KnowledgeBoat Logo
|
OPEN IN APP

Chapter 1

Rational and Irrational Numbers

Class - 9 Concise Mathematics Selina



Exercise 1(A)

Question 1(a)

Let zero = pq\dfrac{p}{q}, where p and q are integers. What additional condition will make 0 = pq\dfrac{p}{q} a rational number :

  1. q = 0

  2. p ≠ 0

  3. q ≠ 0

  4. p ≠ 0 and q ≠ 0.

Answer

pq=0\dfrac{p}{q} = 0 is a rational number. If,

p and q are integers and q ≠ 0.

Hence, Option 3 is the correct option.

Question 1(b)

Every non-terminating decimal number is a :

  1. recurring decimal

  2. real number

  3. non-recurring decimal

  4. circulating decimal

Answer

Every non-terminating decimal number is a real number.

Hence, Option 2 is the correct option.

Question 1(c)

7.478478.... is a :

  1. terminating rational

  2. recurring

  3. neither rational non-terminating

  4. not real

Answer

7.478478 is a recurring decimal.

Hence, Option 2 is the correct option.

Question 1(d)

7175\dfrac{71}{75} is :

  1. terminating

  2. non-terminating

  3. periodic decimal

  4. not a rational number

Answer

On solving,

7175\dfrac{71}{75} = 0.94666.......

7175\dfrac{71}{75} is a recurring or periodic decimal.

Hence, Option 3 is the correct option.

Question 1(e)

Which of the following is terminating:

1385,51405 and 9524\dfrac{13}{85}, \dfrac{51}{405} \text{ and } \dfrac{9}{524}

  1. 1385\dfrac{13}{85}

  2. 9524\dfrac{9}{524}

  3. 51405\dfrac{51}{405}

  4. None

Answer

On solving,

1385=0.152941\dfrac{13}{85} = 0.152941........

51405=0.1259259\dfrac{51}{405} = 0.1259259......

9524\dfrac{9}{524} = 0.0171755......

None of the above fraction is terminating.

Hence, Option 4 is the correct option.

Question 2

Are the following statements true or false ? Give reasons for your answers ?

(i) Every whole number is a natural number.

(ii) Every whole number is a rational number.

(iii) Every integer is a rational number.

(iv) Every rational number is a whole number.

Answer

(i) False, as zero is a whole number but not a natural number.

(ii) True

(iii) True

(iv) False, as 25\dfrac{2}{5} is a rational number but not a whole number.

Question 3

Arrange 59,712,23 and 1118-\dfrac{5}{9}, \dfrac{7}{12}, -\dfrac{2}{3} \text{ and } \dfrac{11}{18} in the ascending order of their magnitudes.

Also, find the difference between the largest and the smallest of these rational numbers. Express this difference as a decimal fraction correct to one decimal place.

Answer

L.C.M. of 9, 12, 3 and 18 is 36.

So, converting denominator of each fraction 59,712,23 and 1118-\dfrac{5}{9}, \dfrac{7}{12}, -\dfrac{2}{3} \text{ and } \dfrac{11}{18} into 36.

59×44=2036712×33=213623×1212=24361118×22=2236.\Rightarrow -\dfrac{5}{9} \times \dfrac{4}{4} = -\dfrac{20}{36} \\[1em] \Rightarrow \dfrac{7}{12} \times \dfrac{3}{3} = \dfrac{21}{36} \\[1em] \Rightarrow -\dfrac{2}{3} \times \dfrac{12}{12} = -\dfrac{24}{36} \\[1em] \Rightarrow \dfrac{11}{18} \times \dfrac{2}{2} = \dfrac{22}{36}.

Since, -24 < -20 < 21 < 22

∴ -2436<2036<2136<2236\dfrac{24}{36} \lt -\dfrac{20}{36} \lt \dfrac{21}{36} \lt \dfrac{22}{36}

23<59<712<1118\Rightarrow -\dfrac{2}{3} \lt -\dfrac{5}{9} \lt \dfrac{7}{12} \lt \dfrac{11}{18}

Difference between largest and smallest fraction :

1118(23)1118+231118+121823181.3\Rightarrow \dfrac{11}{18} - \Big(-\dfrac{2}{3}\Big) \\[1em] \Rightarrow \dfrac{11}{18} + \dfrac{2}{3} \\[1em] \Rightarrow \dfrac{11}{18} + \dfrac{12}{18} \\[1em] \Rightarrow \dfrac{23}{18} \\[1em] \Rightarrow 1.3

Hence, fractions in ascending order are 23<59<712<1118-\dfrac{2}{3} \lt -\dfrac{5}{9} \lt \dfrac{7}{12} \lt \dfrac{11}{18} and required difference = 1.3

Question 4

Arrange 58,316,14 and 1732\dfrac{5}{8}, -\dfrac{3}{16}, -\dfrac{1}{4} \text{ and } \dfrac{17}{32} in the descending order of their magnitudes.

Also, find the sum of the lowest and the largest of these rational numbers. Express the result obtained as a decimal fraction correct to two decimal places.

Answer

L.C.M. of 4, 8, 16 and 32 is 32.

So, converting denominator of each fraction 58,316,14 and 1732\dfrac{5}{8}, -\dfrac{3}{16}, -\dfrac{1}{4} \text{ and } \dfrac{17}{32} into 32.

58×44=2032316×22=63214×88=8321732×11=1732.\Rightarrow \dfrac{5}{8} \times \dfrac{4}{4} = \dfrac{20}{32} \\[1em] \Rightarrow -\dfrac{3}{16} \times \dfrac{2}{2} = -\dfrac{6}{32} \\[1em] \Rightarrow -\dfrac{1}{4} \times \dfrac{8}{8} = -\dfrac{8}{32} \\[1em] \Rightarrow \dfrac{17}{32} \times \dfrac{1}{1} = \dfrac{17}{32}.

Since, -8 < -6 < 17 < 20.

832<632<1732<2032\therefore -\dfrac{8}{32} \lt -\dfrac{6}{32} \lt \dfrac{17}{32} \lt \dfrac{20}{32}

14<316<1732<58\therefore -\dfrac{1}{4} \lt -\dfrac{3}{16} \lt \dfrac{17}{32} \lt \dfrac{5}{8}

So, in descending order.

58>1732>316>14\Rightarrow \dfrac{5}{8} \gt \dfrac{17}{32} \gt -\dfrac{3}{16} \gt -\dfrac{1}{4}

Sum of largest and lowest :

=58+(14)=5814=5×4321×832=20832=1232=38=0.38= \dfrac{5}{8} + \Big(-\dfrac{1}{4}\Big) \\[1em] = \dfrac{5}{8} - \dfrac{1}{4} \\[1em] = \dfrac{5 \times 4}{32} - \dfrac{1 \times 8}{32} \\[1em] = \dfrac{20 - 8}{32} \\[1em] = \dfrac{12}{32} \\[1em] = \dfrac{3}{8} \\[1em] = 0.38

Hence, fractions in descending order are : 58>1732>316>14\dfrac{5}{8} \gt \dfrac{17}{32} \gt -\dfrac{3}{16} \gt -\dfrac{1}{4} and required sum = 0.38

Question 5

Without doing any actual division, find which of the following rational numbers have terminating decimal representation :

(i) 716\dfrac{7}{16}

(ii) 23125\dfrac{23}{125}

(iii) 914\dfrac{9}{14}

(iv) 3245\dfrac{32}{45}

(v) 4350\dfrac{43}{50}

Answer

In rational numbers, if the denominator of the fraction can be expressed in the form of 2m × 5n, then it is a terminating decimal.

(i) 716=724\dfrac{7}{16} = \dfrac{7}{2^4}

So, 16 can be expressed as 24 × 50.

Hence, it is a terminating decimal number.

(ii) 23125=2353\dfrac{23}{125} = \dfrac{23}{5^3}

So, 125 can be expressed as 20 × 53.

Hence, it is a terminating decimal number.

(iii) 914=92×7\dfrac{9}{14} = \dfrac{9}{2 \times 7}

So, 14 cannot be expressed in form of 2m × 5n.

Hence, it is not a terminating decimal number.

(iv) 3245=3232×5\dfrac{32}{45} = \dfrac{32}{3^2 \times 5}

So, 45 cannot be expressed in form of 2m × 5n.

Hence, it is not a terminating decimal number.

(v) 4350=432×52\dfrac{43}{50} = \dfrac{43}{2 \times 5^2}

So, 50 can be expressed in form of 21 × 52.

Hence, it is a terminating decimal number.

Exercise 1(B)

Question 1(a)

The negative of an irrational number is :

  1. a rational number

  2. an irrational number

  3. a rational number and an irrational number

  4. a whole number

Answer

Negative of an irrational number is also an irrational number.

Hence, Option 2 is the correct option.

Question 1(b)

8(81)\sqrt{8}(\sqrt{8} - 1) is always :

  1. rational

  2. irrational

  3. whole number

  4. natural number

Answer

Given,

8(81)8882.82...5.17....\Rightarrow \sqrt{8}(\sqrt{8} - 1) \\[1em] \Rightarrow 8 - \sqrt{8} \\[1em] \Rightarrow 8 - 2.82... \\[1em] \Rightarrow 5.17....

which is an irrational number.

Hence, Option 2 is the correct option.

Question 1(c)

For the given figure length of OA is :

For the given figure length of OA is : Rational and Irrational Numbers, Concise Mathematics Solutions ICSE Class 9.
  1. 5\sqrt{5}

  2. 3\sqrt{3}

  3. 5 or 3\sqrt{5} \text{ or } \sqrt{3}

  4. neither 5\sqrt{5} nor 3\sqrt{3}

Answer

By pythagoras theorem,

Hypotenuse2 = Perpendicular2 + Base2

For the given figure length of OA is : Rational and Irrational Numbers, Concise Mathematics Solutions ICSE Class 9.

⇒ OA2 = AB2 + OB2

⇒ OA2 = 22 + 12

⇒ OA2 = 4 + 1

⇒ OA = 5

⇒ OA = 5\sqrt{5}.

Hence, Option 1 is the correct option.

Question 1(d)

23×382\sqrt{3} \times 3\sqrt{8} is :

  1. rational

  2. irrational

  3. neither rational nor irrational

  4. 12 ×5\times \sqrt{5}

Answer

Given,

23×386246×2612×612×2.449.....29.393.......\Rightarrow 2\sqrt{3} \times 3\sqrt{8} \\[1em] \Rightarrow 6\sqrt{24} \\[1em] \Rightarrow 6 \times 2\sqrt{6} \\[1em] \Rightarrow 12 \times \sqrt{6} \\[1em] \Rightarrow 12 \times 2.449..... \\[1em] \Rightarrow 29.393.......

which is an irrational number.

Hence, Option 2 is the correct option.

Question 1(e)

Two irrational numbers between 8 and 11 are :

  1. 65 and 120\sqrt{65} \text{ and } \sqrt{120}

  2. 69\sqrt{69} and 10.5

  3. 8.2 and 125\sqrt{125}

  4. 3 and 110\sqrt{110}

Answer

65\sqrt{65} = 8.0622.... and 120\sqrt{120} = 10.954......

Since, the above two nos. are non-terminating as well as non-recurring.

∴ They are irrational and in between 8 and 11.

Hence, Option 1 is the correct option.

Question 2

State whether the following numbers are rational or not :

(i) (2+2)2(2 + \sqrt{2})^2

(ii) (33)2(3 - \sqrt{3})^2

(iii) (5+5)(55)(5 + \sqrt{5})(5 - \sqrt{5})

(iv) (32)2(\sqrt{3} - \sqrt{2})^2

Answer

(i) Given,

(2+2)24+2+426+426+5.658....11.658....\Rightarrow (2 + \sqrt{2})^2 \\[1em] \Rightarrow 4 + 2 + 4\sqrt{2} \\[1em] \Rightarrow 6 + 4\sqrt{2} \\[1em] \Rightarrow 6 + 5.658.... \\[1em] \Rightarrow 11.658....

which is irrational.

Hence, (2+2)2(2 + \sqrt{2})^2 is not a rational number.

