KnowledgeBoat Logo
|

Physics

A molten metal of mass 150 g is kept at it's melting point 800° C. When it is allowed to freeze at the same temperature, it gives out 75,000 J of heat energy.

(a) What is the specific latent heat of the metal?

(b) If the specific heat capacity of metal is 200 J kg-1 K-1, how much additional heat energy will the metal give out in cooling to - 50° C?

Calorimetry

113 Likes

Answer

(a) Given,

Mass (m) = 150 g

Heat energy given out (Q) = 75,000 J

Specific latent heat of the metal = ?

From relation Q = m x L

Substituting the values in the formula we get,

75000=150×LL=75000150L=500 J g175000 = 150 \times L \\[0.5em] \Rightarrow L = \dfrac{75000}{150} \\[0.5em] \Rightarrow L = 500 \text{ J g}^{-1} \\[0.5em]

Hence, the specific latent heat of the metal = 500 J g-1

(b) Specific heat capacity of metal is 200 J kg-1 K-1

Change in temperature
= 800 – (-50) = 800 + 50 = 850° C = 850 K

From relation,

Q = m x c x change in temperature

Substituting the values we get,

Q=0.15×200×850Q=25,500JQ = 0.15 \times 200 \times 850 \\[0.5em] Q = 25,500 J \\[0.5em]

Hence, 25,500 J of heat energy will be given out

Answered By

53 Likes


Related Questions