The interest on ₹ 483 for 2 years at 5% per annum is:
₹ 4,830
₹ 48.30
₹ 4.83
₹ 96.60
Answer
Given:
P = ₹ 483
R = 5%
T = 2 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 483 × 5 × 2 100 ) ⇒ S.I. = ₹ ( 4830 100 ) ⇒ S.I. = ₹ 48.3 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{483 \times 5 \times 2}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{4830}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ 48.3 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 483 × 5 × 2 ) ⇒ S.I. = ₹ ( 100 4830 ) ⇒ S.I. = ₹48.3
Hence, option 2 is the correct option.
The simple interest on ₹ 8,490 at 5% and 73 days is
₹ 849
₹ 84.90
₹ 8.49
none of these
Answer
Given:
P = ₹ 8,490
R = 5%
T = 73 days = 73 365 \dfrac{73}{365} 365 73 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 8 , 490 × 5 × 73 100 × 365 ) ⇒ S.I. = ₹ ( 30 , 98 , 850 36500 ) ⇒ S.I. = ₹ 84.9 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{8,490 \times 5 \times 73}{100 \times 365}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{30,98,850}{36500}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ 84.9 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 × 365 8 , 490 × 5 × 73 ) ⇒ S.I. = ₹ ( 36500 30 , 98 , 850 ) ⇒ S.I. = ₹84.9
Hence, option 2 is the correct option.
A sum of money, put at simple interest doubles itself in 8 years. The same sum will triple itself in:
16 years
12 years
24 years
18 years
Answer
Given:
A = 2P
T = 8 years
Let the rate be r r r .
∵ A = S.I. + P ⇒ S.I. = A - P ⇒ S.I. = 2P - P ⇒ S.I. = P \because \text{A = S.I. + P}\\[1em] \Rightarrow \text{S.I. = A - P}\\[1em] \Rightarrow \text{S.I. = 2P - P}\\[1em] \Rightarrow \text{S.I. = P} ∵ A = S.I. + P ⇒ S.I. = A - P ⇒ S.I. = 2P - P ⇒ S.I. = P
And we know,
S.I. = ₹ ( P × R × T 100 ) ⇒ P = ₹ ( P × r × 8 100 ) ⇒ P = ₹ ( P × r × 8 100 ) ⇒ r = 100 8 ⇒ r = 25 2 \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{P} = ₹ \Big(\dfrac{P \times r \times 8}{100}\Big)\\[1em] \Rightarrow \cancel{P} = ₹ \Big(\dfrac{\cancel{P} \times r \times 8}{100}\Big)\\[1em] \Rightarrow r = \dfrac{100}{8}%\\[1em] \Rightarrow r = \dfrac{25}{2}%\\[1em] S.I. = ₹ ( 100 P × R × T ) ⇒ P = ₹ ( 100 P × r × 8 ) ⇒ P = ₹ ( 100 P × r × 8 ) ⇒ r = 8 100 ⇒ r = 2 25
When A becomes 3P, ⇒ S.I. = 2P
Let the time be t t t years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 2P = ₹ ( P × 25 × t 2 × 100 ) ⇒ 2 P = ₹ ( P × 25 × t 200 ) ⇒ t = ₹ 400 25 ⇒ t = 16 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{2P} = ₹ \Big(\dfrac{P \times 25 \times t}{2 \times 100}\Big)\\[1em] \Rightarrow 2\cancel{P} = ₹ \Big(\dfrac{\cancel{P} \times 25 \times t}{200}\Big)\\[1em] \Rightarrow t = ₹ \dfrac{400}{25}\\[1em] \Rightarrow t = 16\\[1em] ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 2P = ₹ ( 2 × 100 P × 25 × t ) ⇒ 2 P = ₹ ( 200 P × 25 × t ) ⇒ t = ₹ 25 400 ⇒ t = 16
Hence, option 1 is the correct option.
₹ 5,000 earns ₹ 500 as simple interest in 2 years. Then the rate of interest is
10%
5%
20%
2%
Answer
Given:
P = ₹ 5,000
T = 2 years
S.I. = ₹ 500
Let rate of interest be r r r .
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 500 = ₹ ( 5 , 000 × r × 2 100 ) ⇒ 500 = ₹ 10 , 000 r 100 ⇒ 500 = ₹ 100 r ⇒ r = 500 100 ⇒ r = 5 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{500} = ₹ \Big(\dfrac{5,000 \times r \times 2}{100}\Big)\\[1em] \Rightarrow \text{500} = ₹ \dfrac{10,000r}{100}\\[1em] \Rightarrow \text{500} = ₹ 100r\\[1em] \Rightarrow r = \dfrac{500}{100}\\[1em] \Rightarrow r = 5 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 500 = ₹ ( 100 5 , 000 × r × 2 ) ⇒ 500 = ₹ 100 10 , 000 r ⇒ 500 = ₹100 r ⇒ r = 100 500 ⇒ r = 5
Hence, option 2 is the correct option.
₹ 7,000 earns ₹ 1,400 as interest at 5% per annum. Then the time in this case is:
5 years
2 years
10 years
4 years
Answer
Given:
P = ₹ 7,000
R = 5%
S.I. = ₹ 1,400
Let time be t t t years.
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 1,400 = ₹ ( 7 , 000 × 5 × t 100 ) ⇒ 1,400 = ₹ 35 , 000 t 100 ⇒ 1,400 = ₹ 350 t ⇒ t = 1 , 400 350 ⇒ t = 4 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{1,400} = ₹ \Big(\dfrac{7,000 \times 5 \times t}{100}\Big)\\[1em] \Rightarrow \text{1,400} = ₹ \dfrac{35,000t}{100}\\[1em] \Rightarrow \text{1,400} = ₹ 350t\\[1em] \Rightarrow t = \dfrac{1,400}{350}\\[1em] \Rightarrow t = 4 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 1,400 = ₹ ( 100 7 , 000 × 5 × t ) ⇒ 1,400 = ₹ 100 35 , 000 t ⇒ 1,400 = ₹350 t ⇒ t = 350 1 , 400 ⇒ t = 4
∴ Time = 4 years
Hence, option 4 is the correct option.
Find the interest and the amount on:
₹ 750 in 3 years 4 months at 10% per annum.
Answer
Given:
P = ₹ 750
R = 10%
T = 3 years 4 months
= ( 3 + 4 12 ) \Big(3 + \dfrac{4}{12}\Big) ( 3 + 12 4 ) years
= ( 3 + 1 3 ) \Big(3 + \dfrac{1}{3}\Big) ( 3 + 3 1 ) years
= 10 3 \dfrac{10}{3} 3 10 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 750 × 10 × 10 3 × 100 ) ⇒ S.I. = ₹ ( 75 , 000 300 ) ⇒ S.I. = ₹ 250 ∵ A = P + S.I. ⇒ A = ₹ 750 + ₹ 250 ⇒ A = ₹ 1,000 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{750 \times 10 \times 10}{3 \times 100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{75,000}{300}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ 250 \\[2em] \because \text{A = P + S.I.}\\[1em] \Rightarrow \text{A = ₹ 750 + ₹ 250}\\[1em] \Rightarrow \text{A = ₹ 1,000}\\[1em] ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 3 × 100 750 × 10 × 10 ) ⇒ S.I. = ₹ ( 300 75 , 000 ) ⇒ S.I. = ₹250 ∵ A = P + S.I. ⇒ A = ₹ 750 + ₹ 250 ⇒ A = ₹ 1,000
Hence, S.I. = ₹ 250 and Amount = ₹ 1,000.
Find the interest and the amount on:
₹ 5,000 at 8% per year from 23rd December 2011 to 29th July 2012.
Answer
Given:
P = ₹ 5,000
R = 8%
To calculate time (T):
Dec = 8 days (31 - 23)
Jan = 31 days
Feb = 29 days
March = 31 days
April = 30 days
May = 31 days
June = 30 days
July = 29 days
Total = 219 days
T = 219 days
= ( 219 365 ) \Big(\dfrac{219}{365}\Big) ( 365 219 ) years
= ( 3 5 ) \Big(\dfrac{3}{5}\Big) ( 5 3 ) years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 5 , 000 × 8 × 3 5 × 100 ) ⇒ S.I. = ₹ 1 , 20 , 000 500 ⇒ S.I. = ₹ 240 ∵ A = P + S.I. ⇒ A = ₹ 5,000 + ₹ 240 ⇒ A = ₹ 5,240 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{5,000 \times 8 \times 3}{5 \times 100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{1,20,000}{500}\\[1em] \Rightarrow \text{S.I.} = ₹ 240 \\[2em] \because \text{A = P + S.I.}\\[1em] \Rightarrow \text{A = ₹ 5,000 + ₹ 240}\\[1em] \Rightarrow \text{A = ₹ 5,240}\\[1em] ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 5 × 100 5 , 000 × 8 × 3 ) ⇒ S.I. = ₹ 500 1 , 20 , 000 ⇒ S.I. = ₹240 ∵ A = P + S.I. ⇒ A = ₹ 5,000 + ₹ 240 ⇒ A = ₹ 5,240
Hence, S.I. = ₹ 240 and Amount = ₹ 5,240.
Find the interest and the amount on:
₹ 2,600 in 2 years 3 months at 1% per month.
Answer
Given:
P = ₹ 2,600
R = 1% per month = 12% per annum
T = 2 years 3 months
= ( 2 + 3 12 ) \Big(2 + \dfrac{3}{12}\Big) ( 2 + 12 3 ) years
= ( 2 + 1 4 ) \Big(2 + \dfrac{1}{4}\Big) ( 2 + 4 1 ) years
= ( 8 + 1 4 ) \Big(\dfrac{8 + 1}{4}\Big) ( 4 8 + 1 ) years
= ( 9 4 ) \Big(\dfrac{9}{4}\Big) ( 4 9 ) years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 2 , 600 × 12 × 9 4 × 100 ) ⇒ S.I. = ₹ 2 , 08 , 800 400 ⇒ S.I. = ₹ 702 ∵ A = P + S.I. ⇒ A = ₹ 2,600 + ₹ 702 ⇒ A = ₹ 3,302 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{2,600 \times 12 \times 9}{4 \times 100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{2,08,800}{400}\\[1em] \Rightarrow \text{S.I.} = ₹ 702 \\[2em] \because \text{A = P + S.I.}\\[1em] \Rightarrow \text{A = ₹ 2,600 + ₹ 702}\\[1em] \Rightarrow \text{A = ₹ 3,302}\\[1em] ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 4 × 100 2 , 600 × 12 × 9 ) ⇒ S.I. = ₹ 400 2 , 08 , 800 ⇒ S.I. = ₹702 ∵ A = P + S.I. ⇒ A = ₹ 2,600 + ₹ 702 ⇒ A = ₹ 3,302
Hence, S.I. = ₹ 702 and Amount = ₹ 3,302.
Find the interest and the amount on:
₹ 4,000 in 1 1 3 1\dfrac{1}{3} 1 3 1 years at 2 paise per rupee per month.
Answer
Given:
P = ₹ 4,000
R = 2 paise per rupee per month
= 2 100 \dfrac{2}{100} 100 2 per month
= 2 100 × 12 \dfrac{2}{100} \times 12 100 2 × 12 per annum
= 24 100 \dfrac{24}{100} 100 24 per annum
= 24% per annum
T = ( 1 1 3 ) \Big(1\dfrac{1}{3}\Big) ( 1 3 1 ) years
= ( 4 3 ) \Big(\dfrac{4}{3}\Big) ( 3 4 ) years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 4 , 000 × 24 × 4 3 × 100 ) ⇒ S.I. = ₹ 3 , 84 , 000 300 ⇒ S.I. = ₹ 1 , 280 ∵ A = P + S.I. ⇒ A = ₹ 4,000 + ₹ 1,280 ⇒ A = ₹ 5,280 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{4,000 \times 24 \times 4}{3 \times 100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{3,84,000}{300}\\[1em] \Rightarrow \text{S.I.} = ₹ 1,280 \\[2em] \because \text{A = P + S.I.}\\[1em] \Rightarrow \text{A = ₹ 4,000 + ₹ 1,280}\\[1em] \Rightarrow \text{A = ₹ 5,280}\\[1em] ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 3 × 100 4 , 000 × 24 × 4 ) ⇒ S.I. = ₹ 300 3 , 84 , 000 ⇒ S.I. = ₹1 , 280 ∵ A = P + S.I. ⇒ A = ₹ 4,000 + ₹ 1,280 ⇒ A = ₹ 5,280
Hence, S.I. = ₹ 1,280 and Amount = ₹ 5,280.
Rohit borrowed ₹ 24,000 at 7.5 percent per year. How much money will he pay at the end of 4 years to clear his debt?
Answer
Given:
P = ₹ 24,000
R = 7.5%
T = 4 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 24 , 000 × 7.5 × 4 100 ) ⇒ S.I. = ₹ 7 , 20 , 000 100 ⇒ S.I. = ₹ 7 , 200 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{24,000 \times 7.5 \times 4}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{7,20,000}{100}\\[1em] \Rightarrow \text{S.I.} = ₹ 7,200 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 24 , 000 × 7.5 × 4 ) ⇒ S.I. = ₹ 100 7 , 20 , 000 ⇒ S.I. = ₹7 , 200 And ∵ A = P + S.I. ⇒ A = ₹ 24,000 + ₹ 7,200 ⇒ A = ₹ 31,200 \because \text{A = P + S.I.}\\[1em] \Rightarrow \text{A = ₹ 24,000 + ₹ 7,200}\\[1em] \Rightarrow \text{A = ₹ 31,200}\\[1em] ∵ A = P + S.I. ⇒ A = ₹ 24,000 + ₹ 7,200 ⇒ A = ₹ 31,200
Hence, Rohit will pay ₹ 31,200 at the end of 4 years.
On what principal will the simple interest be ₹ 7,008 in 6 years 3 months at 5% per year?
Answer
Given:
S.I. = ₹ 7,008
R = 5%
T = 6 years 3 months
= ( 6 + 3 12 ) \Big(6 + \dfrac{3}{12}\Big) ( 6 + 12 3 ) years
= ( 6 + 1 4 ) \Big(6 + \dfrac{1}{4}\Big) ( 6 + 4 1 ) years
= 25 4 \dfrac{25}{4} 4 25 years
Let the Principal amount be ₹ P P P .
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 7 , 008 = ( P × 5 × 25 4 × 100 ) ⇒ 7 , 008 = ( P × 125 400 ) ⇒ P = ( 7 , 008 × 400 125 ) ⇒ P = 28 , 03 , 200 125 ⇒ P = 22 , 425.60 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 7,008 = \Big(\dfrac{P \times 5 \times 25}{4 \times 100}\Big)\\[1em] \Rightarrow 7,008 = \Big(\dfrac{P \times 125}{400}\Big)\\[1em] \Rightarrow P = \Big(\dfrac{7,008 \times 400}{125}\Big)\\[1em] \Rightarrow P = \dfrac{28,03,200}{125}\\[1em] \Rightarrow P = 22,425.60 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 7 , 008 = ( 4 × 100 P × 5 × 25 ) ⇒ 7 , 008 = ( 400 P × 125 ) ⇒ P = ( 125 7 , 008 × 400 ) ⇒ P = 125 28 , 03 , 200 ⇒ P = 22 , 425.60
Hence, the Principal amount be ₹ 22,425.60.
Find the principal which will amount to ₹ 4,000 in 4 years at 6.25% per annum.
Answer
Given:
A = ₹ 4,000
R = 6.25%
T = 4 years
Let the Principal amount be ₹ P P P .
As we know, A = S.I. + P ⇒ 4 , 000 = S.I. + P ⇒ S.I. = 4 , 000 − P \text{A = S.I. + P}\\[1em] \Rightarrow 4,000 = \text{S.I. + P}\\[1em] \Rightarrow \text{S.I.} = 4,000 - P \\[1em] A = S.I. + P ⇒ 4 , 000 = S.I. + P ⇒ S.I. = 4 , 000 − P
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 4 , 000 − P = ( P × 6.25 × 4 100 ) ⇒ 4 , 000 − P = P × 25 100 ⇒ 4 , 000 − P = P 4 ⇒ 4 , 000 = P 4 + P ⇒ 4 , 000 = P 4 + 4 P 4 ⇒ 4 , 000 = ( P + 4 P ) 4 ⇒ 4 , 000 = 5 P 4 ⇒ P = 4 , 000 × 4 5 ⇒ P = 16 , 000 5 ⇒ P = 3 , 200 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 4,000 - P = \Big(\dfrac{P \times 6.25 \times 4}{100}\Big)\\[1em] \Rightarrow 4,000 - P = \dfrac{P \times 25}{100}\\[1em] \Rightarrow 4,000 - P = \dfrac{P}{4}\\[1em] \Rightarrow 4,000 = \dfrac{P}{4} + P\\[1em] \Rightarrow 4,000 = \dfrac{P}{4} + \dfrac{4P}{4}\\[1em] \Rightarrow 4,000 = \dfrac{(P + 4P)}{4}\\[1em] \Rightarrow 4,000 = \dfrac{5P}{4}\\[1em] \Rightarrow P = \dfrac{4,000 \times 4}{5}\\[1em] \Rightarrow P = \dfrac{16,000}{5}\\[1em] \Rightarrow P = 3,200 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 4 , 000 − P = ( 100 P × 6.25 × 4 ) ⇒ 4 , 000 − P = 100 P × 25 ⇒ 4 , 000 − P = 4 P ⇒ 4 , 000 = 4 P + P ⇒ 4 , 000 = 4 P + 4 4 P ⇒ 4 , 000 = 4 ( P + 4 P ) ⇒ 4 , 000 = 4 5 P ⇒ P = 5 4 , 000 × 4 ⇒ P = 5 16 , 000 ⇒ P = 3 , 200
Hence, the Principal amount be ₹ 3,200.
At what rate per cent per annum will ₹ 630 produce an interest of ₹ 126 in 4 years?
Answer
Given:
P = ₹ 630
T = 4 years
S.I. = ₹ 126
Let rate of interest be r r r .
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 126 = ₹ ( 630 × r × 4 100 ) ⇒ 126 = ₹ 2 , 520 r 100 ⇒ 126 = ₹ 252 r 10 ⇒ r = 126 × 10 252 ⇒ r = 5 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{126} = ₹ \Big(\dfrac{630 \times r \times 4}{100}\Big)\\[1em] \Rightarrow \text{126} = ₹ \dfrac{2,520r}{100}\\[1em] \Rightarrow \text{126} = ₹ \dfrac{252r}{10}\\[1em] \Rightarrow r = \dfrac{126 \times 10}{252}\\[1em] \Rightarrow r = 5 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 126 = ₹ ( 100 630 × r × 4 ) ⇒ 126 = ₹ 100 2 , 520 r ⇒ 126 = ₹ 10 252 r ⇒ r = 252 126 × 10 ⇒ r = 5
Hence, the rate of interest = 5%.
At what rate percent per year will a sum double itself in 6 1 4 6\dfrac{1}{4} 6 4 1 years?
Answer
Given:
T = 6 1 4 6\dfrac{1}{4} 6 4 1 years
= 25 4 \dfrac{25}{4} 4 25 years
A = 2P
A = P + S.I. ⇒ 2P = P + S.I. ⇒ 2P - P = S.I. ⇒ P = S.I. \text{A = P + S.I.}\\[1em] \Rightarrow \text{2P = P + S.I.}\\[1em] \Rightarrow \text{2P - P = S.I.}\\[1em] \Rightarrow \text{P = S.I.}\\[1em] A = P + S.I. ⇒ 2P = P + S.I. ⇒ 2P - P = S.I. ⇒ P = S.I.
Let rate of interest be r r r .
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ P = ₹ ( P × r × 25 4 × 100 ) ⇒ P = ₹ P × r × 25 400 ⇒ 1 = ₹ 25 r 400 ⇒ 400 = 25 r ⇒ r = 400 25 ⇒ r = 16 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{P} = ₹ \Big(\dfrac{P \times r \times 25}{4 \times 100}\Big)\\[1em] \Rightarrow \cancel {P} = ₹ \dfrac{\cancel {P} \times r \times 25}{400}\\[1em] \Rightarrow 1 = ₹ \dfrac{25r}{400}\\[1em] \Rightarrow \text{400} = 25r\\[1em] \Rightarrow r = \dfrac{400}{25}\\[1em] \Rightarrow r = 16 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ P = ₹ ( 4 × 100 P × r × 25 ) ⇒ P = ₹ 400 P × r × 25 ⇒ 1 = ₹ 400 25 r ⇒ 400 = 25 r ⇒ r = 25 400 ⇒ r = 16
Hence, the rate of interest = 16%.
Find the rates of interest per year, if the interest charged for 8 months be 0.06 times of the money borrowed.
Answer
Given:
T = 8 months
= 8 12 \dfrac{8}{12} 12 8 years
= 2 3 \dfrac{2}{3} 3 2 years
Let principal be P
S.I. = 0.06 P
Let rate of interest be r r r .
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 0.06P = ₹ ( P × r × 2 3 × 100 ) ⇒ 6 P 100 = ₹ ( P × r × 2 300 ) ⇒ 6 100 P = ₹ ( P × r × 2 300 ) ⇒ 6 100 = ₹ 2 r 300 ⇒ r = 6 × 300 100 × 2 ⇒ r = 1800 200 ⇒ r = 9 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{0.06P} = ₹ \Big(\dfrac{P \times r \times 2}{3 \times 100}\Big)\\[1em] \Rightarrow \dfrac{6P}{100} = ₹ \Big(\dfrac{P \times r \times 2}{300}\Big)\\[1em] \Rightarrow \dfrac{6}{100}\cancel {P} = ₹ \Big(\dfrac{\cancel {P} \times r \times 2}{300}\Big)\\[1em] \Rightarrow \dfrac{6}{100} = ₹ \dfrac{2r}{300}\\[1em] \Rightarrow r = \dfrac{6 \times 300}{100 \times 2}\\[1em] \Rightarrow r = \dfrac{1800}{200}\\[1em] \Rightarrow r = 9 % ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 0.06P = ₹ ( 3 × 100 P × r × 2 ) ⇒ 100 6 P = ₹ ( 300 P × r × 2 ) ⇒ 100 6 P = ₹ ( 300 P × r × 2 ) ⇒ 100 6 = ₹ 300 2 r ⇒ r = 100 × 2 6 × 300 ⇒ r = 200 1800 ⇒ r = 9
Hence, the rate of interest = 9%.