(ii) Given,

(33)29+36312631210.392.....1.607......\Rightarrow (3 - \sqrt{3})^2 \\[1em] \Rightarrow 9 + 3 - 6\sqrt{3} \\[1em] \Rightarrow 12 - 6\sqrt{3} \\[1em] \Rightarrow 12 - 10.392..... \\[1em] \Rightarrow 1.607......

which is irrational.

Hence, (33)2(3 - \sqrt{3})^2 is not a rational number.

(iii) Given,

(5+5)(55)2555+55520\Rightarrow (5 + \sqrt{5})(5 -\sqrt{5}) \\[1em] \Rightarrow 25 - 5\sqrt{5} + 5\sqrt{5} - 5 \\[1em] \Rightarrow 20

which is rational.

Hence, (5+5)(55)(5 + \sqrt{5})(5 -\sqrt{5}) is a rational number.

(iv) Given,

(32)23+22×3×252652×2.449...54.898.....0.101.....\Rightarrow (\sqrt{3} - \sqrt{2})^2 \\[1em] \Rightarrow 3 + 2 - 2 \times \sqrt{3} \times \sqrt{2} \\[1em] \Rightarrow 5 - 2\sqrt{6} \\[1em] \Rightarrow 5 - 2 \times 2.449... \\[1em] \Rightarrow 5 - 4.898..... \\[1em] \Rightarrow 0.101.....

which is irrational.

Hence, (32)2(\sqrt{3} - \sqrt{2})^2 is not a rational number.

Question 3

Find the square of :

(i) 355\dfrac{3\sqrt{5}}{5}

(ii) 3+2\sqrt{3} + \sqrt{2}

(iii) 52\sqrt{5} - 2

(iv) 3+253 + 2\sqrt{5}

Answer

(i) Squaring,

(355)235×355×5452595145.\Rightarrow \Big(\dfrac{3\sqrt{5}}{5}\Big)^2 \\[1em] \Rightarrow \dfrac{3\sqrt{5} \times 3\sqrt{5}}{5 \times 5} \\[1em] \Rightarrow \dfrac{45}{25} \\[1em] \Rightarrow \dfrac{9}{5} \\[1em] \Rightarrow 1\dfrac{4}{5}.

Hence, square of 355=145\dfrac{3\sqrt{5}}{5} = 1\dfrac{4}{5}.

(ii) Squaring,

(3+2)2(3)2+(2)2+2×3×23+2+265+26.\Rightarrow (\sqrt{3} + \sqrt{2})^2 \\[1em] \Rightarrow (\sqrt{3})^2 + (\sqrt{2})^2 + 2 \times \sqrt{3} \times \sqrt{2} \\[1em] \Rightarrow 3 + 2 + 2\sqrt{6} \\[1em] \Rightarrow 5 + 2\sqrt{6}.

Hence, square of 3+2=5+26\sqrt{3} + \sqrt{2} = 5 + 2\sqrt{6}.

(iii) Squaring,

(52)2(5)2+(2)22×5×25+445945.\Rightarrow (\sqrt{5} - 2)^2 \\[1em] \Rightarrow (\sqrt{5})^2 + (2)^2 - 2 \times \sqrt{5} \times 2 \\[1em] \Rightarrow 5 + 4 - 4\sqrt{5} \\[1em] \Rightarrow 9 - 4\sqrt{5}.

Hence, square of 52=945\sqrt{5} - 2 = 9 - 4\sqrt{5}.

(iv) Squaring,

(3+25)2(3)2+(25)2+2×3×259+20+12529+125.\Rightarrow (3 + 2\sqrt{5})^2 \\[1em] \Rightarrow (3)^2 + (2\sqrt{5})^2 + 2 \times 3 \times 2\sqrt{5} \\[1em] \Rightarrow 9 + 20 + 12\sqrt{5} \\[1em] \Rightarrow 29 + 12\sqrt{5}.

Hence, square of 3+25=29+1253 + 2\sqrt{5} = 29 + 12\sqrt{5}.

Question 4

State in each case, whether true or false :

(i) 2+3=5\sqrt{2} + \sqrt{3} = \sqrt{5}

(ii) 24+2=62\sqrt{4} + 2 = 6

(iii) 3727=73\sqrt{7} - 2\sqrt{7} = \sqrt{7}

(iv) 27\dfrac{2}{7} is an irrational number.

(v) 511\dfrac{5}{11} is a rational number.

(vi) All rational numbers are real numbers.

(vii) All real numbers are rational numbers.

(viii) Some real numbers are rational numbers.

Answer

(i) 2\sqrt{2} = 1.41, 3\sqrt{3} = 1.732 and 5\sqrt{5} = 2.24

2+3\sqrt{2} + \sqrt{3} = 3.14, which is not equal to 2.24.

2+35\therefore \sqrt{2} + \sqrt{3} \ne \sqrt{5}

Hence, above statement is false.

(ii) Given,

24+2=62\sqrt{4} + 2 = 6

Solving, L.H.S. :

24+22×2+26.\Rightarrow 2\sqrt{4} + 2 \\[1em] \Rightarrow 2 \times 2 + 2 \\[1em] \Rightarrow 6.

Since, L.H.S. = R.H.S.

Hence, above statement is true.

(iii) Given,

3727=73\sqrt{7} - 2\sqrt{7} = \sqrt{7}

Solving L.H.S. :

37277(32)7×17.\Rightarrow 3\sqrt{7} - 2\sqrt{7} \\[1em] \Rightarrow \sqrt{7}(3 - 2) \\[1em] \Rightarrow \sqrt{7} \times 1 \\[1em] \Rightarrow \sqrt{7}.

Since, L.H.S. = R.H.S.

Hence, above statement is true.

(iv) Since, in 27\dfrac{2}{7} denominator is not equal to zero.

2 and 7 have no common factor.

27\dfrac{2}{7} is rational number.

Hence, above statement is false.

(v) Since, in 511\dfrac{5}{11} denominator is not equal to zero.

5 and 11 have no common factor.

511\dfrac{5}{11} is rational number.

Hence, above statement is true.

(vi) Both, rational and irrational numbers are real numbers.

Hence, above statement is true.

(vii) Real numbers are both rational as well as irrational number.

Hence, above statement is false.

(viii) Some rational numbers are also real numbers.

Hence, above statement is true.

Question 5

Given universal set

= 6,534,4,35,38,0,45,1,123,8,3.01,π,8.47{-6, -5\dfrac{3}{4}, -\sqrt{4}, -\dfrac{3}{5}, -\dfrac{3}{8}, 0, \dfrac{4}{5}, 1, 1\dfrac{2}{3}, \sqrt{8}, 3.01, π, 8.47}

From the given set, find :

(i) set of rational numbers

(ii) set of irrational numbers

(iii) set of integers

(iv) set of non-negative integers

Answer

(i) We need to find the set of rational numbers.

Rational numbers are :

  1. Of form pq\dfrac{p}{q}, where q ≠ 0.

  2. Integers as well as terminating and recurring decimals are rational numbers.

From the universal set

Set of rational numbers

= 6,534,4,35,38,0,45,1,123,3.01,8.47{-6, -5\dfrac{3}{4}, -\sqrt{4}, -\dfrac{3}{5}, -\dfrac{3}{8}, 0, \dfrac{4}{5}, 1, 1\dfrac{2}{3}, 3.01, 8.47}

(ii) Since,

8=2.82.... and π=3.142....\sqrt{8} = 2.82.... \text{ and π} = 3.142....

Since, the above numbers are neither terminating nor recurring, hence they are irrational.

From the universal set

Set of irrational numbers = 8,π{\sqrt{8}, π}

(iii) From the universal set

Set of integers = 6,4,0,1{-6, -\sqrt{4}, 0, 1}

(iv) From the universal set

Set of non-negative integers = {0, 1}.

Question 6

Prove that each of the following numbers is irrational:

(i) 3+2\sqrt{3} + \sqrt{2}

(ii) 3 - 2\sqrt{2}

Answer

(i) Let us assume 3+2\sqrt{3} + \sqrt{2} is a rational number.

Let 3+2\sqrt{3} + \sqrt{2} = x

Squaring both sides, we get;

(3+2)2=x2(3)2+(2)2+2×3×2=x23+2+26=x25+26=x226=x256=x252\Rightarrow (\sqrt{3} + \sqrt{2})^2 = x^2\\[1em] \Rightarrow (\sqrt{3})^2 + (\sqrt{2})^2 + 2 \times \sqrt{3} \times \sqrt{2} = x^2\\[1em] \Rightarrow 3 + 2 + 2\sqrt{6} = x^2\\[1em] \Rightarrow 5 + 2\sqrt{6} = x^2\\[1em] \Rightarrow 2\sqrt{6} = x^2 - 5 \\[1em] \Rightarrow \sqrt{6} = \dfrac{x^2 - 5}{2}

Here, x is rational,

∴ x2 is rational ..................(1)

⇒ x2 - 5 is rational

So, x252\dfrac{x^2 - 5}{2} is rational.

But 6\sqrt{6} is irrational, as it is square root of non-perfect square.

x252\dfrac{x^2 - 5}{2} is irrational i.e. x2 - 5 is irrational and so x2 is irrational ....................(2)

From (1), x2 is rational, and

From (2), x2 is irrational

∴ We arrive at a contradiction.

So, our assumption that 3+2\sqrt{3} + \sqrt{2} is a rational number is wrong.

Hence, 3+2\sqrt{3} + \sqrt{2} is an irrational number.

(ii) Let us assume 3 - 2\sqrt{2} is a rational number.

Let, 3 - 2\sqrt{2} = x

Squaring both sides, we get;

(32)2=x2(3)2+(2)22×3×2=x29+262=x21162=x262=11x22=11x26\Rightarrow (3 - \sqrt{2})^2 = x^2 \\[1em] \Rightarrow (3)^2 + (\sqrt{2})^2 - 2 \times 3 \times \sqrt{2} = x^2 \\[1em] \Rightarrow 9 + 2 - 6\sqrt{2} = x^2 \\[1em] \Rightarrow 11 - 6\sqrt{2} = x^2 \\[1em] \Rightarrow 6\sqrt{2} = 11 - x^2 \\[1em] \Rightarrow \sqrt{2} = \dfrac{11 - x^2}{6}

Here, x is rational,

∴ x2 is rational ..................(1)

⇒ 11 - x2 is rational

So, 11x26\dfrac{11 - x^2}{6} is rational.

But 2\sqrt{2} is irrational, as it is a square root of non-perfect square.

11x26\dfrac{11 - x^2}{6} is irrational i.e. 11 - x2 is irrational and so x2 is irrational ....................(2)

From (1), x2 is rational, and

From (2), x2 is irrational

∴ We arrive at a contradiction.

So, our assumption that 3 - 2\sqrt{2} is a rational number is wrong.

Hence, 3 - 2\sqrt{2} is an irrational number.

Question 7

Write a pair of irrational numbers whose sum is irrational.

Answer

Let 3+2 and 23\sqrt{3} + 2 \text{ and } \sqrt{2} - 3 be two irrational numbers.

Sum of numbers

=3+2+23=3+21.= \sqrt{3} + 2 + \sqrt{2} - 3 \\[1em] = \sqrt{3} + \sqrt{2} - 1.

3+21\sqrt{3} + \sqrt{2} - 1 is an irrational number.

Hence, required pair = 3+2 and 23\sqrt{3} + 2 \text{ and } \sqrt{2} - 3.

Question 8

Write a pair of irrational numbers whose sum is rational.

Answer

Let 3+2 and 53\sqrt{3} + 2 \text{ and } 5 - \sqrt{3} be two irrational numbers.

Sum of numbers

=3+2+53=7.= \sqrt{3} + 2 + 5 - \sqrt{3} \\[1em] = 7.

7 is a rational number.

Hence, required pair = 3+2 and 53\sqrt{3} + 2 \text{ and } 5 - \sqrt{3}.

Question 9

Write a pair of irrational numbers whose difference is irrational.

Answer

Let 5+5 and 2+5\sqrt{5} + 5 \text{ and } \sqrt{2} + 5 be two irrational numbers.

Difference of numbers

=5+5(2+5)=52+55=52.= \sqrt{5} + 5 - (\sqrt{2} + 5) \\[1em] = \sqrt{5} - \sqrt{2} + 5 - 5 \\[1em] = \sqrt{5} - \sqrt{2}.

