 \\ -38 & 20 \end{bmatrix} + \begin{bmatrix} 18 & -8 \\ -4 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 9 - (-24) & 0 - 12 \\ 20 - (-38) & 1 - 20 \end{bmatrix} + \begin{bmatrix} 18 & -8 \\ -4 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 33 & -12 \\ 58 & -19 \end{bmatrix} + \begin{bmatrix} 18 & -8 \\ -4 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 33 + 18 & -12 - 8 \\ 58 - 4 & -19 + 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 51 & -20 \\ 54 & -17 \end{bmatrix}. ⇒ [ 9 20 0 1 ] − [ − 24 − 38 12 20 ] + [ 18 − 4 − 8 2 ] ⇒ [ 9 − ( − 24 ) 20 − ( − 38 ) 0 − 12 1 − 20 ] + [ 18 − 4 − 8 2 ] ⇒ [ 33 58 − 12 − 19 ] + [ 18 − 4 − 8 2 ] ⇒ [ 33 + 18 58 − 4 − 12 − 8 − 19 + 2 ] ⇒ [ 51 54 − 20 − 17 ] .
Hence, A2 – 2AB + B2 = [ 51 − 20 54 − 17 ] \begin{bmatrix} 51 & -20 \\ 54 & -17 \end{bmatrix} [ 51 54 − 20 − 17 ]
Multiple Choice Questions
The order of the matrix having x rows and y columns is denoted by:
x + y
x - y
x × y
none of these
Answer
The order of a matrix is written as "rows by columns."
If a matrix has x rows and y columns, its order is written as x × y.
Hence, option 3 is the correct option.
The total number of elements in an m × n matrix is:
m + n
mn
mn
2m + n
Answer
The order of an m × n matrix indicates that it has m rows and n columns. To find the total number of elements, you multiply the number of rows by the number of columns = mn.
Hence, option 3 is the correct option.
The matrix, A = [ 3 4 − 8 2 0 − 2 1 7 − 9 ] \begin{bmatrix} 3 & 4 & -8 \\ 2 & 0 & -2 \\ 1 & 7 & -9 \end{bmatrix} 3 2 1 4 0 7 − 8 − 2 − 9 , then the value of a23 is:
2
-8
-9
-2
Answer
i = Row
j = Column
In a23 , i = 2 (Second row) j = 3 (Third column)
In given matrix:
A = [ 3 4 − 8 2 0 − 2 1 7 − 9 ] \begin{bmatrix} 3 & 4 & -8 \\ 2 & 0 & -2 \\ 1 & 7 & -9 \end{bmatrix} 3 2 1 4 0 7 − 8 − 2 − 9
The element in the second row and third column is −2.
Hence, option 4 is the correct option.
The matrix, A = [ 4 0 0 0 3 0 0 0 − 7 ] \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -7 \end{bmatrix} 4 0 0 0 3 0 0 0 − 7 is a:
Rectangular matrix
Column matrix
Diagonal matrix
Identity matrix
Answer
Given,
A = [ 4 0 0 0 3 0 0 0 − 7 ] \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -7 \end{bmatrix} 4 0 0 0 3 0 0 0 − 7
A diagonal matrix is a square matrix in which all the elements outside the main diagonal are zero.
Thus, A is a diagonal matrix.
Hence, option 3 is the correct option.
A matrix of order of 3 × 1 whose elements aij are given by aij = (2i + j), is :
[ 3 5 7 ] \begin{bmatrix} 3 & 5 & 7 \end{bmatrix} [ 3 5 7 ]
[ 3 5 7 ] \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix} 3 5 7
[ 2 4 6 ] \begin{bmatrix} 2 & 4 & 6 \end{bmatrix} [ 2 4 6 ]
[ 2 4 6 ] \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} 2 4 6
Answer
aij = (2i + j)
⇒ a11 = 2(1) + 1 = 3
⇒ a21 = (2)2 + 1 = 5
⇒ a31 = (2)3 + 1 = 7
Matrix A = [ 3 5 7 ] \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix} 3 5 7
Hence, option 2 is the correct option.
A matrix of order 3 × 2 whose elements aij are given by aij = (i + j), is:
[ 2 3 4 3 4 5 ] \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} [ 2 3 3 4 4 5 ]
[ 2 3 4 4 5 6 ] \begin{bmatrix} 2 & 3 & 4 \\ 4 & 5 & 6 \end{bmatrix} [ 2 4 3 5 4 6 ]
[ 2 3 3 4 4 5 ] \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{bmatrix} 2 3 4 3 4 5
[ 2 3 3 4 5 6 ] \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} 2 3 5 3 4 6
Answer
aij = i + j.
∴ a11 = 1 + 1 = 2, a12 = 1 + 2 = 3.
a21 = 2 + 1 = 3, a22 = 2 + 2 = 4.
a31 = 3 + 1 = 4, a32 = 3 + 2 = 5.
Matrix A = [ 2 3 3 4 4 5 ] \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{bmatrix} 2 3 4 3 4 5
Hence, option 3 is the correct option.
If a matrix has 12 elements, then the total number of possible orders it can have is:
4
6
8
cannot be determined
Answer
If a matrix has 12 elements the possible orders are, 1 x 12, 12 x 1, 2 x 6, 6 x 2, 3 x 4, 4 x 3.
There are 6 possible orders.
Hence, option 2 is the correct option.
A 2 × 2 matrix whose elements are given by aij = ( i + 2 j ) 2 2 \dfrac{(i + 2j)^2}{2} 2 ( i + 2 j ) 2 is:
[ 3 2 5 2 8 18 ] \begin{bmatrix} \dfrac{3}{2} & \dfrac{5}{2} \\ \space & \space \\ 8 & 18 \end{bmatrix} 2 3 8 2 5 18
[ 5 2 7 2 8 18 ] \begin{bmatrix} \dfrac{5}{2} & \dfrac{7}{2} \\ \space & \space \\ 8 & 18 \end{bmatrix} 2 5 8 2 7 18
[ 9 2 15 2 8 18 ] \begin{bmatrix} \dfrac{9}{2} & \dfrac{15}{2} \\ \space & \space \\ 8 & 18 \end{bmatrix} 2 9 8 2 15 18
[ 9 2 25 2 8 18 ] \begin{bmatrix} \dfrac{9}{2} & \dfrac{25}{2} \\ \space & \space \\ 8 & 18 \end{bmatrix} 2 9 8 2 25 18
Answer
Given,
aij = ( i + 2 j ) 2 2 \dfrac{(i + 2j)^2}{2} 2 ( i + 2 j ) 2
a 11 = [ 1 + 2 ( 1 ) ] 2 2 = 3 2 2 = 9 2 , a 12 = [ 1 + 2 ( 2 ) ] 2 2 = 5 2 2 = 25 2 a 21 = [ 2 + 2 ] 2 2 = 4 2 2 = 16 2 = 8 , a 22 = [ 2 + 2 ( 2 ) ] 2 2 = 6 2 2 = 36 2 = 18. a_{11} = \dfrac{[1 + 2(1)]^2}{2} = \dfrac{3^2}{2} = \dfrac{9}{2}, a_{12} = \dfrac{[1 + 2(2)]^2}{2} = \dfrac{5^2}{2} = \dfrac{25}{2} \\[1em] a_{21} = \dfrac{[2 + 2]^2}{2} = \dfrac{4^2}{2} = \dfrac{16}{2} = 8, a_{22} = \dfrac{[2 + 2(2)]^2}{2} = \dfrac{6^2}{2} = \dfrac{36}{2} = 18. a 11 = 2 [ 1 + 2 ( 1 ) ] 2 = 2 3 2 = 2 9 , a 12 = 2 [ 1 + 2 ( 2 ) ] 2 = 2 5 2 = 2 25 a 21 = 2 [ 2 + 2 ] 2 = 2 4 2 = 2 16 = 8 , a 22 = 2 [ 2 + 2 ( 2 ) ] 2 = 2 6 2 = 2 36 = 18.
