If P = sum lent, r = rate of interest per year, n = number of years and amounts =A, then :
A = P ( 1 + r 100 ) n A = P\Big(1 + \dfrac{r}{100}\Big)^n A = P ( 1 + 100 r ) n
A − P = ( 1 + r 100 ) n A - P = \Big(1 + \dfrac{r}{100}\Big)^n A − P = ( 1 + 100 r ) n
A = P ( 1 − r 100 ) n A = P\Big(1 - \dfrac{r}{100}\Big)^n A = P ( 1 − 100 r ) n
A - P = ( 1 − r 100 ) n \Big(1 - \dfrac{r}{100}\Big)^n ( 1 − 100 r ) n
Answer
If P = sum lent, r = rate of interest per year, n = number of years and amounts =A, then :
A = P ( 1 + r 100 ) n A = P\Big(1 + \dfrac{r}{100}\Big)^n A = P ( 1 + 100 r ) n
Hence, Option 1 is the correct option.
If the letters used have usual meanings : r1 % and r2 % are rate of interests for two consecutive years then :
A = P ( 1 + r 1 100 ) ( 1 − r 2 100 ) A = P\Big(1 + \dfrac{r_1}{100}\Big)\Big(1 - \dfrac{r_2}{100}\Big) A = P ( 1 + 100 r 1 ) ( 1 − 100 r 2 )
A = P ( 1 + r 1 100 ) ( 1 + r 2 100 ) A = P\Big(1 + \dfrac{r_1}{100}\Big)\Big(1 + \dfrac{r_2}{100}\Big) A = P ( 1 + 100 r 1 ) ( 1 + 100 r 2 )
A − P = ( 1 + r 1 100 ) ( 1 + r 2 100 ) A - P = \Big(1 + \dfrac{r_1}{100}\Big)\Big(1 + \dfrac{r_2}{100}\Big) A − P = ( 1 + 100 r 1 ) ( 1 + 100 r 2 )
P = A ( 1 − r 1 100 ) ( 1 − r 2 100 ) P = A\Big(1 - \dfrac{r_1}{100}\Big)\Big(1 - \dfrac{r_2}{100}\Big) P = A ( 1 − 100 r 1 ) ( 1 − 100 r 2 )
Answer
If the letters used have usual meanings : r1 % and r2 % are rate of interests for two consecutive years then :
A = P ( 1 + r 1 100 ) ( 1 + r 2 100 ) A = P\Big(1 + \dfrac{r_1}{100}\Big)\Big(1 + \dfrac{r_2}{100}\Big) A = P ( 1 + 100 r 1 ) ( 1 + 100 r 2 )
Hence, Option 2 is the correct option.
Compound interest on ₹ 6000 in 2 years at 5% per annum is :
₹ 615
₹ 630
₹ 600
₹ 690
Answer
Given,
P = ₹ 6000
r = 5%
n = 2 years
By formula,
A = P ( 1 + r 100 ) n = 6000 ( 1 + 5 100 ) 2 = 6000 × ( 105 100 ) 2 = 6000 × 105 100 × 105 100 = 3 × 21 × 105 = ₹ 6615. A = P\Big(1 + \dfrac{r}{100}\Big)^n \\[1em] = 6000\Big(1 + \dfrac{5}{100}\Big)^2 \\[1em] = 6000 \times \Big(\dfrac{105}{100}\Big)^2 \\[1em] = 6000 \times \dfrac{105}{100} \times \dfrac{105}{100} \\[1em] = 3 \times 21 \times 105 \\[1em] = ₹ 6615. A = P ( 1 + 100 r ) n = 6000 ( 1 + 100 5 ) 2 = 6000 × ( 100 105 ) 2 = 6000 × 100 105 × 100 105 = 3 × 21 × 105 = ₹6615.
C.I. = A - P = ₹ 6615 - ₹ 6000 = ₹ 615.
Hence, Option 1 is the correct option.
A sum of money, lent out at 10% C.I. compounded yearly becomes ₹ 6050 in 2 years. The sum lent is :
₹ 7260
₹ 4000
₹ 5000
₹ 7320.50
Answer
Given,
r = 10%
n = 2 years
Let sum of money lent be ₹ x.
P = ₹ x
A = ₹ 6050
By formula,
A = P ( 1 + r 100 ) n A = P\Big(1 + \dfrac{r}{100}\Big)^n A = P ( 1 + 100 r ) n
Substituting values we get :
⇒ 6050 = x ( 1 + 10 100 ) 2 ⇒ 6050 = x × ( 110 100 ) 2 ⇒ 6050 = x × ( 11 10 ) 2 ⇒ 6050 = 121 x 100 ⇒ x = 6050 × 100 121 ⇒ x = ₹ 5000. \Rightarrow 6050 = x\Big(1 + \dfrac{10}{100}\Big)^2 \\[1em] \Rightarrow 6050 = x \times \Big(\dfrac{110}{100}\Big)^2 \\[1em] \Rightarrow 6050 = x \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] \Rightarrow 6050 = \dfrac{121x}{100} \\[1em] \Rightarrow x = \dfrac{6050 \times 100}{121} \\[1em] \Rightarrow x = ₹ 5000. ⇒ 6050 = x ( 1 + 100 10 ) 2 ⇒ 6050 = x × ( 100 110 ) 2 ⇒ 6050 = x × ( 10 11 ) 2 ⇒ 6050 = 100 121 x ⇒ x = 121 6050 × 100 ⇒ x = ₹5000.
Hence, Option 3 is the correct option.
On a certain sum, the compound interest accrued in one year is ₹ 550. If the rate of interest is 10%, the sum is :
₹ 5000
₹ 6000
₹ 4500
₹ 5500
Answer
Given,
r = 10%
n = 1 year
C.I. = ₹ 550
Let sum of money lent out be ₹ x.
By formula,
C.I. = A - P
⇒ C . I . = P ( 1 + r 100 ) n − P ⇒ 550 = x ( 1 + 10 100 ) 1 − x ⇒ 550 = x + 10 x 100 − x ⇒ 550 = x 10 ⇒ x = 5500. \Rightarrow C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] \Rightarrow 550 = x(1 + \dfrac{10}{100})^1 - x \\[1em] \Rightarrow 550 = x + \dfrac{10x}{100} - x \\[1em] \Rightarrow 550 = \dfrac{x}{10} \\[1em] \Rightarrow x = 5500. ⇒ C . I . = P ( 1 + 100 r ) n − P ⇒ 550 = x ( 1 + 100 10 ) 1 − x ⇒ 550 = x + 100 10 x − x ⇒ 550 = 10 x ⇒ x = 5500.
Hence, Option 4 is the correct option.
₹ 4000 amounts to ₹ 4600 in one year at compound interest compounded yearly. The rate of interest is :
15%
12%
10%
20%
Answer
Let rate of interest be r%.
Given,
P = ₹ 4000
A = ₹ 4600
n = 1 year
By formula,
A = P ( 1 + r 100 ) n A = P(1 + \dfrac{r}{100})^n A = P ( 1 + 100 r ) n
Substituting values we get :
⇒ 4600 = 4000 ( 1 + r 100 ) 1 ⇒ 4600 4000 = 1 + r 100 ⇒ 23 20 = 1 + r 100 ⇒ 23 20 − 1 = r 100 ⇒ 23 − 20 20 = r 100 ⇒ r = 3 20 × 100 ⇒ r = 15 \Rightarrow 4600 = 4000(1 + \dfrac{r}{100})^1 \\[1em] \Rightarrow \dfrac{4600}{4000} = 1 + \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{23}{20} = 1 + \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{23}{20} - 1 = \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{23 - 20}{20} = \dfrac{r}{100} \\[1em] \Rightarrow r = \dfrac{3}{20} \times 100 \\[1em] \Rightarrow r = 15%. ⇒ 4600 = 4000 ( 1 + 100 r ) 1 ⇒ 4000 4600 = 1 + 100 r ⇒ 20 23 = 1 + 100 r ⇒ 20 23 − 1 = 100 r ⇒ 20 23 − 20 = 100 r ⇒ r = 20 3 × 100 ⇒ r = 15
Hence, Option 1 is the correct option.
₹ 4000 amounts to ₹ 5017.60 in two months at compound interest compounded per month. The rate of interest per month is :
12%
15%
10%
20%
Answer
Let rate of interest per month be r%.
Given,
P = ₹ 4000
A = ₹ 5017.60
T = 2 months
By formula,
A = P ( 1 + r 100 ) n A = P\Big(1 + \dfrac{r}{100}\Big)^n A = P ( 1 + 100 r ) n
Substituting values we get :
⇒ 5017.60 = 4000 ( 1 + r 100 ) 2 ⇒ 5017.60 4000 = ( 1 + r 100 ) 2 ⇒ 501760 400000 = ( 1 + r 100 ) 2 ⇒ 50176 40000 = ( 1 + r 100 ) 2 ⇒ ( 224 200 ) 2 = ( 1 + r 100 ) 2 ⇒ 1 + r 100 = 224 200 ⇒ r 100 = 224 200 − 1 ⇒ r 100 = 24 200 ⇒ r = 24 200 × 100 ⇒ r = 12 \Rightarrow 5017.60 = 4000(1 + \dfrac{r}{100})^2 \\[1em] \Rightarrow \dfrac{5017.60}{4000} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{501760}{400000} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{50176}{40000} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{224}{200}\Big)^2 = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow 1 + \dfrac{r}{100} = \dfrac{224}{200} \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{224}{200} - 1 \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{24}{200} \\[1em] \Rightarrow r =\dfrac{24}{200} \times 100 \\[1em] \Rightarrow r = 12%. ⇒ 5017.60 = 4000 ( 1 + 100 r ) 2 ⇒ 4000 5017.60 = ( 1 + 100 r ) 2 ⇒ 400000 501760 = ( 1 + 100 r ) 2 ⇒ 40000 50176 = ( 1 + 100 r ) 2 ⇒ ( 200 224 ) 2 = ( 1 + 100 r ) 2 ⇒ 1 + 100 r = 200 224 ⇒ 100 r = 200 224 − 1 ⇒ 100 r = 200 24 ⇒ r = 200 24 × 100 ⇒ r = 12
Hence, Option 1 is the correct option.
Find the amount and the compound interest on ₹ 12000 in 3 years at 5%; interest being compounded annually.
Answer
Given,
P = ₹ 12000
n = 3 years
r = 5%
By formula,
A = P ( 1 + r 100 ) n A = P\Big(1 + \dfrac{r}{100}\Big)^n A = P ( 1 + 100 r ) n
Substituting values we get :
⇒ A = 12000 ( 1 + 5 100 ) 3 ⇒ A = 12000 ( 1 + 1 20 ) 3 ⇒ A = 12000 ( 21 20 ) 3 ⇒ A = 12000 × 9261 8000 ⇒ A = ₹ 13891.50 \Rightarrow A = 12000\Big(1 + \dfrac{5}{100}\Big)^3 \\[1em] \Rightarrow A = 12000\Big(1 + \dfrac{1}{20}\Big)^3 \\[1em] \Rightarrow A = 12000\Big(\dfrac{21}{20}\Big)^3 \\[1em] \Rightarrow A = 12000 \times \dfrac{9261}{8000} \\[1em] \Rightarrow A = ₹13891.50 ⇒ A = 12000 ( 1 + 100 5 ) 3 ⇒ A = 12000 ( 1 + 20 1 ) 3 ⇒ A = 12000 ( 20 21 ) 3 ⇒ A = 12000 × 8000 9261 ⇒ A = ₹13891.50
C.I. = A - P = ₹ 13891.50 - ₹ 12000 = ₹ 1891.50
Hence, amount = ₹ 13891.50 and compound interest = ₹ 1891.50
Calculate the amount, if ₹ 15000 is lent at compound interest for 2 years and the rates for the successive years are 8% p.a. and 10% p.a. respectively.
Answer
Given,
P = ₹ 15000
r1 = 8%
r2 = 10%
n = 2 years
By formula,
A = P ( 1 + r 1 100 ) ( 1 + r 2 100 ) P\Big(1 + \dfrac{r_1}{100}\Big)\Big(1 + \dfrac{r_2}{100}\Big) P ( 1 + 100 r 1 ) ( 1 + 100 r 2 )
Substituting values we get :
A = 15000 × ( 1 + 8 100 ) × ( 1 + 10 100 ) = 15000 × 108 100 × 110 100 = 15000 × 27 25 × 11 10 = 60 × 27 × 11 = ₹ 17820. A = 15000 \times \Big(1 + \dfrac{8}{100}\Big) \times \Big(1 + \dfrac{10}{100}\Big) \\[1em] = 15000 \times \dfrac{108}{100} \times \dfrac{110}{100} \\[1em] = 15000 \times \dfrac{27}{25} \times \dfrac{11}{10} \\[1em] = 60 \times 27 \times 11 \\[1em] = ₹17820. A = 15000 × ( 1 + 100 8 ) × ( 1 + 100 10 ) = 15000 × 100 108 × 100 110 = 15000 × 25 27 × 10 11 = 60 × 27 × 11 = ₹17820.
Hence, amount = ₹ 17820.
Calculate the compound interest accrued on ₹ 6000 in 3 years, compounded yearly, if the rates for the successive years are 5%, 8% and 10% respectively.
Answer
Given,
P = ₹ 6000
r1 = 5%
r2 = 8%
r3 = 10%
n = 3 years
By formula,
A = P ( 1 + r 1 100 ) ( 1 + r 2 100 ) ( 1 + r 3 100 ) P\Big(1 + \dfrac{r_1}{100}\Big)\Big(1 + \dfrac{r_2}{100}\Big)\Big(1 + \dfrac{r_3}{100}\Big) P ( 1 + 100 r 1 ) ( 1 + 100 r 2 ) ( 1 + 100 r 3 )
Substituting values we get :
A = 6000 × ( 1 + 5 100 ) × ( 1 + 8 100 ) × ( 1 + 10 100 ) = 6000 × 105 100 × 108 100 × 110 100 = 6000 × 21 20 × 27 25 × 11 10 = 30 × 21 × 27 × 11 25 = 187110 25 = ₹ 7484.40 A = 6000 \times \Big(1 + \dfrac{5}{100}\Big) \times \Big(1 + \dfrac{8}{100}\Big) \times \Big(1 + \dfrac{10}{100}\Big) \\[1em] = 6000 \times \dfrac{105}{100} \times \dfrac{108}{100} \times \dfrac{110}{100} \\[1em] = 6000 \times \dfrac{21}{20} \times \dfrac{27}{25} \times \dfrac{11}{10} \\[1em] = \dfrac{30 \times 21 \times 27 \times 11}{25} \\[1em] = \dfrac{187110}{25} \\[1em] = ₹7484.40 A = 6000 × ( 1 + 100 5 ) × ( 1 + 100 8 ) × ( 1 + 100 10 ) = 6000 × 100 105 × 100 108 × 100 110 = 6000 × 20 21 × 25 27 × 10 11 = 25 30 × 21 × 27 × 11 = 25 187110 = ₹7484.40
By formula,
C.I. = A - P = ₹ 7484.40 - ₹ 6000 = ₹ 1484.40
Hence, compound interest = ₹ 1484.40
What sum of money will amount to ₹ 5445 in 2 years at 10% per annum compound interest ?
Answer
Let sum of money be ₹ x.
Given,
P = ₹ x
r = 10%
n = 2 years
A = ₹ 5445
By formula,
A = P ( 1 + r 100 ) n P\Big(1+ \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 5445 = x × ( 1 + 10 100 ) 2 ⇒ 5445 = x × ( 110 100 ) 2 ⇒ 5445 = x × ( 11 10 ) 2 ⇒ 5445 = x × 121 100 ⇒ x = 5445 × 100 121 ⇒ x = ₹ 4500. \Rightarrow 5445 = x \times \Big(1 + \dfrac{10}{100}\Big)^2 \\[1em] \Rightarrow 5445 = x \times \Big(\dfrac{110}{100}\Big)^2 \\[1em] \Rightarrow 5445 = x \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] \Rightarrow 5445 = x \times \dfrac{121}{100} \\[1em] \Rightarrow x = \dfrac{5445 \times 100}{121} \\[1em] \Rightarrow x = ₹4500. ⇒ 5445 = x × ( 1 + 100 10 ) 2 ⇒ 5445 = x × ( 100 110 ) 2 ⇒ 5445 = x × ( 10 11 ) 2 ⇒ 5445 = x × 100 121 ⇒ x = 121 5445 × 100 ⇒ x = ₹4500.
Hence, sum of money = ₹ 4500.
On what sum of money will the compound interest for 2 years at 5 per cent per annum amount to ₹ 768.75 ?
Answer
Let sum of money be ₹ x.
Given,
n = 2 years
r = 5%
C.I. = ₹ 768.75
A = P + I = ₹ x + ₹ 768.75
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ x + 768.75 = x × ( 1 + 5 100 ) 2 ⇒ x + 768.75 = x × ( 105 100 ) 2 ⇒ x + 768.75 = x × ( 21 20 ) 2 ⇒ x + 768.75 = x × 441 400 ⇒ 400 ( x + 768.75 ) = 441 x ⇒ 400 x + 307500 = 441 x ⇒ 441 x − 400 x = 307500 ⇒ 41 x = 307500 ⇒ x = 307500 41 ⇒ x = ₹ 7500. \Rightarrow x + 768.75 = x \times \Big(1 + \dfrac{5}{100}\Big)^2 \\[1em] \Rightarrow x + 768.75 = x \times \Big(\dfrac{105}{100}\Big)^2 \\[1em] \Rightarrow x + 768.75 = x \times \Big(\dfrac{21}{20}\Big)^2 \\[1em] \Rightarrow x + 768.75 = x \times \dfrac{441}{400} \\[1em] \Rightarrow 400(x + 768.75) = 441x \\[1em] \Rightarrow 400x + 307500 = 441x \\[1em] \Rightarrow 441x - 400x = 307500 \\[1em] \Rightarrow 41x = 307500 \\[1em] \Rightarrow x = \dfrac{307500}{41} \\[1em] \Rightarrow x = ₹7500. ⇒ x + 768.75 = x × ( 1 + 100 5 ) 2 ⇒ x + 768.75 = x × ( 100 105 ) 2 ⇒ x + 768.75 = x × ( 20 21 ) 2 ⇒ x + 768.75 = x × 400 441 ⇒ 400 ( x + 768.75 ) = 441 x ⇒ 400 x + 307500 = 441 x ⇒ 441 x − 400 x = 307500 ⇒ 41 x = 307500 ⇒ x = 41 307500 ⇒ x = ₹7500.
Hence, sum of money = ₹ 7500.
Find the sum on which the compound interest for 3 years at 10% per annum amounts to ₹ 1655.
Answer
Let sum of money be ₹ x.
Given,
n = 3 years
r = 10%
C.I. = ₹ 1655
A = P + I = ₹ x + ₹ 1655
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ x + 1655 = x × ( 1 + 10 100 ) 3 ⇒ x + 1655 = x × ( 110 100 ) 3 ⇒ x + 1655 = x × ( 11 10 ) 3 ⇒ x + 1655 = x × 1331 1000 ⇒ 1000 ( x + 1655 ) = 1331 x ⇒ 1000 x + 1655000 = 1331 x ⇒ 1331 x − 1000 x = 1655000 ⇒ 331 x = 1655000 ⇒ x = 1655000 331 ⇒ x = ₹ 5000. \Rightarrow x + 1655 = x \times \Big(1 + \dfrac{10}{100}\Big)^3 \\[1em] \Rightarrow x + 1655 = x \times \Big(\dfrac{110}{100}\Big)^3 \\[1em] \Rightarrow x + 1655 = x \times \Big(\dfrac{11}{10}\Big)^3 \\[1em] \Rightarrow x + 1655 = x \times \dfrac{1331}{1000} \\[1em] \Rightarrow 1000(x + 1655) = 1331x \\[1em] \Rightarrow 1000x + 1655000 = 1331x \\[1em] \Rightarrow 1331x - 1000x = 1655000 \\[1em] \Rightarrow 331x = 1655000 \\[1em] \Rightarrow x = \dfrac{1655000}{331} \\[1em] \Rightarrow x = ₹5000. ⇒ x + 1655 = x × ( 1 + 100 10 ) 3 ⇒ x + 1655 = x × ( 100 110 ) 3 ⇒ x + 1655 = x × ( 10 11 ) 3 ⇒ x + 1655 = x × 1000 1331 ⇒ 1000 ( x + 1655 ) = 1331 x ⇒ 1000 x + 1655000 = 1331 x ⇒ 1331 x − 1000 x = 1655000 ⇒ 331 x = 1655000 ⇒ x = 331 1655000 ⇒ x = ₹5000.
Hence, sum of money = ₹ 5000.
At what rate per cent per annum will ₹ 6000 amount to ₹ 6615 in 2 years when interest is compounded annually ?
Answer
Given,
P = ₹ 6000
A = ₹ 6615
n = 2 years
Let rate of interest be r%.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 6615 = 6000 × ( 1 + r 100 ) 2 ⇒ 6615 6000 = ( 1 + r 100 ) 2 ⇒ 441 400 = ( 1 + r 100 ) 2 ⇒ ( 21 20 ) 2 = ( 1 + r 100 ) 2 ⇒ 21 20 = 1 + r 100 ⇒ 21 20 − 1 = r 100 ⇒ 21 − 20 20 = r 100 ⇒ r = 100 20 = 5 \Rightarrow 6615 = 6000 \times \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{6615}{6000} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{441}{400} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{21}{20}\Big)^2 = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{21}{20} = 1 + \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{21}{20} - 1 = \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{21 - 20}{20} = \dfrac{r}{100} \\[1em] \Rightarrow r = \dfrac{100}{20} = 5%. ⇒ 6615 = 6000 × ( 1 + 100 r ) 2 ⇒ 6000 6615 = ( 1 + 100 r ) 2 ⇒ 400 441 = ( 1 + 100 r ) 2 ⇒ ( 20 21 ) 2 = ( 1 + 100 r ) 2 ⇒ 20 21 = 1 + 100 r ⇒ 20 21 − 1 = 100 r ⇒ 20 21 − 20 = 100 r ⇒ r = 20 100 = 5
Hence, rate of interest = 5%.
What principal will amount to ₹ 9856 in two years, if the rates of interest for successive years are 10% and 12% respectively?
Answer
Given,
A = ₹ 9856
r1 = 10%
r2 = 12%
n = 2 years
Let principal amount be ₹ x.
By formula,
A = P ( 1 + r 1 100 ) ( 1 + r 2 100 ) P\Big(1 + \dfrac{r_1}{100}\Big)\Big(1 + \dfrac{r_2}{100}\Big) P ( 1 + 100 r 1 ) ( 1 + 100 r 2 )
Substituting values we get :
⇒ 9856 = x ( 1 + 10 100 ) ( 1 + 12 100 ) ⇒ 9856 = x × 110 100 × 112 100 ⇒ 9856 = x × 11 10 × 28 25 ⇒ x = 9856 × 10 × 25 11 × 28 ⇒ x = 2464000 308 = ₹ 8000. \Rightarrow 9856 = x\Big(1 + \dfrac{10}{100}\Big)\Big(1 + \dfrac{12}{100}\Big) \\[1em] \Rightarrow 9856 = x \times \dfrac{110}{100} \times \dfrac{112}{100} \\[1em] \Rightarrow 9856 = x \times \dfrac{11}{10} \times \dfrac{28}{25} \\[1em] \Rightarrow x = \dfrac{9856 \times 10 \times 25}{11 \times 28} \\[1em] \Rightarrow x = \dfrac{2464000}{308} = ₹8000. ⇒ 9856 = x ( 1 + 100 10 ) ( 1 + 100 12 ) ⇒ 9856 = x × 100 110 × 100 112 ⇒ 9856 = x × 10 11 × 25 28 ⇒ x = 11 × 28 9856 × 10 × 25 ⇒ x = 308 2464000 = ₹8000.
Hence, principal amount = ₹ 8000.