In how many years will ₹ 950 produce ₹ 399 as simple interest at 7% ?
Answer
Given:
P = ₹ 950
R = 7%
S.I. = ₹ 399
Let time be t t t years. ∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 399 = ₹ ( 950 × 7 × t 100 ) ⇒ 399 = ₹ ( 6 , 650 t 100 ) ⇒ 399 = ₹ ( 133 t 2 ) ⇒ t = 399 × 2 133 ⇒ t = 798 133 ⇒ t = 6 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{399} = ₹ \Big(\dfrac{950 \times 7 \times t}{100}\Big)\\[1em] \Rightarrow \text{399} = ₹ \Big(\dfrac{6,650t}{100}\Big)\\[1em] \Rightarrow \text{399} = ₹ \Big(\dfrac{133t}{2}\Big)\\[1em] \Rightarrow t = \dfrac{399 \times 2}{133}\\[1em] \Rightarrow t = \dfrac{798}{133}\\[1em] \Rightarrow t = 6 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 399 = ₹ ( 100 950 × 7 × t ) ⇒ 399 = ₹ ( 100 6 , 650 t ) ⇒ 399 = ₹ ( 2 133 t ) ⇒ t = 133 399 × 2 ⇒ t = 133 798 ⇒ t = 6
Hence, the time is 6 years.
Find the time in which ₹ 1,200 will amount to ₹ 1,536 at 3.5% per year.
Answer
Given:
P = ₹ 1,200
R = 3.5%
A = ₹ 1,536
As we know,
∵ A = P + S.I.
⇒ ₹ 1,536 = ₹ 1,200 + S.I.
⇒ S.I. = ₹ 1,536 - ₹ 1,200
⇒ S.I. = ₹ 336
Let time be t t t years.
∵ S.I. = ( P × R × T 100 ) ⇒ 336 = ( 1 , 200 × 3.5 × t 100 ) ⇒ 336 = ( 4 , 200 t 100 ) ⇒ 336 = 42 t ⇒ t = 336 42 ⇒ t = 8 \because \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{336} = \Big(\dfrac{1,200 \times 3.5 \times t}{100}\Big)\\[1em] \Rightarrow \text{336} = \Big(\dfrac{4,200t}{100}\Big)\\[1em] \Rightarrow \text{336} = 42t\\[1em] \Rightarrow t = \dfrac{336}{42}\\[1em] \Rightarrow t = 8 ∵ S.I. = ( 100 P × R × T ) ⇒ 336 = ( 100 1 , 200 × 3.5 × t ) ⇒ 336 = ( 100 4 , 200 t ) ⇒ 336 = 42 t ⇒ t = 42 336 ⇒ t = 8
Hence, the time is 8 years.
The simple interest on a certain sum of money is 3 8 \dfrac{3}{8} 8 3 of the sum in 6 1 4 6\dfrac{1}{4} 6 4 1 years. Find the rate percent charged.
Answer
Given:
T = 6 1 4 6\dfrac{1}{4} 6 4 1 years
= 25 4 \dfrac{25}{4} 4 25 years
Let principal be P
S.I. = 3 8 \dfrac{3}{8} 8 3 P
Let rate of interest be r r r .
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 3 8 P = ₹ ( P × r × 25 4 × 100 ) ⇒ 3 P 8 = ₹ ( P × r × 25 400 ) ⇒ 3 8 P = ₹ P × 25 r 400 ⇒ 3 8 = ₹ 25 r 400 ⇒ r = 3 × 400 8 × 25 ⇒ r = 1200 200 ⇒ r = 6 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \dfrac{3}{8}P = ₹ \Big(\dfrac{P \times r \times 25}{4 \times 100}\Big)\\[1em] \Rightarrow \dfrac{3P}{8} = ₹ \Big(\dfrac{P \times r \times 25}{400}\Big)\\[1em] \Rightarrow \dfrac{3}{8}\cancel {P} = ₹ \dfrac{\cancel {P} \times 25r}{400}\\[1em] \Rightarrow \dfrac{3}{8} = ₹ \dfrac{25r}{400}\\[1em] \Rightarrow r = \dfrac{3 \times 400}{8 \times 25}\\[1em] \Rightarrow r = \dfrac{1200}{200}\\[1em] \Rightarrow r = 6 % ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 8 3 P = ₹ ( 4 × 100 P × r × 25 ) ⇒ 8 3 P = ₹ ( 400 P × r × 25 ) ⇒ 8 3 P = ₹ 400 P × 25 r ⇒ 8 3 = ₹ 400 25 r ⇒ r = 8 × 25 3 × 400 ⇒ r = 200 1200 ⇒ r = 6
Hence, the rate of interest = 6%.
What sum of money borrowed on 24th May will amount to ₹ 10,210.20 on 17th October of the same year at 5 percent per annum simple interest?
Answer
A = ₹ 10,210.20
R = 5%
To calculate time (T):
May = 7 days (31 -24)
Jun = 30 days
July = 31 days
August = 31 days
Sept = 30 days
Oct = 17 days
Total = 146 days
T = 146 days
= 146 365 \dfrac{146}{365} 365 146 years
= 2 5 \dfrac{2}{5} 5 2 years
Let the Principal amount be ₹ P P P .
As we know,
A = S.I. + P ⇒ 10 , 210.20 = S.I. + P ⇒ S.I. = 10 , 210.20 − P \text{A = S.I. + P}\\[1em] \Rightarrow 10,210.20 = \text{S.I. + P}\\[1em] \Rightarrow \text{S.I.} = 10,210.20 - P \\[1em] A = S.I. + P ⇒ 10 , 210.20 = S.I. + P ⇒ S.I. = 10 , 210.20 − P
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 10 , 210.20 − P = ( P × 5 × 2 5 × 100 ) ⇒ 10 , 210.20 − P = ( P × 2 100 ) ⇒ 10 , 210.20 − P = P 50 ⇒ 10 , 210.20 = P 50 + P ⇒ 10 , 210.20 = P 50 + 50 P 50 ⇒ 10 , 210.20 = ( P + 50 P ) 50 ⇒ 10 , 210.20 = 51 P 50 ⇒ P = 10 , 210.20 × 50 51 ⇒ P = 510510 51 ⇒ P = 10 , 010 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 10,210.20 - P = \Big(\dfrac{P \times 5 \times 2}{5 \times 100}\Big)\\[1em] \Rightarrow 10,210.20 - P = \Big(\dfrac{P \times 2}{100}\Big)\\[1em] \Rightarrow 10,210.20 - P = \dfrac{P}{50}\\[1em] \Rightarrow 10,210.20 = \dfrac{P}{50} + P\\[1em] \Rightarrow 10,210.20 = \dfrac{P}{50} + \dfrac{50P}{50}\\[1em] \Rightarrow 10,210.20 = \dfrac{(P + 50P)}{50}\\[1em] \Rightarrow 10,210.20 = \dfrac{51P}{50}\\[1em] \Rightarrow P = \dfrac{10,210.20 \times 50}{51}\\[1em] \Rightarrow P = \dfrac{510510}{51}\\[1em] \Rightarrow P = 10,010 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 10 , 210.20 − P = ( 5 × 100 P × 5 × 2 ) ⇒ 10 , 210.20 − P = ( 100 P × 2 ) ⇒ 10 , 210.20 − P = 50 P ⇒ 10 , 210.20 = 50 P + P ⇒ 10 , 210.20 = 50 P + 50 50 P ⇒ 10 , 210.20 = 50 ( P + 50 P ) ⇒ 10 , 210.20 = 50 51 P ⇒ P = 51 10 , 210.20 × 50 ⇒ P = 51 510510 ⇒ P = 10 , 010
Hence, the Principal amount be ₹ 10,010.
In what time will the interest on a certain sum of money at 6% be 5 8 \dfrac{5}{8} 8 5 of itself?
Answer
Let the Principal amount be ₹ P.
S.I. = 5 8 \dfrac{5}{8} 8 5 of P
R = 6%
Let time be t t t years.
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 5 8 × P = ₹ ( P × 6 × t 100 ) ⇒ 5 8 × P = ₹ ( P × 3 t 50 ) ⇒ 5 8 = ₹ ( 3 t 50 ) ⇒ t = 5 × 50 8 × 3 ⇒ t = 250 24 ⇒ t = 10 10 24 ⇒ t = 10 5 12 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \dfrac{5}{8} \times \text{P} = ₹ \Big(\dfrac{P \times 6 \times t}{100}\Big)\\[1em] \Rightarrow \dfrac{5}{8} \times \cancel{P} = ₹ \Big(\dfrac{\cancel{P} \times 3t}{50}\Big)\\[1em] \Rightarrow \dfrac{5}{8} = ₹ \Big(\dfrac{3t}{50}\Big)\\[1em] \Rightarrow t = \dfrac{5 \times 50}{8 \times 3}\\[1em] \Rightarrow t = \dfrac{250}{24}\\[1em] \Rightarrow t = 10\dfrac{10}{24}\\[1em] \Rightarrow t = 10\dfrac{5}{12}\\[1em] ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 8 5 × P = ₹ ( 100 P × 6 × t ) ⇒ 8 5 × P = ₹ ( 50 P × 3 t ) ⇒ 8 5 = ₹ ( 50 3 t ) ⇒ t = 8 × 3 5 × 50 ⇒ t = 24 250 ⇒ t = 10 24 10 ⇒ t = 10 12 5
Hence, the time is 10 years and 5 months.
Ashok lent out ₹ 7,000 at 6% and ₹ 9,500 at 5%. Find his total income from the interest in 3 years.
Answer
Given:
P = ₹ 7,000
R = 6%
T = 3 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 7 , 000 × 6 × 3 100 ) ⇒ S.I. = ₹ 1 , 26 , 000 100 ⇒ S.I. = ₹ 1 , 260 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{7,000 \times 6 \times 3}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{1,26,000}{100}\\[1em] \Rightarrow \text{S.I.} = ₹ 1,260 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 7 , 000 × 6 × 3 ) ⇒ S.I. = ₹ 100 1 , 26 , 000 ⇒ S.I. = ₹1 , 260
P = ₹ 9,500
R = 5%
T = 3 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 9 , 500 × 5 × 3 100 ) ⇒ S.I. = ₹ 1 , 42 , 500 100 ⇒ S.I. = ₹ 1 , 425 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{9,500 \times 5 \times 3}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{1,42,500}{100}\\[1em] \Rightarrow \text{S.I.} = ₹ 1,425 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 9 , 500 × 5 × 3 ) ⇒ S.I. = ₹ 100 1 , 42 , 500 ⇒ S.I. = ₹1 , 425
Total income from the interest = ₹ 1,260 + ₹ 1,425 = ₹ 2,685
Hence, total amount from the interest in 3 years = ₹ 2,685.
Raj borrows ₹ 8,000; out of which ₹ 4,500 at 5% and the remaining at 6%. Find the total interest paid by him in 4 years.
Answer
Given:
Total amount Raj borrows = ₹ 8,000
P = ₹ 4,500
R = 5%
T = 4 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 4 , 500 × 5 × 4 100 ) ⇒ S.I. = ₹ 90 , 000 100 ⇒ S.I. = ₹ 900 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{4,500 \times 5 \times 4}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{90,000}{100}\\[1em] \Rightarrow \text{S.I.} = ₹ 900 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 4 , 500 × 5 × 4 ) ⇒ S.I. = ₹ 100 90 , 000 ⇒ S.I. = ₹900
Remaining Principal = ₹ (8,000 - 4500) = ₹ 3,500
R = 6%
T = 4 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 3 , 500 × 6 × 4 100 ) ⇒ S.I. = ₹ 84 , 000 100 ⇒ S.I. = ₹ 840 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{3,500 \times 6 \times 4}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{84,000}{100}\\[1em] \Rightarrow \text{S.I.} = ₹ 840 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 3 , 500 × 6 × 4 ) ⇒ S.I. = ₹ 100 84 , 000 ⇒ S.I. = ₹840
Total interest paid in 4 years = ₹(900 + 840) = ₹ 1,740
Hence, total interest paid in 4 years = ₹ 1,740.
₹ 5,000 is put in a bank at 5% simple interest. The amount at the end of 2 years will be :
₹ 250
₹ 500
₹ 5,500
₹ 4,500
Answer
Given:
P = ₹ 5,000
R = 5%
T = 2 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 5 , 000 × 5 × 2 100 ) ⇒ S.I. = ₹ 50 , 000 100 ⇒ S.I. = ₹ 500 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{5,000 \times 5 \times 2}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{50,000}{100}\\[1em] \Rightarrow \text{S.I.} = ₹ 500 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 5 , 000 × 5 × 2 ) ⇒ S.I. = ₹ 100 50 , 000 ⇒ S.I. = ₹500
And,
A = P + S.I. ⇒ A = ₹ 5 , 000 + ₹ 500 ⇒ A = ₹ 5 , 500 \text{A = P + S.I.}\\[1em] \Rightarrow\text{A} = ₹ 5,000 + ₹ 500\\[1em] \Rightarrow\text{A} = ₹ 5,500 A = P + S.I. ⇒ A = ₹5 , 000 + ₹500 ⇒ A = ₹5 , 500
Hence, option 3 is the correct option.
A sum of money triples itself in 20 years. The rate of interest is:
20%
10%
5%
15%
Answer
Given:
A = 3P
T = 20 years
Let the rate be r r r .
∵ A = S.I. + P ⇒ S.I. = A - P ⇒ S.I. = 3P - P ⇒ S.I. = 2P \because \text{A = S.I. + P}\\[1em] \Rightarrow \text{S.I. = A - P}\\[1em] \Rightarrow \text{S.I. = 3P - P}\\[1em] \Rightarrow \text{S.I. = 2P} ∵ A = S.I. + P ⇒ S.I. = A - P ⇒ S.I. = 3P - P ⇒ S.I. = 2P
And we know,
S.I. = ₹ ( P × R × T 100 ) ⇒ 2P = ₹ ( P × r × 20 100 ) ⇒ 2 P = ₹ P × r × 20 100 ⇒ 2 = ₹ r 5 ⇒ r = 2 × 5 ⇒ r = 10 \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{2P} = ₹ \Big(\dfrac{P \times r \times 20}{100}\Big)\\[1em] \Rightarrow 2 \cancel{P} = ₹ \dfrac{\cancel{P} \times r \times 20}{100}\\[1em] \Rightarrow 2 = ₹ \dfrac{r}{5}\\[1em] \Rightarrow r = 2 \times 5\\[1em] \Rightarrow r = 10 S.I. = ₹ ( 100 P × R × T ) ⇒ 2P = ₹ ( 100 P × r × 20 ) ⇒ 2 P = ₹ 100 P × r × 20 ⇒ 2 = ₹ 5 r ⇒ r = 2 × 5 ⇒ r = 10
Hence, option 2 is the correct option.
A sum of money earns simple interest equal to 0.5 times the sum in 10 years; the rate of interest per annum is :
20%
10%
5%
none of these
Answer
Given:
S.I. = 0.5P
= 5 10 \dfrac{5}{10} 10 5 P
T = 10 years
Let the rate be r r r .
We know,
S.I. = ₹ ( P × R × T 100 ) ⇒ 5 10 P = ₹ ( P × r × 10 100 ) ⇒ 1 2 P = ₹ P × R × 10 100 ⇒ 1 2 = ₹ R 10 ⇒ R = 10 2 ⇒ R = 5 \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \dfrac{5}{10}P = ₹ \Big(\dfrac{P \times r \times 10}{100}\Big)\\[1em] \Rightarrow \dfrac{1}{2} \cancel{P} = ₹ \dfrac{\cancel{P} \times R \times 10}{100}\\[1em] \Rightarrow \dfrac{1}{2} = ₹ \dfrac{R}{10}\\[1em] \Rightarrow R = \dfrac{10}{2}\\[1em] \Rightarrow R = 5 S.I. = ₹ ( 100 P × R × T ) ⇒ 10 5 P = ₹ ( 100 P × r × 10 ) ⇒ 2 1 P = ₹ 100 P × R × 10 ⇒ 2 1 = ₹ 10 R ⇒ R = 2 10 ⇒ R = 5
Hence, option 3 is the correct option.
A sum of ₹ 600 put at 5% S.I. amounts to ₹ 720 in:
3 years
4 years
5 years
6 years
Answer
Given:
P = ₹ 600
R = 5%
A = ₹ 720
Let the time be t t t .
A = P + S.I. ⇒ ₹ 720 = ₹ 600 + S.I. ⇒ S.I. = ₹ 720 − ₹ 600 ⇒ S.I. = ₹ 120 \text{A = P + S.I.}\\[1em] \Rightarrow ₹ 720 = ₹ 600 + \text{S.I.}\\[1em] \Rightarrow \text{S.I.} = ₹ 720 - ₹ 600\\[1em] \Rightarrow \text{S.I.} = ₹ 120\\[1em] A = P + S.I. ⇒ ₹720 = ₹600 + S.I. ⇒ S.I. = ₹720 − ₹600 ⇒ S.I. = ₹120
And
S.I. = ( P × R × T 100 ) ⇒ 120 = ( 600 × 5 × t 100 ) ⇒ 120 = 3 , 000 × t 100 ⇒ 120 = 30 × t ⇒ t = 120 30 ⇒ t = 4 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 120 = \Big(\dfrac{600 \times 5 \times t}{100}\Big)\\[1em] \Rightarrow 120 = \dfrac{3,000 \times t}{100}\\[1em] \Rightarrow 120 = 30 \times t\\[1em] \Rightarrow t = \dfrac{120}{30}\\[1em] \Rightarrow t = 4 S.I. = ( 100 P × R × T ) ⇒ 120 = ( 100 600 × 5 × t ) ⇒ 120 = 100 3 , 000 × t ⇒ 120 = 30 × t ⇒ t = 30 120 ⇒ t = 4
Hence, option 2 is the correct option.
Manoj invested ₹ 8,000 for 10 years at 10% p.a. simple interest. The amount at the end of 2 years will be :
₹ 9,600
₹ 9,800
₹ 16,000
None of these
Answer
Given:
P = ₹ 8,000
R = 10%
T = 2 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 8 , 000 × 10 × 2 100 ) ⇒ S.I. = ₹ 1 , 60 , 000 100 ⇒ S.I. = ₹ 1 , 600 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{8,000 \times 10 \times 2}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{1,60,000}{100}\\[1em] \Rightarrow \text{S.I.} = ₹ 1,600 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 100 8 , 000 × 10 × 2 ) ⇒ S.I. = ₹ 100 1 , 60 , 000 ⇒ S.I. = ₹1 , 600
And,
A = P + S.I. ⇒ A = ₹ 8 , 000 + ₹ 1 , 600 ⇒ A = ₹ 9 , 600 \text{A = P + S.I.}\\[1em] \Rightarrow\text{A} = ₹ 8,000 + ₹ 1,600\\[1em] \Rightarrow\text{A} = ₹ 9,600 A = P + S.I. ⇒ A = ₹8 , 000 + ₹1 , 600 ⇒ A = ₹9 , 600
Hence, option 1 is the correct option.
If ₹ 3,750 amounts to ₹ 4,620 in 3 years at simple interest. Find:
(i) the rate of interest.
(ii) the amount of ₹ 7,500 in 5 1 2 5\dfrac{1}{2} 5 2 1 years at the same rate of interest.
Answer
(i) Given:
P = ₹ 3,750
A = ₹ 4,620
T = 3 years
Let the rate of interest be r r r .
A = P + S.I. ⇒ ₹ 4 , 620 = ₹ 3 , 750 + S.I. ⇒ S.I. = ₹ 4 , 620 − ₹ 3 , 750 ⇒ S.I. = ₹ 870 \text{A = P + S.I.}\\[1em] \Rightarrow ₹ 4,620 = ₹ 3,750 + \text{S.I.}\\[1em] \Rightarrow \text{S.I.} = ₹ 4,620 - ₹ 3,750 \\[1em] \Rightarrow \text{S.I.} = ₹ 870 A = P + S.I. ⇒ ₹4 , 620 = ₹3 , 750 + S.I. ⇒ S.I. = ₹4 , 620 − ₹3 , 750 ⇒ S.I. = ₹870
And,
S.I. = ( P × R × T 100 ) ⇒ ₹ 870 = ( ₹ 3 , 750 × r × 3 100 ) ⇒ ₹ 870 = 11 , 250 r 100 ⇒ ₹ 870 = 225 r 2 ⇒ r = 2 × 870 225 ⇒ r = 1740 225 ⇒ r = 116 15 ⇒ r = 7 11 15 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow ₹ 870 = \Big(\dfrac{₹ 3,750 \times r \times 3}{100}\Big)\\[1em] \Rightarrow ₹ 870 = \dfrac{11,250r}{100}\\[1em] \Rightarrow ₹ 870 = \dfrac{225r}{2}\\[1em] \Rightarrow r = \dfrac{2 \times 870}{225}\\[1em] \Rightarrow r = \dfrac{1740}{225}\\[1em] \Rightarrow r = \dfrac{116}{15}\\[1em] \Rightarrow r = 7\dfrac{11}{15} S.I. = ( 100 P × R × T ) ⇒ ₹870 = ( 100 ₹3 , 750 × r × 3 ) ⇒ ₹870 = 100 11 , 250 r ⇒ ₹870 = 2 225 r ⇒ r = 225 2 × 870 ⇒ r = 225 1740 ⇒ r = 15 116 ⇒ r = 7 15 11
Hence, the rate of interest = 7 11 15 7\dfrac{11}{15}% 7 15 11 .
