Let zero = p q \dfrac{p}{q} q p , where p and q are integers. What additional condition will make 0 = p q \dfrac{p}{q} q p a rational number :
q = 0
p ≠ 0
q ≠ 0
p ≠ 0 and q ≠ 0.
Answer
p q = 0 \dfrac{p}{q} = 0 q p = 0 is a rational number. If,
p and q are integers and q ≠ 0.
Hence, Option 3 is the correct option.
Every non-terminating decimal number is a :
recurring decimal
real number
non-recurring decimal
circulating decimal
Answer
Every non-terminating decimal number is a real number.
Hence, Option 2 is the correct option.
7.478478.... is a :
terminating rational
recurring
neither rational non-terminating
not real
Answer
7.478478 is a recurring decimal.
Hence, Option 2 is the correct option.
71 75 \dfrac{71}{75} 75 71 is :
terminating
non-terminating
periodic decimal
not a rational number
Answer
On solving,
71 75 \dfrac{71}{75} 75 71 = 0.94666.......
∴ 71 75 \dfrac{71}{75} 75 71 is a recurring or periodic decimal.
Hence, Option 3 is the correct option.
Which of the following is terminating:
13 85 , 51 405 and 9 524 \dfrac{13}{85}, \dfrac{51}{405} \text{ and } \dfrac{9}{524} 85 13 , 405 51 and 524 9
13 85 \dfrac{13}{85} 85 13
9 524 \dfrac{9}{524} 524 9
51 405 \dfrac{51}{405} 405 51
None
Answer
On solving,
13 85 = 0.152941 \dfrac{13}{85} = 0.152941 85 13 = 0.152941 ........
51 405 = 0.1259259 \dfrac{51}{405} = 0.1259259 405 51 = 0.1259259 ......
9 524 \dfrac{9}{524} 524 9 = 0.0171755......
None of the above fraction is terminating.
Hence, Option 4 is the correct option.
Are the following statements true or false ? Give reasons for your answers ?
(i) Every whole number is a natural number.
(ii) Every whole number is a rational number.
(iii) Every integer is a rational number.
(iv) Every rational number is a whole number.
Answer
(i) False, as zero is a whole number but not a natural number.
(ii) True
(iii) True
(iv) False, as 2 5 \dfrac{2}{5} 5 2 is a rational number but not a whole number.
Arrange − 5 9 , 7 12 , − 2 3 and 11 18 -\dfrac{5}{9}, \dfrac{7}{12}, -\dfrac{2}{3} \text{ and } \dfrac{11}{18} − 9 5 , 12 7 , − 3 2 and 18 11 in the ascending order of their magnitudes.
Also, find the difference between the largest and the smallest of these rational numbers. Express this difference as a decimal fraction correct to one decimal place.
Answer
L.C.M. of 9, 12, 3 and 18 is 36.
So, converting denominator of each fraction − 5 9 , 7 12 , − 2 3 and 11 18 -\dfrac{5}{9}, \dfrac{7}{12}, -\dfrac{2}{3} \text{ and } \dfrac{11}{18} − 9 5 , 12 7 , − 3 2 and 18 11 into 36.
⇒ − 5 9 × 4 4 = − 20 36 ⇒ 7 12 × 3 3 = 21 36 ⇒ − 2 3 × 12 12 = − 24 36 ⇒ 11 18 × 2 2 = 22 36 . \Rightarrow -\dfrac{5}{9} \times \dfrac{4}{4} = -\dfrac{20}{36} \\[1em] \Rightarrow \dfrac{7}{12} \times \dfrac{3}{3} = \dfrac{21}{36} \\[1em] \Rightarrow -\dfrac{2}{3} \times \dfrac{12}{12} = -\dfrac{24}{36} \\[1em] \Rightarrow \dfrac{11}{18} \times \dfrac{2}{2} = \dfrac{22}{36}. ⇒ − 9 5 × 4 4 = − 36 20 ⇒ 12 7 × 3 3 = 36 21 ⇒ − 3 2 × 12 12 = − 36 24 ⇒ 18 11 × 2 2 = 36 22 .
Since, -24 < -20 < 21 < 22
∴ -24 36 < − 20 36 < 21 36 < 22 36 \dfrac{24}{36} \lt -\dfrac{20}{36} \lt \dfrac{21}{36} \lt \dfrac{22}{36} 36 24 < − 36 20 < 36 21 < 36 22
⇒ − 2 3 < − 5 9 < 7 12 < 11 18 \Rightarrow -\dfrac{2}{3} \lt -\dfrac{5}{9} \lt \dfrac{7}{12} \lt \dfrac{11}{18} ⇒ − 3 2 < − 9 5 < 12 7 < 18 11
Difference between largest and smallest fraction :
⇒ 11 18 − ( − 2 3 ) ⇒ 11 18 + 2 3 ⇒ 11 18 + 12 18 ⇒ 23 18 ⇒ 1.3 \Rightarrow \dfrac{11}{18} - \Big(-\dfrac{2}{3}\Big) \\[1em] \Rightarrow \dfrac{11}{18} + \dfrac{2}{3} \\[1em] \Rightarrow \dfrac{11}{18} + \dfrac{12}{18} \\[1em] \Rightarrow \dfrac{23}{18} \\[1em] \Rightarrow 1.3 ⇒ 18 11 − ( − 3 2 ) ⇒ 18 11 + 3 2 ⇒ 18 11 + 18 12 ⇒ 18 23 ⇒ 1.3
Hence, fractions in ascending order are − 2 3 < − 5 9 < 7 12 < 11 18 -\dfrac{2}{3} \lt -\dfrac{5}{9} \lt \dfrac{7}{12} \lt \dfrac{11}{18} − 3 2 < − 9 5 < 12 7 < 18 11 and required difference = 1.3
Arrange 5 8 , − 3 16 , − 1 4 and 17 32 \dfrac{5}{8}, -\dfrac{3}{16}, -\dfrac{1}{4} \text{ and } \dfrac{17}{32} 8 5 , − 16 3 , − 4 1 and 32 17 in the descending order of their magnitudes.
Also, find the sum of the lowest and the largest of these rational numbers. Express the result obtained as a decimal fraction correct to two decimal places.
Answer
L.C.M. of 4, 8, 16 and 32 is 32.
So, converting denominator of each fraction 5 8 , − 3 16 , − 1 4 and 17 32 \dfrac{5}{8}, -\dfrac{3}{16}, -\dfrac{1}{4} \text{ and } \dfrac{17}{32} 8 5 , − 16 3 , − 4 1 and 32 17 into 32.
⇒ 5 8 × 4 4 = 20 32 ⇒ − 3 16 × 2 2 = − 6 32 ⇒ − 1 4 × 8 8 = − 8 32 ⇒ 17 32 × 1 1 = 17 32 . \Rightarrow \dfrac{5}{8} \times \dfrac{4}{4} = \dfrac{20}{32} \\[1em] \Rightarrow -\dfrac{3}{16} \times \dfrac{2}{2} = -\dfrac{6}{32} \\[1em] \Rightarrow -\dfrac{1}{4} \times \dfrac{8}{8} = -\dfrac{8}{32} \\[1em] \Rightarrow \dfrac{17}{32} \times \dfrac{1}{1} = \dfrac{17}{32}. ⇒ 8 5 × 4 4 = 32 20 ⇒ − 16 3 × 2 2 = − 32 6 ⇒ − 4 1 × 8 8 = − 32 8 ⇒ 32 17 × 1 1 = 32 17 .
Since, -8 < -6 < 17 < 20.
∴ − 8 32 < − 6 32 < 17 32 < 20 32 \therefore -\dfrac{8}{32} \lt -\dfrac{6}{32} \lt \dfrac{17}{32} \lt \dfrac{20}{32} ∴ − 32 8 < − 32 6 < 32 17 < 32 20
∴ − 1 4 < − 3 16 < 17 32 < 5 8 \therefore -\dfrac{1}{4} \lt -\dfrac{3}{16} \lt \dfrac{17}{32} \lt \dfrac{5}{8} ∴ − 4 1 < − 16 3 < 32 17 < 8 5
So, in descending order.
⇒ 5 8 > 17 32 > − 3 16 > − 1 4 \Rightarrow \dfrac{5}{8} \gt \dfrac{17}{32} \gt -\dfrac{3}{16} \gt -\dfrac{1}{4} ⇒ 8 5 > 32 17 > − 16 3 > − 4 1
Sum of largest and lowest :
= 5 8 + ( − 1 4 ) = 5 8 − 1 4 = 5 × 4 32 − 1 × 8 32 = 20 − 8 32 = 12 32 = 3 8 = 0.38 = \dfrac{5}{8} + \Big(-\dfrac{1}{4}\Big) \\[1em] = \dfrac{5}{8} - \dfrac{1}{4} \\[1em] = \dfrac{5 \times 4}{32} - \dfrac{1 \times 8}{32} \\[1em] = \dfrac{20 - 8}{32} \\[1em] = \dfrac{12}{32} \\[1em] = \dfrac{3}{8} \\[1em] = 0.38 = 8 5 + ( − 4 1 ) = 8 5 − 4 1 = 32 5 × 4 − 32 1 × 8 = 32 20 − 8 = 32 12 = 8 3 = 0.38
Hence, fractions in descending order are : 5 8 > 17 32 > − 3 16 > − 1 4 \dfrac{5}{8} \gt \dfrac{17}{32} \gt -\dfrac{3}{16} \gt -\dfrac{1}{4} 8 5 > 32 17 > − 16 3 > − 4 1 and required sum = 0.38
Without doing any actual division, find which of the following rational numbers have terminating decimal representation :
(i) 7 16 \dfrac{7}{16} 16 7
(ii) 23 125 \dfrac{23}{125} 125 23
(iii) 9 14 \dfrac{9}{14} 14 9
(iv) 32 45 \dfrac{32}{45} 45 32
(v) 43 50 \dfrac{43}{50} 50 43
Answer
In rational numbers, if the denominator of the fraction can be expressed in the form of 2m × 5n , then it is a terminating decimal.
(i) 7 16 = 7 2 4 \dfrac{7}{16} = \dfrac{7}{2^4} 16 7 = 2 4 7
So, 16 can be expressed as 24 × 50 .
Hence, it is a terminating decimal number.
(ii) 23 125 = 23 5 3 \dfrac{23}{125} = \dfrac{23}{5^3} 125 23 = 5 3 23
So, 125 can be expressed as 20 × 53 .
Hence, it is a terminating decimal number.
(iii) 9 14 = 9 2 × 7 \dfrac{9}{14} = \dfrac{9}{2 \times 7} 14 9 = 2 × 7 9
So, 14 cannot be expressed in form of 2m × 5n .
Hence, it is not a terminating decimal number.
(iv) 32 45 = 32 3 2 × 5 \dfrac{32}{45} = \dfrac{32}{3^2 \times 5} 45 32 = 3 2 × 5 32
So, 45 cannot be expressed in form of 2m × 5n .
Hence, it is not a terminating decimal number.
(v) 43 50 = 43 2 × 5 2 \dfrac{43}{50} = \dfrac{43}{2 \times 5^2} 50 43 = 2 × 5 2 43
So, 50 can be expressed in form of 21 × 52 .
Hence, it is a terminating decimal number.
The negative of an irrational number is :
a rational number
an irrational number
a rational number and an irrational number
a whole number
Answer
Negative of an irrational number is also an irrational number.
Hence, Option 2 is the correct option.
8 ( 8 − 1 ) \sqrt{8}(\sqrt{8} - 1) 8 ( 8 − 1 ) is always :
rational
irrational
whole number
natural number
Answer
Given,
⇒ 8 ( 8 − 1 ) ⇒ 8 − 8 ⇒ 8 − 2.82... ⇒ 5.17.... \Rightarrow \sqrt{8}(\sqrt{8} - 1) \\[1em] \Rightarrow 8 - \sqrt{8} \\[1em] \Rightarrow 8 - 2.82... \\[1em] \Rightarrow 5.17.... ⇒ 8 ( 8 − 1 ) ⇒ 8 − 8 ⇒ 8 − 2.82... ⇒ 5.17....
which is an irrational number.
Hence, Option 2 is the correct option.
For the given figure length of OA is :
5 \sqrt{5} 5
3 \sqrt{3} 3
5 or 3 \sqrt{5} \text{ or } \sqrt{3} 5 or 3
neither 5 \sqrt{5} 5 nor 3 \sqrt{3} 3
Answer
By pythagoras theorem,
Hypotenuse2 = Perpendicular2 + Base2
⇒ OA2 = AB2 + OB2
⇒ OA2 = 22 + 12
⇒ OA2 = 4 + 1
⇒ OA = 5
⇒ OA = 5 \sqrt{5} 5 .
Hence, Option 1 is the correct option.
2 3 × 3 8 2\sqrt{3} \times 3\sqrt{8} 2 3 × 3 8 is :
rational
irrational
neither rational nor irrational
12 × 5 \times \sqrt{5} × 5
Answer
Given,
⇒ 2 3 × 3 8 ⇒ 6 24 ⇒ 6 × 2 6 ⇒ 12 × 6 ⇒ 12 × 2.449..... ⇒ 29.393....... \Rightarrow 2\sqrt{3} \times 3\sqrt{8} \\[1em] \Rightarrow 6\sqrt{24} \\[1em] \Rightarrow 6 \times 2\sqrt{6} \\[1em] \Rightarrow 12 \times \sqrt{6} \\[1em] \Rightarrow 12 \times 2.449..... \\[1em] \Rightarrow 29.393....... ⇒ 2 3 × 3 8 ⇒ 6 24 ⇒ 6 × 2 6 ⇒ 12 × 6 ⇒ 12 × 2.449..... ⇒ 29.393.......
which is an irrational number.
Hence, Option 2 is the correct option.
Two irrational numbers between 8 and 11 are :
65 and 120 \sqrt{65} \text{ and } \sqrt{120} 65 and 120
69 \sqrt{69} 69 and 10.5
8.2 and 125 \sqrt{125} 125
3 and 110 \sqrt{110} 110
Answer
65 \sqrt{65} 65 = 8.0622.... and 120 \sqrt{120} 120 = 10.954......
Since, the above two nos. are non-terminating as well as non-recurring.
∴ They are irrational and in between 8 and 11.
Hence, Option 1 is the correct option.
State whether the following numbers are rational or not :
(i) ( 2 + 2 ) 2 (2 + \sqrt{2})^2 ( 2 + 2 ) 2
(ii) ( 3 − 3 ) 2 (3 - \sqrt{3})^2 ( 3 − 3 ) 2
(iii) ( 5 + 5 ) ( 5 − 5 ) (5 + \sqrt{5})(5 - \sqrt{5}) ( 5 + 5 ) ( 5 − 5 )
(iv) ( 3 − 2 ) 2 (\sqrt{3} - \sqrt{2})^2 ( 3 − 2 ) 2
Answer
(i) Given,
⇒ ( 2 + 2 ) 2 ⇒ 4 + 2 + 4 2 ⇒ 6 + 4 2 ⇒ 6 + 5.658.... ⇒ 11.658.... \Rightarrow (2 + \sqrt{2})^2 \\[1em] \Rightarrow 4 + 2 + 4\sqrt{2} \\[1em] \Rightarrow 6 + 4\sqrt{2} \\[1em] \Rightarrow 6 + 5.658.... \\[1em] \Rightarrow 11.658.... ⇒ ( 2 + 2 ) 2 ⇒ 4 + 2 + 4 2 ⇒ 6 + 4 2 ⇒ 6 + 5.658.... ⇒ 11.658....
which is irrational.
Hence, ( 2 + 2 ) 2 (2 + \sqrt{2})^2 ( 2 + 2 ) 2 is not a rational number.
(ii) Given,
⇒ ( 3 − 3 ) 2 ⇒ 9 + 3 − 6 3 ⇒ 12 − 6 3 ⇒ 12 − 10.392..... ⇒ 1.607...... \Rightarrow (3 - \sqrt{3})^2 \\[1em] \Rightarrow 9 + 3 - 6\sqrt{3} \\[1em] \Rightarrow 12 - 6\sqrt{3} \\[1em] \Rightarrow 12 - 10.392..... \\[1em] \Rightarrow 1.607...... ⇒ ( 3 − 3 ) 2 ⇒ 9 + 3 − 6 3 ⇒ 12 − 6 3 ⇒ 12 − 10.392..... ⇒ 1.607......
which is irrational.
Hence, ( 3 − 3 ) 2 (3 - \sqrt{3})^2 ( 3 − 3 ) 2 is not a rational number.
(iii) Given,
⇒ ( 5 + 5 ) ( 5 − 5 ) ⇒ 25 − 5 5 + 5 5 − 5 ⇒ 20 \Rightarrow (5 + \sqrt{5})(5 -\sqrt{5}) \\[1em] \Rightarrow 25 - 5\sqrt{5} + 5\sqrt{5} - 5 \\[1em] \Rightarrow 20 ⇒ ( 5 + 5 ) ( 5 − 5 ) ⇒ 25 − 5 5 + 5 5 − 5 ⇒ 20
which is rational.
Hence, ( 5 + 5 ) ( 5 − 5 ) (5 + \sqrt{5})(5 -\sqrt{5}) ( 5 + 5 ) ( 5 − 5 ) is a rational number.
(iv) Given,
⇒ ( 3 − 2 ) 2 ⇒ 3 + 2 − 2 × 3 × 2 ⇒ 5 − 2 6 ⇒ 5 − 2 × 2.449... ⇒ 5 − 4.898..... ⇒ 0.101..... \Rightarrow (\sqrt{3} - \sqrt{2})^2 \\[1em] \Rightarrow 3 + 2 - 2 \times \sqrt{3} \times \sqrt{2} \\[1em] \Rightarrow 5 - 2\sqrt{6} \\[1em] \Rightarrow 5 - 2 \times 2.449... \\[1em] \Rightarrow 5 - 4.898..... \\[1em] \Rightarrow 0.101..... ⇒ ( 3 − 2 ) 2 ⇒ 3 + 2 − 2 × 3 × 2 ⇒ 5 − 2 6 ⇒ 5 − 2 × 2.449... ⇒ 5 − 4.898..... ⇒ 0.101.....
which is irrational.
Hence, ( 3 − 2 ) 2 (\sqrt{3} - \sqrt{2})^2 ( 3 − 2 ) 2 is not a rational number.
Find the square of :
(i) 3 5 5 \dfrac{3\sqrt{5}}{5} 5 3 5
(ii) 3 + 2 \sqrt{3} + \sqrt{2} 3 + 2
(iii) 5 − 2 \sqrt{5} - 2 5 − 2
(iv) 3 + 2 5 3 + 2\sqrt{5} 3 + 2 5
Answer
(i) Squaring,
⇒ ( 3 5 5 ) 2 ⇒ 3 5 × 3 5 5 × 5 ⇒ 45 25 ⇒ 9 5 ⇒ 1 4 5 . \Rightarrow \Big(\dfrac{3\sqrt{5}}{5}\Big)^2 \\[1em] \Rightarrow \dfrac{3\sqrt{5} \times 3\sqrt{5}}{5 \times 5} \\[1em] \Rightarrow \dfrac{45}{25} \\[1em] \Rightarrow \dfrac{9}{5} \\[1em] \Rightarrow 1\dfrac{4}{5}. ⇒ ( 5 3 5 ) 2 ⇒ 5 × 5 3 5 × 3 5 ⇒ 25 45 ⇒ 5 9 ⇒ 1 5 4 .
