KnowledgeBoat Logo
|
OPEN IN APP

Chapter 21

Trigonometrical Identities

Class - 10 Concise Mathematics Selina



Exercise 21(A)

Question 1(a)

sin4 θ - cos4 θ is equal to :

  1. sin2 θ - 1

  2. 1 + cos2 θ

  3. 2 sin2 θ - 1

  4. 1 - cos2 θ

Answer

Solving,

⇒ sin4 θ - cos4 θ

⇒ (sin2 θ + cos2 θ)(sin2 θ - cos2 θ)

Substituting, sin2 θ + cos2 θ = 1, we get :

⇒ 1 × (sin2 θ - cos2 θ)

⇒ sin2 θ - cos2 θ

⇒ sin2 θ - (1 - sin2 θ)

⇒ sin2 θ + sin2 θ - 1

⇒ 2 sin2 θ - 1.

Hence, Option 3 is the correct option.

Question 1(b)

(1 + tan θ)2 + (1 - tan θ)2 is equal to :

  1. 2 cosec2 θ

  2. 2 sec2 θ

  3. cosec2 θ

  4. sec2 θ

Answer

Solving,

⇒ (1 + tan θ)2 + (1 - tan θ)2

⇒ 1 + tan2 θ + 2 tan θ + 1 + tan2 θ - 2 tan θ

⇒ 2 + 2 tan2 θ

⇒ 2(1 + tan2 θ)

Substituting, 1 + tan2 θ = sec2 θ, we get :

⇒ 2 sec2 θ.

Hence, Option 2 is the correct option.

Question 1(c)

cot4 θ + cot2 θ is equal to :

  1. 2 cot2 θ. cosec2 θ

  2. tan2 θ + tan4 θ

  3. tan2 θ.cosec2 θ

  4. cosec4 θ - cosec2 θ

Answer

Solving,

⇒ cot4 θ + cot2 θ

⇒ cot2 θ(cot2 θ + 1)

⇒ cot2 θ.cosec2 θ

Substituting, cot2 θ = cosec2 θ - 1, we get :

⇒ (cosec2 θ - 1).cosec2 θ

⇒ cosec4 θ - cosec2 θ.

Hence, Option 4 is the correct option.

Question 1(d)

11 - sin A\dfrac{1}{\text{1 - sin A}} is equal to :

  1. 1 + sin A

  2. sec2 A (1 + sin A)

  3. sec2 A

  4. sec2 A + sin A

Answer

Solving,

11 - sin A\dfrac{1}{\text{1 - sin A}}

Multiplying numerator and denominator by (1 + sin A), we get :

11 - sin A×1 + sin A1 + sin A1 + sin A1sin2A1 + sin Acos2A1cos2A+sin Acos2A1cos2A+1cos2A. sin Asec2A+sec2A. sin Asec2A(1 + sin A).\Rightarrow \dfrac{1}{\text{1 - sin A}} \times \dfrac{\text{1 + sin A}}{\text{1 + sin A}} \\[1em] \Rightarrow \dfrac{\text{1 + sin A}}{1 - \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{1 + sin A}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 A} + \dfrac{\text{sin A}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 A} + \dfrac{1}{\text{cos}^2 A}. \text{ sin A} \\[1em] \Rightarrow \text{sec}^2 A + \text{sec}^2 A.\text{ sin A} \\[1em] \Rightarrow \text{sec}^2 A\text{(1 + sin A)}.

Hence, Option 2 is the correct option.

Question 1(e)

tan2A(sec A + 1)2\dfrac{\text{tan}^2 A}{\text{(sec A + 1)}^2} is equal to :

  1. 1 + cos A1 - cos A\dfrac{\text{1 + cos A}}{\text{1 - cos A}}

  2. 1 - cos A1 + cos A\dfrac{\text{1 - cos A}}{\text{1 + cos A}}

  3. 11 + cos A\dfrac{1}{\text{1 + cos A}}

  4. 11 - cos A\dfrac{1}{\text{1 - cos A}}

Answer

Solving,

tan2A(sec A + 1)2sec2A1(sec A + 1)2(sec A + 1)(sec A - 1)(sec A + 1)2sec A - 1sec A + 11cos A11cos A+11 - cos Acos A1 + cos Acos A1 - cos A1 + cos A.\Rightarrow \dfrac{\text{tan}^2 A}{\text{(sec A + 1)}^2} \\[1em] \Rightarrow \dfrac{\text{sec}^2 A - 1}{\text{(sec A + 1)}^2} \\[1em] \Rightarrow \dfrac{\text{(sec A + 1)(sec A - 1)}}{\text{(sec A + 1)}^2} \\[1em] \Rightarrow \dfrac{\text{sec A - 1}}{\text{sec A + 1}} \\[1em] \Rightarrow \dfrac{\dfrac{1}{\text{cos A}} - 1}{\dfrac{1}{\text{cos A}} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{\text{1 - cos A}}{\text{cos A}}}{\dfrac{\text{1 + cos A}}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A}}{\text{1 + cos A}}.

Hence, Option 2 is the correct option.

Question 2

Prove the following identities :

sec A - 1sec A + 1=1 - cos A1 + cos A\dfrac{\text{sec A - 1}}{\text{sec A + 1}} = \dfrac{\text{1 - cos A}}{\text{1 + cos A}}

Answer

Solving L.H.S. of the equation :

sec A - 1sec A + 11cos A11cos A+11 - cos Acos A1 + cos Acos A(1 - cos A) × cos A(1 + cos A) × cos A1 - cos A1 + cos A.\Rightarrow \dfrac{\text{sec A - 1}}{\text{sec A + 1}} \\[1em] \Rightarrow \dfrac{\dfrac{1}{\text{cos A}} - 1}{\dfrac{1}{\text{cos A}} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{\text{1 - cos A}}{\text{cos A}}}{\dfrac{\text{1 + cos A}}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\text{(1 - cos A) × cos A}}{\text{(1 + cos A) × cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A}}{\text{1 + cos A}}.

Since, L.H.S. = R.H.S.

Hence, proved that sec A - 1sec A + 1=1 - cos A1 + cos A\dfrac{\text{sec A - 1}}{\text{sec A + 1}} = \dfrac{\text{1 - cos A}}{\text{1 + cos A}}.

Question 3

Prove the following identities :

1tan A + cot A=cos A sin A\dfrac{1}{\text{tan A + cot A}} = \text{cos A sin A}

Answer

Solving L.H.S. of the equation :

1tan A + cot A1sin Acos A+cos Asin A1sin2A+cos2Asin A cos Asin A cos Asin2A+cos2A\Rightarrow \dfrac{1}{\text{tan A + cot A}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin A cos A}}} \\[1em] \Rightarrow \dfrac{\text{sin A cos A}}{\text{sin}^2 A + \text{cos}^2 A}

By formula,

sin2 A + cos2 A = 1

sin A cos A.\Rightarrow \text{sin A cos A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1tan A + cot A=cos A sin A\dfrac{1}{\text{tan A + cot A}} = \text{cos A sin A}.

Question 4

Prove the following identities :

tan A - cot A = 1 - 2 cos2Asin A cos A\dfrac{\text{1 - 2 cos}^2 A}{\text{sin A cos A}}

Answer

Solving L.H.S. of the equation :

tan A - cot Asin Acos Acos Asin Asin2Acos2Acos A sin A\Rightarrow \text{tan A - cot A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} - \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A - \text{cos}^2 A}{\text{cos A sin A}}

By formula,

sin2 A = 1 - cos2 A

1cos2Acos2Asin A cos A12 cos2Asin A cos A.\Rightarrow \dfrac{1 - \text{cos}^2 A - \text{cos}^2 A}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{1 - \text{2 cos}^2 A}{\text{sin A cos A}}.

Since, L.H.S. = R.H.S.

Hence, proved that tan A - cot A = 1 - 2 cos2Asin A cos A\dfrac{\text{1 - 2 cos}^2 A}{\text{sin A cos A}}

Question 5

Prove the following identities :

cosec4 A - cosec2 A = cot4 A + cot2 A

Answer

Solving L.H.S. of the equation :

⇒ cosec4 A - cosec2 A

⇒ cosec2 A(cosec2 A - 1)

By formula,

cosec2 A = 1 + cot2 A

⇒ (1 + cot2 A)(1 + cot2 A - 1)

⇒ (1 + cot2 A)cot2 A

⇒ cot2 A + cot4 A.

Since, L.H.S. = R.H.S.

Hence, proved that cosec4 A - cosec2 A = cot4 A + cot2 A.

Question 6

Prove the following identities :

sec A(1 - sin A)(sec A + tan A) = 1

Answer

Solving L.H.S. of the equation :

sec A(1 - sin A)(sec A + tan A)1cos A×(1 - sin A)×(1cos A+sin Acos A)1cos A×(1 - sin A)×(1 + sin Acos A)1sin2Acos2A\Rightarrow \text{sec A(1 - sin A)(sec A + tan A)} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} \times (\text{1 - sin A}) \times \Big(\dfrac{1}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}}\Big) \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} \times (\text{1 - sin A}) \times \Big(\dfrac{\text{1 + sin A}}{\text{cos A}}\Big) \\[1em] \Rightarrow \dfrac{1 - \text{sin}^2 A}{\text{cos}^2A}

By formula,

cos2 A = 1 - sin2 A

1sin2A1sin2A1.\Rightarrow \dfrac{1 - \text{sin}^2 A}{1 - \text{sin}^2A} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that sec A(1 - sin A)(sec A + tan A) = 1.