On a certain sum, the compound interest in 2 years amounts to ₹ 4240. If the rates of interest for successive years are 10% and 15% respectively, find the sum.
Answer
Given,
C.I. = ₹ 4240
r1 = 10%
r2 = 15%
n = 2 years
Let principal amount be ₹ x.
A = P + C.I. = ₹ x + ₹ 4240
By formula,
A = P ( 1 + r 1 100 ) ( 1 + r 2 100 ) P\Big(1 + \dfrac{r_1}{100}\Big)\Big(1 + \dfrac{r_2}{100}\Big) P ( 1 + 100 r 1 ) ( 1 + 100 r 2 )
Substituting values we get :
⇒ x + 4240 = x × ( 1 + 10 100 ) ( 1 + 15 100 ) ⇒ x + 4240 = x × 110 100 × 115 100 ⇒ x + 4240 = x × 11 10 × 23 20 ⇒ x + 4240 = 253 x 200 ⇒ 200 ( x + 4240 ) = 253 x ⇒ 200 x + 848000 = 253 x ⇒ 253 x − 200 x = 848000 ⇒ 53 x = 848000 ⇒ x = 848000 53 = ₹ 16000. \Rightarrow x + 4240 = x \times \Big(1 + \dfrac{10}{100}\Big)(1 + \dfrac{15}{100}) \\[1em] \Rightarrow x + 4240 = x \times \dfrac{110}{100} \times \dfrac{115}{100} \\[1em] \Rightarrow x + 4240 = x \times \dfrac{11}{10} \times \dfrac{23}{20} \\[1em] \Rightarrow x + 4240 = \dfrac{253x}{200} \\[1em] \Rightarrow 200(x + 4240) = 253x \\[1em] \Rightarrow 200x + 848000 = 253x \\[1em] \Rightarrow 253x - 200x = 848000 \\[1em] \Rightarrow 53x = 848000 \\[1em] \Rightarrow x = \dfrac{848000}{53} = ₹16000. ⇒ x + 4240 = x × ( 1 + 100 10 ) ( 1 + 100 15 ) ⇒ x + 4240 = x × 100 110 × 100 115 ⇒ x + 4240 = x × 10 11 × 20 23 ⇒ x + 4240 = 200 253 x ⇒ 200 ( x + 4240 ) = 253 x ⇒ 200 x + 848000 = 253 x ⇒ 253 x − 200 x = 848000 ⇒ 53 x = 848000 ⇒ x = 53 848000 = ₹16000.
Hence, principal amount = ₹ 16000.
At what rate per cent compound interest, does a sum of money become 1.44 times of itself in 2 years ?
Answer
Let sum of money be ₹ x and let rate of percent be r%.
A = ₹ 1.44x
n = 2 years
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 1.44 x = x × ( 1 + r 100 ) 2 ⇒ 1.44 x x = ( 1 + r 100 ) 2 ⇒ 1.44 = ( 1 + r 100 ) 2 ⇒ ( 1.2 ) 2 = ( 1 + r 100 ) 2 ⇒ 1.2 = 1 + r 100 ⇒ 1.2 − 1 = r 100 ⇒ 0.2 = r 100 ⇒ r = 0.2 × 100 = 20 \Rightarrow 1.44x = x \times \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{1.44x}{x} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow 1.44 = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow (1.2)^2 = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow 1.2 = 1 + \dfrac{r}{100} \\[1em] \Rightarrow 1.2 - 1 = \dfrac{r}{100} \\[1em] \Rightarrow 0.2 = \dfrac{r}{100} \\[1em] \Rightarrow r = 0.2 \times 100 = 20%. ⇒ 1.44 x = x × ( 1 + 100 r ) 2 ⇒ x 1.44 x = ( 1 + 100 r ) 2 ⇒ 1.44 = ( 1 + 100 r ) 2 ⇒ ( 1.2 ) 2 = ( 1 + 100 r ) 2 ⇒ 1.2 = 1 + 100 r ⇒ 1.2 − 1 = 100 r ⇒ 0.2 = 100 r ⇒ r = 0.2 × 100 = 20
Hence, rate of interest = 20%.
At what rate per cent will a sum of ₹ 4000 yield ₹ 1324 as compound interest in 3 years ?
Answer
Let rate of interest be r%.
Given,
P = ₹ 4000
C.I. = ₹ 1324
A = P + C.I. = ₹ 4000 + ₹ 1324 = ₹ 5324
n = 3 years
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 5324 = 4000 × ( 1 + r 100 ) 3 ⇒ 5324 4000 = ( 1 + r 100 ) 3 ⇒ ( 1 + r 100 ) 3 = 1331 1000 ⇒ ( 1 + r 100 ) 3 = ( 11 10 ) 3 ⇒ 1 + r 100 = 11 10 ⇒ r 100 = 11 10 − 1 ⇒ r 100 = 11 − 10 10 ⇒ r = 1 10 × 100 ⇒ r = 10 \Rightarrow 5324 = 4000 \times \Big(1 + \dfrac{r}{100}\Big)^3 \\[1em] \Rightarrow \dfrac{5324}{4000} = \Big(1 + \dfrac{r}{100}\Big)^3 \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^3 = \dfrac{1331}{1000} \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^3 = \Big(\dfrac{11}{10}\Big)^3 \\[1em] \Rightarrow 1 + \dfrac{r}{100} = \dfrac{11}{10} \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{11}{10} - 1 \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{11 - 10}{10} \\[1em] \Rightarrow r = \dfrac{1}{10} \times 100 \\[1em] \Rightarrow r = 10%. ⇒ 5324 = 4000 × ( 1 + 100 r ) 3 ⇒ 4000 5324 = ( 1 + 100 r ) 3 ⇒ ( 1 + 100 r ) 3 = 1000 1331 ⇒ ( 1 + 100 r ) 3 = ( 10 11 ) 3 ⇒ 1 + 100 r = 10 11 ⇒ 100 r = 10 11 − 1 ⇒ 100 r = 10 11 − 10 ⇒ r = 10 1 × 100 ⇒ r = 10
Hence, rate of interest = 10%.
A person invests ₹ 5000 for three years at a certain rate of interest compounded annually. At the end of two years this sum amounts to ₹ 6272. Calculate :
(i) the rate of interest per annum.
(ii) the amount at the end of the third year.
Answer
(i) For 2 years :
A = ₹ 6272
P = ₹ 5000
Let rate of interest be r%.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 6272 = 5000 × ( 1 + r 100 ) 2 ⇒ 6272 5000 = ( 1 + r 100 ) 2 ⇒ 784 625 = ( 1 + r 100 ) 2 ⇒ ( 28 25 ) 2 = ( 1 + r 100 ) 2 ⇒ 28 25 = 1 + r 100 ⇒ r 100 = 28 25 − 1 ⇒ r 100 = 28 − 25 25 ⇒ r = 3 25 × 100 ⇒ r = 12 \Rightarrow 6272 = 5000 \times \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{6272}{5000} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{784}{625} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{28}{25}\Big)^2 = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \dfrac{28}{25} = 1 + \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{28}{25} - 1 \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{28 - 25}{25} \\[1em] \Rightarrow r = \dfrac{3}{25} \times 100 \\[1em] \Rightarrow r = 12%. ⇒ 6272 = 5000 × ( 1 + 100 r ) 2 ⇒ 5000 6272 = ( 1 + 100 r ) 2 ⇒ 625 784 = ( 1 + 100 r ) 2 ⇒ ( 25 28 ) 2 = ( 1 + 100 r ) 2 ⇒ 25 28 = 1 + 100 r ⇒ 100 r = 25 28 − 1 ⇒ 100 r = 25 28 − 25 ⇒ r = 25 3 × 100 ⇒ r = 12
Hence, rate of interest per annum = 12%.
(ii) By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ A = 5000 × ( 1 + 12 100 ) 3 = 5000 × ( 112 100 ) 3 = 5000 × ( 28 25 ) 3 = 5000 × 21952 15625 = 109760000 15625 = ₹ 7024.64 \Rightarrow A = 5000 \times \Big(1 + \dfrac{12}{100}\Big)^3 \\[1em] = 5000 \times \Big(\dfrac{112}{100}\Big)^3 \\[1em] = 5000 \times \Big(\dfrac{28}{25}\Big)^3 \\[1em] = 5000 \times \dfrac{21952}{15625} \\[1em] = \dfrac{109760000}{15625} \\[1em] = ₹7024.64 ⇒ A = 5000 × ( 1 + 100 12 ) 3 = 5000 × ( 100 112 ) 3 = 5000 × ( 25 28 ) 3 = 5000 × 15625 21952 = 15625 109760000 = ₹7024.64
Hence, amount in 3 years = ₹ 7024.64
In how many years will ₹ 7000 amount to ₹ 9317 at 10 per cent per annum compound interest ?
Answer
Given,
P = ₹ 7000
A = ₹ 9317
r = 10%
Let in n years ₹ 7000 amount to ₹ 9317.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 9317 = 7000 × ( 1 + 10 100 ) n ⇒ 9317 7000 = ( 110 100 ) n ⇒ 1331 1000 = ( 11 10 ) n ⇒ ( 11 10 ) 3 = ( 11 10 ) n ⇒ n = 3. \Rightarrow 9317 = 7000 \times \Big(1 + \dfrac{10}{100}\Big)^n \\[1em] \Rightarrow \dfrac{9317}{7000} = \Big(\dfrac{110}{100}\Big)^n \\[1em] \Rightarrow \dfrac{1331}{1000} = \Big(\dfrac{11}{10}\Big)^n \\[1em] \Rightarrow \Big(\dfrac{11}{10}\Big)^3 = \Big(\dfrac{11}{10}\Big)^n \\[1em] \Rightarrow n = 3. ⇒ 9317 = 7000 × ( 1 + 100 10 ) n ⇒ 7000 9317 = ( 100 110 ) n ⇒ 1000 1331 = ( 10 11 ) n ⇒ ( 10 11 ) 3 = ( 10 11 ) n ⇒ n = 3.
Hence, in 3 years ₹ 7000 amounts to ₹ 9317 at 10 percent compound interest.
Find the time, in years, in which ₹ 4000 will produce ₹ 630.50 as compound interest at 5 percent p.a. interest being compounded annually.
Answer
Given,
P = ₹ 4000
C.I. = ₹ 630.50
r = 5%
A = P + C.I. = ₹ 4000 + ₹ 630.50 = ₹ 4630.50
Let time taken be n years.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 4630.50 = 4000 × ( 1 + 5 100 ) n ⇒ 4630.50 4000 = ( 105 100 ) n ⇒ 9.261 8 = ( 2.1 2 ) n ⇒ ( 2.1 2 ) 3 = ( 2.1 2 ) n ⇒ n = 3. \Rightarrow 4630.50 = 4000 \times \Big(1 + \dfrac{5}{100}\Big)^n \\[1em] \Rightarrow \dfrac{4630.50}{4000} = \Big(\dfrac{105}{100}\Big)^n \\[1em] \Rightarrow \dfrac{9.261}{8} = \Big(\dfrac{2.1}{2}\Big)^n \\[1em] \Rightarrow \Big(\dfrac{2.1}{2}\Big)^3 = \Big(\dfrac{2.1}{2}\Big)^n \\[1em] \Rightarrow n = 3. ⇒ 4630.50 = 4000 × ( 1 + 100 5 ) n ⇒ 4000 4630.50 = ( 100 105 ) n ⇒ 8 9.261 = ( 2 2.1 ) n ⇒ ( 2 2.1 ) 3 = ( 2 2.1 ) n ⇒ n = 3.
Hence, time taken = 3 years.
Divide ₹ 28730 between A and B so that when their shares are lent out at 10 per cent compound interest compounded per year, the amount that A receives in 3 years is same as what B receives in 5 years.
Answer
Let share of A = ₹ x and share of B = ₹ 28730 - ₹ x.
For A :
P = ₹ x
r = 10%
n = 3 years
By formula,
Amount = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ Amount = x ( 1 + 10 100 ) 3 = x × ( 110 100 ) 3 = x × ( 11 10 ) 3 \Rightarrow \text{Amount } = x\Big(1 + \dfrac{10}{100}\Big)^3 \\[1em] = x \times \Big(\dfrac{110}{100}\Big)^3\\[1em] = x \times \Big(\dfrac{11}{10}\Big)^3 ⇒ Amount = x ( 1 + 100 10 ) 3 = x × ( 100 110 ) 3 = x × ( 10 11 ) 3
For B :
P = ₹ (28730 - x)
r = 10%
n = 5 years
By formula,
Amount = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ Amount = ( 28730 − x ) × ( 1 + 10 100 ) 5 = ( 28730 − x ) × ( 110 100 ) 5 = ( 28730 − x ) × ( 11 10 ) 5 \Rightarrow \text{Amount } = (28730 - x) \times \Big(1 + \dfrac{10}{100}\Big)^5 \\[1em] = (28730 - x) \times \Big(\dfrac{110}{100}\Big)^5 \\[1em] = (28730 - x) \times \Big(\dfrac{11}{10}\Big)^5 ⇒ Amount = ( 28730 − x ) × ( 1 + 100 10 ) 5 = ( 28730 − x ) × ( 100 110 ) 5 = ( 28730 − x ) × ( 10 11 ) 5
Since, amount received by A and B are equal.
∴ x × ( 11 10 ) 3 = ( 28730 − x ) × ( 11 10 ) 5 ⇒ x = ( 28730 − x ) × ( 11 10 ) 2 ⇒ x = ( 28730 − x ) × 121 100 ⇒ 100 x = 121 ( 28730 − x ) ⇒ 100 x = 3476330 − 121 x ⇒ 100 x + 121 x = 3476330 ⇒ 221 x = 3476330 ⇒ x = 3476330 221 ⇒ x = 15730. \therefore x \times \Big(\dfrac{11}{10}\Big)^3 = (28730 - x) \times \Big(\dfrac{11}{10}\Big)^5 \\[1em] \Rightarrow x = (28730 - x) \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] \Rightarrow x = (28730 - x) \times \dfrac{121}{100} \\[1em] \Rightarrow 100x = 121(28730 - x) \\[1em] \Rightarrow 100x = 3476330 - 121x \\[1em] \Rightarrow 100x + 121x = 3476330 \\[1em] \Rightarrow 221x = 3476330 \\[1em] \Rightarrow x = \dfrac{3476330}{221} \\[1em] \Rightarrow x = 15730. ∴ x × ( 10 11 ) 3 = ( 28730 − x ) × ( 10 11 ) 5 ⇒ x = ( 28730 − x ) × ( 10 11 ) 2 ⇒ x = ( 28730 − x ) × 100 121 ⇒ 100 x = 121 ( 28730 − x ) ⇒ 100 x = 3476330 − 121 x ⇒ 100 x + 121 x = 3476330 ⇒ 221 x = 3476330 ⇒ x = 221 3476330 ⇒ x = 15730.
₹ (28730 - x) = ₹ (28730 - 15730) = ₹ 13000.
Hence, share of A and B are ₹ 15730 and ₹ 13000 respectively.
A sum of ₹ 44200 is divided between John and Smith, 12 years and 14 years old respectively, in such a way that if their portions be invested at 10 percent per annum compound interest, they will receive equal amounts on reaching 16 years of age.
(i) What is the share of each out of ₹ 44200?
(ii) What will each receive, when 16 years old ?
Answer
(i) Let share of John = ₹ x and share of Smith = ₹ 44200 - ₹ x.
For John :
P = ₹ x
r = 10%
n = 4 years (John has 4 years to reach 16 years of age)
By formula,
Amount = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ Amount = x ( 1 + 10 100 ) 4 = x × ( 110 100 ) 4 = x × ( 11 10 ) 4 . . . . . . . . ( 1 ) \Rightarrow \text{Amount } = x\Big(1 + \dfrac{10}{100}\Big)^4 \\[1em] = x \times \Big(\dfrac{110}{100}\Big)^4\\[1em] = x \times \Big(\dfrac{11}{10}\Big)^4 ........(1) ⇒ Amount = x ( 1 + 100 10 ) 4 = x × ( 100 110 ) 4 = x × ( 10 11 ) 4 ........ ( 1 )
For Smith :
P = ₹ (44200 - x)
r = 10%
n = 2 years (Smith has 2 years to reach 16 years of age)
By formula,
Amount = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ Amount = ( 44200 − x ) × ( 1 + 10 100 ) 2 = ( 44200 − x ) × ( 110 100 ) 2 = ( 44200 − x ) × ( 11 10 ) 2 . . . . . . . . . . . ( 2 ) \Rightarrow \text{Amount } = (44200 - x) \times \Big(1 + \dfrac{10}{100}\Big)^2 \\[1em] = (44200 - x) \times \Big(\dfrac{110}{100}\Big)^2 \\[1em] = (44200 - x) \times \Big(\dfrac{11}{10}\Big)^2 ...........(2) ⇒ Amount = ( 44200 − x ) × ( 1 + 100 10 ) 2 = ( 44200 − x ) × ( 100 110 ) 2 = ( 44200 − x ) × ( 10 11 ) 2 ........... ( 2 )
Since, amount received by A and B are equal.
∴ x × ( 11 10 ) 4 = ( 44200 − x ) × ( 11 10 ) 2 ⇒ x × ( 11 10 ) 2 = ( 44200 − x ) ⇒ 121 100 x = ( 44200 − x ) ⇒ 121 x = 100 ( 44200 − x ) ⇒ 121 x = 4420000 − 100 x ⇒ 121 x + 100 x = 4420000 ⇒ 221 x = 4420000 ⇒ x = 4420000 221 ⇒ x = ₹ 20000. \therefore x \times \Big(\dfrac{11}{10}\Big)^4 = (44200 - x) \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] \Rightarrow x \times \Big(\dfrac{11}{10}\Big)^2 = (44200 - x) \\[1em] \Rightarrow \dfrac{121}{100}x = (44200 - x) \\[1em] \Rightarrow 121x = 100(44200 - x) \\[1em] \Rightarrow 121x = 4420000 - 100x \\[1em] \Rightarrow 121x + 100x = 4420000 \\[1em] \Rightarrow 221x = 4420000 \\[1em] \Rightarrow x = \dfrac{4420000}{221} \\[1em] \Rightarrow x = ₹ 20000. ∴ x × ( 10 11 ) 4 = ( 44200 − x ) × ( 10 11 ) 2 ⇒ x × ( 10 11 ) 2 = ( 44200 − x ) ⇒ 100 121 x = ( 44200 − x ) ⇒ 121 x = 100 ( 44200 − x ) ⇒ 121 x = 4420000 − 100 x ⇒ 121 x + 100 x = 4420000 ⇒ 221 x = 4420000 ⇒ x = 221 4420000 ⇒ x = ₹20000.
₹ (44200 - x) = ₹ (44200 - 20000) = ₹ 24200.
Hence, share of John and Smith are ₹ 20,000 and ₹ 24,200 respectively.
(ii) Substituting value of x in equation (1), we get :
⇒ 20000 × ( 11 10 ) 4 ⇒ 20000 × 14641 10000 ⇒ ₹ 29282. \Rightarrow 20000 \times \Big(\dfrac{11}{10}\Big)^4 \\[1em] \Rightarrow 20000 \times \dfrac{14641}{10000} \\[1em] \Rightarrow ₹ 29282. ⇒ 20000 × ( 10 11 ) 4 ⇒ 20000 × 10000 14641 ⇒ ₹29282.
Since, both receive equal amount.
Hence, each receive ₹ 29282.
The simple interest on a certain sum of money at 10% per annum is ₹ 6000 in 2 years. Find :
(i) the sum
(ii) the amount due at the end of 3 years and at the same rate of interest compounded annually.
(iii) the compound interest earned in 3 years.
Answer
(i) Let the sum be ₹ x.
Given, S.I. = ₹ 6000 in 2 years at 10% rate of interest.
By formula,
S.I. = P × R × T 100 \dfrac{P \times R \times T}{100} 100 P × R × T
Substituting values we get :
⇒ 6000 = x × 10 × 2 100 ⇒ x = 6000 × 100 10 × 2 ⇒ x = 30000. \Rightarrow 6000 = \dfrac{x \times 10 \times 2}{100} \\[1em] \Rightarrow x = \dfrac{6000 \times 100}{10 \times 2} \\[1em] \Rightarrow x = 30000. ⇒ 6000 = 100 x × 10 × 2 ⇒ x = 10 × 2 6000 × 100 ⇒ x = 30000.
Hence, sum = ₹ 30000.
(ii) By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
A = 30000 × ( 1 + 10 100 ) 3 = 30000 × ( 110 100 ) 3 = 30000 × ( 11 10 ) 3 = 30000 × 1331 1000 = 39930. A = 30000 \times \Big(1 + \dfrac{10}{100}\Big)^3 \\[1em] = 30000 \times \Big(\dfrac{110}{100}\Big)^3 \\[1em] = 30000 \times \Big(\dfrac{11}{10}\Big)^3 \\[1em] = 30000 \times \dfrac{1331}{1000} \\[1em] = 39930. A = 30000 × ( 1 + 100 10 ) 3 = 30000 × ( 100 110 ) 3 = 30000 × ( 10 11 ) 3 = 30000 × 1000 1331 = 39930.
Hence, amount due at the end of 3 years = ₹ 39930.
(iii) By formula,
C.I. = A - P = ₹ 39930 - ₹ 30000 = ₹ 9930.
Hence, compound interest earned in 3 years = ₹ 9930.
Find the difference between compound interest and simple interest on ₹ 8000 in 2 years and at 5% per annum.
Answer
For S.I. :
Principal = ₹ 8000
Rate = 5%
Time = 2 years
S.I. = 8000 × 5 × 2 100 \dfrac{8000 \times 5 \times 2}{100} 100 8000 × 5 × 2 = ₹ 800.
For C.I. :
C.I. = A - P
= P ( 1 + r 100 ) n − P = 8000 × ( 1 + 5 100 ) 2 − 8000 = 8000 × ( 105 100 ) 2 − 8000 = 8000 × ( 21 20 ) 2 − 8000 = 8000 × 441 400 − 8000 = 8820 − 8000 = ₹ 820. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = 8000 \times \Big(1 + \dfrac{5}{100}\Big)^2 - 8000 \\[1em] = 8000 \times \Big(\dfrac{105}{100}\Big)^2 - 8000 \\[1em] = 8000 \times \Big(\dfrac{21}{20}\Big)^2 - 8000 \\[1em] = 8000 \times \dfrac{441}{400} - 8000 \\[1em] = 8820 - 8000 \\[1em] = ₹ 820. = P ( 1 + 100 r ) n − P = 8000 × ( 1 + 100 5 ) 2 − 8000 = 8000 × ( 100 105 ) 2 − 8000 = 8000 × ( 20 21 ) 2 − 8000 = 8000 × 400 441 − 8000 = 8820 − 8000 = ₹820.
Difference between C.I. and S.I. = ₹ 820 - ₹ 800 = ₹ 20.
Hence, difference between C.I. and S.I. = ₹ 20.
On ₹ 6000, the difference between C.I. and S.I. in 2 years and at 10% compound interest, compounded per year, is :
₹ 120
₹ 600
₹ 60
₹ 180
Answer
For S.I. :
Principal = ₹ 6000
Rate = 10%
Time = 2 years
S.I. = 6000 × 10 × 2 100 \dfrac{6000 \times 10 \times 2}{100} 100 6000 × 10 × 2 = ₹ 1200.
For C.I. :
C.I. = A - P
= P ( 1 + r 100 ) n − P = 6000 × ( 1 + 10 100 ) 2 − 6000 = 6000 × ( 110 100 ) 2 − 6000 = 6000 × ( 11 10 ) 2 − 6000 = 6000 × 121 100 − 6000 = 7260 − 6000 = ₹ 1260. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = 6000 \times \Big(1 + \dfrac{10}{100}\Big)^2 - 6000 \\[1em] = 6000 \times \Big(\dfrac{110}{100}\Big)^2 - 6000 \\[1em] = 6000 \times \Big(\dfrac{11}{10}\Big)^2 - 6000 \\[1em] = 6000 \times \dfrac{121}{100} - 6000 \\[1em] = 7260 - 6000 \\[1em] = ₹ 1260. = P ( 1 + 100 r ) n − P = 6000 × ( 1 + 100 10 ) 2 − 6000 = 6000 × ( 100 110 ) 2 − 6000 = 6000 × ( 10 11 ) 2 − 6000 = 6000 × 100 121 − 6000 = 7260 − 6000 = ₹1260.