Hence, square of 3 5 5 = 1 4 5 \dfrac{3\sqrt{5}}{5} = 1\dfrac{4}{5} 5 3 5 = 1 5 4 .
(ii) Squaring,
⇒ ( 3 + 2 ) 2 ⇒ ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 ⇒ 3 + 2 + 2 6 ⇒ 5 + 2 6 . \Rightarrow (\sqrt{3} + \sqrt{2})^2 \\[1em] \Rightarrow (\sqrt{3})^2 + (\sqrt{2})^2 + 2 \times \sqrt{3} \times \sqrt{2} \\[1em] \Rightarrow 3 + 2 + 2\sqrt{6} \\[1em] \Rightarrow 5 + 2\sqrt{6}. ⇒ ( 3 + 2 ) 2 ⇒ ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 ⇒ 3 + 2 + 2 6 ⇒ 5 + 2 6 .
Hence, square of 3 + 2 = 5 + 2 6 \sqrt{3} + \sqrt{2} = 5 + 2\sqrt{6} 3 + 2 = 5 + 2 6 .
(iii) Squaring,
⇒ ( 5 − 2 ) 2 ⇒ ( 5 ) 2 + ( 2 ) 2 − 2 × 5 × 2 ⇒ 5 + 4 − 4 5 ⇒ 9 − 4 5 . \Rightarrow (\sqrt{5} - 2)^2 \\[1em] \Rightarrow (\sqrt{5})^2 + (2)^2 - 2 \times \sqrt{5} \times 2 \\[1em] \Rightarrow 5 + 4 - 4\sqrt{5} \\[1em] \Rightarrow 9 - 4\sqrt{5}. ⇒ ( 5 − 2 ) 2 ⇒ ( 5 ) 2 + ( 2 ) 2 − 2 × 5 × 2 ⇒ 5 + 4 − 4 5 ⇒ 9 − 4 5 .
Hence, square of 5 − 2 = 9 − 4 5 \sqrt{5} - 2 = 9 - 4\sqrt{5} 5 − 2 = 9 − 4 5 .
(iv) Squaring,
⇒ ( 3 + 2 5 ) 2 ⇒ ( 3 ) 2 + ( 2 5 ) 2 + 2 × 3 × 2 5 ⇒ 9 + 20 + 12 5 ⇒ 29 + 12 5 . \Rightarrow (3 + 2\sqrt{5})^2 \\[1em] \Rightarrow (3)^2 + (2\sqrt{5})^2 + 2 \times 3 \times 2\sqrt{5} \\[1em] \Rightarrow 9 + 20 + 12\sqrt{5} \\[1em] \Rightarrow 29 + 12\sqrt{5}. ⇒ ( 3 + 2 5 ) 2 ⇒ ( 3 ) 2 + ( 2 5 ) 2 + 2 × 3 × 2 5 ⇒ 9 + 20 + 12 5 ⇒ 29 + 12 5 .
Hence, square of 3 + 2 5 = 29 + 12 5 3 + 2\sqrt{5} = 29 + 12\sqrt{5} 3 + 2 5 = 29 + 12 5 .
State in each case, whether true or false :
(i) 2 + 3 = 5 \sqrt{2} + \sqrt{3} = \sqrt{5} 2 + 3 = 5
(ii) 2 4 + 2 = 6 2\sqrt{4} + 2 = 6 2 4 + 2 = 6
(iii) 3 7 − 2 7 = 7 3\sqrt{7} - 2\sqrt{7} = \sqrt{7} 3 7 − 2 7 = 7
(iv) 2 7 \dfrac{2}{7} 7 2 is an irrational number.
(v) 5 11 \dfrac{5}{11} 11 5 is a rational number.
(vi) All rational numbers are real numbers.
(vii) All real numbers are rational numbers.
(viii) Some real numbers are rational numbers.
Answer
(i) 2 \sqrt{2} 2 = 1.41, 3 \sqrt{3} 3 = 1.732 and 5 \sqrt{5} 5 = 2.24
2 + 3 \sqrt{2} + \sqrt{3} 2 + 3 = 3.14, which is not equal to 2.24.
∴ 2 + 3 ≠ 5 \therefore \sqrt{2} + \sqrt{3} \ne \sqrt{5} ∴ 2 + 3 = 5
Hence, above statement is false.
(ii) Given,
2 4 + 2 = 6 2\sqrt{4} + 2 = 6 2 4 + 2 = 6
Solving, L.H.S. :
⇒ 2 4 + 2 ⇒ 2 × 2 + 2 ⇒ 6. \Rightarrow 2\sqrt{4} + 2 \\[1em] \Rightarrow 2 \times 2 + 2 \\[1em] \Rightarrow 6. ⇒ 2 4 + 2 ⇒ 2 × 2 + 2 ⇒ 6.
Since, L.H.S. = R.H.S.
Hence, above statement is true.
(iii) Given,
3 7 − 2 7 = 7 3\sqrt{7} - 2\sqrt{7} = \sqrt{7} 3 7 − 2 7 = 7
Solving L.H.S. :
⇒ 3 7 − 2 7 ⇒ 7 ( 3 − 2 ) ⇒ 7 × 1 ⇒ 7 . \Rightarrow 3\sqrt{7} - 2\sqrt{7} \\[1em] \Rightarrow \sqrt{7}(3 - 2) \\[1em] \Rightarrow \sqrt{7} \times 1 \\[1em] \Rightarrow \sqrt{7}. ⇒ 3 7 − 2 7 ⇒ 7 ( 3 − 2 ) ⇒ 7 × 1 ⇒ 7 .
Since, L.H.S. = R.H.S.
Hence, above statement is true.
(iv) Since, in 2 7 \dfrac{2}{7} 7 2 denominator is not equal to zero.
2 and 7 have no common factor.
∴ 2 7 \dfrac{2}{7} 7 2 is rational number.
Hence, above statement is false.
(v) Since, in 5 11 \dfrac{5}{11} 11 5 denominator is not equal to zero.
5 and 11 have no common factor.
∴ 5 11 \dfrac{5}{11} 11 5 is rational number.
Hence, above statement is true.
(vi) Both, rational and irrational numbers are real numbers.
Hence, above statement is true.
(vii) Real numbers are both rational as well as irrational number.
Hence, above statement is false.
(viii) Some rational numbers are also real numbers.
Hence, above statement is true.
Given universal set
= − 6 , − 5 3 4 , − 4 , − 3 5 , − 3 8 , 0 , 4 5 , 1 , 1 2 3 , 8 , 3.01 , π , 8.47 {-6, -5\dfrac{3}{4}, -\sqrt{4}, -\dfrac{3}{5}, -\dfrac{3}{8}, 0, \dfrac{4}{5}, 1, 1\dfrac{2}{3}, \sqrt{8}, 3.01, π, 8.47} − 6 , − 5 4 3 , − 4 , − 5 3 , − 8 3 , 0 , 5 4 , 1 , 1 3 2 , 8 , 3.01 , π , 8.47
From the given set, find :
(i) set of rational numbers
(ii) set of irrational numbers
(iii) set of integers
(iv) set of non-negative integers
Answer
(i) We need to find the set of rational numbers.
Rational numbers are :
Of form p q \dfrac{p}{q} q p , where q ≠ 0.
Integers as well as terminating and recurring decimals are rational numbers.
From the universal set
Set of rational numbers
= − 6 , − 5 3 4 , − 4 , − 3 5 , − 3 8 , 0 , 4 5 , 1 , 1 2 3 , 3.01 , 8.47 {-6, -5\dfrac{3}{4}, -\sqrt{4}, -\dfrac{3}{5}, -\dfrac{3}{8}, 0, \dfrac{4}{5}, 1, 1\dfrac{2}{3}, 3.01, 8.47} − 6 , − 5 4 3 , − 4 , − 5 3 , − 8 3 , 0 , 5 4 , 1 , 1 3 2 , 3.01 , 8.47
(ii) Since,
8 = 2.82.... and π = 3.142.... \sqrt{8} = 2.82.... \text{ and π} = 3.142.... 8 = 2.82.... and π = 3.142....
Since, the above numbers are neither terminating nor recurring, hence they are irrational.
From the universal set
Set of irrational numbers = 8 , π {\sqrt{8}, π} 8 , π
(iii) From the universal set
Set of integers = − 6 , − 4 , 0 , 1 {-6, -\sqrt{4}, 0, 1} − 6 , − 4 , 0 , 1
(iv) From the universal set
Set of non-negative integers = {0, 1}.
Prove that each of the following numbers is irrational:
(i) 3 + 2 \sqrt{3} + \sqrt{2} 3 + 2
(ii) 3 - 2 \sqrt{2} 2
Answer
(i) Let us assume 3 + 2 \sqrt{3} + \sqrt{2} 3 + 2 is a rational number.
Let 3 + 2 \sqrt{3} + \sqrt{2} 3 + 2 = x
Squaring both sides, we get;
⇒ ( 3 + 2 ) 2 = x 2 ⇒ ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 = x 2 ⇒ 3 + 2 + 2 6 = x 2 ⇒ 5 + 2 6 = x 2 ⇒ 2 6 = x 2 − 5 ⇒ 6 = x 2 − 5 2 \Rightarrow (\sqrt{3} + \sqrt{2})^2 = x^2\\[1em] \Rightarrow (\sqrt{3})^2 + (\sqrt{2})^2 + 2 \times \sqrt{3} \times \sqrt{2} = x^2\\[1em] \Rightarrow 3 + 2 + 2\sqrt{6} = x^2\\[1em] \Rightarrow 5 + 2\sqrt{6} = x^2\\[1em] \Rightarrow 2\sqrt{6} = x^2 - 5 \\[1em] \Rightarrow \sqrt{6} = \dfrac{x^2 - 5}{2} ⇒ ( 3 + 2 ) 2 = x 2 ⇒ ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 = x 2 ⇒ 3 + 2 + 2 6 = x 2 ⇒ 5 + 2 6 = x 2 ⇒ 2 6 = x 2 − 5 ⇒ 6 = 2 x 2 − 5
Here, x is rational,
∴ x2 is rational ..................(1)
⇒ x2 - 5 is rational
So, x 2 − 5 2 \dfrac{x^2 - 5}{2} 2 x 2 − 5 is rational.
But 6 \sqrt{6} 6 is irrational, as it is square root of non-perfect square.
⇒ x 2 − 5 2 \dfrac{x^2 - 5}{2} 2 x 2 − 5 is irrational i.e. x2 - 5 is irrational and so x2 is irrational ....................(2)
From (1), x2 is rational, and
From (2), x2 is irrational
∴ We arrive at a contradiction.
So, our assumption that 3 + 2 \sqrt{3} + \sqrt{2} 3 + 2 is a rational number is wrong.
Hence, 3 + 2 \sqrt{3} + \sqrt{2} 3 + 2 is an irrational number.
(ii) Let us assume 3 - 2 \sqrt{2} 2 is a rational number.
Let, 3 - 2 \sqrt{2} 2 = x
Squaring both sides, we get;
⇒ ( 3 − 2 ) 2 = x 2 ⇒ ( 3 ) 2 + ( 2 ) 2 − 2 × 3 × 2 = x 2 ⇒ 9 + 2 − 6 2 = x 2 ⇒ 11 − 6 2 = x 2 ⇒ 6 2 = 11 − x 2 ⇒ 2 = 11 − x 2 6 \Rightarrow (3 - \sqrt{2})^2 = x^2 \\[1em] \Rightarrow (3)^2 + (\sqrt{2})^2 - 2 \times 3 \times \sqrt{2} = x^2 \\[1em] \Rightarrow 9 + 2 - 6\sqrt{2} = x^2 \\[1em] \Rightarrow 11 - 6\sqrt{2} = x^2 \\[1em] \Rightarrow 6\sqrt{2} = 11 - x^2 \\[1em] \Rightarrow \sqrt{2} = \dfrac{11 - x^2}{6} ⇒ ( 3 − 2 ) 2 = x 2 ⇒ ( 3 ) 2 + ( 2 ) 2 − 2 × 3 × 2 = x 2 ⇒ 9 + 2 − 6 2 = x 2 ⇒ 11 − 6 2 = x 2 ⇒ 6 2 = 11 − x 2 ⇒ 2 = 6 11 − x 2
Here, x is rational,
∴ x2 is rational ..................(1)
⇒ 11 - x2 is rational
So, 11 − x 2 6 \dfrac{11 - x^2}{6} 6 11 − x 2 is rational.
But 2 \sqrt{2} 2 is irrational, as it is a square root of non-perfect square.
⇒ 11 − x 2 6 \dfrac{11 - x^2}{6} 6 11 − x 2 is irrational i.e. 11 - x2 is irrational and so x2 is irrational ....................(2)
From (1), x2 is rational, and
From (2), x2 is irrational
∴ We arrive at a contradiction.
So, our assumption that 3 - 2 \sqrt{2} 2 is a rational number is wrong.
Hence, 3 - 2 \sqrt{2} 2 is an irrational number.
Write a pair of irrational numbers whose sum is irrational.
Answer
Let 3 + 2 and 2 − 3 \sqrt{3} + 2 \text{ and } \sqrt{2} - 3 3 + 2 and 2 − 3 be two irrational numbers.
Sum of numbers
= 3 + 2 + 2 − 3 = 3 + 2 − 1. = \sqrt{3} + 2 + \sqrt{2} - 3 \\[1em] = \sqrt{3} + \sqrt{2} - 1. = 3 + 2 + 2 − 3 = 3 + 2 − 1.
3 + 2 − 1 \sqrt{3} + \sqrt{2} - 1 3 + 2 − 1 is an irrational number.
Hence, required pair = 3 + 2 and 2 − 3 \sqrt{3} + 2 \text{ and } \sqrt{2} - 3 3 + 2 and 2 − 3 .
Write a pair of irrational numbers whose sum is rational.
Answer
Let 3 + 2 and 5 − 3 \sqrt{3} + 2 \text{ and } 5 - \sqrt{3} 3 + 2 and 5 − 3 be two irrational numbers.
Sum of numbers
= 3 + 2 + 5 − 3 = 7. = \sqrt{3} + 2 + 5 - \sqrt{3} \\[1em] = 7. = 3 + 2 + 5 − 3 = 7.
7 is a rational number.
Hence, required pair = 3 + 2 and 5 − 3 \sqrt{3} + 2 \text{ and } 5 - \sqrt{3} 3 + 2 and 5 − 3 .
Write a pair of irrational numbers whose difference is irrational.
Answer
Let 5 + 5 and 2 + 5 \sqrt{5} + 5 \text{ and } \sqrt{2} + 5 5 + 5 and 2 + 5 be two irrational numbers.
Difference of numbers
= 5 + 5 − ( 2 + 5 ) = 5 − 2 + 5 − 5 = 5 − 2 . = \sqrt{5} + 5 - (\sqrt{2} + 5) \\[1em] = \sqrt{5} - \sqrt{2} + 5 - 5 \\[1em] = \sqrt{5} - \sqrt{2}. = 5 + 5 − ( 2 + 5 ) = 5 − 2 + 5 − 5 = 5 − 2 .
5 − 2 \sqrt{5} - \sqrt{2} 5 − 2 is an irrational number.
Hence, required pair = 5 + 5 and 2 + 5 \sqrt{5} + 5 \text{ and } \sqrt{2} + 5 5 + 5 and 2 + 5 .
Write a pair of irrational numbers whose difference is rational.
Answer
Let 3 + 5 and 3 + 2 \sqrt{3} + 5 \text{ and } \sqrt{3} + 2 3 + 5 and 3 + 2 be two irrational numbers.
Difference of numbers
= 3 + 5 − ( 3 + 2 ) = 3 − 3 + 5 − 2 = 3. = \sqrt{3} + 5 - (\sqrt{3} + 2) \\[1em] = \sqrt{3} - \sqrt{3} + 5 - 2 \\[1em] = 3. = 3 + 5 − ( 3 + 2 ) = 3 − 3 + 5 − 2 = 3.
3 is a rational number.
Hence, required pair = 3 + 5 and 3 + 2 \sqrt{3} + 5 \text{ and } \sqrt{3} + 2 3 + 5 and 3 + 2 .
Write a pair of irrational numbers whose product is irrational.
Answer
Let 2 and 3 \sqrt{2} \text{ and } \sqrt{3} 2 and 3 be two irrational numbers.
Product of numbers
= 2 × 3 = 6 . = \sqrt{2} \times \sqrt{3} \\[1em] = \sqrt{6}. = 2 × 3 = 6 .
6 \sqrt{6} 6 is an irrational number.
Hence, required pair = 2 and 3 \sqrt{2} \text{ and } \sqrt{3} 2 and 3 .
Write a pair of irrational numbers whose product is rational.
Answer
Let 5 + 2 and 5 − 2 5 + \sqrt{2} \text{ and } 5 - \sqrt{2} 5 + 2 and 5 − 2 be two irrational numbers.
Product of numbers
= ( 5 + 2 ) ( 5 − 2 ) = 25 − 5 2 + 5 2 − 2 = 23. = (5 + \sqrt{2})(5 - \sqrt{2}) \\[1em] = 25 - 5\sqrt{2} + 5\sqrt{2} - 2 \\[1em] = 23. = ( 5 + 2 ) ( 5 − 2 ) = 25 − 5 2 + 5 2 − 2 = 23.
23 is a rational number.
Hence, required pair = 5 + 2 and 5 − 2 5 + \sqrt{2} \text{ and } 5 - \sqrt{2} 5 + 2 and 5 − 2 .
If x = 5 − 2 , x + 1 x \sqrt{5} - 2, x + \dfrac{1}{x} 5 − 2 , x + x 1 is equal to :
2 5 2\sqrt{5} 2 5
4
4 5 4\sqrt{5} 4 5
− 4 \sqrt{-4} − 4
Answer
Given,
x = 5 − 2 \sqrt{5} - 2 5 − 2
1 x = 1 5 − 2 \dfrac{1}{x} = \dfrac{1}{\sqrt{5} - 2} x 1 = 5 − 2 1
Rationalizing,
⇒ 1 x = 1 5 − 2 × 5 + 2 5 + 2 = 5 + 2 ( 5 ) 2 − ( 2 ) 2 = 5 + 2 5 − 4 = 5 + 2 1 = 5 + 2. ⇒ x + 1 x = 5 − 2 + 5 + 2 = 2 5 . \Rightarrow \dfrac{1}{x} = \dfrac{1}{\sqrt{5} - 2} \times \dfrac{\sqrt{5} + 2}{\sqrt{5} + 2} \\[1em] = \dfrac{\sqrt{5} + 2}{(\sqrt{5})^2 - (2)^2} \\[1em] = \dfrac{\sqrt{5} + 2}{5 - 4} \\[1em] = \dfrac{\sqrt{5} + 2}{1} \\[1em] = \sqrt{5} + 2. \\[1em] \Rightarrow x + \dfrac{1}{x} = \sqrt{5} - 2 + \sqrt{5} + 2 \\[1em] = 2\sqrt{5}. ⇒ x 1 = 5 − 2 1 × 5 + 2 5 + 2 = ( 5 ) 2 − ( 2 ) 2 5 + 2 = 5 − 4 5 + 2 = 1 5 + 2 = 5 + 2. ⇒ x + x 1 = 5 − 2 + 5 + 2 = 2 5 .