Question 7

Prove the following identities :

sec2 A + cosec2 A = sec2 A . cosec2 A

Answer

Solving L.H.S. of the equation :

sec2A+cosec2A1cos2A+1sin2Asin2A+cos2Acos2A.sin2A\Rightarrow \text{sec}^2 A + \text{cosec}^2 A \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 A} + \dfrac{1}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{cos}^2 A. \text{sin}^2 A}

As, sin2 A + cos2 A = 1

1cos2A.sin2Asec2A.cosec2A\Rightarrow \dfrac{1}{\text{cos}^2 A. \text{sin}^2 A} \\[1em] \Rightarrow \text{sec}^2 A. \text{cosec}^2 A

Since, L.H.S. = R.H.S.

Hence, proved that sec2 A + cosec2 A = sec2 A . cosec2 A.

Question 8

Prove the following identities :

(1 + tan2A)cot Acosec2A=tan A\dfrac{\text{(1 + tan}^2 A)\text{cot A}}{\text{cosec}^2 A} = \text{tan A}

Answer

Solving L.H.S. of the equation :

(1+sin2Acos2A)×cos Asin A1sin2A(cos2A+sin2Acos2A)×cos Asin A×sin2A\Rightarrow \dfrac{\Big(1 + \dfrac{\text{sin}^2 A}{\text{cos}^2 A}\Big) \times \dfrac{\text{cos A}}{\text{sin A}}}{\dfrac{1}{\text{sin}^2 A}} \\[1em] \Rightarrow \Big(\dfrac{\text{cos}^2 A + \text{sin}^2 A}{\text{cos}^2 A}\Big) \times \dfrac{\text{cos A}}{\text{sin A}} \times \text{sin}^2 A

By formula,

cos2 A + sin2 A = 1

1cos2A×cos A. sin Asin Acos Atan A.\Rightarrow \dfrac{1}{\text{cos}^2 A} \times \text{cos A. sin A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \text{tan A}.

Since, L.H.S. = R.H.S.

Hence, proved that (1 + tan2A)cot Acosec2A=tan A\dfrac{\text{(1 + tan}^2 A)\text{cot A}}{\text{cosec}^2 A} = \text{tan A} .

Question 9

Prove the following identities :

tan2 A - sin2 A = tan2 A. sin2 A

Answer

Solving L.H.S. of the equation :

tan2Asin2Asin2Acos2Asin2Asin2A×(1cos2A1)sin2A×(1cos2Acos2A)\Rightarrow \text{tan}^2 A - \text{sin}^2 A \\[1em] \Rightarrow \dfrac{\text{sin}^2 A}{\text{cos}^2 A} - \text{sin}^2 A \\[1em] \Rightarrow \text{sin}^2 A \times \Big(\dfrac{1}{\text{cos}^2 A} - 1\Big) \\[1em] \Rightarrow \text{sin}^2 A \times \Big(\dfrac{1 - \text{cos}^2 A}{\text{cos}^2 A}\Big)

By formula,

1 - cos2A = sin2 A.

sin2A×sin2Acos2Asin2A.tan2A\Rightarrow \text{sin}^2 A \times \dfrac{\text{sin}^2 A}{\text{cos}^2 A} \\[1em] \Rightarrow \text{sin}^2 A. \text{tan}^2 A

Since, L.H.S. = R.H.S.

Hence, proved that tan2 A - sin2 A = tan2 A. sin2 A.

Question 10

Prove the following identities :

(cosec A + sin A)(cosec A - sin A) = cot2 A + cos2 A

Answer

By formula,

cosec2 A = 1 + cot2 A

sin2 A = 1 - cos2 A

Solving L.H.S. of the equation

⇒ (cosec A + sin A)(cosec A - sin A)

⇒ cosec2 A - sin2 A

⇒ 1 + cot2 A - (1 - cos2 A)

⇒ 1 - 1 + cot2 A + cos2 A

⇒ cot2 A + cos2 A.

Hence, proved that (cosec A + sin A)(cosec A - sin A) = cot2 A + cos2 A.

Question 11

Prove the following identities :

(cos A + sin A)2 + (cos A - sin A)2 = 2

Answer

Solving L.H.S. of the equation :

⇒ (cos A + sin A)2 + (cos A - sin A)2

⇒ cos2 A + sin2 A + 2 cos A sin A + cos2 A + sin2 A - 2 cos A sin A

⇒ 2(sin2 A + cos2 A) + 2cos A sin A - 2cos A sin A

As, sin2 A + cos2 A = 1

⇒ 2 × 1

⇒ 2.

Since, L.H.S. = R.H.S.

Hence, proved that (cos A + sin A)2 + (cos A - sin A)2 = 2.

Question 12

Prove the following identities :

(cosec A - sin A)(sec A - cos A)(tan A + cot A) = 1

Answer

Solving L.H.S. of the equation :

(cosec A - sin A)(sec A - cos A)(tan A + cot A)(1sin Asin A)×(1cos Acos A)×(sin Acos A+cos Asin A)(1sin2Asin A)×(1cos2Acos A)×(sin2A+cos2Acos A. sin A)\Rightarrow \text{(cosec A - sin A)(sec A - cos A)(tan A + cot A)} \\[1em] \Rightarrow \Big(\dfrac{1}{\text{sin A}} - \text{sin A}\Big) \times \Big(\dfrac{1}{\text{cos A}} - \text{cos A}\Big) \times \Big(\dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}}\Big) \\[1em] \Rightarrow \Big(\dfrac{1 - \text{sin}^2 A}{\text{sin A}}\Big) \times \Big(\dfrac{1 - \text{cos}^2 A}{\text{cos A}}\Big) \times \Big(\dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{cos A. sin A}}\Big)

By formula,

1 - sin2 A = cos2 A, 1 - cos2 A = sin2 A and sin2 A + cos2 A = 1.

(cos2Asin A×sin2Acos A×1cos A. sin A)cos2A.sin2Acos2A.sin2A1.\Rightarrow \Big(\dfrac{\text{cos}^2 A}{\text{sin A}} \times \dfrac{\text{sin}^2 A}{\text{cos A}} \times \dfrac{1}{\text{cos A. sin A}}\Big) \\[1em] \Rightarrow \dfrac{\text{cos}^2 A. \text{sin}^2 A}{\text{cos}^2 A. \text{sin}^2 A} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that (cosec A - sin A)(sec A - cos A)(tan A + cot A) = 1.

Question 13

Prove the following identities :

1sec A + tan A\dfrac{1}{\text{sec A + tan A}} = sec A - tan A

Answer

Solving L.H.S. of the equation :

1sec A + tan A\Rightarrow \dfrac{1}{\text{sec A + tan A}}

Multiplying numerator and denominator by (sec A - tan A), we get :

1sec A + tan A×sec A - tan Asec A - tan Asec A - tan Asec2Atan2A\Rightarrow \dfrac{1}{\text{sec A + tan A}} \times \dfrac{\text{sec A - tan A}}{\text{sec A - tan A}} \\[1em] \Rightarrow \dfrac{\text{sec A - tan A}}{\text{sec}^2 A - \text{tan}^2 A}

By formula,

sec2 A - tan2 A = 1

sec A - tan A1sec A - tan A.\Rightarrow \dfrac{\text{sec A - tan A}}{1} \\[1em] \Rightarrow \text{sec A - tan A}.

Since, L.H.S. = R.H.S.

Hence proved that 1sec A + tan A\dfrac{1}{\text{sec A + tan A}} = sec A - tan A.

Question 14

Prove the following identities :

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Answer

By formula,

sin2 A + cos2 A = 1

sec2 A = 1 + tan2 A

cosec2 A = 1 + cot2 A

Solving L.H.S. of the equation :

⇒ (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

⇒ sin2 A + cosec2 A + 2 sin A. cosec A + cos2 A + sec2 A + 2 cos A. sec A

⇒ sin2 A + 1 + cot2 A + 2 × sin A × 1sin A\dfrac{1}{\text{sin A}} + cos2 A + 1 + tan2 A + 2 × cos A × 1cos A\dfrac{1}{\text{cos A}}

⇒ sin2 A + cos2 A + 1 + cot2 A + 2 + 1 + tan2 A + 2

⇒ 1 + 1 + 2 + 1 + 2 + cot2 A + tan2 A

⇒ 7 + tan2 A + cot2 A.

Since, L.H.S. = R.H.S.

Hence, proved that (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A.

Question 15

Prove the following identities :

sec2 A . cosec2 A = tan2 A + cot2 A + 2

Answer

Solving L.H.S. of the equation :

⇒ sec2 A . cosec2 A

1cos2A. sin2A\dfrac{1}{\text{cos}^2 A. \text{ sin}^2 A}.

Solving R.H.S. of the equation :

sin2Acos2A+cos2Asin2A+2sin4A+cos4A+2 sin2A cos2Acos2A sin2A(sin2A+cos2A)2cos2A sin2A\Rightarrow \dfrac{\text{sin}^2 A}{\text{cos}^2 A} + \dfrac{\text{cos}^2 A}{\text{sin}^2 A} + 2 \\[1em] \Rightarrow \dfrac{\text{sin}^4 A + \text{cos}^4 A + \text{2 sin}^2 A \text{ cos}^2 A}{\text{cos}^2 A \text{ sin}^2 A} \\[1em] \Rightarrow \dfrac{(\text{sin}^2 A + \text{cos}^2 A)^2}{\text{cos}^2 A \text{ sin}^2 A}

By formula,

sin2 A + cos2 A = 1.

