Let ABC be a right angled triangle with ∠C = 90°.
Given,
tan A = 3 4 \dfrac{3}{4} 4 3
By formula,
tan A = Perpendicular Base \text{tan A} = \dfrac{\text{Perpendicular}}{\text{Base}} tan A = Base Perpendicular
⇒ 3 4 = B C A C \dfrac{3}{4} = \dfrac{BC}{AC} 4 3 = A C BC
Let BC = 3x and AC = 4x.
In △ABC,
⇒ AB2 = AC2 + BC2
⇒ AB2 = (4x)2 + (3x)2
⇒ AB2 = 16x2 + 9x2
⇒ AB2 = 25x2
⇒ AB = 25 x 2 \sqrt{25x^2} 25 x 2
⇒ AB = 5x.
By formula,
sin A = Perpendicular Hypotenuse = B C A B = 3 x 5 x = 3 5 sin B = Perpendicular Hypotenuse = A C A B = 4 x 5 x = 4 5 cos A = Base Hypotenuse = A C A B = 4 x 5 x = 4 5 cos B = Base Hypotenuse = B C A B = 3 x 5 x = 3 5 . \text{sin A} = \dfrac{\text{Perpendicular}}{\text{Hypotenuse}} = \dfrac{BC}{AB} = \dfrac{3x}{5x} = \dfrac{3}{5} \\[1em] \text{sin B} = \dfrac{\text{Perpendicular}}{\text{Hypotenuse}} = \dfrac{AC}{AB} = \dfrac{4x}{5x} = \dfrac{4}{5} \\[1em] \text{cos A} = \dfrac{\text{Base}}{\text{Hypotenuse}} = \dfrac{AC}{AB} = \dfrac{4x}{5x} = \dfrac{4}{5} \\[1em] \text{cos B} = \dfrac{\text{Base}}{\text{Hypotenuse}} = \dfrac{BC}{AB} = \dfrac{3x}{5x} = \dfrac{3}{5}. sin A = Hypotenuse Perpendicular = A B BC = 5 x 3 x = 5 3 sin B = Hypotenuse Perpendicular = A B A C = 5 x 4 x = 5 4 cos A = Hypotenuse Base = A B A C = 5 x 4 x = 5 4 cos B = Hypotenuse Base = A B BC = 5 x 3 x = 5 3 .
Substituting values in L.H.S. of sin A cos B + cos A sin B = 1.
sin A cos B + cos A sin B = 3 5 × 3 5 + 4 5 × 4 5 = 9 25 + 16 25 = 9 + 16 25 = 25 25 = 1 \text{sin A cos B + cos A sin B} = \dfrac{3}{5} \times \dfrac{3}{5} + \dfrac{4}{5} \times \dfrac{4}{5} \\[1em] = \dfrac{9}{25} + \dfrac{16}{25} \\[1em] = \dfrac{9 + 16}{25} \\[1em] = \dfrac{25}{25} \\[1em] = 1 sin A cos B + cos A sin B = 5 3 × 5 3 + 5 4 × 5 4 = 25 9 + 25 16 = 25 9 + 16 = 25 25 = 1
Since, L.H.S. = R.H.S.
Hence, proved that sin A cos B + cos A sin B = 1.