KnowledgeBoat Logo
|

Physics

In an experiment, 17 g of ice is used to bring down the temperature of 40 g of water at 34° C to it's freezing temperature. The specific heat capacity of water is 4.2 J g-1 K-1. Calculate the specific latent heat of ice. State one important assumption made in the above calculation.

Calorimetry

69 Likes

Answer

Given,

Mass of ice (m1) = 17 g

Mass of water (m2) = 40 g

Change in temperature = 34 – 0 = 34° C = 34 K

Specific heat capacity of water (c) = 4.2 J g-1 K-1

specific latent heat of ice = ?

Assuming that no heat energy is lost,

heat energy required by ice to melt = heat energy given by water

So,

m1 x L = m2 x c x change in temperature

Substituting the values in the relation above we get,

17×L=40×4.2×3417×L=5712L=571217L=336 J g117 \times L = 40 \times 4.2 \times 34 \\[0.5em] 17 \times L = 5712 \\[0.5em] \Rightarrow L = \dfrac{5712}{17} \\[0.5em] \Rightarrow L = 336 \text{ J g}^{-1} \\[0.5em]

Hence, specific latent heat of ice = 336 J g-1

Assumption — There is no loss of energy.

Answered By

26 Likes


Related Questions