Hence, Option 1 is the correct option.
If x = 1 + 2 , then ( x + 1 x ) 2 \sqrt{2}, \text{ then } \Big(x + \dfrac{1}{x}\Big)^2 2 , then ( x + x 1 ) 2 is :
2 2 2\sqrt{2} 2 2
8
4
4 2 4\sqrt{2} 4 2
Answer
Given,
x = 1 + 2 1 + \sqrt{2} 1 + 2
1 x = 1 1 + 2 \dfrac{1}{x} = \dfrac{1}{1 + \sqrt{2}} x 1 = 1 + 2 1
Rationalizing,
⇒ 1 1 + 2 × 1 − 2 1 − 2 = 1 − 2 ( 1 ) 2 − ( 2 ) 2 = 1 − 2 1 − 2 = 1 − 2 − 1 = − 1 + 2 . ⇒ ( x + 1 x ) 2 = [ 1 + 2 + ( − 1 + 2 ) ] 2 = [ 1 − 1 + 2 + 2 ] 2 = [ 2 2 ] 2 = 8. \Rightarrow \dfrac{1}{1 + \sqrt{2}} \times \dfrac{1 - \sqrt{2}}{1 - \sqrt{2}} \\[1em] = \dfrac{1 - \sqrt{2}}{(1)^2 - (\sqrt{2})^2} \\[1em] = \dfrac{1 - \sqrt{2}}{1 - 2} \\[1em] = \dfrac{1 - \sqrt{2}}{-1} \\[1em] = -1 + \sqrt{2}. \\[1em] \Rightarrow \Big(x + \dfrac{1}{x}\Big)^2 = [1 + \sqrt{2} + (-1 + \sqrt{2})]^2 \\[1em] = [1 - 1 + \sqrt{2} + \sqrt{2}]^2 \\[1em] = [2\sqrt{2}]^2 \\[1em] = 8. ⇒ 1 + 2 1 × 1 − 2 1 − 2 = ( 1 ) 2 − ( 2 ) 2 1 − 2 = 1 − 2 1 − 2 = − 1 1 − 2 = − 1 + 2 . ⇒ ( x + x 1 ) 2 = [ 1 + 2 + ( − 1 + 2 ) ] 2 = [ 1 − 1 + 2 + 2 ] 2 = [ 2 2 ] 2 = 8.
Hence, Option 2 is the correct option.
2 27 + 3 12 4 3 \dfrac{2\sqrt{27} + 3\sqrt{12}}{4\sqrt{3}} 4 3 2 27 + 3 12 is equal to :
2 3 2\sqrt{3} 2 3
3 2 3\sqrt{2} 3 2
3
3 + 2 \sqrt{3} + \sqrt{2} 3 + 2
Answer
Solving,
⇒ 2 27 + 3 12 4 3 ⇒ 2 × 3 3 + 3 × 2 3 4 3 ⇒ 6 3 + 6 3 4 3 ⇒ 12 3 4 3 ⇒ 3. \Rightarrow \dfrac{2\sqrt{27} + 3\sqrt{12}}{4\sqrt{3}} \\[1em] \Rightarrow \dfrac{2 \times 3\sqrt{3} + 3 \times 2\sqrt{3}}{4\sqrt{3}} \\[1em] \Rightarrow \dfrac{6\sqrt{3} + 6\sqrt{3}}{4\sqrt{3}} \\[1em] \Rightarrow \dfrac{12\sqrt{3}}{4\sqrt{3}} \\[1em] \Rightarrow 3. ⇒ 4 3 2 27 + 3 12 ⇒ 4 3 2 × 3 3 + 3 × 2 3 ⇒ 4 3 6 3 + 6 3 ⇒ 4 3 12 3 ⇒ 3.
Hence, Option 3 is the correct option.
( 5 − 3 ) 2 (\sqrt{5} - \sqrt{3})^2 ( 5 − 3 ) 2 is :
8 + 2 15 8 + 2\sqrt{15} 8 + 2 15
8 + 15 8 + \sqrt{15} 8 + 15
8 − 15 8 - \sqrt{15} 8 − 15
8 − 2 15 8 - 2\sqrt{15} 8 − 2 15
Answer
Solving,
⇒ ( 5 − 3 ) 2 ⇒ ( 5 ) 2 + ( 3 ) 2 − 2 × 5 × 3 ⇒ 5 + 3 − 2 15 ⇒ 8 − 2 15 . \Rightarrow (\sqrt{5} - \sqrt{3})^2 \\[1em] \Rightarrow (\sqrt{5})^2 + (\sqrt{3})^2 - 2 \times \sqrt{5} \times \sqrt{3} \\[1em] \Rightarrow 5 + 3 - 2\sqrt{15} \\[1em] \Rightarrow 8 - 2\sqrt{15}. ⇒ ( 5 − 3 ) 2 ⇒ ( 5 ) 2 + ( 3 ) 2 − 2 × 5 × 3 ⇒ 5 + 3 − 2 15 ⇒ 8 − 2 15 .
Hence, Option 4 is the correct option.
3 4 + 7 \dfrac{3}{4 + \sqrt{7}} 4 + 7 3 is equal to :
1 3 ( 4 − 7 ) \dfrac{1}{3}(4 - \sqrt{7}) 3 1 ( 4 − 7 )
3 ( 4 − 7 ) 3(4 - \sqrt{7}) 3 ( 4 − 7 )
1 3 ( 4 + 7 ) \dfrac{1}{3}(4 + \sqrt{7}) 3 1 ( 4 + 7 )
3 ( 4 + 7 ) 3(4 + \sqrt{7}) 3 ( 4 + 7 )
Answer
Rationalizing,
⇒ 3 4 + 7 × 4 − 7 4 − 7 ⇒ 3 ( 4 − 7 ) ( 4 ) 2 − ( 7 ) 2 ⇒ 3 ( 4 − 7 ) 16 − 7 ⇒ 3 ( 4 − 7 ) 9 ⇒ 1 3 ( 4 − 7 ) . \Rightarrow \dfrac{3}{4 + \sqrt{7}} \times \dfrac{4 - \sqrt{7}}{4 - \sqrt{7}} \\[1em] \Rightarrow \dfrac{3(4 - \sqrt{7})}{(4)^2 - (\sqrt{7})^2} \\[1em] \Rightarrow \dfrac{3(4 - \sqrt{7})}{16 - 7} \\[1em] \Rightarrow \dfrac{3(4 - \sqrt{7})}{9} \\[1em] \Rightarrow \dfrac{1}{3}(4 - \sqrt{7}). ⇒ 4 + 7 3 × 4 − 7 4 − 7 ⇒ ( 4 ) 2 − ( 7 ) 2 3 ( 4 − 7 ) ⇒ 16 − 7 3 ( 4 − 7 ) ⇒ 9 3 ( 4 − 7 ) ⇒ 3 1 ( 4 − 7 ) .
Hence, Option 1 is the correct option.
1 7 − 5 \dfrac{1}{7 - \sqrt{5}} 7 − 5 1 is equal to :
4 ( 7 + 5 ) 4(7 + \sqrt{5}) 4 ( 7 + 5 )
1 44 ( 7 + 5 ) \dfrac{1}{44}(7 + \sqrt{5}) 44 1 ( 7 + 5 )
1 44 ( 7 − 5 ) \dfrac{1}{44}(7 - \sqrt{5}) 44 1 ( 7 − 5 )
4 ( 7 − 5 ) 4(7 - \sqrt{5}) 4 ( 7 − 5 )
Answer
Rationalizing,
⇒ 1 7 − 5 × 7 + 5 7 + 5 ⇒ 7 + 5 ( 7 ) 2 − ( 5 ) 2 ⇒ 7 + 5 49 − 5 ⇒ 1 44 ( 7 + 5 ) . \Rightarrow \dfrac{1}{7 - \sqrt{5}} \times \dfrac{7 + \sqrt{5}}{7 + \sqrt{5}} \\[1em] \Rightarrow \dfrac{7 + \sqrt{5}}{(7)^2 - (\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{7 + \sqrt{5}}{49 - 5} \\[1em] \Rightarrow \dfrac{1}{44}(7 + \sqrt{5}). ⇒ 7 − 5 1 × 7 + 5 7 + 5 ⇒ ( 7 ) 2 − ( 5 ) 2 7 + 5 ⇒ 49 − 5 7 + 5 ⇒ 44 1 ( 7 + 5 ) .
Hence, Option 2 is the correct option.
If x = 2 − 1 , then ( x − 1 x ) 2 \sqrt{2} - 1, \text{ then } \Big(x - \dfrac{1}{x}\Big)^2 2 − 1 , then ( x − x 1 ) 2 is :
2 2 2\sqrt{2} 2 2
2
4
2 − 2 2 - \sqrt{2} 2 − 2
Answer
Given,
x = 2 − 1 \sqrt{2} - 1 2 − 1
1 x = 1 2 − 1 \dfrac{1}{x} = \dfrac{1}{\sqrt{2} - 1} x 1 = 2 − 1 1
Rationalizing,
⇒ 1 x = 1 2 − 1 × 2 + 1 2 + 1 = 2 + 1 ( 2 ) 2 − ( 1 ) 2 = 2 + 1 2 − 1 = 2 + 1 1 = 2 + 1. ⇒ ( x − 1 x ) 2 = [ 2 − 1 − ( 2 + 1 ) ] 2 = [ 2 − 2 − 1 − 1 ] 2 = [ − 2 ] 2 = 4. \Rightarrow \dfrac{1}{x} = \dfrac{1}{\sqrt{2} - 1} \times \dfrac{\sqrt{2} + 1}{\sqrt{2} + 1} \\[1em] = \dfrac{\sqrt{2} + 1}{(\sqrt{2})^2 - (1)^2} \\[1em] = \dfrac{\sqrt{2} + 1}{2 - 1} \\[1em] = \dfrac{\sqrt{2} + 1}{1} \\[1em] = \sqrt{2} + 1. \\[1em] \Rightarrow \Big(x - \dfrac{1}{x}\Big)^2 = [\sqrt{2} - 1 - (\sqrt{2} + 1)]^2 \\[1em] = [\sqrt{2} - \sqrt{2} - 1 - 1]^2 \\[1em] = [-2]^2 \\[1em] = 4. ⇒ x 1 = 2 − 1 1 × 2 + 1 2 + 1 = ( 2 ) 2 − ( 1 ) 2 2 + 1 = 2 − 1 2 + 1 = 1 2 + 1 = 2 + 1. ⇒ ( x − x 1 ) 2 = [ 2 − 1 − ( 2 + 1 ) ] 2 = [ 2 − 2 − 1 − 1 ] 2 = [ − 2 ] 2 = 4.
Hence, Option 3 is the correct option.
5 − 7 5 + 7 − 5 + 7 5 − 7 \dfrac{5 - \sqrt{7}}{5 + \sqrt{7}} - \dfrac{5 + \sqrt{7}}{5 - \sqrt{7}} 5 + 7 5 − 7 − 5 − 7 5 + 7 is equal to :
10 7 10\sqrt{7} 10 7
1 9 7 \dfrac{1}{9}\sqrt{7} 9 1 7
10 7 9 \dfrac{10\sqrt{7}}{9} 9 10 7
− 10 7 9 -\dfrac{10\sqrt{7}}{9} − 9 10 7
Answer
Given,
⇒ 5 − 7 5 + 7 − 5 + 7 5 − 7 ⇒ ( 5 − 7 ) 2 − ( 5 + 7 ) 2 ( 5 + 7 ) ( 5 − 7 ) ⇒ ( 5 ) 2 + ( 7 ) 2 − 2 × 5 × 7 − [ ( 5 ) 2 + ( 7 ) 2 + 2 × 5 × 7 ] 5 2 − ( 7 ) 2 ⇒ 25 + 7 − 10 7 − [ 25 + 7 + 10 7 ] 25 − 7 ⇒ 25 − 25 + 7 − 7 − 10 7 − 10 7 18 ⇒ − 20 7 18 ⇒ − 10 7 9 . \Rightarrow \dfrac{5 - \sqrt{7}}{5 + \sqrt{7}} - \dfrac{5 + \sqrt{7}}{5 - \sqrt{7}} \\[1em] \Rightarrow \dfrac{(5 - \sqrt{7})^2 - (5 + \sqrt{7})^2}{(5 + \sqrt{7})(5 - \sqrt{7})} \\[1em] \Rightarrow \dfrac{(5)^2 + (\sqrt{7})^2 - 2 \times 5 \times \sqrt{7} - [(5)^2 + (\sqrt{7})^2 + 2 \times 5 \times \sqrt{7}]}{5^2 - (\sqrt{7})^2} \\[1em] \Rightarrow \dfrac{25 + 7 - 10\sqrt{7} - [25 + 7 + 10\sqrt{7}]}{25 - 7} \\[1em] \Rightarrow \dfrac{25 - 25 + 7 - 7 - 10\sqrt{7} - 10\sqrt{7}}{18} \\[1em] \Rightarrow \dfrac{-20\sqrt{7}}{18} \\[1em] \Rightarrow \dfrac{-10\sqrt{7}}{9}. ⇒ 5 + 7 5 − 7 − 5 − 7 5 + 7 ⇒ ( 5 + 7 ) ( 5 − 7 ) ( 5 − 7 ) 2 − ( 5 + 7 ) 2 ⇒ 5 2 − ( 7 ) 2 ( 5 ) 2 + ( 7 ) 2 − 2 × 5 × 7 − [( 5 ) 2 + ( 7 ) 2 + 2 × 5 × 7 ] ⇒ 25 − 7 25 + 7 − 10 7 − [ 25 + 7 + 10 7 ] ⇒ 18 25 − 25 + 7 − 7 − 10 7 − 10 7 ⇒ 18 − 20 7 ⇒ 9 − 10 7 .
Hence, Option 4 is the correct option.
State, with reason, which of the following are surds and which are not :
(i) 180 \sqrt{180} 180
(ii) 27 4 \sqrt[4]{27} 4 27
(iii) 128 5 \sqrt[5]{128} 5 128
(iv) 64 3 \sqrt[3]{64} 3 64
(v) 25 3 . 40 3 \sqrt[3]{25}.\sqrt[3]{40} 3 25 . 3 40
(vi) − 125 3 \sqrt[3]{-125} 3 − 125
(vii) π \sqrt{π} π
(viii) 3 + 2 \sqrt{3 + \sqrt{2}} 3 + 2
Answer
(i) Given,
180 = 2 × 2 × 3 × 3 × 5 = 2 × 3 × 5 = 6 5 \sqrt{180} = \sqrt{2 \times 2 \times 3 \times 3 \times 5} = 2 \times 3 \times \sqrt{5} = 6\sqrt{5} 180 = 2 × 2 × 3 × 3 × 5 = 2 × 3 × 5 = 6 5 , which is an irrational number.
Since, 180 is a rational number and 180 \sqrt{180} 180 is an irrational number.
Hence, 180 \sqrt{180} 180 is a surd.
(ii) Given,
27 4 = 3 3 4 = ( 3 ) 3 4 \sqrt[4]{27} = \sqrt[4]{3^3} = (3)^{\dfrac{3}{4}} 4 27 = 4 3 3 = ( 3 ) 4 3 , which is irrational.
Since, 27 is a rational number and 27 4 \sqrt[4]{27} 4 27 is an irrational number.
Hence, 27 4 \sqrt[4]{27} 4 27 is a surd.
(iii) Given,
128 5 = 2 7 5 = 2 5 × 2 2 5 = ( 2 5 ) 1 5 × ( 2 2 ) 1 5 = 2 × ( 2 ) 2 5 \sqrt[5]{128} = \sqrt[5]{2^7} = \sqrt[5]{2^5 \times 2^2} \\[1em] = (2^5)^{\frac{1}{5}} \times (2^2)^{\frac{1}{5}} \\[1em] = 2 \times (2)^{\frac{2}{5}} 5 128 = 5 2 7 = 5 2 5 × 2 2 = ( 2 5 ) 5 1 × ( 2 2 ) 5 1 = 2 × ( 2 ) 5 2
which is irrational.
Since, 128 is a rational number and 128 5 \sqrt[5]{128} 5 128 is an irrational number.
Hence, 128 5 \sqrt[5]{128} 5 128 is a surd.
(iv) Given,
64 3 = 4 3 3 = 4 3 × 1 3 \sqrt[3]{64} = \sqrt[3]{4^3} = 4^{3 \times \dfrac{1}{3}} 3 64 = 3 4 3 = 4 3 × 3 1 = 4, which is rational.
Since, 64 is rational and 64 3 \sqrt[3]{64} 3 64 is also rational.
Hence, 64 3 \sqrt[3]{64} 3 64 is not a surd.
(v) Given,
25 3 . 40 3 = 1000 3 = 10 3 3 = 10 3 × 1 3 \sqrt[3]{25}.\sqrt[3]{40} = \sqrt[3]{1000} = \sqrt[3]{10^3} = 10^{3 \times \dfrac{1}{3}} 3 25 . 3 40 = 3 1000 = 3 1 0 3 = 1 0 3 × 3 1 = 10, which is rational.
Since, 1000 is rational and 10 is also rational.
Hence, 25 3 . 40 3 \sqrt[3]{25}.\sqrt[3]{40} 3 25 . 3 40 is not a surd.
(vi) Given,
− 125 3 = ( − 5 ) 3 3 = ( − 5 ) 3 × 1 3 = − 5 \sqrt[3]{-125} = \sqrt[3]{(-5)^3} = (-5)^{3 \times \dfrac{1}{3}} = -5 3 − 125 = 3 ( − 5 ) 3 = ( − 5 ) 3 × 3 1 = − 5 , which is rational,
Since, -125 is rational and -5 is also rational.
Hence, − 125 3 \sqrt[3]{-125} 3 − 125 is not a surd.
(vii) Given,
π \sqrt{π} π
Since, π is irrational and π \sqrt{π} π is also irrational.
Hence, π \sqrt{π} π is not a surd.
(viii) Given,
3 + 2 \sqrt{3 + \sqrt{2}} 3 + 2
Since, 3 + 2 3 + \sqrt{2} 3 + 2 is irrational.
Hence, 3 + 2 \sqrt{3 + \sqrt{2}} 3 + 2 is not a surd.
Write the lowest rationalizing factor of :
(i) 5 2 5\sqrt{2} 5 2
(ii) 24 \sqrt{24} 24
(iii) 5 − 3 \sqrt{5} - 3 5 − 3
(iv) 7 − 7 7 - \sqrt{7} 7 − 7
(v) 18 − 50 \sqrt{18} - \sqrt{50} 18 − 50
(vi) 5 − 2 \sqrt{5} - \sqrt{2} 5 − 2
(vii) 13 + 3 \sqrt{13} + 3 13 + 3
Answer
(i) Given,
⇒ 5 2 \Rightarrow 5\sqrt{2} ⇒ 5 2
Rationalizing,
⇒ 5 2 × 2 ⇒ 10. \Rightarrow 5\sqrt{2} \times \sqrt{2} \\[1em] \Rightarrow 10. ⇒ 5 2 × 2 ⇒ 10.