(1)2cos2A sin2A1cos2A sin2A.\Rightarrow \dfrac{(1)^2}{\text{cos}^2 A \text{ sin}^2 A} \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 A \text{ sin}^2 A}.

Since, L.H.S. = R.H.S. = 1cos2A sin2A.\dfrac{1}{\text{cos}^2 A \text{ sin}^2 A}.

Hence, proved that sec2 A . cosec2 A = tan2 A + cot2 A + 2.

Question 16

Prove the following identities :

11 + cos A+11 - cos A\dfrac{1}{\text{1 + cos A}} + \dfrac{1}{\text{1 - cos A}} = 2 cosec2 A

Answer

Solving L.H.S. of the equation :

11 + cos A+11 - cos A1 - cos A + 1 + cos A(1 + cos A)(1 - cos A)21cos2A\Rightarrow \dfrac{1}{\text{1 + cos A}} + \dfrac{1}{\text{1 - cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A + 1 + cos A}}{\text{(1 + cos A)(1 - cos A)}} \\[1em] \Rightarrow \dfrac{2}{1 - \text{cos}^2 A}

By formula,

1 - cos2 A = sin2 A

2sin2A2 cosec2A.\Rightarrow \dfrac{2}{\text{sin}^2 A} \\[1em] \Rightarrow 2\text{ cosec}^2 A.

Since, L.H.S. = R.H.S.

Hence, proved that 11 + cos A+11 - cos A\dfrac{1}{\text{1 + cos A}} + \dfrac{1}{\text{1 - cos A}} = 2 cosec2 A.

Question 17

Prove the following identities :

cosec Acosec A - 1+cosec Acosec A + 1\dfrac{\text{cosec A}}{\text{cosec A - 1}} + \dfrac{\text{cosec A}}{\text{cosec A + 1}} = 2 sec2 A

Answer

Solving L.H.S. of the equation :

cosec Acosec A - 1+cosec Acosec A + 1cosec A(cosec A + 1) + cosec A(cosec A - 1)(cosec A - 1)(cosec A + 1)cosec2A+cosec A + cosec2Acosec Acosec2A12 cosec2Acot2A2×1sin2Acos2Asin2A2×1sin2A×sin2Acos2A2cos2A2sec2A.\Rightarrow \dfrac{\text{cosec A}}{\text{cosec A - 1}} + \dfrac{\text{cosec A}}{\text{cosec A + 1}} \\[1em] \Rightarrow \dfrac{\text{cosec A(cosec A + 1) + cosec A(cosec A - 1)}}{\text{(cosec A - 1)(cosec A + 1)}} \\[1em] \Rightarrow \dfrac{\text{cosec}^2 A + \text{cosec A + cosec}^2 A - \text{cosec A}}{\text{cosec}^2 A - 1} \\[1em] \Rightarrow \dfrac{\text{2 cosec}^2 A}{\text{cot}^2 A} \\[1em] \Rightarrow \dfrac{2 \times \dfrac{1}{\text{sin}^2 A}}{\dfrac{\text{cos}^2 A}{\text{sin}^2 A}} \\[1em] \Rightarrow \dfrac{2 \times \dfrac{1}{\text{sin}^2 A} \times \text{sin}^2 A}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{2}{\text{cos}^2 A} \\[1em] \Rightarrow 2\text{sec}^2 A.

Since, L.H.S. = R.H.S.

Hence, proved that cosec Acosec A - 1+cosec Acosec A + 1\dfrac{\text{cosec A}}{\text{cosec A - 1}} + \dfrac{\text{cosec A}}{\text{cosec A + 1}} = 2 sec2 A.

Question 18

Prove the following identities :

1 + cos A1 - cos A=tan2A(sec A - 1)2\dfrac{\text{1 + cos A}}{\text{1 - cos A}} = \dfrac{\text{tan}^2 A}{\text{(sec A - 1)}^2}

Answer

Solving R.H.S. of the equation :

tan2A(sec A - 1)2sin2Acos2A(1cos A1)2sin2Acos2A(1 - cos AcosA)2sin2Acos2A×cos2A(1 - cos A)2sin2A(1 - cos A)2.\Rightarrow \dfrac{\text{tan}^2 A}{\text{(sec A - 1)}^2} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin}^2 A}{\text{cos}^2 A}}{\Big(\dfrac{1}{\text{cos A}} - 1\Big)^2} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin}^2 A}{\text{cos}^2 A}}{\Big(\dfrac{\text{1 - cos A}}{\text{cos} A}\Big)^2} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin}^2 A}{\text{cos}^2 A} \times \text{cos}^2 A}{\text{(1 - cos A)}^2} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A}{\text{(1 - cos A)}^2}.

By formula,

sin2 A = 1 - cos2 A

1 - cos2A(1 cos A)2(1 - cos A)(1 + cos A)(1 - cos A)2(1 + cos A)(1 - cos A).\Rightarrow \dfrac{\text{1 - cos}^2 A}{(1 - \text{ cos A})^2} \\[1em] \Rightarrow \dfrac{\text{(1 - cos A)(1 + cos A)}}{\text{(1 - cos A)}^2} \\[1em] \Rightarrow \dfrac{\text{(1 + cos A)}}{\text{(1 - cos A)}}.

Since, L.H.S. = R.H.S.

Hence, proved that 1 + cos A1 - cos A=tan2A(sec A - 1)2\dfrac{\text{1 + cos A}}{\text{1 - cos A}} = \dfrac{\text{tan}^2 A}{\text{(sec A - 1)}^2}.

Question 19

Prove the following identities :

1 + sin Acos A+cos A1 + sin A\dfrac{\text{1 + sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = 2 sec A

Answer

Solving L.H.S. of the equation :

1 + sin Acos A+cos A1 + sin A(1 + sin A)2+cos2Acos A(1 + sin A)1 + 2 sin A + sin2A+cos2Acos A(1 + sin A)\Rightarrow \dfrac{\text{1 + sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} \\[1em] \Rightarrow \dfrac{\text{(1 + sin A)}^2 + \text{cos}^2 A}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{1 + 2 sin A + sin}^2 A + \text{cos}^2 A}{\text{cos A(1 + sin A)}}

By formula,

sin2 A + cos2 A = 1.

1 + 2 sin A + 1cos A(1 + sin A)2 + 2 sin Acos A(1 + sin A)2(1 + sin A)cos A(1 + sin A)2cos A2 sec A\Rightarrow \dfrac{\text{1 + 2 sin A + 1}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{2 + 2 sin A}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{2(1 + sin A)}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{2}{\text{cos A}} \\[1em] \Rightarrow 2\text{ sec A}

Since, L.H.S. = R.H.S.

Hence, proved that 1 + sin Acos A+cos A1 + sin A\dfrac{\text{1 + sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = 2 sec A.

Question 20

Prove the following identities :

1 - sin A1 + sin A\dfrac{\text{1 - sin A}}{\text{1 + sin A}} = (sec A - tan A)2

Answer

Solving R.H.S. of the equation :

(sec A - tan A)2(1cos Asin Acos A)2(1 - sin Acos A)2(1 - sin A)2cos2A\Rightarrow \text{(sec A - tan A)}^2 \\[1em] \Rightarrow \Big(\dfrac{1}{\text{cos A}} - \dfrac{\text{sin A}}{\text{cos A}}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{\text{1 - sin A}}{\text{cos A}}\Big)^2 \\[1em] \Rightarrow \dfrac{\text{(1 - sin A)}^2}{\text{cos}^2 A}

By formula,

cos2 A = 1 - sin2 A

(1 - sin A)21 - sin2A(1 - sin A)2(1 - sin A)(1 + sin A)1 - sin A1 + sin A.\Rightarrow \dfrac{\text{(1 - sin A)}^2}{\text{1 - sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{(1 - sin A)}^2}{\text{(1 - sin A)(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{1 - sin A}}{\text{1 + sin A}}.

Since, L.H.S. = R.H.S.

Hence, proved that 1 - sin A1 + sin A\dfrac{\text{1 - sin A}}{\text{1 + sin A}} = (sec A - tan A)2.

Question 21

Prove the following identities :

cosec A - 1cosec A + 1=(cos A1 + sin A)2\dfrac{\text{cosec A - 1}}{\text{cosec A + 1}} = \Big(\dfrac{\text{cos A}}{\text{1 + sin A}}\Big)^2

Answer

Solving L.H.S. of the equation :

1sin A11sin A+11 - sin Asin A1 + sin Asin A(1 - sin A)× sin A(1 + sin A)× sin A1 - sin A1 + sin A.\Rightarrow \dfrac{\dfrac{1}{\text{sin A}} - 1}{\dfrac{1}{\text{sin A}} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{\text{1 - sin A}}{\text{sin A}}}{\dfrac{\text{1 + sin A}}{\text{sin A}}} \\[1em] \Rightarrow \dfrac{\text{(1 - sin A)} \times \text{ sin A}}{\text{(1 + sin A)} \times \text{ sin A}} \\[1em] \Rightarrow \dfrac{\text{1 - sin A}}{\text{1 + sin A}}.

Solving R.H.S. of the equation :

(cos A1 + sin A)2cos2A(1 + sin A)21 - sin2A(1 + sin A)2(1 - sin A)(1 + sin A)(1 + sin A)2(1 - sin A)(1 + sin A).\Rightarrow \Big(\dfrac{\text{cos A}}{\text{1 + sin A}}\Big)^2 \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{(1 + sin A)}^2} \\[1em] \Rightarrow \dfrac{\text{1 - sin}^2 A}{\text{(1 + sin A)}^2} \\[1em] \Rightarrow \dfrac{\text{(1 - sin A)(1 + sin A)}}{\text{(1 + sin A)}^2} \\[1em] \Rightarrow \dfrac{\text{(1 - sin A)}}{\text{(1 + sin A)}}.