Matrix A = [ 9 2 25 2 8 18 ] \begin{bmatrix} \dfrac{9}{2} & \dfrac{25}{2} \\ 8 & 18 \end{bmatrix} [ 2 9 8 2 25 18 ]
Hence, option 4 is the correct option.
If [ 5 3 x 7 ] = [ y z 1 7 ] \begin{bmatrix} 5 & 3 \\ x & 7 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 7 \end{bmatrix} [ 5 x 3 7 ] = [ y 1 z 7 ] , then the value of (x + y + z) is:
9
8
11
10
Answer
Given,
[ 5 3 x 7 ] = [ y z 1 7 ] \begin{bmatrix} 5 & 3 \\ x & 7 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 7 \end{bmatrix} [ 5 x 3 7 ] = [ y 1 z 7 ]
Solving for x, y and z:
∴ x = 1
∴ y = 5
∴ z = 3
⇒ x + y + z = 9
Hence, option 1 is the correct option.
If [ x − y 2 x + z 2 x − y 3 z + w ] = [ − 1 5 0 13 ] \begin{bmatrix} x - y & 2x + z \\ 2x - y & 3z + w \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix} [ x − y 2 x − y 2 x + z 3 z + w ] = [ − 1 0 5 13 ] , then the value of (x + y + z + w) is:
8
9
10
12
Answer
Given,
⇒ [ x − y 2 x + z 2 x − y 3 z + w ] = [ − 1 5 0 13 ] \Rightarrow \begin{bmatrix} x - y & 2x + z \\ 2x - y & 3z + w \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix} ⇒ [ x − y 2 x − y 2 x + z 3 z + w ] = [ − 1 0 5 13 ]
Solving for x and y:
∴ 2x - y = 0
⇒ y = 2x ...(1)
∴ x - y = -1 ...(2)
Substituting value of y from equation (1) in x - y = -1, we get:
⇒ x - 2x = -1
⇒ -x = -1
⇒ x = 1.
Substituting value of x in equation(1), we get:
⇒ y = 2(1)
⇒ y = 2.
Solving for w and z:
∴ 2x + z = 5
⇒ 2(1) + z = 5
⇒ 2 + z = 5
⇒ z = 5 - 2
⇒ z = 3.
∴ 3z + w = 13
⇒ 3(3) + w = 13
⇒ 9 + w = 13
⇒ w = 13 - 9
⇒ w = 4.
∴ x + y + z + w = 1 + 2 + 3 + 4 = 10.
Hence, option 3 is the correct option.
Which of the following statements is true for the transpose of a matrix?
The number of rows is same as that of the given matrix.
The number of columns is same as that of the given matrix.
The order is same as that of the given matrix.
The number of elements is same as that of the given matrix.
Answer
If A = m × n then AT = n × m
The total number of elements is calculated by multiplying the dimensions: m × n. Since m × n = n × m
Therefore, total number of elements in A is exactly the same as the total number of elements in AT
Hence, option 4 is the correct option.
If [ x + y x − y ] = [ 8 4 ] \begin{bmatrix} x + y \\ x - y \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} [ x + y x − y ] = [ 8 4 ] , then the value of xy is:
4
8
10
12
Answer
Given,
[ x + y x − y ] = [ 8 4 ] \begin{bmatrix} x + y \\ x - y \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} [ x + y x − y ] = [ 8 4 ]
∴ x + y = 8 .....(1)
∴ x - y = 4 .....(2)
Adding equations (1) and (2), we get :
⇒ x + y + x - y = 8 + 4
⇒ 2x = 12
⇒ x = 12 2 \dfrac{12}{2} 2 12
⇒ x = 6.
Substituting value of x in equation (1) :
⇒ x + y = 8
⇒ 6 + y = 8
⇒ y = 8 - 6
⇒ y = 2.
∴ xy = 6 × 2 = 12.
Hence, option 4 is the correct option.
If [ p − q 2 q 2 q + r p + q ] = [ 1 4 9 5 ] \begin{bmatrix} p - q & 2q \\ 2q + r & p + q \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 9 & 5 \end{bmatrix} [ p − q 2 q + r 2 q p + q ] = [ 1 9 4 5 ] , then the value of (p + q + r) is:
8
10
-5
-10
Answer
[ p − q 2 q 2 q + r p + q ] = [ 1 4 9 5 ] \begin{bmatrix} p - q & 2q \\ 2q + r & p + q \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 9 & 5 \end{bmatrix} [ p − q 2 q + r 2 q p + q ] = [ 1 9 4 5 ]
Solving for p, q and r:
∴ 2q = 4...(1)
⇒ q = 4 2 \dfrac{4}{2} 2 4
⇒ q = 2.
∴ p - q = 1
⇒ p - 2 = 1
⇒ p = 1 + 2
⇒ p = 3.
∴ 2q + r = 9
⇒ 2(2) + r = 9
⇒ 4 + r = 9
⇒ r = 9 - 4
⇒ r = 5.
∴ p + q + r = 3 + 2 + 5 = 10.
Hence, option 2 is the correct option.
If [ x + 3 4 y − 4 x + y ] = [ 5 4 3 9 ] \begin{bmatrix} x + 3 & 4 \\ y - 4 & x + y \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 3 & 9 \end{bmatrix} [ x + 3 y − 4 4 x + y ] = [ 5 3 4 9 ] , then the values of x and y respectively are:
2, 7
7, 2
3, 5
2, -7
Answer
Given,
[ x + 3 4 y − 4 x + y ] = [ 5 4 3 9 ] \begin{bmatrix} x + 3 & 4 \\ y - 4 & x + y \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 3 & 9 \end{bmatrix} [ x + 3 y − 4 4 x + y ] = [ 5 3 4 9 ]
Solving for x and y :
∴ x + 3 = 5
⇒ x = 5 - 3
⇒ x = 2.
∴ y - 4 = 3
⇒ y = 3 + 4
⇒ y = 7.
Hence, option 1 is the correct option.
If [ m − 2 n 5 3 n ] \begin{bmatrix} m - 2n & 5 \\ 3 & n \end{bmatrix} [ m − 2 n 3 5 n ] = [ 6 5 3 − 2 ] \begin{bmatrix} 6 & 5 \\ 3 & -2 \end{bmatrix} [ 6 3 5 − 2 ] , then the value of mn is:
2
4
-4
-2
Answer
Given,
[ m − 2 n 5 3 n ] \begin{bmatrix} m - 2n & 5 \\ 3 & n \end{bmatrix} [ m − 2 n 3 5 n ] = [ 6 5 3 − 2 ] \begin{bmatrix} 6 & 5 \\ 3 & -2 \end{bmatrix} [ 6 3 5 − 2 ]
∴ n = -2
∴ m - 2n = 6
⇒ m - 2(-2) = 6
⇒ m + 4 = 6
⇒ m = 6 - 4
⇒ m = 2.
∴ mn = 2(-2) = -4.