Hence, lowest rationalizing factor of 5 2 = 2 5\sqrt{2} = \sqrt{2} 5 2 = 2 .
(ii) Given,
⇒ 24 ⇒ 2 6 . \Rightarrow \sqrt{24} \\[1em] \Rightarrow 2\sqrt{6}. ⇒ 24 ⇒ 2 6 .
Rationalizing,
⇒ 2 6 × 6 ⇒ 12. \Rightarrow 2\sqrt{6} \times \sqrt{6} \\[1em] \Rightarrow 12. ⇒ 2 6 × 6 ⇒ 12.
Hence, lowest rationalizing factor of 24 = 6 \sqrt{24} = \sqrt{6} 24 = 6 .
(iii) Given,
⇒ 5 − 3 \Rightarrow \sqrt{5} - 3 ⇒ 5 − 3
Rationalizing,
⇒ ( 5 − 3 ) × ( 5 + 3 ) ⇒ ( 5 ) 2 − 3 2 ⇒ 5 − 9 ⇒ − 4. \Rightarrow (\sqrt{5} - 3) \times (\sqrt{5} + 3) \\[1em] \Rightarrow (\sqrt{5})^2 - 3^2 \\[1em] \Rightarrow 5 - 9 \\[1em] \Rightarrow -4. ⇒ ( 5 − 3 ) × ( 5 + 3 ) ⇒ ( 5 ) 2 − 3 2 ⇒ 5 − 9 ⇒ − 4.
Hence, lowest rationalizing factor of 5 − 3 = 5 + 3 \sqrt{5} - 3 = \sqrt{5} + 3 5 − 3 = 5 + 3 .
(iv) Given,
⇒ 7 − 7 \Rightarrow 7 - \sqrt{7} ⇒ 7 − 7
Rationalizing,
⇒ ( 7 − 7 ) × ( 7 + 7 ) ⇒ ( 7 ) 2 − ( 7 ) 2 ⇒ 49 − 7 ⇒ 42. \Rightarrow (7 - \sqrt{7}) \times (7 + \sqrt{7}) \\[1em] \Rightarrow (7)^2 - (\sqrt{7})^2 \\[1em] \Rightarrow 49 - 7 \\[1em] \Rightarrow 42. ⇒ ( 7 − 7 ) × ( 7 + 7 ) ⇒ ( 7 ) 2 − ( 7 ) 2 ⇒ 49 − 7 ⇒ 42.
Hence, lowest rationalizing factor of 7 − 7 = 7 + 7 7 - \sqrt{7} = 7 + \sqrt{7} 7 − 7 = 7 + 7 .
(v) Given,
⇒ 18 − 50 ⇒ 3 2 − 5 2 \Rightarrow \sqrt{18} - \sqrt{50}\\[1em] \Rightarrow 3\sqrt{2} - 5\sqrt{2} ⇒ 18 − 50 ⇒ 3 2 − 5 2
Rationalizing,
⇒ ( 3 2 − 5 2 ) × ( 2 ) ⇒ ( 6 − 10 ) ⇒ − 4 \Rightarrow (3\sqrt{2} - 5\sqrt{2}) \times (\sqrt{2}) \\[1em] \Rightarrow (6 - 10) \\[1em] \Rightarrow -4 ⇒ ( 3 2 − 5 2 ) × ( 2 ) ⇒ ( 6 − 10 ) ⇒ − 4
Hence, lowest rationalizing factor of 18 − 50 = 2 \sqrt{18} - \sqrt{50} = \sqrt{2} 18 − 50 = 2 .
(vi) Given,
⇒ 5 − 2 \Rightarrow \sqrt{5} - \sqrt{2} ⇒ 5 − 2
Rationalizing,
⇒ ( 5 − 2 ) × ( 5 + 2 ) ⇒ ( 5 ) 2 − ( 2 ) 2 ⇒ 5 − 2 ⇒ 3. \Rightarrow (\sqrt{5} - \sqrt{2}) \times (\sqrt{5} + \sqrt{2}) \\[1em] \Rightarrow (\sqrt{5})^2 - (\sqrt{2})^2 \\[1em] \Rightarrow 5 - 2 \\[1em] \Rightarrow 3. ⇒ ( 5 − 2 ) × ( 5 + 2 ) ⇒ ( 5 ) 2 − ( 2 ) 2 ⇒ 5 − 2 ⇒ 3.
Hence, lowest rationalizing factor of 5 − 2 = 5 + 2 \sqrt{5} - \sqrt{2} = \sqrt{5} + \sqrt{2} 5 − 2 = 5 + 2 .
(vii) Given,
⇒ 13 + 3 \Rightarrow \sqrt{13} + 3 ⇒ 13 + 3
Rationalizing,
⇒ ( 13 + 3 ) ( 13 − 3 ) ⇒ ( 13 ) 2 − 3 2 ⇒ 13 − 9 ⇒ 4. \Rightarrow (\sqrt{13} + 3)(\sqrt{13} - 3) \\[1em] \Rightarrow (\sqrt{13})^2 - 3^2 \\[1em] \Rightarrow 13 - 9 \\[1em] \Rightarrow 4. ⇒ ( 13 + 3 ) ( 13 − 3 ) ⇒ ( 13 ) 2 − 3 2 ⇒ 13 − 9 ⇒ 4.
Hence, lowest rationalizing factor of 13 + 3 = 13 − 3 \sqrt{13} + 3 = \sqrt{13} - 3 13 + 3 = 13 − 3 .
Rationalize the denominators of:
(i) 2 3 5 \dfrac{2\sqrt{3}}{\sqrt{5}} 5 2 3
(ii) 6 − 5 6 + 5 \dfrac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}} 6 + 5 6 − 5
Answer
(i) Given,
2 3 5 \dfrac{2\sqrt{3}}{\sqrt{5}} 5 2 3
Let us rationalise the denominator,
⇒ 2 3 × 5 5 × 5 ⇒ 2 15 ( 5 ) 2 ⇒ 2 15 5 \Rightarrow \dfrac{2\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} \\[1em] \Rightarrow \dfrac{2\sqrt{15}}{(\sqrt{5})^2}\\[1em] \Rightarrow \dfrac{2\sqrt{15}}{5} ⇒ 5 × 5 2 3 × 5 ⇒ ( 5 ) 2 2 15 ⇒ 5 2 15
Hence, 2 3 5 = 2 15 5 \dfrac{2\sqrt{3}}{\sqrt{5}} = \dfrac{2\sqrt{15}}{5} 5 2 3 = 5 2 15
(ii) Given, 6 − 5 6 + 5 \dfrac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}} 6 + 5 6 − 5
Let us rationalise the denominator,
⇒ ( 6 − 5 ) × ( 6 − 5 ) ( 6 + 5 ) × ( 6 − 5 ) = ( 6 − 5 ) 2 ( 6 ) 2 − ( 5 ) 2 = ( 6 ) 2 + ( 5 ) 2 − 2 × 6 × 5 6 − 5 = 6 + 5 − 2 × 30 1 = 11 − 2 30 \Rightarrow \dfrac{(\sqrt{6} - \sqrt{5}) \times (\sqrt{6} - \sqrt{5})}{(\sqrt{6} + \sqrt{5})\times (\sqrt{6} - \sqrt{5})}\\[1em] = \dfrac{(\sqrt{6} - \sqrt{5})^2}{(\sqrt{6})^2 - (\sqrt{5})^2}\\[1em] = \dfrac{(\sqrt{6})^2 + (\sqrt{5})^2 - 2 \times \sqrt{6} \times \sqrt{5}}{6 - 5}\\[1em] = \dfrac{6 + 5 - 2 \times \sqrt{30}}{1}\\[1em] = 11 - 2\sqrt{30} ⇒ ( 6 + 5 ) × ( 6 − 5 ) ( 6 − 5 ) × ( 6 − 5 ) = ( 6 ) 2 − ( 5 ) 2 ( 6 − 5 ) 2 = 6 − 5 ( 6 ) 2 + ( 5 ) 2 − 2 × 6 × 5 = 1 6 + 5 − 2 × 30 = 11 − 2 30
Hence, 6 − 5 6 + 5 = 11 − 2 30 \dfrac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}} = 11 - 2\sqrt{30} 6 + 5 6 − 5 = 11 − 2 30 .
Find the values of 'a' and 'b':
2 + 3 2 − 3 = a + b 3 \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = a + b\sqrt{3} 2 − 3 2 + 3 = a + b 3
Answer
Given,
Equation : 2 + 3 2 − 3 = a + b 3 \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} = a + b\sqrt{3} 2 − 3 2 + 3 = a + b 3
Rationalizing L.H.S. of the above equation :
⇒ 2 + 3 2 − 3 × 2 + 3 2 + 3 ⇒ ( 2 + 3 ) 2 2 2 − ( 3 ) 2 ⇒ 2 2 + ( 3 ) 2 + 2 × 2 × 3 2 2 − ( 3 ) 2 ⇒ 4 + 3 + 4 3 4 − 3 ⇒ 7 + 4 3 . \Rightarrow \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} \times \dfrac{2 + \sqrt{3}}{2 + \sqrt{3}} \\[1em] \Rightarrow \dfrac{(2 + \sqrt{3})^2}{2^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{2^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3}}{2^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{4 + 3 + 4\sqrt{3}}{4 - 3} \\[1em] \Rightarrow 7 + 4\sqrt{3}. ⇒ 2 − 3 2 + 3 × 2 + 3 2 + 3 ⇒ 2 2 − ( 3 ) 2 ( 2 + 3 ) 2 ⇒ 2 2 − ( 3 ) 2 2 2 + ( 3 ) 2 + 2 × 2 × 3 ⇒ 4 − 3 4 + 3 + 4 3 ⇒ 7 + 4 3 .
Comparing 7 + 4 3 with a + b 3 7 + 4\sqrt{3} \text{ with } a + b\sqrt{3} 7 + 4 3 with a + b 3 , we get :
a = 7 and b = 4.
Hence, a = 7 and b = 4.
Find the values of 'a' and 'b':
7 − 2 7 + 2 = a 7 + b \dfrac{\sqrt{7} - 2}{\sqrt{7} + 2} = a\sqrt{7} + b 7 + 2 7 − 2 = a 7 + b
Answer
Given,
Equation : 7 − 2 7 + 2 = a 7 + b \dfrac{\sqrt{7} - 2}{\sqrt{7} + 2} = a\sqrt{7} + b 7 + 2 7 − 2 = a 7 + b
Rationalizing L.H.S. of the above equation :
⇒ 7 − 2 7 + 2 × 7 − 2 7 − 2 ⇒ ( 7 − 2 ) 2 ( 7 ) 2 − 2 2 ⇒ ( 7 ) 2 + 2 2 − 2 × 7 × 2 7 − 4 ⇒ 7 + 4 − 4 7 3 ⇒ 11 − 4 7 3 ⇒ − 4 7 3 + 11 3 . \Rightarrow \dfrac{\sqrt{7} - 2}{\sqrt{7} + 2} \times \dfrac{\sqrt{7} - 2}{\sqrt{7} - 2} \\[1em] \Rightarrow \dfrac{(\sqrt{7} - 2)^2}{(\sqrt{7})^2 - 2^2} \\[1em] \Rightarrow \dfrac{(\sqrt{7})^2 + 2^2 - 2 \times \sqrt{7} \times 2}{7 - 4} \\[1em] \Rightarrow \dfrac{7 + 4 - 4\sqrt{7}}{3} \\[1em] \Rightarrow \dfrac{11 - 4\sqrt{7}}{3} \\[1em] \Rightarrow -\dfrac{4\sqrt{7}}{3} + \dfrac{11}{3}. ⇒ 7 + 2 7 − 2 × 7 − 2 7 − 2 ⇒ ( 7 ) 2 − 2 2 ( 7 − 2 ) 2 ⇒ 7 − 4 ( 7 ) 2 + 2 2 − 2 × 7 × 2 ⇒ 3 7 + 4 − 4 7 ⇒ 3 11 − 4 7 ⇒ − 3 4 7 + 3 11 .
Comparing − 4 7 3 + 11 3 with a 7 + b -\dfrac{4\sqrt{7}}{3} + \dfrac{11}{3} \text{ with } a\sqrt{7} + b − 3 4 7 + 3 11 with a 7 + b , we get :
a = − 4 3 and b = 11 3 -\dfrac{4}{3}\text{ and } b = \dfrac{11}{3} − 3 4 and b = 3 11 .
Hence, a = − 4 3 and b = 11 3 -\dfrac{4}{3}\text{ and } b = \dfrac{11}{3} − 3 4 and b = 3 11 .
Find the values of 'a' and 'b':
3 3 − 2 = a 3 − b 2 \dfrac{3}{\sqrt{3} - \sqrt{2}} = a\sqrt{3} - b\sqrt{2} 3 − 2 3 = a 3 − b 2
Answer
Given,
Equation : 3 3 − 2 = a 3 − b 2 \dfrac{3}{\sqrt{3} - \sqrt{2}} = a\sqrt{3} - b\sqrt{2} 3 − 2 3 = a 3 − b 2
Rationalizing L.H.S. of the above equation :
⇒ 3 3 − 2 × 3 + 2 3 + 2 ⇒ 3 ( 3 + 2 ) ( 3 ) 2 − ( 2 ) 2 ⇒ 3 3 + 3 2 3 − 2 ⇒ 3 3 + 3 2 1 ⇒ 3 3 + 3 2 . \Rightarrow \dfrac{3}{\sqrt{3} - \sqrt{2}} \times \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{3(\sqrt{3} + \sqrt{2})}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{3\sqrt{3} + 3\sqrt{2}}{3 - 2} \\[1em] \Rightarrow \dfrac{3\sqrt{3} + 3\sqrt{2}}{1} \\[1em] \Rightarrow 3\sqrt{3} + 3\sqrt{2}. ⇒ 3 − 2 3 × 3 + 2 3 + 2 ⇒ ( 3 ) 2 − ( 2 ) 2 3 ( 3 + 2 ) ⇒ 3 − 2 3 3 + 3 2 ⇒ 1 3 3 + 3 2 ⇒ 3 3 + 3 2 .
Comparing 3 3 + 3 2 with a 3 − b 2 3\sqrt{3} + 3\sqrt{2}\text{ with } a\sqrt{3} - b\sqrt{2} 3 3 + 3 2 with a 3 − b 2 , we get :
a = 3 and b = -3.
Hence, a = 3 and b = -3.
Simplify :
22 2 3 + 1 + 17 2 3 − 1 \dfrac{22}{2\sqrt{3} + 1} + \dfrac{17}{2\sqrt{3} - 1} 2 3 + 1 22 + 2 3 − 1 17
Answer
(i) Solving,
⇒ 22 2 3 + 1 + 17 2 3 − 1 ⇒ 22 ( 2 3 − 1 ) + 17 ( 2 3 + 1 ) ( 2 3 + 1 ) ( 2 3 − 1 ) ⇒ 44 3 − 22 + 34 3 + 17 ( 2 3 ) 2 − 1 2 ⇒ 78 3 − 5 12 − 1 ⇒ 78 3 − 5 11 . \Rightarrow \dfrac{22}{2\sqrt{3} + 1} + \dfrac{17}{2\sqrt{3} - 1} \\[1em] \Rightarrow \dfrac{22(2\sqrt{3} - 1) + 17(2\sqrt{3} + 1)}{(2\sqrt{3} + 1)(2\sqrt{3} - 1)} \\[1em] \Rightarrow \dfrac{44\sqrt{3} - 22 + 34\sqrt{3} + 17}{(2\sqrt{3})^2 - 1^2} \\[1em] \Rightarrow \dfrac{78\sqrt{3} - 5}{12 - 1} \\[1em] \Rightarrow \dfrac{78\sqrt{3} - 5}{11}. ⇒ 2 3 + 1 22 + 2 3 − 1 17 ⇒ ( 2 3 + 1 ) ( 2 3 − 1 ) 22 ( 2 3 − 1 ) + 17 ( 2 3 + 1 ) ⇒ ( 2 3 ) 2 − 1 2 44 3 − 22 + 34 3 + 17 ⇒ 12 − 1 78 3 − 5 ⇒ 11 78 3 − 5 .
Hence, solution = 78 3 − 5 11 . \dfrac{78\sqrt{3} - 5}{11}. 11 78 3 − 5 .
Simplify :
2 6 − 2 − 3 6 + 2 \dfrac{\sqrt{2}}{\sqrt{6} - \sqrt{2}} - \dfrac{\sqrt{3}}{\sqrt{6} + \sqrt{2}} 6 − 2 2 − 6 + 2 3
Answer
Solving,
⇒ 2 6 − 2 − 3 6 + 2 ⇒ 2 ( 6 + 2 ) − 3 ( 6 − 2 ) ( 6 − 2 ) ( 6 + 2 ) ⇒ 12 + 2 − 18 + 6 ( 6 ) 2 − ( 2 ) 2 ⇒ 2 3 + 2 − 3 2 + 6 6 − 2 ⇒ 2 3 + 2 − 3 2 + 6 4 . \Rightarrow \dfrac{\sqrt{2}}{\sqrt{6} - \sqrt{2}} - \dfrac{\sqrt{3}}{\sqrt{6} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{2}(\sqrt{6} + \sqrt{2}) - \sqrt{3}(\sqrt{6} - \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} \\[1em] \Rightarrow \dfrac{\sqrt{12} + 2 - \sqrt{18} + \sqrt{6}}{(\sqrt{6})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{2\sqrt{3} + 2 - 3\sqrt{2} + \sqrt{6}}{6 - 2} \\[1em] \Rightarrow \dfrac{2\sqrt{3} + 2 - 3\sqrt{2} + \sqrt{6}}{4}. ⇒ 6 − 2 2 − 6 + 2 3 ⇒ ( 6 − 2 ) ( 6 + 2 ) 2 ( 6 + 2 ) − 3 ( 6 − 2 ) ⇒ ( 6 ) 2 − ( 2 ) 2 12 + 2 − 18 + 6 ⇒ 6 − 2 2 3 + 2 − 3 2 + 6 ⇒ 4 2 3 + 2 − 3 2 + 6 .
Hence, solution = 2 3 + 2 − 3 2 + 6 4 \dfrac{2\sqrt{3} + 2 - 3\sqrt{2} + \sqrt{6}}{4} 4 2 3 + 2 − 3 2 + 6 .
If x = 5 − 2 5 + 2 and y = 5 + 2 5 − 2 \dfrac{\sqrt{5} - 2}{\sqrt{5} + 2} \text{ and } y = \dfrac{\sqrt{5} + 2}{\sqrt{5} - 2} 5 + 2 5 − 2 and y = 5 − 2 5 + 2 ; find :
(i) x2
(ii) y2
(iii) xy
(iv) x2 + y2 + xy
Answer
(i) Substituting value of x, we get :
⇒ x 2 = ( 5 − 2 5 + 2 ) 2 = ( 5 2 + 2 2 − 2 × 5 × 2 ( 5 ) 2 + 2 2 + 2 × 5 × 2 ) = 5 + 4 − 4 5 5 + 4 + 4 5 = 9 − 4 5 9 + 4 5 . \Rightarrow x^2 = \Big(\dfrac{\sqrt{5} - 2}{\sqrt{5} + 2}\Big)^2 \\[1em] = \Big(\dfrac{\sqrt{5}^2 + 2^2 - 2 \times \sqrt{5} \times 2}{(\sqrt{5})^2 + 2^2 + 2 \times \sqrt{5} \times 2}\Big) \\[1em] = \dfrac{5 + 4 - 4\sqrt{5}}{5 + 4 + 4\sqrt{5}} \\[1em] = \dfrac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}}. ⇒ x 2 = ( 5 + 2 5 − 2 ) 2 = ( ( 5 ) 2 + 2 2 + 2 × 5 × 2 5 2 + 2 2 − 2 × 5 × 2 ) = 5 + 4 + 4 5 5 + 4 − 4 5 = 9 + 4 5 9 − 4 5 .