Since, L.H.S. = R.H.S.

Hence, proved that cosec A - 1cosec A + 1=(cos A1 + sin A)2\dfrac{\text{cosec A - 1}}{\text{cosec A + 1}} = \Big(\dfrac{\text{cos A}}{\text{1 + sin A}}\Big)^2.

Question 22

Prove the following identities :

tan2 A - tan2 B = sin2Asin2Bcos2A.cos2B\dfrac{\text{sin}^2 A - \text{sin}^2 B}{\text{cos}^2 A. \text{cos}^2 B}

Answer

Solving L.H.S. of the equation :

sin2Acos2Asin2Bcos2Bsin2A. cos2Bsin2B. cos2Acos2A. cos2Bsin2A(1 sin2B)sin2B(1sin2A)cos2A. cos2Bsin2Asin2A. sin2Bsin2B+ sin2A. sin2Bcos2A. cos2Bsin2A sin2Bcos2A. cos2B\Rightarrow \dfrac{\text{sin}^2 A}{\text{cos}^2 A} - \dfrac{\text{sin}^2 B}{\text{cos}^2 B} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A. \text{ cos}^2 B - \text{sin}^2 B. \text{ cos}^2 A}{\text{cos}^2 A. \text{ cos}^2 B} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A(1 - \text{ sin}^2 B) - \text{sin}^2 B(1 - \text{sin}^2 A)}{\text{cos}^2 A. \text{ cos}^2 B} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A - \text{sin}^2 A. \text{ sin}^2 B - \text{sin}^2 B + \text{ sin}^2 A. \text{ sin}^2 B}{\text{cos}^2 A. \text{ cos}^2 B} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A - \text{ sin}^2 B}{\text{cos}^2 A. \text{ cos}^2 B}

Since, L.H.S. = R.H.S.

Hence, proved that tan2 A - tan2 B = sin2Asin2Bcos2A.cos2B\dfrac{\text{sin}^2 A - \text{sin}^2 B}{\text{cos}^2 A. \text{cos}^2 B}.

Question 23

Prove the following identities :

sin θ - 2 sin3θ2 cos3θ cos θ\dfrac{\text{sin θ - 2 sin}^3 θ}{\text{2 cos}^3 θ - \text{ cos θ}} = tan θ

Answer

Solving L.H.S. of the equation :

sin θ(1 - 2 sin2θ)cos θ(2 cos2θ1)\Rightarrow \dfrac{\text{sin θ(1 - 2 sin}^2 θ)}{\text{cos θ(2 cos}^2 θ - 1)}

By formula,

sin2 θ = 1 - cos2 θ

sin θ[1 - 2(1 - cos2θ)]cos θ(2 cos2θ1)tan θ×12+ 2 cos2θ(2 cos2θ1)tan θ×2 cos2θ12 cos2θ1tan θ.\Rightarrow \dfrac{\text{sin θ[1 - 2(1 - cos}^2 θ)]}{\text{cos θ(2 cos}^2 θ - 1)} \\[1em] \Rightarrow \text{tan θ} \times \dfrac{1 - 2 + \text{ 2 cos}^2 θ}{\text{(2 cos}^2 θ - 1)} \\[1em] \Rightarrow \text{tan θ} \times \dfrac{\text{2 cos}^2 θ - 1}{\text{2 cos}^2 θ - 1} \\[1em] \Rightarrow \text{tan θ}.

Since, L.H.S. = R.H.S.

Hence, proved that sin θ - 2 sin3θ2 cos3θ cos θ\dfrac{\text{sin θ - 2 sin}^3 θ}{\text{2 cos}^3 θ - \text{ cos θ}} = tan θ.

Question 24

Prove the following identities :

cos A1 - sin A\dfrac{\text{cos A}}{\text{1 - sin A}} = sec A + tan A

Answer

Solving L.H.S. of the equation :

cos A1 - sin A\Rightarrow \dfrac{\text{cos A}}{\text{1 - sin A}}

Multiplying numerator and denominator by (1 + sin A)

cos A(1 + sin A)(1 - sin A)(1 + sin A)cos A(1 + sin A)1 - sin2A\Rightarrow \dfrac{\text{cos A(1 + sin A)}}{\text{(1 - sin A)(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{cos A(1 + sin A)}}{\text{1 - sin}^2 A}

By formula,

cos2 A = 1 - sin2 A

cos A(1 + sin A)cos2A1 + sin Acos A1cos A+sin Acos Asec A + tan A.\Rightarrow \dfrac{\text{cos A(1 + sin A)}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{1 + sin A}}{\text{\text{cos A}}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \text{sec A + tan A}.

Since, L.H.S. = R.H.S.

Hence, proved that cos A1 - sin A\dfrac{\text{cos A}}{\text{1 - sin A}} = sec A + tan A.

Question 25

Prove the following identities :

sin A tan A1 - cos A\dfrac{\text{sin A tan A}}{\text{1 - cos A}} = 1 + sec A

Answer

Solving L.H.S. of the equation :

sin A×sin Acos A1 - cos Asin2Acos A(1 - cos A)\Rightarrow \dfrac{\text{sin A} \times \dfrac{\text{sin A}}{\text{cos A}}}{\text{1 - cos A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A}{\text{cos A(1 - cos A)}}

By formula,

sin2 A = 1 - cos2 A

1cos2Acos A(1 - cos A)(1 - cos A)(1 + cos A)cos A(1 - cos A)1 + cos Acos A1cos A+cos Acos Asec A + 1.\Rightarrow \dfrac{1 - \text{cos}^2 A}{\text{cos A(1 - cos A)}} \\[1em] \Rightarrow \dfrac{\text{(1 - cos A)(1 + cos A)}}{\text{cos A(1 - cos A)}} \\[1em] \Rightarrow \dfrac{\text{1 + cos A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} + \dfrac{\text{cos A}}{\text{cos A}} \\[1em] \Rightarrow \text{sec A + 1}.

Since, L.H.S. = R.H.S.

Hence, proved that sin A tan A1 - cos A\dfrac{\text{sin A tan A}}{\text{1 - cos A}} = 1 + sec A.

Question 26

Prove the following identities :

(1 + cot A - cosec A)(1 + tan A + sec A) = 2

Answer

Solving L.H.S. of the equation :

(1+cos Asin A1sin A)(1+sin Acos A+1cos A)(sin A + cos A - 1sin A)(cos A + sin A + 1cos A)(sin A + cos A - 1)(sin A + cos A + 1)sin A cos Asin2A+sin A cos A + sin A + cos A sin A + cos A+ cos2Asin A - cos A - 1sin A cos Asin2A+cos2A+2 cos A sin A - 1sin A cos A.\Rightarrow \Big(1 + \dfrac{\text{cos A}}{\text{sin A}} - \dfrac{1}{\text{sin A}}\Big)\Big(1 + \dfrac{\text{sin A}}{\text{cos A}}+ \dfrac{1}{\text{cos A}}\Big) \\[1em] \Rightarrow \Big(\dfrac{\text{sin A + cos A - 1}}{\text{sin A}}\Big)\Big(\dfrac{\text{cos A + sin A + 1}}{\text{cos A}}\Big) \\[1em] \Rightarrow \dfrac{\text{(sin A + cos A - 1)(sin A + cos A + 1)}}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{sin A cos A + sin A + cos A sin A + cos A} + \text{ cos}^2 A - \text{sin A - cos A - 1}}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A + \text{2 cos A sin A - 1}}{\text{sin A cos A}}.

By formula,

sin2 A + cos2 A = 1.

1+2 cos A sin A - 1sin A cos A2 cos A sin Acos A sin A2.\Rightarrow \dfrac{1 + \text{2 cos A sin A - 1}}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{2 cos A sin A}}{\text{cos A sin A}} \\[1em] \Rightarrow 2.

Since, L.H.S. = R.H.S.

Hence, proved that (1 + cot A - cosec A)(1 + tan A + sec A) = 2.

Question 27

Prove the following identities :

1 + sin A1 - sin A\sqrt{\dfrac{\text{1 + sin A}}{\text{1 - sin A}}} = sec A + tan A

Answer

Solving L.H.S. of the equation :

1 + sin A1 - sin A\Rightarrow \sqrt{\dfrac{\text{1 + sin A}}{\text{1 - sin A}}}

Multiplying numerator and denominator by 1+sin A\sqrt{1 + \text{sin A}}

1 + sin A1 - sin A×1 + sin A1 + sin A(1 + sin A)(1 + sin A)(1 - sin A)(1 + sin A)(1 + sin A)(1 + sin A)1 - sin2A(1 + sin A)2cos2A1 + sin Acos A1cos A+sin Acos Asec A + tan A.\Rightarrow \sqrt{\dfrac{\text{1 + sin A}}{\text{1 - sin A}}} \times \sqrt{\dfrac{\text{1 + sin A}}{\text{1 + sin A}}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 + sin A)(1 + sin A)}}{\text{(1 - sin A)(1 + sin A)}}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 + sin A)(1 + sin A)}}{\text{1 - sin}^2 \text{A}}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 + sin A)}^2}{\text{cos}^2 A}} \\[1em] \Rightarrow \dfrac{\text{1 + sin A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \text{sec A + tan A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1 + sin A1 - sin A\sqrt{\dfrac{\text{1 + sin A}}{\text{1 - sin A}}} = sec A + tan A.