Hence, option 3 is the correct option.
If A = [ − 2 3 0 − 5 ] \begin{bmatrix} -2 & 3 \\ 0 & -5 \end{bmatrix} [ − 2 0 3 − 5 ] and B = [ − 7 − 2 3 4 ] \begin{bmatrix} -7 & -2 \\ 3 & 4 \end{bmatrix} [ − 7 3 − 2 4 ] , then (A + B) is:
[ − 9 1 3 − 1 ] \begin{bmatrix} -9 & 1 \\ 3 & -1 \end{bmatrix} [ − 9 3 1 − 1 ]
[ − 9 − 1 3 − 1 ] \begin{bmatrix} -9 & -1 \ 3 & -1 \end{bmatrix} [ − 9 − 1 3 − 1 ]
[ 9 1 3 1 ] \begin{bmatrix} 9 && 1 \\ 3 && 1 \end{bmatrix} [ 9 3 1 1 ]
[ − 9 1 3 − 1 ] \begin{bmatrix} -9 & 1 \\ 3 & -1 \end{bmatrix} [ − 9 3 1 − 1 ]
Answer
Given,
A = [ − 2 3 0 − 5 ] \begin{bmatrix} -2 & 3 \\ 0 & -5 \end{bmatrix} [ − 2 0 3 − 5 ] and B = [ − 7 − 2 3 4 ] \begin{bmatrix} -7 & -2 \\ 3 & 4 \end{bmatrix} [ − 7 3 − 2 4 ]
Solving for A + B:
⇒ [ − 2 + ( − 7 ) 3 + ( − 2 ) 0 + 3 − 5 + 4 ] ⇒ [ − 2 − 7 3 − 2 3 − 1 ] ⇒ [ − 9 1 3 − 1 ] . \Rightarrow \begin{bmatrix} -2 + (-7) & 3 + (-2) \\ 0 + 3 & -5 + 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} - 2 - 7 & 3 - 2 \\ 3 & - 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -9 & 1 \\ 3 & -1 \end{bmatrix}. ⇒ [ − 2 + ( − 7 ) 0 + 3 3 + ( − 2 ) − 5 + 4 ] ⇒ [ − 2 − 7 3 3 − 2 − 1 ] ⇒ [ − 9 3 1 − 1 ] .
Hence, option 4 is the correct option.
If A = [ − 5 4 3 − 8 ] \begin{bmatrix} -5 & 4 \\ 3 & -8 \end{bmatrix} [ − 5 3 4 − 8 ] and B = [ 2 − 3 − 1 4 ] \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} [ 2 − 1 − 3 4 ] , then (A – B) is:
[ 7 7 − 4 12 ] \begin{bmatrix} 7 & 7 \\ -4 & 12 \end{bmatrix} [ 7 − 4 7 12 ]
[ − 7 7 4 − 12 ] \begin{bmatrix} -7 & 7 \\ 4 & -12 \end{bmatrix} [ − 7 4 7 − 12 ]
[ − 7 − 7 4 12 ] \begin{bmatrix} -7 & -7 \\ 4 & 12 \end{bmatrix} [ − 7 4 − 7 12 ]
[ 3 1 2 − 4 ] \begin{bmatrix} 3 & 1 \\ 2 & -4 \end{bmatrix} [ 3 2 1 − 4 ]
Answer
Given,
A = [ − 5 4 3 − 8 ] \begin{bmatrix} -5 & 4 \\ 3 & -8 \end{bmatrix} [ − 5 3 4 − 8 ] and B = [ 2 − 3 − 1 4 ] \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} [ 2 − 1 − 3 4 ]
Solving for A - B:
⇒ [ − 5 − 2 4 − ( − 3 ) 3 − ( − 1 ) − 8 − 4 ] ⇒ [ − 7 7 4 − 12 ] . \Rightarrow \begin{bmatrix} -5 - 2 & 4 - (-3) \\ 3 - (-1) & -8 - 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -7 & 7 \\ 4 & -12 \end{bmatrix}. ⇒ [ − 5 − 2 3 − ( − 1 ) 4 − ( − 3 ) − 8 − 4 ] ⇒ [ − 7 4 7 − 12 ] .
Hence, option 1 is the correct option.
If A = [ 4 2 − 3 − 9 ] \begin{bmatrix} 4 & 2 \\ -3 & -9 \end{bmatrix} [ 4 − 3 2 − 9 ] , then the value of (-3)A is:
[ − 8 − 4 6 18 ] \begin{bmatrix} -8 & -4 \\ 6 & 18 \end{bmatrix} [ − 8 6 − 4 18 ]
[ − 12 − 6 9 18 ] \begin{bmatrix} -12 & -6 \\ 9 & 18 \end{bmatrix} [ − 12 9 − 6 18 ]
[ − 12 − 6 9 27 ] \begin{bmatrix} -12 & -6 \\ 9 & 27 \end{bmatrix} [ − 12 9 − 6 27 ]
[ − 12 6 9 − 27 ] \begin{bmatrix} -12 & 6 \\ 9 & -27 \end{bmatrix} [ − 12 9 6 − 27 ]
Answer
Given,
[ 4 2 − 3 − 9 ] \begin{bmatrix} 4 & 2 \\ -3 & -9 \end{bmatrix} [ 4 − 3 2 − 9 ]
Solving for -3A:
⇒ − 3 [ 4 2 − 3 − 9 ] ⇒ [ − 12 − 6 9 27 ] \Rightarrow -3\begin{bmatrix} 4 & 2 \\ -3 & -9 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -12 & -6 \\ 9 & 27 \end{bmatrix} ⇒ − 3 [ 4 − 3 2 − 9 ] ⇒ [ − 12 9 − 6 27 ]
Hence, option 3 is the correct option.
[ 2 4 1 4 2 − 1 − 2 3 5 1 3 1 2 3 6 ] \begin{bmatrix} 2 & 4 & 1 & 4 & 2 \\ -1 & -2 & 3 & 5 & 1 \\ 3 & 1 & 2 & 3 & 6 \end{bmatrix} 2 − 1 3 4 − 2 1 1 3 2 4 5 3 2 1 6 is a matrix of the order:
3 × 4
5 × 3
3 × 5
none of these
Answer
Given matrix has :
3rows and 5 columns
Therefore, the order of the matrix is 3 × 5.
Hence, option 3 is the correct option.