Rationalizing,
= 9 − 4 5 9 + 4 5 × 9 − 4 5 9 − 4 5 = ( 9 − 4 5 ) 2 9 2 − ( 4 5 ) 2 = 9 2 + ( 4 5 ) 2 − 2 × 9 × 4 5 81 − 80 = 81 + 80 − 72 5 1 = 161 − 72 5 . = \dfrac{9 - 4\sqrt{5}}{9 + 4\sqrt{5}} \times \dfrac{9 - 4\sqrt{5}}{9 - 4\sqrt{5}} \\[1em] = \dfrac{(9 - 4\sqrt{5})^2}{9^2 - (4\sqrt{5})^2} \\[1em] = \dfrac{9^2 + (4\sqrt{5})^2 - 2 \times 9 \times 4\sqrt{5}}{81 - 80} \\[1em] = \dfrac{81 + 80 - 72\sqrt{5}}{1} \\[1em] = 161 - 72\sqrt{5}. = 9 + 4 5 9 − 4 5 × 9 − 4 5 9 − 4 5 = 9 2 − ( 4 5 ) 2 ( 9 − 4 5 ) 2 = 81 − 80 9 2 + ( 4 5 ) 2 − 2 × 9 × 4 5 = 1 81 + 80 − 72 5 = 161 − 72 5 .
Hence, x2 = 161 − 72 5 . 161 - 72\sqrt{5}. 161 − 72 5 .
(ii) Substituting value of y, we get :
⇒ y 2 = ( 5 + 2 5 − 2 ) 2 = ( 5 ) 2 + 2 2 + 2 × 5 × 2 ( 5 ) 2 + 2 2 − 2 × 5 × 2 = 5 + 4 + 4 5 5 + 4 − 4 5 = 9 + 4 5 9 − 4 5 \Rightarrow y^2 = \Big(\dfrac{\sqrt{5} + 2}{\sqrt{5} - 2}\Big)^2 \\[1em] = \dfrac{(\sqrt{5})^2 + 2^2 + 2\times \sqrt{5} \times 2}{(\sqrt{5})^2 + 2^2 - 2\times \sqrt{5} \times 2} \\[1em] = \dfrac{5 + 4 + 4\sqrt{5}}{5 + 4 - 4\sqrt{5}} \\[1em] = \dfrac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} ⇒ y 2 = ( 5 − 2 5 + 2 ) 2 = ( 5 ) 2 + 2 2 − 2 × 5 × 2 ( 5 ) 2 + 2 2 + 2 × 5 × 2 = 5 + 4 − 4 5 5 + 4 + 4 5 = 9 − 4 5 9 + 4 5
Rationalizing,
= 9 + 4 5 9 − 4 5 × 9 + 4 5 9 + 4 5 = ( 9 + 4 5 ) 2 9 2 − ( 4 5 ) 2 = 9 2 + ( 4 5 ) 2 + 2 × 9 × 4 5 81 − 80 = 81 + 80 + 72 5 1 = 161 + 72 5 . = \dfrac{9 + 4\sqrt{5}}{9 - 4\sqrt{5}} \times \dfrac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}} \\[1em] = \dfrac{(9 + 4\sqrt{5})^2}{9^2 - (4\sqrt{5})^2} \\[1em] = \dfrac{9^2 + (4\sqrt{5})^2 + 2 \times 9 \times 4\sqrt{5}}{81 - 80} \\[1em] = \dfrac{81 + 80 + 72\sqrt{5}}{1} \\[1em] = 161 + 72\sqrt{5}. = 9 − 4 5 9 + 4 5 × 9 + 4 5 9 + 4 5 = 9 2 − ( 4 5 ) 2 ( 9 + 4 5 ) 2 = 81 − 80 9 2 + ( 4 5 ) 2 + 2 × 9 × 4 5 = 1 81 + 80 + 72 5 = 161 + 72 5 .
Hence, y2 = 161 + 72 5 . 161 + 72\sqrt{5}. 161 + 72 5 .
(iii) Substituting values of x and y, we get :
⇒ x y = 5 − 2 5 + 2 × 5 + 2 5 − 2 = 1. \Rightarrow xy = \dfrac{\sqrt{5} - 2}{\sqrt{5} + 2} \times \dfrac{\sqrt{5} + 2}{\sqrt{5} - 2} \\[1em] = 1. ⇒ x y = 5 + 2 5 − 2 × 5 − 2 5 + 2 = 1.
Hence, xy = 1.
(iv) Substituting value of x2 , y2 and xy, we get :
⇒ x 2 + y 2 + x y = 161 − 72 5 + 161 + 72 5 + 1 = 323. \Rightarrow x^2 + y^2 + xy = 161 - 72\sqrt{5} + 161 + 72\sqrt{5} + 1 \\[1em] = 323. ⇒ x 2 + y 2 + x y = 161 − 72 5 + 161 + 72 5 + 1 = 323.
Hence, x2 + y2 + xy = 323.
If m = 1 3 − 2 2 and n = 1 3 + 2 2 \dfrac{1}{3 - 2\sqrt{2}} \text{ and } n = \dfrac{1}{3 + 2\sqrt{2}} 3 − 2 2 1 and n = 3 + 2 2 1 , find :
(i) m2
(ii) n2
(iii) mn
Answer
(i) Substituting value of m, we get :
⇒ m 2 = ( 1 3 − 2 2 ) 2 = 1 2 ( 3 − 2 2 ) 2 = 1 3 2 + ( 2 2 ) 2 − 2 × 3 × 2 2 = 1 9 + 8 − 12 2 = 1 17 − 12 2 \Rightarrow m^2 = \Big(\dfrac{1}{3 - 2\sqrt{2}}\Big)^2 \\[1em] = \dfrac{1^2}{(3 - 2\sqrt{2})^2} \\[1em] = \dfrac{1}{3^2 + (2\sqrt{2})^2 - 2 \times 3 \times 2\sqrt{2}} \\[1em] = \dfrac{1}{9 + 8 - 12\sqrt{2}} \\[1em] = \dfrac{1}{17 - 12\sqrt{2}} ⇒ m 2 = ( 3 − 2 2 1 ) 2 = ( 3 − 2 2 ) 2 1 2 = 3 2 + ( 2 2 ) 2 − 2 × 3 × 2 2 1 = 9 + 8 − 12 2 1 = 17 − 12 2 1
Rationalizing,
= 1 17 − 12 2 × 17 + 12 2 17 + 12 2 = 17 + 12 2 17 2 − ( 12 2 ) 2 = 17 + 12 2 289 − 288 = 17 + 12 2 1 = 17 + 12 2 . = \dfrac{1}{17 - 12\sqrt{2}} \times \dfrac{17 + 12\sqrt{2}}{17 + 12\sqrt{2}} \\[1em] = \dfrac{17 + 12\sqrt{2}}{17^2 - (12\sqrt{2})^2} \\[1em] = \dfrac{17 + 12\sqrt{2}}{289 - 288} \\[1em] = \dfrac{17 + 12\sqrt{2}}{1} \\[1em] = 17 + 12\sqrt{2}. = 17 − 12 2 1 × 17 + 12 2 17 + 12 2 = 1 7 2 − ( 12 2 ) 2 17 + 12 2 = 289 − 288 17 + 12 2 = 1 17 + 12 2 = 17 + 12 2 .
Hence, m2 = 17 + 12 2 17 + 12\sqrt{2} 17 + 12 2 .
(ii) Substituting value of n, we get :
⇒ n 2 = ( 1 3 + 2 2 ) 2 = 1 2 ( 3 + 2 2 ) 2 = 1 3 2 + ( 2 2 ) 2 + 2 × 3 × 2 2 = 1 9 + 8 + 12 2 = 1 17 + 12 2 \Rightarrow n^2 = \Big(\dfrac{1}{3 + 2\sqrt{2}}\Big)^2 \\[1em] = \dfrac{1^2}{(3 + 2\sqrt{2})^2} \\[1em] = \dfrac{1}{3^2 + (2\sqrt{2})^2 + 2 \times 3 \times 2\sqrt{2}} \\[1em] = \dfrac{1}{9 + 8 + 12\sqrt{2}} \\[1em] = \dfrac{1}{17 + 12\sqrt{2}} ⇒ n 2 = ( 3 + 2 2 1 ) 2 = ( 3 + 2 2 ) 2 1 2 = 3 2 + ( 2 2 ) 2 + 2 × 3 × 2 2 1 = 9 + 8 + 12 2 1 = 17 + 12 2 1
Rationalizing,
= 1 17 + 12 2 × 17 − 12 2 17 − 12 2 = 17 − 12 2 17 2 − ( 12 2 ) 2 = 17 − 12 2 289 − 288 = 17 − 12 2 1 = 17 − 12 2 . = \dfrac{1}{17 + 12\sqrt{2}} \times \dfrac{17 - 12\sqrt{2}}{17 - 12\sqrt{2}} \\[1em] = \dfrac{17 - 12\sqrt{2}}{17^2 - (12\sqrt{2})^2} \\[1em] = \dfrac{17 - 12\sqrt{2}}{289 - 288} \\[1em] = \dfrac{17 - 12\sqrt{2}}{1} \\[1em] = 17 - 12\sqrt{2}. = 17 + 12 2 1 × 17 − 12 2 17 − 12 2 = 1 7 2 − ( 12 2 ) 2 17 − 12 2 = 289 − 288 17 − 12 2 = 1 17 − 12 2 = 17 − 12 2 .
Hence, n2 = 17 − 12 2 17 - 12\sqrt{2} 17 − 12 2 .
(iii) Substituting value of m and n, we get :
⇒ m n = 1 3 − 2 2 × 1 3 + 2 2 = 1 3 2 + 3 × 2 2 − 2 2 × 3 − ( 2 2 ) 2 = 1 9 + 6 2 − 6 2 − 8 = 1 9 − 8 = 1 1 = 1. \Rightarrow mn = \dfrac{1}{3 - 2\sqrt{2}} \times \dfrac{1}{3 + 2\sqrt{2}} \\[1em] = \dfrac{1}{3^2 + 3 \times 2\sqrt{2} - 2\sqrt{2} \times 3 - (2\sqrt{2})^2} \\[1em] = \dfrac{1}{9 + 6\sqrt{2} - 6\sqrt{2} - 8} \\[1em] = \dfrac{1}{9 - 8} \\[1em] = \dfrac{1}{1} \\[1em] = 1. ⇒ mn = 3 − 2 2 1 × 3 + 2 2 1 = 3 2 + 3 × 2 2 − 2 2 × 3 − ( 2 2 ) 2 1 = 9 + 6 2 − 6 2 − 8 1 = 9 − 8 1 = 1 1 = 1.
Hence, mn = 1.
If x = 2 3 + 2 2 2\sqrt{3} + 2\sqrt{2} 2 3 + 2 2 , find :
(i) 1 x \dfrac{1}{x} x 1
(ii) x + 1 x x + \dfrac{1}{x} x + x 1
(iii) ( x + 1 x ) 2 \Big(x + \dfrac{1}{x}\Big)^2 ( x + x 1 ) 2
Answer
(i) Substituting value of x, we get :
⇒ 1 x = 1 2 3 + 2 2 \Rightarrow \dfrac{1}{x} = \dfrac{1}{2\sqrt{3} + 2\sqrt{2}} ⇒ x 1 = 2 3 + 2 2 1
Rationalizing,
= 1 2 3 + 2 2 × 2 3 − 2 2 2 3 − 2 2 = 2 3 − 2 2 ( 2 3 ) 2 − ( 2 2 ) 2 = 2 3 − 2 2 12 − 8 = 2 ( 3 − 2 ) 4 = 3 − 2 2 . = \dfrac{1}{2\sqrt{3} + 2\sqrt{2}} \times \dfrac{2\sqrt{3} - 2\sqrt{2}}{2\sqrt{3} - 2\sqrt{2}} \\[1em] = \dfrac{2\sqrt{3} - 2\sqrt{2}}{(2\sqrt{3})^2 - (2\sqrt{2})^2} \\[1em] = \dfrac{2\sqrt{3} - 2\sqrt{2}}{12 - 8} \\[1em] = \dfrac{2(\sqrt{3} - \sqrt{2})}{4} \\[1em] = \dfrac{\sqrt{3} - \sqrt{2}}{2}. = 2 3 + 2 2 1 × 2 3 − 2 2 2 3 − 2 2 = ( 2 3 ) 2 − ( 2 2 ) 2 2 3 − 2 2 = 12 − 8 2 3 − 2 2 = 4 2 ( 3 − 2 ) = 2 3 − 2 .
Hence, 1 x = 3 − 2 2 \dfrac{1}{x} = \dfrac{\sqrt{3} - \sqrt{2}}{2} x 1 = 2 3 − 2 .
(ii) Substituting values of x and 1 x \dfrac{1}{x} x 1 we get :
⇒ x + 1 x = 2 3 + 2 2 + 3 − 2 2 = 4 3 + 4 2 + 3 − 2 2 = 5 3 + 3 2 2 . \Rightarrow x + \dfrac{1}{x} = 2\sqrt{3} + 2\sqrt{2} + \dfrac{\sqrt{3} - \sqrt{2}}{2} \\[1em] = \dfrac{4\sqrt{3} + 4\sqrt{2} + \sqrt{3} -\sqrt{2}}{2} \\[1em] = \dfrac{5\sqrt{3} + 3\sqrt{2}}{2}. ⇒ x + x 1 = 2 3 + 2 2 + 2 3 − 2 = 2 4 3 + 4 2 + 3 − 2 = 2 5 3 + 3 2 .
Hence, x + 1 x = ( 5 3 + 3 2 2 ) x + \dfrac{1}{x} = \Big(\dfrac{5\sqrt{3} + 3\sqrt{2}}{2}\Big) x + x 1 = ( 2 5 3 + 3 2 ) .
(iii) Substituting value of ( x + 1 x ) \Big(x + \dfrac{1}{x}\Big) ( x + x 1 ) , we get :
⇒ ( x + 1 x ) 2 = ( 5 3 + 3 2 2 ) 2 = ( 5 3 ) 2 + ( 3 2 ) 2 + 2 × 5 3 × 3 2 2 2 = 75 + 18 + 30 6 4 = 93 + 30 6 4 . \Rightarrow \Big(x + \dfrac{1}{x}\Big)^2 = \Big(\dfrac{5\sqrt{3} + 3\sqrt{2}}{2}\Big)^2 \\[1em] = \dfrac{(5\sqrt{3})^2 + (3\sqrt{2})^2 + 2 \times 5\sqrt{3} \times 3\sqrt{2}}{2^2} \\[1em] = \dfrac{75 + 18 + 30\sqrt{6}}{4} \\[1em] = \dfrac{93 + 30\sqrt{6}}{4}. ⇒ ( x + x 1 ) 2 = ( 2 5 3 + 3 2 ) 2 = 2 2 ( 5 3 ) 2 + ( 3 2 ) 2 + 2 × 5 3 × 3 2 = 4 75 + 18 + 30 6 = 4 93 + 30 6 .
Hence, ( x + 1 x ) 2 = 93 + 30 6 4 \Big(x + \dfrac{1}{x}\Big)^2 = \dfrac{93 + 30\sqrt{6}}{4} ( x + x 1 ) 2 = 4 93 + 30 6 .
If x = 1 − 2 1 - \sqrt{2} 1 − 2 , find the value of ( x − 1 x ) 3 \Big(x - \dfrac{1}{x}\Big)^3 ( x − x 1 ) 3 .
Answer
Given,
x = 1 - 2 \sqrt{2} 2
∴ 1 x = 1 1 − 2 \therefore \dfrac{1}{x} = \dfrac{1}{1 - \sqrt{2}} ∴ x 1 = 1 − 2 1
Rationalizing,
⇒ 1 x = 1 1 − 2 × 1 + 2 1 + 2 ⇒ 1 + 2 1 2 − ( 2 ) 2 ⇒ 1 + 2 1 − 2 ⇒ 1 + 2 − 1 ⇒ − ( 1 + 2 ) ⇒ − 1 − 2 . \Rightarrow \dfrac{1}{x} = \dfrac{1}{1 - \sqrt{2}} \times \dfrac{1 + \sqrt{2}}{1 + \sqrt{2}} \\[1em] \Rightarrow \dfrac{1 + \sqrt{2}}{1^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{1 + \sqrt{2}}{1 - 2} \\[1em] \Rightarrow \dfrac{1 + \sqrt{2}}{-1} \\[1em] \Rightarrow -(1 + \sqrt{2}) \\[1em] \Rightarrow -1 - \sqrt{2}. ⇒ x 1 = 1 − 2 1 × 1 + 2 1 + 2 ⇒ 1 2 − ( 2 ) 2 1 + 2 ⇒ 1 − 2 1 + 2 ⇒ − 1 1 + 2 ⇒ − ( 1 + 2 ) ⇒ − 1 − 2 .
Substituting values we get :
⇒ ( x − 1 x ) 3 = [ 1 − 2 − ( − 1 − 2 ) ] 3 = [ 1 + 1 − 2 + 2 ] 3 = [ 2 ] 3 = 8. \Rightarrow \Big(x - \dfrac{1}{x}\Big)^3 = [1 - \sqrt{2} - (-1 - \sqrt{2})]^3 \\[1em] = [1 + 1 - \sqrt{2} + \sqrt{2}]^3 \\[1em] = [2]^3 \\[1em] = 8. ⇒ ( x − x 1 ) 3 = [ 1 − 2 − ( − 1 − 2 ) ] 3 = [ 1 + 1 − 2 + 2 ] 3 = [ 2 ] 3 = 8.
Hence, ( x − 1 x ) 3 \Big(x - \dfrac{1}{x}\Big)^3 ( x − x 1 ) 3 = 8.
If x = 5 - 2 6 2\sqrt{6} 2 6 , find : x 2 + 1 x 2 x^2 + \dfrac{1}{x^2} x 2 + x 2 1
Answer
Given,
x = 5 - 2 6 2\sqrt{6} 2 6
∴ 1 x = 1 5 − 2 6 \therefore \dfrac{1}{x} = \dfrac{1}{5 - 2\sqrt{6}} ∴ x 1 = 5 − 2 6 1
Rationalizing,
⇒ 1 x = 1 5 − 2 6 × 5 + 2 6 5 + 2 6 = 5 + 2 6 5 2 − ( 2 6 ) 2 = 5 + 2 6 25 − 24 = 5 + 2 6 1 = 5 + 2 6 . \Rightarrow \dfrac{1}{x} = \dfrac{1}{5 - 2\sqrt{6}} \times \dfrac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}} \\[1em] = \dfrac{5 + 2\sqrt{6}}{5^2 - (2\sqrt{6})^2} \\[1em] = \dfrac{5 + 2\sqrt{6}}{25 - 24} \\[1em] = \dfrac{5 + 2\sqrt{6}}{1} \\[1em] = 5 + 2\sqrt{6}. ⇒ x 1 = 5 − 2 6 1 × 5 + 2 6 5 + 2 6 = 5 2 − ( 2 6 ) 2 5 + 2 6 = 25 − 24 5 + 2 6 = 1 5 + 2 6 = 5 + 2 6 .