Difference between C.I. and S.I. = ₹ 1260 - ₹ 1200 = ₹ 60.
Hence, Option 3 is the correct option.
₹ 10000 amounts to ₹ 12500 in one year. The rate of interest per year is :
15%
12.5%
20%
25%
Answer
Let rate of interest be r%.
Given,
P = ₹ 10000
A = ₹ 12500
n = 1 year
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 12500 = 10000 × ( 1 + r 100 ) 1 ⇒ 12500 10000 = ( 1 + r 100 ) ⇒ 5 4 = 1 + r 100 ⇒ 5 4 − 1 = r 100 ⇒ 5 − 4 4 = r 100 ⇒ 1 4 = r 100 ⇒ r = 100 4 = 25 \Rightarrow 12500 = 10000 \times \Big(1 + \dfrac{r}{100}\Big)^1 \\[1em] \Rightarrow \dfrac{12500}{10000} = \Big(1 + \dfrac{r}{100}\Big) \\[1em] \Rightarrow \dfrac{5}{4} = 1 + \dfrac{r}{100}\\[1em] \Rightarrow \dfrac{5}{4} - 1 = \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{5 - 4}{4} = \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{1}{4} = \dfrac{r}{100} \\[1em] \Rightarrow r = \dfrac{100}{4} = 25%. ⇒ 12500 = 10000 × ( 1 + 100 r ) 1 ⇒ 10000 12500 = ( 1 + 100 r ) ⇒ 4 5 = 1 + 100 r ⇒ 4 5 − 1 = 100 r ⇒ 4 5 − 4 = 100 r ⇒ 4 1 = 100 r ⇒ r = 4 100 = 25
Hence, Option 4 is the correct option.
The C.I. on ₹ 16000 in 2 years at the rate of 20% per annum is :
₹ 19360
₹ 7040
₹ 23040
₹ 22400
Answer
Given,
P = ₹ 16000
n = 2 years
r = 20%
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
C.I. = A - P
C . I . = P ( 1 + r 100 ) n − P = 16000 × ( 1 + 20 100 ) 2 − 16000 = 16000 × ( 120 100 ) 2 − 16000 = 16000 × ( 6 5 ) 2 − 16000 = 16000 × 36 25 − 16000 = 23040 − 16000 = ₹ 7040. C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = 16000 \times \Big(1 + \dfrac{20}{100}\Big)^2 - 16000 \\[1em] = 16000 \times \Big(\dfrac{120}{100}\Big)^2 - 16000 \\[1em] = 16000 \times \Big(\dfrac{6}{5}\Big)^2 - 16000 \\[1em] = 16000 \times \dfrac{36}{25} - 16000 \\[1em] = 23040 - 16000 \\[1em] = ₹ 7040. C . I . = P ( 1 + 100 r ) n − P = 16000 × ( 1 + 100 20 ) 2 − 16000 = 16000 × ( 100 120 ) 2 − 16000 = 16000 × ( 5 6 ) 2 − 16000 = 16000 × 25 36 − 16000 = 23040 − 16000 = ₹7040.
Hence, Option 2 is the correct option.
Simple interest, at the same rate for the same period as given above in part (c) is :
₹ 7040
₹ 6400
₹ 3200
₹ 1280
Answer
By formula,
S.I. = P × R × T 100 \dfrac{P \times R \times T}{100} 100 P × R × T
Substituting values we get :
S . I . = 16000 × 20 × 2 100 = ₹ 6400. S.I. = \dfrac{16000 \times 20 \times 2}{100} \\[1em] = ₹ 6400. S . I . = 100 16000 × 20 × 2 = ₹6400.
Hence, Option 2 is the correct option.
The difference between C.I. and S.I. in 2 years as given above for parts (c) and (d) is :
₹ 640
₹ 3840
₹ 1920
₹ 1280
Answer
From part (c), we get :
C.I. = ₹ 7040
From part (d), we get :
S.I. = ₹ 6400
C.I. - S.I. = ₹ 7040 - ₹ 6400 = ₹ 640.
Hence, Option 1 is the correct option.
The difference between simple interest and compound interest on a certain sum is ₹ 54.40 for 2 years at 8 percent per annum. Find the sum.
Answer
Given,
n = 2 years
r = 8%
Let sum of money be ₹ P.
C.I. = A - P
= P ( 1 + r 100 ) n − P = P ( 1 + 8 100 ) 2 − P = P × ( 108 100 ) 2 − P = P × ( 27 25 ) 2 − P = P × 729 625 − P = 729 P 625 − P = 729 P − 625 P 625 = 104 P 625 . = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = P\Big(1 + \dfrac{8}{100}\Big)^2 - P \\[1em] = P \times \Big(\dfrac{108}{100}\Big)^2 - P \\[1em] = P \times \Big(\dfrac{27}{25}\Big)^2 - P\\[1em] = P \times \dfrac{729}{625} - P \\[1em] = \dfrac{729P}{625} - P \\[1em] = \dfrac{729P - 625P}{625} \\[1em] = \dfrac{104P}{625}. = P ( 1 + 100 r ) n − P = P ( 1 + 100 8 ) 2 − P = P × ( 100 108 ) 2 − P = P × ( 25 27 ) 2 − P = P × 625 729 − P = 625 729 P − P = 625 729 P − 625 P = 625 104 P .
By formula,
S . I . = P × R × T 100 = P × 8 × 2 100 = 4 P 25 . S.I. = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{P \times 8 \times 2}{100} \\[1em] = \dfrac{4P}{25}. S . I . = 100 P × R × T = 100 P × 8 × 2 = 25 4 P .
Given,
Difference between S.I. and C.I. = ₹ 54.40
⇒ 104 P 625 − 4 P 25 = 54.40 ⇒ 104 P − 100 P 625 = 54.40 ⇒ 4 P 625 = 54.40 ⇒ P = 54.40 × 625 4 ⇒ P = ₹ 8500. \Rightarrow \dfrac{104P}{625} - \dfrac{4P}{25} = 54.40 \\[1em] \Rightarrow \dfrac{104P - 100P}{625} = 54.40 \\[1em] \Rightarrow \dfrac{4P}{625} = 54.40 \\[1em] \Rightarrow P = \dfrac{54.40 \times 625}{4} \\[1em] \Rightarrow P = ₹ 8500. ⇒ 625 104 P − 25 4 P = 54.40 ⇒ 625 104 P − 100 P = 54.40 ⇒ 625 4 P = 54.40 ⇒ P = 4 54.40 × 625 ⇒ P = ₹8500.
Hence, sum = ₹ 8500.
Pramod and Anand each lent the same sum of money for 2 years at 5% at simple interest and compound interest respectively. Anand received ₹ 15 more than Pramod. Find the amount of money lent by each and the interest received.
Answer
Let sum of money be ₹ x.
For Pramod :
P = ₹ x
Time = 2 years
Rate = 5%
S.I. = P × R × T 100 \dfrac{P \times R \times T}{100} 100 P × R × T
Substituting values we get :
S . I . = x × 5 × 2 100 = x 10 . S.I. = \dfrac{x \times 5 \times 2}{100} \\[1em] = \dfrac{x}{10}. S . I . = 100 x × 5 × 2 = 10 x .
For Anand :
P = ₹ x
Time (n) = 2 years
Rate (r) = 5%
C.I. = A - P
C . I . = P ( 1 + r 100 ) n − P = x × ( 1 + 5 100 ) 2 − x = x × ( 105 100 ) 2 − x = x × ( 21 20 ) 2 − x = x × 441 400 − x = 441 x 400 − x = 441 x − 400 x 400 = 41 x 400 . C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = x \times \Big(1 + \dfrac{5}{100}\Big)^2 - x \\[1em] = x \times \Big(\dfrac{105}{100}\Big)^2 - x \\[1em] = x \times \Big(\dfrac{21}{20}\Big)^2 - x \\[1em] = x \times \dfrac{441}{400} - x \\[1em] = \dfrac{441x}{400} - x \\[1em] = \dfrac{441x - 400x}{400} \\[1em] = \dfrac{41x}{400}. C . I . = P ( 1 + 100 r ) n − P = x × ( 1 + 100 5 ) 2 − x = x × ( 100 105 ) 2 − x = x × ( 20 21 ) 2 − x = x × 400 441 − x = 400 441 x − x = 400 441 x − 400 x = 400 41 x .
Given,
Anand received ₹ 15 more than Pramod.
∴ C.I. - S.I. = ₹ 15
⇒ 41 x 400 − x 10 = 15 ⇒ 41 x − 40 x 400 = 15 ⇒ x 400 = 15 ⇒ x = 400 × 15 = ₹ 6000. S . I . = x 10 = 6000 10 = ₹ 600. C . I . = 41 x 400 = 41 × 6000 400 = ₹ 615. \Rightarrow \dfrac{41x}{400} - \dfrac{x}{10} = 15 \\[1em] \Rightarrow \dfrac{41x - 40x}{400} = 15 \\[1em] \Rightarrow \dfrac{x}{400} = 15 \\[1em] \Rightarrow x = 400 \times 15 = ₹ 6000. \\[1em] S.I. = \dfrac{x}{10} = \dfrac{6000}{10} = ₹ 600. \\[1em] C.I. = \dfrac{41x}{400} = \dfrac{41 \times 6000}{400} = ₹ 615. ⇒ 400 41 x − 10 x = 15 ⇒ 400 41 x − 40 x = 15 ⇒ 400 x = 15 ⇒ x = 400 × 15 = ₹6000. S . I . = 10 x = 10 6000 = ₹600. C . I . = 400 41 x = 400 41 × 6000 = ₹615.
Hence, sum lent by each = ₹ 6000 and interest received by Pramod = ₹ 600 and Anand = ₹ 615.
Simple interest on a sum of money for 2 years at 4% is ₹ 450. Find the compound interest on the same sum and at the same rate for 2 years.
Answer
Let the sum be ₹ x.
Given,
Simple interest on the sum of money for 2 years at 4% is ₹ 450.
By formula,
S.I. = P × R × T 100 \dfrac{P \times R \times T}{100} 100 P × R × T
Substituting values we get :
⇒ 450 = x × 4 × 2 100 ⇒ x = 450 × 100 8 ⇒ x = 225 × 25 ⇒ x = ₹ 5625. \Rightarrow 450 = \dfrac{x \times 4 \times 2}{100} \\[1em] \Rightarrow x = \dfrac{450 \times 100}{8} \\[1em] \Rightarrow x = 225 \times 25 \\[1em] \Rightarrow x = ₹5625. ⇒ 450 = 100 x × 4 × 2 ⇒ x = 8 450 × 100 ⇒ x = 225 × 25 ⇒ x = ₹5625.
By formula,
C.I. = A - P
= P ( 1 + r 100 ) n − P = 5625 × ( 1 + 4 100 ) 2 − 5625 = 5625 × ( 104 100 ) 2 − 5625 = 5625 × ( 26 25 ) 2 − 5625 = 5625 × 676 625 − 5625 = 6084 − 5625 = ₹ 459. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = 5625 \times \Big(1 + \dfrac{4}{100}\Big)^2 - 5625 \\[1em] = 5625 \times \Big(\dfrac{104}{100}\Big)^2 - 5625 \\[1em] = 5625 \times \Big(\dfrac{26}{25}\Big)^2 - 5625 \\[1em] = 5625 \times \dfrac{676}{625} - 5625 \\[1em] = 6084 - 5625 \\[1em] = ₹ 459. = P ( 1 + 100 r ) n − P = 5625 × ( 1 + 100 4 ) 2 − 5625 = 5625 × ( 100 104 ) 2 − 5625 = 5625 × ( 25 26 ) 2 − 5625 = 5625 × 625 676 − 5625 = 6084 − 5625 = ₹459.
Hence, the compound interest = ₹ 459.
Compound interest on a certain sum of money at 5% per annum for two years is ₹ 246. Calculate simple interest on the same sum for 3 years at 6% per annum.
Answer
Let sum of money be ₹ x.
By formula,
⇒ C . I . = A − P ⇒ 246 = P ( 1 + r 100 ) n − P ⇒ 246 = x × ( 1 + 5 100 ) 2 − x ⇒ 246 = x × ( 105 100 ) 2 − x ⇒ 246 = x × ( 21 20 ) 2 − x ⇒ 246 = x × 441 400 − x ⇒ 246 = 441 x 400 − x ⇒ 246 = 441 x − 400 x 400 ⇒ 246 = 41 x 400 ⇒ x = 246 × 400 41 ⇒ x = ₹ 2400. \Rightarrow C.I. = A - P \\[1em] \Rightarrow 246 = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] \Rightarrow 246 = x \times \Big(1 + \dfrac{5}{100}\Big)^2 - x \\[1em] \Rightarrow 246 = x \times \Big(\dfrac{105}{100}\Big)^2 - x \\[1em] \Rightarrow 246 = x \times \Big(\dfrac{21}{20}\Big)^2 - x \\[1em] \Rightarrow 246 = x \times \dfrac{441}{400} - x \\[1em] \Rightarrow 246 = \dfrac{441x}{400} - x \\[1em] \Rightarrow 246 = \dfrac{441x - 400x}{400} \\[1em] \Rightarrow 246 = \dfrac{41x}{400} \\[1em] \Rightarrow x = \dfrac{246 \times 400}{41} \\[1em] \Rightarrow x = ₹ 2400. ⇒ C . I . = A − P ⇒ 246 = P ( 1 + 100 r ) n − P ⇒ 246 = x × ( 1 + 100 5 ) 2 − x ⇒ 246 = x × ( 100 105 ) 2 − x ⇒ 246 = x × ( 20 21 ) 2 − x ⇒ 246 = x × 400 441 − x ⇒ 246 = 400 441 x − x ⇒ 246 = 400 441 x − 400 x ⇒ 246 = 400 41 x ⇒ x = 41 246 × 400 ⇒ x = ₹2400.
For S.I. :
P = x = ₹ 2400
R = 6%
T = 3 years
By formula,
⇒ S . I . = P × R × T 100 ⇒ S . I . = x × 6 × 3 100 ⇒ S . I . = 2400 × 6 × 3 100 ⇒ S . I . = ₹ 432. \Rightarrow S.I. = \dfrac{P \times R \times T}{100} \\[1em] \Rightarrow S.I. = \dfrac{x \times 6 \times 3}{100} \\[1em] \Rightarrow S.I. = \dfrac{2400 \times 6 \times 3}{100} \\[1em] \Rightarrow S.I. = ₹ 432. ⇒ S . I . = 100 P × R × T ⇒ S . I . = 100 x × 6 × 3 ⇒ S . I . = 100 2400 × 6 × 3 ⇒ S . I . = ₹432.
Hence, simple interest = ₹ 432.
A sum of money, invested at compounded interest, amounts to ₹ 19360 in 2 years and to ₹ 23425.60 in 4 years. Find the rate percent and the original sum of money.
Answer
Let original sum of money be ₹ P and rate of interest be r%.
By formula,
A = P ( 1 + r 100 ) n A = P\Big(1 + \dfrac{r}{100}\Big)^n A = P ( 1 + 100 r ) n
Given,
Sum amounts to ₹ 19360 in two years.
∴ P ( 1 + r 100 ) 2 = 19360 \therefore P\Big(1 + \dfrac{r}{100}\Big)^2 = 19360 ∴ P ( 1 + 100 r ) 2 = 19360 ......(1)
Given,
Sum amounts to ₹ 23425.60 in four years.
∴ P ( 1 + r 100 ) 4 = 23425.60 \therefore P\Big(1 + \dfrac{r}{100}\Big)^4 = 23425.60 ∴ P ( 1 + 100 r ) 4 = 23425.60 ......(2)
Dividing equation (2) by (1), we get :
⇒ P ( 1 + r 100 ) 4 P ( 1 + r 100 ) 2 = 23425.60 19360 ⇒ ( 1 + r 100 ) 2 = 146.41 121 ⇒ ( 1 + r 100 ) 2 = ( 12.1 11 ) 2 ⇒ 1 + r 100 = 12.1 11 ⇒ r 100 = 12.1 11 − 1 ⇒ r 100 = 12.1 − 11 11 ⇒ r = 1.1 11 × 100 ⇒ r = 10 \Rightarrow \dfrac{P\Big(1 + \dfrac{r}{100}\Big)^4}{P\Big(1 + \dfrac{r}{100}\Big)^2} = \dfrac{23425.60}{19360} \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^2 = \dfrac{146.41}{121} \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^2 = \Big(\dfrac{12.1}{11}\Big)^2 \\[1em] \Rightarrow 1 + \dfrac{r}{100} = \dfrac{12.1}{11} \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{12.1}{11} - 1 \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{12.1 - 11}{11} \\[1em] \Rightarrow r = \dfrac{1.1}{11} \times 100 \\[1em] \Rightarrow r = 10%. ⇒ P ( 1 + 100 r ) 2 P ( 1 + 100 r ) 4 = 19360 23425.60 ⇒ ( 1 + 100 r ) 2 = 121 146.41 ⇒ ( 1 + 100 r ) 2 = ( 11 12.1 ) 2 ⇒ 1 + 100 r = 11 12.1 ⇒ 100 r = 11 12.1 − 1 ⇒ 100 r = 11 12.1 − 11 ⇒ r = 11 1.1 × 100 ⇒ r = 10
Substituting value of r in equation (1), we get :
⇒ P ( 1 + r 100 ) 2 = 19360 ⇒ P ( 1 + 10 100 ) 2 = 19360 ⇒ P ( 110 100 ) 2 = 19360 ⇒ P × ( 11 10 ) 2 = 19360 ⇒ P × 121 100 = 19360 ⇒ P = 19360 × 100 121 ⇒ P = 160 × 100 ⇒ P = ₹ 16000. \Rightarrow P\Big(1 + \dfrac{r}{100}\Big)^2 = 19360 \\[1em] \Rightarrow P\Big(1 + \dfrac{10}{100}\Big)^2 = 19360 \\[1em] \Rightarrow P\Big(\dfrac{110}{100}\Big)^2 = 19360 \\[1em] \Rightarrow P \times \Big(\dfrac{11}{10}\Big)^2 = 19360 \\[1em] \Rightarrow P \times \dfrac{121}{100} = 19360 \\[1em] \Rightarrow P = \dfrac{19360 \times 100}{121} \\[1em] \Rightarrow P = 160 \times 100 \\[1em] \Rightarrow P = ₹ 16000. ⇒ P ( 1 + 100 r ) 2 = 19360 ⇒ P ( 1 + 100 10 ) 2 = 19360 ⇒ P ( 100 110 ) 2 = 19360 ⇒ P × ( 10 11 ) 2 = 19360 ⇒ P × 100 121 = 19360 ⇒ P = 121 19360 × 100 ⇒ P = 160 × 100 ⇒ P = ₹16000.
Hence, sum of money = ₹ 16000 and rate of interest = 10%.
A sum of money let out at C.I. at a certain rate per annum becomes three times of itself in 8 years. Find in how many years will the money become twenty-seven times of itself at the same rate of interest p.a.
Answer
Let rate of interest be r% and sum of money be ₹ P.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Given,
₹ P becomes three times of itself in 8 years.
∴ 3 P = P ( 1 + r 100 ) 8 ⇒ 3 P P = ( 1 + r 100 ) 8 ⇒ 3 = ( 1 + r 100 ) 8 . . . . . ( 1 ) \therefore 3P = P\Big(1 + \dfrac{r}{100}\Big)^8 \\[1em] \Rightarrow \dfrac{3P}{P} = \Big(1 + \dfrac{r}{100}\Big)^8 \\[1em] \Rightarrow 3 = \Big(1 + \dfrac{r}{100}\Big)^8 .....(1) ∴ 3 P = P ( 1 + 100 r ) 8 ⇒ P 3 P = ( 1 + 100 r ) 8 ⇒ 3 = ( 1 + 100 r ) 8 ..... ( 1 )
Let in n years money becomes 27 times.
⇒ P ( 1 + r 100 ) n = 27 P ⇒ ( 1 + r 100 ) n = 27 P P ⇒ ( 1 + r 100 ) n = 27 ⇒ ( 1 + r 100 ) n = 3 3 \Rightarrow P\Big(1 + \dfrac{r}{100}\Big)^n = 27P \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = \dfrac{27P}{P} \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = 27 \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = 3^3 \\[1em] ⇒ P ( 1 + 100 r ) n = 27 P ⇒ ( 1 + 100 r ) n = P 27 P ⇒ ( 1 + 100 r ) n = 27 ⇒ ( 1 + 100 r ) n = 3 3
From equation (1)
⇒ ( 1 + r 100 ) n = [ ( 1 + r 100 ) 8 ] 3 ⇒ ( 1 + r 100 ) n = ( 1 + r 100 ) 24 ⇒ n = 24 years . \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = \Big[\Big(1 + \dfrac{r}{100}\Big)^8\Big]^3 \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n =\Big(1 + \dfrac{r}{100}\Big)^{24} \\[1em] \Rightarrow n = 24 \text{ years}. ⇒ ( 1 + 100 r ) n = [ ( 1 + 100 r ) 8 ] 3 ⇒ ( 1 + 100 r ) n = ( 1 + 100 r ) 24 ⇒ n = 24 years .
Hence, in 24 years money will becomes 27 times of itself.
On what sum of money will compound interest (payable annually) for 2 years be the same as simple interest on ₹ 9430 for 10 years, both at the rate of 5 percent per annum ?
Answer
For S.I. :
P = ₹ 9430
T = 10 years
R = 5%
S . I . = P × R × T 100 = 9430 × 5 × 10 100 = ₹ 4715. S.I. = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{9430 \times 5 \times 10}{100} \\[1em] = ₹ 4715. S . I . = 100 P × R × T = 100 9430 × 5 × 10 = ₹4715.
Since, C.I. = S.I. = ₹ 4715
Let sum on which C.I. = ₹ 4715 for 2 years at 5% be ₹x.
⇒ C . I . = A − P ⇒ 4715 = P ( 1 + r 100 ) n − P ⇒ 4715 = x × ( 1 + 5 100 ) 2 − x ⇒ 4715 = x × ( 105 100 ) 2 − x ⇒ 4715 = x × ( 21 20 ) 2 − x ⇒ 4715 = 441 x 400 − x ⇒ 4715 = 441 x − 400 x 400 ⇒ 4715 = 41 x 400 ⇒ x = 4715 × 400 41 ⇒ x = 115 × 400 ⇒ x = ₹ 46000. \Rightarrow C.I. = A - P \\[1em] \Rightarrow 4715 = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] \Rightarrow 4715 = x \times \Big(1 + \dfrac{5}{100}\Big)^2 - x \\[1em] \Rightarrow 4715 = x \times \Big(\dfrac{105}{100}\Big)^2 - x \\[1em] \Rightarrow 4715 = x \times \Big(\dfrac{21}{20}\Big)^2 - x \\[1em] \Rightarrow 4715 = \dfrac{441x}{400} - x \\[1em] \Rightarrow 4715 = \dfrac{441x - 400x}{400} \\[1em] \Rightarrow 4715 = \dfrac{41x}{400} \\[1em] \Rightarrow x = \dfrac{4715 \times 400}{41} \\[1em] \Rightarrow x = 115 \times 400 \\[1em] \Rightarrow x = ₹ 46000. ⇒ C . I . = A − P ⇒ 4715 = P ( 1 + 100 r ) n − P ⇒ 4715 = x × ( 1 + 100 5 ) 2 − x ⇒ 4715 = x × ( 100 105 ) 2 − x ⇒ 4715 = x × ( 20 21 ) 2 − x ⇒ 4715 = 400 441 x − x ⇒ 4715 = 400 441 x − 400 x ⇒ 4715 = 400 41 x ⇒ x = 41 4715 × 400 ⇒ x = 115 × 400 ⇒ x = ₹46000.