If A = [ 3 2 4 1 ] \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} [ 3 4 2 1 ] and B = [ 5 0 3 2 ] \begin{bmatrix} 5 & 0 \\ 3 & 2 \end{bmatrix} [ 5 3 0 2 ] , then (3A + 2B) is equal to:
[ 19 6 18 7 ] \begin{bmatrix} 19 & 6 \\ 18 & 7 \end{bmatrix} [ 19 18 6 7 ]
[ 8 2 7 3 ] \begin{bmatrix} 8 & 2 \\ 7 & 3 \end{bmatrix} [ 8 7 2 3 ]
[ 19 16 18 17 ] \begin{bmatrix} 19 & 16 \\ 18 & 17 \end{bmatrix} [ 19 18 16 17 ]
[ 9 16 8 17 ] \begin{bmatrix} 9 & 16 \\ 8 & 17 \end{bmatrix} [ 9 8 16 17 ]
Answer
Given,
A = [ 3 2 4 1 ] \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} [ 3 4 2 1 ] and B = [ 5 0 3 2 ] \begin{bmatrix} 5 & 0 \\ 3 & 2 \end{bmatrix} [ 5 3 0 2 ]
Solving for 3A + 2B:
⇒ 3 [ 3 2 4 1 ] + 2 [ 5 0 3 2 ] ⇒ [ 9 6 12 3 ] + [ 10 0 6 4 ] ⇒ 3 [ 3 2 4 1 ] + 2 [ 5 0 3 2 ] ⇒ [ 9 + 10 6 + 0 12 + 6 3 + 4 ] ⇒ [ 19 6 18 7 ] \Rightarrow 3\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} + 2\begin{bmatrix} 5 & 0 \\ 3 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 9 & 6 \\ 12 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 0 \\ 6 & 4 \end{bmatrix} \\[1em] \Rightarrow 3\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} + 2\begin{bmatrix} 5 & 0 \\ 3 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 9 + 10 & 6 + 0 \\ 12 + 6 & 3 + 4 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 19 & 6 \\ 18 & 7 \end{bmatrix} ⇒ 3 [ 3 4 2 1 ] + 2 [ 5 3 0 2 ] ⇒ [ 9 12 6 3 ] + [ 10 6 0 4 ] ⇒ 3 [ 3 4 2 1 ] + 2 [ 5 3 0 2 ] ⇒ [ 9 + 10 12 + 6 6 + 0 3 + 4 ] ⇒ [ 19 18 6 7 ]
Hence, option 1 is the correct option.
Find the matrix A, if A + [ 4 6 − 3 7 ] \begin{bmatrix} 4 & 6 \\ -3 & 7 \end{bmatrix} [ 4 − 3 6 7 ] = [ 3 − 6 5 − 8 ] \begin{bmatrix} 3 & -6 \\ 5 & -8 \end{bmatrix} [ 3 5 − 6 − 8 ]
[ − 1 12 8 − 15 ] \begin{bmatrix} -1 & 12 \\ 8 & -15 \end{bmatrix} [ − 1 8 12 − 15 ]
[ − 1 − 12 8 − 15 ] \begin{bmatrix} -1 & -12 \\ 8 & -15 \end{bmatrix} [ − 1 8 − 12 − 15 ]
[ − 1 − 12 − 8 − 15 ] \begin{bmatrix} -1 & -12 \\ -8 & -15 \end{bmatrix} [ − 1 − 8 − 12 − 15 ]
[ 1 12 8 15 ] \begin{bmatrix} 1 & 12 \\ 8 & 15 \end{bmatrix} [ 1 8 12 15 ]
Answer
Given,
A + [ 4 6 − 3 7 ] \begin{bmatrix} 4 & 6 \\ -3 & 7 \end{bmatrix} [ 4 − 3 6 7 ] = [ 3 − 6 5 − 8 ] \begin{bmatrix} 3 & -6 \\ 5 & -8 \end{bmatrix} [ 3 5 − 6 − 8 ]
Solving for A:
⇒ A = [ 3 − 6 5 − 8 ] − [ 4 6 − 3 7 ] = [ 3 − 4 − 6 − 6 5 − ( − 3 ) − 8 − 7 ] = [ − 1 − 12 8 − 15 ] \Rightarrow A = \begin{bmatrix} 3 & -6 \\ 5 & -8 \end{bmatrix} - \begin{bmatrix} 4 & 6 \\ -3 & 7 \end{bmatrix} \\[1em] = \begin{bmatrix} 3 - 4 & -6 - 6 \\ 5 - (-3) & -8 - 7 \end{bmatrix} \\[1em] = \begin{bmatrix} -1 & -12 \\ 8 & -15 \end{bmatrix} ⇒ A = [ 3 5 − 6 − 8 ] − [ 4 − 3 6 7 ] = [ 3 − 4 5 − ( − 3 ) − 6 − 6 − 8 − 7 ] = [ − 1 8 − 12 − 15 ]
Hence, option 2 is the correct option.
cos θ ⋅ [ cos θ sin θ − sin θ cos θ ] + sin θ ⋅ [ sin θ − cos θ cos θ sin θ ] \cosθ \cdot \begin{bmatrix} \cosθ & \sinθ \\ -\sinθ & \cosθ \end{bmatrix} + \sinθ \cdot \begin{bmatrix} \sinθ & -\cosθ \\ \cosθ & \sinθ \end{bmatrix} cos θ ⋅ [ cos θ − sin θ sin θ cos θ ] + sin θ ⋅ [ sin θ cos θ − cos θ sin θ ] is equal to:
[ 1 1 1 1 ] \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} [ 1 1 1 1 ]
[ 0 1 1 0 ] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} [ 0 1 1 0 ]
[ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ]
none of these
Answer
Given,
cos θ ⋅ [ cos θ sin θ − sin θ cos θ ] + sin θ ⋅ [ sin θ − cos θ cos θ sin θ ] \cosθ \cdot \begin{bmatrix} \cosθ & \sinθ \\ -\sinθ & \cosθ \end{bmatrix} + \sinθ \cdot \begin{bmatrix} \sinθ & -\cosθ \\ \cosθ & \sinθ \end{bmatrix} cos θ ⋅ [ cos θ − sin θ sin θ cos θ ] + sin θ ⋅ [ sin θ cos θ − cos θ sin θ ]
Solving:
⇒ [ cos 2 θ cos θ sin θ − sin θ cos θ cos 2 θ ] + ⋅ [ sin 2 θ − sin θ cos θ sin θ cos θ sin 2 θ ] ⇒ [ cos 2 θ + sin 2 θ cos θ sin θ − sin θ cos θ − sin θ cos θ + sin θ cos θ cos 2 θ + sin 2 θ ] ⇒ [ 1 0 0 1 ] , \Rightarrow \begin{bmatrix} \cos^2θ & \cosθ\sinθ \\ -\sinθ\cosθ & \cos^2θ \end{bmatrix} + \cdot \begin{bmatrix} \sin^2θ & -\sinθ\cosθ \\ \sinθ\cosθ & \sin^2θ \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} \cos^2θ + \sin^2θ & \cosθ\sinθ - \sinθ\cosθ\ -\sinθ\cosθ + \sinθ\cosθ & \cos^2θ + \sin^2θ \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, ⇒ [ cos 2 θ − sin θ cos θ cos θ sin θ cos 2 θ ] + ⋅ [ sin 2 θ sin θ cos θ − sin θ cos θ sin 2 θ ] ⇒ [ cos 2 θ + sin 2 θ cos θ sin θ − sin θ cos θ − sin θ cos θ + sin θ cos θ cos 2 θ + sin 2 θ ] ⇒ [ 1 0 0 1 ] ,
Hence, option 3 is the correct option.
If 2 [ 3 4 5 x ] + [ 1 y 0 1 ] = [ 7 0 10 5 ] 2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} 2 [ 3 5 4 x ] + [ 1 0 y 1 ] = [ 7 10 0 5 ] , then the value of (x – y) is:
10
-10
6
-6
Answer
Given,
2 [ 3 4 5 x ] + [ 1 y 0 1 ] = [ 7 0 10 5 ] 2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} 2 [ 3 5 4 x ] + [ 1 0 y 1 ] = [ 7 10 0 5 ]
Solving:
⇒ [ 6 8 10 2 x ] + [ 1 y 0 1 ] = [ 7 0 10 5 ] ⇒ [ 6 + 1 8 + y 10 + 0 2 x + 1 ] = [ 7 0 10 5 ] ⇒ [ 7 8 + y 10 2 x + 1 ] = [ 7 0 10 5 ] . \Rightarrow \begin{bmatrix} 6 & 8 \\ 10 & 2x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 6 + 1 & 8 + y \\ 10 + 0 & 2x + 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 7 & 8 + y \\ 10 & 2x + 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}. ⇒ [ 6 10 8 2 x ] + [ 1 0 y 1 ] = [ 7 10 0 5 ] ⇒ [ 6 + 1 10 + 0 8 + y 2 x + 1 ] = [ 7 10 0 5 ] ⇒ [ 7 10 8 + y 2 x + 1 ] = [ 7 10 0 5 ] .