52\sqrt{5} - \sqrt{2} is an irrational number.

Hence, required pair = 5+5 and 2+5\sqrt{5} + 5 \text{ and } \sqrt{2} + 5.

Question 10

Write a pair of irrational numbers whose difference is rational.

Answer

Let 3+5 and 3+2\sqrt{3} + 5 \text{ and } \sqrt{3} + 2 be two irrational numbers.

Difference of numbers

=3+5(3+2)=33+52=3.= \sqrt{3} + 5 - (\sqrt{3} + 2) \\[1em] = \sqrt{3} - \sqrt{3} + 5 - 2 \\[1em] = 3.

3 is a rational number.

Hence, required pair = 3+5 and 3+2\sqrt{3} + 5 \text{ and } \sqrt{3} + 2.

Question 11

Write a pair of irrational numbers whose product is irrational.

Answer

Let 2 and 3\sqrt{2} \text{ and } \sqrt{3} be two irrational numbers.

Product of numbers

=2×3=6.= \sqrt{2} \times \sqrt{3} \\[1em] = \sqrt{6}.

6\sqrt{6} is an irrational number.

Hence, required pair = 2 and 3\sqrt{2} \text{ and } \sqrt{3}.

Question 12

Write a pair of irrational numbers whose product is rational.

Answer

Let 5+2 and 525 + \sqrt{2} \text{ and } 5 - \sqrt{2} be two irrational numbers.

Product of numbers

=(5+2)(52)=2552+522=23.= (5 + \sqrt{2})(5 - \sqrt{2}) \\[1em] = 25 - 5\sqrt{2} + 5\sqrt{2} - 2 \\[1em] = 23.

23 is a rational number.

Hence, required pair = 5+2 and 525 + \sqrt{2} \text{ and } 5 - \sqrt{2}.

Exercise 1(C)

Question 1(a)

If x = 52,x+1x\sqrt{5} - 2, x + \dfrac{1}{x} is equal to :

  1. 252\sqrt{5}

  2. 4

  3. 454\sqrt{5}

  4. 4\sqrt{-4}

Answer

Given,

x = 52\sqrt{5} - 2

1x=152\dfrac{1}{x} = \dfrac{1}{\sqrt{5} - 2}

Rationalizing,

1x=152×5+25+2=5+2(5)2(2)2=5+254=5+21=5+2.x+1x=52+5+2=25.\Rightarrow \dfrac{1}{x} = \dfrac{1}{\sqrt{5} - 2} \times \dfrac{\sqrt{5} + 2}{\sqrt{5} + 2} \\[1em] = \dfrac{\sqrt{5} + 2}{(\sqrt{5})^2 - (2)^2} \\[1em] = \dfrac{\sqrt{5} + 2}{5 - 4} \\[1em] = \dfrac{\sqrt{5} + 2}{1} \\[1em] = \sqrt{5} + 2. \\[1em] \Rightarrow x + \dfrac{1}{x} = \sqrt{5} - 2 + \sqrt{5} + 2 \\[1em] = 2\sqrt{5}.

Hence, Option 1 is the correct option.

Question 1(b)

If x = 1 + 2, then (x+1x)2\sqrt{2}, \text{ then } \Big(x + \dfrac{1}{x}\Big)^2 is :

  1. 222\sqrt{2}

  2. 8

  3. 4

  4. 424\sqrt{2}

Answer

Given,

x = 1+21 + \sqrt{2}

1x=11+2\dfrac{1}{x} = \dfrac{1}{1 + \sqrt{2}}

Rationalizing,

11+2×1212=12(1)2(2)2=1212=121=1+2.(x+1x)2=[1+2+(1+2)]2=[11+2+2]2=[22]2=8.\Rightarrow \dfrac{1}{1 + \sqrt{2}} \times \dfrac{1 - \sqrt{2}}{1 - \sqrt{2}} \\[1em] = \dfrac{1 - \sqrt{2}}{(1)^2 - (\sqrt{2})^2} \\[1em] = \dfrac{1 - \sqrt{2}}{1 - 2} \\[1em] = \dfrac{1 - \sqrt{2}}{-1} \\[1em] = -1 + \sqrt{2}. \\[1em] \Rightarrow \Big(x + \dfrac{1}{x}\Big)^2 = [1 + \sqrt{2} + (-1 + \sqrt{2})]^2 \\[1em] = [1 - 1 + \sqrt{2} + \sqrt{2}]^2 \\[1em] = [2\sqrt{2}]^2 \\[1em] = 8.

Hence, Option 2 is the correct option.

Question 1(c)

227+31243\dfrac{2\sqrt{27} + 3\sqrt{12}}{4\sqrt{3}} is equal to :

  1. 232\sqrt{3}

  2. 323\sqrt{2}

  3. 3

  4. 3+2\sqrt{3} + \sqrt{2}

Answer

Solving,

227+312432×33+3×234363+6343123433.\Rightarrow \dfrac{2\sqrt{27} + 3\sqrt{12}}{4\sqrt{3}} \\[1em] \Rightarrow \dfrac{2 \times 3\sqrt{3} + 3 \times 2\sqrt{3}}{4\sqrt{3}} \\[1em] \Rightarrow \dfrac{6\sqrt{3} + 6\sqrt{3}}{4\sqrt{3}} \\[1em] \Rightarrow \dfrac{12\sqrt{3}}{4\sqrt{3}} \\[1em] \Rightarrow 3.

Hence, Option 3 is the correct option.

Question 1(d)

(53)2(\sqrt{5} - \sqrt{3})^2 is :

  1. 8+2158 + 2\sqrt{15}

  2. 8+158 + \sqrt{15}

  3. 8158 - \sqrt{15}

  4. 82158 - 2\sqrt{15}

Answer

Solving,

(53)2(5)2+(3)22×5×35+32158215.\Rightarrow (\sqrt{5} - \sqrt{3})^2 \\[1em] \Rightarrow (\sqrt{5})^2 + (\sqrt{3})^2 - 2 \times \sqrt{5} \times \sqrt{3} \\[1em] \Rightarrow 5 + 3 - 2\sqrt{15} \\[1em] \Rightarrow 8 - 2\sqrt{15}.

Hence, Option 4 is the correct option.

Question 1(e)

34+7\dfrac{3}{4 + \sqrt{7}} is equal to :

  1. 13(47)\dfrac{1}{3}(4 - \sqrt{7})

  2. 3(47)3(4 - \sqrt{7})

  3. 13(4+7)\dfrac{1}{3}(4 + \sqrt{7})

  4. 3(4+7)3(4 + \sqrt{7})

Answer

Rationalizing,

34+7×47473(47)(4)2(7)23(47)1673(47)913(47).\Rightarrow \dfrac{3}{4 + \sqrt{7}} \times \dfrac{4 - \sqrt{7}}{4 - \sqrt{7}} \\[1em] \Rightarrow \dfrac{3(4 - \sqrt{7})}{(4)^2 - (\sqrt{7})^2} \\[1em] \Rightarrow \dfrac{3(4 - \sqrt{7})}{16 - 7} \\[1em] \Rightarrow \dfrac{3(4 - \sqrt{7})}{9} \\[1em] \Rightarrow \dfrac{1}{3}(4 - \sqrt{7}).

Hence, Option 1 is the correct option.

Question 1(f)

175\dfrac{1}{7 - \sqrt{5}} is equal to :

  1. 4(7+5)4(7 + \sqrt{5})

  2. 144(7+5)\dfrac{1}{44}(7 + \sqrt{5})

  3. 144(75)\dfrac{1}{44}(7 - \sqrt{5})

  4. 4(75)4(7 - \sqrt{5})

Answer

Rationalizing,

175×7+57+57+5(7)2(5)27+5495144(7+5).\Rightarrow \dfrac{1}{7 - \sqrt{5}} \times \dfrac{7 + \sqrt{5}}{7 + \sqrt{5}} \\[1em] \Rightarrow \dfrac{7 + \sqrt{5}}{(7)^2 - (\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{7 + \sqrt{5}}{49 - 5} \\[1em] \Rightarrow \dfrac{1}{44}(7 + \sqrt{5}).

Hence, Option 2 is the correct option.

Question 1(g)

If x = 21, then (x1x)2\sqrt{2} - 1, \text{ then } \Big(x - \dfrac{1}{x}\Big)^2 is :

  1. 222\sqrt{2}

  2. 2

  3. 4

  4. 222 - \sqrt{2}

Answer

Given,

x = 21\sqrt{2} - 1

1x=121\dfrac{1}{x} = \dfrac{1}{\sqrt{2} - 1}

Rationalizing,

1x=121×2+12+1=2+1(2)2(1)2=2+121=2+11=2+1.(x1x)2=[21(2+1)]2=[2211]2=[2]2=4.\Rightarrow \dfrac{1}{x} = \dfrac{1}{\sqrt{2} - 1} \times \dfrac{\sqrt{2} + 1}{\sqrt{2} + 1} \\[1em] = \dfrac{\sqrt{2} + 1}{(\sqrt{2})^2 - (1)^2} \\[1em] = \dfrac{\sqrt{2} + 1}{2 - 1} \\[1em] = \dfrac{\sqrt{2} + 1}{1} \\[1em] = \sqrt{2} + 1. \\[1em] \Rightarrow \Big(x - \dfrac{1}{x}\Big)^2 = [\sqrt{2} - 1 - (\sqrt{2} + 1)]^2 \\[1em] = [\sqrt{2} - \sqrt{2} - 1 - 1]^2 \\[1em] = [-2]^2 \\[1em] = 4.

Hence, Option 3 is the correct option.

Question 1(h)

575+75+757\dfrac{5 - \sqrt{7}}{5 + \sqrt{7}} - \dfrac{5 + \sqrt{7}}{5 - \sqrt{7}} is equal to :

  1. 10710\sqrt{7}

  2. 197\dfrac{1}{9}\sqrt{7}

  3. 1079\dfrac{10\sqrt{7}}{9}

  4. 1079-\dfrac{10\sqrt{7}}{9}

Answer

Given,

575+75+757(57)2(5+7)2(5+7)(57)(5)2+(7)22×5×7[(5)2+(7)2+2×5×7]52(7)225+7107[25+7+107]2572525+7710710718207181079.\Rightarrow \dfrac{5 - \sqrt{7}}{5 + \sqrt{7}} - \dfrac{5 + \sqrt{7}}{5 - \sqrt{7}} \\[1em] \Rightarrow \dfrac{(5 - \sqrt{7})^2 - (5 + \sqrt{7})^2}{(5 + \sqrt{7})(5 - \sqrt{7})} \\[1em] \Rightarrow \dfrac{(5)^2 + (\sqrt{7})^2 - 2 \times 5 \times \sqrt{7} - [(5)^2 + (\sqrt{7})^2 + 2 \times 5 \times \sqrt{7}]}{5^2 - (\sqrt{7})^2} \\[1em] \Rightarrow \dfrac{25 + 7 - 10\sqrt{7} - [25 + 7 + 10\sqrt{7}]}{25 - 7} \\[1em] \Rightarrow \dfrac{25 - 25 + 7 - 7 - 10\sqrt{7} - 10\sqrt{7}}{18} \\[1em] \Rightarrow \dfrac{-20\sqrt{7}}{18} \\[1em] \Rightarrow \dfrac{-10\sqrt{7}}{9}.

Hence, Option 4 is the correct option.

Question 2

State, with reason, which of the following are surds and which are not :

(i) 180\sqrt{180}

(ii) 274\sqrt[4]{27}

(iii) 1285\sqrt[5]{128}

(iv) 643\sqrt[3]{64}

(v) 253.403\sqrt[3]{25}.\sqrt[3]{40}

(vi) 1253\sqrt[3]{-125}

(vii) π\sqrt{π}

(viii) 3+2\sqrt{3 + \sqrt{2}}

Answer

(i) Given,

180=2×2×3×3×5=2×3×5=65\sqrt{180} = \sqrt{2 \times 2 \times 3 \times 3 \times 5} = 2 \times 3 \times \sqrt{5} = 6\sqrt{5}, which is an irrational number.