(ii) Given:
P = ₹ 7,500
R = 116 15 \dfrac{116}{15}% 15 116
T = 5 1 2 5\dfrac{1}{2} 5 2 1 years
= 11 2 \dfrac{11}{2} 2 11 years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ S.I. = ₹ ( 7 , 500 × 116 × 11 15 × 2 × 100 ) ⇒ S.I. = ₹ 95 , 70 , 000 3000 ⇒ S.I. = ₹ 3 , 190 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \Big(\dfrac{7,500 \times 116 \times 11}{15 \times 2 \times 100}\Big)\\[1em] \Rightarrow \text{S.I.} = ₹ \dfrac{95,70,000}{3000}\\[1em] \Rightarrow \text{S.I.} = ₹ 3,190 ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ S.I. = ₹ ( 15 × 2 × 100 7 , 500 × 116 × 11 ) ⇒ S.I. = ₹ 3000 95 , 70 , 000 ⇒ S.I. = ₹3 , 190
And,
A = P + S.I. ⇒ A = ₹ 7 , 500 + ₹ 3 , 190 ⇒ A = ₹ 10 , 690 \text{A = P + S.I.}\\[1em] \Rightarrow\text{A} = ₹ 7,500 + ₹ 3,190\\[1em] \Rightarrow\text{A} = ₹ 10,690 A = P + S.I. ⇒ A = ₹7 , 500 + ₹3 , 190 ⇒ A = ₹10 , 690
Hence, the amount = ₹ 10,690.
A sum of money, lent out at simple interest, doubles itself in 8 years. Find:
(i) the rate of interest.
(ii) in how many years will the sum become triple (three times) of itself at the same rate percent?
Answer
(i) Let the Principal amount be ₹ P.
A = 2P
T = 8 years
Let the rate be r r r .
∵ A = S.I. + P ⇒ S.I. = A - P ⇒ S.I. = 2P - P ⇒ S.I. = P \because \text{A = S.I. + P}\\[1em] \Rightarrow \text{S.I. = A - P}\\[1em] \Rightarrow \text{S.I. = 2P - P}\\[1em] \Rightarrow \text{S.I. = P} ∵ A = S.I. + P ⇒ S.I. = A - P ⇒ S.I. = 2P - P ⇒ S.I. = P
And we know,
S.I. = ₹ ( P × R × T 100 ) ⇒ P = ₹ ( P × r × 8 100 ) ⇒ P = ₹ P × r × 8 100 ⇒ 1 = ₹ 8 r 100 ⇒ r = 100 8 ⇒ r = 25 2 ⇒ r = 12.5 \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{P} = ₹ \Big(\dfrac{P \times r \times 8}{100}\Big)\\[1em] \Rightarrow \cancel{P} = ₹ \dfrac{\cancel{P} \times r \times 8}{100}\\[1em] \Rightarrow 1 = ₹ \dfrac{8r}{100}\\[1em] \Rightarrow r = \dfrac{100}{8}%\\[1em] \Rightarrow r = \dfrac{25}{2}%\\[1em] \Rightarrow r = 12.5% S.I. = ₹ ( 100 P × R × T ) ⇒ P = ₹ ( 100 P × r × 8 ) ⇒ P = ₹ 100 P × r × 8 ⇒ 1 = ₹ 100 8 r ⇒ r = 8 100 ⇒ r = 2 25 ⇒ r = 12.5
Hence, rate of interest = 12.5 12.5% 12.5 .
(ii) When A becomes 3P, ⇒ S.I. = 2P
Let the time be t t t years
∵ S.I. = ₹ ( P × R × T 100 ) ⇒ 2P = ₹ ( P × 25 × t 2 × 100 ) ⇒ 2 P = ₹ P × 25 × t 200 ⇒ t = 400 25 ⇒ t = 16 \because \text{S.I.} = ₹ \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{2P} = ₹ \Big(\dfrac{P \times 25 \times t}{2 \times 100}\Big)\\[1em] \Rightarrow 2\cancel{P} = ₹ \dfrac{\cancel{P} \times 25 \times t}{200}\\[1em] \Rightarrow t = \dfrac{400}{25}\\[1em] \Rightarrow t = 16\\[1em] ∵ S.I. = ₹ ( 100 P × R × T ) ⇒ 2P = ₹ ( 2 × 100 P × 25 × t ) ⇒ 2 P = ₹ 200 P × 25 × t ⇒ t = 25 400 ⇒ t = 16
Hence,the time is 16 years.
Rupees 4,000 amounts to ₹ 5,000 in 8 years; in what time will ₹ 2,100 amount to ₹ 2,800 at the same rate?
Answer
Given:
P = ₹ 4,000
A = ₹ 5,000
T = 8 years
Let the rate be r r r .
As we know, A = P + S.I. ⇒ ₹ 5 , 000 = ₹ 4 , 000 + S . I . ⇒ S . I . = ₹ 5 , 000 − ₹ 4 , 000 ⇒ S . I . = ₹ 1 , 000 \text{A = P + S.I.}\\[1em] \Rightarrow ₹ 5,000 = ₹ 4,000 + S.I.\\[1em] \Rightarrow S.I. = ₹ 5,000 - ₹ 4,000 \\[1em] \Rightarrow S.I. = ₹ 1,000 A = P + S.I. ⇒ ₹5 , 000 = ₹4 , 000 + S . I . ⇒ S . I . = ₹5 , 000 − ₹4 , 000 ⇒ S . I . = ₹1 , 000
And
S.I. = ( P × R × T 100 ) ⇒ ₹ 1 , 000 = ( ₹ 4 , 000 × r × 8 100 ) ⇒ ₹ 1 , 000 = 40 × r × 8 ⇒ ₹ 1 , 000 = 320 × r ⇒ r = 1 , 000 320 ⇒ r = 25 8 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow ₹ 1,000 = \Big(\dfrac{₹ 4,000 \times r \times 8}{100}\Big)\\[1em] \Rightarrow ₹ 1,000 = 40 \times r \times 8\\[1em] \Rightarrow ₹ 1,000 = 320 \times r\\[1em] \Rightarrow r = \dfrac{1,000}{320}%\\[1em] \Rightarrow r = \dfrac{25}{8}% S.I. = ( 100 P × R × T ) ⇒ ₹1 , 000 = ( 100 ₹4 , 000 × r × 8 ) ⇒ ₹1 , 000 = 40 × r × 8 ⇒ ₹1 , 000 = 320 × r ⇒ r = 320 1 , 000 ⇒ r = 8 25
When P = ₹ 2 , 100 ₹ 2,100 ₹2 , 100
A = ₹ 2 , 800 ₹ 2,800 ₹2 , 800
R = 25 8 \dfrac{25}{8}% 8 25
Let the time be t t t .
As we know,
A = P + S.I. ⇒ ₹ 2 , 800 = ₹ 2 , 100 + S . I . ⇒ S . I . = ₹ 2 , 800 − ₹ 2 , 100 ⇒ S . I . = ₹ 700 \text{A = P + S.I.}\\[1em] \Rightarrow ₹ 2,800 = ₹ 2,100 + S.I.\\[1em] \Rightarrow S.I. = ₹ 2,800 - ₹ 2,100 \\[1em] \Rightarrow S.I. = ₹ 700 A = P + S.I. ⇒ ₹2 , 800 = ₹2 , 100 + S . I . ⇒ S . I . = ₹2 , 800 − ₹2 , 100 ⇒ S . I . = ₹700
And
S.I. = ( P × R × T 100 ) ⇒ 700 = ( 2 , 100 × 25 × t 8 × 100 ) ⇒ 700 = 21 × 25 × t 8 ⇒ 700 = 525 × t 8 ⇒ t = 700 × 8 525 ⇒ t = 32 3 ⇒ t = 10 2 3 ⇒ t = 10 8 12 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 700 = \Big(\dfrac{2,100 \times 25 \times t}{8 \times 100}\Big)\\[1em] \Rightarrow 700 = \dfrac{21 \times 25 \times t}{8}\\[1em] \Rightarrow 700 = \dfrac{525 \times t}{8}\\[1em] \Rightarrow t = \dfrac{700 \times 8}{525}\\[1em] \Rightarrow t = \dfrac{32}{3}\\[1em] \Rightarrow t = 10\dfrac{2}{3}\\[1em] \Rightarrow t = 10\dfrac{8}{12} S.I. = ( 100 P × R × T ) ⇒ 700 = ( 8 × 100 2 , 100 × 25 × t ) ⇒ 700 = 8 21 × 25 × t ⇒ 700 = 8 525 × t ⇒ t = 525 700 × 8 ⇒ t = 3 32 ⇒ t = 10 3 2 ⇒ t = 10 12 8
Hence, the time = 10 years and 8 months.
What sum of money lent at 6.5% per annum will produce the same interest in 4 years as ₹ 7,500 produce in 6 years at 5% per annum?
Answer
Given:
P1 = ₹ 7,500
R1 = 5%
T1 = 6 years
So, S.I.1 =
S.I. = ( P × R × T 100 ) = ( 7 , 500 × 5 × 6 100 ) = 2 , 25 , 000 100 = 2 , 250 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{7,500 \times 5 \times 6}{100}\Big)\\[1em] = \dfrac{2,25,000}{100}\\[1em] = 2,250 S.I. = ( 100 P × R × T ) = ( 100 7 , 500 × 5 × 6 ) = 100 2 , 25 , 000 = 2 , 250
R2 = 6.5%
T2 = 4 years
Let P2 be P P P .
And S.I.2 =
S.I. = ( P × R × T 100 ) = ( P × 6.5 × 4 100 ) = 26 P 100 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{P \times 6.5 \times 4}{100}\Big)\\[1em] = \dfrac{26P}{100}\\[1em] S.I. = ( 100 P × R × T ) = ( 100 P × 6.5 × 4 ) = 100 26 P
As interest on both are same. Hence,
S.I.1 = S.I.2
∴ 2 , 250 = 26 P 100 ⇒ P = 2 , 250 × 100 26 ⇒ P = 2 , 25 , 000 26 ⇒ P = 8 , 653.85 \therefore 2,250 = \dfrac{26P}{100}\\[1em] \Rightarrow P = \dfrac{2,250 \times 100}{26}\\[1em] \Rightarrow P = \dfrac{2,25,000}{26}\\[1em] \Rightarrow P = 8,653.85 ∴ 2 , 250 = 100 26 P ⇒ P = 26 2 , 250 × 100 ⇒ P = 26 2 , 25 , 000 ⇒ P = 8 , 653.85
Hence, the principal amount = ₹ 8,653.85.
A certain sum amounts to ₹ 3,825 in 4 years and to ₹ 4,050 in 6 years. Find the rate percent and the sum.
Answer
Given:
Amount in 4 years = ₹ 3,825
⇒ P + S.I. of 4 years = = ₹ 3,825 ..........(1)
Amount in 6 years = ₹ 4,050
⇒ P + S.I. of 6 years = ₹ 4,050 ..........(2)
Subtracting equation (1) from (2), we get
S.I. of 2 years = ₹ 4 , 050 − ₹ 3 , 825 ₹ 4,050 - ₹ 3,825 ₹4 , 050 − ₹3 , 825
= ₹ 225 ₹ 225 ₹225
S.I. of 1 year = ₹ 225 2 \dfrac{225}{2} 2 225
= ₹ 112.5 ₹ 112.5 ₹112.5
S.I. of 4 years = ₹ 112.5 × 4 ₹ 112.5 \times 4 ₹112.5 × 4
= ₹ 450 ₹ 450 ₹450
From equation (1), we get:
P + ₹ 450 = ₹ 3,825
P = ₹ 3,825 - ₹ 450
P = ₹ 3,375
Now when P = ₹ 3,375
S.I. = ₹ 112.5
T = 1 year
Let the rate be r r r .
As we know
S.I. = ( P × R × T 100 ) ⇒ 112.5 = ( 3 , 375 × r × 1 100 ) ⇒ 112.5 = 3 , 375 r 100 ⇒ r = 112.5 × 100 3375 ⇒ r = 11250 3375 ⇒ r = 10 3 ⇒ r = 3 1 3 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 112.5 = \Big(\dfrac{3,375 \times r \times 1}{100}\Big)\\[1em] \Rightarrow 112.5 = \dfrac{3,375r}{100}\\[1em] \Rightarrow r = \dfrac{112.5 \times 100}{3375}\\[1em] \Rightarrow r = \dfrac{11250}{3375}\\[1em] \Rightarrow r = \dfrac{10}{3}\\[1em] \Rightarrow r = 3\dfrac{1}{3} S.I. = ( 100 P × R × T ) ⇒ 112.5 = ( 100 3 , 375 × r × 1 ) ⇒ 112.5 = 100 3 , 375 r ⇒ r = 3375 112.5 × 100 ⇒ r = 3375 11250 ⇒ r = 3 10 ⇒ r = 3 3 1
Hence, principal = ₹ 3 , 375 ₹ 3,375 ₹3 , 375 and rate = 3 1 3 3\dfrac{1}{3}% 3 3 1
At what rate per cent of simple interest will the interest on ₹ 3,750 be one-fifth of itself in 4 years? What will it amount to in 15 years?
Answer
Given:
P = ₹ 3,750
T = 4 years
S.I. = one-fifth of P
= 1 5 × ₹ 3 , 750 \dfrac{1}{5} \times ₹ 3,750 5 1 × ₹3 , 750
= ₹ 3 , 750 5 \dfrac{₹ 3,750}{5} 5 ₹3 , 750
= ₹ 750 ₹ 750 ₹750
Let the rate be r r r .
As we know,
S.I. = ( P × R × T 100 ) ⇒ 750 = ( 3 , 750 × r × 4 100 ) ⇒ 750 = 75 × r × 2 ⇒ 750 = 150 r ⇒ r = 750 150 ⇒ r = 5 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 750 = \Big(\dfrac{3,750 \times r \times 4}{100}\Big)\\[1em] \Rightarrow 750 = 75 \times r \times 2\\[1em] \Rightarrow 750 = 150r\\[1em] \Rightarrow r = \dfrac{750}{150}\\[1em] \Rightarrow r = 5 S.I. = ( 100 P × R × T ) ⇒ 750 = ( 100 3 , 750 × r × 4 ) ⇒ 750 = 75 × r × 2 ⇒ 750 = 150 r ⇒ r = 150 750 ⇒ r = 5
When P = ₹ 3,750
R = 5%
T = 15 years
S.I. = ( P × R × T 100 ) = ( 3 , 750 × 5 × 15 100 ) = ( 2 , 81 , 250 100 ) = 2 , 812.50 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{3,750 \times 5 \times 15}{100}\Big)\\[1em] = \Big(\dfrac{2,81,250}{100}\Big)\\[1em] = 2,812.50 S.I. = ( 100 P × R × T ) = ( 100 3 , 750 × 5 × 15 ) = ( 100 2 , 81 , 250 ) = 2 , 812.50
And,
A = P + S.I. = 3 , 750 + 2 , 812.5 = 6 , 562.50 \text{A = P + S.I.}\\[1em] = 3,750 + 2,812.5 \\[1em] = 6,562.50 A = P + S.I. = 3 , 750 + 2 , 812.5 = 6 , 562.50
Hence, rate = 5 5% 5 and the amount = ₹ 6,562.50.
On what date will ₹ 1,950 lent on 5th January, 2011 amount to ₹ 2,125.50 at 5 percent per annum simple interest?
Answer
Given:
P = ₹ 1,950
A = ₹ 2,125.50
R = 5%
Let the time be t t t
As we know,
A = P + S.I. ⇒ ₹ 2 , 125.50 = ₹ 1 , 950 + S . I . ⇒ S . I . = ₹ 2 , 125.50 − ₹ 1 , 950 ⇒ S . I . = ₹ 175.50 \text{A = P + S.I.}\\[1em] \Rightarrow ₹ 2,125.50 = ₹ 1,950 + S.I.\\[1em] \Rightarrow S.I. = ₹ 2,125.50 - ₹ 1,950 \\[1em] \Rightarrow S.I. = ₹ 175.50 A = P + S.I. ⇒ ₹2 , 125.50 = ₹1 , 950 + S . I . ⇒ S . I . = ₹2 , 125.50 − ₹1 , 950 ⇒ S . I . = ₹175.50
And,
S.I. = ( P × R × T 100 ) ⇒ 175.50 = ( 1 , 950 × 5 × t 100 ) ⇒ 175.50 = 9 , 750 t 100 ⇒ t = 175.50 × 100 9750 ⇒ t = 9 5 ⇒ t = 1 4 5 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 175.50 = \Big(\dfrac{1,950 \times 5 \times t}{100}\Big)\\[1em] \Rightarrow 175.50 = \dfrac{9,750t}{100}\\[1em] \Rightarrow t = \dfrac{175.50 \times 100}{9750}\\[1em] \Rightarrow t = \dfrac{9}{5}\\[1em] \Rightarrow t = 1\dfrac{4}{5} S.I. = ( 100 P × R × T ) ⇒ 175.50 = ( 100 1 , 950 × 5 × t ) ⇒ 175.50 = 100 9 , 750 t ⇒ t = 9750 175.50 × 100 ⇒ t = 5 9 ⇒ t = 1 5 4
1 4 5 1\dfrac{4}{5} 1 5 4 years means 1 years and 292 days (∵ 4 5 \dfrac{4}{5} 5 4 x 365 = 292).
As the money was lent on 5th January, 2011,
1 year from 5th January, 2011 = 5th January, 2012
And 292 days = Jan (26 days) + Feb (29 days) + March (31 days) + April (30 days) + May (31 days) + June (30 days) + July (31 days) + Aug (31 days) + Sept (30 days) + Oct (23 days)
Hence, the required date is 23rd October, 2012.
If the interest on ₹ 2,400 is more than the interest on ₹ 2,000 by ₹ 60 in 3 years at the same rate per cent, find the rate.
Answer
Given:
P1 = ₹ 2,400
T1 = 3 years
Let the rate be r r r .
Hence,
S.I. = ( P × R × T 100 ) ⇒ S.I = ( 2 , 400 × r × 3 100 ) ⇒ S.I = ( 7 , 200 r 100 ) ⇒ S.I = 72 r \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text {S.I} = \Big(\dfrac{2,400 \times r \times 3}{100}\Big)\\[1em] \Rightarrow \text {S.I} = \Big(\dfrac{7,200r}{100}\Big)\\[1em] \Rightarrow \text {S.I} = 72r\\[1em] S.I. = ( 100 P × R × T ) ⇒ S.I = ( 100 2 , 400 × r × 3 ) ⇒ S.I = ( 100 7 , 200 r ) ⇒ S.I = 72 r
P2 = ₹ 2,000
T2 = 3 years
R = r%
S.I. = ( P × R × T 100 ) ⇒ S.I. = ( 2 , 000 × r × 3 100 ) ⇒ S.I. = ( 6 , 000 r 100 ) ⇒ S.I. = 60 r \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \Big(\dfrac{2,000 \times r \times 3}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \Big(\dfrac{6,000r}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = 60r S.I. = ( 100 P × R × T ) ⇒ S.I. = ( 100 2 , 000 × r × 3 ) ⇒ S.I. = ( 100 6 , 000 r ) ⇒ S.I. = 60 r
According to the question,
Difference between the two S.I. = ₹ 60
72 r − 60 r = ₹ 60 ⇒ 12 r = ₹ 60 ⇒ r = 60 12 ⇒ r = 5 72r - 60r = ₹ 60\\[1em] \Rightarrow 12r = ₹ 60\\[1em] \Rightarrow r = \dfrac{60}{12}\\[1em] \Rightarrow r = 5 72 r − 60 r = ₹60 ⇒ 12 r = ₹60 ⇒ r = 12 60 ⇒ r = 5
Hence, the rate is 5%.
Divide ₹ 15,600 into two parts such that the interest on one at 5 percent for 5 years may be equal to that on the other at 4 1 2 4\dfrac{1}{2} 4 2 1 per cent for 6 years.
Answer
Let the first part be ₹ x x x and the second part be ₹ ( 15 , 600 − x ) (15,600 - x) ( 15 , 600 − x ) .
Hence
P1 = ₹ x x x
R1 = 5%
T1 = 5 years
S.I. = ( P × R × T 100 ) ⇒ S.I. = ( x × 5 × 5 100 ) ⇒ S.I. = 25 x 100 ⇒ S.I. = x 4 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \Big(\dfrac{x \times 5 \times 5}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \dfrac{25x}{100}\\[1em] \Rightarrow \text{S.I.} = \dfrac{x}{4}\\[1em] S.I. = ( 100 P × R × T ) ⇒ S.I. = ( 100 x × 5 × 5 ) ⇒ S.I. = 100 25 x ⇒ S.I. = 4 x
P2 = ₹ 15 , 600 − x 15,600 - x 15 , 600 − x
R2 = 4 1 2 4\dfrac{1}{2}% 4 2 1
= 9 2 \dfrac{9}{2}% 2 9
T2 = 6 years
S.I. = ( P × R × T 100 ) ⇒ S.I. = [ ( 15 , 600 − x ) × 9 × 6 2 × 100 ] ⇒ S.I. = 54 ( 15 , 600 − x ) 200 ⇒ S.I. = 27 ( 15 , 600 − x ) 100 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \Big[\dfrac{(15,600 - x) \times 9 \times 6}{2 \times 100}\Big]\\[1em] \Rightarrow \text{S.I.} = \dfrac{54(15,600 - x)}{200}\\[1em] \Rightarrow \text{S.I.} = \dfrac{27(15,600 - x)}{100}\\[1em] S.I. = ( 100 P × R × T ) ⇒ S.I. = [ 2 × 100 ( 15 , 600 − x ) × 9 × 6 ] ⇒ S.I. = 200 54 ( 15 , 600 − x ) ⇒ S.I. = 100 27 ( 15 , 600 − x )
Both interest are equal.
x 4 = 27 ( 15 , 600 − x ) 100 ⇒ x 4 = 4 , 21 , 200 − 27 x 100 ⇒ x 4 + 27 x 100 = 4 , 21 , 200 100 ⇒ 25 x 100 + 27 x 100 = 4 , 212 ⇒ ( 25 x + 27 x ) 100 = 4 , 212 ⇒ 52 x 100 = 4 , 212 ⇒ x = 4 , 212 × 100 52 ⇒ x = 4 , 21 , 200 52 ⇒ x = 8 , 100 \dfrac{x}{4} = \dfrac{27(15,600 - x)}{100}\\[1em] \Rightarrow\dfrac{x}{4} = \dfrac{4,21,200 - 27x}{100}\\[1em] \Rightarrow\dfrac{x}{4} + \dfrac{27x}{100} = \dfrac{4,21,200}{100}\\[1em] \Rightarrow\dfrac{25x}{100} + \dfrac{27x}{100} = 4,212\\[1em] \Rightarrow\dfrac{(25x + 27x)}{100} = 4,212\\[1em] \Rightarrow\dfrac{52x}{100} = 4,212\\[1em] \Rightarrow x = \dfrac{4,212\times 100}{52}\\[1em] \Rightarrow x = \dfrac{4,21,200}{52}\\[1em] \Rightarrow x = 8,100 4 x = 100 27 ( 15 , 600 − x ) ⇒ 4 x = 100 4 , 21 , 200 − 27 x ⇒ 4 x + 100 27 x = 100 4 , 21 , 200 ⇒ 100 25 x + 100 27 x = 4 , 212 ⇒ 100 ( 25 x + 27 x ) = 4 , 212 ⇒ 100 52 x = 4 , 212 ⇒ x = 52 4 , 212 × 100 ⇒ x = 52 4 , 21 , 200 ⇒ x = 8 , 100
Other amount will be ₹ (15,600 - 8,100) = ₹ 7,500.