∴ 8 + y = 0
⇒ y = -8
∴ 2x + 1 = 5
⇒ 2x = 5 - 1
⇒ 2x = 4
⇒ x = 4 2 \dfrac{4}{2} 2 4
⇒ x = 2
∴ x - y = 2 - (-8) = 10
Hence, option 1 is the correct option.
If 2 [ 1 3 0 x ] + [ y 0 1 2 ] = [ 5 6 1 8 ] 2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} 2 [ 1 0 3 x ] + [ y 1 0 2 ] = [ 5 1 6 8 ] ,then the value of (x + y) is:
4
-4
6
8
Answer
Given,
2 [ 1 3 0 x ] + [ y 0 1 2 ] = [ 5 6 1 8 ] 2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} 2 [ 1 0 3 x ] + [ y 1 0 2 ] = [ 5 1 6 8 ]
Solving:
⇒ [ 2 6 0 2 x ] + [ y 0 1 2 ] = [ 5 6 1 8 ] ⇒ [ 2 + y 6 1 2 x + 2 ] = [ 5 6 1 8 ] . \Rightarrow \begin{bmatrix} 2 & 6 \\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2 + y & 6 \\ 1 & 2x + 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}. ⇒ [ 2 0 6 2 x ] + [ y 1 0 2 ] = [ 5 1 6 8 ] ⇒ [ 2 + y 1 6 2 x + 2 ] = [ 5 1 6 8 ] .
∴ 2 + y = 5
⇒ y = 5 - 2
⇒ y = 3
∴ 2x + 2 = 8
⇒ 2x = 8 - 2
⇒ 2x = 6
⇒ x = 6 2 \dfrac{6}{2} 2 6 = 3.
∴ x + y = 3 + 3 = 6.
Hence, option 3 is the correct option.
If [ a + b 2 5 a b ] = [ 6 2 5 8 ] \begin{bmatrix} a + b & 2 \\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix} [ a + b 5 2 ab ] = [ 6 5 2 8 ] , then the values of a and b are:
a = 4, b = 2
a = 2, b = 4
both (a) and (b)
none of these
Answer
Given,
[ a + b 2 5 a b ] = [ 6 2 5 8 ] \begin{bmatrix} a + b & 2 \\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix} [ a + b 5 2 ab ] = [ 6 5 2 8 ]
∴ a + b = 6
⇒ b = 6 - a...(1)
∴ ab = 8...(2)
Substituting value of b from equation(1) in ab = 8, we get:
⇒ a (6 - a) = 8
⇒ 6a - a2 = 8
⇒ a2 - 6a + 8 = 0
⇒ a2 - 4a - 2a + 8 = 0
⇒ a(a - 4) -2(a - 4) = 0
⇒ (a - 2)(a - 4) = 0
(a - 2)= 0 or (a - 4) = 0 [Using zero product rule]
⇒ a = 2 or a = 4
If a = 2, then b = 6 − 2 = 4.
If a = 4, then b = 6 − 4 = 2.
Hence, option 3 is the correct option.
If A = [ 0 − 1 2 1 0 3 − 2 − 3 0 ] \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} 0 1 − 2 − 1 0 − 3 2 3 0 , then (A + A′) is equal to :
0
2A
–A′
A′
Answer
Given,
A = [ 0 − 1 2 1 0 3 − 2 − 3 0 ] \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} 0 1 − 2 − 1 0 − 3 2 3 0
A′ = [ 0 1 − 2 − 1 0 − 3 2 3 0 ] \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} 0 − 1 2 1 0 3 − 2 − 3 0
(A + A′)
⇒ [ 0 − 1 2 1 0 3 − 2 − 3 0 ] + [ 0 1 − 2 − 1 0 − 3 2 3 0 ] ⇒ [ 0 + 0 − 1 + 1 2 + ( − 2 ) 1 + ( − 1 ) 0 + 0 3 + ( − 3 ) − 2 + 2 − 3 + 3 0 + 0 ] ⇒ [ 0 0 0 0 0 0 0 0 0 ] \Rightarrow \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 + 0 & -1 + 1 & 2 + (-2) \\ 1 + (-1) & 0 + 0 & 3 + (-3) \\ -2 + 2 & -3 + 3 & 0 + 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} ⇒ 0 1 − 2 − 1 0 − 3 2 3 0 + 0 − 1 2 1 0 3 − 2 − 3 0 ⇒ 0 + 0 1 + ( − 1 ) − 2 + 2 − 1 + 1 0 + 0 − 3 + 3 2 + ( − 2 ) 3 + ( − 3 ) 0 + 0 ⇒ 0 0 0 0 0 0 0 0 0
Hence, option 1 is the correct option.
If [ x y + 2 z − 3 ] + [ y 4 5 ] = [ 4 9 12 ] \begin{bmatrix} x & y + 2 & z - 3 \end{bmatrix} + \begin{bmatrix} y & 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 9 & 12 \end{bmatrix} [ x y + 2 z − 3 ] + [ y 4 5 ] = [ 4 9 12 ] , then the value of yz is:
24
20
36
30
Answer
⇒ [ x y + 2 z − 3 ] + [ y 4 5 ] = [ 4 9 12 ] ⇒ [ x + y y + 2 + 4 z − 3 + 5 ] = [ 4 9 12 ] ⇒ [ x + y y + 6 z + 2 ] = [ 4 9 12 ] \Rightarrow \begin{bmatrix} x & y + 2 & z - 3 \end{bmatrix} + \begin{bmatrix} y & 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 9 & 12 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} x + y & y + 2 + 4 & z - 3 + 5 \end{bmatrix} = \begin{bmatrix} 4 & 9 & 12 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} x + y & y + 6 & z + 2 \end{bmatrix} = \begin{bmatrix} 4 & 9 & 12 \end{bmatrix} \\[1em] ⇒ [ x y + 2 z − 3 ] + [ y 4 5 ] = [ 4 9 12 ] ⇒ [ x + y y + 2 + 4 z − 3 + 5 ] = [ 4 9 12 ] ⇒ [ x + y y + 6 z + 2 ] = [ 4 9 12 ]
Solving for y and z:
∴ y + 6 = 9
⇒ y = 9 - 6
⇒ y = 3.
∴ z + 2 = 12
⇒ z = 12 - 2
⇒ z = 10.
∴ yz = 3(10) = 30.
Hence, option 4 is the correct option.