Hence, sum of money = ₹ 46000.
Simple interest on a certain sum of money for 4 years at 4% per annum exceeds the compound interest on the same sum for 3 years at 5 percent per annum by ₹ 228. Find the sum.
Answer
Let sum of money be ₹ x.
For S.I. :
P = ₹ x
Time (T) = 4 years
Rate of interest (R) = 4%
By formula,
S.I. = P × R × T 100 \dfrac{P \times R \times T}{100} 100 P × R × T
Substituting values we get :
⇒ S . I . = x × 4 × 4 100 = 4 x 25 . \Rightarrow S.I. = \dfrac{x \times 4 \times 4}{100} \\[1em] = \dfrac{4x}{25}. ⇒ S . I . = 100 x × 4 × 4 = 25 4 x .
For C.I. :
P = ₹ x
Rate of interest (r) = 5%
Time (n) = 3 years
By formula,
⇒ C . I . = A − P ⇒ C . I . = P ( 1 + r 100 ) n − P = x × ( 1 + 5 100 ) 3 − x = x × ( 105 100 ) 3 − x = x × ( 21 20 ) 3 − x = 9261 x 8000 − x = 9261 x − 8000 x 8000 = 1261 x 8000 . \Rightarrow C.I. = A - P \\[1em] \Rightarrow C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = x \times \Big(1 + \dfrac{5}{100}\Big)^3 - x \\[1em] = x \times \Big(\dfrac{105}{100}\Big)^3 - x \\[1em] = x \times \Big(\dfrac{21}{20}\Big)^3 - x \\[1em] = \dfrac{9261x}{8000} - x \\[1em] = \dfrac{9261x - 8000x}{8000} \\[1em] = \dfrac{1261x}{8000}. ⇒ C . I . = A − P ⇒ C . I . = P ( 1 + 100 r ) n − P = x × ( 1 + 100 5 ) 3 − x = x × ( 100 105 ) 3 − x = x × ( 20 21 ) 3 − x = 8000 9261 x − x = 8000 9261 x − 8000 x = 8000 1261 x .
Given,
Simple interest on ₹ x for 4 years at 4% per annum exceeds the compound interest on the same sum for 3 years at 5 percent per annum by ₹ 228.
∴ 4 x 25 − 1261 x 8000 = 228 ⇒ 1280 x − 1261 x 8000 = 228 ⇒ 19 x 8000 = 228 ⇒ x = 228 × 8000 19 ⇒ x = ₹ 96000. \therefore \dfrac{4x}{25} - \dfrac{1261x}{8000} = 228 \\[1em] \Rightarrow \dfrac{1280x - 1261x}{8000} = 228 \\[1em] \Rightarrow \dfrac{19x}{8000} = 228 \\[1em] \Rightarrow x = \dfrac{228 \times 8000}{19} \\[1em] \Rightarrow x = ₹ 96000. ∴ 25 4 x − 8000 1261 x = 228 ⇒ 8000 1280 x − 1261 x = 228 ⇒ 8000 19 x = 228 ⇒ x = 19 228 × 8000 ⇒ x = ₹96000.
Hence, sum of money = ₹ 96000.
A certain sum of money amounts to ₹ 23400 in 3 years at 10% per annum simple interest. Find the amount of the same sum in 2 years at 10% p.a. compound interest.
Answer
Let sum of money be ₹ x.
Given,
It amounts to ₹ 23400 in 3 years at 10% per annum simple interest.
By formula,
⇒ A = P + S . I . ⇒ 23400 = x + x × 10 × 3 100 ⇒ 23400 = x + 3 x 10 ⇒ 13 x 10 = 23400 ⇒ x = 23400 × 10 13 ⇒ x = ₹ 18000. \Rightarrow A = P + S.I. \\[1em] \Rightarrow 23400 = x + \dfrac{x \times 10 \times 3}{100} \\[1em] \Rightarrow 23400 = x + \dfrac{3x}{10} \\[1em] \Rightarrow \dfrac{13x}{10} = 23400 \\[1em] \Rightarrow x = \dfrac{23400 \times 10}{13} \\[1em] \Rightarrow x = ₹ 18000. ⇒ A = P + S . I . ⇒ 23400 = x + 100 x × 10 × 3 ⇒ 23400 = x + 10 3 x ⇒ 10 13 x = 23400 ⇒ x = 13 23400 × 10 ⇒ x = ₹18000.
In case of compound interest :
By formula,
A = P ( 1 + r 100 ) n = 18000 × ( 1 + 10 100 ) 2 = 18000 × ( 110 100 ) 2 = 18000 × ( 11 10 ) 2 = 18000 × ( 121 100 ) = ₹ 21780. A = P\Big(1 + \dfrac{r}{100}\Big)^n \\[1em] = 18000 \times \Big(1 + \dfrac{10}{100}\Big)^2 \\[1em] = 18000 \times \Big(\dfrac{110}{100}\Big)^2 \\[1em] = 18000 \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] = 18000 \times \Big(\dfrac{121}{100}\Big) \\[1em] = ₹ 21780. A = P ( 1 + 100 r ) n = 18000 × ( 1 + 100 10 ) 2 = 18000 × ( 100 110 ) 2 = 18000 × ( 10 11 ) 2 = 18000 × ( 100 121 ) = ₹21780.
Hence, amount on same sum in 2 years at 10% p.a. compound interest = ₹ 21780.
Mohit borrowed a certain sum at 5% per annum compound interest and cleared this loan by paying ₹ 12600 at the end of the first year and ₹ 17640 at the end of the second year. Find the sum borrowed.
Answer
Let Mohit borrowed ₹ x and ₹ y.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
For ₹ 12600,
P = ₹ x
A = ₹ 12600
r = 5%
n = 1 year
Substituting values in formula we get :
⇒ 12600 = x × ( 1 + 5 100 ) 1 ⇒ 12600 = x × 105 100 ⇒ x = 12600 × 100 105 ⇒ x = ₹ 12000. \Rightarrow 12600 = x \times \Big(1 + \dfrac{5}{100}\Big)^1 \\[1em] \Rightarrow 12600 = x \times \dfrac{105}{100} \\[1em] \Rightarrow x = \dfrac{12600 \times 100}{105} \\[1em] \Rightarrow x = ₹ 12000. ⇒ 12600 = x × ( 1 + 100 5 ) 1 ⇒ 12600 = x × 100 105 ⇒ x = 105 12600 × 100 ⇒ x = ₹12000.
For ₹ 17640,
P = ₹ y
A = ₹ 17640
r = 5%
n = 2 year
Substituting values in formula we get :
⇒ 17640 = y × ( 1 + 5 100 ) 2 ⇒ 17640 = y × ( 105 100 ) 2 ⇒ 17640 = y × ( 21 20 ) 2 ⇒ y = 17640 × 20 2 21 2 ⇒ y = ₹ 16000. \Rightarrow 17640 = y \times \Big(1 + \dfrac{5}{100}\Big)^2 \\[1em] \Rightarrow 17640 = y \times \Big(\dfrac{105}{100}\Big)^2 \\[1em] \Rightarrow 17640 = y \times \Big(\dfrac{21}{20}\Big)^2 \\[1em] \Rightarrow y = \dfrac{17640 \times 20^2}{21^2} \\[1em] \Rightarrow y = ₹ 16000. ⇒ 17640 = y × ( 1 + 100 5 ) 2 ⇒ 17640 = y × ( 100 105 ) 2 ⇒ 17640 = y × ( 20 21 ) 2 ⇒ y = 2 1 2 17640 × 2 0 2 ⇒ y = ₹16000.
Total money borrowed = ₹ (x + y) = ₹ (12000 + 16000) = ₹ 28000.
Hence, sum borrowed = ₹ 28000.
If the letters have usual meanings, the formula for finding compound interest, compounded yearly for the given time is :
1 1 2 1\dfrac{1}{2} 1 2 1 years :
P [ ( 1 + r 100 ) 1 1 2 − 1 ] P\Big[\Big(1 + \dfrac{r}{100}\Big)^{1\dfrac{1}{2}}- 1\Big] P [ ( 1 + 100 r ) 1 2 1 − 1 ]
P ( 1 + r 100 ) ( 1 + r 200 ) P\Big(1 + \dfrac{r}{100}\Big)\Big(1 + \dfrac{r}{200}\Big) P ( 1 + 100 r ) ( 1 + 200 r ) - P
P ( 1 + r 200 ) 3 P\Big(1 + \dfrac{r}{200}\Big)^3 P ( 1 + 200 r ) 3
P ( 1 + r 100 ) 3 ( 1 + r 200 ) − P P\Big(1 + \dfrac{r}{100}\Big)^3\Big(1 + \dfrac{r}{200}\Big)- P P ( 1 + 100 r ) 3 ( 1 + 200 r ) − P
Answer
Let sum = ₹ P.
Amount for first year :
A = P ( 1 + r 100 ) 1 P\Big(1 + \dfrac{r}{100}\Big)^1 P ( 1 + 100 r ) 1
For next 1 2 \dfrac{1}{2} 2 1 year :
Sum = ₹ P ( 1 + r 100 ) P\Big(1 + \dfrac{r}{100}\Big) P ( 1 + 100 r )
A = P ( 1 + r 100 ) ( 1 + r 2 × 100 ) 1 2 × 2 = P ( 1 + r 100 ) ( 1 + r 200 ) P\Big(1 + \dfrac{r}{100}\Big)\Big(1 + \dfrac{r}{2 \times 100}\Big)^{\dfrac{1}{2} \times 2} = P\Big(1 + \dfrac{r}{100}\Big)\Big(1 + \dfrac{r}{200}\Big) P ( 1 + 100 r ) ( 1 + 2 × 100 r ) 2 1 × 2 = P ( 1 + 100 r ) ( 1 + 200 r )
By formula,
C.I. = A - P = P ( 1 + r 100 ) ( 1 + r 200 ) − P P\Big(1 + \dfrac{r}{100}\Big)\Big(1 + \dfrac{r}{200}\Big) - P P ( 1 + 100 r ) ( 1 + 200 r ) − P
Hence, Option 2 is the correct option.
If the letters have usual meanings, the formula for finding compound interest, compounded yearly for the given time is :
1 year :
P ( 1 + r 100 ) 1 − P P\Big(1 + \dfrac{r}{100}\Big)^1 - P P ( 1 + 100 r ) 1 − P
P ( 1 + r 200 ) P\Big(1 + \dfrac{r}{200}\Big) P ( 1 + 200 r ) - P
P ( 1 + 1 200 ) 2 P\Big(1 + \dfrac{1}{200}\Big)^2 P ( 1 + 200 1 ) 2 - P
P ( 1 − r 200 ) 2 P\Big(1 - \dfrac{r}{200}\Big)^2 P ( 1 − 200 r ) 2 - P
Answer
By formula,
C.I. = A - P
C . I . = P ( 1 + r 100 ) 1 − P C.I. = P\Big(1 + \dfrac{r}{100}\Big)^1 - P C . I . = P ( 1 + 100 r ) 1 − P
Hence, Option 1 is the correct option.
If the letters have usual meanings, the formula for finding compound interest, compounded yearly for the given time is :
2 1 2 2\dfrac{1}{2} 2 2 1 years :
P ( 1 + r 100 ) 5 2 − P P\Big(1 + \dfrac{r}{100}\Big)^{\dfrac{5}{2}} - P P ( 1 + 100 r ) 2 5 − P
P ( 1 + r 100 ) 5 2 P\Big(1 + \dfrac{r}{100}\Big)^{\dfrac{5}{2}} P ( 1 + 100 r ) 2 5
P ( 1 + r 100 ) 2 ( 1 + r 200 ) P\Big(1 + \dfrac{r}{100}\Big)^2\Big(1 + \dfrac{r}{200}\Big) P ( 1 + 100 r ) 2 ( 1 + 200 r )
P ( 1 + r 100 ) 2 ( 1 + r 200 ) P\Big(1 + \dfrac{r}{100}\Big)^2\Big(1 + \dfrac{r}{200}\Big) P ( 1 + 100 r ) 2 ( 1 + 200 r ) - P
Answer
Amount for first two years :
A = P ( 1 + r 100 ) 2 P\Big(1 + \dfrac{r}{100}\Big)^2 P ( 1 + 100 r ) 2
For next 1 2 \dfrac{1}{2} 2 1 year :
Sum = ₹ P ( 1 + r 100 ) 2 P\Big(1 + \dfrac{r}{100}\Big)^2 P ( 1 + 100 r ) 2
A = P ( 1 + r 100 ) 2 ( 1 + r 2 × 100 ) 1 2 × 2 = P ( 1 + r 100 ) 2 ( 1 + r 200 ) P\Big(1 + \dfrac{r}{100}\Big)^2\Big(1 + \dfrac{r}{2 \times 100}\Big)^{\dfrac{1}{2} \times 2} = P\Big(1 + \dfrac{r}{100}\Big)^2\Big(1 + \dfrac{r}{200}\Big) P ( 1 + 100 r ) 2 ( 1 + 2 × 100 r ) 2 1 × 2 = P ( 1 + 100 r ) 2 ( 1 + 200 r )
By formula,
C.I. = A - P = P ( 1 + r 100 ) 2 ( 1 + r 200 ) − P P\Big(1 + \dfrac{r}{100}\Big)^2\Big(1 + \dfrac{r}{200}\Big) - P P ( 1 + 100 r ) 2 ( 1 + 200 r ) − P
Hence, Option 4 is the correct option.
When interest is compounded half-yearly then the formula for C.I. for the given time is :
1 year :
P ( 1 + r 200 ) 2 − P P\Big(1 + \dfrac{r}{200}\Big)^2 - P P ( 1 + 200 r ) 2 − P
P ( 1 + r 100 ) 2 − P P\Big(1 + \dfrac{r}{100}\Big)^2 - P P ( 1 + 100 r ) 2 − P
P ( 1 + r 200 ) 2 P\Big(1 + \dfrac{r}{200}\Big)^2 P ( 1 + 200 r ) 2
P ( 1 + r 100 ) 2 P\Big(1 + \dfrac{r}{100}\Big)^2 P ( 1 + 100 r ) 2
Answer
When interest is compounded half-yearly.
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
C.I. = A - P
For 1 year :
C . I . = P ( 1 + r 2 × 100 ) 1 × 2 − P = P ( 1 + r 200 ) 2 − P C.I. = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{1 \times 2} - P \\[1em] = P\Big(1 + \dfrac{r}{200}\Big)^2 - P C . I . = P ( 1 + 2 × 100 r ) 1 × 2 − P = P ( 1 + 200 r ) 2 − P
Hence, Option 1 is the correct option.
When interest is compounded half-yearly then the formula for C.I. for the given time is :
1 1 2 1\dfrac{1}{2} 1 2 1 years
P ( 1 + r 200 ) 3 2 − P P\Big(1 + \dfrac{r}{200}\Big)^{\dfrac{3}{2}} - P P ( 1 + 200 r ) 2 3 − P
P ( 1 + r 200 ) 3 − P P\Big(1 + \dfrac{r}{200}\Big)^3 - P P ( 1 + 200 r ) 3 − P
P ( 1 + r 100 ) 3 − P P\Big(1 + \dfrac{r}{100}\Big)^3 - P P ( 1 + 100 r ) 3 − P
P ( 1 + r 100 ) 3 2 − P P\Big(1 + \dfrac{r}{100}\Big)^{\dfrac{3}{2}} - P P ( 1 + 100 r ) 2 3 − P
Answer
When interest is compounded half-yearly.
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
C.I. = A - P
C . I . = P ( 1 + r 2 × 100 ) 3 2 × 2 − P = P ( 1 + r 200 ) 3 − P C.I. = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{\dfrac{3}{2} \times 2} - P \\[1em] = P\Big(1 + \dfrac{r}{200}\Big)^3 - P C . I . = P ( 1 + 2 × 100 r ) 2 3 × 2 − P = P ( 1 + 200 r ) 3 − P
Hence, Option 2 is the correct option.
When interest is compounded half-yearly then the formula for C.I. for the given time is :
2 years :
P ( 1 + r 100 ) 2 − P P\Big(1 + \dfrac{r}{100}\Big)^2 - P P ( 1 + 100 r ) 2 − P
P ( 1 + r 200 ) 2 − P P\Big(1 + \dfrac{r}{200}\Big)^2 - P P ( 1 + 200 r ) 2 − P
P ( 1 + r 200 ) 4 − P P\Big(1 + \dfrac{r}{200}\Big)^4 - P P ( 1 + 200 r ) 4 − P
P ( 1 + r 100 ) 4 − P P\Big(1 + \dfrac{r}{100}\Big)^4 - P P ( 1 + 100 r ) 4 − P
Answer
When interest is compounded half-yearly.
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
C.I. = A - P
C . I . = P ( 1 + r 2 × 100 ) 2 × 2 − P = P ( 1 + r 200 ) 4 − P C.I. = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{2 \times 2} - P \\[1em] = P\Big(1 + \dfrac{r}{200}\Big)^4 - P C . I . = P ( 1 + 2 × 100 r ) 2 × 2 − P = P ( 1 + 200 r ) 4 − P
Hence, Option 3 is the correct option.
If ₹ 6000 earns C.I. = ₹ 1200 in 6 months; then the rate of interest per year is :
40%
15%
20%
24%
Answer
Let rate of interest be r%.
Given,
P = ₹ 6000
C.I. = ₹ 1200
By formula,
⇒ C . I . = P ( 1 + r 2 × 100 ) n × 2 − P ⇒ 1200 = 6000 ( 1 + r 200 ) 1 2 × 2 − 6000 ⇒ 1200 + 6000 = 6000 ( 1 + r 200 ) ⇒ 7200 = 6000 ( 1 + r 200 ) ⇒ 7200 6000 = ( 1 + r 200 ) ⇒ 7200 6000 − 1 = r 200 ⇒ 7200 − 6000 6000 = r 200 ⇒ 1200 6000 = r 200 ⇒ r = 1200 6000 × 200 ⇒ r = 40 \Rightarrow C.I. = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} - P \\[1em] \Rightarrow 1200 = 6000\Big(1 + \dfrac{r}{200}\Big)^{\dfrac{1}{2} \times 2} - 6000 \\[1em] \Rightarrow 1200 + 6000 = 6000\Big(1 + \dfrac{r}{200}\Big) \\[1em] \Rightarrow 7200 = 6000\Big(1 + \dfrac{r}{200}\Big) \\[1em] \Rightarrow \dfrac{7200}{6000} = \Big(1 + \dfrac{r}{200}\Big) \\[1em] \Rightarrow \dfrac{7200}{6000} - 1 = \dfrac{r}{200} \\[1em] \Rightarrow \dfrac{7200 - 6000}{6000} = \dfrac{r}{200} \\[1em] \Rightarrow \dfrac{1200}{6000} = \dfrac{r}{200} \\[1em] \Rightarrow r = \dfrac{1200}{6000} \times 200 \\[1em] \Rightarrow r = 40% ⇒ C . I . = P ( 1 + 2 × 100 r ) n × 2 − P ⇒ 1200 = 6000 ( 1 + 200 r ) 2 1 × 2 − 6000 ⇒ 1200 + 6000 = 6000 ( 1 + 200 r ) ⇒ 7200 = 6000 ( 1 + 200 r ) ⇒ 6000 7200 = ( 1 + 200 r ) ⇒ 6000 7200 − 1 = 200 r ⇒ 6000 7200 − 6000 = 200 r ⇒ 6000 1200 = 200 r ⇒ r = 6000 1200 × 200 ⇒ r = 40
Hence, Option 1 is the correct option.
On a certain sum, the S.I. for 2 years is ₹ 2400. If the rate of interest is 10% p.a., then :
C.I. for 1st year is :
₹ 1200
₹ 1320
₹ 1800
₹ 2640
Answer
Let sum of money be ₹ x.
Given,
S.I. = ₹ 2400
Time = 2 years
Rate = 10%
By formula,
⇒ S . I . = P × R × T 100 ⇒ 2400 = x × 10 × 2 100 ⇒ x = 2400 × 100 10 × 2 ⇒ x = ₹ 12000. \Rightarrow S.I. = \dfrac{P \times R \times T}{100} \\[1em] \Rightarrow 2400 = \dfrac{x \times 10 \times 2}{100} \\[1em] \Rightarrow x = \dfrac{2400 \times 100}{10 \times 2} \\[1em] \Rightarrow x = ₹ 12000. ⇒ S . I . = 100 P × R × T ⇒ 2400 = 100 x × 10 × 2 ⇒ x = 10 × 2 2400 × 100 ⇒ x = ₹12000.
By formula,
C.I. = A - P
C . I . = P ( 1 + r 100 ) 1 − P = 12000 ( 1 + 10 100 ) 1 − 12000 = 12000 ( 1 + 1 10 ) 1 − 12000 = 12000 × ( 11 10 ) 1 − 12000 = 12000 × 11 10 − 12000 = 13200 − 12000 = ₹ 1200. C.I. = P\Big(1 + \dfrac{r}{100}\Big)^1 - P \\[1em] = 12000\Big(1 + \dfrac{10}{100}\Big)^1 - 12000 \\[1em] = 12000\Big(1 + \dfrac{1}{10}\Big)^1 - 12000 \\[1em] = 12000 \times \Big(\dfrac{11}{10}\Big)^1 - 12000 \\[1em] = 12000 \times \dfrac{11}{10} - 12000 \\[1em] = 13200 - 12000 \\[1em] = ₹ 1200. C . I . = P ( 1 + 100 r ) 1 − P = 12000 ( 1 + 100 10 ) 1 − 12000 = 12000 ( 1 + 10 1 ) 1 − 12000 = 12000 × ( 10 11 ) 1 − 12000 = 12000 × 10 11 − 12000 = 13200 − 12000 = ₹1200.
Hence, Option 1 is the correct option.
On a certain sum, the S.I. for 2 years is ₹ 2400. If the rate of interest is 10% p.a., then :
C.I. for 2nd year is :
₹ 1320
₹ 2640
₹ 1980
₹ 2400
Answer
For 2nd year :
P = 12000 + 1200 = ₹ 13200
By formula,
C.I. = A - P
C . I . = P ( 1 + r 100 ) 1 − P = 13200 ( 1 + 10 100 ) 1 − 13200 = 13200 × 110 100 − 13200 = 14520 − 13200 = ₹ 1320. C.I. = P\Big(1 + \dfrac{r}{100}\Big)^1 - P \\[1em] = 13200\Big(1 + \dfrac{10}{100}\Big)^1 - 13200 \\[1em] = 13200 \times \dfrac{110}{100} - 13200 \\[1em] = 14520 - 13200 \\[1em] = ₹ 1320. C . I . = P ( 1 + 100 r ) 1 − P = 13200 ( 1 + 100 10 ) 1 − 13200 = 13200 × 100 110 − 13200 = 14520 − 13200 = ₹1320.
Hence, Option 1 is the correct option.
On a certain sum, the S.I. for 2 years is ₹ 2400. If the rate of interest is 10% p.a., then :
the sum is :
₹ 12000
₹ 26400
₹ 13200
₹ 24000
Answer
Let sum of money be ₹ x.
Given,
S.I. = ₹ 2400
Time = 2 years
Rate = 10%
By formula,
⇒ S . I . = P × R × T 100 ⇒ 2400 = x × 10 × 2 100 ⇒ x = 2400 × 100 10 × 2 ⇒ x = ₹ 12000. \Rightarrow S.I. = \dfrac{P \times R \times T}{100} \\[1em] \Rightarrow 2400 = \dfrac{x \times 10 \times 2}{100} \\[1em] \Rightarrow x = \dfrac{2400 \times 100}{10 \times 2} \\[1em] \Rightarrow x = ₹ 12000. ⇒ S . I . = 100 P × R × T ⇒ 2400 = 100 x × 10 × 2 ⇒ x = 10 × 2 2400 × 100 ⇒ x = ₹12000.