Question 28

Prove the following identities :

1 - cos A1 + cos A\sqrt{\dfrac{\text{1 - cos A}}{\text{1 + cos A}}} = cosec A - cot A

Answer

Solving L.H.S. of the equation :

1 - cos A1 + cos A\Rightarrow \sqrt{\dfrac{\text{1 - cos A}}{\text{1 + cos A}}} = cosec A - cot A

Multiplying numerator and denominator by 1cos A\sqrt{1 - \text{cos A}}

1 - cos A1 + cos A×1 - cos A1 - cos A(1 - cos A)(1 - cos A)(1 + cos A)(1 - cos A)(1 - cos A)2(1 - cos2A)\Rightarrow \sqrt{\dfrac{\text{1 - cos A}}{\text{1 + cos A}}} \times \sqrt{\dfrac{\text{1 - cos A}}{\text{1 - cos A}}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 - cos A)(1 - cos A)}}{\text{(1 + cos A)(1 - cos A)}}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{(1 - cos A)}^2}{\text{(1 - cos}^2 A)}}

By formula,

1 - cos2 A = sin2 A

(1 - cos A)2sin2A1 - cos Asin A1sin Acos Asin Acosec A - cot A.\Rightarrow \sqrt{\dfrac{\text{(1 - cos A)}^2}{\text{sin}^2 A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}} - \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \text{cosec A - cot A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1 - cos A1 + cos A\sqrt{\dfrac{\text{1 - cos A}}{\text{1 + cos A}}} = cosec A - cot A.

Question 29

Prove the following identities :

1 - cos2A1 + sin A\dfrac{\text{cos}^2 A}{\text{1 + sin A}} = sin A

Answer

Solving L.H.S. of the equation :

1cos2A1 + sin A1 + sin A - cos2A1 + sin A\Rightarrow 1 - \dfrac{\text{cos}^2 A}{\text{1 + sin A}} \\[1em] \Rightarrow \dfrac{\text{1 + sin A - cos}^2 A}{\text{1 + sin A}}

By formula,

cos2 A = 1 - sin2 A

1 + sin A - (1 - sin2A)1 + sin A1 + sin A - 1 + sin2A1 + sin Asin A + sin2A1 + sin Asin A(1 + sin A)1 + sin Asin A.\Rightarrow \dfrac{\text{1 + sin A - (1 - sin}^2 A)}{\text{1 + sin A}} \\[1em] \Rightarrow \dfrac{\text{1 + sin A - 1 + sin}^2 A}{\text{1 + sin A}} \\[1em] \Rightarrow \dfrac{\text{sin A + sin}^2 A}{\text{1 + sin A}} \\[1em] \Rightarrow \dfrac{\text{sin A(1 + sin A)}}{\text{1 + sin A}} \\[1em] \Rightarrow \text{sin A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1 - cos2A1 + sin A\dfrac{\text{cos}^2 A}{\text{1 + sin A}} = sin A.

Question 30

Prove the following identities :

1sin A + cos A+1sin A - cos A=2 sin A1 - 2 cos2A\dfrac{1}{\text{sin A + cos A}} + \dfrac{1}{\text{sin A - cos A}} = \dfrac{\text{2 sin A}}{\text{1 - 2 cos}^2 A}

Answer

Solving L.H.S. of the equation :

sin A - cos A + sin A + cos A(sin A + cos A)(sin A - cos A)2 sin Asin2Acos2A\Rightarrow \dfrac{\text{sin A - cos A + sin A + cos A}}{\text{(sin A + cos A)(sin A - cos A)}} \\[1em] \Rightarrow \dfrac{\text{2 sin A}}{\text{sin}^2 A - \text{cos}^2 A}

By formula,

sin2 A = 1 - cos2 A

2 sin A1 - cos2Acos2A2 sin A1 - 2 cos2A.\Rightarrow \dfrac{\text{2 sin A}}{\text{1 - cos}^2 A - \text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{2 sin A}}{\text{1 - 2 cos}^2 A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1sin A + cos A+1sin A - cos A=2 sin A1 - 2 cos2A\dfrac{1}{\text{sin A + cos A}} + \dfrac{1}{\text{sin A - cos A}} = \dfrac{\text{2 sin A}}{\text{1 - 2 cos}^2 A}.

Question 31

Prove the following identities :

sin A + cos Asin A - cos A+sin A - cos Asin A + cos A=22 sin2A1\dfrac{\text{sin A + \text{cos A}}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}} = \dfrac{2}{\text{2 sin}^2 A - 1}

Answer

Solving L.H.S. of the equation :

(sin A + cos A)2+(sin A - cos A)2(sin A - cos A)(sin A + cos A)sin2A+cos2+2 sin A cos A+sin2A+cos2A2 sin A cos Asin2Acos2A2 (sin2A+ cos2A)sin2Acos2A\Rightarrow \dfrac{\text{(sin A + cos A)}^2 + \text{(sin A - cos A)}^2}{\text{(sin A - cos A)(sin A + cos A)}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 + \text{2 sin A cos A} + \text{sin}^2 A + \text{cos}^2 A - \text{2 sin A cos A}}{\text{sin}^2 A - \text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{2 (sin}^2 A + \text{ cos}^2 A)}{\text{sin}^2 A - \text{cos}^2 A}

By formula,

sin2 A + cos2 A = 1

cos2 A = 1 - sin2 A

2sin2A(1sin2A)2sin2A1+sin2A22 sin2A1.\Rightarrow \dfrac{2}{\text{sin}^2 A - (1 - \text{sin}^2 A)} \\[1em] \Rightarrow \dfrac{2}{\text{sin}^2 A - 1 + \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{2}{\text{2 sin}^2 A - 1}.

Since, L.H.S. = R.H.S.

Hence, proved that sin A + cos Asin A - cos A+sin A - cos Asin A + cos A=22 sin2A1\dfrac{\text{sin A + \text{cos A}}}{\text{sin A - cos A}} + \dfrac{\text{sin A - cos A}}{\text{sin A + cos A}} = \dfrac{2}{\text{2 sin}^2 A - 1}

Question 32

Prove the following identities :

1 + sin Acosec A - cot A1 - sin Acosec A + cot A\dfrac{\text{1 + sin A}}{\text{cosec A - cot A}} - \dfrac{\text{1 - sin A}}{\text{cosec A + cot A}} = 2(1 + cot A)

Answer

Solving L.H.S. of the equation :

1 + sin Acosec A - cot A1 - sin Acosec A + cot A(1 + sin A)(cosec A + cot A)(1 - sin A)(cosec A - cot A)cosec2Acot2A\Rightarrow \dfrac{\text{1 + sin A}}{\text{cosec A - cot A}} - \dfrac{\text{1 - sin A}}{\text{cosec A + cot A}} \\[1em] \Rightarrow \dfrac{\text{(1 + sin A)(cosec A + cot A)} - \text{(1 - sin A)(cosec A - cot A)}}{\text{cosec}^2 A - \text{cot}^2 A}

By formula,

cosec2 A - cot2 A = 1

⇒ (1 + sin A)(cosec A + cot A) - (1 - sin A)(cosec A - cot A)

⇒ cosec A + cot A + sin A cosec A + sin A cot A - (cosec A - cot A - sin A cosec A + sin A cot A)

⇒ cosec A - cosec A + cot A + cot A + sin A cosec A + sin A cosec A + sin A cot A - sin A cot A

⇒ 2 cot A + 2 sin A cosec A

⇒ 2 cot A + 2 sin A×1sin A2 \text{ sin A} \times \dfrac{1}{\text{sin A}}

⇒ 2 cot A + 2

⇒ 2(cot A + 1).

Since, L.H.S. = R.H.S.

Hence, proved that 1 + sin Acosec A - cot A1 - sin Acosec A + cot A\dfrac{\text{1 + sin A}}{\text{cosec A - cot A}} - \dfrac{\text{1 - sin A}}{\text{cosec A + cot A}} = 2(1 + cot A).

Question 33

Prove the following identities :

cos θ cot θ1 + sin θ\dfrac{\text{cos θ cot θ}}{\text{1 + sin θ}} = cosec θ - 1

Answer

Solving L.H.S. of the equation :

cos θ×cos θsin θ(1 + sin θ)cos2θsin θ(1 + sin θ)\Rightarrow \dfrac{\text{cos θ} \times \dfrac{\text{cos θ}}{\text{sin θ}}}{\text{(1 + sin θ)}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 θ}{\text{sin θ(1 + sin θ)}}

By formula,

cos2 θ = 1 - sin2 θ

1 - sin2θsin θ(1 + sin θ)(1 - sin θ)(1 + sin θ)sin θ(1 + sin θ)1 - sin θsin θ1sin θsin θsin θcosec θ - 1\Rightarrow \dfrac{\text{1 - sin}^2 θ}{\text{sin θ(1 + sin θ)}} \\[1em] \Rightarrow \dfrac{\text{(1 - sin θ)(1 + sin θ)}}{\text{sin θ(1 + sin θ)}} \\[1em] \Rightarrow \dfrac{\text{1 - sin θ}}{\text{sin θ}} \\[1em] \Rightarrow \dfrac{1}{\text{sin θ}} - \dfrac{\text{sin θ}}{\text{sin θ}} \\[1em] \Rightarrow \text{cosec θ - 1}

Since, L.H.S. = R.H.S

Hence, proved that cos θ cot θ1 + sin θ\dfrac{\text{cos θ cot θ}}{\text{1 + sin θ}} = cosec θ - 1.