Since, 180 is a rational number and 180\sqrt{180} is an irrational number.

Hence, 180\sqrt{180} is a surd.

(ii) Given,

274=334=(3)34\sqrt[4]{27} = \sqrt[4]{3^3} = (3)^{\dfrac{3}{4}}, which is irrational.

Since, 27 is a rational number and 274\sqrt[4]{27} is an irrational number.

Hence, 274\sqrt[4]{27} is a surd.

(iii) Given,

1285=275=25×225=(25)15×(22)15=2×(2)25\sqrt[5]{128} = \sqrt[5]{2^7} = \sqrt[5]{2^5 \times 2^2} \\[1em] = (2^5)^{\frac{1}{5}} \times (2^2)^{\frac{1}{5}} \\[1em] = 2 \times (2)^{\frac{2}{5}}

which is irrational.

Since, 128 is a rational number and 1285\sqrt[5]{128} is an irrational number.

Hence, 1285\sqrt[5]{128} is a surd.

(iv) Given,

643=433=43×13\sqrt[3]{64} = \sqrt[3]{4^3} = 4^{3 \times \dfrac{1}{3}} = 4, which is rational.

Since, 64 is rational and 643\sqrt[3]{64} is also rational.

Hence, 643\sqrt[3]{64} is not a surd.

(v) Given,

253.403=10003=1033=103×13\sqrt[3]{25}.\sqrt[3]{40} = \sqrt[3]{1000} = \sqrt[3]{10^3} = 10^{3 \times \dfrac{1}{3}} = 10, which is rational.

Since, 1000 is rational and 10 is also rational.

Hence, 253.403\sqrt[3]{25}.\sqrt[3]{40} is not a surd.

(vi) Given,

1253=(5)33=(5)3×13=5\sqrt[3]{-125} = \sqrt[3]{(-5)^3} = (-5)^{3 \times \dfrac{1}{3}} = -5, which is rational,

Since, -125 is rational and -5 is also rational.

Hence, 1253\sqrt[3]{-125} is not a surd.

(vii) Given,

π\sqrt{π}

Since, π is irrational and π\sqrt{π} is also irrational.

Hence, π\sqrt{π} is not a surd.

(viii) Given,

3+2\sqrt{3 + \sqrt{2}}

Since, 3+23 + \sqrt{2} is irrational.

Hence, 3+2\sqrt{3 + \sqrt{2}} is not a surd.

Question 3

Write the lowest rationalizing factor of :

(i) 525\sqrt{2}

(ii) 24\sqrt{24}

(iii) 53\sqrt{5} - 3

(iv) 777 - \sqrt{7}

(v) 1850\sqrt{18} - \sqrt{50}

(vi) 52\sqrt{5} - \sqrt{2}

(vii) 13+3\sqrt{13} + 3

Answer

(i) Given,

52\Rightarrow 5\sqrt{2}

Rationalizing,

52×210.\Rightarrow 5\sqrt{2} \times \sqrt{2} \\[1em] \Rightarrow 10.

Hence, lowest rationalizing factor of 52=25\sqrt{2} = \sqrt{2}.

(ii) Given,

2426.\Rightarrow \sqrt{24} \\[1em] \Rightarrow 2\sqrt{6}.

Rationalizing,

26×612.\Rightarrow 2\sqrt{6} \times \sqrt{6} \\[1em] \Rightarrow 12.

Hence, lowest rationalizing factor of 24=6\sqrt{24} = \sqrt{6}.

(iii) Given,

53\Rightarrow \sqrt{5} - 3

Rationalizing,

(53)×(5+3)(5)232594.\Rightarrow (\sqrt{5} - 3) \times (\sqrt{5} + 3) \\[1em] \Rightarrow (\sqrt{5})^2 - 3^2 \\[1em] \Rightarrow 5 - 9 \\[1em] \Rightarrow -4.

Hence, lowest rationalizing factor of 53=5+3\sqrt{5} - 3 = \sqrt{5} + 3.

(iv) Given,

77\Rightarrow 7 - \sqrt{7}

Rationalizing,

(77)×(7+7)(7)2(7)249742.\Rightarrow (7 - \sqrt{7}) \times (7 + \sqrt{7}) \\[1em] \Rightarrow (7)^2 - (\sqrt{7})^2 \\[1em] \Rightarrow 49 - 7 \\[1em] \Rightarrow 42.

Hence, lowest rationalizing factor of 77=7+77 - \sqrt{7} = 7 + \sqrt{7}.

(v) Given,

18503252\Rightarrow \sqrt{18} - \sqrt{50}\\[1em] \Rightarrow 3\sqrt{2} - 5\sqrt{2}

Rationalizing,

(3252)×(2)(610)4\Rightarrow (3\sqrt{2} - 5\sqrt{2}) \times (\sqrt{2}) \\[1em] \Rightarrow (6 - 10) \\[1em] \Rightarrow -4

Hence, lowest rationalizing factor of 1850=2\sqrt{18} - \sqrt{50} = \sqrt{2}.

(vi) Given,

52\Rightarrow \sqrt{5} - \sqrt{2}

Rationalizing,

(52)×(5+2)(5)2(2)2523.\Rightarrow (\sqrt{5} - \sqrt{2}) \times (\sqrt{5} + \sqrt{2}) \\[1em] \Rightarrow (\sqrt{5})^2 - (\sqrt{2})^2 \\[1em] \Rightarrow 5 - 2 \\[1em] \Rightarrow 3.

Hence, lowest rationalizing factor of 52=5+2\sqrt{5} - \sqrt{2} = \sqrt{5} + \sqrt{2}.

(vii) Given,

13+3\Rightarrow \sqrt{13} + 3

Rationalizing,

(13+3)(133)(13)2321394.\Rightarrow (\sqrt{13} + 3)(\sqrt{13} - 3) \\[1em] \Rightarrow (\sqrt{13})^2 - 3^2 \\[1em] \Rightarrow 13 - 9 \\[1em] \Rightarrow 4.

Hence, lowest rationalizing factor of 13+3=133\sqrt{13} + 3 = \sqrt{13} - 3.

Question 4

Rationalize the denominators of:

(i) 235\dfrac{2\sqrt{3}}{\sqrt{5}}

(ii) 656+5\dfrac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}}

Answer

(i) Given,

235\dfrac{2\sqrt{3}}{\sqrt{5}}

Let us rationalise the denominator,

23×55×5215(5)22155\Rightarrow \dfrac{2\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} \\[1em] \Rightarrow \dfrac{2\sqrt{15}}{(\sqrt{5})^2}\\[1em] \Rightarrow \dfrac{2\sqrt{15}}{5}

Hence,235=2155\dfrac{2\sqrt{3}}{\sqrt{5}} = \dfrac{2\sqrt{15}}{5}

(ii) Given, 656+5\dfrac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}}

Let us rationalise the denominator,

(65)×(65)(6+5)×(65)=(65)2(6)2(5)2=(6)2+(5)22×6×565=6+52×301=11230\Rightarrow \dfrac{(\sqrt{6} - \sqrt{5}) \times (\sqrt{6} - \sqrt{5})}{(\sqrt{6} + \sqrt{5})\times (\sqrt{6} - \sqrt{5})}\\[1em] = \dfrac{(\sqrt{6} - \sqrt{5})^2}{(\sqrt{6})^2 - (\sqrt{5})^2}\\[1em] = \dfrac{(\sqrt{6})^2 + (\sqrt{5})^2 - 2 \times \sqrt{6} \times \sqrt{5}}{6 - 5}\\[1em] = \dfrac{6 + 5 - 2 \times \sqrt{30}}{1}\\[1em] = 11 - 2\sqrt{30}

Hence, 656+5=11230\dfrac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}} = 11 - 2\sqrt{30}.

Question 5(i)

Find the values of 'a' and 'b':

2+323=a+b3\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = a + b\sqrt{3}

Answer

Given,

Equation : 2+323=a+b3\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = a + b\sqrt{3}

Rationalizing L.H.S. of the above equation :

2+323×2+32+3(2+3)222(3)222+(3)2+2×2×322(3)24+3+43437+43.\Rightarrow \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} \times \dfrac{2 + \sqrt{3}}{2 + \sqrt{3}} \\[1em] \Rightarrow \dfrac{(2 + \sqrt{3})^2}{2^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{2^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3}}{2^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{4 + 3 + 4\sqrt{3}}{4 - 3} \\[1em] \Rightarrow 7 + 4\sqrt{3}.

Comparing 7+43 with a+b37 + 4\sqrt{3} \text{ with } a + b\sqrt{3}, we get :

a = 7 and b = 4.

Hence, a = 7 and b = 4.

Question 5(ii)

Find the values of 'a' and 'b':

727+2=a7+b\dfrac{\sqrt{7} - 2}{\sqrt{7} + 2} = a\sqrt{7} + b

Answer

Given,

Equation : 727+2=a7+b\dfrac{\sqrt{7} - 2}{\sqrt{7} + 2} = a\sqrt{7} + b

Rationalizing L.H.S. of the above equation :

727+2×7272(72)2(7)222(7)2+222×7×2747+447311473473+113.\Rightarrow \dfrac{\sqrt{7} - 2}{\sqrt{7} + 2} \times \dfrac{\sqrt{7} - 2}{\sqrt{7} - 2} \\[1em] \Rightarrow \dfrac{(\sqrt{7} - 2)^2}{(\sqrt{7})^2 - 2^2} \\[1em] \Rightarrow \dfrac{(\sqrt{7})^2 + 2^2 - 2 \times \sqrt{7} \times 2}{7 - 4} \\[1em] \Rightarrow \dfrac{7 + 4 - 4\sqrt{7}}{3} \\[1em] \Rightarrow \dfrac{11 - 4\sqrt{7}}{3} \\[1em] \Rightarrow -\dfrac{4\sqrt{7}}{3} + \dfrac{11}{3}.

Comparing 473+113 with a7+b-\dfrac{4\sqrt{7}}{3} + \dfrac{11}{3} \text{ with } a\sqrt{7} + b, we get :

a = 43 and b=113-\dfrac{4}{3}\text{ and } b = \dfrac{11}{3}.

Hence, a = 43 and b=113-\dfrac{4}{3}\text{ and } b = \dfrac{11}{3}.

Question 5(iii)

Find the values of 'a' and 'b':

332=a3b2\dfrac{3}{\sqrt{3} - \sqrt{2}} = a\sqrt{3} - b\sqrt{2}

Answer

Given,

Equation : 332=a3b2\dfrac{3}{\sqrt{3} - \sqrt{2}} = a\sqrt{3} - b\sqrt{2}

Rationalizing L.H.S. of the above equation :

332×3+23+23(3+2)(3)2(2)233+323233+32133+32.\Rightarrow \dfrac{3}{\sqrt{3} - \sqrt{2}} \times \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{3(\sqrt{3} + \sqrt{2})}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{3\sqrt{3} + 3\sqrt{2}}{3 - 2} \\[1em] \Rightarrow \dfrac{3\sqrt{3} + 3\sqrt{2}}{1} \\[1em] \Rightarrow 3\sqrt{3} + 3\sqrt{2}.

Comparing 33+32 with a3b23\sqrt{3} + 3\sqrt{2}\text{ with } a\sqrt{3} - b\sqrt{2}, we get :

a = 3 and b = -3.

Hence, a = 3 and b = -3.

Question 6(i)

Simplify :

2223+1+17231\dfrac{22}{2\sqrt{3} + 1} + \dfrac{17}{2\sqrt{3} - 1}

Answer

(i) Solving,

2223+1+1723122(231)+17(23+1)(23+1)(231)44322+343+17(23)2127835121783511.\Rightarrow \dfrac{22}{2\sqrt{3} + 1} + \dfrac{17}{2\sqrt{3} - 1} \\[1em] \Rightarrow \dfrac{22(2\sqrt{3} - 1) + 17(2\sqrt{3} + 1)}{(2\sqrt{3} + 1)(2\sqrt{3} - 1)} \\[1em] \Rightarrow \dfrac{44\sqrt{3} - 22 + 34\sqrt{3} + 17}{(2\sqrt{3})^2 - 1^2} \\[1em] \Rightarrow \dfrac{78\sqrt{3} - 5}{12 - 1} \\[1em] \Rightarrow \dfrac{78\sqrt{3} - 5}{11}.

