Mathematics
The angle of elevation of the top of a tower from a point A (on the ground) is 30°. On walking 50 m towards the tower, the angle of elevation is found to be 60°. Calculate :
(i) the height of the tower (correct to one decimal place)
(ii) the distance of the tower from A.
Heights & Distances
41 Likes
Answer
Consider the below figure:

(i) Let after moving 50 m towards tower from point A, the person reaches point D and height of tower be h meters.
From figure,
AD = 50 m, AB = AD + DB = (50 + DB) m
Considering right angled triangle △ABC,
Considering right angled triangle △BCD,
Putting value of h from Eq 2 in Eq 1 we get,
Hence, the height of tower is 43.3 m.
(ii) From figure,
Distance of tower from A (AB) = AD + DB = 50 + 25 = 75 m.
Hence, the distance of tower from A is 75 m.
Answered By
10 Likes
Related Questions
An observer at point E, which is at a certain distance from the lamp post AB, finds the angle of elevation of top of lamp post from positions C, D and E as α, β and γ. It is given that B, C, D and E are along a straight line.
Which of the following conditions is satisfied ?
tan α > tan β
tan β < tan γ
tan γ > tan α
tan α < tan β

In the adjoining diagram the length of PR is :
cm
cm
cm
18 cm

An aeroplane 3000 m high, passes vertically above another aeroplane at an instant when the angles of elevation of the two aeroplanes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the two planes.
A 7 m long flagstaff is fixed on the top of a tower. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are 45° and 36° respectively. Find the height of the tower correct to one place of decimal.