Exercise 21(B)

Question 1(a)

(1 + cot2 A) + (1 + tan2 A) is equal to :

  1. 1sin2Acos2A\dfrac{1}{\text{sin}^2 A - \text{cos}^2 A}

  2. sec2 A - cosec2 A

  3. sin2 A - sin4 A

  4. sec2 A.cosec2 A

Answer

Solving,

⇒ (1 + cot2 A) + (1 + tan2 A)

⇒ cosec2 A + sec2 A

1sin2A+1cos2A\dfrac{1}{\text{sin}^2 A} + \dfrac{1}{\text{cos}^2 A}

cos2A+sin2Asin2A.cos2A\dfrac{\text{cos}^2 A + \text{sin}^2 A}{\text{sin}^2 A. \text{cos}^2 A}

Substituting, sin2 A + cos2 A = 1, we get :

1sin2A.cos2A\dfrac{1}{\text{sin}^2 A. \text{cos}^2 A}

⇒ cosec2 A. sec2 A

Hence, Option 4 is the correct option.

Question 1(b)

If a = tan θ and b = sec θ, the relation between a and b is :

  1. a × b = 1

  2. a2 - b2 = 1

  3. b2 - a2 = 1

  4. a2 + b2 = 1

Answer

Substituting value of a and b in L.H.S. of option 3, we get :

⇒ b2 - a2

⇒ sec2 A - tan2 A

⇒ 1.

Since, L.H.S. = R.H.S.

Hence, Option 3 is the correct option.

Question 1(c)

1cot θ + tan θ\dfrac{1}{\text{cot θ + tan θ}} is equal to :

  1. sin θ + cos θ

  2. sin θ. cos θ

  3. 1sin θ. cos θ\dfrac{1}{\text{sin θ. cos θ}}

  4. 1sin θ + cos θ\dfrac{1}{\text{sin θ + cos θ}}

Answer

Solving,

1cot θ + tan θ1cos θsin θ+sin θcos θ1cos2θ+sin2θcos θ. sin θcos θ. sin θcos2θ+sin2θ\Rightarrow \dfrac{1}{\text{cot θ + tan θ}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{cos θ}}{\text{sin θ}} + \dfrac{\text{sin θ}}{\text{cos θ}}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{cos}^2 θ + \text{sin}^2 θ}{\text{cos θ. sin θ}}} \\[1em] \Rightarrow \dfrac{\text{cos θ. sin θ}}{\text{cos}^2 θ + \text{sin}^2 θ}

Substituting, sin2 θ + cos2 θ = 1, we get :

⇒ sin θ. cos θ

Hence, Option 2 is the correct option.

Question 1(d)

(sec θ - cos θ)2 - (sec θ + cos θ)2 is equal to :

  1. 4

  2. 2

  3. -2

  4. -4

Answer

Solving,

⇒ (sec θ - cos θ)2 - (sec θ + cos θ)2

⇒ (sec θ - cos θ + sec θ + cos θ)[(sec θ - cos θ) - (sec θ + cos θ)] [∵ a2 - b2 = (a + b)(a - b)]

⇒ (sec θ - cos θ + sec θ + cos θ)(sec θ - sec θ - cos θ - cos θ)

⇒ 2 sec θ.(-2 cos θ)

⇒ -4.sec θ.cos θ

4×1cos θ×cos θ-4 \times \dfrac{1}{\text{cos θ}} \times \text{cos θ}

⇒ -4.

Hence, Option 4 is the correct option.

Question 1(e)

(cot A - cot B)2 + (1 + cot A cot B)2 is equal to :

  1. sec2 A - cos2 A

  2. sec2 A - cosec2 A

  3. (1 + tan A)2 - (1 - cot A)2

  4. cosec2 A . cosec2 B

Answer

Solving,

⇒ (cot A - cot B)2 + (1 + cot A cot B)2

⇒ cot2 A + cot2 B - 2 cot A cot B + 1 + cot2 A . cot2 B + 2 cot A cot B

⇒ cot2 A + cot2 A . cot2 B + 1 + cot2 B

⇒ cot2 A(1 + cot2 B) + (1 + cot2 B)

⇒ (1 + cot2 B)(1 + cot2 A)

(1+cos2Bsin2B)(1+cos2Asin2A)\Big(1 + \dfrac{\text{cos}^2 B}{\text{sin}^2 B}\Big)\Big(1 + \dfrac{\text{cos}^2 A}{\text{sin}^2 A}\Big)

(sin2B+cos2Bsin2B)(sin2A+cos2Asin2A)\Big(\dfrac{\text{sin}^2 B + \text{cos}^2 B}{\text{sin}^2 B}\Big)\Big(\dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin}^2 A}\Big)

Substituting, sin2 θ + cos2 θ = 1, we get :

(1sin2B)(1sin2A)\Big(\dfrac{1}{{\text{sin}^2 B}}\Big)\Big(\dfrac{1}{\text{sin}^2 A}\Big)

⇒ cosec2 B . cosec2 A

Hence, Option 4 is the correct option.

Question 2(i)

Prove that:

(sec A - tan A)2 (1 + sin A) = (1 - sin A)

Answer

To prove:

(sec A - tan A)2 (1 + sin A) = (1 - sin A)

Solving L.H.S. of the above equation,

(sec A - tan A)2(1 + sin A)(1cos Asin Acos A)2(1 + sin A)(1 - sin Acos A)2(1 + sin A)(1sin A)2(1 + sin A)cos2A(1sin A)2(1 + sin A)1sin2A(1sin A)2(1 + sin A)(1 - sin A)(1 + sin A)1 - sin A.\Rightarrow \text{(sec A - tan A)}^2 \text{(1 + sin A)} \\[1em] \Rightarrow \Big(\dfrac{1}{\text{cos A}} - \dfrac{\text{sin A}}{\text{cos A}}\Big)^2 \text{(1 + sin A)} \\[1em] \Rightarrow \Big(\dfrac{\text{1 - sin A}}{\text{cos A}}\Big)^2\text{(1 + sin A)} \\[1em] \Rightarrow \dfrac{(1 - \text{sin A})^2\text{(1 + sin A)}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{(1 - \text{sin A})^2\text{(1 + sin A)}}{1 - \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{(1 - \text{sin A})^2\text{(1 + sin A)}}{\text{(1 - sin A)(1 + sin A)}} \\[1em] \Rightarrow \text{1 - sin A}.

Since, L.H.S. = R.H.S.

Hence, proved that (sec A - tan A)2 (1 + sin A) = (1 - sin A).

Question 2(ii)

Prove that :

cos3A+sin3Acos A+ sin A+cos3Asin3Acos A - sin A\dfrac{\text{cos}^3 A + \text{sin}^3 A}{\text{cos A+ sin A}} + \dfrac{\text{cos}^3 A - \text{sin}^3 A}{\text{cos A - sin A}} = 2

Answer

Solving L.H.S. of the equation :

(cos3A+sin3A)(cos A - sin A)+(cos3Asin3A)(cos A + sin A)(cos A + sin A)(cos A - sin A)cos4Acos3A sin A+cos A sin3A sin4A+cos4A+cos3A sin A sin3A cos Asin4Acos2Asin2A2 cos4A2 sin4Acos2Asin2A2(cos4A sin4A)cos2Asin2A2(cos2Asin2A)(cos2A+sin2A)cos2Asin2A2 (cos2A+sin2A).\Rightarrow \dfrac{(\text{cos}^3 A + \text{sin}^3 A)(\text{cos A - sin A}) + (\text{cos}^3 A - \text{sin}^3 A)(\text{cos A + sin A})}{\text{(cos A + sin A)(cos A - sin A)}} \\[1em] \Rightarrow \dfrac{\text{cos}^4 A - \text{cos}^3 A\text{ sin A} + \text{cos A sin}^3 A - \text{ sin}^4 A + \text{cos}^4 A + \text{cos}^3 A\text{ sin A} - \text{ sin}^3 A\text{ cos A} - \text{sin}^4 A}{\text{cos}^2 A - \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{2 cos}^4 A - \text{2 sin}^4 A}{\text{cos}^2 A - \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{2(cos}^4 A - \text{ sin}^4 A)}{\text{cos}^2 A - \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{2(cos}^2 A - \text{sin}^2 A)\text{(cos}^2 A + \text{sin}^2 A)}{\text{cos}^2 A - \text{sin}^2 A} \\[1em] \Rightarrow \text{2 (cos}^2 A + \text{sin}^2 A).

By formula,

cos2 A + sin2 A = 1

⇒ 2 × 1 = 2.

Since, L.H.S. = R.H.S.

Hence, proved that cos3A+sin3Acos A+ sin A+cos3Asin3Acos A - sin A\dfrac{\text{cos}^3 A + \text{sin}^3 A}{\text{cos A+ sin A}} + \dfrac{\text{cos}^3 A - \text{sin}^3 A}{\text{cos A - sin A}} = 2.