Hence, solution = 783511.\dfrac{78\sqrt{3} - 5}{11}.

Question 6(ii)

Simplify :

26236+2\dfrac{\sqrt{2}}{\sqrt{6} - \sqrt{2}} - \dfrac{\sqrt{3}}{\sqrt{6} + \sqrt{2}}

Answer

Solving,

26236+22(6+2)3(62)(62)(6+2)12+218+6(6)2(2)223+232+66223+232+64.\Rightarrow \dfrac{\sqrt{2}}{\sqrt{6} - \sqrt{2}} - \dfrac{\sqrt{3}}{\sqrt{6} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{2}(\sqrt{6} + \sqrt{2}) - \sqrt{3}(\sqrt{6} - \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} \\[1em] \Rightarrow \dfrac{\sqrt{12} + 2 - \sqrt{18} + \sqrt{6}}{(\sqrt{6})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{2\sqrt{3} + 2 - 3\sqrt{2} + \sqrt{6}}{6 - 2} \\[1em] \Rightarrow \dfrac{2\sqrt{3} + 2 - 3\sqrt{2} + \sqrt{6}}{4}.

Hence, solution = 23+232+64\dfrac{2\sqrt{3} + 2 - 3\sqrt{2} + \sqrt{6}}{4}.

Question 7

If x = 525+2 and y=5+252\dfrac{\sqrt{5} - 2}{\sqrt{5} + 2} \text{ and } y = \dfrac{\sqrt{5} + 2}{\sqrt{5} - 2}; find :

(i) x2

(ii) y2

(iii) xy

(iv) x2 + y2 + xy

Answer

(i) Substituting value of x, we get :

x2=(525+2)2=(52+222×5×2(5)2+22+2×5×2)=5+4455+4+45=9459+45.\Rightarrow x^2 = \Big(\dfrac{\sqrt{5} - 2}{\sqrt{5} + 2}\Big)^2 \\[1em] = \Big(\dfrac{\sqrt{5}^2 + 2^2 - 2 \times \sqrt{5} \times 2}{(\sqrt{5})^2 + 2^2 + 2 \times \sqrt{5} \times 2}\Big) \\[1em] = \dfrac{5 + 4 - 4\sqrt{5}}{5 + 4 + 4\sqrt{5}} \\[1em] = \dfrac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}}.

Rationalizing,

=9459+45×945945=(945)292(45)2=92+(45)22×9×458180=81+807251=161725.= \dfrac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}} \times \dfrac{9 - 4\sqrt{5}}{9 - 4\sqrt{5}} \\[1em] = \dfrac{(9 - 4\sqrt{5})^2}{9^2 - (4\sqrt{5})^2} \\[1em] = \dfrac{9^2 + (4\sqrt{5})^2 - 2 \times 9 \times 4\sqrt{5}}{81 - 80} \\[1em] = \dfrac{81 + 80 - 72\sqrt{5}}{1} \\[1em] = 161 - 72\sqrt{5}.

Hence, x2 = 161725.161 - 72\sqrt{5}.

(ii) Substituting value of y, we get :

y2=(5+252)2=(5)2+22+2×5×2(5)2+222×5×2=5+4+455+445=9+45945\Rightarrow y^2 = \Big(\dfrac{\sqrt{5} + 2}{\sqrt{5} - 2}\Big)^2 \\[1em] = \dfrac{(\sqrt{5})^2 + 2^2 + 2\times \sqrt{5} \times 2}{(\sqrt{5})^2 + 2^2 - 2\times \sqrt{5} \times 2} \\[1em] = \dfrac{5 + 4 + 4\sqrt{5}}{5 + 4 - 4\sqrt{5}} \\[1em] = \dfrac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}}

Rationalizing,

=9+45945×9+459+45=(9+45)292(45)2=92+(45)2+2×9×458180=81+80+7251=161+725.= \dfrac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} \times \dfrac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}} \\[1em] = \dfrac{(9 + 4\sqrt{5})^2}{9^2 - (4\sqrt{5})^2} \\[1em] = \dfrac{9^2 + (4\sqrt{5})^2 + 2 \times 9 \times 4\sqrt{5}}{81 - 80} \\[1em] = \dfrac{81 + 80 + 72\sqrt{5}}{1} \\[1em] = 161 + 72\sqrt{5}.

Hence, y2 = 161+725.161 + 72\sqrt{5}.

(iii) Substituting values of x and y, we get :

xy=525+2×5+252=1.\Rightarrow xy = \dfrac{\sqrt{5} - 2}{\sqrt{5} + 2} \times \dfrac{\sqrt{5} + 2}{\sqrt{5} - 2} \\[1em] = 1.

Hence, xy = 1.

(iv) Substituting value of x2, y2 and xy, we get :

x2+y2+xy=161725+161+725+1=323.\Rightarrow x^2 + y^2 + xy = 161 - 72\sqrt{5} + 161 + 72\sqrt{5} + 1 \\[1em] = 323.

Hence, x2 + y2 + xy = 323.

Question 8

If m = 1322 and n=13+22\dfrac{1}{3 - 2\sqrt{2}} \text{ and } n = \dfrac{1}{3 + 2\sqrt{2}}, find :

(i) m2

(ii) n2

(iii) mn

Answer

(i) Substituting value of m, we get :

m2=(1322)2=12(322)2=132+(22)22×3×22=19+8122=117122\Rightarrow m^2 = \Big(\dfrac{1}{3 - 2\sqrt{2}}\Big)^2 \\[1em] = \dfrac{1^2}{(3 - 2\sqrt{2})^2} \\[1em] = \dfrac{1}{3^2 + (2\sqrt{2})^2 - 2 \times 3 \times 2\sqrt{2}} \\[1em] = \dfrac{1}{9 + 8 - 12\sqrt{2}} \\[1em] = \dfrac{1}{17 - 12\sqrt{2}}

Rationalizing,

=117122×17+12217+122=17+122172(122)2=17+122289288=17+1221=17+122.= \dfrac{1}{17 - 12\sqrt{2}} \times \dfrac{17 + 12\sqrt{2}}{17 + 12\sqrt{2}} \\[1em] = \dfrac{17 + 12\sqrt{2}}{17^2 - (12\sqrt{2})^2} \\[1em] = \dfrac{17 + 12\sqrt{2}}{289 - 288} \\[1em] = \dfrac{17 + 12\sqrt{2}}{1} \\[1em] = 17 + 12\sqrt{2}.

Hence, m2 = 17+12217 + 12\sqrt{2}.

(ii) Substituting value of n, we get :

n2=(13+22)2=12(3+22)2=132+(22)2+2×3×22=19+8+122=117+122\Rightarrow n^2 = \Big(\dfrac{1}{3 + 2\sqrt{2}}\Big)^2 \\[1em] = \dfrac{1^2}{(3 + 2\sqrt{2})^2} \\[1em] = \dfrac{1}{3^2 + (2\sqrt{2})^2 + 2 \times 3 \times 2\sqrt{2}} \\[1em] = \dfrac{1}{9 + 8 + 12\sqrt{2}} \\[1em] = \dfrac{1}{17 + 12\sqrt{2}}

Rationalizing,

=117+122×1712217122=17122172(122)2=17122289288=171221=17122.= \dfrac{1}{17 + 12\sqrt{2}} \times \dfrac{17 - 12\sqrt{2}}{17 - 12\sqrt{2}} \\[1em] = \dfrac{17 - 12\sqrt{2}}{17^2 - (12\sqrt{2})^2} \\[1em] = \dfrac{17 - 12\sqrt{2}}{289 - 288} \\[1em] = \dfrac{17 - 12\sqrt{2}}{1} \\[1em] = 17 - 12\sqrt{2}.

Hence, n2 = 1712217 - 12\sqrt{2}.

(iii) Substituting value of m and n, we get :

mn=1322×13+22=132+3×2222×3(22)2=19+62628=198=11=1.\Rightarrow mn = \dfrac{1}{3 - 2\sqrt{2}} \times \dfrac{1}{3 + 2\sqrt{2}} \\[1em] = \dfrac{1}{3^2 + 3 \times 2\sqrt{2} - 2\sqrt{2} \times 3 - (2\sqrt{2})^2} \\[1em] = \dfrac{1}{9 + 6\sqrt{2} - 6\sqrt{2} - 8} \\[1em] = \dfrac{1}{9 - 8} \\[1em] = \dfrac{1}{1} \\[1em] = 1.

Hence, mn = 1.

Question 9

If x = 23+222\sqrt{3} + 2\sqrt{2}, find :

(i) 1x\dfrac{1}{x}

(ii) x+1xx + \dfrac{1}{x}

(iii) (x+1x)2\Big(x + \dfrac{1}{x}\Big)^2

Answer

(i) Substituting value of x, we get :

1x=123+22\Rightarrow \dfrac{1}{x} = \dfrac{1}{2\sqrt{3} + 2\sqrt{2}}

Rationalizing,

=123+22×23222322=2322(23)2(22)2=2322128=2(32)4=322.= \dfrac{1}{2\sqrt{3} + 2\sqrt{2}} \times \dfrac{2\sqrt{3} - 2\sqrt{2}}{2\sqrt{3} - 2\sqrt{2}} \\[1em] = \dfrac{2\sqrt{3} - 2\sqrt{2}}{(2\sqrt{3})^2 - (2\sqrt{2})^2} \\[1em] = \dfrac{2\sqrt{3} - 2\sqrt{2}}{12 - 8} \\[1em] = \dfrac{2(\sqrt{3} - \sqrt{2})}{4} \\[1em] = \dfrac{\sqrt{3} - \sqrt{2}}{2}.

Hence, 1x=322\dfrac{1}{x} = \dfrac{\sqrt{3} - \sqrt{2}}{2}.

(ii) Substituting values of x and 1x\dfrac{1}{x} we get :

x+1x=23+22+322=43+42+322=53+322.\Rightarrow x + \dfrac{1}{x} = 2\sqrt{3} + 2\sqrt{2} + \dfrac{\sqrt{3} - \sqrt{2}}{2} \\[1em] = \dfrac{4\sqrt{3} + 4\sqrt{2} + \sqrt{3} -\sqrt{2}}{2} \\[1em] = \dfrac{5\sqrt{3} + 3\sqrt{2}}{2}.

Hence, x+1x=(53+322)x + \dfrac{1}{x} = \Big(\dfrac{5\sqrt{3} + 3\sqrt{2}}{2}\Big).

(iii) Substituting value of (x+1x)\Big(x + \dfrac{1}{x}\Big), we get :

(x+1x)2=(53+322)2=(53)2+(32)2+2×53×3222=75+18+3064=93+3064.\Rightarrow \Big(x + \dfrac{1}{x}\Big)^2 = \Big(\dfrac{5\sqrt{3} + 3\sqrt{2}}{2}\Big)^2 \\[1em] = \dfrac{(5\sqrt{3})^2 + (3\sqrt{2})^2 + 2 \times 5\sqrt{3} \times 3\sqrt{2}}{2^2} \\[1em] = \dfrac{75 + 18 + 30\sqrt{6}}{4} \\[1em] = \dfrac{93 + 30\sqrt{6}}{4}.

Hence, (x+1x)2=93+3064\Big(x + \dfrac{1}{x}\Big)^2 = \dfrac{93 + 30\sqrt{6}}{4}.

Question 10

If x = 121 - \sqrt{2}, find the value of (x1x)3\Big(x - \dfrac{1}{x}\Big)^3.

Answer

Given,

x = 1 - 2\sqrt{2}

1x=112\therefore \dfrac{1}{x} = \dfrac{1}{1 - \sqrt{2}}

Rationalizing,

1x=112×1+21+21+212(2)21+2121+21(1+2)12.\Rightarrow \dfrac{1}{x} = \dfrac{1}{1 - \sqrt{2}} \times \dfrac{1 + \sqrt{2}}{1 + \sqrt{2}} \\[1em] \Rightarrow \dfrac{1 + \sqrt{2}}{1^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{1 + \sqrt{2}}{1 - 2} \\[1em] \Rightarrow \dfrac{1 + \sqrt{2}}{-1} \\[1em] \Rightarrow -(1 + \sqrt{2}) \\[1em] \Rightarrow -1 - \sqrt{2}.