Hence, ₹ 8,100 and ₹ 7,500 are the two parts.
Simple interest on a certain sum is 16 25 \dfrac{16}{25} 25 16 of the sum. Find the rate of interest and time, if both are numerically equal.
Answer
Given:
S.I. = 16 25 \dfrac{16}{25} 25 16 of P
Rate of interest = Time = x x x
S.I. = ( P × R × T 100 ) ⇒ 16 25 P = ( P × x × x 100 ) ⇒ 16 25 P = ( P × x × x 100 ) ⇒ x 2 = 16 × 100 25 ⇒ x 2 = 64 ⇒ x = 64 ⇒ x = 8 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \dfrac{16}{25}P = \Big(\dfrac{P \times x \times x}{100}\Big)\\[1em] \Rightarrow \dfrac{16}{25}\cancel{P} = \Big(\dfrac{\cancel{P} \times x \times x}{100}\Big)\\[1em] \Rightarrow x^2 = \dfrac{16\times100}{25}\\[1em] \Rightarrow x^2 = 64\\[1em] \Rightarrow x = \sqrt{64}\\[1em] \Rightarrow x = 8\\[1em] S.I. = ( 100 P × R × T ) ⇒ 25 16 P = ( 100 P × x × x ) ⇒ 25 16 P = ( 100 P × x × x ) ⇒ x 2 = 25 16 × 100 ⇒ x 2 = 64 ⇒ x = 64 ⇒ x = 8
Hence, rate = 8% and time = 8 years.
Divide ₹ 9,000 into two parts in such a way that S.I. on one part at 16% p.a. and in 2 years is equal to the S.I. on the other part at 6% p.a. and in 3 years.
Answer
Let the first part be ₹ x x x and the second part be ₹ ( 9 , 000 − x ) (9,000 - x) ( 9 , 000 − x ) .
Hence,
P1 = ₹ x x x
R1 = 16%
T1 = 2 years
S.I. = ( P × R × T 100 ) ⇒ S.I. = ( x × 16 × 2 100 ) ⇒ S.I. = 32 x 100 ⇒ S.I. = 8 x 25 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \Big(\dfrac{x \times 16 \times 2}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \dfrac{32x}{100}\\[1em] \Rightarrow \text{S.I.} = \dfrac{8x}{25}\\[1em] S.I. = ( 100 P × R × T ) ⇒ S.I. = ( 100 x × 16 × 2 ) ⇒ S.I. = 100 32 x ⇒ S.I. = 25 8 x
P2 = ₹ 9 , 000 − x 9,000 - x 9 , 000 − x
R2 = 6 6% 6
T2 = 3 years
S.I. = ( P × R × T 100 ) ⇒ S.I. = [ ( 9 , 000 − x ) × 6 × 3 100 ] ⇒ S.I. = 18 ( 9 , 000 − x ) 100 ⇒ S.I. = 9 ( 9 , 000 − x ) 50 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \text{S.I.} = \Big[\dfrac{(9,000 - x) \times 6 \times 3}{100}\Big]\\[1em] \Rightarrow \text{S.I.} = \dfrac{18(9,000 - x)}{100}\\[1em] \Rightarrow \text{S.I.} = \dfrac{9(9,000 - x)}{50}\\[1em] S.I. = ( 100 P × R × T ) ⇒ S.I. = [ 100 ( 9 , 000 − x ) × 6 × 3 ] ⇒ S.I. = 100 18 ( 9 , 000 − x ) ⇒ S.I. = 50 9 ( 9 , 000 − x )
Both interest are equal.
8 x 25 = 9 ( 9 , 000 − x ) 50 ⇒ 8 x 25 = 81 , 000 − 9 x 50 ⇒ 8 x 25 + 9 x 50 = 81 , 000 50 ⇒ 16 x 50 + 9 x 50 = 1 , 620 ⇒ ( 16 x + 9 x ) 50 = 1 , 620 ⇒ 25 x 50 = 1 , 620 ⇒ x = 1 , 620 × 50 25 ⇒ x = 81 , 000 25 ⇒ x = 3 , 240 \dfrac{8x}{25} = \dfrac{9(9,000 - x)}{50}\\[1em] \Rightarrow\dfrac{8x}{25} = \dfrac{81,000 - 9x}{50}\\[1em] \Rightarrow\dfrac{8x}{25} + \dfrac{9x}{50} = \dfrac{81,000}{50}\\[1em] \Rightarrow\dfrac{16x}{50} + \dfrac{9x}{50} = 1,620\\[1em] \Rightarrow\dfrac{(16x + 9x)}{50} = 1,620\\[1em] \Rightarrow\dfrac{25x}{50} = 1,620\\[1em] \Rightarrow x = \dfrac{1,620\times 50}{25}\\[1em] \Rightarrow x = \dfrac{81,000}{25}\\[1em] \Rightarrow x = 3,240 25 8 x = 50 9 ( 9 , 000 − x ) ⇒ 25 8 x = 50 81 , 000 − 9 x ⇒ 25 8 x + 50 9 x = 50 81 , 000 ⇒ 50 16 x + 50 9 x = 1 , 620 ⇒ 50 ( 16 x + 9 x ) = 1 , 620 ⇒ 50 25 x = 1 , 620 ⇒ x = 25 1 , 620 × 50 ⇒ x = 25 81 , 000 ⇒ x = 3 , 240
Other amount will be ₹ (9,000 - 3,240) = ₹ 5,760.
Hence, ₹ 3,240 and ₹ 5,760 are the two parts.
The C.I. on ₹ 1,000 at 20% per annum and in 2 years is:
₹ 1,440
₹ 1,240
₹ 440
₹ 220
Answer
For 1st year:
P = ₹ 1,000
R = 20%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 1 , 000 × 20 × 1 100 ) = ₹ 20 , 000 100 = ₹ 200 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{1,000 \times 20 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{20,000}{100}\\[1em] = ₹ 200 Interest = ( 100 P × R × T ) = ₹ ( 100 1 , 000 × 20 × 1 ) = ₹ 100 20 , 000 = ₹200
And
Amount = P + Interest = ₹ 1 , 000 + 200 = ₹ 1 , 200 \text{Amount = P + Interest}\\[1em] = ₹ 1,000 + 200\\[1em] = ₹ 1,200 Amount = P + Interest = ₹1 , 000 + 200 = ₹1 , 200
For 2nd year:
P = ₹ 1,200
R = 20%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 1 , 200 × 20 × 1 100 ) = ₹ 24 , 000 100 = ₹ 240 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{1,200 \times 20 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{24,000}{100}\\[1em] = ₹ 240 Interest = ( 100 P × R × T ) = ₹ ( 100 1 , 200 × 20 × 1 ) = ₹ 100 24 , 000 = ₹240
And
Final amount = P + Interest = ₹ 1 , 200 + 240 = ₹ 1 , 440 \text{Final amount = P + Interest}\\[1em] = ₹ 1,200 + 240\\[1em] = ₹ 1,440 Final amount = P + Interest = ₹1 , 200 + 240 = ₹1 , 440
And
Compound Interest = Final amount - Original Principal = ₹ 1 , 440 − ₹ 1 , 000 = ₹ 440 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 1,440 - ₹ 1,000\\[1em] = ₹ 440 Compound Interest = Final amount - Original Principal = ₹1 , 440 − ₹1 , 000 = ₹440
Hence, option 3 is the correct option.
A sum of ₹ 2,000 is put at 10% compound interest. The amount at the end of 2 years will be :
₹ 400
₹ 420
₹ 2420
₹ 4,840
Answer
For 1st year:
P = ₹ 2,000
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 2 , 000 × 10 × 1 100 ) = ₹ 20 , 000 100 = ₹ 200 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{2,000 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{20,000}{100}\\[1em] = ₹ 200 Interest = ( 100 P × R × T ) = ₹ ( 100 2 , 000 × 10 × 1 ) = ₹ 100 20 , 000 = ₹200
And
Amount = P + Interest = ₹ 2 , 000 + 200 = ₹ 2 , 200 \text{Amount = P + Interest}\\[1em] = ₹ 2,000 + 200\\[1em] = ₹ 2,200 Amount = P + Interest = ₹2 , 000 + 200 = ₹2 , 200
For 2nd year:
P = ₹ 2,200
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 2 , 200 × 10 × 1 100 ) = ₹ 22 , 000 100 = ₹ 220 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{2,200 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{22,000}{100}\\[1em] = ₹ 220 Interest = ( 100 P × R × T ) = ₹ ( 100 2 , 200 × 10 × 1 ) = ₹ 100 22 , 000 = ₹220
And
Final amount = P + Interest = ₹ 2 , 200 + 220 = ₹ 2 , 420 \text{Final amount = P + Interest}\\[1em] = ₹ 2,200 + 220\\[1em] = ₹ 2,420 Final amount = P + Interest = ₹2 , 200 + 220 = ₹2 , 420
Hence, option 3 is the correct option.
The difference between C.I. and S.I. on ₹ 6,000 at 8% per annum in both the cases and in one year is:
₹ 480
nothing
₹ 240
none of these
Answer
P = ₹ 6,000
R = 8%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 6 , 000 × 8 × 1 100 ) = ₹ 48 , 000 100 = ₹ 480 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{6,000 \times 8 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{48,000}{100}\\[1em] = ₹ 480 Interest = ( 100 P × R × T ) = ₹ ( 100 6 , 000 × 8 × 1 ) = ₹ 100 48 , 000 = ₹480
And
Amount = P + Interest = ₹ 6 , 000 + 480 = ₹ 6 , 480 \text{Amount = P + Interest}\\[1em] = ₹ 6,000 + 480\\[1em] = ₹ 6,480 Amount = P + Interest = ₹6 , 000 + 480 = ₹6 , 480
And
Compound Interest = Final amount - Original Principal = ₹ 6 , 480 − ₹ 6 , 000 = ₹ 480 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 6,480 - ₹ 6,000\\[1em] = ₹ 480 Compound Interest = Final amount - Original Principal = ₹6 , 480 − ₹6 , 000 = ₹480
Difference between S.I. and C.I. = ₹ 480 - ₹ 480 = 0.
Hence, option 2 is the correct option.
The difference between the C.I. in 1 year and compound in interest in 2 years on ₹ 4,000 at 5% per annum is:
₹ 10
₹ 210
₹ 200
₹ 410
Answer
For 1st year:
P = ₹ 4,000
R = 5%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 4 , 000 × 5 × 1 100 ) = ₹ 20 , 000 100 = ₹ 200 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{4,000 \times 5 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{20,000}{100}\\[1em] = ₹ 200 Interest = ( 100 P × R × T ) = ₹ ( 100 4 , 000 × 5 × 1 ) = ₹ 100 20 , 000 = ₹200
And
Amount = P + Interest = ₹ 4 , 000 + 200 = ₹ 4 , 200 \text{Amount = P + Interest}\\[1em] = ₹ 4,000 + 200\\[1em] = ₹ 4,200 Amount = P + Interest = ₹4 , 000 + 200 = ₹4 , 200
For 2nd year:
P = ₹ 4,200
R = 5%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 4 , 200 × 5 × 1 100 ) = ₹ 21 , 000 100 = ₹ 210 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{4,200 \times 5 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{21,000}{100}\\[1em] = ₹ 210 Interest = ( 100 P × R × T ) = ₹ ( 100 4 , 200 × 5 × 1 ) = ₹ 100 21 , 000 = ₹210
And
Final amount = P + Interest = ₹ 4 , 200 + 210 = ₹ 4 , 410 \text{Final amount = P + Interest}\\[1em] = ₹ 4,200 + 210\\[1em] = ₹ 4,410 Final amount = P + Interest = ₹4 , 200 + 210 = ₹4 , 410
And
Compound Interest = Final amount - Original Principal = ₹ 4 , 410 − ₹ 4 , 000 = ₹ 410 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 4,410 - ₹ 4,000\\[1em] = ₹ 410 Compound Interest = Final amount - Original Principal = ₹4 , 410 − ₹4 , 000 = ₹410
Difference between the C.I. in 1 year and compound in interest in 2 years = ₹ 410 - ₹ 200 = ₹ 210
Hence, option 2 is the correct option.
A sum of ₹ 8,000 is invested for 2 years at 10% per annum compound interest. Calculate:
(i) interest for the first year.
(ii) principal for the second year.
(iii) interest for the second year.
(iv) final amount at the end of the second year.
(v) compound interest earned in 2 years.
Answer
(i) For 1st year:
P = ₹ 8,000
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 8 , 000 × 10 × 1 100 ) = ₹ 80 , 000 100 = ₹ 800 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{8,000 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{80,000}{100}\\[1em] = ₹ 800 Interest = ( 100 P × R × T ) = ₹ ( 100 8 , 000 × 10 × 1 ) = ₹ 100 80 , 000 = ₹800
Hence, interest for first year = ₹ 800.
(ii)
Amount = P + Interest = ₹ 8 , 000 + 800 = ₹ 8 , 800 \text{Amount = P + Interest}\\[1em] = ₹ 8,000 + 800\\[1em] = ₹ 8,800 Amount = P + Interest = ₹8 , 000 + 800 = ₹8 , 800
So, principal for the second year = ₹ 8,800.
(iii) For 2nd year:
P = ₹ 8,800
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 8 , 800 × 10 × 1 100 ) = ₹ 88 , 000 100 = ₹ 880 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{8,800 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{88,000}{100}\\[1em] = ₹ 880 Interest = ( 100 P × R × T ) = ₹ ( 100 8 , 800 × 10 × 1 ) = ₹ 100 88 , 000 = ₹880
Hence, interest for the second year = ₹ 880.
(iv)
Final amount = P + Interest = ₹ 8 , 800 + 880 = ₹ 9 , 680 \text{Final amount = P + Interest}\\[1em] = ₹ 8,800 + 880\\[1em] = ₹ 9,680 Final amount = P + Interest = ₹8 , 800 + 880 = ₹9 , 680
So, final amount at the end of the second year = ₹ 9,680
(v)
Compound Interest = Final amount - Original Principal = ₹ 9 , 680 − ₹ 8 , 000 = ₹ 1 , 680 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 9,680 - ₹ 8,000\\[1em] = ₹ 1,680 Compound Interest = Final amount - Original Principal = ₹9 , 680 − ₹8 , 000 = ₹1 , 680
Hence, compound interest earned in 2 years = ₹ 1,680.
A man borrowed ₹ 20,000 for 2 years at 8% per year compound interest. Calculate:
(i) the interest for the first year.
(ii) the interest for the second year.
(iii) the final amount at the end of the second year.
(iv) the compound interest for two years.
Answer
(i) For 1st year:
P = ₹ 20,000
R = 8%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 20 , 000 × 8 × 1 100 ) = ₹ 1 , 60 , 000 100 = ₹ 1 , 600 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{20,000 \times 8 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{1,60,000}{100}\\[1em] = ₹ 1,600 Interest = ( 100 P × R × T ) = ₹ ( 100 20 , 000 × 8 × 1 ) = ₹ 100 1 , 60 , 000 = ₹1 , 600
Hence, interest for first year = ₹ 1,600.
(ii)
Amount = P + Interest = ₹ 20 , 000 + 1 , 600 = ₹ 21 , 600 \text{Amount = P + Interest}\\[1em] = ₹ 20,000 + 1,600\\[1em] = ₹ 21,600 Amount = P + Interest = ₹20 , 000 + 1 , 600 = ₹21 , 600
For 2nd year:
P = ₹ 21,600
R = 8%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 21 , 600 × 8 × 1 100 ) = ₹ 1 , 72 , 800 100 = ₹ 1 , 728 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{21,600 \times 8 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{1,72,800}{100}\\[1em] = ₹ 1,728 Interest = ( 100 P × R × T ) = ₹ ( 100 21 , 600 × 8 × 1 ) = ₹ 100 1 , 72 , 800 = ₹1 , 728
Hence, interest for the second year = ₹ 1,728.
(iii)
Final amount = P + Interest = ₹ 21 , 600 + 1 , 728 = ₹ 23 , 328 \text{Final amount = P + Interest}\\[1em] = ₹ 21,600 + 1,728\\[1em] = ₹ 23,328 Final amount = P + Interest = ₹21 , 600 + 1 , 728 = ₹23 , 328
So, final amount at the end of the second year = ₹ 23,328.
(iv)
Compound Interest = Final amount - Original Principal = ₹ 23 , 328 − ₹ 20 , 000 = ₹ 3 , 328 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 23,328 - ₹ 20,000\\[1em] = ₹ 3,328 Compound Interest = Final amount - Original Principal = ₹23 , 328 − ₹20 , 000 = ₹3 , 328
Hence, compound interest for 2 years = ₹ 3,328.
Calculate the amount and the compound interest on ₹ 12,000 in 2 years at 10% per year.
Answer
Given:
P = ₹ 12,000
R = 10%
n = 2 years
A = P [ 1 + R 100 ] n = 12 , 000 [ 1 + 10 100 ] 2 = 12 , 000 [ 1 + 1 10 ] 2 = 12 , 000 [ 10 10 + 1 10 ] 2 = 12 , 000 [ ( 10 + 1 ) 10 ] 2 = 12 , 000 [ 11 10 ] 2 = 12 , 000 [ 121 100 ] = [ 1 , 45 , 200 1000 ] = 14 , 520 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 12,000\Big[1 + \dfrac{10}{100}\Big]^2\\[1em] = 12,000\Big[1 + \dfrac{1}{10}\Big]^2\\[1em] = 12,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]^2\\[1em] = 12,000\Big[\dfrac{(10 + 1)}{10}\Big]^2\\[1em] = 12,000\Big[\dfrac{11}{10}\Big]^2\\[1em] = 12,000\Big[\dfrac{121}{100}\Big]\\[1em] = \Big[\dfrac{1,45,200}{1000}\Big]\\[1em] = 14,520 A = P [ 1 + 100 R ] n = 12 , 000 [ 1 + 100 10 ] 2 = 12 , 000 [ 1 + 10 1 ] 2 = 12 , 000 [ 10 10 + 10 1 ] 2 = 12 , 000 [ 10 ( 10 + 1 ) ] 2 = 12 , 000 [ 10 11 ] 2 = 12 , 000 [ 100 121 ] = [ 1000 1 , 45 , 200 ] = 14 , 520
Also
Compound Interest = Final amount - Original Principal = ₹ 14 , 520 − ₹ 12 , 000 = ₹ 2 , 520 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 14,520 - ₹ 12,000\\[1em] = ₹ 2,520 Compound Interest = Final amount - Original Principal = ₹14 , 520 − ₹12 , 000 = ₹2 , 520
Hence, amount = ₹ 14,520 compound interest = ₹ 2,520.
Calculate the amount and the compound interest on ₹ 10,000 in 3 years at 8% per annum.
Answer
Given:
P = ₹ 10,000
R = 8%
n = 3 years
A = P [ 1 + R 100 ] n = 10 , 000 [ 1 + 8 100 ] 3 = 10 , 000 [ 1 + 2 25 ] 3 = 10 , 000 [ 25 25 + 2 25 ] 3 = 10 , 000 [ ( 25 + 2 ) 25 ] 3 = 10 , 000 [ 27 25 ] 3 = 10 , 000 [ 19683 15625 ] = [ 19 , 68 , 30 , 000 15625 ] = 12 , 597.12 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 10,000\Big[1 + \dfrac{8}{100}\Big]^3\\[1em] = 10,000\Big[1 + \dfrac{2}{25}\Big]^3\\[1em] = 10,000\Big[\dfrac{25}{25} + \dfrac{2}{25}\Big]^3\\[1em] = 10,000\Big[\dfrac{(25 + 2)}{25}\Big]^3\\[1em] = 10,000\Big[\dfrac{27}{25}\Big]^3\\[1em] = 10,000\Big[\dfrac{19683}{15625}\Big]\\[1em] = \Big[\dfrac{19,68,30,000}{15625}\Big]\\[1em] = 12,597.12 A = P [ 1 + 100 R ] n = 10 , 000 [ 1 + 100 8 ] 3 = 10 , 000 [ 1 + 25 2 ] 3 = 10 , 000 [ 25 25 + 25 2 ] 3 = 10 , 000 [ 25 ( 25 + 2 ) ] 3 = 10 , 000 [ 25 27 ] 3 = 10 , 000 [ 15625 19683 ] = [ 15625 19 , 68 , 30 , 000 ] = 12 , 597.12
Also
Compound Interest = Final amount - Original Principal = ₹ 12 , 597.12 − ₹ 10 , 000 = ₹ 2 , 597.12 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 12,597.12 - ₹ 10,000\\[1em] = ₹ 2,597.12 Compound Interest = Final amount - Original Principal = ₹12 , 597.12 − ₹10 , 000 = ₹2 , 597.12
Hence, amount = ₹ 12,597.12 compound interest = ₹ 2,597.12.