Question 2(iii)

Prove that :

tan A1 - cot A+cot A1 - tan A\dfrac{\text{tan A}}{\text{1 - cot A}} + \dfrac{\text{cot A}}{\text{1 - tan A}} = sec A cosec A + 1

Answer

By solving L.H.S. of the equation :

tan A1 - cot A+cot A1 - tan Atan A11tan A+1tan A1 - tan Atan Atan A - 1tan A+1tan A(1 - tan A)tan2Atan A - 1+1tan A(1 - tan A)tan2Atan A - 11tan A(tan A - 1)tan3A1tan A(tan A - 1)(tan A - 1)(tan2A+ tan A + 1)tan A(tan A - 1)tan2A+ tan A + 1tan Atan2Atan A+tan Atan A+1tan Atan A + 1 + cot Asin Acos A+1+cos Asin Asin2A+sin A cos A + cos2Asin A cos A.\Rightarrow \dfrac{\text{tan A}}{\text{1 - cot A}} + \dfrac{\text{cot A}}{\text{1 - tan A}} \\[1em] \Rightarrow \dfrac{\text{tan A}}{1 - \dfrac{1}{\text{tan A}}} + \dfrac{\dfrac{1}{\text{tan A}}}{\text{1 - tan A}} \\[1em] \Rightarrow \dfrac{\text{tan A}}{\dfrac{\text{tan A - 1}}{\text{tan A}}} + \dfrac{1}{\text{tan A(1 - tan A)}} \\[1em] \Rightarrow \dfrac{\text{tan}^2 A}{\text{tan A - 1}} + \dfrac{1}{\text{tan A(1 - tan A)}} \\[1em] \Rightarrow \dfrac{\text{tan}^2 A}{\text{tan A - 1}} - \dfrac{1}{\text{tan A(tan A - 1)}} \\[1em] \Rightarrow \dfrac{\text{tan}^3 A - 1}{\text{tan A(tan A - 1)}} \\[1em] \Rightarrow \dfrac{\text{(tan A - 1)(tan}^2 A + \text{ tan A + 1)}}{\text{tan A(tan A - 1)}} \\[1em] \Rightarrow \dfrac{\text{tan}^2 A + \text{ tan A + 1}}{\text{tan A}} \\[1em] \Rightarrow \dfrac{\text{tan}^2 A}{\text{tan A}} + \dfrac{\text{tan A}}{\text{tan A}} + \dfrac{1}{\text{tan A}} \\[1em] \Rightarrow \text{tan A + 1 + cot A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} + 1 + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{sin A cos A + cos}^2 A}{\text{sin A cos A}}.

By formula,

sin2 A + cos2 A = 1

1+sin A cos Asin A cos A1sin A cos A+sin A cos Asin A cos Acosec A sec A+1.\Rightarrow \dfrac{1 + \text{sin A cos A}}{\text{sin A cos A}} \\[1em] \Rightarrow \Rightarrow \dfrac{1}{\text{sin A cos A}} + \dfrac{\text{sin A cos A}}{\text{sin A cos A}} \\[1em] \Rightarrow \text{cosec A sec A} + 1.

Since, L.H.S. = R.H.S.

Hence, proved that tan A1 - cot A+cot A1 - tan A\dfrac{\text{tan A}}{\text{1 - cot A}} + \dfrac{\text{cot A}}{\text{1 - tan A}} = sec A cosec A + 1.

Question 2(iv)

Prove that :

(tan A+1cos A)2+(tan A1cos A)2=2(1 + sin2A1 - sin2A)\Big(\text{tan A} + \dfrac{1}{\text{cos A}}\Big)^2 + \Big(\text{tan A} - \dfrac{1}{\text{cos A}}\Big)^2 = 2\Big(\dfrac{\text{1 + sin}^2 A}{\text{1 - sin}^2 A}\Big)

Answer

Solving L.H.S. of the equation :

(tan A+1cos A)2+(tan A1cos A)2(sin Acos A+1cos A)2+(sin Acos A1cos A)2(sin A + 1cos A)2+(sin A - 1cos A)2sin2A+1+2 sin Acos2A+sin2A+12 sin Acos2Asin2A+1+2 sin A+sin2A+12 sin Acos2A2(1 + sin2A)cos2A\Rightarrow \Big(\text{tan A} + \dfrac{1}{\text{cos A}}\Big)^2 + \Big(\text{tan A} - \dfrac{1}{\text{cos A}}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{\text{sin A}}{\text{cos A}} + \dfrac{1}{\text{cos A}}\Big)^2 + \Big(\dfrac{\text{sin A}}{\text{cos A}} - \dfrac{1}{\text{cos A}}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{\text{sin A + 1}}{\text{cos A}}\Big)^2 + \Big(\dfrac{\text{sin A - 1}}{\text{cos A}}\Big)^2 \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + 1 + \text{2 sin A}}{\text{cos}^2 A} + \dfrac{\text{sin}^2 A + 1 - \text{2 sin A}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + 1 + \text{2 sin A} + \text{sin}^2 A + 1 - \text{2 sin A}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{2(1 + sin}^2 A)}{\text{cos}^2 A}

By formula,

cos2 A = 1 - sin2 A

2(1+sin2A1sin2A)\Rightarrow 2\Big(\dfrac{1 + \text{sin}^2 A}{1 - \text{sin}^2 A}\Big)

Since, L.H.S. = R.H.S.

Hence, proved that

(tan A+1cos A)2+(tan A1cos A)2=2(1 + sin2A1 - sin2A)\Big(\text{tan A} + \dfrac{1}{\text{cos A}}\Big)^2 + \Big(\text{tan A} - \dfrac{1}{\text{cos A}}\Big)^2 = 2\Big(\dfrac{\text{1 + sin}^2 A}{\text{1 - sin}^2 A}\Big).

Question 2(v)

Prove that :

2 sin2 A + cos4 A = 1 + sin4 A

Answer

Solving L.H.S. of the equation :

⇒ 2 sin2 A + cos4 A

⇒ 2 sin2 A + (cos2 A)2

By formula,

cos2 A = 1 - sin2 A

⇒ 2 sin2 A + (1 - sin2 A)2

⇒ 2 sin2 A + 1 + sin4 A - 2 sin2 A

⇒ 1 + sin4 A.

Since, L.H.S. = R.H.S.

Hence, proved that 2 sin2 A + cos4 A = 1 + sin4 A.

Question 2(vi)

Prove that :

sin A - sin Bcos A + cos B+cos A - cos Bsin A + sin B\dfrac{\text{sin A - sin B}}{\text{cos A + cos B}} + \dfrac{\text{cos A - cos B}}{\text{sin A + sin B}} = 0

Answer

Solving L.H.S. of the equation :

(sin A - sin B)(sin A + sin B) + (cos A - cos B)(cos A + cos B)(cos A + cos B)(sin A + sin B)=0sin2Asin2B+cos2Acos2B(cos A + cos B)(sin A + sin B)sin2A+cos2A(sin2B+cos2B)(cos A + cos B)(sin A + sin B)\Rightarrow \dfrac{\text{(sin A - sin B)(sin A + sin B) + (cos A - cos B)(cos A + cos B)}}{\text{(cos A + cos B)(sin A + sin B)}} = 0 \\[1em] \Rightarrow \dfrac{\text{sin}^2 A - \text{sin}^2 B + \text{cos}^2 A - \text{cos}^2 B}{\text{(cos A + cos B)(sin A + sin B)}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A -\text{(sin}^2 B + \text{cos}^2 B)}{\text{(cos A + cos B)(sin A + sin B)}}

By formula,

sin2 θ + cos2 θ = 1

11(cos A + cos B)(sin A + sin B)0.\therefore \dfrac{1 - 1}{\text{(cos A + cos B)(sin A + sin B)}} \\[1em] \Rightarrow 0.

Since, L.H.S. = R.H.S.

Hence, proved that sin A - sin Bcos A + cos B+cos A - cos Bsin A + sin B\dfrac{\text{sin A - sin B}}{\text{cos A + cos B}} + \dfrac{\text{cos A - cos B}}{\text{sin A + sin B}} = 0.

Question 2(vii)

Prove that :

(cosec A - sin A)(sec A - cos A) = 1tan A + cot A\dfrac{1}{\text{tan A + cot A}}

Answer

Solving L.H.S. of the equation :

(cosec A - sin A)(sec A - cos A)(1sin Asin A)×(1cos Acos A)(1 - sin2Asin A)×(1 - cos2Acos A)\Rightarrow \text{(cosec A - sin A)(sec A - cos A)} \\[1em] \Rightarrow \Big(\dfrac{1}{\text{sin A}} - \text{sin A}\Big) \times \Big(\dfrac{1}{\text{cos A}} - \text{cos A}\Big) \\[1em] \Rightarrow \Big(\dfrac{\text{1 - sin}^2 A}{\text{sin A}}\Big) \times \Big(\dfrac{\text{1 - cos}^2 A}{\text{cos A}}\Big)

By formula,

1 - sin2 A = cos2 A

1 - cos2 A = sin2 A

cos2Asin A×sin2Acos Acos A sin A.\Rightarrow \dfrac{\text{cos}^2 A}{\text{sin A}} \times \dfrac{\text{sin}^2 A}{\text{cos A}} \\[1em] \Rightarrow \text{cos A sin A}.

Solving R.H.S. of the equation :

1tan A + cot A1sin Acos A+cos Asin A1sin2A+cos2Asin A cos Asin A cos Asin2A+cos2A\Rightarrow \dfrac{1}{\text{tan A + cot A}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin A cos A}}} \\[1em] \Rightarrow \dfrac{\text{sin A cos A}}{\text{sin}^2 A + \text{cos}^2 A}

By formula,

sin2 θ + cos2 θ = 1

sin A cos A1sin A cos A.\Rightarrow \dfrac{\text{sin A cos A}}{1} \\[1em] \Rightarrow \text{sin A cos A}.

