Mathematics
The sides of a triangular field are 975 m, 1050 m and 1125 m. If this field is sold at the rate of ₹ 10 lakh per hectare, find its selling price. [1 hectare = 10000 m2]
Mensuration
11 Likes
Answer
Consider, a = 975 m, b = 1050 m and c = 1125 m.
We know that,
Semi perimeter (s) =
Substituting the values we get,
By formula,
Area of triangle (A) =
Substituting values we get :
We know that,
Selling price of 1 hectare field = ₹ 10 lakh.
∴ Selling price of 47.25 hectare field = ₹ 10,00,000 × 47.25 = ₹ 4,72,50,000.
Hence, selling price of the triangular field = ₹ 4,72,50,000.
Answered By
7 Likes
Related Questions
Find the area of a triangle whose sides are 12 cm, 9.6 cm and 7.2 cm.
Find the area of a triangle whose sides are 34 cm, 20 cm and 42 cm. Hence, find the length of the altitude corresponding to the shortest side.
The base of a right angled triangle is 12 cm and its hypotenuse is 13 cm long. Find its area and the perimeter.
Find the area of an equilateral triangle whose side is 8 m. Give your answer correct to two decimal places.