By formula,
x 2 + 1 x 2 = ( x + 1 x ) 2 − 2 x^2 + \dfrac{1}{x^2} = \Big(x + \dfrac{1}{x}\Big)^2 - 2 x 2 + x 2 1 = ( x + x 1 ) 2 − 2
Substituting values we get :
⇒ x 2 + 1 x 2 = ( 5 − 2 6 + 5 + 2 6 ) 2 − 2 = 10 2 − 2 = 100 − 2 = 98. \Rightarrow x^2 + \dfrac{1}{x^2} = (5 - 2\sqrt{6} + 5 + 2\sqrt{6})^2 - 2 \\[1em] = 10^2 - 2 \\[1em] = 100 - 2 \\[1em] = 98. ⇒ x 2 + x 2 1 = ( 5 − 2 6 + 5 + 2 6 ) 2 − 2 = 1 0 2 − 2 = 100 − 2 = 98.
Hence, x 2 + 1 x 2 x^2 + \dfrac{1}{x^2} x 2 + x 2 1 = 98.
If 2 = 1.4 and 3 \sqrt{2} = 1.4 \text{ and } \sqrt{3} 2 = 1.4 and 3 = 1.7, find the value of each of the following, correct to one decimal place :
(i) 1 3 − 2 \dfrac{1}{\sqrt{3} - \sqrt{2}} 3 − 2 1
(ii) 1 3 + 2 2 \dfrac{1}{3 + 2\sqrt{2}} 3 + 2 2 1
(iii) 2 − 3 3 \dfrac{2 - \sqrt{3}}{\sqrt{3}} 3 2 − 3
Answer
(i) Given,
⇒ 1 3 − 2 \Rightarrow \dfrac{1}{\sqrt{3} - \sqrt{2}} ⇒ 3 − 2 1
Rationalizing,
⇒ 1 3 − 2 × 3 + 2 3 + 2 ⇒ 3 + 2 ( 3 ) 2 − ( 2 ) 2 ⇒ 3 + 2 3 − 2 ⇒ 3 + 2 1 ⇒ 3 + 2 ⇒ 1.7 + 1.4 ⇒ 3.1 \Rightarrow \dfrac{1}{\sqrt{3} - \sqrt{2}} \times \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{3 - 2} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{1} \\[1em] \Rightarrow \sqrt{3} + \sqrt{2} \\[1em] \Rightarrow 1.7 + 1.4 \\[1em] \Rightarrow 3.1 ⇒ 3 − 2 1 × 3 + 2 3 + 2 ⇒ ( 3 ) 2 − ( 2 ) 2 3 + 2 ⇒ 3 − 2 3 + 2 ⇒ 1 3 + 2 ⇒ 3 + 2 ⇒ 1.7 + 1.4 ⇒ 3.1
Hence, 1 3 − 2 \dfrac{1}{\sqrt{3} - \sqrt{2}} 3 − 2 1 = 3.1
(ii) Given,
⇒ 1 3 + 2 2 \Rightarrow \dfrac{1}{3 + 2\sqrt{2}} ⇒ 3 + 2 2 1
Rationalizing,
⇒ 1 3 + 2 2 × 3 − 2 2 3 − 2 2 ⇒ 3 − 2 2 3 2 − ( 2 2 ) 2 ⇒ 3 − 2 2 9 − 8 ⇒ 3 − 2 2 1 ⇒ 3 − 2 2 ⇒ 3 − 2 × 1.4 ⇒ 3 − 2.8 ⇒ 0.2 \Rightarrow \dfrac{1}{3 + 2\sqrt{2}} \times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{9 - 8} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{1} \\[1em] \Rightarrow 3 - 2\sqrt{2} \\[1em] \Rightarrow 3 - 2 \times 1.4 \\[1em] \Rightarrow 3 - 2.8 \\[1em] \Rightarrow 0.2 ⇒ 3 + 2 2 1 × 3 − 2 2 3 − 2 2 ⇒ 3 2 − ( 2 2 ) 2 3 − 2 2 ⇒ 9 − 8 3 − 2 2 ⇒ 1 3 − 2 2 ⇒ 3 − 2 2 ⇒ 3 − 2 × 1.4 ⇒ 3 − 2.8 ⇒ 0.2
Hence, 1 3 + 2 2 \dfrac{1}{3 + 2\sqrt{2}} 3 + 2 2 1 = 0.2
(iii) Given,
⇒ 2 − 3 3 \Rightarrow \dfrac{2 - \sqrt{3}}{\sqrt{3}} ⇒ 3 2 − 3
Rationalizing,
⇒ 2 − 3 3 × 3 3 ⇒ 2 3 − 3 3 ⇒ 2 × 1.7 − 3 3 ⇒ 3.4 − 3 3 ⇒ 0.4 3 ⇒ 0.1 \Rightarrow \dfrac{2 - \sqrt{3}}{\sqrt{3}} \times \dfrac{\sqrt{3}}{\sqrt{3}} \\[1em] \Rightarrow \dfrac{2\sqrt{3} - 3}{3} \\[1em] \Rightarrow \dfrac{2 \times 1.7 - 3}{3} \\[1em] \Rightarrow \dfrac{3.4 - 3}{3} \\[1em] \Rightarrow \dfrac{0.4}{3} \\[1em] \Rightarrow 0.1 ⇒ 3 2 − 3 × 3 3 ⇒ 3 2 3 − 3 ⇒ 3 2 × 1.7 − 3 ⇒ 3 3.4 − 3 ⇒ 3 0.4 ⇒ 0.1
Hence, 2 − 3 3 \dfrac{2 - \sqrt{3}}{\sqrt{3}} 3 2 − 3 = 0.1
Evaluate :
4 − 5 4 + 5 + 4 + 5 4 − 5 \dfrac{4 - \sqrt{5}}{4 + \sqrt{5}} + \dfrac{4 + \sqrt{5}}{4 - \sqrt{5}} 4 + 5 4 − 5 + 4 − 5 4 + 5
Answer
Solving,
⇒ 4 − 5 4 + 5 + 4 + 5 4 − 5 ⇒ ( 4 − 5 ) 2 + ( 4 + 5 ) 2 ( 4 + 5 ) ( 4 − 5 ) ⇒ 4 2 + ( 5 ) 2 − 2 × 4 × 5 + 4 2 + ( 5 ) 2 + 2 × 4 × 5 4 2 − ( 5 ) 2 ⇒ 16 + 5 − 8 5 + 16 + 5 + 8 5 16 − 5 ⇒ 42 11 ⇒ 3 9 11 . \Rightarrow \dfrac{4 - \sqrt{5}}{4 + \sqrt{5}} + \dfrac{4 + \sqrt{5}}{4 - \sqrt{5}} \\[1em] \Rightarrow \dfrac{(4 - \sqrt{5})^2 + (4 + \sqrt{5})^2}{(4 + \sqrt{5})(4 - \sqrt{5})} \\[1em] \Rightarrow \dfrac{4^2 + (\sqrt{5})^2 - 2 \times 4 \times \sqrt{5} + 4^2 + (\sqrt{5})^2 + 2 \times 4 \times \sqrt{5}}{4^2 - (\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{16 + 5 - 8\sqrt{5} + 16 + 5 + 8\sqrt{5}}{16 - 5} \\[1em] \Rightarrow \dfrac{42}{11} \\[1em] \Rightarrow 3\dfrac{9}{11}. ⇒ 4 + 5 4 − 5 + 4 − 5 4 + 5 ⇒ ( 4 + 5 ) ( 4 − 5 ) ( 4 − 5 ) 2 + ( 4 + 5 ) 2 ⇒ 4 2 − ( 5 ) 2 4 2 + ( 5 ) 2 − 2 × 4 × 5 + 4 2 + ( 5 ) 2 + 2 × 4 × 5 ⇒ 16 − 5 16 + 5 − 8 5 + 16 + 5 + 8 5 ⇒ 11 42 ⇒ 3 11 9 .
Hence, 4 − 5 4 + 5 + 4 + 5 4 − 5 = 3 9 11 \dfrac{4 - \sqrt{5}}{4 + \sqrt{5}} + \dfrac{4 + \sqrt{5}}{4 - \sqrt{5}} = 3\dfrac{9}{11} 4 + 5 4 − 5 + 4 − 5 4 + 5 = 3 11 9 .
If 2 + 5 2 − 5 = x and 2 − 5 2 + 5 = y \dfrac{2 + \sqrt{5}}{2 - \sqrt{5}} = x \text{ and } \dfrac{2 - \sqrt{5}}{2 + \sqrt{5}} = y 2 − 5 2 + 5 = x and 2 + 5 2 − 5 = y ; find the value of x2 - y2 .
Answer
Given,
x = 2 + 5 2 − 5 \dfrac{2 + \sqrt{5}}{2 - \sqrt{5}} 2 − 5 2 + 5
Rationalizing,
⇒ x = 2 + 5 2 − 5 × 2 + 5 2 + 5 = ( 2 + 5 ) 2 2 2 − ( 5 ) 2 = 2 2 + ( 5 ) 2 + 2 × 2 × 5 4 − 5 = 4 + 5 + 4 5 − 1 = − ( 9 + 4 5 ) . ⇒ x 2 = [ − ( 9 + 4 5 ) ] 2 = 9 2 + ( 4 5 ) 2 + 2 × 9 × 4 5 = 81 + 80 + 72 5 = 161 + 72 5 . \Rightarrow x = \dfrac{2 + \sqrt{5}}{2 - \sqrt{5}} \times \dfrac{2 + \sqrt{5}}{2 + \sqrt{5}} \\[1em] = \dfrac{(2 + \sqrt{5})^2}{2^2 - (\sqrt{5})^2} \\[1em] = \dfrac{2^2 + (\sqrt{5})^2 + 2\times 2 \times \sqrt{5}}{4 - 5} \\[1em] = \dfrac{4 + 5 + 4\sqrt{5}}{-1} \\[1em] = -(9 + 4\sqrt{5}). \\[1em] \Rightarrow x^2 = [-(9 + 4\sqrt{5})]^2 \\[1em] = 9^2 + (4\sqrt{5})^2 + 2\times 9 \times 4\sqrt{5} \\[1em] = 81 + 80 + 72\sqrt{5} \\[1em] = 161 + 72\sqrt{5}. ⇒ x = 2 − 5 2 + 5 × 2 + 5 2 + 5 = 2 2 − ( 5 ) 2 ( 2 + 5 ) 2 = 4 − 5 2 2 + ( 5 ) 2 + 2 × 2 × 5 = − 1 4 + 5 + 4 5 = − ( 9 + 4 5 ) . ⇒ x 2 = [ − ( 9 + 4 5 ) ] 2 = 9 2 + ( 4 5 ) 2 + 2 × 9 × 4 5 = 81 + 80 + 72 5 = 161 + 72 5 .
Given,
y = 2 − 5 2 + 5 \dfrac{2 - \sqrt{5}}{2 + \sqrt{5}} 2 + 5 2 − 5
Rationalizing,
⇒ y = 2 − 5 2 + 5 × 2 − 5 2 − 5 = ( 2 − 5 ) 2 2 2 − ( 5 ) 2 = 2 2 + ( 5 ) 2 − 2 × 2 × 5 4 − 5 = 4 + 5 − 4 5 − 1 = − ( 9 − 4 5 ) . ⇒ y 2 = [ − ( 9 − 4 5 ) ] 2 = 9 2 + ( 4 5 ) 2 − 2 × 9 × 4 5 = 81 + 80 − 72 5 = 161 − 72 5 . \Rightarrow y = \dfrac{2 - \sqrt{5}}{2 + \sqrt{5}} \times \dfrac{2 - \sqrt{5}}{2 - \sqrt{5}} \\[1em] = \dfrac{(2 - \sqrt{5})^2}{2^2 - (\sqrt{5})^2} \\[1em] = \dfrac{2^2 + (\sqrt{5})^2 - 2\times 2 \times \sqrt{5}}{4 - 5} \\[1em] = \dfrac{4 + 5 - 4\sqrt{5}}{-1} \\[1em] = -(9 - 4\sqrt{5}). \\[1em] \Rightarrow y^2 = [-(9 - 4\sqrt{5})]^2 \\[1em] = 9^2 + (4\sqrt{5})^2 - 2\times 9 \times 4\sqrt{5} \\[1em] = 81 + 80 - 72\sqrt{5} \\[1em] = 161 - 72\sqrt{5}. ⇒ y = 2 + 5 2 − 5 × 2 − 5 2 − 5 = 2 2 − ( 5 ) 2 ( 2 − 5 ) 2 = 4 − 5 2 2 + ( 5 ) 2 − 2 × 2 × 5 = − 1 4 + 5 − 4 5 = − ( 9 − 4 5 ) . ⇒ y 2 = [ − ( 9 − 4 5 ) ] 2 = 9 2 + ( 4 5 ) 2 − 2 × 9 × 4 5 = 81 + 80 − 72 5 = 161 − 72 5 .
Substituting values of x2 and y2 , we get :
⇒ x 2 − y 2 = ( 161 + 72 5 ) − ( 161 − 72 5 ) = 161 − 161 + 72 5 + 72 5 = 144 5 . \Rightarrow x^2 - y^2 = (161 + 72\sqrt{5}) - (161 - 72\sqrt{5}) \\[1em] = 161 - 161 + 72\sqrt{5} + 72\sqrt{5} \\[1em] = 144\sqrt{5}. ⇒ x 2 − y 2 = ( 161 + 72 5 ) − ( 161 − 72 5 ) = 161 − 161 + 72 5 + 72 5 = 144 5 .
Hence, x2 - y2 = 144 5 144\sqrt{5} 144 5 .
Since 90 = 2 x 3 x 3 x 5, 23 90 \dfrac{23}{90} 90 23 is not a terminating decimal;
True
False
none of these
Answer
A fraction has a terminating decimal if, when simplified, its denominator consists solely of the prime factors 2 and/or 5.
90 = 2 x 3 x 3 x 5
Since, 90 consists 2, 3 and 5.
So, 23 90 \dfrac{23}{90} 90 23 is not a terminating decimal.
Hence, option 1 is the correct option.
27 \sqrt{27} 27 is irrational and 3 \sqrt{3} 3 is also irrational, then which of the following is rational:
27 − 3 \sqrt{27} - \sqrt{3} 27 − 3
27 + 3 \sqrt{27} + \sqrt{3} 27 + 3
27 × 3 \sqrt{27} \times \sqrt{3} 27 × 3
none of these
Answer
As we know that
⇒ 27 × 3 = 81 = 9. \Rightarrow \sqrt{27} \times \sqrt{3}\\[1em] = \sqrt{81}\\[1em] = 9. ⇒ 27 × 3 = 81 = 9.
9 is rational number. So, 27 × 3 \sqrt{27} \times \sqrt{3} 27 × 3 is also a rational number.
Hence, option 3 is the correct option.
If x = 7 - 5 \sqrt{5} 5 , then x − 1 x x - \dfrac{1}{x} x − x 1 is equal to:
14
7
2 5 2\sqrt{5} 2 5
301 − 45 5 44 \dfrac{301 - 45\sqrt{5}}{44} 44 301 − 45 5
Answer
Given, x = 7 - 5 \sqrt{5} 5
⇒ 1 x = 1 7 − 5 = 1 7 − 5 × ( 7 + 5 ) ( 7 + 5 ) = 7 + 5 ( 7 ) 2 − ( 5 ) 2 = 7 + 5 49 − 5 = 7 + 5 44 \Rightarrow \dfrac{1}{x} = \dfrac{1}{7 - \sqrt{5}}\\[1em] = \dfrac{1}{7 - \sqrt{5}} \times \dfrac{(7 + \sqrt{5})}{(7 + \sqrt{5})}\\[1em] = \dfrac{7 + \sqrt{5}}{(7)^2 - (\sqrt{5})^2}\\[1em] = \dfrac{7 + \sqrt{5}}{49 - 5}\\[1em] = \dfrac{7 + \sqrt{5}}{44} ⇒ x 1 = 7 − 5 1 = 7 − 5 1 × ( 7 + 5 ) ( 7 + 5 ) = ( 7 ) 2 − ( 5 ) 2 7 + 5 = 49 − 5 7 + 5 = 44 7 + 5
Now,
⇒ x − 1 x = 7 − 5 − 7 + 5 44 = 44 ( 7 − 5 ) 44 − 7 + 5 44 = 308 − 44 5 − ( 7 + 5 ) 44 = 308 − 44 5 − 7 − 5 44 = 301 − 45 5 44 \Rightarrow x - \dfrac{1}{x} = 7 - \sqrt{5} - \dfrac{7 + \sqrt{5}}{44}\\[1em] = \dfrac{44(7 - \sqrt{5})}{44} - \dfrac{7 + \sqrt{5}}{44}\\[1em] = \dfrac{308 - 44\sqrt{5} - (7 + \sqrt{5})}{44} \\[1em] = \dfrac{308 - 44\sqrt{5} - 7 - \sqrt{5}}{44} \\[1em] = \dfrac{301 - 45\sqrt{5}}{44} \\[1em] ⇒ x − x 1 = 7 − 5 − 44 7 + 5 = 44 44 ( 7 − 5 ) − 44 7 + 5 = 44 308 − 44 5 − ( 7 + 5 ) = 44 308 − 44 5 − 7 − 5 = 44 301 − 45 5
Hence, option 4 is correct option.