Calculate the compound interest on ₹ 5,000 in 2 years, if the rates of interest for successive years are 10% and 12% respectively.
Answer
Given:
P = ₹ 5,000
T = 2 years
R1 = 10%
R2 = 12%
As we know,
A = P [ 1 + R 1 100 ] [ 1 + R 2 100 ] = 5 , 000 [ 1 + 10 100 ] [ 1 + 12 100 ] = 5 , 000 [ 1 + 1 10 ] [ 1 + 3 25 ] = 5 , 000 [ 10 10 + 1 10 ] [ 25 25 + 3 25 ] = 5 , 000 [ ( 10 + 1 ) 10 ] [ ( 25 + 3 ) 25 ] = 5 , 000 [ 11 10 ] [ 28 25 ] = [ 15 , 40 , 000 250 ] = ₹ 6 , 160 \text{A} = P\Big[1 + \dfrac{R_1}{100}\Big]\Big[1 + \dfrac{R_2}{100}\Big]\\[1em] = 5,000\Big[1 + \dfrac{10}{100}\Big]\Big[1 + \dfrac{12}{100}\Big]\\[1em] = 5,000\Big[1 + \dfrac{1}{10}\Big]\Big[1 + \dfrac{3}{25}\Big]\\[1em] = 5,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]\Big[\dfrac{25}{25} + \dfrac{3}{25}\Big]\\[1em] = 5,000\Big[\dfrac{(10 + 1)}{10}\Big]\Big[\dfrac{(25 + 3)}{25}\Big]\\[1em] = 5,000\Big[\dfrac{11}{10}\Big]\Big[\dfrac{28}{25}\Big]\\[1em] = \Big[\dfrac{15,40,000}{250}\Big]\\[1em] = ₹ 6,160 A = P [ 1 + 100 R 1 ] [ 1 + 100 R 2 ] = 5 , 000 [ 1 + 100 10 ] [ 1 + 100 12 ] = 5 , 000 [ 1 + 10 1 ] [ 1 + 25 3 ] = 5 , 000 [ 10 10 + 10 1 ] [ 25 25 + 25 3 ] = 5 , 000 [ 10 ( 10 + 1 ) ] [ 25 ( 25 + 3 ) ] = 5 , 000 [ 10 11 ] [ 25 28 ] = [ 250 15 , 40 , 000 ] = ₹6 , 160
C.I. = A - P = ₹ 6 , 160 − ₹ 5 , 000 = ₹ 1 , 160 \text{C.I. = A - P}\\[1em] = ₹ 6,160 - ₹ 5,000\\[1em] = ₹ 1,160 C.I. = A - P = ₹6 , 160 − ₹5 , 000 = ₹1 , 160
Hence, compound interest = ₹ 1,160
Calculate the compound interest on ₹ 15,000 in 3 years; if the rates of interest for successive years are 6%, 8% and 10% respectively.
Answer
Given:
P = ₹ 15,000
T = 3 years
R1 = 6%
R2 = 8%
R3 = 10%
As we know,
A = P [ 1 + R 1 100 ] [ 1 + R 2 100 ] [ 1 + R 3 100 ] = 15 , 000 [ 1 + 6 100 ] [ 1 + 8 100 ] [ 1 + 10 100 ] = 15 , 000 [ 1 + 3 50 ] [ 1 + 2 25 ] [ 1 + 1 10 ] = 15 , 000 [ 50 50 + 3 50 ] [ 25 25 + 2 25 ] [ 10 10 + 1 10 ] = 15 , 000 [ ( 50 + 3 ) 50 ] [ ( 25 + 2 ) 25 ] [ ( 10 + 1 ) 10 ] = 15 , 000 [ 53 50 ] [ 27 25 ] [ 11 10 ] = [ 23 , 61 , 15 , 000 12500 ] = 18 , 889.20 \text{A} = P\Big[1 + \dfrac{R_1}{100}\Big]\Big[1 + \dfrac{R_2}{100}\Big]\Big[1 + \dfrac{R_3}{100}\Big]\\[1em] = 15,000\Big[1 + \dfrac{6}{100}\Big]\Big[1 + \dfrac{8}{100}\Big]\Big[1 + \dfrac{10}{100}\Big]\\[1em] = 15,000\Big[1 + \dfrac{3}{50}\Big]\Big[1 + \dfrac{2}{25}\Big]\Big[1 + \dfrac{1}{10}\Big]\\[1em] = 15,000\Big[\dfrac{50}{50} + \dfrac{3}{50}\Big]\Big[\dfrac{25}{25} + \dfrac{2}{25}\Big]\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]\\[1em] = 15,000\Big[\dfrac{(50 + 3)}{50}\Big]\Big[\dfrac{(25 + 2)}{25}\Big]\Big[\dfrac{(10 + 1)}{10}\Big]\\[1em] = 15,000\Big[\dfrac{53}{50}\Big]\Big[\dfrac{27}{25}\Big]\Big[\dfrac{11}{10}\Big]\\[1em] = \Big[\dfrac{23,61,15,000}{12500}\Big]\\[1em] = 18,889.20 A = P [ 1 + 100 R 1 ] [ 1 + 100 R 2 ] [ 1 + 100 R 3 ] = 15 , 000 [ 1 + 100 6 ] [ 1 + 100 8 ] [ 1 + 100 10 ] = 15 , 000 [ 1 + 50 3 ] [ 1 + 25 2 ] [ 1 + 10 1 ] = 15 , 000 [ 50 50 + 50 3 ] [ 25 25 + 25 2 ] [ 10 10 + 10 1 ] = 15 , 000 [ 50 ( 50 + 3 ) ] [ 25 ( 25 + 2 ) ] [ 10 ( 10 + 1 ) ] = 15 , 000 [ 50 53 ] [ 25 27 ] [ 10 11 ] = [ 12500 23 , 61 , 15 , 000 ] = 18 , 889.20
C.I. = A - P = ₹ 18 , 889.20 − ₹ 15 , 000 = ₹ 3 , 889.20 \text{C.I. = A - P}\\[1em] = ₹ 18,889.20 - ₹ 15,000\\[1em] = ₹ 3,889.20 C.I. = A - P = ₹18 , 889.20 − ₹15 , 000 = ₹3 , 889.20
Hence, compound interest = ₹ 3,889.20
Mohan borrowed ₹ 16,000 for 3 years at 5% per annum compound interest. Calculate the amount that Mohan would have to pay at the end of 3 years.
Answer
Given:
P = ₹ 16,000
n = 3 years
R = 5%
As we know,
A = P [ 1 + R 100 ] n = 16 , 000 [ 1 + 5 100 ] 3 = 16 , 000 [ 1 + 1 20 ] 3 = 16 , 000 [ 20 20 + 1 20 ] 3 = 16 , 000 [ ( 20 + 1 ) 20 ] 3 = 16 , 000 [ 21 20 ] 3 = 16 , 000 [ 9261 8000 ] = [ 14 , 81 , 76 , 000 8000 ] = 18 , 522 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 16,000\Big[1 + \dfrac{5}{100}\Big]^3\\[1em] = 16,000\Big[1 + \dfrac{1}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{20}{20} + \dfrac{1}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{(20 + 1)}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{21}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{9261}{8000}\Big]\\[1em] = \Big[\dfrac{14,81,76,000}{8000}\Big]\\[1em] = 18,522 A = P [ 1 + 100 R ] n = 16 , 000 [ 1 + 100 5 ] 3 = 16 , 000 [ 1 + 20 1 ] 3 = 16 , 000 [ 20 20 + 20 1 ] 3 = 16 , 000 [ 20 ( 20 + 1 ) ] 3 = 16 , 000 [ 20 21 ] 3 = 16 , 000 [ 8000 9261 ] = [ 8000 14 , 81 , 76 , 000 ] = 18 , 522
Hence, amount = ₹ 18,522
Rekha borrowed ₹ 40,000 for 3 years at 10% per annum compound interest. Calculate the interest paid by her for the second year.
Answer
For 1st year:
P = ₹ 40,000
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 40 , 000 × 10 × 1 100 ) = ₹ 4 , 00 , 000 100 = ₹ 4 , 000 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{40,000 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{4,00,000}{100}\\[1em] = ₹ 4,000 Interest = ( 100 P × R × T ) = ₹ ( 100 40 , 000 × 10 × 1 ) = ₹ 100 4 , 00 , 000 = ₹4 , 000
And
Amount = P + Interest = ₹ 40 , 000 + 4 , 000 = ₹ 44 , 000 \text{Amount = P + Interest}\\[1em] = ₹ 40,000 + 4,000\\[1em] = ₹ 44,000 Amount = P + Interest = ₹40 , 000 + 4 , 000 = ₹44 , 000
For 2nd year:
P = ₹ 44,000
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 44 , 000 × 10 × 1 100 ) = ₹ 4 , 40 , 000 100 = ₹ 4 , 400 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{44,000 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{4,40,000}{100}\\[1em] = ₹ 4,400 Interest = ( 100 P × R × T ) = ₹ ( 100 44 , 000 × 10 × 1 ) = ₹ 100 4 , 40 , 000 = ₹4 , 400
Hence, compound interest = ₹ 4,400.
Calculate the compound interest for the second year on ₹ 15,000 invested for 5 years at 6% per annum.
Answer
For 1st year:
P = ₹ 15,000
R = 6%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 15 , 000 × 6 × 1 100 ) = ₹ 90 , 000 100 = ₹ 900 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{15,000 \times 6 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{90,000}{100}\\[1em] = ₹ 900 Interest = ( 100 P × R × T ) = ₹ ( 100 15 , 000 × 6 × 1 ) = ₹ 100 90 , 000 = ₹900
And
Amount = P + Interest = ₹ 15 , 000 + 900 = ₹ 15 , 900 \text{Amount = P + Interest}\\[1em] = ₹ 15,000 + 900\\[1em] = ₹ 15,900 Amount = P + Interest = ₹15 , 000 + 900 = ₹15 , 900
For 2nd year:
P = ₹ 15,900
R = 6%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 15 , 900 × 6 × 1 100 ) = ₹ 954 , 000 100 = ₹ 954 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{15,900 \times 6 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{954,000}{100}\\[1em] = ₹ 954 Interest = ( 100 P × R × T ) = ₹ ( 100 15 , 900 × 6 × 1 ) = ₹ 100 954 , 000 = ₹954
Hence, compound interest = ₹ 954.
A man invests ₹ 9,600 at 10% per annum compound interest for 3 years. Calculate:
(i) the interest for the first year.
(ii) the amount at the end of the first year.
(iii) the interest for the second year.
(iv) the interest for the third year.
Answer
(i) For 1st year:
P = ₹ 9,600
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 9 , 600 × 10 × 1 100 ) = ₹ 96 , 000 100 = ₹ 960 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{9,600 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{96,000}{100}\\[1em] = ₹ 960 Interest = ( 100 P × R × T ) = ₹ ( 100 9 , 600 × 10 × 1 ) = ₹ 100 96 , 000 = ₹960
Hence, interest for first year = ₹ 960.
(ii)
Amount = P + Interest = ₹ 9 , 600 + 960 = ₹ 10 , 560 \text{Amount = P + Interest}\\[1em] = ₹ 9,600 + 960\\[1em] = ₹ 10,560 Amount = P + Interest = ₹9 , 600 + 960 = ₹10 , 560
So, amount at the end of the first year = ₹ 10,560.
(iii) For 2nd year:
P = ₹ 10,560
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 10 , 560 × 10 × 1 100 ) = ₹ 1 , 05 , 600 100 = ₹ 1 , 056 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{10,560 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{1,05,600}{100}\\[1em] = ₹ 1,056 Interest = ( 100 P × R × T ) = ₹ ( 100 10 , 560 × 10 × 1 ) = ₹ 100 1 , 05 , 600 = ₹1 , 056
Hence, interest for the second year = ₹ 1,056.
(iv)
Amount at end of 2nd year = P + Interest = ₹ 10 , 560 + 1 , 056 = ₹ 11 , 616 \text{Amount at end of 2nd year = P + Interest}\\[1em] = ₹ 10,560 + 1,056\\[1em] = ₹ 11,616 Amount at end of 2nd year = P + Interest = ₹10 , 560 + 1 , 056 = ₹11 , 616
For 3rd year:
P = ₹ 11,616
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 11 , 616 × 10 × 1 100 ) = ₹ 1 , 16 , 160 100 = ₹ 1 , 161.60 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{11,616 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{1,16,160}{100}\\[1em] = ₹ 1,161.60 Interest = ( 100 P × R × T ) = ₹ ( 100 11 , 616 × 10 × 1 ) = ₹ 100 1 , 16 , 160 = ₹1 , 161.60
Hence, interest for the third year = ₹ 1,161.60.
A person invests ₹ 5,000 for two years at a certain rate of interest compounded annually. At the end of one year, this sum amounts to ₹ 5,600. Calculate:
(i) the rate of interest per annum.
(ii) the amount at the end of the second year.
Answer
(i) For 1st year:
P = ₹ 5,000
T = 1 year
A = ₹ 5,600
As we know,
A = P + S.I. ⇒ 5 , 600 = 5 , 000 + S . I . ⇒ S . I . = 5 , 600 − 5 , 000 ⇒ S . I . = 600 \text{A = P + S.I.}\\[1em] \Rightarrow 5,600 = 5,000 + S.I.\\[1em] \Rightarrow S.I. = 5,600 - 5,000\\[1em] \Rightarrow S.I. = 600 A = P + S.I. ⇒ 5 , 600 = 5 , 000 + S . I . ⇒ S . I . = 5 , 600 − 5 , 000 ⇒ S . I . = 600
Let the rate be r r r
Interest = ( P × R × T 100 ) ⇒ 600 = ₹ ( 5 , 000 × r × 1 100 ) ⇒ 600 = ₹ ( 5 , 000 r 100 ) ⇒ 600 = 50 r ⇒ r = 600 50 ⇒ r = 12 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 600 = ₹ \Big(\dfrac{5,000 \times r \times 1}{100}\Big)\\[1em] \Rightarrow 600 = ₹ \Big(\dfrac{5,000r}{100}\Big)\\[1em] \Rightarrow 600 = 50r\\[1em] \Rightarrow r = \dfrac{600}{50}\\[1em] \Rightarrow r = 12 Interest = ( 100 P × R × T ) ⇒ 600 = ₹ ( 100 5 , 000 × r × 1 ) ⇒ 600 = ₹ ( 100 5 , 000 r ) ⇒ 600 = 50 r ⇒ r = 50 600 ⇒ r = 12
Hence, rate of interest = 12%.
(ii) For 2nd year:
P = ₹ 5,600
R = 12%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 5 , 600 × 12 × 1 100 ) = ₹ 67 , 200 100 = ₹ 672 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{5,600 \times 12 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{67,200}{100}\\[1em] = ₹ 672 Interest = ( 100 P × R × T ) = ₹ ( 100 5 , 600 × 12 × 1 ) = ₹ 100 67 , 200 = ₹672
Final amount = P + Interest = ₹ ( 5 , 600 + 672 ) = ₹ 6 , 272 \text{Final amount = P + Interest}\\[1em] = ₹ (5,600 + 672) \\[1em] = ₹ 6,272 Final amount = P + Interest = ₹ ( 5 , 600 + 672 ) = ₹6 , 272
Calculate the difference between the compound interest and the simple interest on ₹ 7,500 in two years and at 8% per annum.
Answer
P = ₹ 7,500
R = 8%
T = 2 years
For simple interest
Interest = ( P × R × T 100 ) = ( 7 , 500 × 8 × 2 100 ) = ( 1 , 20 , 000 100 ) = ₹ 1 , 200 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{7,500 \times 8 \times 2}{100}\Big)\\[1em] = \Big(\dfrac{1,20,000}{100}\Big)\\[1em] = ₹ 1,200 Interest = ( 100 P × R × T ) = ( 100 7 , 500 × 8 × 2 ) = ( 100 1 , 20 , 000 ) = ₹1 , 200
For compound interest
A = P [ 1 + R 100 ] n = 7 , 500 [ 1 + 8 100 ] 2 = 7 , 500 [ 1 + 2 25 ] 2 = 7 , 500 [ 25 25 + 2 25 ] 2 = 7 , 500 [ ( 25 + 2 ) 25 ] 2 = 7 , 500 [ 27 25 ] 2 = 7 , 500 [ 729 625 ] 2 = [ 54 , 67 , 500 625 ] 2 = ₹ 8 , 748 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 7,500\Big[1 + \dfrac{8}{100}\Big]^2\\[1em] = 7,500\Big[1 + \dfrac{2}{25}\Big]^2\\[1em] = 7,500\Big[\dfrac{25}{25} + \dfrac{2}{25}\Big]^2\\[1em] = 7,500\Big[\dfrac{(25 + 2)}{25}\Big]^2\\[1em] = 7,500\Big[\dfrac{27}{25}\Big]^2\\[1em] = 7,500\Big[\dfrac{729}{625}\Big]^2\\[1em] = \Big[\dfrac{54,67,500}{625}\Big]^2\\[1em] = ₹ 8,748 A = P [ 1 + 100 R ] n = 7 , 500 [ 1 + 100 8 ] 2 = 7 , 500 [ 1 + 25 2 ] 2 = 7 , 500 [ 25 25 + 25 2 ] 2 = 7 , 500 [ 25 ( 25 + 2 ) ] 2 = 7 , 500 [ 25 27 ] 2 = 7 , 500 [ 625 729 ] 2 = [ 625 54 , 67 , 500 ] 2 = ₹8 , 748
And
C.I. = A - P = ₹ ( 8 , 748 − 7 , 500 ) = ₹ 1 , 248 \text{C.I. = A - P}\\[1em] = ₹ (8,748 - 7,500)\\[1em] = ₹ 1,248 C.I. = A - P = ₹ ( 8 , 748 − 7 , 500 ) = ₹1 , 248
Difference between C.I. and S.I.
= ₹ (1,248 - 1,200)
= ₹ 48
The difference between C.I. and S.I. = ₹ 48.
Calculate the difference between the compound interest and the simple interest on ₹ 8,000 in three years at 10% per annum.
Answer
P = ₹ 8,000
R = 10%
T = 3 years
For simple interest
Interest = ( P × R × T 100 ) = ( 8 , 000 × 10 × 3 100 ) = ( 2 , 40 , 000 100 ) = ₹ 2 , 400 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{8,000 \times 10 \times 3}{100}\Big)\\[1em] = \Big(\dfrac{2,40,000}{100}\Big)\\[1em] = ₹ 2,400 Interest = ( 100 P × R × T ) = ( 100 8 , 000 × 10 × 3 ) = ( 100 2 , 40 , 000 ) = ₹2 , 400
For compound interest
A = P [ 1 + R 100 ] n = 8 , 000 [ 1 + 10 100 ] 3 = 8 , 000 [ 1 + 1 10 ] 3 = 8 , 000 [ 10 10 + 1 10 ] 3 = 8 , 000 [ ( 10 + 1 ) 10 ] 3 = 8 , 000 [ 11 10 ] 3 = 8 , 000 [ 1 , 331 1000 ] = [ 10 , 64 , 80 , 000 1000 ] = ₹ 10 , 648 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 8,000\Big[1 + \dfrac{10}{100}\Big]^3\\[1em] = 8,000\Big[1 + \dfrac{1}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{(10 + 1)}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{11}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{1,331}{1000}\Big]\\[1em] = \Big[\dfrac{10,64,80,000}{1000}\Big]\\[1em] = ₹ 10,648 A = P [ 1 + 100 R ] n = 8 , 000 [ 1 + 100 10 ] 3 = 8 , 000 [ 1 + 10 1 ] 3 = 8 , 000 [ 10 10 + 10 1 ] 3 = 8 , 000 [ 10 ( 10 + 1 ) ] 3 = 8 , 000 [ 10 11 ] 3 = 8 , 000 [ 1000 1 , 331 ] = [ 1000 10 , 64 , 80 , 000 ] = ₹10 , 648
And
C.I. = A - P = ₹ ( 10 , 648 − 8 , 000 ) = ₹ 2 , 648 \text{C.I. = A - P} \\[1em] = ₹ (10,648 - 8,000) \\[1em] = ₹ 2,648 C.I. = A - P = ₹ ( 10 , 648 − 8 , 000 ) = ₹2 , 648
Difference between C.I. and S.I.
= ₹ (2,648 - 2,400)
= ₹ 248
The difference between C.I. and S.I. = ₹ 248.
Rohit borrowed ₹ 40,000 for 2 years at 10% per annum C.I. and Manish borrowed the same sum for the same time at 10.5% per annum simple interest. Which of these two gives less interest and by how much?