If x [ 2 1 ] + y [ 3 5 ] + [ − 8 − 11 ] x\begin{bmatrix} 2 \\ 1 \end{bmatrix} + y\begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} -8 \\ -11 \end{bmatrix} x [ 2 1 ] + y [ 3 5 ] + [ − 8 − 11 ] = 0, then the value of (2x – 3y) is:
1
-4
3
-3
Answer
⇒ x [ 2 1 ] + y [ 3 5 ] + [ − 8 − 11 ] = [ 0 0 ] ⇒ [ 2 x x ] + [ 3 y 5 y ] + [ − 8 − 11 ] = [ 0 0 ] ⇒ [ 2 x + 3 y − 8 x + 5 y − 11 ] = [ 0 0 ] . \Rightarrow x\begin{bmatrix} 2 \\ 1 \end{bmatrix} + y\begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} -8 \\ -11 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x \\ x \end{bmatrix} + \begin{bmatrix} 3y \\ 5y \end{bmatrix} + \begin{bmatrix} -8 \\ -11 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x + 3y - 8 \\ x + 5y - 11 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. ⇒ x [ 2 1 ] + y [ 3 5 ] + [ − 8 − 11 ] = [ 0 0 ] ⇒ [ 2 x x ] + [ 3 y 5 y ] + [ − 8 − 11 ] = [ 0 0 ] ⇒ [ 2 x + 3 y − 8 x + 5 y − 11 ] = [ 0 0 ] .
∴ 2x + 3y - 8 = 0
⇒ 2x + 3y = 8 ....(1)
∴ x + 5y - 11 = 0
⇒ x = 11 - 5y ....(2)
Substituting value of x from equation (2) in (1), we get :
⇒ 2(11 - 5y) + 3y = 8
⇒ 22 - 10y + 3y = 8
⇒ -7y = 8 - 22
⇒ -7y = -14
⇒ y = − 14 − 7 \dfrac{-14}{-7} − 7 − 14
⇒ y = 2.
Substituting value of y in equation (2) we get:
⇒ x = 11 - 5(2)
⇒ x = 11 - 10
⇒ x = 1.
∴ 2x - 3y = 2(1) - 3(2) = 2 - 6 = -4.
Hence, option 2 is the correct option.
If [ 2 3 − 4 1 ] + 2 A = 4 [ − 1 2 3 4 ] \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix} + 2A = 4 \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} [ 2 − 4 3 1 ] + 2 A = 4 [ − 1 3 2 4 ] , then the matrix A is:
[ − 3 5 8 15 ] \begin{bmatrix} -3 & 5 \\ 8 & 15 \end{bmatrix} [ − 3 8 5 15 ]
[ 5 − 3 15 8 ] \begin{bmatrix} 5 & -3 \\ 15 & 8 \end{bmatrix} [ 5 15 − 3 8 ]
[ − 3 5 2 8 15 2 ] \begin{bmatrix} -3 & \dfrac{5}{2} \\ 8 & \dfrac{15}{2} \end{bmatrix} − 3 8 2 5 2 15
[ 5 2 − 3 15 2 8 ] \begin{bmatrix} \dfrac{5}{2} & -3 \\ \dfrac{15}{2} & 8 \end{bmatrix} 2 5 2 15 − 3 8
Answer
Given,
⇒ [ 2 3 − 4 1 ] + 2 A = 4 [ − 1 2 3 4 ] ⇒ 2 A = 4 [ − 1 2 3 4 ] − [ 2 3 − 4 1 ] ⇒ A = 1 2 ( 4 [ − 1 2 3 4 ] − [ 2 3 − 4 1 ] ) ⇒ A = 1 2 ( [ − 4 8 12 16 ] − [ 2 3 − 4 1 ] ) ⇒ A = 1 2 ( [ − 4 − 2 8 − 3 12 − ( − 4 ) 16 − 1 ] ) ⇒ 1 2 [ − 6 5 16 15 ] ⇒ [ − 3 5 2 8 15 2 ] . \Rightarrow \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix} + 2A = 4 \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} \\[1em] \Rightarrow 2A = 4 \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix} \\[1em] \Rightarrow A = \dfrac{1}{2} \Big(4\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix} \Big) \\[1em] \Rightarrow A = \dfrac{1}{2} \Big(\begin{bmatrix} -4 & 8 \\ 12 & 16 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix} \Big) \\[1em] \Rightarrow A = \dfrac{1}{2} \Big(\begin{bmatrix} -4 - 2 & 8 - 3 \\ 12 - (-4) & 16 - 1 \end{bmatrix}\Big) \\[1em] \Rightarrow \dfrac{1}{2}\begin{bmatrix} -6 & 5 \\ 16 & 15 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -3 & \dfrac{5}{2} \\ 8 & \dfrac{15}{2} \end{bmatrix}. ⇒ [ 2 − 4 3 1 ] + 2 A = 4 [ − 1 3 2 4 ] ⇒ 2 A = 4 [ − 1 3 2 4 ] − [ 2 − 4 3 1 ] ⇒ A = 2 1 ( 4 [ − 1 3 2 4 ] − [ 2 − 4 3 1 ] ) ⇒ A = 2 1 ( [ − 4 12 8 16 ] − [ 2 − 4 3 1 ] ) ⇒ A = 2 1 ( [ − 4 − 2 12 − ( − 4 ) 8 − 3 16 − 1 ] ) ⇒ 2 1 [ − 6 16 5 15 ] ⇒ − 3 8 2 5 2 15 .
Hence, option 3 is the correct option.
The product AB of two matrices A and B is possible if:
A and B have the same number of rows.
The number of columns of A is equal to the number of rows of B.
The number of rows of A is equal to the number of columns of B.
A and B have the same number of columns.
Answer
For matrix multiplication A × B to be defined, the inner dimensions must match.
If matrix A has the order m × n.And matrix B has the order p × q.The product AB is only possible if n = p.
The number of columns of A is equal to the number of rows of B.
Hence, option 2 is the correct option.
If the orders of matrices A and B are m × n and p × q respectively, then which of the following is true for the product BA?
m = p
m = q
n = p
n = q
Answer
Given,
Matrix A: m × n
Matrix B: p × q
The product BA is defined if number of columns in B = number of rows in A, m = q .
Hence, option 2 is the correct option.
If P and Q are two different matrices of order 3 × n and n × p, then the order of the matrix PQ is:
3 × p
p × 3
n × n
3 × 3
Answer
Given,
Matrix P: 3 × n
Matrix Q: n × p
The product PQ is defined if number of columns in P × number of rows in Q, 3 × p .
Hence, option 1 is the correct option.
If [ 2 4 3 2 ] × P = [ 6 8 ] \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} \times P = \begin{bmatrix} 6 \\ 8 \end{bmatrix} [ 2 3 4 2 ] × P = [ 6 8 ] , then the order of matrix P is:
2 × 2
2 × 1
1 × 2
cannot be determined
Answer
Let A = [ 2 4 3 2 ] \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} [ 2 3 4 2 ]
Let B = [ 6 8 ] \begin{bmatrix} 6 \\ 8 \end{bmatrix} [ 6 8 ]
Let order of P be m × n:
Thus, AP = B
For matrix multiplication:
The number of columns in A must equal the number of rows in P.
⇒ m = 2
The order of the product B = Rows of A × Columns of P.
⇒ 2 × 1 = 2 × n
⇒ n = 1.
Order of matrix P = 2 × 1.
Hence, option 2 is the correct option.
If A = [ 3 − 6 ] \begin{bmatrix} 3 & -6 \end{bmatrix} [ 3 − 6 ] and B = [ 3 − 1 4 3 ] \begin{bmatrix} 3 & -1 \\ 4 & 3 \end{bmatrix} [ 3 4 − 1 3 ] , then the order of matrix AB is:
1 × 2
2 × 1
2 × 2
1 × 3
Answer
A = [ 3 − 6 ] \begin{bmatrix} 3 & -6 \end{bmatrix} [ 3 − 6 ]
Order of matrix A = 1 × 2
B = [ 3 − 1 4 3 ] \begin{bmatrix} 3 & -1 \\ 4 & 3 \end{bmatrix} [ 3 4 − 1 3 ]
Order of matrix B = 2 × 2
The resulting matrix AB will have the number of rows from the first matrix A and the number of columns from the second matrix B.