P = ₹ x = ₹ 12000.
Hence, Option 1 is the correct option.
On a certain sum, the S.I. for 2 years is ₹ 2400. If the rate of interest is 10% p.a., then :
the amount in 2 years, at compound interest is :
₹ 14520
₹ 12000
₹ 12120
₹ 24000
Answer
Amount in 2 years = Principal + C.I. for 1st year + C.I. for 2nd year
= ₹ 12000 + ₹ 1200 + ₹ 1320
= ₹ 14520.
Hence, Option 1 is the correct option.
If the interest is compounded half-yearly, calculate the amount when principal is ₹ 7400; the rate of interest is 5% per annum and the duration is one year.
Answer
Given,
P = ₹ 7400
r = 5% compounded half-yearly
n = 1 year
When rate of interest is compounded half-yearly,
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
Substituting values we get :
A = 7400 × ( 1 + 5 2 × 100 ) 1 × 2 = 7400 × ( 1 + 1 40 ) 2 = 7400 × ( 41 40 ) 2 = 7400 × 1681 1600 = ₹ 7774.63 A = 7400 \times \Big(1 + \dfrac{5}{2 \times 100}\Big)^{1 \times 2} \\[1em] = 7400 \times \Big(1 + \dfrac{1}{40}\Big)^2 \\[1em] = 7400 \times \Big(\dfrac{41}{40}\Big)^2 \\[1em] = 7400 \times \dfrac{1681}{1600} \\[1em] = ₹ 7774.63 A = 7400 × ( 1 + 2 × 100 5 ) 1 × 2 = 7400 × ( 1 + 40 1 ) 2 = 7400 × ( 40 41 ) 2 = 7400 × 1600 1681 = ₹7774.63
Hence, amount = ₹ 7774.63
Find the difference between the compound interest compounded yearly and half-yearly on ₹ 10000 for 18 months at 10% per annum.
Answer
Given,
P = ₹ 10000
n = 18 months or 1.5 years
r = 10%
When interest is compounded yearly :
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
For 1st year :
A = 10000 × ( 1 + 10 100 ) 1 = 10000 × 110 100 = ₹ 11000. A = 10000 \times \Big(1 + \dfrac{10}{100}\Big)^1 \\[1em] = 10000 \times \dfrac{110}{100} \\[1em] = ₹ 11000. A = 10000 × ( 1 + 100 10 ) 1 = 10000 × 100 110 = ₹11000.
For next half-year :
₹ 11000 is the principal.
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
Substituting values we get :
A = 11000 × ( 1 + 10 2 × 100 ) 1 2 × 2 = 11000 × ( 1 + 1 20 ) 1 = 11000 × 21 20 = ₹ 11550. A = 11000 \times \Big(1 + \dfrac{10}{2 \times 100}\Big)^{\dfrac{1}{2} \times 2} \\[1em] = 11000 \times \Big(1 + \dfrac{1}{20}\Big)^1 \\[1em] = 11000 \times \dfrac{21}{20} \\[1em] = ₹ 11550. A = 11000 × ( 1 + 2 × 100 10 ) 2 1 × 2 = 11000 × ( 1 + 20 1 ) 1 = 11000 × 20 21 = ₹11550.
When rate of interest is compounded half-yearly :
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
Substituting values we get :
A = 10000 × ( 1 + 10 2 × 100 ) 1.5 × 2 = 10000 × ( 1 + 1 20 ) 3 = 10000 × ( 21 20 ) 3 = 10000 × 9261 8000 = ₹ 11576.25 A = 10000 \times \Big(1 + \dfrac{10}{2 \times 100}\Big)^{1.5 \times 2} \\[1em] = 10000 \times \Big(1 + \dfrac{1}{20}\Big)^3\\[1em] = 10000 \times \Big(\dfrac{21}{20}\Big)^3 \\[1em] = 10000 \times \dfrac{9261}{8000} \\[1em] = ₹ 11576.25 A = 10000 × ( 1 + 2 × 100 10 ) 1.5 × 2 = 10000 × ( 1 + 20 1 ) 3 = 10000 × ( 20 21 ) 3 = 10000 × 8000 9261 = ₹11576.25
Difference in C.I. between two cases = ₹ 11576.25 - ₹ 11550 = ₹ 26.25
Hence, difference between C.I. in two cases = ₹ 26.25
A man borrowed ₹ 16000 for 3 years under the following terms :
20% simple interest for the first 2 years.
20% C.I. for the remaining one year on the amount due after 2 years, the interest being compounded half-yearly.
Find the total amount to be paid at the end of three years.
Answer
For S.I. :
P = ₹ 16000
Time = 2 years
Rate = 20%
S.I. = P × R × T 100 = 16000 × 2 × 20 100 \dfrac{P \times R \times T}{100} = \dfrac{16000 \times 2 \times 20}{100} 100 P × R × T = 100 16000 × 2 × 20 = ₹ 6400.
Amount = P + S.I. = ₹ 16000 + ₹ 6400 = ₹ 22400.
For C.I. :
P = ₹ 22400
Time = 1 year
Rate = 20%
When interest is compounded half-yearly :
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
Substituting values we get :
A = 22400 ( 1 + 20 2 × 100 ) 1 × 2 = 22400 × ( 1 + 1 10 ) 2 = 22400 × ( 11 10 ) 2 = 22400 × 121 100 = 224 × 121 = ₹ 27104. A = 22400\Big(1 + \dfrac{20}{2 \times 100}\Big)^{1 \times 2} \\[1em] = 22400 \times \Big(1 + \dfrac{1}{10}\Big)^2 \\[1em] = 22400 \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] = 22400 \times \dfrac{121}{100} \\[1em] = 224 \times 121 \\[1em] = ₹ 27104. A = 22400 ( 1 + 2 × 100 20 ) 1 × 2 = 22400 × ( 1 + 10 1 ) 2 = 22400 × ( 10 11 ) 2 = 22400 × 100 121 = 224 × 121 = ₹27104.
Hence, total amount to be paid = ₹ 27104.
What sum of money will amount to ₹ 27783 in one and a half years at 10% per annum compounded half-yearly ?
Answer
Let sum of money be ₹ x.
Given,
Time = 1.5 years
Rate = 10% compounded half-yearly
When rate of interest is compounded half-yearly :
By formula,
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
Substituting values we get :
⇒ 27783 = x × ( 1 + 10 2 × 100 ) 1.5 × 2 ⇒ 27783 = x × ( 1 + 1 20 ) 3 ⇒ 27783 = x × ( 21 20 ) 3 ⇒ 27783 = 9261 x 8000 ⇒ x = 27783 × 8000 9261 ⇒ x = ₹ 24000. \Rightarrow 27783 = x \times \Big(1 + \dfrac{10}{2 \times 100}\Big)^{1.5 \times 2} \\[1em] \Rightarrow 27783 = x \times \Big(1 + \dfrac{1}{20}\Big)^3 \\[1em] \Rightarrow 27783 = x \times \Big(\dfrac{21}{20}\Big)^3 \\[1em] \Rightarrow 27783 = \dfrac{9261x}{8000} \\[1em] \Rightarrow x = \dfrac{27783 \times 8000}{9261} \\[1em] \Rightarrow x = ₹ 24000. ⇒ 27783 = x × ( 1 + 2 × 100 10 ) 1.5 × 2 ⇒ 27783 = x × ( 1 + 20 1 ) 3 ⇒ 27783 = x × ( 20 21 ) 3 ⇒ 27783 = 8000 9261 x ⇒ x = 9261 27783 × 8000 ⇒ x = ₹24000.
Hence, sum of money = ₹ 24000.
Ashok invests a certain sum of money at 20% per annum, compounded yearly. Geeta invests an equal amount of money at the same rate of interest per annum compounded half-yearly. If Geeta gets ₹ 33 more than Ashok in 18 months, calculate the money invested.
Answer
Given,
r = 20%
n = 18 months or 1.5 years
Let sum of money invested by both be ₹ x.
For Ashok interest is compounded annually :
For 1st year :
A = P ( 1 + r 100 ) n = x × ( 1 + 20 100 ) 1 = x × ( 120 100 ) 1 = x × 6 5 = 6 x 5 . A = P\Big(1 + \dfrac{r}{100}\Big)^n \\[1em] = x \times \Big(1 + \dfrac{20}{100}\Big)^1 \\[1em] = x \times \Big(\dfrac{120}{100}\Big)^1 \\[1em] = x \times \dfrac{6}{5} \\[1em] = \dfrac{6x}{5}. A = P ( 1 + 100 r ) n = x × ( 1 + 100 20 ) 1 = x × ( 100 120 ) 1 = x × 5 6 = 5 6 x .
For next 1 2 \dfrac{1}{2} 2 1 year :
P = 6 x 5 \dfrac{6x}{5} 5 6 x
A = P ( 1 + r 100 × 2 ) n × 2 = 6 x 5 × ( 1 + 20 100 × 2 ) 1 2 × 2 = 6 x 5 × ( 1 + 20 200 ) 1 = 6 x 5 × ( 220 200 ) = 66 x 50 . A = P\Big(1 + \dfrac{r}{100 \times 2}\Big)^{n \times 2} \\[1em] = \dfrac{6x}{5} \times \Big(1 + \dfrac{20}{100 \times 2}\Big)^{\dfrac{1}{2} \times 2} \\[1em] = \dfrac{6x}{5} \times \Big(1 + \dfrac{20}{200}\Big)^1 \\[1em] = \dfrac{6x}{5} \times \Big(\dfrac{220}{200}\Big) \\[1em] = \dfrac{66x}{50}. A = P ( 1 + 100 × 2 r ) n × 2 = 5 6 x × ( 1 + 100 × 2 20 ) 2 1 × 2 = 5 6 x × ( 1 + 200 20 ) 1 = 5 6 x × ( 200 220 ) = 50 66 x .
For Geeta interest is compounded half-yearly :
A = P ( 1 + r 100 × 2 ) n × 2 = x × ( 1 + 20 100 × 2 ) 1.5 × 2 = x × ( 1 + 20 200 ) 3 = x × ( 220 200 ) 3 = x × ( 11 10 ) 3 = x × 1331 1000 = 1331 x 1000 . A = P\Big(1 + \dfrac{r}{100 \times 2}\Big)^{n \times 2} \\[1em] = x \times \Big(1 + \dfrac{20}{100 \times 2}\Big)^{1.5 \times 2} \\[1em] = x \times \Big(1 + \dfrac{20}{200}\Big)^3 \\[1em] = x \times \Big(\dfrac{220}{200}\Big)^3 \\[1em] = x \times \Big(\dfrac{11}{10}\Big)^3 \\[1em] = x \times \dfrac{1331}{1000} \\[1em] = \dfrac{1331x}{1000}. A = P ( 1 + 100 × 2 r ) n × 2 = x × ( 1 + 100 × 2 20 ) 1.5 × 2 = x × ( 1 + 200 20 ) 3 = x × ( 200 220 ) 3 = x × ( 10 11 ) 3 = x × 1000 1331 = 1000 1331 x .
Given, Geeta receives ₹ 33 more :
∴ 1331 x 1000 − 66 x 50 = 33 ⇒ 1331 x − 1320 x 1000 = 33 ⇒ 11 x 1000 = 33 ⇒ x = 33 × 1000 11 ⇒ x = ₹ 3000. \therefore \dfrac{1331x}{1000} - \dfrac{66x}{50} = 33 \\[1em] \Rightarrow \dfrac{1331x - 1320x}{1000} = 33 \\[1em] \Rightarrow \dfrac{11x}{1000} = 33 \\[1em] \Rightarrow x = \dfrac{33 \times 1000}{11} \\[1em] \Rightarrow x = ₹ 3000. ∴ 1000 1331 x − 50 66 x = 33 ⇒ 1000 1331 x − 1320 x = 33 ⇒ 1000 11 x = 33 ⇒ x = 11 33 × 1000 ⇒ x = ₹3000.
Hence, sum invested by both = ₹ 3000.
At what rate of interest per annum will a sum of ₹ 62500 earn a compound interest of ₹ 5100 in one year ? The interest is to be compounded half-yearly ?
Answer
Let rate of interest be r% per annum.
When interest is compounded half-yearly.
A = P ( 1 + r 2 × 100 ) n × 2 A = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} A = P ( 1 + 2 × 100 r ) n × 2
Substituting values we get :
⇒ C . I . = A − P ⇒ C . I . = P ( 1 + r 2 × 100 ) n × 2 − P ⇒ 5100 = 62500 × ( 1 + r 200 ) 1 × 2 − 62500 ⇒ 5100 + 62500 = 62500 × ( 1 + r 200 ) 2 ⇒ 67600 = 62500 × ( 1 + r 200 ) 2 ⇒ 67600 62500 = ( 1 + r 200 ) 2 ⇒ 676 625 = ( 1 + r 200 ) 2 ⇒ ( 26 25 ) 2 = ( 1 + r 200 ) 2 ⇒ 1 + r 200 = 26 25 ⇒ r 200 = 26 25 − 1 ⇒ r 200 = 1 25 ⇒ r = 200 25 = 8 \Rightarrow C.I. = A - P \\[1em] \Rightarrow C.I. = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} - P \\[1em] \Rightarrow 5100 = 62500 \times \Big(1 + \dfrac{r}{200}\Big)^{1 \times 2} - 62500 \\[1em] \Rightarrow 5100 + 62500 = 62500 \times \Big(1 + \dfrac{r}{200}\Big)^2 \\[1em] \Rightarrow 67600 = 62500 \times \Big(1 + \dfrac{r}{200}\Big)^2 \\[1em] \Rightarrow \dfrac{67600}{62500} = \Big(1 + \dfrac{r}{200}\Big)^2 \\[1em] \Rightarrow \dfrac{676}{625} = \Big(1 + \dfrac{r}{200}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{26}{25}\Big)^2 = \Big(1 + \dfrac{r}{200}\Big)^2 \\[1em] \Rightarrow 1 + \dfrac{r}{200} = \dfrac{26}{25} \\[1em] \Rightarrow \dfrac{r}{200} = \dfrac{26}{25}- 1 \\[1em] \Rightarrow \dfrac{r}{200} = \dfrac{1}{25} \\[1em] \Rightarrow r = \dfrac{200}{25} = 8%. ⇒ C . I . = A − P ⇒ C . I . = P ( 1 + 2 × 100 r ) n × 2 − P ⇒ 5100 = 62500 × ( 1 + 200 r ) 1 × 2 − 62500 ⇒ 5100 + 62500 = 62500 × ( 1 + 200 r ) 2 ⇒ 67600 = 62500 × ( 1 + 200 r ) 2 ⇒ 62500 67600 = ( 1 + 200 r ) 2 ⇒ 625 676 = ( 1 + 200 r ) 2 ⇒ ( 25 26 ) 2 = ( 1 + 200 r ) 2 ⇒ 1 + 200 r = 25 26 ⇒ 200 r = 25 26 − 1 ⇒ 200 r = 25 1 ⇒ r = 25 200 = 8
Hence, rate of interest = 8%.
In what time will ₹ 1500 yield ₹ 496.50 as compound interest at 20% per year compounded half-yearly ?
Answer
Given,
C.I. = ₹ 496.50
P = ₹ 1500
Rate = 20%
A = P + C.I. = ₹ 1500 + ₹ 496.50 = ₹ 1996.50
Let time required be n years.
When interest is compounded half-yearly.
⇒ A = P ( 1 + r 2 × 100 ) n × 2 ⇒ 1996.50 = 1500 × ( 1 + 20 200 ) 2 n ⇒ 1996.50 1500 = ( 1 + 20 200 ) 2 n ⇒ 199650 150000 = ( 220 200 ) 2 n ⇒ 1331 1000 = ( 11 10 ) 2 n ⇒ ( 11 10 ) 3 = ( 11 10 ) 2 n ⇒ 2 n = 3 ⇒ n = 3 2 . \Rightarrow A = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} \\[1em] \Rightarrow 1996.50 = 1500 \times \Big(1 + \dfrac{20}{200}\Big)^{2n} \\[1em] \Rightarrow \dfrac{1996.50}{1500} = \Big(1 + \dfrac{20}{200}\Big)^{2n} \\[1em] \Rightarrow \dfrac{199650}{150000} = \Big(\dfrac{220}{200}\Big)^{2n} \\[1em] \Rightarrow \dfrac{1331}{1000} = \Big(\dfrac{11}{10}\Big)^{2n} \\[1em] \Rightarrow \Big(\dfrac{11}{10}\Big)^3 = \Big(\dfrac{11}{10}\Big)^{2n} \\[1em] \Rightarrow 2n = 3 \\[1em] \Rightarrow n = \dfrac{3}{2}. ⇒ A = P ( 1 + 2 × 100 r ) n × 2 ⇒ 1996.50 = 1500 × ( 1 + 200 20 ) 2 n ⇒ 1500 1996.50 = ( 1 + 200 20 ) 2 n ⇒ 150000 199650 = ( 200 220 ) 2 n ⇒ 1000 1331 = ( 10 11 ) 2 n ⇒ ( 10 11 ) 3 = ( 10 11 ) 2 n ⇒ 2 n = 3 ⇒ n = 2 3 .
Hence, required time = 1 1 2 1\dfrac{1}{2} 1 2 1 years.
Calculate the C.I. on ₹ 3500 at 6% per annum for 3 years, the interest being compounded half-yearly.
Answer
When interest is compounded half-yearly.
⇒ A = P ( 1 + r 2 × 100 ) n × 2 ⇒ A = 3500 × ( 1 + 6 200 ) 3 × 2 ⇒ A = 3500 × ( 206 200 ) 6 ⇒ A = 3500 × ( 1.03 ) 6 ⇒ A = 3500 × 1.194052 ⇒ A = ₹ 4179.18 \Rightarrow A = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} \\[1em] \Rightarrow A = 3500 \times \Big(1 + \dfrac{6}{200}\Big)^{3 \times 2} \\[1em] \Rightarrow A = 3500 \times \Big(\dfrac{206}{200}\Big)^6 \\[1em] \Rightarrow A = 3500 \times (1.03)^6 \\[1em] \Rightarrow A = 3500 \times 1.194052 \\[1em] \Rightarrow A = ₹ 4179.18 ⇒ A = P ( 1 + 2 × 100 r ) n × 2 ⇒ A = 3500 × ( 1 + 200 6 ) 3 × 2 ⇒ A = 3500 × ( 200 206 ) 6 ⇒ A = 3500 × ( 1.03 ) 6 ⇒ A = 3500 × 1.194052 ⇒ A = ₹4179.18
By formula,
C.I. = A - P = ₹ 4179.18 - ₹ 3500 = ₹ 679.18
Hence, C.I. = ₹ 679.18
Find the difference between compound interest and simple interest on ₹ 12000 and in 1 1 2 1\dfrac{1}{2} 1 2 1 years at 10% p.a. compounded yearly.
Answer
Calculating C.I. :
For 1st year :
P = ₹ 12000
Rate = 10%
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
A = 12000 × ( 1 + 10 100 ) 1 = 12000 × 110 100 = ₹ 13200. A = 12000 \times \Big(1 + \dfrac{10}{100}\Big)^1 \\[1em] = 12000 \times \dfrac{110}{100} \\[1em] = ₹ 13200. A = 12000 × ( 1 + 100 10 ) 1 = 12000 × 100 110 = ₹13200.
For next 1 2 \dfrac{1}{2} 2 1 year :
P = ₹ 13200
Rate = 10%
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
Substituting values we get :
A = 13200 × ( 1 + 10 200 ) 1 2 × 2 = 13200 × 210 200 = ₹ 13860. A = 13200 \times \Big(1 + \dfrac{10}{200}\Big)^{\dfrac{1}{2} \times 2} \\[1em] = 13200 \times \dfrac{210}{200} \\[1em] = ₹ 13860. A = 13200 × ( 1 + 200 10 ) 2 1 × 2 = 13200 × 200 210 = ₹13860.
C.I. = A - P = ₹ 13860 - ₹ 12000 = ₹ 1860
Calculating S.I. :
P = ₹ 12000
Rate = 10%
Time = 1 1 2 1\dfrac{1}{2} 1 2 1
S . I . = P × R × T 100 = 12000 × 10 × 3 2 100 = ₹ 1800. S.I. = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{12000 \times 10 \times \dfrac{3}{2}}{100} \\[1em] = ₹ 1800. S . I . = 100 P × R × T = 100 12000 × 10 × 2 3 = ₹1800.
Difference between C.I. and S.I. = ₹ 1860 - ₹ 1800 = ₹ 60.
Hence, required difference = ₹ 60.
Find the difference between compound interest and simple interest on ₹ 12000 and in 1 1 2 1\dfrac{1}{2} 1 2 1 years at 10% compounded half-yearly.
Answer
Calculating S.I. :
P = ₹ 12000
Rate = 10%
Time = 1 1 2 1\dfrac{1}{2} 1 2 1
S . I . = P × R × T 100 = 12000 × 10 × 3 2 100 = ₹ 1800. S.I. = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{12000 \times 10 \times \dfrac{3}{2}}{100} \\[1em] = ₹ 1800. S . I . = 100 P × R × T = 100 12000 × 10 × 2 3 = ₹1800.
Calculating C.I. :
When interest is compounded half-yearly :
A = P ( 1 + r 2 × 100 ) n × 2 = 12000 × ( 1 + 10 200 ) 3 2 × 2 = 12000 × ( 1 + 1 20 ) 3 = 12000 × ( 21 20 ) 3 = 12000 × 9261 8000 = 27783 2 = ₹ 13891.50 A = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} \\[1em] = 12000 \times \Big(1 + \dfrac{10}{200}\Big)^{\dfrac{3}{2} \times 2} \\[1em] = 12000 \times \Big(1 + \dfrac{1}{20}\Big)^3 \\[1em] = 12000 \times \Big(\dfrac{21}{20}\Big)^3 \\[1em] = 12000 \times \dfrac{9261}{8000} \\[1em] = \dfrac{27783}{2} \\[1em] = ₹ 13891.50 A = P ( 1 + 2 × 100 r ) n × 2 = 12000 × ( 1 + 200 10 ) 2 3 × 2 = 12000 × ( 1 + 20 1 ) 3 = 12000 × ( 20 21 ) 3 = 12000 × 8000 9261 = 2 27783 = ₹13891.50
C.I. = A - P = ₹ 13891.50 - ₹ 12000 = ₹ 1891.50.
Difference between C.I. and S.I. = ₹ 1891.50 - ₹ 1800 = ₹ 91.50
Hence, required difference = ₹ 91.50
When the present population (P) of a certain locality increases by r% per year, the population in n years will be :
P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n - P
P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n + P
P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
P ( 1 + r 100 n ) P\Big(1 + \dfrac{r}{100n}\Big) P ( 1 + 100 n r )
Answer
For growth :
Value after n years = Present value × ( 1 + r 100 ) n = P × ( 1 + r 100 ) n . \times \Big(1 + \dfrac{r}{100}\Big)^n = P \times \Big(1 + \dfrac{r}{100}\Big)^n. × ( 1 + 100 r ) n = P × ( 1 + 100 r ) n .
Hence, Option 3 is the correct option.
The population of a town decreases by 10% in a particular year and then increases by 15% in the next year. The population at the end of two years is :
( 1 + 10 100 ) 3 ( 1 + 15 100 ) \Big(1 + \dfrac{10}{100}\Big)^3\Big(1 + \dfrac{15}{100}\Big) ( 1 + 100 10 ) 3 ( 1 + 100 15 ) times
( 1 − 10 100 ) ( 1 + 15 100 ) \Big(1 - \dfrac{10}{100}\Big)\Big(1 + \dfrac{15}{100}\Big) ( 1 − 100 10 ) ( 1 + 100 15 ) times
( 1 − 10 100 ) ( 1 − 15 100 ) \Big(1 - \dfrac{10}{100}\Big)\Big(1 - \dfrac{15}{100}\Big) ( 1 − 100 10 ) ( 1 − 100 15 ) times
( 1 + 10 100 ) ( 1 − 15 100 ) \Big(1 + \dfrac{10}{100}\Big)\Big(1 - \dfrac{15}{100}\Big) ( 1 + 100 10 ) ( 1 − 100 15 ) times
Answer
Given,
The population of a town decreases by 10% in a particular year and then increases by 15% in the next year.