Answer
For simple interest
P = ₹ 40,000
R = 10.5%
T = 2 years
Interest = ( P × R × T 100 ) = ( 40 , 000 × 10.5 × 2 100 ) = ( 8 , 40 , 000 100 ) = ₹ 8 , 400 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{40,000 \times 10.5 \times 2}{100}\Big)\\[1em] = \Big(\dfrac{8,40,000}{100}\Big)\\[1em] = ₹ 8,400 Interest = ( 100 P × R × T ) = ( 100 40 , 000 × 10.5 × 2 ) = ( 100 8 , 40 , 000 ) = ₹8 , 400
For compound interest
P = ₹ 40,000
R = 10%
n = 2 years
A = P [ 1 + R 100 ] n = 40 , 000 [ 1 + 10 100 ] 2 = 40 , 000 [ 1 + 1 10 ] 2 = 40 , 000 [ 10 10 + 1 10 ] 2 = 40 , 000 [ ( 10 + 1 ) 10 ] 2 = 40 , 000 [ 11 10 ] 2 = 40 , 000 [ 121 100 ] = [ 48 , 40 , 000 100 ] = ₹ 48 , 400 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 40,000\Big[1 + \dfrac{10}{100}\Big]^2\\[1em] = 40,000\Big[1 + \dfrac{1}{10}\Big]^2\\[1em] = 40,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]^2\\[1em] = 40,000\Big[\dfrac{(10 + 1)}{10}\Big]^2\\[1em] = 40,000\Big[\dfrac{11}{10}\Big]^2\\[1em] = 40,000\Big[\dfrac{121}{100}\Big]\\[1em] = \Big[\dfrac{48,40,000}{100}\Big]\\[1em] = ₹ 48,400 A = P [ 1 + 100 R ] n = 40 , 000 [ 1 + 100 10 ] 2 = 40 , 000 [ 1 + 10 1 ] 2 = 40 , 000 [ 10 10 + 10 1 ] 2 = 40 , 000 [ 10 ( 10 + 1 ) ] 2 = 40 , 000 [ 10 11 ] 2 = 40 , 000 [ 100 121 ] = [ 100 48 , 40 , 000 ] = ₹48 , 400
And
C.I. = A - P = ₹ ( 48 , 400 − 40 , 000 ) = ₹ 8 , 400 \text{C.I. = A - P}\\[1em] = ₹ (48,400 - 40,000)\\[1em] = ₹ 8,400 C.I. = A - P = ₹ ( 48 , 400 − 40 , 000 ) = ₹8 , 400
∴ C.I. is equals to S.I.
Hence, Both give equal interest.
Mr. Sharma lends ₹ 24,000 at 13% p.a. simple interest and an equal sum at 12% p.a. compound interest. Find the total interest earned by Mr. Sharma in 2 years.
Answer
For simple interest
P = ₹ 24,000
R = 13%
T = 2 years
Interest = ( P × R × T 100 ) = ( 24 , 000 × 13 × 2 100 ) = ( 6 , 24 , 000 100 ) = ₹ 6 , 240 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{24,000 \times 13 \times 2}{100}\Big)\\[1em] = \Big(\dfrac{6,24,000}{100}\Big)\\[1em] = ₹ 6,240 Interest = ( 100 P × R × T ) = ( 100 24 , 000 × 13 × 2 ) = ( 100 6 , 24 , 000 ) = ₹6 , 240
For compound interest
P = ₹ 24,000
R = 12%
n = 2 years
A = P [ 1 + R 100 ] n = 24 , 000 [ 1 + 12 100 ] 2 = 24 , 000 [ 1 + 3 25 ] 2 = 24 , 000 [ 25 25 + 3 25 ] 2 = 24 , 000 [ ( 25 + 3 ) 25 ] 2 = 24 , 000 [ 28 25 ] 2 = 24 , 000 [ 784 625 ] = [ 1 , 88 , 16 , 000 625 ] = ₹ 30 , 105.60 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 24,000\Big[1 + \dfrac{12}{100}\Big]^2\\[1em] = 24,000\Big[1 + \dfrac{3}{25}\Big]^2\\[1em] = 24,000\Big[\dfrac{25}{25} + \dfrac{3}{25}\Big]^2\\[1em] = 24,000\Big[\dfrac{(25 + 3)}{25}\Big]^2\\[1em] = 24,000\Big[\dfrac{28}{25}\Big]^2\\[1em] = 24,000\Big[\dfrac{784}{625}\Big]\\[1em] = \Big[\dfrac{1,88,16,000}{625}\Big]\\[1em] = ₹ 30,105.60 A = P [ 1 + 100 R ] n = 24 , 000 [ 1 + 100 12 ] 2 = 24 , 000 [ 1 + 25 3 ] 2 = 24 , 000 [ 25 25 + 25 3 ] 2 = 24 , 000 [ 25 ( 25 + 3 ) ] 2 = 24 , 000 [ 25 28 ] 2 = 24 , 000 [ 625 784 ] = [ 625 1 , 88 , 16 , 000 ] = ₹30 , 105.60
And
C.I. = A - P = ₹ ( 30 , 105.6 − 24 , 000 ) = ₹ 6 , 105.60 \text{C.I. = A - P}\\[1em] = ₹ (30,105.6 - 24,000)\\[1em] = ₹ 6,105.60 C.I. = A - P = ₹ ( 30 , 105.6 − 24 , 000 ) = ₹6 , 105.60
Total interest = ₹ 6,240 + ₹ 6,105.60 = ₹ 12,345.60
Hence, total interest earned by Mr. Sharma in 2 years = ₹ 12,345.60
Peter borrows ₹ 12,000 for 2 years at 10% p.a. compound interest. He repays ₹ 8,000 at the end of first year. Find:
(i) the amount at the end of first year, before making the repayment.
(ii) the amount at the end of first year, after making the repayment.
(iii) the principal for the second year.
(iv) the amount to be paid at the end of the second year to clear the account.
Answer
For 1st year:
P = ₹ 12,000
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 12 , 000 × 10 × 1 100 ) = ₹ 1 , 20 , 000 100 = ₹ 1 , 200 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{12,000 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{1,20,000}{100}\\[1em] = ₹ 1,200 Interest = ( 100 P × R × T ) = ₹ ( 100 12 , 000 × 10 × 1 ) = ₹ 100 1 , 20 , 000 = ₹1 , 200
And
Amount = P + Interest = ₹ 12 , 000 + 1 , 200 = ₹ 13 , 200 \text{Amount = P + Interest}\\[1em] = ₹ 12,000 + 1,200\\[1em] = ₹ 13,200 Amount = P + Interest = ₹12 , 000 + 1 , 200 = ₹13 , 200
Hence, the amount at the end of first year, before making the repayment = ₹ 13,200
(ii) The amount at the end of first year, after making the repayment = ₹ 13,200 - ₹ 8,000
= ₹ 5,200
Hence, the amount at the end of first year, after making the repayment = ₹ 5,200
(iii) So, the principal amount for second year = ₹ 5,200
(iv) For 2nd year:
P = ₹ 5,200
R = 10%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 5 , 200 × 10 × 1 100 ) = ₹ 52 , 000 100 = ₹ 520 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{5,200 \times 10 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{52,000}{100}\\[1em] = ₹ 520 Interest = ( 100 P × R × T ) = ₹ ( 100 5 , 200 × 10 × 1 ) = ₹ 100 52 , 000 = ₹520
And
Final amount = P + Interest = ₹ 5 , 200 + 520 = ₹ 5 , 720 \text{Final amount = P + Interest}\\[1em] = ₹ 5,200 + 520\\[1em] = ₹ 5,720 Final amount = P + Interest = ₹5 , 200 + 520 = ₹5 , 720
Hence, the amount to be paid at the end of the second year to clear the account = ₹ 5,720.
Gautam takes a loan of ₹ 16,000 for 2 years at 15% p.a. compound interest. He repays ₹ 9,000 at the end of first year. How much must he pay at the end of second year to clear the debt?
Answer
For 1st year:
P = ₹ 16,000
R = 15%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 16 , 000 × 15 × 1 100 ) = ₹ 2 , 40 , 000 100 = ₹ 2 , 400 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{16,000 \times 15 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{2,40,000}{100}\\[1em] = ₹ 2,400 Interest = ( 100 P × R × T ) = ₹ ( 100 16 , 000 × 15 × 1 ) = ₹ 100 2 , 40 , 000 = ₹2 , 400
And
Amount = P + Interest = ₹ 16 , 000 + 2 , 400 = ₹ 18 , 400 \text{Amount = P + Interest}\\[1em] = ₹ 16,000 + 2,400\\[1em] = ₹ 18,400 Amount = P + Interest = ₹16 , 000 + 2 , 400 = ₹18 , 400
The amount at the end of first year, after making the repayment = ₹ 18,400 - ₹ 9,000
= ₹ 9,400
Hence, the amount at the end of first year, after making the repayment = ₹ 9,400
For 2nd year:
P = ₹ 9,400
R = 15%
T = 1 year
Interest = ( P × R × T 100 ) = ₹ ( 9 , 400 × 15 × 1 100 ) = ₹ 141 , 000 100 = ₹ 1 , 410 \text{Interest} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = ₹ \Big(\dfrac{9,400 \times 15 \times 1}{100}\Big)\\[1em] = ₹ \dfrac{141,000}{100}\\[1em] = ₹ 1,410 Interest = ( 100 P × R × T ) = ₹ ( 100 9 , 400 × 15 × 1 ) = ₹ 100 141 , 000 = ₹1 , 410
And
Final amount = P + Interest = ₹ 9 , 400 + 1 , 410 = ₹ 10 , 810 \text{Final amount = P + Interest}\\[1em] = ₹ 9,400 + 1,410\\[1em] = ₹ 10,810 Final amount = P + Interest = ₹9 , 400 + 1 , 410 = ₹10 , 810
Hence, the amount to be paid at the end of the second year to clear the account = ₹ 10,810.
A certain sum of money, invested for 5 years at 8% p.a. simple interest, earns an interest of ₹ 12,000. Find:
(i) the sum of money.
(ii) the compound interest earned by this money in two years at 10% p.a. compound interest.
Answer
(i) For simple interest
T = 5 years
R = 8%
S.I. = ₹ 12,000
Let the principal amount be P P P .
As we know,
S.I. = ( P × R × T 100 ) ⇒ 12 , 000 = ( P × 8 × 5 100 ) ⇒ 12 , 000 = ( 40 P 100 ) ⇒ 12 , 000 = ( 2 P 5 ) ⇒ 12 , 000 = 2 P 5 ⇒ P = 5 × 12 , 000 2 ⇒ P = 60 , 000 2 ⇒ P = 30 , 000 \text{S.I.} = \Big(\dfrac{P \times R\times T}{100}\Big)\\[1em] \Rightarrow 12,000 = \Big(\dfrac{P\times 8 \times 5}{100}\Big)\\[1em] \Rightarrow 12,000 = \Big(\dfrac{40P}{100}\Big)\\[1em] \Rightarrow 12,000 = \Big(\dfrac{2P}{5}\Big)\\[1em] \Rightarrow 12,000 = \dfrac{2P}{5}\\[1em] \Rightarrow P = \dfrac{5 \times 12,000}{2} \\[1em] \Rightarrow P = \dfrac{60,000}{2} \\[1em] \Rightarrow P = 30,000 S.I. = ( 100 P × R × T ) ⇒ 12 , 000 = ( 100 P × 8 × 5 ) ⇒ 12 , 000 = ( 100 40 P ) ⇒ 12 , 000 = ( 5 2 P ) ⇒ 12 , 000 = 5 2 P ⇒ P = 2 5 × 12 , 000 ⇒ P = 2 60 , 000 ⇒ P = 30 , 000
Hence, the principal amount = ₹ 30,000.
(ii) For compound interest
P = ₹ 30,000
R = 10%
n = 2 years
A = P [ 1 + R 100 ] n ⇒ A = 30 , 000 [ 1 + 10 100 ] 2 = 30 , 000 [ 1 + 1 10 ] 2 = 30 , 000 [ 10 10 + 1 10 ] 2 = 30 , 000 [ ( 10 + 1 ) 10 ] 2 = 30 , 000 [ 11 10 ] 2 = 30 , 000 [ 121 100 ] = [ 36 , 30 , 000 100 ] = 36 , 300 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] \Rightarrow\text{A} = 30,000\Big[1 + \dfrac{10}{100}\Big]^2\\[1em] = 30,000\Big[1 + \dfrac{1}{10}\Big]^2\\[1em] = 30,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]^2\\[1em] = 30,000\Big[\dfrac{(10 + 1)}{10}\Big]^2\\[1em] = 30,000\Big[\dfrac{11}{10}\Big]^2\\[1em] = 30,000\Big[\dfrac{121}{100}\Big]\\[1em] = \Big[\dfrac{36,30,000}{100}\Big]\\[1em] = 36,300 A = P [ 1 + 100 R ] n ⇒ A = 30 , 000 [ 1 + 100 10 ] 2 = 30 , 000 [ 1 + 10 1 ] 2 = 30 , 000 [ 10 10 + 10 1 ] 2 = 30 , 000 [ 10 ( 10 + 1 ) ] 2 = 30 , 000 [ 10 11 ] 2 = 30 , 000 [ 100 121 ] = [ 100 36 , 30 , 000 ] = 36 , 300
And
C.I. = A - P ⇒ C . I . = 36 , 300 − 30 , 000 = 6 , 300 \text{C.I. = A - P}\\[1em] \Rightarrow C.I. = 36,300 - 30,000\\[1em] = 6,300 C.I. = A - P ⇒ C . I . = 36 , 300 − 30 , 000 = 6 , 300
Hence, the compound interest ₹ 6,300
Find the amount and the C.I. on ₹ 12,000 in one year at 10% per annum compounded half-yearly.
Answer
Given:
P = ₹ 12,000
R = 10%
n = 1 years
When the interest is compounded half-yearly:
A = P [ 1 + R 2 × 100 ] 2 × n = 12 , 000 [ 1 + 10 200 ] 2 × 1 = 12 , 000 [ 1 + 1 20 ] 2 = 12 , 000 [ 20 20 + 1 20 ] 2 = 12 , 000 [ ( 20 + 1 ) 20 ] 2 = 12 , 000 [ 21 20 ] 2 = 12 , 000 [ 441 400 ] = [ 52 , 92 , 000 400 ] = 13 , 230 \text{A} = P\Big[1 + \dfrac{R}{2 \times 100}\Big]^{2\times n}\\[1em] = 12,000\Big[1 + \dfrac{10}{200}\Big]^{2\times1}\\[1em] = 12,000\Big[1 + \dfrac{1}{20}\Big]^2\\[1em] = 12,000\Big[\dfrac{20}{20} + \dfrac{1}{20}\Big]^2\\[1em] = 12,000\Big[\dfrac{(20 + 1)}{20}\Big]^2\\[1em] = 12,000\Big[\dfrac{21}{20}\Big]^2\\[1em] = 12,000\Big[\dfrac{441}{400}\Big]\\[1em] = \Big[\dfrac{52,92,000}{400}\Big]\\[1em] = 13,230 A = P [ 1 + 2 × 100 R ] 2 × n = 12 , 000 [ 1 + 200 10 ] 2 × 1 = 12 , 000 [ 1 + 20 1 ] 2 = 12 , 000 [ 20 20 + 20 1 ] 2 = 12 , 000 [ 20 ( 20 + 1 ) ] 2 = 12 , 000 [ 20 21 ] 2 = 12 , 000 [ 400 441 ] = [ 400 52 , 92 , 000 ] = 13 , 230
And
C.I. = A - P ⇒ C.I. = 13 , 230 − 12 , 000 = 1 , 230 \text{C.I. = A - P}\\[1em] \Rightarrow \text{C.I.} = 13,230 - 12,000\\[1em] = 1,230 C.I. = A - P ⇒ C.I. = 13 , 230 − 12 , 000 = 1 , 230
Hence, the amount = ₹ 13,230 and the compound interest ₹ 1,230
Find the amount and the C.I. on ₹ 8,000 in 1 1 2 1\dfrac{1}{2} 1 2 1 years at 20% per year compounded half-yearly.
Answer
Given:
P = ₹ 8,000
R = 20%
n = 1 1 2 1\dfrac{1}{2} 1 2 1 years
= 3 2 \dfrac{3}{2} 2 3 years
When the interest is compounded half-yearly:
A = P [ 1 + R 2 × 100 ] 2 × n = 8 , 000 [ 1 + 20 200 ] 2 × 3 2 = 8 , 000 [ 1 + 1 10 ] 3 = 8 , 000 [ 10 10 + 1 10 ] 3 = 8 , 000 [ ( 10 + 1 ) 10 ] 3 = 8 , 000 [ 11 10 ] 3 = 8 , 000 [ 1331 1000 ] = [ 1 , 06 , 48 , 000 1000 ] = 10 , 648 \text{A} = P\Big[1 + \dfrac{R}{2 \times 100}\Big]^{2\times n}\\[1em] = 8,000\Big[1 + \dfrac{20}{200}\Big]^{2\times\dfrac{3}{2}}\\[1em] = 8,000\Big[1 + \dfrac{1}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{(10 + 1)}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{11}{10}\Big]^3\\[1em] = 8,000\Big[\dfrac{1331}{1000}\Big]\\[1em] = \Big[\dfrac{1,06,48,000}{1000}\Big]\\[1em] = 10,648 A = P [ 1 + 2 × 100 R ] 2 × n = 8 , 000 [ 1 + 200 20 ] 2 × 2 3 = 8 , 000 [ 1 + 10 1 ] 3 = 8 , 000 [ 10 10 + 10 1 ] 3 = 8 , 000 [ 10 ( 10 + 1 ) ] 3 = 8 , 000 [ 10 11 ] 3 = 8 , 000 [ 1000 1331 ] = [ 1000 1 , 06 , 48 , 000 ] = 10 , 648
And
C.I. = A - P ⇒ C.I. = 10 , 648 − 8 , 000 = 2 , 648 \text{C.I. = A - P}\\[1em] \Rightarrow \text{C.I.} = 10,648 - 8,000\\[1em] = 2,648 C.I. = A - P ⇒ C.I. = 10 , 648 − 8 , 000 = 2 , 648
Hence, the amount = ₹ 10,648 and the compound interest = ₹ 2,648
Find the amount and the compound interest on ₹ 24,000 for 2 years at 10% per annum compounded yearly.
Answer
Given:
P = ₹ 24,000
R = 10%
n = 2 years
A = P [ 1 + R 100 ] n ⇒ A = 24 , 000 [ 1 + 10 100 ] 2 = 24 , 000 [ 1 + 1 10 ] 2 = 24 , 000 [ 10 10 + 1 10 ] 2 = 24 , 000 [ ( 10 + 1 ) 10 ] 2 = 24 , 000 [ 11 10 ] 2 = 24 , 000 [ 121 100 ] = [ 29 , 04 , 000 100 ] = 29 , 040 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^{n}\\[1em] \Rightarrow\text{A} = 24,000\Big[1 + \dfrac{10}{100}\Big]^2\\[1em] = 24,000\Big[1 + \dfrac{1}{10}\Big]^2\\[1em] = 24,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]^2\\[1em] = 24,000\Big[\dfrac{(10 + 1)}{10}\Big]^2\\[1em] = 24,000\Big[\dfrac{11}{10}\Big]^2\\[1em] = 24,000\Big[\dfrac{121}{100}\Big]\\[1em] = \Big[\dfrac{29,04,000}{100}\Big]\\[1em] = 29,040 A = P [ 1 + 100 R ] n ⇒ A = 24 , 000 [ 1 + 100 10 ] 2 = 24 , 000 [ 1 + 10 1 ] 2 = 24 , 000 [ 10 10 + 10 1 ] 2 = 24 , 000 [ 10 ( 10 + 1 ) ] 2 = 24 , 000 [ 10 11 ] 2 = 24 , 000 [ 100 121 ] = [ 100 29 , 04 , 000 ] = 29 , 040
And
C.I. = A - P ⇒ C.I. = 29 , 040 − 24 , 000 = 5 , 040 \text{C.I. = A - P}\\[1em] \Rightarrow \text{C.I.} = 29,040 - 24,000\\[1em] = 5,040 C.I. = A - P ⇒ C.I. = 29 , 040 − 24 , 000 = 5 , 040
Hence, the amount = ₹ 29,040 and the compound interest = ₹ 5,040
The S.I. on a certain sum in 3 years and at 8% per year is ₹ 720. The sum is:
₹ 6,000
₹ 9,000
₹ 3,000
₹ 4,000
Answer
Given:
T = 3 years
R = 8%
S.I. = ₹ 720
Let the principal be P P P .
As we know,
S.I. = ( P × R × T 100 ) ⇒ 720 = ( P × 8 × 3 100 ) ⇒ 720 = ( 24 P 100 ) ⇒ 720 = ( 6 P 25 ) ⇒ P = ( 25 × 720 6 ) ⇒ P = ( 18 , 000 6 ) ⇒ P = 3 , 000 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 720 = \Big(\dfrac{P \times 8 \times 3}{100}\Big)\\[1em] \Rightarrow 720 = \Big(\dfrac{24P}{100}\Big)\\[1em] \Rightarrow 720 = \Big(\dfrac{6P}{25}\Big)\\[1em] \Rightarrow P = \Big(\dfrac{25 \times 720}{6}\Big)\\[1em] \Rightarrow P = \Big(\dfrac{18,000}{6}\Big)\\[1em] \Rightarrow P = 3,000 S.I. = ( 100 P × R × T ) ⇒ 720 = ( 100 P × 8 × 3 ) ⇒ 720 = ( 100 24 P ) ⇒ 720 = ( 25 6 P ) ⇒ P = ( 6 25 × 720 ) ⇒ P = ( 6 18 , 000 ) ⇒ P = 3 , 000
Hence, option 3 is the correct option.
A sum of money becomes 5 4 \dfrac{5}{4} 4 5 of itself in 5 years. The rate of interest is:
10%
5%
8%
15%
Answer
Given:
T = 5 years
A = ₹ 5 4 \dfrac{5}{4} 4 5 of P
Let the principal be P P P and the rate be r r r .