Order of matrix AB = 1 × 2
Hence, option 1 is the correct option.
If [ 2 0 0 4 ] [ x y ] \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} [ 2 0 0 4 ] [ x y ] = [ 2 − 8 ] \begin{bmatrix} 2 \\ -8 \end{bmatrix} [ 2 − 8 ] , the values of x and y respectively are:
1, -2
-2, 1
1, 2
-2, -1
Answer
Given,
[ 2 0 0 4 ] [ x y ] \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} [ 2 0 0 4 ] [ x y ] = [ 2 − 8 ] \begin{bmatrix} 2 \\ -8 \end{bmatrix} [ 2 − 8 ]
Solving,
⇒ [ 2 ( x ) + 0 ( y ) 0 ( x ) + 4 ( y ) ] = [ 2 − 8 ] ⇒ [ 2 x 4 y ] = [ 2 − 8 ] \Rightarrow \begin{bmatrix} 2(x) + 0(y) \\ 0(x) + 4(y) \end{bmatrix}= \begin{bmatrix} 2 \\ -8 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x \\ 4y \end{bmatrix}= \begin{bmatrix} 2 \\ -8 \end{bmatrix} ⇒ [ 2 ( x ) + 0 ( y ) 0 ( x ) + 4 ( y ) ] = [ 2 − 8 ] ⇒ [ 2 x 4 y ] = [ 2 − 8 ]
∴ 2x = 2
⇒ x = 2 2 \dfrac{2}{2} 2 2
⇒ x = 1.
∴ 4y = -8
⇒ y = − 8 4 \dfrac{-8}{4} 4 − 8
⇒ y = -2.
Hence, option 1 is the correct option.
If [ x 1 ] [ 1 0 − 2 0 ] = 0 \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0 [ x 1 ] [ 1 − 2 0 0 ] = 0 , then the value of x is :
0
1
2
-2
Answer
Given,
[ x 1 ] [ 1 0 − 2 0 ] = 0 \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0 [ x 1 ] [ 1 − 2 0 0 ] = 0
Solving,
⇒ [ x ( 1 ) + ( 1 ) ( − 2 ) ( x ) ( 0 ) + ( 1 ) ( 0 ) ] = 0 ⇒ [ x − 2 0 ] = [ 0 0 ] \Rightarrow \begin{bmatrix} x(1) + (1)(-2) & (x)(0) + (1)(0) \end{bmatrix} = 0 \\[1em] \Rightarrow \begin{bmatrix} x - 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} ⇒ [ x ( 1 ) + ( 1 ) ( − 2 ) ( x ) ( 0 ) + ( 1 ) ( 0 ) ] = 0 ⇒ [ x − 2 0 ] = [ 0 0 ]
∴ x - 2 = 0
⇒ x = 2
Hence, option 3 is the correct option.
If A = [ 2 − 2 − 2 2 ] \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} [ 2 − 2 − 2 2 ] and A2 = kA, then the value of k is:
2
8
-4
4
Answer
Given,
A = [ 2 − 2 − 2 2 ] \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} [ 2 − 2 − 2 2 ]
Solving:
⇒ A 2 = [ 2 − 2 − 2 2 ] × [ 2 − 2 − 2 2 ] = [ ( 2 ) ( 2 ) + ( − 2 ) ( − 2 ) ( 2 ) ( − 2 ) + ( − 2 ) ( 2 ) ( − 2 ) ( 2 ) + ( 2 ) ( − 2 ) ( − 2 ) ( − 2 ) + ( 2 ) ( 2 ) ] = [ 4 + 4 − 4 − 4 − 4 − 4 4 + 4 ] = [ 8 − 8 − 8 8 ] . \Rightarrow A^2 = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \\[1em] = \begin{bmatrix} (2)(2) + (-2)(-2) & (2)(-2) + (-2)(2) \\ (-2)(2) + (2)(-2) & (-2)(-2) + (2)(2) \end{bmatrix} \\[1em] = \begin{bmatrix} 4 + 4 & -4 - 4 \\ -4 - 4 & 4 + 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}. ⇒ A 2 = [ 2 − 2 − 2 2 ] × [ 2 − 2 − 2 2 ] = [ ( 2 ) ( 2 ) + ( − 2 ) ( − 2 ) ( − 2 ) ( 2 ) + ( 2 ) ( − 2 ) ( 2 ) ( − 2 ) + ( − 2 ) ( 2 ) ( − 2 ) ( − 2 ) + ( 2 ) ( 2 ) ] = [ 4 + 4 − 4 − 4 − 4 − 4 4 + 4 ] = [ 8 − 8 − 8 8 ] .
Given,
A2 = kA
⇒ [ 8 − 8 − 8 8 ] = k [ 2 − 2 − 2 2 ] ⇒ [ 8 − 8 − 8 8 ] = [ 2 k − 2 k − 2 k 2 k ] . \Rightarrow \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} = k\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} = \begin{bmatrix} 2k & -2k \\ -2k & 2k \end{bmatrix}. ⇒ [ 8 − 8 − 8 8 ] = k [ 2 − 2 − 2 2 ] ⇒ [ 8 − 8 − 8 8 ] = [ 2 k − 2 k − 2 k 2 k ] .
∴ 2k = 8
⇒ k = 8 2 \dfrac{8}{2} 2 8
⇒ k = 4.
Hence, option 4 is the correct option.
If, x [ 2 3 ] + y [ − 1 1 ] = [ 10 5 ] x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} x [ 2 3 ] + y [ − 1 1 ] = [ 10 5 ] , then the value of xy is:
3
-12
-6
15
Answer
Solving for x and y:
⇒ x [ 2 3 ] + y [ − 1 1 ] = [ 10 5 ] ⇒ [ 2 x 3 x ] + [ − y y ] = [ 10 5 ] ⇒ [ 2 x − y 3 x + y ] = [ 10 5 ] \Rightarrow x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x \\ 3x \end{bmatrix} + \begin{bmatrix} -y \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 2x - y \\ 3x + y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} \\[1em] ⇒ x [ 2 3 ] + y [ − 1 1 ] = [ 10 5 ] ⇒ [ 2 x 3 x ] + [ − y y ] = [ 10 5 ] ⇒ [ 2 x − y 3 x + y ] = [ 10 5 ]
∴ 2x - y = 10 ....(1)
∴ 3x + y = 5 .....(2)
Adding equations (1) and (2), we get :
⇒ 2x - y + 3x + y = 10 + 5
⇒ 2x + 3x = 15
⇒ 5x = 15
⇒ x = 15 5 \dfrac{15}{5} 5 15
⇒ x = 3.
Substituting value of x in 2x - y = 10, we get :
⇒ 2(3) - y = 10
⇒ 6 - y = 10
⇒ y = 6 - 10
⇒ y = -4.
∴ xy = (3)(-4) = -12.
Hence, option 2 is the correct option.