Substituting values we get :

(x1x)3=[12(12)]3=[1+12+2]3=[2]3=8.\Rightarrow \Big(x - \dfrac{1}{x}\Big)^3 = [1 - \sqrt{2} - (-1 - \sqrt{2})]^3 \\[1em] = [1 + 1 - \sqrt{2} + \sqrt{2}]^3 \\[1em] = [2]^3 \\[1em] = 8.

Hence, (x1x)3\Big(x - \dfrac{1}{x}\Big)^3 = 8.

Question 11

If x = 5 - 262\sqrt{6}, find : x2+1x2x^2 + \dfrac{1}{x^2}

Answer

Given,

x = 5 - 262\sqrt{6}

1x=1526\therefore \dfrac{1}{x} = \dfrac{1}{5 - 2\sqrt{6}}

Rationalizing,

1x=1526×5+265+26=5+2652(26)2=5+262524=5+261=5+26.\Rightarrow \dfrac{1}{x} = \dfrac{1}{5 - 2\sqrt{6}} \times \dfrac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}} \\[1em] = \dfrac{5 + 2\sqrt{6}}{5^2 - (2\sqrt{6})^2} \\[1em] = \dfrac{5 + 2\sqrt{6}}{25 - 24} \\[1em] = \dfrac{5 + 2\sqrt{6}}{1} \\[1em] = 5 + 2\sqrt{6}.

By formula,

x2+1x2=(x+1x)22x^2 + \dfrac{1}{x^2} = \Big(x + \dfrac{1}{x}\Big)^2 - 2

Substituting values we get :

x2+1x2=(526+5+26)22=1022=1002=98.\Rightarrow x^2 + \dfrac{1}{x^2} = (5 - 2\sqrt{6} + 5 + 2\sqrt{6})^2 - 2 \\[1em] = 10^2 - 2 \\[1em] = 100 - 2 \\[1em] = 98.

Hence, x2+1x2x^2 + \dfrac{1}{x^2} = 98.

Question 12

If 2=1.4 and 3\sqrt{2} = 1.4 \text{ and } \sqrt{3} = 1.7, find the value of each of the following, correct to one decimal place :

(i) 132\dfrac{1}{\sqrt{3} - \sqrt{2}}

(ii) 13+22\dfrac{1}{3 + 2\sqrt{2}}

(iii) 233\dfrac{2 - \sqrt{3}}{\sqrt{3}}

Answer

(i) Given,

132\Rightarrow \dfrac{1}{\sqrt{3} - \sqrt{2}}

Rationalizing,

132×3+23+23+2(3)2(2)23+2323+213+21.7+1.43.1\Rightarrow \dfrac{1}{\sqrt{3} - \sqrt{2}} \times \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{3 - 2} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{1} \\[1em] \Rightarrow \sqrt{3} + \sqrt{2} \\[1em] \Rightarrow 1.7 + 1.4 \\[1em] \Rightarrow 3.1

Hence, 132\dfrac{1}{\sqrt{3} - \sqrt{2}} = 3.1

(ii) Given,

13+22\Rightarrow \dfrac{1}{3 + 2\sqrt{2}}

Rationalizing,

13+22×32232232232(22)232298322132232×1.432.80.2\Rightarrow \dfrac{1}{3 + 2\sqrt{2}} \times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{9 - 8} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{1} \\[1em] \Rightarrow 3 - 2\sqrt{2} \\[1em] \Rightarrow 3 - 2 \times 1.4 \\[1em] \Rightarrow 3 - 2.8 \\[1em] \Rightarrow 0.2

Hence, 13+22\dfrac{1}{3 + 2\sqrt{2}} = 0.2

(iii) Given,

233\Rightarrow \dfrac{2 - \sqrt{3}}{\sqrt{3}}

Rationalizing,

233×3323332×1.7333.4330.430.1\Rightarrow \dfrac{2 - \sqrt{3}}{\sqrt{3}} \times \dfrac{\sqrt{3}}{\sqrt{3}} \\[1em] \Rightarrow \dfrac{2\sqrt{3} - 3}{3} \\[1em] \Rightarrow \dfrac{2 \times 1.7 - 3}{3} \\[1em] \Rightarrow \dfrac{3.4 - 3}{3} \\[1em] \Rightarrow \dfrac{0.4}{3} \\[1em] \Rightarrow 0.1

Hence, 233\dfrac{2 - \sqrt{3}}{\sqrt{3}} = 0.1

Question 13

Evaluate :

454+5+4+545\dfrac{4 - \sqrt{5}}{4 + \sqrt{5}} + \dfrac{4 + \sqrt{5}}{4 - \sqrt{5}}

Answer

Solving,

454+5+4+545(45)2+(4+5)2(4+5)(45)42+(5)22×4×5+42+(5)2+2×4×542(5)216+585+16+5+8516542113911.\Rightarrow \dfrac{4 - \sqrt{5}}{4 + \sqrt{5}} + \dfrac{4 + \sqrt{5}}{4 - \sqrt{5}} \\[1em] \Rightarrow \dfrac{(4 - \sqrt{5})^2 + (4 + \sqrt{5})^2}{(4 + \sqrt{5})(4 - \sqrt{5})} \\[1em] \Rightarrow \dfrac{4^2 + (\sqrt{5})^2 - 2 \times 4 \times \sqrt{5} + 4^2 + (\sqrt{5})^2 + 2 \times 4 \times \sqrt{5}}{4^2 - (\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{16 + 5 - 8\sqrt{5} + 16 + 5 + 8\sqrt{5}}{16 - 5} \\[1em] \Rightarrow \dfrac{42}{11} \\[1em] \Rightarrow 3\dfrac{9}{11}.

Hence, 454+5+4+545=3911\dfrac{4 - \sqrt{5}}{4 + \sqrt{5}} + \dfrac{4 + \sqrt{5}}{4 - \sqrt{5}} = 3\dfrac{9}{11}.

Question 14

If 2+525=x and 252+5=y\dfrac{2 + \sqrt{5}}{2 - \sqrt{5}} = x \text{ and } \dfrac{2 - \sqrt{5}}{2 + \sqrt{5}} = y; find the value of x2 - y2.

Answer

Given,

x = 2+525\dfrac{2 + \sqrt{5}}{2 - \sqrt{5}}

Rationalizing,

x=2+525×2+52+5=(2+5)222(5)2=22+(5)2+2×2×545=4+5+451=(9+45).x2=[(9+45)]2=92+(45)2+2×9×45=81+80+725=161+725.\Rightarrow x = \dfrac{2 + \sqrt{5}}{2 - \sqrt{5}} \times \dfrac{2 + \sqrt{5}}{2 + \sqrt{5}} \\[1em] = \dfrac{(2 + \sqrt{5})^2}{2^2 - (\sqrt{5})^2} \\[1em] = \dfrac{2^2 + (\sqrt{5})^2 + 2\times 2 \times \sqrt{5}}{4 - 5} \\[1em] = \dfrac{4 + 5 + 4\sqrt{5}}{-1} \\[1em] = -(9 + 4\sqrt{5}). \\[1em] \Rightarrow x^2 = [-(9 + 4\sqrt{5})]^2 \\[1em] = 9^2 + (4\sqrt{5})^2 + 2\times 9 \times 4\sqrt{5} \\[1em] = 81 + 80 + 72\sqrt{5} \\[1em] = 161 + 72\sqrt{5}.

Given,

y = 252+5\dfrac{2 - \sqrt{5}}{2 + \sqrt{5}}

Rationalizing,

y=252+5×2525=(25)222(5)2=22+(5)22×2×545=4+5451=(945).y2=[(945)]2=92+(45)22×9×45=81+80725=161725.\Rightarrow y = \dfrac{2 - \sqrt{5}}{2 + \sqrt{5}} \times \dfrac{2 - \sqrt{5}}{2 - \sqrt{5}} \\[1em] = \dfrac{(2 - \sqrt{5})^2}{2^2 - (\sqrt{5})^2} \\[1em] = \dfrac{2^2 + (\sqrt{5})^2 - 2\times 2 \times \sqrt{5}}{4 - 5} \\[1em] = \dfrac{4 + 5 - 4\sqrt{5}}{-1} \\[1em] = -(9 - 4\sqrt{5}). \\[1em] \Rightarrow y^2 = [-(9 - 4\sqrt{5})]^2 \\[1em] = 9^2 + (4\sqrt{5})^2 - 2\times 9 \times 4\sqrt{5} \\[1em] = 81 + 80 - 72\sqrt{5} \\[1em] = 161 - 72\sqrt{5}.

Substituting values of x2 and y2, we get :

x2y2=(161+725)(161725)=161161+725+725=1445.\Rightarrow x^2 - y^2 = (161 + 72\sqrt{5}) - (161 - 72\sqrt{5}) \\[1em] = 161 - 161 + 72\sqrt{5} + 72\sqrt{5} \\[1em] = 144\sqrt{5}.

Hence, x2 - y2 = 1445144\sqrt{5}.

Test Yourself

Question 1(a)

Since 90 = 2 x 3 x 3 x 5, 2390\dfrac{23}{90} is not a terminating decimal;

  1. True

  2. False

  3. none of these

Answer

A fraction has a terminating decimal if, when simplified, its denominator consists solely of the prime factors 2 and/or 5.

90 = 2 x 3 x 3 x 5

Since, 90 consists 2, 3 and 5.

So, 2390\dfrac{23}{90} is not a terminating decimal.

Hence, option 1 is the correct option.

Question 1(b)

27\sqrt{27} is irrational and 3\sqrt{3} is also irrational, then which of the following is rational:

  1. 273\sqrt{27} - \sqrt{3}

  2. 27+3\sqrt{27} + \sqrt{3}

  3. 27×3\sqrt{27} \times \sqrt{3}

  4. none of these

Answer

As we know that

27×3=81=9.\Rightarrow \sqrt{27} \times \sqrt{3}\\[1em] = \sqrt{81}\\[1em] = 9.

9 is rational number. So, 27×3\sqrt{27} \times \sqrt{3} is also a rational number.

Hence, option 3 is the correct option.

Question 1(c)

If x = 7 - 5\sqrt{5}, then x1xx - \dfrac{1}{x} is equal to:

  1. 14

  2. 7

  3. 252\sqrt{5}

  4. 30145544\dfrac{301 - 45\sqrt{5}}{44}

Answer

Given, x = 7 - 5\sqrt{5}

1x=175=175×(7+5)(7+5)=7+5(7)2(5)2=7+5495=7+544\Rightarrow \dfrac{1}{x} = \dfrac{1}{7 - \sqrt{5}}\\[1em] = \dfrac{1}{7 - \sqrt{5}} \times \dfrac{(7 + \sqrt{5})}{(7 + \sqrt{5})}\\[1em] = \dfrac{7 + \sqrt{5}}{(7)^2 - (\sqrt{5})^2}\\[1em] = \dfrac{7 + \sqrt{5}}{49 - 5}\\[1em] = \dfrac{7 + \sqrt{5}}{44}

Now,

x1x=757+544=44(75)447+544=308445(7+5)44=3084457544=30145544\Rightarrow x - \dfrac{1}{x} = 7 - \sqrt{5} - \dfrac{7 + \sqrt{5}}{44}\\[1em] = \dfrac{44(7 - \sqrt{5})}{44} - \dfrac{7 + \sqrt{5}}{44}\\[1em] = \dfrac{308 - 44\sqrt{5} - (7 + \sqrt{5})}{44} \\[1em] = \dfrac{308 - 44\sqrt{5} - 7 - \sqrt{5}}{44} \\[1em] = \dfrac{301 - 45\sqrt{5}}{44} \\[1em]

Hence, option 4 is correct option.