Let present population be P.
Population after 2 years = P ( 1 − 10 100 ) ( 1 + 15 100 ) . \text{Population after 2 years} = P \Big(1 - \dfrac{10}{100}\Big)\Big(1 + \dfrac{15}{100}\Big). Population after 2 years = P ( 1 − 100 10 ) ( 1 + 100 15 ) .
Hence, Option 2 is the correct option.
When the cost of a machine decreases by r% per year; the cost of machine in 3 years is :
( 1 + r 100 ) 3 \Big(1 + \dfrac{r}{100}\Big)^3 ( 1 + 100 r ) 3 times
( 1 − r 100 ) 3 \Big(1 - \dfrac{r}{100}\Big)^3 ( 1 − 100 r ) 3 times
( 1 − r 100 ) 2 \Big(1 - \dfrac{r}{100}\Big)^2 ( 1 − 100 r ) 2 times
( 1 + r 100 ) 2 \Big(1 + \dfrac{r}{100}\Big)^2 ( 1 + 100 r ) 2 times
Answer
For depreciation :
Value after n years = Present value × ( 1 − r 100 ) n \times \Big(1 - \dfrac{r}{100}\Big)^n × ( 1 − 100 r ) n
So,
Value of machine after 3 years = Present value × ( 1 − r 100 ) 3 \times \Big(1 - \dfrac{r}{100}\Big)^3 × ( 1 − 100 r ) 3
Hence, Option 2 is the correct option.
On a certain sum the rate of C.I. is x% per annum for the first two years and y% per annum for the next three years. Then the amount after 5 years is :
( 1 + x 100 ) ( 1 + y 100 ) \Big(1 + \dfrac{x}{100}\Big)\Big(1 + \dfrac{y}{100}\Big) ( 1 + 100 x ) ( 1 + 100 y ) times
( 1 + x 100 ) 3 ( 1 + y 100 ) 2 \Big(1 + \dfrac{x}{100}\Big)^3\Big(1 + \dfrac{y}{100}\Big)^2 ( 1 + 100 x ) 3 ( 1 + 100 y ) 2 times
( 1 + x 100 ) 2 ( 1 + y 100 ) 3 \Big(1 + \dfrac{x}{100}\Big)^2\Big(1 + \dfrac{y}{100}\Big)^3 ( 1 + 100 x ) 2 ( 1 + 100 y ) 3 times
( 1 + x 100 ) 2 ( 1 − y 100 ) 3 \Big(1 + \dfrac{x}{100}\Big)^2\Big(1 - \dfrac{y}{100}\Big)^3 ( 1 + 100 x ) 2 ( 1 − 100 y ) 3 times
Answer
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Given,
On a certain sum the rate of C.I. is x% per annum for the first two years and y% per annum for the next three years.
Amount after 5 years = P ( 1 + x 100 ) 2 ( 1 + y 100 ) 3 . \text{Amount after 5 years} = P\Big(1 + \dfrac{x}{100}\Big)^2\Big(1 + \dfrac{y}{100}\Big)^3. Amount after 5 years = P ( 1 + 100 x ) 2 ( 1 + 100 y ) 3 .
Hence, Option 3 is the correct option.
The cost (₹ x) of a machine increases by 20% in the first two years and then decreases by 25% in the next two years. Then the cost of machine becomes :
₹ x × 120 100 × 75 100 x \times \dfrac{120}{100} \times \dfrac{75}{100} x × 100 120 × 100 75
₹ x × ( 120 100 ) 2 × 75 100 x \times \Big(\dfrac{120}{100}\Big)^2 \times \dfrac{75}{100} x × ( 100 120 ) 2 × 100 75
₹ x × ( 120 100 ) 2 × ( 75 100 ) 2 x \times \Big(\dfrac{120}{100}\Big)^2 \times \Big(\dfrac{75}{100}\Big)^2 x × ( 100 120 ) 2 × ( 100 75 ) 2
₹ x × ( 80 100 ) 2 × ( 75 100 ) 2 x \times \Big(\dfrac{80}{100}\Big)^2 \times \Big(\dfrac{75}{100}\Big)^2 x × ( 100 80 ) 2 × ( 100 75 ) 2
Answer
According to question :
The cost (₹ x) of a machine increases by 20% in the first two years and then decreases by 25% in the next two years.
⇒ x × ( 1 + 20 100 ) 2 × ( 1 − 25 100 ) 2 ⇒ x × ( 120 100 ) 2 × ( 75 100 ) 2 . \Rightarrow x \times \Big(1 + \dfrac{20}{100}\Big)^2 \times \Big(1 - \dfrac{25}{100}\Big)^2 \\[1em] \Rightarrow x \times \Big(\dfrac{120}{100}\Big)^2 \times \Big(\dfrac{75}{100}\Big)^2. ⇒ x × ( 1 + 100 20 ) 2 × ( 1 − 100 25 ) 2 ⇒ x × ( 100 120 ) 2 × ( 100 75 ) 2 .
Hence, Option 3 is the correct option.
The cost of a machine is supposed to depreciate each year by 12% of its value at the beginning of the year. If the machine is valued at ₹ 44,000 at the beginning of 2008, find its value :
(i) at the end of 2009.
(ii) at the beginning of 2007.
Answer
(i) For depreciation :
Value after n years = Present value × ( 1 − r 100 ) n \times \Big(1 - \dfrac{r}{100}\Big)^n × ( 1 − 100 r ) n
The cost of machine depreciates at the beginning of the next year, or we can say that at end of each year.
So, Value at end of 2009 = Value at beginning of 2010.
Value at beginning of 2010 = 44000 × ( 1 − 12 100 ) 2 = 44000 × ( 88 100 ) 2 = 44000 × ( 22 25 ) 2 = 44000 × 484 625 = ₹ 34073.60 \text{Value at beginning of 2010 }= 44000 \times \Big(1 - \dfrac{12}{100}\Big)^2 \\[1em] = 44000 \times \Big(\dfrac{88}{100}\Big)^2 \\[1em] = 44000 \times \Big(\dfrac{22}{25}\Big)^2 \\[1em] = 44000 \times \dfrac{484}{625} \\[1em] = ₹ 34073.60 Value at beginning of 2010 = 44000 × ( 1 − 100 12 ) 2 = 44000 × ( 100 88 ) 2 = 44000 × ( 25 22 ) 2 = 44000 × 625 484 = ₹34073.60
Hence, value at the end of 2009 = ₹ 34073.60
(ii) Let value at beginning of 2007 be ₹ x.
After one year it becomes ₹ 44000.
For depreciation :
Value after n years = Present value × ( 1 − r 100 ) n \times \Big(1 - \dfrac{r}{100}\Big)^n × ( 1 − 100 r ) n
Substituting values we get :
⇒ 44000 = x × ( 1 − 12 100 ) 1 ⇒ 44000 = x × ( 88 100 ) ⇒ 44000 = 88 x 100 ⇒ x = 44000 × 100 88 ⇒ x = ₹ 50000. \Rightarrow 44000 = x \times \Big(1 - \dfrac{12}{100}\Big)^1 \\[1em] \Rightarrow 44000 = x \times \Big(\dfrac{88}{100}\Big) \\[1em] \Rightarrow 44000 = \dfrac{88x}{100} \\[1em] \Rightarrow x = \dfrac{44000 \times 100}{88} \\[1em] \Rightarrow x = ₹ 50000. ⇒ 44000 = x × ( 1 − 100 12 ) 1 ⇒ 44000 = x × ( 100 88 ) ⇒ 44000 = 100 88 x ⇒ x = 88 44000 × 100 ⇒ x = ₹50000.
Hence, value at beginning of 2007 = ₹ 50000.
The value of an article decreased for two years at the rate of 10% per year and then in the third year it increased by 10%. Find the original value of the article, if its value at the end of 3 years is ₹ 40,095.
Answer
Let original value be ₹ x.
Given, it decreases by 10% for two years. So,
For depreciation :
Value after n years = Present value × ( 1 − r 100 ) n \times \Big(1 - \dfrac{r}{100}\Big)^n × ( 1 − 100 r ) n
Value after 2 years = x × ( 1 − 10 100 ) 2 = x × ( 90 100 ) 2 = x × ( 9 10 ) 2 = x × 81 100 = 81 x 100 . \text{Value after 2 years} = x \times \Big(1 - \dfrac{10}{100}\Big)^2 \\[1em] = x \times \Big(\dfrac{90}{100}\Big)^2\\[1em] = x \times \Big(\dfrac{9}{10}\Big)^2 \\[1em] = x \times \dfrac{81}{100} \\[1em] = \dfrac{81x}{100}. Value after 2 years = x × ( 1 − 100 10 ) 2 = x × ( 100 90 ) 2 = x × ( 10 9 ) 2 = x × 100 81 = 100 81 x .
Given,
In the third year value is increased by 10%.
For growth :
Value after n year = Present value × ( 1 + r 100 ) n \times \Big(1 + \dfrac{r}{100}\Big)^n × ( 1 + 100 r ) n
Value after 1 year = 81 x 100 × ( 1 + 10 100 ) 1 = 81 x 100 × 110 100 = 891 x 1000 . \text{Value after 1 year} = \dfrac{81x}{100} \times \Big(1 + \dfrac{10}{100}\Big)^1 \\[1em] = \dfrac{81x}{100} \times \dfrac{110}{100} \\[1em] = \dfrac{891x}{1000}. Value after 1 year = 100 81 x × ( 1 + 100 10 ) 1 = 100 81 x × 100 110 = 1000 891 x .
Given,
At the end of 3 years value is ₹ 40095.
∴ 891 x 1000 = 40095 ⇒ x = 40095 × 1000 891 ⇒ x = ₹ 45000. \therefore \dfrac{891x}{1000} = 40095 \\[1em] \Rightarrow x = \dfrac{40095 \times 1000}{891} \\[1em] \Rightarrow x = ₹ 45000. ∴ 1000 891 x = 40095 ⇒ x = 891 40095 × 1000 ⇒ x = ₹45000.
Hence, original value of article = ₹ 45000.
According to a census taken towards the end of the year 2009, the population of a rural town was found to be 64000. The census authority also found that the population of this particular town had a growth of 5% per annum. In how many years after 2009 did the population of this town reach 74088 ?
Answer
Let in n years population reaches from 64000 to 74088.
For growth :
Value after n year = Present value × ( 1 + r 100 ) n \times \Big(1 + \dfrac{r}{100}\Big)^n × ( 1 + 100 r ) n
Substituting values we get :
⇒ 74088 = 64000 × ( 1 + 5 100 ) n ⇒ 74088 64000 = ( 105 100 ) n ⇒ 9261 8000 = ( 21 20 ) n ⇒ ( 21 20 ) 3 = ( 21 20 ) n ⇒ n = 3. \Rightarrow 74088 = 64000 \times \Big(1 + \dfrac{5}{100}\Big)^n \\[1em] \Rightarrow \dfrac{74088}{64000} = \Big(\dfrac{105}{100}\Big)^n \\[1em] \Rightarrow \dfrac{9261}{8000} = \Big(\dfrac{21}{20}\Big)^n \\[1em] \Rightarrow \Big(\dfrac{21}{20}\Big)^3 = \Big(\dfrac{21}{20}\Big)^n \\[1em] \Rightarrow n = 3. ⇒ 74088 = 64000 × ( 1 + 100 5 ) n ⇒ 64000 74088 = ( 100 105 ) n ⇒ 8000 9261 = ( 20 21 ) n ⇒ ( 20 21 ) 3 = ( 20 21 ) n ⇒ n = 3.
In 3 years the population will reach 74088.
The population of a town decreased by 12% during 1998 and then increased by 8% during 1999. Find the population of the town, at the beginning of 1998, if at the end of 1999 its population was 285120.
Answer
Let population in the beginning of 1998 be x.
Given,
The population of a town decreased by 12% during 1998 and then increased by 8% during 1999.
Population at the end of 1999 = 285120.
∴ 285120 = x ( 1 − 12 100 ) ( 1 + 8 100 ) ⇒ 285120 = x × 88 100 × 108 100 ⇒ 285120 = 9504 x 10000 ⇒ x = 285120 × 10000 9504 ⇒ x = 300000. \therefore 285120 = x\Big(1 - \dfrac{12}{100}\Big)\Big(1 + \dfrac{8}{100}\Big) \\[1em] \Rightarrow 285120 = x \times \dfrac{88}{100} \times \dfrac{108}{100} \\[1em] \Rightarrow 285120 = \dfrac{9504x}{10000} \\[1em] \Rightarrow x = \dfrac{285120 \times 10000}{9504} \\[1em] \Rightarrow x = 300000. ∴ 285120 = x ( 1 − 100 12 ) ( 1 + 100 8 ) ⇒ 285120 = x × 100 88 × 100 108 ⇒ 285120 = 10000 9504 x ⇒ x = 9504 285120 × 10000 ⇒ x = 300000.
Hence, population of town at beginning of 1998 = 300000.
A sum of money, invested at compound interest, amounts to ₹ 16500 in 1 year and to ₹ 19965 in 3 years. Find the rate per cent and the original sum of money invested.
Answer
Let original sum of money invested be ₹ x and rate of percent be r%.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Given,
The sum of money, invested at compound interest, amounts to ₹ 16500 in 1 year.
⇒ A = P ( 1 + r 100 ) n ⇒ 16500 = x × ( 1 + r 100 ) 1 ⇒ 16500 = x ( 1 + r 100 ) . . . . . . ( 1 ) \Rightarrow A = P\Big(1 + \dfrac{r}{100}\Big)^n \\[1em] \Rightarrow 16500 = x \times \Big(1 + \dfrac{r}{100}\Big)^1 \\[1em] \Rightarrow 16500 = x\Big(1 + \dfrac{r}{100}\Big) ......(1) ⇒ A = P ( 1 + 100 r ) n ⇒ 16500 = x × ( 1 + 100 r ) 1 ⇒ 16500 = x ( 1 + 100 r ) ...... ( 1 )
The sum of money, invested at compound interest, amounts to ₹ 19965 in 3 years.
⇒ A = P ( 1 + r 100 ) n ⇒ 19965 = x × ( 1 + r 100 ) 3 ⇒ 19965 = x ( 1 + r 100 ) 3 . . . . . . ( 2 ) \Rightarrow A = P\Big(1 + \dfrac{r}{100}\Big)^n \\[1em] \Rightarrow 19965 = x \times \Big(1 + \dfrac{r}{100}\Big)^3 \\[1em] \Rightarrow 19965 = x\Big(1 + \dfrac{r}{100}\Big)^3 ......(2) ⇒ A = P ( 1 + 100 r ) n ⇒ 19965 = x × ( 1 + 100 r ) 3 ⇒ 19965 = x ( 1 + 100 r ) 3 ...... ( 2 )
Dividing equation (2) by (1), we get :
⇒ 19965 16500 = x ( 1 + r 100 ) 3 x ( 1 + r 100 ) ⇒ 121 100 = ( 1 + r 100 ) 2 ⇒ ( 11 10 ) 2 = ( 1 + r 100 ) 2 ⇒ ( 1 + r 100 ) = 11 10 ⇒ r 100 = 11 10 − 1 ⇒ r 100 = 1 10 ⇒ r = 100 10 = 10 \Rightarrow \dfrac{19965}{16500} = \dfrac{x\Big(1 + \dfrac{r}{100}\Big)^3}{x\Big(1 + \dfrac{r}{100}\Big)} \\[1em] \Rightarrow \dfrac{121}{100} = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{11}{10}\Big)^2 = \Big(1 + \dfrac{r}{100}\Big)^2 \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big) = \dfrac{11}{10} \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{11}{10} - 1 \\[1em] \Rightarrow \dfrac{r}{100} = \dfrac{1}{10} \\[1em] \Rightarrow r = \dfrac{100}{10} = 10%. ⇒ 16500 19965 = x ( 1 + 100 r ) x ( 1 + 100 r ) 3 ⇒ 100 121 = ( 1 + 100 r ) 2 ⇒ ( 10 11 ) 2 = ( 1 + 100 r ) 2 ⇒ ( 1 + 100 r ) = 10 11 ⇒ 100 r = 10 11 − 1 ⇒ 100 r = 10 1 ⇒ r = 10 100 = 10
Substituting value of r in equation (1), we get :
⇒ 16500 = x ( 1 + 10 100 ) ⇒ 16500 = x × ( 110 100 ) ⇒ x = 16500 × 100 110 ⇒ x = ₹ 15000. \Rightarrow 16500 = x\Big(1 + \dfrac{10}{100}\Big) \\[1em] \Rightarrow 16500 = x \times \Big(\dfrac{110}{100}\Big) \\[1em] \Rightarrow x = \dfrac{16500 \times 100}{110} \\[1em] \Rightarrow x = ₹ 15000. ⇒ 16500 = x ( 1 + 100 10 ) ⇒ 16500 = x × ( 100 110 ) ⇒ x = 110 16500 × 100 ⇒ x = ₹15000.
Hence, rate percent = 10% and sum invested = ₹ 15000.
The difference between C.I. and S.I. on ₹ 7500 for two years is ₹ 12 at the same rate of interest per annum. Find the rate of interest.
Answer
Given,
P = ₹ 7500
Time = 2 years
Let rate of interest be r%.
By formula,
S.I. = P × R × T 100 \dfrac{P \times R \times T}{100} 100 P × R × T
Substituting values we get :
S . I . = 7500 × r × 2 100 = 150 r . S.I. = \dfrac{7500 \times r \times 2}{100} \\[1em] = 150r. S . I . = 100 7500 × r × 2 = 150 r .
By formula,
C.I. = A - P
C . I . = P ( 1 + r 100 ) n − P = 7500 × ( 1 + r 100 ) 2 − 7500 = 7500 × ( 100 + r 100 ) 2 − 7500 = 7500 × ( 10000 + r 2 + 200 r 10000 ) − 7500 = 3 4 × ( 10000 + r 2 + 200 r ) − 7500 = 7500 + 3 r 2 4 + 150 r − 7500 = 3 r 2 4 + 150 r C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = 7500 \times \Big(1 + \dfrac{r}{100}\Big)^2 - 7500 \\[1em] = 7500 \times \Big(\dfrac{100 + r}{100}\Big)^2 - 7500 \\[1em] = 7500 \times \Big(\dfrac{10000 + r^2 + 200r}{10000}\Big) - 7500 \\[1em] = \dfrac{3}{4} \times (10000 + r^2 + 200r) - 7500 \\[1em] = 7500 + \dfrac{3r^2}{4} + 150r - 7500 \\[1em] = \dfrac{3r^2}{4} + 150r C . I . = P ( 1 + 100 r ) n − P = 7500 × ( 1 + 100 r ) 2 − 7500 = 7500 × ( 100 100 + r ) 2 − 7500 = 7500 × ( 10000 10000 + r 2 + 200 r ) − 7500 = 4 3 × ( 10000 + r 2 + 200 r ) − 7500 = 7500 + 4 3 r 2 + 150 r − 7500 = 4 3 r 2 + 150 r
The difference between C.I. and S.I. on ₹ 7500 for two years is ₹ 12.
∴ C.I. - S.I. = ₹ 12
∴ 3 r 2 4 + 150 r − 150 r = 12 ⇒ 3 r 2 4 = 12 ⇒ r 2 = 12 × 4 3 ⇒ r 2 = 16 ⇒ r = 16 = 4 \therefore \dfrac{3r^2}{4} + 150r - 150r = 12 \\[1em] \Rightarrow \dfrac{3r^2}{4} = 12 \\[1em] \Rightarrow r^2 = \dfrac{12 \times 4}{3} \\[1em] \Rightarrow r^2 = 16 \\[1em] \Rightarrow r = \sqrt{16} = 4%. ∴ 4 3 r 2 + 150 r − 150 r = 12 ⇒ 4 3 r 2 = 12 ⇒ r 2 = 3 12 × 4 ⇒ r 2 = 16 ⇒ r = 16 = 4
Hence, rate of interest = 4%.
A sum of money lent out at C.I. at a certain rate per annum becomes three times of itself in 10 years. Find in how many years will the money become twenty-seven times of itself at the same rate of interest p.a.
Answer
Let rate of interest be r% and sum of money be ₹ P.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Given,
₹ P becomes three times of itself in 10 years.
∴ 3 P = P ( 1 + r 100 ) 10 ⇒ 3 P P = ( 1 + r 100 ) 10 ⇒ 3 = ( 1 + r 100 ) 10 . . . . . ( 1 ) \therefore 3P = P\Big(1 + \dfrac{r}{100}\Big)^{10} \\[1em] \Rightarrow \dfrac{3P}{P} = \Big(1 + \dfrac{r}{100}\Big)^{10} \\[1em] \Rightarrow 3 = \Big(1 + \dfrac{r}{100}\Big)^{10} .....(1) ∴ 3 P = P ( 1 + 100 r ) 10 ⇒ P 3 P = ( 1 + 100 r ) 10 ⇒ 3 = ( 1 + 100 r ) 10 ..... ( 1 )
Let in n years money will become 27 times.
⇒ P ( 1 + r 100 ) n = 27 P ⇒ ( 1 + r 100 ) n = 27 P P ⇒ ( 1 + r 100 ) n = 27 ⇒ ( 1 + r 100 ) n = 3 3 \Rightarrow P\Big(1 + \dfrac{r}{100}\Big)^n = 27P \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = \dfrac{27P}{P} \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = 27 \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = 3^3 \\[1em] ⇒ P ( 1 + 100 r ) n = 27 P ⇒ ( 1 + 100 r ) n = P 27 P ⇒ ( 1 + 100 r ) n = 27 ⇒ ( 1 + 100 r ) n = 3 3
From equation (1)
⇒ ( 1 + r 100 ) n = [ ( 1 + r 100 ) 10 ] 3 ⇒ ( 1 + r 100 ) n = ( 1 + r 100 ) 30 ⇒ n = 30 years . \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = \Big[\Big(1 + \dfrac{r}{100}\Big)^{10}\Big]^3 \\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n =\Big(1 + \dfrac{r}{100}\Big)^{30} \\[1em] \Rightarrow n = 30 \text{ years}. ⇒ ( 1 + 100 r ) n = [ ( 1 + 100 r ) 10 ] 3 ⇒ ( 1 + 100 r ) n = ( 1 + 100 r ) 30 ⇒ n = 30 years .
Hence, in 30 years money will becomes 27 times of itself.
Mr. Sharma borrowed a certain sum of money at 10% per annum compounded annually. If by paying ₹ 19360 at the end of second year and ₹ 31944 at the end of the third year he clears the debt; find the sum borrowed by him.
Answer
Let sum borrowed be ₹ x.
By formula,
A = P ( 1 + r 100 ) n A = P\Big(1 + \dfrac{r}{100}\Big)^n A = P ( 1 + 100 r ) n
At the end of 2 years :
A = x × ( 1 + 10 100 ) 2 = x × ( 110 100 ) 2 = x × ( 11 10 ) 2 = 121 x 100 . A = x \times \Big(1 + \dfrac{10}{100}\Big)^2 \\[1em] = x \times \Big(\dfrac{110}{100}\Big)^2 \\[1em] = x \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] = \dfrac{121x}{100}. A = x × ( 1 + 100 10 ) 2 = x × ( 100 110 ) 2 = x × ( 10 11 ) 2 = 100 121 x .