If, A = [ 4 3 1 2 ] \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} [ 4 1 3 2 ] and B = [ − 4 3 ] \begin{bmatrix} -4 \\ 3 \end{bmatrix} [ − 4 3 ] , then the matrix AB is :
[ − 7 2 ] \begin{bmatrix} -7 \\ 2 \end{bmatrix} [ − 7 2 ]
[ − 7 2 ] \begin{bmatrix} -7 & 2 \end{bmatrix} [ − 7 2 ]
[ − 7 − 2 ] \begin{bmatrix} -7 \\ -2 \end{bmatrix} [ − 7 − 2 ]
[ − 7 − 2 ] \begin{bmatrix} -7 & -2 \end{bmatrix} [ − 7 − 2 ]
Answer
Given,
A = [ 4 3 1 2 ] \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} [ 4 1 3 2 ] and B = [ − 4 3 ] \begin{bmatrix} -4 \\ 3 \end{bmatrix} [ − 4 3 ]
Solving for AB:
⇒ [ 4 3 1 2 ] × [ − 4 3 ] ⇒ [ ( 4 ) ( − 4 ) + ( 3 ) ( 3 ) ( 1 ) ( − 4 ) + ( 2 ) ( 3 ) ] ⇒ [ − 16 + 9 − 4 + 6 ] ⇒ [ − 7 2 ] . \Rightarrow \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} \times \begin{bmatrix} -4 \\ 3 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} (4)(-4) + (3)(3) \\ (1)(-4) + (2)(3) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -16 + 9 \\ -4 + 6 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} -7 \\ 2 \end{bmatrix}. ⇒ [ 4 1 3 2 ] × [ − 4 3 ] ⇒ [ ( 4 ) ( − 4 ) + ( 3 ) ( 3 ) ( 1 ) ( − 4 ) + ( 2 ) ( 3 ) ] ⇒ [ − 16 + 9 − 4 + 6 ] ⇒ [ − 7 2 ] .
Hence, option 1 is the correct option.
If A is a matrix of order (m × n) such that AB and BA are both defined, then B is a:
m × n matrix
n × m matrix
m × m matrix
n × n matrix
Answer
If A is of order m × n:
For matrix multiplication AB to exist, the number of columns of A must equal the number of rows of B.
Number of rows in B = n
For matrix multiplication BA to exist, the number of columns of B must be equal to the number of rows of A.
Number of columns in B = m.
B is of order = n × m.
Hence, option 2 is the correct option.
If A = [ 5 10 3 − 4 ] \begin{bmatrix} 5 & 10 \\ 3 & -4 \end{bmatrix} [ 5 3 10 − 4 ] and I = [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ] , then AI is equal to:
[ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ]
[ 5 10 − 3 4 ] \begin{bmatrix} 5 & 10 \\ -3 & 4 \end{bmatrix} [ 5 − 3 10 4 ]
[ 5 10 3 − 4 ] \begin{bmatrix} 5 & 10 \\ 3 & -4 \end{bmatrix} [ 5 3 10 − 4 ]
[ 15 15 − 1 − 1 ] \begin{bmatrix} 15 & 15 \\ -1 & -1 \end{bmatrix} [ 15 − 1 15 − 1 ]
Answer
Given,
A = [ 5 10 3 − 4 ] \begin{bmatrix} 5 & 10 \\ 3 & -4 \end{bmatrix} [ 5 3 10 − 4 ] and I = [ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 0 0 1 ]
Solving for AI:
⇒ [ 5 10 3 − 4 ] × [ 1 0 0 1 ] ⇒ [ 5 ( 1 ) + 10 ( 0 ) 5 ( 0 ) + 10 ( 1 ) 3 ( 1 ) + ( − 4 ) ( 0 ) 3 ( 0 ) + ( − 4 ) ( 1 ) ] ⇒ [ 5 + 0 0 + 10 3 + 0 0 + ( − 4 ) ] ⇒ [ 5 10 3 − 4 ] . \Rightarrow \begin{bmatrix} 5 & 10 \\ 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5(1) + 10(0) & 5(0) + 10(1) \\ 3(1) + (-4)(0) & 3(0) + (-4)(1) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 + 0 & 0 + 10 \\ 3 + 0 & 0 + (-4) \end{bmatrix} \\[1em] \Rightarrow \begin{bmatrix} 5 & 10 \\ 3 & -4 \end{bmatrix}. ⇒ [ 5 3 10 − 4 ] × [ 1 0 0 1 ] ⇒ [ 5 ( 1 ) + 10 ( 0 ) 3 ( 1 ) + ( − 4 ) ( 0 ) 5 ( 0 ) + 10 ( 1 ) 3 ( 0 ) + ( − 4 ) ( 1 ) ] ⇒ [ 5 + 0 3 + 0 0 + 10 0 + ( − 4 ) ] ⇒ [ 5 3 10 − 4 ] .
Hence, option 3 is the correct option.
Assertion Reason Questions
Assertion (A) : The product of a row matrix and a column matrix is possible.
Reason (R) : Two matrices of the same order can be multiplied.
A is true, R is false.
A is false, R is true.
Both A and R are true.
Both A and R are false.
Answer
The product of a row matrix and a column matrix is possible.
A row matrix has order 1 × n and a column matrix has order m × 1.
If n = m, so the product is defined and gives a 1 × 1 matrix.
So, assertion (A) is true.
Two matrices of the same order cannot be multiplied.
If the matrix are of the same order and not square, example 2 × 3 and 2 × 3, then (2 × 3) × (2 × 3) is not defined because the number of columns of the first matrix is not equal to the number of rows of the second matrix.
So the statement “Two matrices of the same order can be multiplied” is false.
Reason (R) is false.
A is true, R is false.
Hence, option 1 is the correct option.
Assertion (A): A rectangular matrix can be a diagonal matrix.
Reason (R): A matrix in which every non-diagonal element is 0 is called a diagonal matrix.
A is true, R is false.
A is false, R is true.
Both A and R are true.
Both A and R are false.
Answer
In a rectangular matrix number of rows ≠ number of columns.
A diagonal matrix is defined only for square matrices, where all non-diagonal elements are 0 and diagonal elements may be nonzero.
Hence, a rectangular matrix can never be diagonal, because diagonal position exists only when rows = columns.
So, assertion (A) is false.
A matrix in which every non-diagonal element is 0 is called a diagonal matrix.
This is the correct definition of a diagonal matrix.
So, reason (R) is true.
A is false, R is true.
Hence, option 2 is the correct option.
Assertion (A): For any two matrices A and B, A + B = B + A.
Reason (R): We can add only two matrices of same order.
A is true, R is false.
A is false, R is true.
Both A and R are true.
Both A and R are false.
Answer
Matrix addition follows the commutative law — but only when A and B are of the same order.
If that is the condition, A + B = B + A always holds true.
So, Assertion (A) is true.
Matrix addition is defined only when both matrices have the same order.
So, Reason (R) is true.
Both A and R are true.
Hence, option 3 is the correct option.
Assertion (A): For any two square matrices A and B of same order, AB and BA both exist.
Reason (R): For any two matrices A and B, the product AB exists only when number of rows in A = number of columns in B.
A is true, R is false.
A is false, R is true.
Both A and R are true.
Both A and R are false.
Answer
If A and B are square matrices of the same order (say n × n), then :
Thus, for AB, no. of columns in A = no. of rows in B.
Thus, AB is possible.
For BA, no. of columns in B = no. of rows in A.
Thus, BA is possible.
Assertion (A) is true.
The rule for matrix multiplication is : AB exists if the number of columns of A = number of rows of B.
Reason (R) is false.
A is true, R is false.
Hence, option 1 is the correct option.