Question 1(d)

2+323232+3\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} - \dfrac{2 - \sqrt{3}}{2 + \sqrt{3}} is equal to:

  1. 4

  2. 232\sqrt{3}

  3. 1

  4. 838\sqrt{3}

Answer

Given, 2+323232+3\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} - \dfrac{2 - \sqrt{3}}{2 + \sqrt{3}}

Solving,

(2+3)×(2+3)(23)×(2+3)(23)×(23)(2+3)×(23)(2+3)2(2)2(3)2(23)2(2)2(3)2(2)2+(3)2+2×2×343(2)2+(3)22×2×3434+3+4314+34317+43(743)7+437+4383.\Rightarrow \dfrac{(2 + \sqrt{3}) \times (2 + \sqrt{3})}{(2 - \sqrt{3}) \times (2 + \sqrt{3})} - \dfrac{(2 - \sqrt{3})\times (2 - \sqrt{3})}{(2 + \sqrt{3}) \times (2 - \sqrt{3})}\\[1em] \Rightarrow \dfrac{(2 + \sqrt{3})^2}{(2)^2 - (\sqrt{3})^2} - \dfrac{(2 - \sqrt{3})^2}{(2)^2 - (\sqrt{3})^2}\\[1em] \Rightarrow \dfrac{(2)^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3}}{4 - 3} - \dfrac{(2)^2 + (\sqrt{3})^2 - 2 \times 2 \times \sqrt{3}}{4 - 3}\\[1em] \Rightarrow \dfrac{4 + 3 + 4\sqrt{3}}{1} - \dfrac{4 + 3 - 4\sqrt{3}}{1}\\[1em] \Rightarrow 7 + 4\sqrt{3} - (7 - 4\sqrt{3})\\[1em] \Rightarrow 7 + 4\sqrt{3} - 7 + 4\sqrt{3}\\[1em] \Rightarrow 8\sqrt{3}.

Hence, option 4 is correct option.

Question 1(e)

Statement 1: If a = 333\sqrt{3} and b = 512\dfrac{5}{\sqrt{12}}, then a x b is irrational.

Statement 2: a x b = 33×512=15×323=1523 \sqrt{3} \times \dfrac{5}{\sqrt{12}} = \dfrac{15 \times \sqrt{3}}{2\sqrt{3}} = \dfrac{15}{2}

  1. Both the statements are true.

  2. Both the statements are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given, a = 333\sqrt{3} and b = 512\dfrac{5}{\sqrt{12}}

a×b=33×512=33×54×3=33×54×3=33×523=5×3323=15323=152=7.5\Rightarrow a \times b = 3 \sqrt{3} \times \dfrac{5}{\sqrt{12}}\\[1em] = 3 \sqrt{3} \times \dfrac{5}{\sqrt{4 \times 3}}\\[1em] = 3 \sqrt{3} \times \dfrac{5}{\sqrt{4} \times \sqrt{3}}\\[1em] = 3 \sqrt{3} \times \dfrac{5}{2\sqrt{3}}\\[1em] = \dfrac{5 \times 3 \sqrt{3}}{2\sqrt{3}}\\[1em] = \dfrac{15 \sqrt{3}}{2\sqrt{3}}\\[1em] = \dfrac{15}{2}\\[1em] = 7.5

7.5 is rational number. Thus, a x b is a rational number.

∴ Statement 1 is false, and statement 2 is true.

Hence, option 4 is correct option.

Question 1(f)

Statement 1: If x = 5+2\sqrt{5} + 2, then x1x=4.x - \dfrac{1}{x} = 4.

Statement 2: 1x=15+2×5252=52\dfrac{1}{x} = \dfrac{1}{\sqrt{5} + 2} \times \dfrac{\sqrt{5} - 2}{\sqrt{5} - 2} = \sqrt{5} - 2

  1. Both the statements are true.

  2. Both the statements are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given, x = 5\sqrt{5} + 2

1x=15+2=15+2×5252=52(5)2(2)2=5254=521=52.\Rightarrow \dfrac{1}{x} = \dfrac{1}{\sqrt{5} + 2}\\[1em] = \dfrac{1}{\sqrt{5} + 2} \times \dfrac{\sqrt{5} - 2}{\sqrt{5} - 2} \\[1em] = \dfrac{\sqrt{5} - 2}{(\sqrt{5})^2 - (2)^2}\\[1em] = \dfrac{\sqrt{5} - 2}{5 - 4}\\[1em] = \dfrac{\sqrt{5} - 2}{1}\\[1em] = \sqrt{5} - 2.

So, statement 2 is true.

x1x=5+2(52)=5+25+2=4.\Rightarrow x - \dfrac{1}{x} = \sqrt{5} + 2 - (\sqrt{5} - 2)\\[1em] = \sqrt{5} + 2 - \sqrt{5} + 2\\[1em] = 4.

So, statement 1 is true.

∴ Both statements are true.

Hence, option 1 is correct option.

Question 1(g)

Assertion (A): x+1x=4 and 1x=2+3, then x =23x + \dfrac{1}{x} = 4 \text{ and } \dfrac{1}{x} = 2 + \sqrt{3}, \text{ then x } = 2 - \sqrt{3}

Reason (R):

1x=2+3x=12+3=23\Rightarrow \dfrac{1}{x} = 2 + \sqrt{3}\\[1em] \Rightarrow x = \dfrac{1}{2 + \sqrt{3}} = 2 - \sqrt{3}

  1. A is true, but R is false.

  2. A is false, but R is true.

  3. Both A and R are true, and R is the correct reason for A.

  4. Both A and R are true, and R is the incorrect reason for A.

Answer

Given, 1x=2+3 and x+1x=4\dfrac{1}{x} = 2 + \sqrt{3}\text{ and } x + \dfrac{1}{x} = 4

And,

x+1x=4=x+2+3=4=x=4(2+3)=x=423=x=23.\Rightarrow x + \dfrac{1}{x} = 4\\[1em] = x + 2 + \sqrt{3} = 4\\[1em] = x = 4 - (2 + \sqrt{3})\\[1em] = x = 4 - 2 - \sqrt{3}\\[1em] = x = 2 - \sqrt{3}.

So, assertion (A) is true.

If, 1x=2+3\dfrac{1}{x} = 2 + \sqrt{3}

x=12+3=12+3×2323 (On rationalizing)=23(2)2(3)2=2343=231=23.\Rightarrow x = \dfrac{1}{2 + \sqrt{3}}\\[1em] = \dfrac{1}{2 + \sqrt{3}} \times \dfrac{2 - \sqrt{3}}{2 - \sqrt{3}} \text{ (On rationalizing)} \\[1em] = \dfrac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2}\\[1em] = \dfrac{2 - \sqrt{3}}{4 - 3}\\[1em] = \dfrac{2 - \sqrt{3}}{1}\\[1em] = 2 - \sqrt{3}.

So, reason (R) is true.

∴ Both A and R are true, and R is the correct reason for A.

Hence, option 3 is correct option.

Question 1(h)

Assertion (A): a = 7 + 3\sqrt{3} and b = 7 - 3\sqrt{3}, then a2 - b2 = 14

Reason (R): a2 - b2 = (a + b)(a - b) = 14 x 2 3\sqrt{3}

  1. A is true, but R is false.

  2. A is false, but R is true.

  3. Both A and R are true, and R is the correct reason for A.

  4. Both A and R are true, and R is the incorrect reason for A.

Answer

Given, a = 7 + 3\sqrt{3} and b = 7 - 3\sqrt{3},

a2b2=(7+3)2(73)2=(7)2+(3)2+2×7×3[(7)2+(3)22×7×3]=49+3+143[49+3143]=52+143(52143)=52+14352+143=283=14×23.\Rightarrow a^2 - b^2 = (7 + \sqrt{3})^2 - (7 - \sqrt{3})^2\\[1em] = (7)^2 + (\sqrt{3})^2 + 2 \times 7 \times \sqrt{3} - [(7)^2 + (\sqrt{3})^2 - 2 \times 7 \times \sqrt{3}] \\[1em] = 49 + 3 + 14\sqrt{3} - [49 + 3 - 14\sqrt{3}] \\[1em] = 52 + 14\sqrt{3} - (52 - 14\sqrt{3})\\[1em] = 52 + 14\sqrt{3} - 52 + 14\sqrt{3}\\[1em] = 28\sqrt{3} \\[1em] = 14 \times 2\sqrt{3}.

∴ A is false, but R is true.

Hence, option 2 is the correct option.

Question 2

Simplify :

x2+y2yxx2y2÷x2y2+xx2+y2+y\dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y}

Answer

Solving,

x2+y2yxx2y2÷x2y2+xx2+y2+yx2+y2yxx2y2×x2+y2+yx2y2+x(x2+y2)2y2x2(x2y2)2x2+y2y2x2(x2y2)x2y2.\Rightarrow \dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} \\[1em] \Rightarrow \dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} \times \dfrac{\sqrt{x^2 + y^2} + y}{\sqrt{x^2 - y^2} + x} \\[1em] \Rightarrow \dfrac{(\sqrt{x^2 + y^2})^2 - y^2}{x^2 - (\sqrt{x^2 - y^2})^2 } \\[1em] \Rightarrow \dfrac{x^2 + y^2 - y^2}{x^2 - (x^2 - y^2)} \\[1em] \Rightarrow \dfrac{x^2}{y^2}.

Hence, x2+y2yxx2y2÷x2y2+xx2+y2+y=x2y2\dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} = \dfrac{x^2}{y^2}.

Question 3

Evaluate, correct to one place of decimal, the expression 52010, if 5=2.2 and 10=3.2\dfrac{5}{\sqrt{20} - \sqrt{10}}, \text{ if } \sqrt{5} = 2.2 \text{ and } \sqrt{10} = 3.2

Answer

Solving,

520105251052×2.23.254.43.251.25012256=4.2\Rightarrow \dfrac{5}{\sqrt{20} - \sqrt{10}} \\[1em] \Rightarrow \dfrac{5}{2\sqrt{5} - \sqrt{10}} \\[1em] \Rightarrow \dfrac{5}{2 \times 2.2 - 3.2} \\[1em] \Rightarrow \dfrac{5}{4.4 - 3.2} \\[1em] \Rightarrow \dfrac{5}{1.2} \\[1em] \Rightarrow \dfrac{50}{12} \\[1em] \Rightarrow \dfrac{25}{6} = 4.2

Another method of solving is by rationalizing,

52010×20+1020+105(20+10)(20)2(10)25(20+10)20105(20+10)10(25+10)22×2.2+3.224.4+3.227.623.8\Rightarrow \dfrac{5}{\sqrt{20} - \sqrt{10}} \times \dfrac{\sqrt{20} + \sqrt{10}}{\sqrt{20} + \sqrt{10}} \\[1em] \Rightarrow \dfrac{5(\sqrt{20} + \sqrt{10})}{(\sqrt{20})^2 - (\sqrt{10})^2} \\[1em] \Rightarrow \dfrac{5(\sqrt{20} + \sqrt{10})}{20 - 10} \\[1em] \Rightarrow \dfrac{5(\sqrt{20} + \sqrt{10})}{10} \\[1em] \Rightarrow \dfrac{(2\sqrt{5} + \sqrt{10})}{2} \\[1em] \Rightarrow \dfrac{2 \times 2.2 + 3.2}{2} \\[1em] \Rightarrow \dfrac{4.4 + 3.2}{2} \\[1em] \Rightarrow \dfrac{7.6}{2} \\[1em] \Rightarrow 3.8

Hence, x2+y2yxx2y2÷x2y2+xx2+y2+y\dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} = 3.8 or 4.2

Question 4

If x = 32\sqrt{3} - \sqrt{2}, find the value of :

(i) x+1xx + \dfrac{1}{x}

(ii) x2+1x2x^2 + \dfrac{1}{x^2}

(iii) x3+1x3x^3 + \dfrac{1}{x^3}

(iv) x3+1x33(x2+1x2)+x+1xx^3 + \dfrac{1}{x^3} - 3\Big(x^2 + \dfrac{1}{x^2}\Big) + x + \dfrac{1}{x}

Answer

(i) Given,

x = 32\sqrt{3} - \sqrt{2}

1x=132\dfrac{1}{x} = \dfrac{1}{\sqrt{3} - \sqrt{2}}

Rationalizing,

132×3+23+23+2(3)2(2)23+2323+21x=3+2x+1x=32+(3+2)=23.\Rightarrow \dfrac{1}{\sqrt{3} - \sqrt{2}} \times \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{3 - 2} \\[1em] \Rightarrow \sqrt{3} + \sqrt{2} \\[1em] \therefore \dfrac{1}{x} = \sqrt{3} + \sqrt{2} \\[2em] \Rightarrow x + \dfrac{1}{x} = \sqrt{3} - \sqrt{2} + (\sqrt{3} + \sqrt{2}) \\[1em] = 2\sqrt{3}.