Given,
He pays back ₹ 19360 at the end of second year. So,
Principal for third year = ₹ ( 121 x 100 − 19360 ) \Big(\dfrac{121x}{100} - 19360\Big) ( 100 121 x − 19360 )
Amount after 3 year :
A = ( 121 x 100 − 19360 ) × ( 1 + 10 100 ) 1 = ( 121 x 100 − 19360 ) × 110 100 = 1331 x 1000 − 21296. A = \Big(\dfrac{121x}{100} - 19360\Big) \times \Big(1 + \dfrac{10}{100}\Big)^1 \\[1em] = \Big(\dfrac{121x}{100} - 19360\Big) \times \dfrac{110}{100} \\[1em] = \dfrac{1331x}{1000} - 21296. A = ( 100 121 x − 19360 ) × ( 1 + 100 10 ) 1 = ( 100 121 x − 19360 ) × 100 110 = 1000 1331 x − 21296.
Given,
On giving ₹ 31944 at the end of the third year he clears the debt.
∴ 1331 x 1000 − 21296 = 31944 ⇒ 1331 x 1000 = 31944 + 21296 ⇒ 1331 x 1000 = 53240 ⇒ x = 53240 × 1000 1331 ⇒ x = ₹ 40000. \therefore \dfrac{1331x}{1000} - 21296 = 31944 \\[1em] \Rightarrow \dfrac{1331x}{1000} = 31944 + 21296 \\[1em] \Rightarrow \dfrac{1331x}{1000} = 53240 \\[1em] \Rightarrow x = \dfrac{53240 \times 1000}{1331} \\[1em] \Rightarrow x = ₹ 40000. ∴ 1000 1331 x − 21296 = 31944 ⇒ 1000 1331 x = 31944 + 21296 ⇒ 1000 1331 x = 53240 ⇒ x = 1331 53240 × 1000 ⇒ x = ₹40000.
Hence, sum borrowed = ₹ 40000.
The difference between compound interest for a year payable half-yearly and simple interest on a certain sum of money lent out at 10% for a year is ₹ 15. Find the sum of money lent out.
Answer
Let sum of money lent out be ₹ x.
Calculating C.I. payable half-yearly :
P = ₹ x
Rate of interest = 10%
Time = 1 year
C.I. = A - P
C . I . = P ( 1 + r 2 × 100 ) n × 2 − P = x × ( 1 + 10 200 ) 1 × 2 − x = x × ( 210 200 ) 2 − x = 441 x 400 − x = 441 x − 400 x 400 = ₹ 41 x 400 . C.I. = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} - P \\[1em] = x \times \Big(1 + \dfrac{10}{200}\Big)^{1 \times 2} - x \\[1em] = x \times \Big(\dfrac{210}{200}\Big)^2 - x \\[1em] = \dfrac{441x}{400} - x \\[1em] = \dfrac{441x - 400x}{400} \\[1em] = ₹ \dfrac{41x}{400}. C . I . = P ( 1 + 2 × 100 r ) n × 2 − P = x × ( 1 + 200 10 ) 1 × 2 − x = x × ( 200 210 ) 2 − x = 400 441 x − x = 400 441 x − 400 x = ₹ 400 41 x .
Calculating S.I. :
S . I . = P × R × T 100 = x × 10 × 1 100 = ₹ x 10 . S.I. = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{x \times 10 \times 1}{100} \\[1em] = ₹ \dfrac{x}{10}. S . I . = 100 P × R × T = 100 x × 10 × 1 = ₹ 10 x .
Given,
Difference between compound interest for a year payable half-yearly and simple interest on ₹ x lent out at 10% for a year is ₹ 15.
∴ 41 x 400 − x 10 = 15 ⇒ 41 x − 40 x 400 = 15 ⇒ x 400 = 15 ⇒ x = 15 × 400 = ₹ 6000. \therefore \dfrac{41x}{400} - \dfrac{x}{10} = 15 \\[1em] \Rightarrow \dfrac{41x - 40x}{400} = 15 \\[1em] \Rightarrow \dfrac{x}{400} = 15 \\[1em] \Rightarrow x = 15 \times 400 = ₹ 6000. ∴ 400 41 x − 10 x = 15 ⇒ 400 41 x − 40 x = 15 ⇒ 400 x = 15 ⇒ x = 15 × 400 = ₹6000.
Hence, sum of money lent out = ₹ 6000.
The ages of Pramod and Rohit are 16 years and 18 years respectively. In what ratio must they invest money at 5% p.a. compounded yearly so that both get the same sum on attaining the age of 25 years ?
Answer
Let Pramod invest ₹ x and Rohit invest ₹ y.
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
For Pramod :
P = ₹ x
r = 5%
n = 9 years (As it will take 9 years for Pramod to reach 25 years of age)
Substituting values we get :
Amount received by Pramod = x ( 1 + 5 100 ) 9 = x × ( 105 100 ) 9 = x × ( 21 20 ) 9 . \text{Amount received by Pramod} = x\Big(1 + \dfrac{5}{100}\Big)^9 \\[1em] = x \times \Big(\dfrac{105}{100}\Big)^9 \\[1em] = x \times \Big(\dfrac{21}{20}\Big)^9. Amount received by Pramod = x ( 1 + 100 5 ) 9 = x × ( 100 105 ) 9 = x × ( 20 21 ) 9 .
For Rohit :
P = ₹ y
r = 5%
n = 7 years (As it will take 7 years for Pramod to reach 25 years of age)
Substituting values we get :
Amount received by Rohit = y ( 1 + 5 100 ) 7 = y × ( 105 100 ) 7 = y × ( 21 20 ) 7 . \text{Amount received by Rohit} = y\Big(1 + \dfrac{5}{100}\Big)^7 \\[1em] = y \times \Big(\dfrac{105}{100}\Big)^7 \\[1em] = y \times \Big(\dfrac{21}{20}\Big)^7. Amount received by Rohit = y ( 1 + 100 5 ) 7 = y × ( 100 105 ) 7 = y × ( 20 21 ) 7 .
Since,
Amount received by both are equal.
⇒ x × ( 21 20 ) 9 = y × ( 21 20 ) 7 ⇒ x y = ( 21 20 ) 7 ( 21 20 ) 9 ⇒ x y = 1 ( 21 20 ) 2 ⇒ x y = 20 2 21 2 ⇒ x y = 400 441 . \Rightarrow x \times \Big(\dfrac{21}{20}\Big)^9 = y \times \Big(\dfrac{21}{20}\Big)^7 \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{\Big(\dfrac{21}{20}\Big)^7}{\Big(\dfrac{21}{20}\Big)^9} \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{1}{\Big(\dfrac{21}{20}\Big)^2} \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{20^2}{21^2} \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{400}{441}. ⇒ x × ( 20 21 ) 9 = y × ( 20 21 ) 7 ⇒ y x = ( 20 21 ) 9 ( 20 21 ) 7 ⇒ y x = ( 20 21 ) 2 1 ⇒ y x = 2 1 2 2 0 2 ⇒ y x = 441 400 .
Hence, ratio in which sum must be invested = 400 : 441.
The amount of ₹ 1,000 in 2 years and at 20% compound interest compounded per year is:
₹ 1,200
₹ 1,400
₹ 800
₹ 1,440
Answer
Given, P = ₹ 1,000
R = 20%
n = 2 years
Using the formula, A = P ( 1 + R 100 ) n P\Big(1 + \dfrac{R}{100}\Big)^n P ( 1 + 100 R ) n
Substituting the values,
A = 1 , 000 ( 1 + 20 100 ) 2 = 1 , 000 ( 1 + 2 10 ) 2 = 1 , 000 × ( 12 10 ) 2 = 1 , 000 × 144 100 = 1 , 440. A = 1,000 \Big(1 + \dfrac{20}{100}\Big)^2\\[1em] = 1,000 \Big(1 + \dfrac{2}{10}\Big)^2\\[1em] = 1,000 \times \Big(\dfrac{12}{10}\Big)^2\\[1em] = 1,000 \times \dfrac{144}{100}\\[1em] = 1,440. A = 1 , 000 ( 1 + 100 20 ) 2 = 1 , 000 ( 1 + 10 2 ) 2 = 1 , 000 × ( 10 12 ) 2 = 1 , 000 × 100 144 = 1 , 440.
Hence, option 4 is the correct option.
The difference between C.I. and S.I. at 10% in 2 years on ₹ 100 is:
₹ 1
₹ 41
₹ 00
none of these
Answer
For S.I. :
P = ₹ 100
R = 10%
T = 2 years
I = P × R × T 100 = 100 × 10 × 2 100 = 2000 100 = 20. I = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{100 \times 10 \times 2}{100} \\[1em] = \dfrac{2000}{100}\\[1em] = 20. I = 100 P × R × T = 100 100 × 10 × 2 = 100 2000 = 20.
For C.I. :
For 1st year :
P = ₹ 100
T = 1 year
R = 10%
I = P × R × T 100 = 100 × 10 × 1 100 = 1000 100 = 10. I = \dfrac{P \times R \times T}{100}\\[1em] = \dfrac{100 \times 10 \times 1}{100}\\[1em] = \dfrac{1000}{100}\\[1em] = 10. I = 100 P × R × T = 100 100 × 10 × 1 = 100 1000 = 10.
Amount = P + I = ₹ 100 + ₹ 10 = ₹ 110
For 2nd year :
P = ₹ 110
R = 10%
T = 1 year
I = P × R × T 100 = 110 × 10 × 1 100 = 1100 100 = 11. I = \dfrac{P \times R \times T}{100} \\[1em] = \dfrac{110 \times 10 \times 1}{100} \\[1em] = \dfrac{1100}{100} \\[1em] = 11. I = 100 P × R × T = 100 110 × 10 × 1 = 100 1100 = 11.
Amount = P + I = ₹ 110 + ₹ 11 = ₹ 121.
C.I. = Final amount - Initial principal = ₹ 121 - ₹ 100 = ₹ 21.
Difference between C.I. and S.I. = ₹ 21 - ₹ 20 = ₹ 1.
Hence, option 1 is the correct option.
A certain sum of money (₹ P) is lent for 3 1 2 3\dfrac{1}{2} 3 2 1 years at r% C.I. compounded half yearly. The interest accrued will be:
P ( 1 + r 100 ) 7 2 − P P\Big(1 + \dfrac{r}{100}\Big)^{\dfrac{7}{2}} - P P ( 1 + 100 r ) 2 7 − P
P ( 1 + r 100 ) 3 × ( 1 + r 2 × 100 ) 1 − P P\Big(1 + \dfrac{r}{100}\Big)^3 \times \Big(1 + \dfrac{r}{2 \times 100}\Big)^1 - P P ( 1 + 100 r ) 3 × ( 1 + 2 × 100 r ) 1 − P
P ( 1 + r 2 × 100 ) 7 2 − P P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{\dfrac{7}{2}} - P P ( 1 + 2 × 100 r ) 2 7 − P
P ( 1 + r 2 × 100 ) 7 − P P\Big(1 + \dfrac{r}{2 \times 100}\Big)^7 - P P ( 1 + 2 × 100 r ) 7 − P
Answer
Given, the principal amount = ₹ P.
The time period = 3 1 2 = 7 2 3\dfrac{1}{2} = \dfrac{7}{2} 3 2 1 = 2 7 years.
The annual interest rate = r% .
Interest is compounded half-yearly.
The formula for C.I. when compounded half-yearly is I
= P ( 1 + r 2 × 100 ) n × 2 − P \Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} - P ( 1 + 2 × 100 r ) n × 2 − P
Substituting the values, we get :
I = P ( 1 + r 2 × 100 ) 7 2 × 2 − P = P ( 1 + r 2 × 100 ) 7 − P I = P \Big(1 + \dfrac{r}{2 \times 100}\Big)^{\dfrac{7}{2} \times 2} - P\\[1em] = P \Big(1 + \dfrac{r}{2 \times 100}\Big)^7 - P I = P ( 1 + 2 × 100 r ) 2 7 × 2 − P = P ( 1 + 2 × 100 r ) 7 − P
Hence, option 4 is the correct option.
A certain sum of money (₹ P) is lent for 3 1 2 3\dfrac{1}{2} 3 2 1 years at r% C.I. compounded yearly. The interest accrued will be:
P ( 1 + r 100 ) 7 2 − P P \Big(1 + \dfrac{r}{100}\Big)^{\dfrac{7}{2}} - P P ( 1 + 100 r ) 2 7 − P
P ( 1 + r 100 ) 3 × ( 1 + r 2 × 100 ) 1 − P P\Big(1 + \dfrac{r}{100}\Big)^3 \times \Big(1 + \dfrac{r}{2 \times 100}\Big)^1 - P P ( 1 + 100 r ) 3 × ( 1 + 2 × 100 r ) 1 − P
P ( 1 + r 2 × 100 ) 7 2 − P P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{\dfrac{7}{2}} - P P ( 1 + 2 × 100 r ) 2 7 − P
P ( 1 + r 2 × 100 ) 7 − P P\Big(1 + \dfrac{r}{2 \times 100}\Big)^7 - P P ( 1 + 2 × 100 r ) 7 − P
Answer
Given, the principal amount = ₹ P, rate of interest r%.
For complete 3 years it will be calculated normally but for half year it will be calculated by taking 1 half year and half rate of interest.
A = P ( 1 + r 100 ) 3 × ( 1 + r 2 × 100 ) 1 P\Big(1 + \dfrac{r}{100}\Big)^3 \times \Big(1 + \dfrac{r}{2 \times 100}\Big)^1 P ( 1 + 100 r ) 3 × ( 1 + 2 × 100 r ) 1
C.I. = A - P
= P ( 1 + r 100 ) 3 × ( 1 + r 2 × 100 ) 1 − P P\Big(1 + \dfrac{r}{100}\Big)^3 \times \Big(1 + \dfrac{r}{2 \times 100}\Big)^1 - P P ( 1 + 100 r ) 3 × ( 1 + 2 × 100 r ) 1 − P
Hence, option 2 is the correct option.
Statement 1: P ( 1 + r 100 ) 7 − P ( 1 + r 100 ) 6 P\Big(1 + \dfrac{r}{100}\Big)^7 - P\Big(1 + \dfrac{r}{100}\Big)^6 P ( 1 + 100 r ) 7 − P ( 1 + 100 r ) 6 = Interest accrued in 7th year
Statement 2: C.I. accrued in 7 years = P ( 1 + r 100 ) 7 P\Big(1 + \dfrac{r}{100}\Big)^7 P ( 1 + 100 r ) 7 and C.I. accrued in 6 years = P ( 1 + r 100 ) 6 P\Big(1 + \dfrac{r}{100}\Big)^6 P ( 1 + 100 r ) 6
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Interest for a particular year = Amount in that year - Amount in previous year
Interest for 7th year = Amount in 7 years - Amount in 6 years
= P ( 1 + r 100 ) 7 − P ( 1 + r 100 ) 6 P\Big(1 + \dfrac{r}{100}\Big)^7 - P\Big(1 + \dfrac{r}{100}\Big)^6 P ( 1 + 100 r ) 7 − P ( 1 + 100 r ) 6
Thus, statement 1 is true and statement 2 is false.
Hence, option 3 is correct option.
Statement 1: The population of a town in the year 2024 is x and it increases by 10% every year. The population of in the year 2021 was = x ( 1 − 10 100 ) 3 \Big(1 - \dfrac{10}{100}\Big)^3 ( 1 − 100 10 ) 3
Statement 2: If the population increases from year 2021 to year 2024 at the rate of 10%, then corresponding decrease from 2024 to 2021 is 10 x 3%.
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
The general formula for population growth with a fixed annual percentage increase is:
Pt = Po ( 1 + r 100 ) t \Big(1 + \dfrac{r}{100}\Big)^t ( 1 + 100 r ) t
where, Pt = Population after t years
P0 = Initial population
r = Annual growth rate (in percentage)
t = Time in years
Given, the population in 2024 is x, and the annual growth rate is 10%. To find the population in 2021, we need to go back 3 years (from 2024 to 2021).
Rearranging the formula to solve for P0 = P t ( 1 + r 100 ) t \dfrac{P_t}{\Big(1 + \dfrac{r}{100}\Big)^t} ( 1 + 100 r ) t P t
⇒ P0 = x ( 1 + 10 100 ) 3 \dfrac{x}{\Big(1 + \dfrac{10}{100}\Big)^3} ( 1 + 100 10 ) 3 x
So, statement 1 is false.
If the population increases from year 2021 to year 2024 at the rate of 10%.
Let P0 be the population in 2021 and Pt be the population in 2024.
⇒ Pt = P0 ( 1 + 10 100 ) 3 \Big(1 + \dfrac{10}{100}\Big)^3 ( 1 + 100 10 ) 3
⇒ Pt = P0 (1 + 0.1)3
⇒ Pt = P0 x 1.13
⇒ Pt = 1.331P0
The percentage decrease = P t − P o P t × 100 \dfrac{P_t - P_o}{P_t} \times 100 P t P t − P o × 100
= 1.331 P o − P o 1.331 P o × 100 = 0.331 P o 1.331 P o × 100 = 331 1331 × 100 ≈ 24.87 = \dfrac{1.331P_o - P_o}{1.331P_o} \times 100\\[1em] = \dfrac{0.331P_o}{1.331P_o} \times 100\\[1em] = \dfrac{331}{1331} \times 100\\[1em] ≈ 24.87% = 1.331 P o 1.331 P o − P o × 100 = 1.331 P o 0.331 P o × 100 = 1331 331 × 100 ≈ 24.87
So, statement 2 is false.
∴ Both the statements are false.
Hence, option 2 is correct option.
Assertion (A): A certain sum of money P let out at r% C.I. increased for first 5 years and then decreased for next five years at the same rate is same as decrease on the same sum at the same rate (r%) during the first five years and then increase further next five years at the same rate.
Reason (R):
P ( 1 + r 100 ) 5 × P ( 1 − r 100 ) 5 P\Big(1 + \dfrac{r}{100}\Big)^5 \times P\Big(1 - \dfrac{r}{100}\Big)^5 P ( 1 + 100 r ) 5 × P ( 1 − 100 r ) 5 is same as P ( 1 − r 100 ) 5 × P ( 1 + r 100 ) 5 P\Big(1 - \dfrac{r}{100}\Big)^5 \times P\Big(1 + \dfrac{r}{100}\Big)^5 P ( 1 − 100 r ) 5 × P ( 1 + 100 r ) 5 .
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Let P be the principal amount, r% be rate of interest and t be the time.
By formula, A = P ( 1 + r 100 ) t \Big(1 + \dfrac{r}{100}\Big)^t ( 1 + 100 r ) t
A certain sum of money P let out at r% C.I. increased for first 5 years and then decreased for next five years at the same rate, then
A1 = P ( 1 + r 100 ) 5 × ( 1 − r 100 ) 5 \Big(1 + \dfrac{r}{100}\Big)^5 \times \Big(1 - \dfrac{r}{100}\Big)^5 ( 1 + 100 r ) 5 × ( 1 − 100 r ) 5
A certain sum of money P let out at r% C.I. decreased on the same sum at the same rate (r%) during the first five years and then increase further next five years at the same rate, then
A2 = P ( 1 − r 100 ) 5 × ( 1 + r 100 ) 5 \Big(1 - \dfrac{r}{100}\Big)^5 \times \Big(1 + \dfrac{r}{100}\Big)^5 ( 1 − 100 r ) 5 × ( 1 + 100 r ) 5
By rules of multiplication :
Since, P ( 1 + r 100 ) 5 × ( 1 − r 100 ) 5 = P ( 1 − r 100 ) 5 × ( 1 + r 100 ) 5 P \Big(1 + \dfrac{r}{100}\Big)^5 \times \Big(1 - \dfrac{r}{100}\Big)^5 = P \Big(1 - \dfrac{r}{100}\Big)^5 \times \Big(1 + \dfrac{r}{100}\Big)^5 P ( 1 + 100 r ) 5 × ( 1 − 100 r ) 5 = P ( 1 − 100 r ) 5 × ( 1 + 100 r ) 5
So, reason (R) is true.
Thus, amount will be same.
So, assertion (A) is true and reason (R) clearly explains assertion (A).
∴ Both A and R are true, and R is the correct reason for A.
Hence, option 3 is correct option.
Assertion (A): A = P ( 1 + 10 100 ) 2 \Big(1 + \dfrac{10}{100}\Big)^2 ( 1 + 100 10 ) 2 = 1.21P
Reason (R): A = P ( 1 − 10 100 ) 2 P\Big(1 - \dfrac{10}{100}\Big)^2 P ( 1 − 100 10 ) 2
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Let P be the principal amount, r% be rate of interest and t be the time.
By formula, A = P ( 1 + r 100 ) t \Big(1 + \dfrac{r}{100}\Big)^t ( 1 + 100 r ) t
A = P ( 1 + 10 100 ) 2 = P ( 1 + 1 10 ) 2 = ( 1 + 0.1 ) 2 P = 1.1 2 \Big(1 + \dfrac{10}{100}\Big)^2 = P \Big(1 + \dfrac{1}{10}\Big)^2 = (1 + 0.1)^2P = 1.1^2 ( 1 + 100 10 ) 2 = P ( 1 + 10 1 ) 2 = ( 1 + 0.1 ) 2 P = 1. 1 2 P = 1.21P
So, assertion (A) is true.
From formula, A = P ( 1 + R 100 ) n \Big(1 + \dfrac{R}{100}\Big)^n ( 1 + 100 R ) n
⇒ A = P ( 1 + 10 100 ) 2 \Big(1 + \dfrac{10}{100}\Big)^2 ( 1 + 100 10 ) 2
⇒ P = A ( 1 + 10 100 ) − 2 \Big(1 + \dfrac{10}{100}\Big)^{-2} ( 1 + 100 10 ) − 2
So, reason (R) is false.
∴ A is true, but R is false.
Hence, option 1 is correct option.
Simple interest on a sum of money for 2 years at 4% growth rate is ₹ 450. Find compound interest on the same sum and at the same rate for 1 year, if the interest is reckoned half-yearly.
Answer
Let sum of money be ₹ x.
Given,
Simple interest on sum of money for 2 years at 4% growth rate is ₹ 450.
By formula,
S . I . = P × R × T 100 ⇒ 450 = x × 4 × 2 100 ⇒ x = 450 × 100 4 × 2 ⇒ x = ₹ 5625. S.I. = \dfrac{P \times R \times T}{100} \\[1em] \Rightarrow 450 = \dfrac{x \times 4 \times 2}{100} \\[1em] \Rightarrow x = \dfrac{450 \times 100}{4 \times 2} \\[1em] \Rightarrow x = ₹ 5625. S . I . = 100 P × R × T ⇒ 450 = 100 x × 4 × 2 ⇒ x = 4 × 2 450 × 100 ⇒ x = ₹5625.
For C.I. :
P = ₹ 5625
n = 1 year
r = 4% compounded half-yearly
A = P ( 1 + r 2 × 100 ) n × 2 = 5625 × ( 1 + 4 200 ) 1 × 2 = 5625 × ( 204 200 ) 2 = 5625 × ( 51 50 ) 2 = 5625 × 2601 2500 = ₹ 5852.25 A = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} \\[1em] = 5625 \times \Big(1 + \dfrac{4}{200}\Big)^{1 \times 2} \\[1em] = 5625 \times \Big(\dfrac{204}{200}\Big)^2 \\[1em] = 5625 \times \Big(\dfrac{51}{50}\Big)^2 \\[1em] = 5625 \times \dfrac{2601}{2500} \\[1em] = ₹ 5852.25 A = P ( 1 + 2 × 100 r ) n × 2 = 5625 × ( 1 + 200 4 ) 1 × 2 = 5625 × ( 200 204 ) 2 = 5625 × ( 50 51 ) 2 = 5625 × 2500 2601 = ₹5852.25
C.I. = A - P = ₹ 5852.25 - ₹ 5625 = ₹ 227.25
Hence, compound interest = ₹ 227.25
Find the compound interest to the nearest rupee on ₹ 10800 for 2 1 2 2\dfrac{1}{2} 2 2 1 years at 10% per annum.
