KnowledgeBoat Logo
|

Physics

2 kg of ice melts when water at 100° C is poured in a hole drilled in a block of ice. What mass of water was used? Given: Specific heat capacity of water = 4200 J kg-1 K-1, specific latent heat of ice = 336 × 103 J Kg-1.

Calorimetry

83 Likes

Answer

Given,

mi = 2 kg

Specific heat capacity of water = 4200 J kg-1 K-1,

Specific latent heat of ice = 336 × 103 J Kg-1.

mwater = ?

Since the whole block does not melt and only 2 kg of it melts, so final temperature would be 0° C.

Heat energy taken by ice at 0° C to convert into water at 0° C
= m x L
= 2 × 336000
= 672000 J

Initial temperature of water = 100° C

Final temperature of water = 0° C

Heat energy lost by (mw) kg at 100° C to reach temperature 0° C
= m x c x change in temperature
= m × 4200 × (100 - 0)
= m × 4200 × 100
= 420000 m J

If there is no loss of energy,

heat energy gained = heat energy lost

Substituting the values in the relation above we get,

672000=m×420000m=672000420000m=1.6kg672000 = m × 420000 \\[0.5em] m = \dfrac{672000}{420000} \\[0.5em] m = 1.6 kg \\[0.5em]

Hence, mass of water = 1.6 kg

Answered By

30 Likes


Related Questions