Hence, x+1x=23x + \dfrac{1}{x} = 2\sqrt{3}.

(ii) Solving,

x2+1x2=(32)2+(3+2)2=(3)2+(2)22×3×2+(3)2+(2)2+2×3×23+226+2+3+2610.\Rightarrow x^2 + \dfrac{1}{x^2} = (\sqrt{3} - \sqrt{2})^2 + (\sqrt{3} + \sqrt{2})^2 \\[1em] = (\sqrt{3})^2 + (\sqrt{2})^2 - 2 \times \sqrt{3} \times \sqrt{2} + (\sqrt{3})^2 + (\sqrt{2})^2 + 2 \times \sqrt{3} \times \sqrt{2} \\[1em] \Rightarrow 3 + 2 - 2\sqrt{6} + 2 + 3 + 2\sqrt{6} \\[1em] \Rightarrow 10.

Hence, x2+1x2=10x^2 + \dfrac{1}{x^2} = 10.

(iii) Solving,

x3+1x3=(32)3+(3+2)3=(3)3(2)33×3×2×(32)+(3)3+(2)3+3×3×2×(3+2)=332236(32)+33+22+36(3+2)=33+3322+22318+312+318+312=63+612=63+6×23=63+123=183.\Rightarrow x^3 + \dfrac{1}{x^3} = (\sqrt{3} - \sqrt{2})^3 + (\sqrt{3} + \sqrt{2})^3 \\[1em] = (\sqrt{3})^3 - (\sqrt{2})^3 - 3 \times \sqrt{3} \times \sqrt{2} \times (\sqrt{3} - \sqrt{2}) + (\sqrt{3})^3 + (\sqrt{2})^3 + 3 \times \sqrt{3} \times \sqrt{2} \times (\sqrt{3} + \sqrt{2}) \\[1em] = 3\sqrt{3} - 2\sqrt{2} - 3\sqrt{6}(\sqrt{3} - \sqrt{2}) + 3\sqrt{3} + 2\sqrt{2} + 3\sqrt{6}(\sqrt{3} + \sqrt{2}) \\[1em] = 3\sqrt{3} + 3\sqrt{3} - 2\sqrt{2} + 2\sqrt{2} - 3\sqrt{18} + 3\sqrt{12} + 3\sqrt{18} + 3\sqrt{12} \\[1em] = 6\sqrt{3} + 6\sqrt{12} \\[1em] = 6\sqrt{3} + 6 \times 2\sqrt{3} \\[1em] = 6\sqrt{3} + 12\sqrt{3} \\[1em] = 18\sqrt{3}.

Hence, x3+1x3=183x^3 + \dfrac{1}{x^3} = 18\sqrt{3}.

(iv) Substituting values from part (i), (ii) and (iii), we get :

x3+1x33(x2+1x2)+x+1x=1833×10+23=20330=10(233).\Rightarrow x^3 + \dfrac{1}{x^3} - 3\Big(x^2 + \dfrac{1}{x^2}\Big) + x + \dfrac{1}{x} = 18\sqrt{3} - 3 \times 10 + 2\sqrt{3} \\[1em] = 20\sqrt{3} - 30 \\[1em] = 10(2\sqrt{3} - 3).

Hence, x3+1x33(x2+1x2)+x+1x=10(233)x^3 + \dfrac{1}{x^3} - 3\Big(x^2 + \dfrac{1}{x^2}\Big) + x + \dfrac{1}{x} = 10(2\sqrt{3} - 3).

Question 5

State true or false :

(i) Negative of an irrational number is irrational.

(ii) The product of a non-zero rational number and an irrational number is a rational number.

Answer

(i) True

For example, 3\sqrt{3} is irrational and 3-\sqrt{3} is also irrational.

(ii) False

For example, 2 is rational number and 2\sqrt{2} is irrational, product of these numbers i.e. 222\sqrt{2} is also irrational.

Question 6

Draw a line segment of length 3\sqrt{3} cm.

Answer

Steps of construction :

  1. Draw a line segment XY.

  2. Draw OB = 1 cm which is perpendicular to the line XY at point O.

  3. From B draw an arc of 2 cm cutting XY at A.

  4. Join BA and OA.

Draw a line segment of length √3 cm. Rational and Irrational Numbers, Concise Mathematics Solutions ICSE Class 9.

So, OAB is the right angle triangle.

By pythagoras theorem,

⇒ AB2 = OB2 + OA2

⇒ 22 = 12 + OA2

⇒ OA2 = 4 - 1

⇒ OA2 = 3

⇒ OA = 3\sqrt{3} cm.

Hence, OA is the required line of 3\sqrt{3} cm.

Question 7

Draw a line segment of length 8\sqrt{8} cm.

Answer

Steps of construction :

  1. Draw a line segment XY.

  2. Draw OB = 1 cm which is perpendicular to the line XY at O.

  3. From B draw an arc of 3 cm cutting XY at A.

  4. Join BA and OA.

Draw a line segment of length √8 cm. Rational and Irrational Numbers, Concise Mathematics Solutions ICSE Class 9.

So, OAB is the right angle triangle.

By pythagoras theorem,

⇒ AB2 = OB2 + OA2

⇒ 32 = 12 + OA2

⇒ OA2 = 9 - 1

⇒ OA2 = 8

⇒ OA = 8\sqrt{8} cm.

Hence, OA is the required line of 8\sqrt{8} cm.

Question 8(i)

Show that :

x3+1x3=52x^3 + \dfrac{1}{x^3} = 52, if x = 2 + 3\sqrt{3}

Answer

(i) Given,

x = 2 + 3\sqrt{3}

1x=12+3\therefore \dfrac{1}{x} = \dfrac{1}{2 + \sqrt{3}}

Rationalizing,

12+3×23232322(3)2234323.1x=23\Rightarrow \dfrac{1}{2 + \sqrt{3}} \times \dfrac{2 - \sqrt{3}}{2 - \sqrt{3}} \\[1em] \Rightarrow \dfrac{2 - \sqrt{3}}{2^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{2 - \sqrt{3}}{4 - 3} \\[1em] \Rightarrow 2 - \sqrt{3}. \\[1em] \therefore \dfrac{1}{x} = 2 - \sqrt{3}

Substituting value of x and 1x in x3+1x3\dfrac{1}{x} \text{ in } x^3 + \dfrac{1}{x^3}, we get :

x3+1x3=(2+3)3+(23)3=23+(3)3+3×2×3×(2+3)+23(3)33×2×3×(23)=8+33+63(2+3)+83363(23)=8+8+3333+123+18123+18=8+8+18+18=52.\Rightarrow x^3 + \dfrac{1}{x^3} = (2 + \sqrt{3})^3 + (2 -\sqrt{3})^3 \\[1em] = 2^3 + (\sqrt{3})^3 + 3 \times 2 \times \sqrt{3} \times (2 + \sqrt{3}) + 2^3 - (\sqrt{3})^3 - 3 \times 2 \times \sqrt{3} \times (2 - \sqrt{3}) \\[1em] = 8 + 3\sqrt{3} + 6\sqrt{3}(2 + \sqrt{3}) + 8 - 3\sqrt{3} - 6\sqrt{3}(2 - \sqrt{3}) \\[1em] = 8 + 8 + 3\sqrt{3} - 3\sqrt{3} + 12\sqrt{3} + 18 - 12\sqrt{3} + 18 \\[1em] = 8 + 8 + 18 + 18 \\[1em] = 52.

Hence, proved that x3+1x3=52x^3 + \dfrac{1}{x^3} = 52.

Question 8(ii)

Show that :

x2+1x2=34, if x =3+22x^2 + \dfrac{1}{x^2} = 34, \text{ if x } = 3 + 2\sqrt{2}.

Answer

Given,

x = 3+223 + 2\sqrt{2}

1x=13+22\therefore \dfrac{1}{x} = \dfrac{1}{3 + 2\sqrt{2}}

Rationalizing,

13+22×32232232232(22)2322983221x=322\Rightarrow \dfrac{1}{3 + 2\sqrt{2}} \times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{9 - 8} \\[1em] \Rightarrow 3 - 2\sqrt{2} \\[1em] \therefore \dfrac{1}{x} = 3 - 2\sqrt{2}

Substituting value of x and 1x in x2+1x2\dfrac{1}{x} \text{ in } x^2 + \dfrac{1}{x^2}, we get :

x2+1x2=(3+22)2+(322)232+(22)2+2×3×22+32+(22)22×3×229+8+122+9+812234.\Rightarrow x^2 + \dfrac{1}{x^2} = (3 + 2\sqrt{2})^2 + (3 - 2\sqrt{2})^2 \\[1em] \Rightarrow 3^2 + (2\sqrt{2})^2 + 2 \times 3 \times 2\sqrt{2} + 3^2 + (2\sqrt{2})^2 - 2 \times 3 \times 2\sqrt{2} \\[1em] \Rightarrow 9 + 8 + 12\sqrt{2} + 9 + 8 - 12\sqrt{2} \\[1em] \Rightarrow 34.

Hence, proved that x2+1x2=34.x^2 + \dfrac{1}{x^2} = 34.

Question 8(iii)

Show that :

322332+23+2332\dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} = 11

Answer

Given,

Equation : 322332+23+2332\dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} = 11

Solving L.H.S. of the equation :

322332+23+233232(32)32(3+2)+2332323+2+2332(32)2+23(3+2)(3)2(2)2(3)2+(2)22×3×2+6+26323+226+6+26111.\Rightarrow \dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3}\sqrt{2}(\sqrt{3} - \sqrt{2})}{\sqrt{3}\sqrt{2}(\sqrt{3} + \sqrt{2})} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{(\sqrt{3} - \sqrt{2})^2 + 2\sqrt{3}(\sqrt{3} + \sqrt{2})}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{(\sqrt{3})^2 + (\sqrt{2})^2 - 2\times \sqrt{3} \times \sqrt{2} + 6 + 2\sqrt{6}}{3 - 2} \\[1em] \Rightarrow \dfrac{3 + 2 - 2\sqrt{6} + 6 + 2\sqrt{6}}{1} \\[1em] \Rightarrow 11.

Since, L.H.S. = R.H.S.

Hence, proved that 322332+23+2332\dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} = 11.

Question 9

Show that x is irrational, if :

(i) x2 = 6

(ii) x2 = 0.009

(iii) x2 = 27

Answer

(i) Given,

⇒ x2 = 6

⇒ x = 6\sqrt{6}

⇒ x = 2.449.....

Since, x is non-terminating as well as non-recurring.

Hence, proved that x is irrational.

(ii) Given,

⇒ x2 = 0.009

⇒ x = 0.009\sqrt{0.009}

⇒ x = 0.094.....

Since, x is non-terminating as well as non-recurring.

Hence, proved that x is irrational.

(iii) Given,

⇒ x2 = 27

⇒ x = 27\sqrt{27}

⇒ x = 5.196.....

Since, x is non-terminating as well as non-recurring.

Hence, proved that x is irrational.

Question 10

Show that x is rational, if :

(i) x2 = 16

(ii) x2 = 0.0004

(iii) x2 = 1791\dfrac{7}{9}

Answer

(i) Given,

⇒ x2 = 16

⇒ x = 16\sqrt{16}

⇒ x = ±4\pm 4.

Integers are considered as rational numbers.

Hence, proved that x is rational.

(ii) Given,

⇒ x2 = 0.0004

⇒ x = 0.0004\sqrt{0.0004}

⇒ x = 0.020.02.

Terminating decimals are considered as rational numbers.

Hence, proved that x is rational.

(iii) Given,

⇒ x2 = 1791\dfrac{7}{9}

⇒ x2 = 169\dfrac{16}{9}

⇒ x = 169\sqrt{\dfrac{16}{9}}

⇒ x = 43\dfrac{4}{3} = 1.333.....

Recurring decimals are considered as rational number.

Hence, proved that x is rational.

PrevNext