Answer
Given,
P = ₹ 10800
T = 2.5 years
r = 10%
For first 2 years :
A = P ( 1 + r 100 ) n = 10800 × ( 1 + 10 100 ) 2 = 10800 × ( 110 100 ) 2 = 10800 × ( 11 10 ) 2 = 10800 × 121 100 = ₹ 13068. A = P\Big(1 + \dfrac{r}{100}\Big)^n \\[1em] = 10800 \times \Big(1 + \dfrac{10}{100}\Big)^2 \\[1em] = 10800 \times \Big(\dfrac{110}{100}\Big)^2\\[1em] = 10800 \times \Big(\dfrac{11}{10}\Big)^2 \\[1em] = 10800 \times \dfrac{121}{100} \\[1em] = ₹ 13068. A = P ( 1 + 100 r ) n = 10800 × ( 1 + 100 10 ) 2 = 10800 × ( 100 110 ) 2 = 10800 × ( 10 11 ) 2 = 10800 × 100 121 = ₹13068.
For next 1 2 \dfrac{1}{2} 2 1 year :
P = ₹ 13068
A = P ( 1 + r 2 × 100 ) n × 2 = 13068 × ( 1 + 10 2 × 100 ) 1 2 × 2 = 13068 × ( 1 + 1 20 ) 1 = 13068 × 21 20 = ₹ 13721. A = P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} \\[1em] = 13068 \times \Big(1 + \dfrac{10}{2 \times 100}\Big)^{\dfrac{1}{2} \times 2} \\[1em] = 13068 \times \Big(1 + \dfrac{1}{20}\Big)^1 \\[1em] = 13068 \times \dfrac{21}{20} \\[1em] = ₹ 13721. A = P ( 1 + 2 × 100 r ) n × 2 = 13068 × ( 1 + 2 × 100 10 ) 2 1 × 2 = 13068 × ( 1 + 20 1 ) 1 = 13068 × 20 21 = ₹13721.
By formula,
C.I. = A - P = ₹ 13721 - ₹ 10800 = ₹ 2921.
Hence, compound interest = ₹ 2921.
The value of a machine, purchased two years ago, depreciates at the annual rate of 10%. If its present value is ₹ 97200, find :
(i) its value after 2 years.
(ii) its value when it was purchased.
Answer
(i) In depreciation :
Value after n years = Present value × ( 1 − r 100 ) n \times \Big(1 - \dfrac{r}{100}\Big)^n × ( 1 − 100 r ) n
Value of machine after 2 years = 97200 × ( 1 − 10 100 ) 2 = 97200 × ( 90 100 ) 2 = 97200 × ( 9 10 ) 2 = 97200 × 81 100 = 972 × 81 = ₹ 78732. \text{Value of machine after 2 years} = 97200 \times \Big(1 - \dfrac{10}{100}\Big)^2 \\[1em] = 97200 \times \Big(\dfrac{90}{100}\Big)^2 \\[1em] = 97200 \times \Big(\dfrac{9}{10}\Big)^2 \\[1em] = 97200 \times \dfrac{81}{100} \\[1em] = 972 \times 81 \\[1em] = ₹ 78732. Value of machine after 2 years = 97200 × ( 1 − 100 10 ) 2 = 97200 × ( 100 90 ) 2 = 97200 × ( 10 9 ) 2 = 97200 × 100 81 = 972 × 81 = ₹78732.
Hence, value of machine after 2 years = ₹ 78732.
(ii) Let value of machine when it was purchased be ₹ x and its depreciate to ₹ 97200 in two years.
∴ 97200 = x × ( 1 − 10 100 ) 2 ⇒ 97200 = x × ( 90 100 ) 2 ⇒ 97200 = x × ( 9 10 ) 2 ⇒ 97200 = x × 81 100 ⇒ x = 97200 × 100 81 ⇒ x = 120000. \therefore 97200 = x \times \Big(1 - \dfrac{10}{100}\Big)^2 \\[1em] \Rightarrow 97200 = x \times \Big(\dfrac{90}{100}\Big)^2 \\[1em] \Rightarrow 97200 = x \times \Big(\dfrac{9}{10}\Big)^2 \\[1em] \Rightarrow 97200 = x \times \dfrac{81}{100} \\[1em] \Rightarrow x = \dfrac{97200 \times 100}{81} \\[1em] \Rightarrow x = 120000. ∴ 97200 = x × ( 1 − 100 10 ) 2 ⇒ 97200 = x × ( 100 90 ) 2 ⇒ 97200 = x × ( 10 9 ) 2 ⇒ 97200 = x × 100 81 ⇒ x = 81 97200 × 100 ⇒ x = 120000.
Hence, machine's value when it was purchased = ₹ 120000.
Anuj and Rajesh each lent the same sum of money for 2 years at 8% simple interest and compound interest respectively. Rajesh received ₹ 64 more than Anuj. Find the money lent by each and interest received.
Answer
Let money lent by both be ₹ x.
For Anuj :
S.I. = P × R × T 100 = x × 8 × 2 100 = 4 x 25 \dfrac{P\times R \times T}{100} = \dfrac{x \times 8 \times 2}{100} = \dfrac{4x}{25} 100 P × R × T = 100 x × 8 × 2 = 25 4 x .
For Rajesh :
C.I. = A - P
C . I . = P ( 1 + r 100 ) n − P = x × ( 1 + 8 100 ) 2 − x = x × ( 108 100 ) 2 − x = x × ( 27 25 ) 2 − x = x × 729 625 − x = 729 x 625 − x = 729 x − 625 x 625 = 104 x 625 . C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = x \times \Big(1 + \dfrac{8}{100}\Big)^2 - x \\[1em] = x \times \Big(\dfrac{108}{100}\Big)^2 - x \\[1em] = x \times \Big(\dfrac{27}{25}\Big)^2 - x \\[1em] = x \times \dfrac{729}{625} - x \\[1em] = \dfrac{729x}{625} - x \\[1em] = \dfrac{729x - 625x}{625} \\[1em] = \dfrac{104x}{625}. C . I . = P ( 1 + 100 r ) n − P = x × ( 1 + 100 8 ) 2 − x = x × ( 100 108 ) 2 − x = x × ( 25 27 ) 2 − x = x × 625 729 − x = 625 729 x − x = 625 729 x − 625 x = 625 104 x .
Given,
Rajesh received ₹ 64 more than Anuj. So, it means Rajesh received ₹ 64 more than Anuj as interest.
∴ 104 x 625 − 4 x 25 = 64 ⇒ 104 x − 100 x 625 = 64 ⇒ 4 x 625 = 64 ⇒ x = 625 × 64 4 ⇒ x = ₹ 10000. \therefore \dfrac{104x}{625} - \dfrac{4x}{25} = 64 \\[1em] \Rightarrow \dfrac{104x - 100x}{625} = 64 \\[1em] \Rightarrow \dfrac{4x}{625} = 64 \\[1em] \Rightarrow x = \dfrac{625 \times 64}{4} \\[1em] \Rightarrow x = ₹ 10000. ∴ 625 104 x − 25 4 x = 64 ⇒ 625 104 x − 100 x = 64 ⇒ 625 4 x = 64 ⇒ x = 4 625 × 64 ⇒ x = ₹10000.
Calculating S.I. and C.I. :
S . I . = 4 x 25 = 4 × 10000 25 = ₹ 1600. C . I . = 104 x 625 = 104 × 10000 625 = ₹ 1664. S.I. = \dfrac{4x}{25} = \dfrac{4 \times 10000}{25} = ₹ 1600. \\[1em] C.I. = \dfrac{104x}{625} = \dfrac{104 \times 10000}{625} = ₹ 1664. S . I . = 25 4 x = 25 4 × 10000 = ₹1600. C . I . = 625 104 x = 625 104 × 10000 = ₹1664.
Hence, sum of money lent = ₹ 10000 and interest received by Anuj = ₹ 1600 and by Rajesh = ₹ 1664.
Calculate the sum of money on which the compound interest (payable annually) for 2 years be four times the simple interest on ₹ 4715 for 5 years, both at the rate of 5 percent per annum.
Answer
For S.I. :
P = ₹ 4715
R = 5%
T = 5 years
S.I. = P × R × T 100 = 4715 × 5 × 5 100 \dfrac{P \times R \times T}{100} = \dfrac{4715 \times 5 \times 5}{100} 100 P × R × T = 100 4715 × 5 × 5 = ₹ 1178.75
Given,
C.I. is four times the S.I.
∴ C.I. = 4 × 1178.75 = ₹ 4715
For C.I. :
Let P = ₹ x, n = 2 years, r = 5%
By formula,
C.I. = A - P
C . I . = P ( 1 + r 100 ) n − P ⇒ 4715 = x × ( 1 + 5 100 ) 2 − x ⇒ 4715 = x × ( 105 100 ) 2 − x ⇒ 4715 = x × ( 21 20 ) 2 − x ⇒ 4715 = x × 441 400 − x ⇒ 4715 = 441 x 400 − x ⇒ 4715 = 441 x − 400 x 400 ⇒ 4715 = 41 x 400 ⇒ x − 4715 × 400 41 ⇒ x = ₹ 46000 C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] \Rightarrow 4715 = x \times \Big(1 + \dfrac{5}{100}\Big)^2 - x \\[1em] \Rightarrow 4715 = x \times \Big(\dfrac{105}{100}\Big)^2 - x \\[1em] \Rightarrow 4715 = x \times \Big(\dfrac{21}{20}\Big)^2 - x \\[1em] \Rightarrow 4715 = x \times \dfrac{441}{400} - x \\[1em] \Rightarrow 4715 = \dfrac{441x}{400} - x \\[1em] \Rightarrow 4715 = \dfrac{441x - 400x}{400} \\[1em] \Rightarrow 4715 = \dfrac{41x}{400} \\[1em] \Rightarrow x - \dfrac{4715 \times 400}{41} \\[1em] \Rightarrow x = ₹ 46000 C . I . = P ( 1 + 100 r ) n − P ⇒ 4715 = x × ( 1 + 100 5 ) 2 − x ⇒ 4715 = x × ( 100 105 ) 2 − x ⇒ 4715 = x × ( 20 21 ) 2 − x ⇒ 4715 = x × 400 441 − x ⇒ 4715 = 400 441 x − x ⇒ 4715 = 400 441 x − 400 x ⇒ 4715 = 400 41 x ⇒ x − 41 4715 × 400 ⇒ x = ₹46000
Hence, sum of money = ₹ 46000.
A sum of money was invested for 3 years, interest being compounded annually. The rates for successive years were 10%, 15% and 18% respectively. If the compound interest for the second year amounted to ₹ 4950, find the sum invested.
Answer
Let sum invested be ₹ x.
Amount after 1st year :
A = x × ( 1 + 10 100 ) = x × 110 100 = 11 x 10 . A = x \times \Big(1 + \dfrac{10}{100}\Big) \\[1em] = x \times \dfrac{110}{100} \\[1em] = \dfrac{11x}{10}. A = x × ( 1 + 100 10 ) = x × 100 110 = 10 11 x .
Amount after 2nd year :
A = x × ( 1 + 10 100 ) ( 1 + 15 100 ) = x × 110 100 × 115 100 = 253 x 200 . A = x \times \Big(1 + \dfrac{10}{100}\Big)\Big(1 + \dfrac{15}{100}\Big) \\[1em] = x \times \dfrac{110}{100} \times \dfrac{115}{100} \\[1em] = \dfrac{253x}{200}. A = x × ( 1 + 100 10 ) ( 1 + 100 15 ) = x × 100 110 × 100 115 = 200 253 x .
C.I. for 2nd year = Amount after 2 years - Amount after 1 year = 253 x 200 − 11 x 10 \dfrac{253x}{200} - \dfrac{11x}{10} 200 253 x − 10 11 x
Given,
Compound interest for the second year amounted to ₹ 4950.
∴ 253 x 200 − 11 x 10 = 4950 ⇒ 253 x − 220 x 200 = 4950 ⇒ 33 x 200 = 4950 ⇒ x = 4950 × 200 33 ⇒ x = ₹ 30000. \therefore \dfrac{253x}{200} - \dfrac{11x}{10} = 4950 \\[1em] \Rightarrow \dfrac{253x - 220x}{200} = 4950 \\[1em] \Rightarrow \dfrac{33x}{200} = 4950 \\[1em] \Rightarrow x = \dfrac{4950 \times 200}{33} \\[1em] \Rightarrow x = ₹ 30000. ∴ 200 253 x − 10 11 x = 4950 ⇒ 200 253 x − 220 x = 4950 ⇒ 200 33 x = 4950 ⇒ x = 33 4950 × 200 ⇒ x = ₹30000.
Hence, sum invested = ₹ 30000.
A sum of money is invested at 10% per annum compounded half-yearly. If the difference of amounts at end of 6 months and 12 months is ₹ 189, find the sum of money invested.
Answer
Let sum of money invested be ₹ x.
When interest is compounded half-yearly :
A = P ( 1 + r 2 × 100 ) n × 2 P\Big(1 + \dfrac{r}{2 \times 100}\Big)^{n \times 2} P ( 1 + 2 × 100 r ) n × 2
For first 1 2 \dfrac{1}{2} 2 1 year :
A = x × ( 1 + 10 2 × 100 ) 1 2 × 2 = x × ( 1 + 1 20 ) = x × 21 20 = 21 x 20 . A = x \times \Big(1 + \dfrac{10}{2 \times 100}\Big)^{\dfrac{1}{2} \times 2} \\[1em] = x \times \Big(1 + \dfrac{1}{20}\Big) \\[1em] = x \times \dfrac{21}{20} \\[1em] = \dfrac{21x}{20}. A = x × ( 1 + 2 × 100 10 ) 2 1 × 2 = x × ( 1 + 20 1 ) = x × 20 21 = 20 21 x .
For first 1 year :
A = x × ( 1 + 10 2 × 100 ) 1 × 2 = x × ( 1 + 1 20 ) 2 = x × ( 21 20 ) 2 = 441 x 400 . A = x \times \Big(1 + \dfrac{10}{2 \times 100}\Big)^{1 \times 2} \\[1em] = x \times \Big(1 + \dfrac{1}{20}\Big)^2 \\[1em] = x \times \Big(\dfrac{21}{20}\Big)^2 \\[1em] = \dfrac{441x}{400}. A = x × ( 1 + 2 × 100 10 ) 1 × 2 = x × ( 1 + 20 1 ) 2 = x × ( 20 21 ) 2 = 400 441 x .
Given,
Difference of amounts at end of 6 months and 12 months is ₹ 189.
⇒ 441 x 400 − 21 x 20 = 189 ⇒ 441 x − 420 x 400 = 189 ⇒ 21 x 400 = 189 ⇒ x = 189 × 400 21 ⇒ x = ₹ 3600. \Rightarrow \dfrac{441x}{400} - \dfrac{21x}{20} = 189 \\[1em] \Rightarrow \dfrac{441x - 420x}{400} = 189 \\[1em] \Rightarrow \dfrac{21x}{400} = 189 \\[1em] \Rightarrow x = \dfrac{189 \times 400}{21} \\[1em] \Rightarrow x = ₹ 3600. ⇒ 400 441 x − 20 21 x = 189 ⇒ 400 441 x − 420 x = 189 ⇒ 400 21 x = 189 ⇒ x = 21 189 × 400 ⇒ x = ₹3600.
Hence, sum invested = ₹ 3600.
Rohit borrows ₹ 86000 from Arun for two years at 5% per annum simple interest. He immediately lends out this money to Akshay at 5% compound interest compounded annually for the same period. Calculate Rohit's profit in transaction at the end of two years.
Answer
Given,
P = ₹ 86000
Rate of interest = 5%
Time = 2 years
Calculating S.I. :
S.I. = P × R × T 100 = 86000 × 5 × 2 100 \dfrac{P \times R \times T}{100} = \dfrac{86000 \times 5 \times 2}{100} 100 P × R × T = 100 86000 × 5 × 2 = ₹ 8600.
Calculating C.I. :
C.I. = A - P
C . I . = P ( 1 + r 100 ) n − P = 86000 × ( 1 + 5 100 ) 2 − 86000 = 86000 × ( 105 100 ) 2 − 86000 = 86000 × ( 21 20 ) 2 − 86000 = 86000 × 441 400 − 86000 = 94815 − 86000 = ₹ 8815. C.I. = P\Big(1 + \dfrac{r}{100}\Big)^n - P \\[1em] = 86000 \times \Big(1 + \dfrac{5}{100}\Big)^2 - 86000 \\[1em] = 86000 \times \Big(\dfrac{105}{100}\Big)^2 - 86000 \\[1em] = 86000 \times \Big(\dfrac{21}{20}\Big)^2 - 86000 \\[1em] = 86000 \times \dfrac{441}{400} - 86000 \\[1em] = 94815 - 86000 \\[1em] = ₹ 8815. C . I . = P ( 1 + 100 r ) n − P = 86000 × ( 1 + 100 5 ) 2 − 86000 = 86000 × ( 100 105 ) 2 − 86000 = 86000 × ( 20 21 ) 2 − 86000 = 86000 × 400 441 − 86000 = 94815 − 86000 = ₹8815.
Rohit's profit = Interest received by him - Interest paid by him
= ₹ 8815 - ₹ 8600 = ₹ 215.
The simple interest on a certain sum of money for 3 years at 5% per annum is ₹ 1200. Find the amount due and the compound interest on this sum of money at the same rate and after 2 years, interest is reckoned annually.
Answer
Let sum of money be ₹ x.
For S.I. :
P = ₹ x
Rate = 5%
Time = 3 years
S.I. = P × R × T 100 = x × 5 × 3 100 = 3 x 20 \dfrac{P \times R \times T}{100} = \dfrac{x \times 5 \times 3}{100} = \dfrac{3x}{20} 100 P × R × T = 100 x × 5 × 3 = 20 3 x .
Given,
S.I. = ₹ 1200
∴ 3 x 20 = 1200 ⇒ x = 1200 × 20 3 = ₹ 8000. \therefore \dfrac{3x}{20} = 1200 \\[1em] \Rightarrow x = \dfrac{1200 \times 20}{3} = ₹ 8000. ∴ 20 3 x = 1200 ⇒ x = 3 1200 × 20 = ₹8000.
When rate is compounded annually:
A = P ( 1 + r 100 ) n = x × ( 1 + 5 100 ) 2 = 8000 × ( 105 100 ) 2 = 8000 × ( 21 20 ) 2 = ₹ 8820. A = P\Big(1 + \dfrac{r}{100}\Big)^n \\[1em] = x \times \Big(1 + \dfrac{5}{100}\Big)^2 \\[1em] = 8000 \times \Big(\dfrac{105}{100}\Big)^2 \\[1em] = 8000 \times \Big(\dfrac{21}{20}\Big)^2 \\[1em] = ₹ 8820. A = P ( 1 + 100 r ) n = x × ( 1 + 100 5 ) 2 = 8000 × ( 100 105 ) 2 = 8000 × ( 20 21 ) 2 = ₹8820.
C.I. = A - P = ₹ 8820 - ₹ 8000 = ₹ 820.
Hence, amount due = ₹ 8820 and C.I. = ₹ 820.
Nikita invests ₹ 6000 for two years at a certain rate of interest compounded annually. At the end of first year it amounts to ₹ 6720. Calculate :
(a) the rate percent (i.e. the rate of growth)
(b) the amount at the end of the second year.
Answer
(a) Let rate percent be r%.
Given,
P = ₹ 6000
n = 1 year
A = ₹ 6720
By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
Substituting values we get :
⇒ 6720 = 6000 ( 1 + r 100 ) 1 ⇒ 6720 6000 = 1 + r 100 ⇒ 6720 6000 − 1 = r 100 ⇒ 6720 − 6000 6000 = r 100 ⇒ 720 6000 = r 100 ⇒ r = 720 × 100 6000 ⇒ r = 12 \Rightarrow 6720 = 6000\Big(1 + \dfrac{r}{100}\Big)^1 \\[1em] \Rightarrow \dfrac{6720}{6000} = 1 + \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{6720}{6000} - 1 = \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{6720 - 6000}{6000} = \dfrac{r}{100} \\[1em] \Rightarrow \dfrac{720}{6000} = \dfrac{r}{100} \\[1em] \Rightarrow r = \dfrac{720 \times 100}{6000} \\[1em] \Rightarrow r = 12%. ⇒ 6720 = 6000 ( 1 + 100 r ) 1 ⇒ 6000 6720 = 1 + 100 r ⇒ 6000 6720 − 1 = 100 r ⇒ 6000 6720 − 6000 = 100 r ⇒ 6000 720 = 100 r ⇒ r = 6000 720 × 100 ⇒ r = 12
Hence, rate percent = 12%.
(b) By formula,
A = P ( 1 + r 100 ) n P\Big(1 + \dfrac{r}{100}\Big)^n P ( 1 + 100 r ) n
A = 6000 × ( 1 + 12 100 ) 2 = 6000 × ( 112 100 ) 2 = 6000 × ( 28 25 ) 2 = 6000 × 784 625 = ₹ 7526.40 A = 6000 \times \Big(1 + \dfrac{12}{100}\Big)^2 \\[1em] = 6000 \times \Big(\dfrac{112}{100}\Big)^2 \\[1em] = 6000 \times \Big(\dfrac{28}{25}\Big)^2 \\[1em] = 6000 \times \dfrac{784}{625} \\[1em] = ₹ 7526.40 A = 6000 × ( 1 + 100 12 ) 2 = 6000 × ( 100 112 ) 2 = 6000 × ( 25 28 ) 2 = 6000 × 625 784 = ₹7526.40
Hence, amount at the end of 2 years = ₹ 7526.40
A certain sum of money invested at CI triples itself in 8 year interest being payable annually. In how many years will it be 81 times?
Answer
Let rate of interest be r% and sum of money be ₹ P.
By formula, A = P ( 1 + r 100 ) t P\Big(1 + \dfrac{r}{100}\Big)^t P ( 1 + 100 r ) t
Given,
₹ P becomes three times of itself in 8 years.
∴ 3 P = P ( 1 + r 100 ) 8 ⇒ 3 P P = ( 1 + r 100 ) 8 ⇒ 3 = ( 1 + r 100 ) 8 . . . . . . . . . . . . . . . . . . . . . ( 1 ) \therefore 3P = P\Big(1 + \dfrac{r}{100}\Big)^8 \\[1em] \Rightarrow \dfrac{3P}{P} = \Big(1 + \dfrac{r}{100}\Big)^8 \\[1em] \Rightarrow 3 = \Big(1 + \dfrac{r}{100}\Big)^8 .....................(1) ∴ 3 P = P ( 1 + 100 r ) 8 ⇒ P 3 P = ( 1 + 100 r ) 8 ⇒ 3 = ( 1 + 100 r ) 8 ..................... ( 1 )
Let in n years money becomes 81 times.
⇒ P ( 1 + r 100 ) n = 81 P ⇒ ( 1 + r 100 ) n = 81 P P ⇒ ( 1 + r 100 ) n = 81 ⇒ ( 1 + r 100 ) n = 3 4 ⇒ ( 1 + r 100 ) n = [ ( 1 + r 100 ) 8 ] 4 [From (1)] ⇒ ( 1 + r 100 ) n = ( 1 + r 100 ) 32 \Rightarrow P\Big(1 + \dfrac{r}{100}\Big)^n = 81P\\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = \dfrac{81P}{P}\\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = 81\\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = 3^4\\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = \Big[\Big(1 + \dfrac{r}{100}\Big)^8\Big]^4 \text{ [From (1)]}\\[1em] \Rightarrow \Big(1 + \dfrac{r}{100}\Big)^n = \Big(1 + \dfrac{r}{100}\Big)^{32}\\[1em] ⇒ P ( 1 + 100 r ) n = 81 P ⇒ ( 1 + 100 r ) n = P 81 P ⇒ ( 1 + 100 r ) n = 81 ⇒ ( 1 + 100 r ) n = 3 4 ⇒ ( 1 + 100 r ) n = [ ( 1 + 100 r ) 8 ] 4 [From (1)] ⇒ ( 1 + 100 r ) n = ( 1 + 100 r ) 32
⇒ n = 32.
Hence, in 32 years money will becomes 81 times of itself.