As we know,
A = P + S.I. ⇒ 5 4 P = P + S . I . ⇒ S.I. = 5 4 P − P ⇒ S.I. = 5 4 P − 4 4 P ⇒ S.I. = ( 5 − 4 ) 4 P ⇒ S.I. = 1 4 P \text{A = P + S.I.}\\[1em] \Rightarrow\dfrac{5}{4}P = P + S.I.\\[1em] \Rightarrow\text{S.I.} = \dfrac{5}{4}P - P\\[1em] \Rightarrow\text{S.I.} = \dfrac{5}{4}P - \dfrac{4}{4}P\\[1em] \Rightarrow\text{S.I.} = \dfrac{(5 - 4)}{4}P\\[1em] \Rightarrow\text{S.I.} = \dfrac{1}{4}P A = P + S.I. ⇒ 4 5 P = P + S . I . ⇒ S.I. = 4 5 P − P ⇒ S.I. = 4 5 P − 4 4 P ⇒ S.I. = 4 ( 5 − 4 ) P ⇒ S.I. = 4 1 P
And
S.I. = ( P × R × T 100 ) ⇒ 1 4 × P = ( P × r × 5 100 ) ⇒ 1 4 P = ( 5 P r 100 ) ⇒ 1 4 P = ( 5 r P 100 ) ⇒ 1 4 = ( 5 r 100 ) ⇒ 1 4 = ( r 20 ) ⇒ r = ( 1 × 20 4 ) ⇒ r = ( 20 4 ) ⇒ r = 5 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow \dfrac{1}{4} \times P = \Big(\dfrac{P \times r \times 5}{100}\Big)\\[1em] \Rightarrow \dfrac{1}{4}P = \Big(\dfrac{5Pr}{100}\Big)\\[1em] \Rightarrow \dfrac{1}{4}\cancel{P} = \Big(\dfrac{5r\cancel{P}}{100}\Big)\\[1em] \Rightarrow \dfrac{1}{4} = \Big(\dfrac{5r}{100}\Big)\\[1em] \Rightarrow \dfrac{1}{4} = \Big(\dfrac{r}{20}\Big)\\[1em] \Rightarrow r = \Big(\dfrac{1 \times 20}{4}\Big)\\[1em] \Rightarrow r = \Big(\dfrac{20}{4}\Big)\\[1em] \Rightarrow r = 5 S.I. = ( 100 P × R × T ) ⇒ 4 1 × P = ( 100 P × r × 5 ) ⇒ 4 1 P = ( 100 5 P r ) ⇒ 4 1 P = ( 100 5 r P ) ⇒ 4 1 = ( 100 5 r ) ⇒ 4 1 = ( 20 r ) ⇒ r = ( 4 1 × 20 ) ⇒ r = ( 4 20 ) ⇒ r = 5
Hence, option 2 is the correct option.
3 5 \dfrac{3}{5} 5 3 part of certain sum is lent at S.I. and the remaining is lent at C.I. If the rate of interest in both the cases is 20%. On the whole the total interest in 1 year is ₹ 1,000 then the sum is:
₹ 2,000
₹ 4,000
₹ 2,500
₹ 5,000
Answer
Let the principal amount be ₹ x.
Let the first part be ₹ 3 5 \dfrac{3}{5} 5 3 of x x x and the second part be ₹ x − 3 5 x x - \dfrac{3}{5}x x − 5 3 x = 5 5 x − 3 5 x \dfrac{5}{5}x - \dfrac{3}{5}x 5 5 x − 5 3 x = 2 5 x \dfrac{2}{5}x 5 2 x .
Hence
P1 = ₹ 3 x 5 \dfrac{3x}{5} 5 3 x
R1 = 20%
T1 = 1 year
S.I. = ( P × R × T 100 ) = ( 3 x × 20 × 1 5 × 100 ) = 60 x 500 = 3 x 25 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{3x \times 20 \times 1}{5 \times 100}\Big)\\[1em] = \dfrac{60x}{500}\\[1em] = \dfrac{3x}{25} S.I. = ( 100 P × R × T ) = ( 5 × 100 3 x × 20 × 1 ) = 500 60 x = 25 3 x
P2 = ₹ 2 x 5 \dfrac{2x}{5} 5 2 x
R2 = 20 20% 20
T2 = 1 year
A = P [ 1 + R 100 ] n = 2 x 5 [ 1 + 20 100 ] 1 = 2 x 5 [ 1 + 1 5 ] = 2 x 5 [ 5 5 + 1 5 ] = 2 x 5 [ ( 5 + 1 ) 5 ] = 2 x 5 [ 6 5 ] = 12 x 25 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = \dfrac{2x}{5} \Big[1 + \dfrac{20}{100}\Big]^1\\[1em] = \dfrac{2x}{5} \Big[1 + \dfrac{1}{5}\Big]\\[1em] = \dfrac{2x}{5} \Big[\dfrac{5}{5} + \dfrac{1}{5}\Big]\\[1em] = \dfrac{2x}{5} \Big[\dfrac{(5 + 1)}{5}\Big]\\[1em] = \dfrac{2x}{5} \Big[\dfrac{6}{5}\Big]\\[1em] = \dfrac{12x}{25} \\[1em] A = P [ 1 + 100 R ] n = 5 2 x [ 1 + 100 20 ] 1 = 5 2 x [ 1 + 5 1 ] = 5 2 x [ 5 5 + 5 1 ] = 5 2 x [ 5 ( 5 + 1 ) ] = 5 2 x [ 5 6 ] = 25 12 x
And
C.I. = A - P = 12 x 25 − 2 x 5 = 12 x 25 − 5 × 2 x 5 × 5 = 12 x 25 − 10 x 25 = ( 12 − 10 ) x 25 = 2 x 25 \text{C.I. = A - P}\\[1em] = \dfrac{12x}{25} - \dfrac{2x}{5} \\[1em] = \dfrac{12x}{25} - \dfrac{5\times 2x}{5 \times 5} \\[1em] = \dfrac{12x}{25} - \dfrac{10x}{25} \\[1em] = \dfrac{(12 - 10)x}{25} \\[1em] = \dfrac{2x}{25} \\[1em] C.I. = A - P = 25 12 x − 5 2 x = 25 12 x − 5 × 5 5 × 2 x = 25 12 x − 25 10 x = 25 ( 12 − 10 ) x = 25 2 x
Total amount = ₹ 1,000
3 x 25 + 2 x 25 = 1 , 000 ⇒ ( 3 x + 2 x ) 25 = 1 , 000 ⇒ 5 x 25 = 1 , 000 ⇒ x 5 = 1 , 000 ⇒ x = 1 , 000 × 5 ⇒ x = 5 , 000 \dfrac{3x}{25} + \dfrac{2x}{25} = 1,000\\[1em] \Rightarrow\dfrac{(3x + 2x)}{25} = 1,000\\[1em] \Rightarrow\dfrac{5x}{25} = 1,000\\[1em] \Rightarrow\dfrac{x}{5} = 1,000\\[1em] \Rightarrow x = 1,000 \times 5\\[1em] \Rightarrow x = 5,000 25 3 x + 25 2 x = 1 , 000 ⇒ 25 ( 3 x + 2 x ) = 1 , 000 ⇒ 25 5 x = 1 , 000 ⇒ 5 x = 1 , 000 ⇒ x = 1 , 000 × 5 ⇒ x = 5 , 000
Hence, option 4 is the correct option.
The amount, of ₹ 1,000 invested for 2 years at 5% per annum compounded annually is:
₹ 1,100
₹ 1,102.50
₹ 1,200
₹ 8,000
Answer
Given:
P = ₹ 1,000
R = 5%
n = 2 years
A = P [ 1 + R 100 ] n = 1 , 000 [ 1 + 5 100 ] 2 = 1 , 000 [ 1 + 1 20 ] 2 = 1 , 000 [ 20 20 + 1 20 ] 2 = 1 , 000 [ ( 20 + 1 ) 20 ] 2 = 1 , 000 [ 21 20 ] 3 = 1 , 000 [ 441 400 ] = [ 4 , 41 , 000 400 ] = 1 , 102.50 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 1,000\Big[1 + \dfrac{5}{100}\Big]^2\\[1em] = 1,000\Big[1 + \dfrac{1}{20}\Big]^2\\[1em] = 1,000\Big[\dfrac{20}{20} + \dfrac{1}{20}\Big]^2\\[1em] = 1,000\Big[\dfrac{(20 + 1)}{20}\Big]^2\\[1em] = 1,000\Big[\dfrac{21}{20}\Big]^3\\[1em] = 1,000\Big[\dfrac{441}{400}\Big]\\[1em] = \Big[\dfrac{4,41,000}{400}\Big]\\[1em] = 1,102.50 A = P [ 1 + 100 R ] n = 1 , 000 [ 1 + 100 5 ] 2 = 1 , 000 [ 1 + 20 1 ] 2 = 1 , 000 [ 20 20 + 20 1 ] 2 = 1 , 000 [ 20 ( 20 + 1 ) ] 2 = 1 , 000 [ 20 21 ] 3 = 1 , 000 [ 400 441 ] = [ 400 4 , 41 , 000 ] = 1 , 102.50
Hence, option 2 is the correct option.
If the interest is compounded half-yearly, the time is:
halved
doubled
tripled
not changed
Answer
When the interest is compounded half-yearly:
A = P [ 1 + R 2 × 100 ] 2 × n \text{A} = P\Big[1 + \dfrac{R}{2 \times 100}\Big]^{2\times n}\\[1em] A = P [ 1 + 2 × 100 R ] 2 × n
2 x n means time is doubled.
Hence, option 2 is the correct option.
Statement 1: On a certain sum, at the same rate of interest and for the same time period, compound interest is always greater than the simple interest.
Statement 2: In compound interest, the principal remains constant for the whole time period, however the compound interest keeps increasing every year.
Which of the following options is correct?
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
On a certain sum, at the same rate of interest and for the same time period,
For a time period of one year, compound interest (CI) = simple interest (SI).
But for more than one year, CI is always greater than SI, because interest is added to the principal after each compounding period, increasing the amount on which interest is calculated.
On a certain sum, at the same rate of interest and for the same time period, compound interest is always greater or equal to the simple interest.
So, statement 1 is false.
In compound interest, the principal does not remain constant — it increases after each compounding period because interest is added to it.
So, statement 2 is false.
Hence, option 2 is the correct option.
Assertion (A) : The simple interest on a certain sum is 9 16 \dfrac{9}{16} 16 9 of the principal. If the number representing the rate of interest in percent and the time in year are equal then the time for which the principle is lent out is 7 1 2 7\dfrac{1}{2} 7 2 1 years.
Reason (R) : In simple interest,
Time = S.I. × 100 Principal × Rate \dfrac{\text{S.I.} \times 100}{\text{\text{Principal}} \times \text{Rate}} Principal × Rate S.I. × 100 .
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
Let the principal be ₹ P.
S.I. = 9 16 \dfrac{9}{16} 16 9 x P
Rate of interest = a%
Time = a years
By formula,
S.I. = P × R × T 100 \dfrac{P \times R \times T}{100} 100 P × R × T
Substituting values we get :
⇒ 9 16 P = P × a × a 100 ⇒ 9 16 P = P × a × a 100 ⇒ 9 16 = a × a 100 ⇒ 9 16 = a 2 100 ⇒ a 2 = 9 × 100 16 ⇒ a 2 = 900 16 ⇒ a = 900 16 ⇒ a = 30 4 ⇒ a = 15 2 ⇒ a = 7 1 2 \Rightarrow \dfrac{9}{16}P = \dfrac{P \times a \times a}{100}\\[1em] \Rightarrow \dfrac{9}{16} \cancel{P} = \dfrac{\cancel{P} \times a \times a}{100}\\[1em] \Rightarrow \dfrac{9}{16} = \dfrac{a \times a}{100}\\[1em] \Rightarrow \dfrac{9}{16} = \dfrac{a^2}{100}\\[1em] \Rightarrow a^2 = \dfrac{9 \times 100}{16}\\[1em] \Rightarrow a^2 = \dfrac{900}{16}\\[1em] \Rightarrow a = \sqrt{\dfrac{900}{16}}\\[1em] \Rightarrow a = \dfrac{30}{4}\\[1em] \Rightarrow a = \dfrac{15}{2}\\[1em] \Rightarrow a = 7\dfrac{1}{2} ⇒ 16 9 P = 100 P × a × a ⇒ 16 9 P = 100 P × a × a ⇒ 16 9 = 100 a × a ⇒ 16 9 = 100 a 2 ⇒ a 2 = 16 9 × 100 ⇒ a 2 = 16 900 ⇒ a = 16 900 ⇒ a = 4 30 ⇒ a = 2 15 ⇒ a = 7 2 1
Time = 7 1 2 7\dfrac{1}{2} 7 2 1 years.
So, assertion (A) is true.
By formula;
⇒ S . I . = P × R × T 100 ⇒ T = S.I. × 100 P × R ⇒ Time = Simple Interest × 100 Principal × Rate \Rightarrow S.I. = \dfrac{P \times R \times T}{100} \\[1em] \Rightarrow T = \dfrac{\text{S.I.} \times 100}{P \times R} \\[1em] \Rightarrow \text{Time } = \dfrac{\text{Simple Interest} \times 100}{\text{Principal} \times \text{Rate}} ⇒ S . I . = 100 P × R × T ⇒ T = P × R S.I. × 100 ⇒ Time = Principal × Rate Simple Interest × 100
So, reason (R) is true and reason (R) clearly explains assertion (A).
Hence, option 1 is the correct option.
Assertion (A) : The simple interest on ₹ 15,000 in 2 years at 6% p.a. is ₹ 1,800. Then compound interest on the same sum at the same rate of interest for 2 years will never be less than ₹ 1,800.
Reason (R) : For a given principal, rate and time, both simple interest and compound interest are equal for the 1st year.
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
We know that,
If time is greater than 1 year, then compound interest on the same sum at the same rate of interest for same time will always be greater than simple interest.
∴ If simple interest on ₹ 15,000 in 2 years at 6% p.a. is ₹ 1,800. Then compound interest on the same sum at the same rate of interest for 2 years will never be less than ₹ 1,800.
So, assertion (A) is true.
For a given principal, rate and time, both simple interest and compound interest are equal for the 1st year.
So, reason (R) is true and reason (R) does not explains assertion (A).
Hence, option 2 is the correct option.
Assertion (A): Compound interest for the 2nd year on ₹ 8,000 at 5% p.a. is ₹ 820.
Reason (R): Compound interest for 2 years = Amount at the end of 2nd year - original sum.
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
Given,
P = ₹ 8,000
R = 5%
T = 2 years
By formula,
Amount = P ( 1 + R 100 ) n Amount after one year = 8000 ( 1 + 5 100 ) 1 = 8000 ( 1 + 0.05 ) = 8000 × ( 1.05 ) = ₹ 8 , 400. \text{Amount }= P\Big(1 + \dfrac{R}{100}\Big)^n \\[1em] \text{Amount after one year }= 8000\Big(1 + \dfrac{5}{100}\Big)^1\\[1em] = 8000(1 + 0.05)\\[1em] = 8000 \times (1.05)\\[1em] = ₹8,400. Amount = P ( 1 + 100 R ) n Amount after one year = 8000 ( 1 + 100 5 ) 1 = 8000 ( 1 + 0.05 ) = 8000 × ( 1.05 ) = ₹8 , 400.
Amount at the end of first year = ₹ 8,400
For 2nd year :
P = ₹ 8,400
R = 5%
T = 1 year
Interest for 2nd year = P × R × T 100 = 8 , 400 × 5 × 1 100 = ₹ 420. \text{Interest for 2nd year} = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{8,400 \times 5 \times 1}{100} \\[1em] = ₹ 420. Interest for 2nd year = 100 P × R × T = 100 8 , 400 × 5 × 1 = ₹420.
∴ Compound interest for the 2nd year on ₹ 8,000 at 5% p.a. is ₹ 420.
So, assertion (A) is false.
By formula,
Compound interest for 2 years = Amount at the end of 2nd year - original sum.
So, reason (R) is true.
Hence, option 4 is the correct option.
Assertion (A) : On ₹ 8,750 at 8% p.a., the simple interest for 1st year is equal to the simple interest for 4th year.
Reason (R) : Simple interest for 4th year = Amount at the end of 4th year - original sum.
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
In simple interest, the interest is calculated only on the original principal and remains the same every year.
Thus, SI for the 1st year is equal to SI for the 4th year—in fact, it's equal for every year.
So, assertion (A) is true.
Amount at the end of 4th year - original sum = Total simple interest for 4 years
That formula gives the total simple interest for 4 years, not just for the 4th year.
So, reason (R) is false.
Hence, option 3 is the correct option.
Mohan lends ₹ 4,800 to John for 4 1 2 4\dfrac{1}{2} 4 2 1 years and ₹ 2,500 to Shyam for 6 years and receives a total sum of ₹ 2,196 as interest. Find the rate per cent per annum, provided it is the same in both the cases.
Answer
For Mohan,
P = ₹ 4,800
T = 4 1 2 4\dfrac{1}{2} 4 2 1 years
= 9 2 \dfrac{9}{2} 2 9 years
Let the rate be r r r
S.I. = ( P × R × T 100 ) = ( 4 , 800 × r × 9 2 × 100 ) = ( 43 , 200 r 200 ) = 216 r \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{4,800 \times r \times 9}{2 \times 100}\Big)\\[1em] = \Big(\dfrac{43,200r}{200}\Big)\\[1em] = 216r S.I. = ( 100 P × R × T ) = ( 2 × 100 4 , 800 × r × 9 ) = ( 200 43 , 200 r ) = 216 r
For Shyam,
P = ₹ 2,500
T = 6 years
Let the rate be r r r
S.I. = ( P × R × T 100 ) = ( 2 , 500 × r × 6 100 ) = ( 15 , 000 r 100 ) = 150 r \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{2,500 \times r \times 6}{100}\Big)\\[1em] = \Big(\dfrac{15,000r}{100}\Big)\\[1em] = 150r S.I. = ( 100 P × R × T ) = ( 100 2 , 500 × r × 6 ) = ( 100 15 , 000 r ) = 150 r
Total interest = ₹ 2,196
₹ 216r + ₹ 150r = ₹ 2,196
₹ 366r = ₹ 2,196
r = 2196 366 \dfrac{2196}{366} 366 2196
r = 6 6% 6
Hence, the rate per cent per annum = 6%.
John lent ₹ 2,550 to Mohan at 7.5 percent per annum. If Mohan discharges the debt after 8 months by giving an old television and ₹ 1,422.50, find the price of the television.
Answer
Given:
P = ₹ 2,550
R = 7.5%
T = 8 months = 8 12 \dfrac{8}{12} 12 8 years
= 2 3 \dfrac{2}{3} 3 2 years
S.I. = ( P × R × T 100 ) = ( 2 , 550 × 7.5 × 2 3 × 100 ) = ( 38 , 250 300 ) = 127.50 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{2,550 \times 7.5 \times 2}{3 \times 100}\Big)\\[1em] = \Big(\dfrac{38,250}{300}\Big)\\[1em] = 127.50 S.I. = ( 100 P × R × T ) = ( 3 × 100 2 , 550 × 7.5 × 2 ) = ( 300 38 , 250 ) = 127.50
And
A = P + S.I. ⇒ A = 2 , 550 + 127.50 ⇒ A = 2 , 677.50 \text{A = P + S.I.}\\[1em] \Rightarrow \text{A} = 2,550 + 127.50\\[1em] \Rightarrow \text{A} = 2,677.50 A = P + S.I. ⇒ A = 2 , 550 + 127.50 ⇒ A = 2 , 677.50
Mohan paid in cash = ₹ 1,422.50
Price of the television = Amount - Paid in cash
= ₹ 2,677.50 - ₹ 1,422.50
= ₹ 1,255
Hence, the cost of television = ₹ 1,255
Divide ₹ 10,800 into two parts so that if one part is put at 18% per annum S.I. and the other part is put at 20% p.a. S.I. the total annual interest is ₹ 2,060.
Answer
Let the first part be ₹ x x x and the second part be ₹ ( 10 , 800 − x ) (10,800 - x) ( 10 , 800 − x ) .
Hence
P1 = ₹ x x x
R1 = 18%
T1 = 1 year
S.I. = ( P × R × T 100 ) = ( x × 18 × 1 100 ) = 18 x 100 = 9 x 50 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] = \Big(\dfrac{x \times 18 \times 1}{100}\Big)\\[1em] = \dfrac{18x}{100}\\[1em] = \dfrac{9x}{50}\\[1em] S.I. = ( 100 P × R × T ) = ( 100 x × 18 × 1 ) = 100 18 x = 50 9 x
P2 = ₹ 10 , 800 − x 10,800 - x 10 , 800 − x
R2 = 20 20% 20
T2 = 1 year
S.I. = [ P × R × T 100 ] = [ ( 10 , 800 − x ) × 20 × 1 100 ] = 20 ( 10 , 800 − x ) 100 = ( 10 , 800 − x ) 5 \text{S.I.} = \Big[\dfrac{P \times R \times T}{100}\Big]\\[1em] = \Big[\dfrac{(10,800 - x) \times 20 \times 1}{100}\Big]\\[1em] = \dfrac{20(10,800 - x)}{100}\\[1em] = \dfrac{(10,800 - x)}{5}\\[1em] S.I. = [ 100 P × R × T ] = [ 100 ( 10 , 800 − x ) × 20 × 1 ] = 100 20 ( 10 , 800 − x ) = 5 ( 10 , 800 − x )
Total amount = ₹ 2,060
⇒ 9 x 50 + ( 10 , 800 − x ) 5 = 2 , 060 ⇒ 9 x 50 + 10 ( 10 , 800 − x ) 50 = 2 , 060 ⇒ 9 x 50 + ( 1 , 08 , 000 − 10 x ) 50 = 2 , 060 ⇒ ( 9 x + 1 , 08 , 000 − 10 x ) 50 = 2 , 060 ⇒ 1 , 08 , 000 − x = 2 , 060 × 50 ⇒ 1 , 08 , 000 − x = 1 , 03 , 000 ⇒ x = 1 , 08 , 000 − 1 , 03 , 000 ⇒ x = 5 , 000 \Rightarrow \dfrac{9x}{50} + \dfrac{(10,800 - x)}{5} = 2,060\\[1em] \Rightarrow \dfrac{9x}{50} + \dfrac{10(10,800 - x)}{50} = 2,060\\[1em] \Rightarrow \dfrac{9x}{50} + \dfrac{(1,08,000 - 10x)}{50} = 2,060\\[1em] \Rightarrow \dfrac{(9x + 1,08,000 - 10x)}{50} = 2,060\\[1em] \Rightarrow 1,08,000 - x = 2,060 \times 50\\[1em] \Rightarrow 1,08,000 - x = 1,03,000\\[1em] \Rightarrow x = 1,08,000 - 1,03,000\\[1em] \Rightarrow x = 5,000\\[1em] ⇒ 50 9 x + 5 ( 10 , 800 − x ) = 2 , 060 ⇒ 50 9 x + 50 10 ( 10 , 800 − x ) = 2 , 060 ⇒ 50 9 x + 50 ( 1 , 08 , 000 − 10 x ) = 2 , 060 ⇒ 50 ( 9 x + 1 , 08 , 000 − 10 x ) = 2 , 060 ⇒ 1 , 08 , 000 − x = 2 , 060 × 50 ⇒ 1 , 08 , 000 − x = 1 , 03 , 000 ⇒ x = 1 , 08 , 000 − 1 , 03 , 000 ⇒ x = 5 , 000
Other part = ₹ 10,800 - ₹ 5,000
= ₹ 5,800
Hence, the two parts are ₹ 5,000 at 18% and ₹ 5,800 at 20%.