2 + 3 2 − 3 − 2 − 3 2 + 3 \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} - \dfrac{2 - \sqrt{3}}{2 + \sqrt{3}} 2 − 3 2 + 3 − 2 + 3 2 − 3 is equal to:
4
2 3 2\sqrt{3} 2 3
1
8 3 8\sqrt{3} 8 3
Answer
Given, 2 + 3 2 − 3 − 2 − 3 2 + 3 \dfrac{2 + \sqrt{3}}{2 - \sqrt{3}} - \dfrac{2 - \sqrt{3}}{2 + \sqrt{3}} 2 − 3 2 + 3 − 2 + 3 2 − 3
Solving,
⇒ ( 2 + 3 ) × ( 2 + 3 ) ( 2 − 3 ) × ( 2 + 3 ) − ( 2 − 3 ) × ( 2 − 3 ) ( 2 + 3 ) × ( 2 − 3 ) ⇒ ( 2 + 3 ) 2 ( 2 ) 2 − ( 3 ) 2 − ( 2 − 3 ) 2 ( 2 ) 2 − ( 3 ) 2 ⇒ ( 2 ) 2 + ( 3 ) 2 + 2 × 2 × 3 4 − 3 − ( 2 ) 2 + ( 3 ) 2 − 2 × 2 × 3 4 − 3 ⇒ 4 + 3 + 4 3 1 − 4 + 3 − 4 3 1 ⇒ 7 + 4 3 − ( 7 − 4 3 ) ⇒ 7 + 4 3 − 7 + 4 3 ⇒ 8 3 . \Rightarrow \dfrac{(2 + \sqrt{3}) \times (2 + \sqrt{3})}{(2 - \sqrt{3}) \times (2 + \sqrt{3})} - \dfrac{(2 - \sqrt{3})\times (2 - \sqrt{3})}{(2 + \sqrt{3}) \times (2 - \sqrt{3})}\\[1em] \Rightarrow \dfrac{(2 + \sqrt{3})^2}{(2)^2 - (\sqrt{3})^2} - \dfrac{(2 - \sqrt{3})^2}{(2)^2 - (\sqrt{3})^2}\\[1em] \Rightarrow \dfrac{(2)^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3}}{4 - 3} - \dfrac{(2)^2 + (\sqrt{3})^2 - 2 \times 2 \times \sqrt{3}}{4 - 3}\\[1em] \Rightarrow \dfrac{4 + 3 + 4\sqrt{3}}{1} - \dfrac{4 + 3 - 4\sqrt{3}}{1}\\[1em] \Rightarrow 7 + 4\sqrt{3} - (7 - 4\sqrt{3})\\[1em] \Rightarrow 7 + 4\sqrt{3} - 7 + 4\sqrt{3}\\[1em] \Rightarrow 8\sqrt{3}. ⇒ ( 2 − 3 ) × ( 2 + 3 ) ( 2 + 3 ) × ( 2 + 3 ) − ( 2 + 3 ) × ( 2 − 3 ) ( 2 − 3 ) × ( 2 − 3 ) ⇒ ( 2 ) 2 − ( 3 ) 2 ( 2 + 3 ) 2 − ( 2 ) 2 − ( 3 ) 2 ( 2 − 3 ) 2 ⇒ 4 − 3 ( 2 ) 2 + ( 3 ) 2 + 2 × 2 × 3 − 4 − 3 ( 2 ) 2 + ( 3 ) 2 − 2 × 2 × 3 ⇒ 1 4 + 3 + 4 3 − 1 4 + 3 − 4 3 ⇒ 7 + 4 3 − ( 7 − 4 3 ) ⇒ 7 + 4 3 − 7 + 4 3 ⇒ 8 3 .
Hence, option 4 is correct option.
Statement 1: If a = 3 3 3\sqrt{3} 3 3 and b = 5 12 \dfrac{5}{\sqrt{12}} 12 5 , then a x b is irrational.
Statement 2: a x b = 3 3 × 5 12 = 15 × 3 2 3 = 15 2 3 \sqrt{3} \times \dfrac{5}{\sqrt{12}} = \dfrac{15 \times \sqrt{3}}{2\sqrt{3}} = \dfrac{15}{2} 3 3 × 12 5 = 2 3 15 × 3 = 2 15
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given, a = 3 3 3\sqrt{3} 3 3 and b = 5 12 \dfrac{5}{\sqrt{12}} 12 5
⇒ a × b = 3 3 × 5 12 = 3 3 × 5 4 × 3 = 3 3 × 5 4 × 3 = 3 3 × 5 2 3 = 5 × 3 3 2 3 = 15 3 2 3 = 15 2 = 7.5 \Rightarrow a \times b = 3 \sqrt{3} \times \dfrac{5}{\sqrt{12}}\\[1em] = 3 \sqrt{3} \times \dfrac{5}{\sqrt{4 \times 3}}\\[1em] = 3 \sqrt{3} \times \dfrac{5}{\sqrt{4} \times \sqrt{3}}\\[1em] = 3 \sqrt{3} \times \dfrac{5}{2\sqrt{3}}\\[1em] = \dfrac{5 \times 3 \sqrt{3}}{2\sqrt{3}}\\[1em] = \dfrac{15 \sqrt{3}}{2\sqrt{3}}\\[1em] = \dfrac{15}{2}\\[1em] = 7.5 ⇒ a × b = 3 3 × 12 5 = 3 3 × 4 × 3 5 = 3 3 × 4 × 3 5 = 3 3 × 2 3 5 = 2 3 5 × 3 3 = 2 3 15 3 = 2 15 = 7.5
7.5 is rational number. Thus, a x b is a rational number.
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is correct option.
Statement 1: If x = 5 + 2 \sqrt{5} + 2 5 + 2 , then x − 1 x = 4. x - \dfrac{1}{x} = 4. x − x 1 = 4.
Statement 2: 1 x = 1 5 + 2 × 5 − 2 5 − 2 = 5 − 2 \dfrac{1}{x} = \dfrac{1}{\sqrt{5} + 2} \times \dfrac{\sqrt{5} - 2}{\sqrt{5} - 2} = \sqrt{5} - 2 x 1 = 5 + 2 1 × 5 − 2 5 − 2 = 5 − 2
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given, x = 5 \sqrt{5} 5 + 2
⇒ 1 x = 1 5 + 2 = 1 5 + 2 × 5 − 2 5 − 2 = 5 − 2 ( 5 ) 2 − ( 2 ) 2 = 5 − 2 5 − 4 = 5 − 2 1 = 5 − 2. \Rightarrow \dfrac{1}{x} = \dfrac{1}{\sqrt{5} + 2}\\[1em] = \dfrac{1}{\sqrt{5} + 2} \times \dfrac{\sqrt{5} - 2}{\sqrt{5} - 2} \\[1em] = \dfrac{\sqrt{5} - 2}{(\sqrt{5})^2 - (2)^2}\\[1em] = \dfrac{\sqrt{5} - 2}{5 - 4}\\[1em] = \dfrac{\sqrt{5} - 2}{1}\\[1em] = \sqrt{5} - 2. ⇒ x 1 = 5 + 2 1 = 5 + 2 1 × 5 − 2 5 − 2 = ( 5 ) 2 − ( 2 ) 2 5 − 2 = 5 − 4 5 − 2 = 1 5 − 2 = 5 − 2.
So, statement 2 is true.
⇒ x − 1 x = 5 + 2 − ( 5 − 2 ) = 5 + 2 − 5 + 2 = 4. \Rightarrow x - \dfrac{1}{x} = \sqrt{5} + 2 - (\sqrt{5} - 2)\\[1em] = \sqrt{5} + 2 - \sqrt{5} + 2\\[1em] = 4. ⇒ x − x 1 = 5 + 2 − ( 5 − 2 ) = 5 + 2 − 5 + 2 = 4.
So, statement 1 is true.
∴ Both statements are true.
Hence, option 1 is correct option.
Assertion (A): x + 1 x = 4 and 1 x = 2 + 3 , then x = 2 − 3 x + \dfrac{1}{x} = 4 \text{ and } \dfrac{1}{x} = 2 + \sqrt{3}, \text{ then x } = 2 - \sqrt{3} x + x 1 = 4 and x 1 = 2 + 3 , then x = 2 − 3
Reason (R):
⇒ 1 x = 2 + 3 ⇒ x = 1 2 + 3 = 2 − 3 \Rightarrow \dfrac{1}{x} = 2 + \sqrt{3}\\[1em] \Rightarrow x = \dfrac{1}{2 + \sqrt{3}} = 2 - \sqrt{3} ⇒ x 1 = 2 + 3 ⇒ x = 2 + 3 1 = 2 − 3
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Given, 1 x = 2 + 3 and x + 1 x = 4 \dfrac{1}{x} = 2 + \sqrt{3}\text{ and } x + \dfrac{1}{x} = 4 x 1 = 2 + 3 and x + x 1 = 4
And,
⇒ x + 1 x = 4 = x + 2 + 3 = 4 = x = 4 − ( 2 + 3 ) = x = 4 − 2 − 3 = x = 2 − 3 . \Rightarrow x + \dfrac{1}{x} = 4\\[1em] = x + 2 + \sqrt{3} = 4\\[1em] = x = 4 - (2 + \sqrt{3})\\[1em] = x = 4 - 2 - \sqrt{3}\\[1em] = x = 2 - \sqrt{3}. ⇒ x + x 1 = 4 = x + 2 + 3 = 4 = x = 4 − ( 2 + 3 ) = x = 4 − 2 − 3 = x = 2 − 3 .
So, assertion (A) is true.
If, 1 x = 2 + 3 \dfrac{1}{x} = 2 + \sqrt{3} x 1 = 2 + 3
⇒ x = 1 2 + 3 = 1 2 + 3 × 2 − 3 2 − 3 (On rationalizing) = 2 − 3 ( 2 ) 2 − ( 3 ) 2 = 2 − 3 4 − 3 = 2 − 3 1 = 2 − 3 . \Rightarrow x = \dfrac{1}{2 + \sqrt{3}}\\[1em] = \dfrac{1}{2 + \sqrt{3}} \times \dfrac{2 - \sqrt{3}}{2 - \sqrt{3}} \text{ (On rationalizing)} \\[1em] = \dfrac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2}\\[1em] = \dfrac{2 - \sqrt{3}}{4 - 3}\\[1em] = \dfrac{2 - \sqrt{3}}{1}\\[1em] = 2 - \sqrt{3}. ⇒ x = 2 + 3 1 = 2 + 3 1 × 2 − 3 2 − 3 (On rationalizing) = ( 2 ) 2 − ( 3 ) 2 2 − 3 = 4 − 3 2 − 3 = 1 2 − 3 = 2 − 3 .
So, reason (R) is true.
∴ Both A and R are true, and R is the correct reason for A.
Hence, option 3 is correct option.
Assertion (A): a = 7 + 3 \sqrt{3} 3 and b = 7 - 3 \sqrt{3} 3 , then a2 - b2 = 14
Reason (R): a2 - b2 = (a + b)(a - b) = 14 x 2 3 \sqrt{3} 3
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Given, a = 7 + 3 \sqrt{3} 3 and b = 7 - 3 \sqrt{3} 3 ,
⇒ a 2 − b 2 = ( 7 + 3 ) 2 − ( 7 − 3 ) 2 = ( 7 ) 2 + ( 3 ) 2 + 2 × 7 × 3 − [ ( 7 ) 2 + ( 3 ) 2 − 2 × 7 × 3 ] = 49 + 3 + 14 3 − [ 49 + 3 − 14 3 ] = 52 + 14 3 − ( 52 − 14 3 ) = 52 + 14 3 − 52 + 14 3 = 28 3 = 14 × 2 3 . \Rightarrow a^2 - b^2 = (7 + \sqrt{3})^2 - (7 - \sqrt{3})^2\\[1em] = (7)^2 + (\sqrt{3})^2 + 2 \times 7 \times \sqrt{3} - [(7)^2 + (\sqrt{3})^2 - 2 \times 7 \times \sqrt{3}] \\[1em] = 49 + 3 + 14\sqrt{3} - [49 + 3 - 14\sqrt{3}] \\[1em] = 52 + 14\sqrt{3} - (52 - 14\sqrt{3})\\[1em] = 52 + 14\sqrt{3} - 52 + 14\sqrt{3}\\[1em] = 28\sqrt{3} \\[1em] = 14 \times 2\sqrt{3}. ⇒ a 2 − b 2 = ( 7 + 3 ) 2 − ( 7 − 3 ) 2 = ( 7 ) 2 + ( 3 ) 2 + 2 × 7 × 3 − [( 7 ) 2 + ( 3 ) 2 − 2 × 7 × 3 ] = 49 + 3 + 14 3 − [ 49 + 3 − 14 3 ] = 52 + 14 3 − ( 52 − 14 3 ) = 52 + 14 3 − 52 + 14 3 = 28 3 = 14 × 2 3 .
∴ A is false, but R is true.
Hence, option 2 is the correct option.
Simplify :
x 2 + y 2 − y x − x 2 − y 2 ÷ x 2 − y 2 + x x 2 + y 2 + y \dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} x − x 2 − y 2 x 2 + y 2 − y ÷ x 2 + y 2 + y x 2 − y 2 + x
Answer
Solving,
⇒ x 2 + y 2 − y x − x 2 − y 2 ÷ x 2 − y 2 + x x 2 + y 2 + y ⇒ x 2 + y 2 − y x − x 2 − y 2 × x 2 + y 2 + y x 2 − y 2 + x ⇒ ( x 2 + y 2 ) 2 − y 2 x 2 − ( x 2 − y 2 ) 2 ⇒ x 2 + y 2 − y 2 x 2 − ( x 2 − y 2 ) ⇒ x 2 y 2 . \Rightarrow \dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} \\[1em] \Rightarrow \dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} \times \dfrac{\sqrt{x^2 + y^2} + y}{\sqrt{x^2 - y^2} + x} \\[1em] \Rightarrow \dfrac{(\sqrt{x^2 + y^2})^2 - y^2}{x^2 - (\sqrt{x^2 - y^2})^2 } \\[1em] \Rightarrow \dfrac{x^2 + y^2 - y^2}{x^2 - (x^2 - y^2)} \\[1em] \Rightarrow \dfrac{x^2}{y^2}. ⇒ x − x 2 − y 2 x 2 + y 2 − y ÷ x 2 + y 2 + y x 2 − y 2 + x ⇒ x − x 2 − y 2 x 2 + y 2 − y × x 2 − y 2 + x x 2 + y 2 + y ⇒ x 2 − ( x 2 − y 2 ) 2 ( x 2 + y 2 ) 2 − y 2 ⇒ x 2 − ( x 2 − y 2 ) x 2 + y 2 − y 2 ⇒ y 2 x 2 .
Hence, x 2 + y 2 − y x − x 2 − y 2 ÷ x 2 − y 2 + x x 2 + y 2 + y = x 2 y 2 \dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} = \dfrac{x^2}{y^2} x − x 2 − y 2 x 2 + y 2 − y ÷ x 2 + y 2 + y x 2 − y 2 + x = y 2 x 2 .
Evaluate, correct to one place of decimal, the expression 5 20 − 10 , if 5 = 2.2 and 10 = 3.2 \dfrac{5}{\sqrt{20} - \sqrt{10}}, \text{ if } \sqrt{5} = 2.2 \text{ and } \sqrt{10} = 3.2 20 − 10 5 , if 5 = 2.2 and 10 = 3.2
Answer
Solving,
⇒ 5 20 − 10 ⇒ 5 2 5 − 10 ⇒ 5 2 × 2.2 − 3.2 ⇒ 5 4.4 − 3.2 ⇒ 5 1.2 ⇒ 50 12 ⇒ 25 6 = 4.2 \Rightarrow \dfrac{5}{\sqrt{20} - \sqrt{10}} \\[1em] \Rightarrow \dfrac{5}{2\sqrt{5} - \sqrt{10}} \\[1em] \Rightarrow \dfrac{5}{2 \times 2.2 - 3.2} \\[1em] \Rightarrow \dfrac{5}{4.4 - 3.2} \\[1em] \Rightarrow \dfrac{5}{1.2} \\[1em] \Rightarrow \dfrac{50}{12} \\[1em] \Rightarrow \dfrac{25}{6} = 4.2 ⇒ 20 − 10 5 ⇒ 2 5 − 10 5 ⇒ 2 × 2.2 − 3.2 5 ⇒ 4.4 − 3.2 5 ⇒ 1.2 5 ⇒ 12 50 ⇒ 6 25 = 4.2
Another method of solving is by rationalizing,
⇒ 5 20 − 10 × 20 + 10 20 + 10 ⇒ 5 ( 20 + 10 ) ( 20 ) 2 − ( 10 ) 2 ⇒ 5 ( 20 + 10 ) 20 − 10 ⇒ 5 ( 20 + 10 ) 10 ⇒ ( 2 5 + 10 ) 2 ⇒ 2 × 2.2 + 3.2 2 ⇒ 4.4 + 3.2 2 ⇒ 7.6 2 ⇒ 3.8 \Rightarrow \dfrac{5}{\sqrt{20} - \sqrt{10}} \times \dfrac{\sqrt{20} + \sqrt{10}}{\sqrt{20} + \sqrt{10}} \\[1em] \Rightarrow \dfrac{5(\sqrt{20} + \sqrt{10})}{(\sqrt{20})^2 - (\sqrt{10})^2} \\[1em] \Rightarrow \dfrac{5(\sqrt{20} + \sqrt{10})}{20 - 10} \\[1em] \Rightarrow \dfrac{5(\sqrt{20} + \sqrt{10})}{10} \\[1em] \Rightarrow \dfrac{(2\sqrt{5} + \sqrt{10})}{2} \\[1em] \Rightarrow \dfrac{2 \times 2.2 + 3.2}{2} \\[1em] \Rightarrow \dfrac{4.4 + 3.2}{2} \\[1em] \Rightarrow \dfrac{7.6}{2} \\[1em] \Rightarrow 3.8 ⇒ 20 − 10 5 × 20 + 10 20 + 10 ⇒ ( 20 ) 2 − ( 10 ) 2 5 ( 20 + 10 ) ⇒ 20 − 10 5 ( 20 + 10 ) ⇒ 10 5 ( 20 + 10 ) ⇒ 2 ( 2 5 + 10 ) ⇒ 2 2 × 2.2 + 3.2 ⇒ 2 4.4 + 3.2 ⇒ 2 7.6 ⇒ 3.8
Hence, x 2 + y 2 − y x − x 2 − y 2 ÷ x 2 − y 2 + x x 2 + y 2 + y \dfrac{\sqrt{x^2 + y^2} - y}{x - \sqrt{x^2 - y^2}} ÷ \dfrac{\sqrt{x^2 - y^2} + x}{\sqrt{x^2 + y^2} + y} x − x 2 − y 2 x 2 + y 2 − y ÷ x 2 + y 2 + y x 2 − y 2 + x = 3.8 or 4.2
If x = 3 − 2 \sqrt{3} - \sqrt{2} 3 − 2 , find the value of :
(i) x + 1 x x + \dfrac{1}{x} x + x 1
(ii) x 2 + 1 x 2 x^2 + \dfrac{1}{x^2} x 2 + x 2 1
(iii) x 3 + 1 x 3 x^3 + \dfrac{1}{x^3} x 3 + x 3 1
(iv) x 3 + 1 x 3 − 3 ( x 2 + 1 x 2 ) + x + 1 x x^3 + \dfrac{1}{x^3} - 3\Big(x^2 + \dfrac{1}{x^2}\Big) + x + \dfrac{1}{x} x 3 + x 3 1 − 3 ( x 2 + x 2 1 ) + x + x 1
Answer
(i) Given,
x = 3 − 2 \sqrt{3} - \sqrt{2} 3 − 2
1 x = 1 3 − 2 \dfrac{1}{x} = \dfrac{1}{\sqrt{3} - \sqrt{2}} x 1 = 3 − 2 1
Rationalizing,
⇒ 1 3 − 2 × 3 + 2 3 + 2 ⇒ 3 + 2 ( 3 ) 2 − ( 2 ) 2 ⇒ 3 + 2 3 − 2 ⇒ 3 + 2 ∴ 1 x = 3 + 2 ⇒ x + 1 x = 3 − 2 + ( 3 + 2 ) = 2 3 . \Rightarrow \dfrac{1}{\sqrt{3} - \sqrt{2}} \times \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{\sqrt{3} + \sqrt{2}}{3 - 2} \\[1em] \Rightarrow \sqrt{3} + \sqrt{2} \\[1em] \therefore \dfrac{1}{x} = \sqrt{3} + \sqrt{2} \\[2em] \Rightarrow x + \dfrac{1}{x} = \sqrt{3} - \sqrt{2} + (\sqrt{3} + \sqrt{2}) \\[1em] = 2\sqrt{3}. ⇒ 3 − 2 1 × 3 + 2 3 + 2 ⇒ ( 3 ) 2 − ( 2 ) 2 3 + 2 ⇒ 3 − 2 3 + 2 ⇒ 3 + 2 ∴ x 1 = 3 + 2 ⇒ x + x 1 = 3 − 2 + ( 3 + 2 ) = 2 3 .