Find the amount and the compound interest on ₹ 16,000 for 3 years at 5% per annum compounded annually.
Answer
Given:
P = ₹ 16,000
R = 5%
n = 3 years
A = P [ 1 + R 100 ] n = 16 , 000 [ 1 + 5 100 ] 3 = 16 , 000 [ 1 + 1 20 ] 3 = 16 , 000 [ 20 20 + 1 20 ] 3 = 16 , 000 [ ( 20 + 1 ) 20 ] 3 = 16 , 000 [ 21 20 ] 3 = 16 , 000 [ 9 , 261 8 , 000 ] = [ 14 , 81 , 76 , 000 8 , 000 ] = 18 , 522 \text{A} = P\Big[1 + \dfrac{R}{100}\Big]^n\\[1em] = 16,000\Big[1 + \dfrac{5}{100}\Big]^3\\[1em] = 16,000\Big[1 + \dfrac{1}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{20}{20} + \dfrac{1}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{(20 + 1)}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{21}{20}\Big]^3\\[1em] = 16,000\Big[\dfrac{9,261}{8,000}\Big]\\[1em] = \Big[\dfrac{14,81,76,000}{8,000}\Big]\\[1em] = 18,522 A = P [ 1 + 100 R ] n = 16 , 000 [ 1 + 100 5 ] 3 = 16 , 000 [ 1 + 20 1 ] 3 = 16 , 000 [ 20 20 + 20 1 ] 3 = 16 , 000 [ 20 ( 20 + 1 ) ] 3 = 16 , 000 [ 20 21 ] 3 = 16 , 000 [ 8 , 000 9 , 261 ] = [ 8 , 000 14 , 81 , 76 , 000 ] = 18 , 522
Also
Compound Interest = Final amount - Original Principal = ₹ 18 , 522 − ₹ 16 , 000 = ₹ 2 , 522 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 18,522 - ₹ 16,000\\[1em] = ₹ 2,522 Compound Interest = Final amount - Original Principal = ₹18 , 522 − ₹16 , 000 = ₹2 , 522
Hence, amount = ₹ 18,522 compound interest = ₹ 2,522.
Find the amount and the compound interest on ₹ 20,000 for 1 1 2 1\dfrac{1}{2} 1 2 1 years at 10% per annum compounded half-yearly.
Answer
Given:
P = ₹ 20,000
R = 10%
n = 1 1 2 1\dfrac{1}{2} 1 2 1 years
= 3 2 \dfrac{3}{2} 2 3 years
Since, interest is compounded half-yearly,
A = P [ 1 + R 2 × 100 ] n × 2 = 20 , 000 [ 1 + 10 200 ] 2 × 3 2 = 20 , 000 [ 1 + 1 20 ] 3 = 20 , 000 [ 20 20 + 1 20 ] 3 = 20 , 000 [ ( 20 + 1 ) 20 ] 3 = 20 , 000 [ 21 20 ] 3 = 20 , 000 [ 9 , 261 8 , 000 ] = [ 18 , 52 , 20 , 000 8 , 000 ] = 23 , 152.50 \text{A} = P\Big[1 + \dfrac{R}{2 \times 100}\Big]^{n \times 2}\\[1em] = 20,000\Big[1 + \dfrac{10}{200}\Big]^{2\times \dfrac{3}{2}}\\[1em] = 20,000\Big[1 + \dfrac{1}{20}\Big]^3\\[1em] = 20,000\Big[\dfrac{20}{20} + \dfrac{1}{20}\Big]^3\\[1em] = 20,000\Big[\dfrac{(20 + 1)}{20}\Big]^3\\[1em] = 20,000\Big[\dfrac{21}{20}\Big]^3\\[1em] = 20,000\Big[\dfrac{9,261}{8,000}\Big]\\[1em] = \Big[\dfrac{18,52,20,000}{8,000}\Big]\\[1em] = 23,152.50 A = P [ 1 + 2 × 100 R ] n × 2 = 20 , 000 [ 1 + 200 10 ] 2 × 2 3 = 20 , 000 [ 1 + 20 1 ] 3 = 20 , 000 [ 20 20 + 20 1 ] 3 = 20 , 000 [ 20 ( 20 + 1 ) ] 3 = 20 , 000 [ 20 21 ] 3 = 20 , 000 [ 8 , 000 9 , 261 ] = [ 8 , 000 18 , 52 , 20 , 000 ] = 23 , 152.50
Also
Compound Interest = Final amount - Original Principal = ₹ 23 , 152.50 − ₹ 20 , 000 = ₹ 3 , 152.50 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 23,152.50 - ₹ 20,000\\[1em] = ₹ 3,152.50 Compound Interest = Final amount - Original Principal = ₹23 , 152.50 − ₹20 , 000 = ₹3 , 152.50
Hence, amount = ₹ 23,152.50 and compound interest = ₹ 3,152.50.
Find the amount and the compound interest on ₹ 32,000 for 1 year at 20% per annum compounded half-yearly.
Answer
Given:
P = ₹ 32,000
R = 20%
n = 1 year
Since, interest is compounded half-yearly,
A = P [ 1 + R 2 × 100 ] n × 2 = 32 , 000 [ 1 + 20 200 ] 2 × 1 = 32 , 000 [ 1 + 1 10 ] 2 = 32 , 000 [ 10 10 + 1 10 ] 2 = 32 , 000 [ ( 10 + 1 ) 10 ] 2 = 32 , 000 [ 11 10 ] 2 = 32 , 000 [ 121 100 ] = [ 38 , 72 , 000 100 ] = 38 , 720 \text{A} = P\Big[1 + \dfrac{R}{2 \times 100}\Big]^{n \times 2}\\[1em] = 32,000\Big[1 + \dfrac{20}{200}\Big]^{2\times 1}\\[1em] = 32,000\Big[1 + \dfrac{1}{10}\Big]^2\\[1em] = 32,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]^2\\[1em] = 32,000\Big[\dfrac{(10 + 1)}{10}\Big]^2\\[1em] = 32,000\Big[\dfrac{11}{10}\Big]^2\\[1em] = 32,000\Big[\dfrac{121}{100}\Big]\\[1em] = \Big[\dfrac{38,72,000}{100}\Big]\\[1em] = 38,720 A = P [ 1 + 2 × 100 R ] n × 2 = 32 , 000 [ 1 + 200 20 ] 2 × 1 = 32 , 000 [ 1 + 10 1 ] 2 = 32 , 000 [ 10 10 + 10 1 ] 2 = 32 , 000 [ 10 ( 10 + 1 ) ] 2 = 32 , 000 [ 10 11 ] 2 = 32 , 000 [ 100 121 ] = [ 100 38 , 72 , 000 ] = 38 , 720
Also
Compound Interest = Final amount - Original Principal = ₹ 38 , 720 − ₹ 32 , 000 = ₹ 6 , 720 \text{Compound Interest = Final amount - Original Principal}\\[1em] = ₹ 38,720 - ₹ 32,000\\[1em] = ₹ 6,720 Compound Interest = Final amount - Original Principal = ₹38 , 720 − ₹32 , 000 = ₹6 , 720
Hence, amount = ₹ 38,720 and compound interest = ₹ 6,720.
Find the amount and the compound interest on ₹ 4,000 in 2 years, if the rate of interest for first year is 10% and for the second year is 15%.
Answer
Given:
P = ₹ 4,000
T = 2 years
R1 = 10%
R2 = 15%
As we know, A = P [ 1 + R 1 100 ] [ 1 + R 2 100 ] = 4 , 000 [ 1 + 10 100 ] [ 1 + 15 100 ] = 4 , 000 [ 1 + 1 10 ] [ 1 + 3 20 ] = 4 , 000 [ 10 10 + 1 10 ] [ 20 20 + 3 20 ] = 4 , 000 [ ( 10 + 1 ) 10 ] [ ( 20 + 3 ) 20 ] = 4 , 000 [ 11 10 ] [ 23 20 ] = [ 10 , 12 , 000 200 ] = ₹ 5 , 060 \text{A} = P\Big[1 + \dfrac{R_1}{100}\Big]\Big[1 + \dfrac{R_2}{100}\Big]\\[1em] = 4,000\Big[1 + \dfrac{10}{100}\Big]\Big[1 + \dfrac{15}{100}\Big]\\[1em] = 4,000\Big[1 + \dfrac{1}{10}\Big]\Big[1 + \dfrac{3}{20}\Big]\\[1em] = 4,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]\Big[\dfrac{20}{20} + \dfrac{3}{20}\Big]\\[1em] = 4,000\Big[\dfrac{(10 + 1)}{10}\Big]\Big[\dfrac{(20 + 3)}{20}\Big]\\[1em] = 4,000\Big[\dfrac{11}{10}\Big]\Big[\dfrac{23}{20}\Big]\\[1em] = \Big[\dfrac{10,12,000}{200}\Big]\\[1em] = ₹ 5,060 A = P [ 1 + 100 R 1 ] [ 1 + 100 R 2 ] = 4 , 000 [ 1 + 100 10 ] [ 1 + 100 15 ] = 4 , 000 [ 1 + 10 1 ] [ 1 + 20 3 ] = 4 , 000 [ 10 10 + 10 1 ] [ 20 20 + 20 3 ] = 4 , 000 [ 10 ( 10 + 1 ) ] [ 20 ( 20 + 3 ) ] = 4 , 000 [ 10 11 ] [ 20 23 ] = [ 200 10 , 12 , 000 ] = ₹5 , 060
C.I. = A - P = ₹ 5 , 060 − ₹ 4 , 000 = ₹ 1 , 060 \text{C.I. = A - P}\\[1em] = ₹ 5,060 - ₹ 4,000\\[1em] = ₹ 1,060 C.I. = A - P = ₹5 , 060 − ₹4 , 000 = ₹1 , 060
Hence, the amount = ₹ 5,060 and the compound interest = ₹ 1,060.
Find the amount and the compound interest on ₹ 10,000 in 3 years, if the rates of interest for the successive years are 10%, 15% and 20% respectively.
Answer
Given:
P = ₹ 10,000
T = 3 years
R1 = 10%
R2 = 15%
R3 = 20%
As we know,
A = P [ 1 + R 1 100 ] [ 1 + R 2 100 ] [ 1 + R 3 100 ] = 10 , 000 [ 1 + 10 100 ] [ 1 + 15 100 ] [ 1 + 20 100 ] = 10 , 000 [ 1 + 1 10 ] [ 1 + 3 20 ] [ 1 + 1 5 ] = 10 , 000 [ 10 10 + 1 10 ] [ 20 20 + 3 20 ] [ 5 5 + 1 5 ] = 10 , 000 [ ( 10 + 1 ) 10 ] [ ( 20 + 3 ) 20 ] [ ( 5 + 1 ) 5 ] = 10 , 000 [ 11 10 ] [ 23 20 ] [ 6 5 ] = [ 1 , 51 , 80 , 000 1000 ] = 15 , 180 \text{A} = P\Big[1 + \dfrac{R_1}{100}\Big]\Big[1 + \dfrac{R_2}{100}\Big]\Big[1 + \dfrac{R_3}{100}\Big]\\[1em] = 10,000\Big[1 + \dfrac{10}{100}\Big]\Big[1 + \dfrac{15}{100}\Big]\Big[1 + \dfrac{20}{100}\Big]\\[1em] = 10,000\Big[1 + \dfrac{1}{10}\Big]\Big[1 + \dfrac{3}{20}\Big]\Big[1 + \dfrac{1}{5}\Big]\\[1em] = 10,000\Big[\dfrac{10}{10} + \dfrac{1}{10}\Big]\Big[\dfrac{20}{20} + \dfrac{3}{20}\Big]\Big[\dfrac{5}{5} + \dfrac{1}{5}\Big]\\[1em] = 10,000\Big[\dfrac{(10 + 1)}{10}\Big]\Big[\dfrac{(20 + 3)}{20}\Big]\Big[\dfrac{(5 + 1)}{5}\Big]\\[1em] = 10,000\Big[\dfrac{11}{10}\Big]\Big[\dfrac{23}{20}\Big]\Big[\dfrac{6}{5}\Big]\\[1em] = \Big[\dfrac{1,51,80,000}{1000}\Big]\\[1em] = 15,180 A = P [ 1 + 100 R 1 ] [ 1 + 100 R 2 ] [ 1 + 100 R 3 ] = 10 , 000 [ 1 + 100 10 ] [ 1 + 100 15 ] [ 1 + 100 20 ] = 10 , 000 [ 1 + 10 1 ] [ 1 + 20 3 ] [ 1 + 5 1 ] = 10 , 000 [ 10 10 + 10 1 ] [ 20 20 + 20 3 ] [ 5 5 + 5 1 ] = 10 , 000 [ 10 ( 10 + 1 ) ] [ 20 ( 20 + 3 ) ] [ 5 ( 5 + 1 ) ] = 10 , 000 [ 10 11 ] [ 20 23 ] [ 5 6 ] = [ 1000 1 , 51 , 80 , 000 ] = 15 , 180
C.I. = A - P = ₹ 15 , 180 − ₹ 10 , 000 = ₹ 5 , 180 \text{C.I. = A - P}\\[1em] = ₹ 15,180 - ₹ 10,000\\[1em] = ₹ 5,180 C.I. = A - P = ₹15 , 180 − ₹10 , 000 = ₹5 , 180
Hence, the amount = ₹ 15,180 and the compound interest = ₹ 5,180.
A sum of money lent at simple interest amounts to ₹ 3,224 in 2 years and ₹ 4,160 in 5 years. Find the sum and the rate of interest.
Answer
Given:
Amount in 2 years = ₹ 3,224
⇒ P + S.I. of 2 years = = ₹ 3,224 ..........(1)
Amount in 5 years = ₹ 4,160
⇒ P + S.I. of 5 years = ₹ 4,160 ..........(2)
Subtracting equation (1) from (2), we get
S.I. of 3 years = ₹ 4,160 - ₹ 3,224 = ₹ 936
S.I. of 1 year = ₹ 936 3 \dfrac{936}{3} 3 936 = ₹ 312 ₹ 312 ₹312
S.I. of 2 years = ₹ 312 × 2 ₹ 312 \times 2 ₹312 × 2 = ₹ 624 ₹ 624 ₹624
From equation (1), we get:
P + ₹ 624 = ₹ 3,224
P = ₹ 3,224 - ₹ 624
P = ₹ 2,600
Now when P = ₹ 2,600
S.I. = ₹ 312
T = 1 year
Let the rate be r r r .
As we know,
S.I. = ( P × R × T 100 ) ⇒ 312 = ( 2 , 600 × r × 1 100 ) ⇒ 312 = 2 , 600 r 100 ⇒ 312 = 26 r ⇒ r = 312 26 ⇒ r = 12 \text{S.I.} = \Big(\dfrac{P \times R \times T}{100}\Big)\\[1em] \Rightarrow 312 = \Big(\dfrac{2,600 \times r \times 1}{100}\Big)\\[1em] \Rightarrow 312 = \dfrac{2,600r}{100}\\[1em] \Rightarrow 312 = 26r\\[1em] \Rightarrow r = \dfrac{312}{26}\\[1em] \Rightarrow r = 12 S.I. = ( 100 P × R × T ) ⇒ 312 = ( 100 2 , 600 × r × 1 ) ⇒ 312 = 100 2 , 600 r ⇒ 312 = 26 r ⇒ r = 26 312 ⇒ r = 12
Hence, principal = ₹ 2 , 600 ₹ 2,600 ₹2 , 600 and rate = 12 12% 12
At what rate percent per annum compound interest will ₹ 5,000 amount to ₹ 5,832 in 2 years?
Answer
Given:
P = ₹ 5,000
n = 2 years
A = ₹ 5,832
Let the rate be r r r .
As we know,
A = P [ 1 + r 100 ] n ⇒ 5 , 832 = 5 , 000 [ 1 + r 100 ] 2 ⇒ 5 , 832 5000 = [ 1 + r 100 ] 2 ⇒ 729 625 = [ 1 + r 100 ] 2 ⇒ 729 625 = [ 1 + r 100 ] ⇒ 1 + r 100 = 27 25 ⇒ r 100 = 27 25 − 1 ⇒ r 100 = 27 25 − 25 25 ⇒ r 100 = ( 27 − 25 ) 25 ⇒ r 100 = 2 25 ⇒ r = 2 × 100 25 ⇒ r = 200 25 ⇒ r = 8 \text{A} = P\Big[1 + \dfrac{r}{100}\Big]^n\\[1em] \Rightarrow 5,832 = 5,000\Big[1 + \dfrac{r}{100}\Big]^2\\[1em] \Rightarrow \dfrac{5,832}{5000} = \Big[1 + \dfrac{r}{100}\Big]^2\\[1em] \Rightarrow \dfrac{729}{625} = \Big[1 + \dfrac{r}{100}\Big]^2\\[1em] \Rightarrow \sqrt{\dfrac{729}{625}} = \Big[1 + \dfrac{r}{100}\Big]\\[1em] \Rightarrow 1 + \dfrac{r}{100} = \dfrac{27}{25}\\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{27}{25} - 1\\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{27}{25} - \dfrac{25}{25}\\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{(27 - 25)}{25}\\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{2}{25}\\[1em] \Rightarrow r = \dfrac{2 \times 100}{25}\\[1em] \Rightarrow r = \dfrac{200}{25}\\[1em] \Rightarrow r = 8 A = P [ 1 + 100 r ] n ⇒ 5 , 832 = 5 , 000 [ 1 + 100 r ] 2 ⇒ 5000 5 , 832 = [ 1 + 100 r ] 2 ⇒ 625 729 = [ 1 + 100 r ] 2 ⇒ 625 729 = [ 1 + 100 r ] ⇒ 1 + 100 r = 25 27 ⇒ 100 r = 25 27 − 1 ⇒ 100 r = 25 27 − 25 25 ⇒ 100 r = 25 ( 27 − 25 ) ⇒ 100 r = 25 2 ⇒ r = 25 2 × 100 ⇒ r = 25 200 ⇒ r = 8
Hence, the rate of interest = 8 8% 8 .
₹ 16,000 invested at 10% p.a. compounded semi-annually amounts to ₹ 18,522. Find the time period of investment.
Answer
Given:
P = ₹ 16,000
R = 10%
A = ₹ 18,522
Let the time be n n n .
Since the interest is compounded half-yearly,
A = P [ 1 + r 2 × 100 ] 2 × n ⇒ 18 , 522 = 16 , 000 [ 1 + 10 200 ] 2 × n ⇒ 18 , 522 16 , 000 = [ 1 + 10 200 ] 2 × n ⇒ 18 , 522 16 , 000 = [ 1 + 1 20 ] 2 × n ⇒ 18 , 522 16 , 000 = [ 20 20 + 1 20 ] 2 × n ⇒ 18 , 522 16 , 000 = [ ( 20 + 1 ) 20 ] 2 × n ⇒ 18 , 522 16 , 000 = [ 21 20 ] 2 × n ⇒ 9 , 261 8 , 000 = [ 21 20 ] 2 × n ⇒ [ 21 20 ] 3 = [ 21 20 ] 2 × n \text{A} = P\Big[1 + \dfrac{r}{2 \times 100}\Big]^{2\times n}\\[1em] \Rightarrow 18,522 = 16,000\Big[1 + \dfrac{10}{200}\Big]^{2\times n}\\[1em] \Rightarrow \dfrac{18,522}{16,000} = \Big[1 + \dfrac{10}{200}\Big]^{2\times n}\\[1em] \Rightarrow \dfrac{18,522}{16,000} = \Big[1 + \dfrac{1}{20}\Big]^{2\times n}\\[1em] \Rightarrow \dfrac{18,522}{16,000} = \Big[\dfrac{20}{20} + \dfrac{1}{20}\Big]^{2\times n}\\[1em] \Rightarrow \dfrac{18,522}{16,000} = \Big[\dfrac{(20 + 1)}{20}\Big]^{2\times n}\\[1em] \Rightarrow \dfrac{18,522}{16,000} = \Big[\dfrac{21}{20}\Big]^{2\times n}\\[1em] \Rightarrow \dfrac{9,261}{8,000} = \Big[\dfrac{21}{20}\Big]^{2\times n}\\[1em] \Rightarrow \Big[\dfrac{21}{20}\Big]^3 = \Big[\dfrac{21}{20}\Big]^{2\times n}\\[1em] A = P [ 1 + 2 × 100 r ] 2 × n ⇒ 18 , 522 = 16 , 000 [ 1 + 200 10 ] 2 × n ⇒ 16 , 000 18 , 522 = [ 1 + 200 10 ] 2 × n ⇒ 16 , 000 18 , 522 = [ 1 + 20 1 ] 2 × n ⇒ 16 , 000 18 , 522 = [ 20 20 + 20 1 ] 2 × n ⇒ 16 , 000 18 , 522 = [ 20 ( 20 + 1 ) ] 2 × n ⇒ 16 , 000 18 , 522 = [ 20 21 ] 2 × n ⇒ 8 , 000 9 , 261 = [ 20 21 ] 2 × n ⇒ [ 20 21 ] 3 = [ 20 21 ] 2 × n
Hence, 2 × n = 3 2 \times n = 3 2 × n = 3
n = 3 2 n = \dfrac{3}{2} n = 2 3 years
n = 1 1 2 n = 1\dfrac{1}{2} n = 1 2 1 years
Hence, the time period of investment is 1 1 2 1\dfrac{1}{2} 1 2 1 years.