Hence, x + 1 x = 2 3 x + \dfrac{1}{x} = 2\sqrt{3} x + x 1 = 2 3 .
(ii) Solving,
⇒ x 2 + 1 x 2 = ( 3 − 2 ) 2 + ( 3 + 2 ) 2 = ( 3 ) 2 + ( 2 ) 2 − 2 × 3 × 2 + ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 ⇒ 3 + 2 − 2 6 + 2 + 3 + 2 6 ⇒ 10. \Rightarrow x^2 + \dfrac{1}{x^2} = (\sqrt{3} - \sqrt{2})^2 + (\sqrt{3} + \sqrt{2})^2 \\[1em] = (\sqrt{3})^2 + (\sqrt{2})^2 - 2 \times \sqrt{3} \times \sqrt{2} + (\sqrt{3})^2 + (\sqrt{2})^2 + 2 \times \sqrt{3} \times \sqrt{2} \\[1em] \Rightarrow 3 + 2 - 2\sqrt{6} + 2 + 3 + 2\sqrt{6} \\[1em] \Rightarrow 10. ⇒ x 2 + x 2 1 = ( 3 − 2 ) 2 + ( 3 + 2 ) 2 = ( 3 ) 2 + ( 2 ) 2 − 2 × 3 × 2 + ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 ⇒ 3 + 2 − 2 6 + 2 + 3 + 2 6 ⇒ 10.
Hence, x 2 + 1 x 2 = 10 x^2 + \dfrac{1}{x^2} = 10 x 2 + x 2 1 = 10 .
(iii) Solving,
⇒ x 3 + 1 x 3 = ( 3 − 2 ) 3 + ( 3 + 2 ) 3 = ( 3 ) 3 − ( 2 ) 3 − 3 × 3 × 2 × ( 3 − 2 ) + ( 3 ) 3 + ( 2 ) 3 + 3 × 3 × 2 × ( 3 + 2 ) = 3 3 − 2 2 − 3 6 ( 3 − 2 ) + 3 3 + 2 2 + 3 6 ( 3 + 2 ) = 3 3 + 3 3 − 2 2 + 2 2 − 3 18 + 3 12 + 3 18 + 3 12 = 6 3 + 6 12 = 6 3 + 6 × 2 3 = 6 3 + 12 3 = 18 3 . \Rightarrow x^3 + \dfrac{1}{x^3} = (\sqrt{3} - \sqrt{2})^3 + (\sqrt{3} + \sqrt{2})^3 \\[1em] = (\sqrt{3})^3 - (\sqrt{2})^3 - 3 \times \sqrt{3} \times \sqrt{2} \times (\sqrt{3} - \sqrt{2}) + (\sqrt{3})^3 + (\sqrt{2})^3 + 3 \times \sqrt{3} \times \sqrt{2} \times (\sqrt{3} + \sqrt{2}) \\[1em] = 3\sqrt{3} - 2\sqrt{2} - 3\sqrt{6}(\sqrt{3} - \sqrt{2}) + 3\sqrt{3} + 2\sqrt{2} + 3\sqrt{6}(\sqrt{3} + \sqrt{2}) \\[1em] = 3\sqrt{3} + 3\sqrt{3} - 2\sqrt{2} + 2\sqrt{2} - 3\sqrt{18} + 3\sqrt{12} + 3\sqrt{18} + 3\sqrt{12} \\[1em] = 6\sqrt{3} + 6\sqrt{12} \\[1em] = 6\sqrt{3} + 6 \times 2\sqrt{3} \\[1em] = 6\sqrt{3} + 12\sqrt{3} \\[1em] = 18\sqrt{3}. ⇒ x 3 + x 3 1 = ( 3 − 2 ) 3 + ( 3 + 2 ) 3 = ( 3 ) 3 − ( 2 ) 3 − 3 × 3 × 2 × ( 3 − 2 ) + ( 3 ) 3 + ( 2 ) 3 + 3 × 3 × 2 × ( 3 + 2 ) = 3 3 − 2 2 − 3 6 ( 3 − 2 ) + 3 3 + 2 2 + 3 6 ( 3 + 2 ) = 3 3 + 3 3 − 2 2 + 2 2 − 3 18 + 3 12 + 3 18 + 3 12 = 6 3 + 6 12 = 6 3 + 6 × 2 3 = 6 3 + 12 3 = 18 3 .
Hence, x 3 + 1 x 3 = 18 3 x^3 + \dfrac{1}{x^3} = 18\sqrt{3} x 3 + x 3 1 = 18 3 .
(iv) Substituting values from part (i), (ii) and (iii), we get :
⇒ x 3 + 1 x 3 − 3 ( x 2 + 1 x 2 ) + x + 1 x = 18 3 − 3 × 10 + 2 3 = 20 3 − 30 = 10 ( 2 3 − 3 ) . \Rightarrow x^3 + \dfrac{1}{x^3} - 3\Big(x^2 + \dfrac{1}{x^2}\Big) + x + \dfrac{1}{x} = 18\sqrt{3} - 3 \times 10 + 2\sqrt{3} \\[1em] = 20\sqrt{3} - 30 \\[1em] = 10(2\sqrt{3} - 3). ⇒ x 3 + x 3 1 − 3 ( x 2 + x 2 1 ) + x + x 1 = 18 3 − 3 × 10 + 2 3 = 20 3 − 30 = 10 ( 2 3 − 3 ) .
Hence, x 3 + 1 x 3 − 3 ( x 2 + 1 x 2 ) + x + 1 x = 10 ( 2 3 − 3 ) x^3 + \dfrac{1}{x^3} - 3\Big(x^2 + \dfrac{1}{x^2}\Big) + x + \dfrac{1}{x} = 10(2\sqrt{3} - 3) x 3 + x 3 1 − 3 ( x 2 + x 2 1 ) + x + x 1 = 10 ( 2 3 − 3 ) .
State true or false :
(i) Negative of an irrational number is irrational.
(ii) The product of a non-zero rational number and an irrational number is a rational number.
Answer
(i) True
For example, 3 \sqrt{3} 3 is irrational and − 3 -\sqrt{3} − 3 is also irrational.
(ii) False
For example, 2 is rational number and 2 \sqrt{2} 2 is irrational, product of these numbers i.e. 2 2 2\sqrt{2} 2 2 is also irrational.
Draw a line segment of length 3 \sqrt{3} 3 cm.
Answer
Steps of construction :
Draw a line segment XY.
Draw OB = 1 cm which is perpendicular to the line XY at point O.
From B draw an arc of 2 cm cutting XY at A.
Join BA and OA.
So, OAB is the right angle triangle.
By pythagoras theorem,
⇒ AB2 = OB2 + OA2
⇒ 22 = 12 + OA2
⇒ OA2 = 4 - 1
⇒ OA2 = 3
⇒ OA = 3 \sqrt{3} 3 cm.
Hence, OA is the required line of 3 \sqrt{3} 3 cm.
Draw a line segment of length 8 \sqrt{8} 8 cm.
Answer
Steps of construction :
Draw a line segment XY.
Draw OB = 1 cm which is perpendicular to the line XY at O.
From B draw an arc of 3 cm cutting XY at A.
Join BA and OA.
So, OAB is the right angle triangle.
By pythagoras theorem,
⇒ AB2 = OB2 + OA2
⇒ 32 = 12 + OA2
⇒ OA2 = 9 - 1
⇒ OA2 = 8
⇒ OA = 8 \sqrt{8} 8 cm.
Hence, OA is the required line of 8 \sqrt{8} 8 cm.
Show that :
x 3 + 1 x 3 = 52 x^3 + \dfrac{1}{x^3} = 52 x 3 + x 3 1 = 52 , if x = 2 + 3 \sqrt{3} 3
Answer
(i) Given,
x = 2 + 3 \sqrt{3} 3
∴ 1 x = 1 2 + 3 \therefore \dfrac{1}{x} = \dfrac{1}{2 + \sqrt{3}} ∴ x 1 = 2 + 3 1
Rationalizing,
⇒ 1 2 + 3 × 2 − 3 2 − 3 ⇒ 2 − 3 2 2 − ( 3 ) 2 ⇒ 2 − 3 4 − 3 ⇒ 2 − 3 . ∴ 1 x = 2 − 3 \Rightarrow \dfrac{1}{2 + \sqrt{3}} \times \dfrac{2 - \sqrt{3}}{2 - \sqrt{3}} \\[1em] \Rightarrow \dfrac{2 - \sqrt{3}}{2^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{2 - \sqrt{3}}{4 - 3} \\[1em] \Rightarrow 2 - \sqrt{3}. \\[1em] \therefore \dfrac{1}{x} = 2 - \sqrt{3} ⇒ 2 + 3 1 × 2 − 3 2 − 3 ⇒ 2 2 − ( 3 ) 2 2 − 3 ⇒ 4 − 3 2 − 3 ⇒ 2 − 3 . ∴ x 1 = 2 − 3
Substituting value of x and 1 x in x 3 + 1 x 3 \dfrac{1}{x} \text{ in } x^3 + \dfrac{1}{x^3} x 1 in x 3 + x 3 1 , we get :
⇒ x 3 + 1 x 3 = ( 2 + 3 ) 3 + ( 2 − 3 ) 3 = 2 3 + ( 3 ) 3 + 3 × 2 × 3 × ( 2 + 3 ) + 2 3 − ( 3 ) 3 − 3 × 2 × 3 × ( 2 − 3 ) = 8 + 3 3 + 6 3 ( 2 + 3 ) + 8 − 3 3 − 6 3 ( 2 − 3 ) = 8 + 8 + 3 3 − 3 3 + 12 3 + 18 − 12 3 + 18 = 8 + 8 + 18 + 18 = 52. \Rightarrow x^3 + \dfrac{1}{x^3} = (2 + \sqrt{3})^3 + (2 -\sqrt{3})^3 \\[1em] = 2^3 + (\sqrt{3})^3 + 3 \times 2 \times \sqrt{3} \times (2 + \sqrt{3}) + 2^3 - (\sqrt{3})^3 - 3 \times 2 \times \sqrt{3} \times (2 - \sqrt{3}) \\[1em] = 8 + 3\sqrt{3} + 6\sqrt{3}(2 + \sqrt{3}) + 8 - 3\sqrt{3} - 6\sqrt{3}(2 - \sqrt{3}) \\[1em] = 8 + 8 + 3\sqrt{3} - 3\sqrt{3} + 12\sqrt{3} + 18 - 12\sqrt{3} + 18 \\[1em] = 8 + 8 + 18 + 18 \\[1em] = 52. ⇒ x 3 + x 3 1 = ( 2 + 3 ) 3 + ( 2 − 3 ) 3 = 2 3 + ( 3 ) 3 + 3 × 2 × 3 × ( 2 + 3 ) + 2 3 − ( 3 ) 3 − 3 × 2 × 3 × ( 2 − 3 ) = 8 + 3 3 + 6 3 ( 2 + 3 ) + 8 − 3 3 − 6 3 ( 2 − 3 ) = 8 + 8 + 3 3 − 3 3 + 12 3 + 18 − 12 3 + 18 = 8 + 8 + 18 + 18 = 52.
Hence, proved that x 3 + 1 x 3 = 52 x^3 + \dfrac{1}{x^3} = 52 x 3 + x 3 1 = 52 .
Show that :
x 2 + 1 x 2 = 34 , if x = 3 + 2 2 x^2 + \dfrac{1}{x^2} = 34, \text{ if x } = 3 + 2\sqrt{2} x 2 + x 2 1 = 34 , if x = 3 + 2 2 .
Answer
Given,
x = 3 + 2 2 3 + 2\sqrt{2} 3 + 2 2
∴ 1 x = 1 3 + 2 2 \therefore \dfrac{1}{x} = \dfrac{1}{3 + 2\sqrt{2}} ∴ x 1 = 3 + 2 2 1
Rationalizing,
⇒ 1 3 + 2 2 × 3 − 2 2 3 − 2 2 ⇒ 3 − 2 2 3 2 − ( 2 2 ) 2 ⇒ 3 − 2 2 9 − 8 ⇒ 3 − 2 2 ∴ 1 x = 3 − 2 2 \Rightarrow \dfrac{1}{3 + 2\sqrt{2}} \times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{9 - 8} \\[1em] \Rightarrow 3 - 2\sqrt{2} \\[1em] \therefore \dfrac{1}{x} = 3 - 2\sqrt{2} ⇒ 3 + 2 2 1 × 3 − 2 2 3 − 2 2 ⇒ 3 2 − ( 2 2 ) 2 3 − 2 2 ⇒ 9 − 8 3 − 2 2 ⇒ 3 − 2 2 ∴ x 1 = 3 − 2 2
Substituting value of x and 1 x in x 2 + 1 x 2 \dfrac{1}{x} \text{ in } x^2 + \dfrac{1}{x^2} x 1 in x 2 + x 2 1 , we get :
⇒ x 2 + 1 x 2 = ( 3 + 2 2 ) 2 + ( 3 − 2 2 ) 2 ⇒ 3 2 + ( 2 2 ) 2 + 2 × 3 × 2 2 + 3 2 + ( 2 2 ) 2 − 2 × 3 × 2 2 ⇒ 9 + 8 + 12 2 + 9 + 8 − 12 2 ⇒ 34. \Rightarrow x^2 + \dfrac{1}{x^2} = (3 + 2\sqrt{2})^2 + (3 - 2\sqrt{2})^2 \\[1em] \Rightarrow 3^2 + (2\sqrt{2})^2 + 2 \times 3 \times 2\sqrt{2} + 3^2 + (2\sqrt{2})^2 - 2 \times 3 \times 2\sqrt{2} \\[1em] \Rightarrow 9 + 8 + 12\sqrt{2} + 9 + 8 - 12\sqrt{2} \\[1em] \Rightarrow 34. ⇒ x 2 + x 2 1 = ( 3 + 2 2 ) 2 + ( 3 − 2 2 ) 2 ⇒ 3 2 + ( 2 2 ) 2 + 2 × 3 × 2 2 + 3 2 + ( 2 2 ) 2 − 2 × 3 × 2 2 ⇒ 9 + 8 + 12 2 + 9 + 8 − 12 2 ⇒ 34.
Hence, proved that x 2 + 1 x 2 = 34. x^2 + \dfrac{1}{x^2} = 34. x 2 + x 2 1 = 34.
Show that :
3 2 − 2 3 3 2 + 2 3 + 2 3 3 − 2 \dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} 3 2 + 2 3 3 2 − 2 3 + 3 − 2 2 3 = 11
Answer
Given,
Equation : 3 2 − 2 3 3 2 + 2 3 + 2 3 3 − 2 \dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} 3 2 + 2 3 3 2 − 2 3 + 3 − 2 2 3 = 11
Solving L.H.S. of the equation :
⇒ 3 2 − 2 3 3 2 + 2 3 + 2 3 3 − 2 ⇒ 3 2 ( 3 − 2 ) 3 2 ( 3 + 2 ) + 2 3 3 − 2 ⇒ 3 − 2 3 + 2 + 2 3 3 − 2 ⇒ ( 3 − 2 ) 2 + 2 3 ( 3 + 2 ) ( 3 ) 2 − ( 2 ) 2 ⇒ ( 3 ) 2 + ( 2 ) 2 − 2 × 3 × 2 + 6 + 2 6 3 − 2 ⇒ 3 + 2 − 2 6 + 6 + 2 6 1 ⇒ 11. \Rightarrow \dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3}\sqrt{2}(\sqrt{3} - \sqrt{2})}{\sqrt{3}\sqrt{2}(\sqrt{3} + \sqrt{2})} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{(\sqrt{3} - \sqrt{2})^2 + 2\sqrt{3}(\sqrt{3} + \sqrt{2})}{(\sqrt{3})^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{(\sqrt{3})^2 + (\sqrt{2})^2 - 2\times \sqrt{3} \times \sqrt{2} + 6 + 2\sqrt{6}}{3 - 2} \\[1em] \Rightarrow \dfrac{3 + 2 - 2\sqrt{6} + 6 + 2\sqrt{6}}{1} \\[1em] \Rightarrow 11. ⇒ 3 2 + 2 3 3 2 − 2 3 + 3 − 2 2 3 ⇒ 3 2 ( 3 + 2 ) 3 2 ( 3 − 2 ) + 3 − 2 2 3 ⇒ 3 + 2 3 − 2 + 3 − 2 2 3 ⇒ ( 3 ) 2 − ( 2 ) 2 ( 3 − 2 ) 2 + 2 3 ( 3 + 2 ) ⇒ 3 − 2 ( 3 ) 2 + ( 2 ) 2 − 2 × 3 × 2 + 6 + 2 6 ⇒ 1 3 + 2 − 2 6 + 6 + 2 6 ⇒ 11.
Since, L.H.S. = R.H.S.
Hence, proved that 3 2 − 2 3 3 2 + 2 3 + 2 3 3 − 2 \dfrac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \dfrac{2\sqrt{3}}{\sqrt{3} - \sqrt{2}} 3 2 + 2 3 3 2 − 2 3 + 3 − 2 2 3 = 11.
Show that x is irrational, if :
(i) x2 = 6
(ii) x2 = 0.009
(iii) x2 = 27
Answer
(i) Given,
⇒ x2 = 6
⇒ x = 6 \sqrt{6} 6
⇒ x = 2.449.....
Since, x is non-terminating as well as non-recurring.
Hence, proved that x is irrational.
(ii) Given,
⇒ x2 = 0.009
⇒ x = 0.009 \sqrt{0.009} 0.009
⇒ x = 0.094.....
Since, x is non-terminating as well as non-recurring.
Hence, proved that x is irrational.
(iii) Given,
⇒ x2 = 27
⇒ x = 27 \sqrt{27} 27
⇒ x = 5.196.....
Since, x is non-terminating as well as non-recurring.
Hence, proved that x is irrational.
Show that x is rational, if :
(i) x2 = 16
(ii) x2 = 0.0004
(iii) x2 = 1 7 9 1\dfrac{7}{9} 1 9 7
Answer
(i) Given,
⇒ x2 = 16
⇒ x = 16 \sqrt{16} 16
⇒ x = ± 4 \pm 4 ± 4 .
Integers are considered as rational numbers.
Hence, proved that x is rational.
(ii) Given,
⇒ x2 = 0.0004
⇒ x = 0.0004 \sqrt{0.0004} 0.0004
⇒ x = 0.02 0.02 0.02 .
Terminating decimals are considered as rational numbers.
Hence, proved that x is rational.
(iii) Given,
⇒ x2 = 1 7 9 1\dfrac{7}{9} 1 9 7
⇒ x2 = 16 9 \dfrac{16}{9} 9 16
⇒ x = 16 9 \sqrt{\dfrac{16}{9}} 9 16
⇒ x = 4 3 \dfrac{4}{3} 3 4 = 1.333.....
Recurring decimals are considered as rational number.
Hence, proved that x is rational.