Since, L.H.S. = R.H.S.

Hence, proved that (cosec A - sin A)(sec A - cos A) = 1tan A + cot A\dfrac{1}{\text{tan A + cot A}}.

Question 2(viii)

Prove that :

(1 + tan A. tan B)2 + (tan A - tan B)2 = sec2 A sec2 B

Answer

By formula,

sec2 θ = 1 + tan2 θ

Solving L.H.S. of the equation :

⇒ (1 + tan A. tan B)2 + (tan A - tan B)2

⇒ 1 + tan2 A tan2 B + 2 tan A tan B + tan2 A + tan2 B - 2 tan A tan B

⇒ 1 + tan2 A tan2 B + tan2 A + tan2 B

⇒ 1 + tan2 A + tan2 A tan2 B + tan2 B

⇒ sec2 A + tan2 B(tan2 A + 1)

⇒ sec2 A + tan2 B sec2 A

⇒ sec2 A(1 + tan2 B)

⇒ sec2 A sec2 B.

Since, L.H.S. = R.H.S.

Hence, proved that (1 + tan A. tan B)2 + (tan A - tan B)2 = sec2 A sec2 B.

Question 2(ix)

Prove that :

1cos A + sin A - 1+1cos A + sin A + 1\dfrac{1}{\text{cos A + sin A - 1}} + \dfrac{1}{\text{cos A + sin A + 1}} = cosec A + sec A

Answer

Solving L.H.S. of the equation :

cos A + sin A + 1 + cos A + sin A - 1(cos A + sin A - 1)(cos A + sin A + 1)2(cos A + sin A)(cos A + sin A)2122(cos A + sin A)cos2A+sin2A+2 cos A sin A12(cos A + sin A)11+2 cos A sin A2(cos A + sin A)2 cos A sin A(cos A + sin A)cos A sin Acos Acos A sin A+sin Acos A sin A1sin A+1cos Acosec A + sec A.\Rightarrow \dfrac{\text{cos A + sin A + 1 + cos A + sin A - 1}}{\text{(cos A + sin A - 1)(cos A + sin A + 1)}} \\[1em] \Rightarrow \dfrac{\text{2(cos A + sin A)}}{\text{(cos A + sin A)}^2 - 1^2} \\[1em] \Rightarrow \dfrac{\text{2(cos A + sin A)}}{\text{cos}^2 A + \text{sin}^2 A + \text{2 cos A sin A} - 1} \\[1em] \Rightarrow \dfrac{\text{2(cos A + sin A)}}{1 - 1 + \text{2 cos A sin A}} \\[1em] \Rightarrow \dfrac{\text{2(cos A + sin A)}}{\text{2 cos A sin A}} \\[1em] \Rightarrow \dfrac{\text{(cos A + sin A)}}{\text{cos A sin A}} \\[1em] \Rightarrow \dfrac{\text{cos A}}{\text{cos A sin A}} + \dfrac{\text{sin A}}{\text{cos A sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}} + \dfrac{1}{\text{cos A}}\\[1em] \Rightarrow \text{cosec A + sec A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1cos A + sin A - 1+1cos A + sin A + 1\dfrac{1}{\text{cos A + sin A - 1}} + \dfrac{1}{\text{cos A + sin A + 1}} = cosec A + sec A.

Question 3

If x cos A + y sin A = m and x sin A - y cos A = n, then prove that :

x2 + y2 = m2 + n2

Answer

To prove:

x2 + y2 = m2 + n2

Substituting value of m and n in R.H.S. of the equation :

= (x cos A + y sin A)2 + (x sin A - y cos A)2

= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A - 2xy sin A cos A

= x2 cos2 A + x2 sin2 A + y2 cos2 A + y2 sin2 A

= x2(sin2 A + cos2 A) + y2(sin2 A + cos2 A)

By formula,

sin2 A + cos2 A = 1

⇒ x2 × 1 + y2 × 1

⇒ x2 + y2.

Since, L.H.S. = R.H.S.

Hence, proved that x2 + y2 = m2 + n2.

Question 4

If m = a sec A + b tan A and n = a tan A + b sec A, then prove that :

m2 - n2 = a2 - b2

Answer

To prove:

m2 - n2 = a2 - b2

Substituting value of m and n in L.H.S. of the above equation :

= (a sec A + b tan A)2 - (a tan A + b sec A)2

= a2 sec2 A + b2 tan2 A + 2ab sec A tan A - (a2 tan2 A + b2 sec2 A + 2ab sec A tan A)

= a2 sec2 A - a2 tan2 A + b2tan2 A - b2 sec2 A + 2ab sec A tan A - 2ab sec A tan A

= a2 (sec2 A - tan2 A) + b2 (tan2 A - sec2 A)

= a2 (sec2 A - tan2 A) - b2 (sec2 A - tan2 A)

By formula,

sec2 A - tan2 A = 1

⇒ a2 × 1 - b2 × 1

⇒ a2 - b2

Since, L.H.S. = R.H.S.

Hence, proved that m2 - n2 = a2 - b2.

Question 5

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that :

x2 + y2 + z2 = r2

Answer

To prove:

⇒ x2 + y2 + z2 = r2

Substituting value of x, y and z in L.H.S. of the equation :

= (r sin A cos B)2 + (r sin A sin B)2 + (r cos A)2

= r2 sin2 A cos2 B + r2 sin2 A sin2 B + r2 cos2 A

= r2sin2 A(cos2 B + sin2 B) + r2 cos2 A

⇒ r2sin2 A + r2cos2 A [∵ sin2 θ + cos2 θ = 1]

⇒ r2(sin2 A + cos2 A)

⇒ r2 × 1 [∵ sin2 θ + cos2 θ = 1]

⇒ r2.

Since, L.H.S. = R.H.S.

Hence, proved that x2 + y2 + z2 = r2.

Question 6

If cos Acos B=m and cos Asin B\dfrac{\text{cos A}}{\text{cos B}} = m \text{ and } \dfrac{\text{cos A}}{\text{sin B}}= n,

show that:

(m2 + n2) cos2 B = n2

Answer

To prove:

(m2 + n2) cos2 B = n2

Substituting value of m and n in L.H.S. of the above equation :

[(cos Acos B)2+(cos Asin B)2]cos2B[cos2Acos2B+cos2Asin2B]cos2Bcos2A sin2B+cos2Acos2B cos2B sin2B×cos2Bcos2A(sin2B+cos2B)sin2B\Rightarrow \Big[\Big(\dfrac{\text{cos A}}{\text{cos B}}\Big)^2 + \Big(\dfrac{\text{cos A}}{\text{sin B}}\Big)^2\Big]\text{cos}^2 B \\[1em] \Rightarrow \Big[\dfrac{\text{cos}^2 A}{\text{cos}^2 B} + \dfrac{\text{cos}^2 A}{\text{sin}^2 B}\Big]\text{cos}^2 B \\[1em] \Rightarrow \dfrac{\text{cos}^2 A \text{ sin}^2 B + \text{cos}^2 A \text{cos}^2 B}{\text{ cos}^2 B \text{ sin}^2 B} \times \text{cos}^2 B \\[1em] \Rightarrow \dfrac{\text{cos}^2 A(\text{sin}^2 B + \text{cos}^2 B)}{\text{sin}^2 B}

By formula,

⇒ sin2 B + cos2 B = 1

cos2Asin2B(cos Asin B)2n2.\Rightarrow \dfrac{\text{cos}^2 A}{\text{sin}^2 B} \\[1em] \Rightarrow \Big(\dfrac{\text{cos A}}{\text{sin B}}\Big)^2 \\[1em] \Rightarrow n^2.

Since, L.H.S. = R.H.S.

Hence, proved that (m2 + n2) cos2 B = n2.

Exercise 21(C)

Question 1(a)

sin2 A + sin2 (90° - A) is equal to :

  1. -1

  2. 1

  3. 2

  4. -2

Answer

sin (90° - A) = cos A

To prove:

sin2 A + sin2 (90° - A)

⇒ sin2 A + cos2 A

⇒ 1.

Hence, Option 2 is the correct option.

Question 1(b)

In a triangle ABC, sec C+A2\dfrac{C + A}{2} is equal to :

  1. cosec B2\dfrac{B}{2}

  2. sec B2\dfrac{B}{2}

  3. cosec B+A2\dfrac{B + A}{2}

  4. none of these

Answer

In triangle ABC,

By angle sum property of triangle,

⇒ A + B + C = 180°

⇒ A + C = 180° - B

A+C2=180°B2\dfrac{A + C}{2} = \dfrac{180° - B}{2} ........(1)

Substituting value of A+C2\dfrac{A + C}{2} in sec C+A2\dfrac{C + A}{2}, we get :

sec C+A2sec 180°B2sec (90°B2)cosec B2.\Rightarrow \text{sec } \dfrac{C + A}{2} \\[1em] \Rightarrow \text{sec } \dfrac{180° - B}{2} \\[1em] \Rightarrow \text{sec } \Big(90° - \dfrac{B}{2}\Big) \\[1em] \Rightarrow \text{cosec } \dfrac{B}{2}.

Hence, Option 1 is the correct option.

Question 1(c)

cot 46°tan 44°3sec 20°cosec 70°\dfrac{\text{cot 46°}}{\text{tan 44°}} - 3 \dfrac{\text{sec 20°}}{\text{cosec 70°}} + 5 is equal to :

  1. -3

  2. 4

  3. 3

  4. -4

Answer

Solving,

cot 46°tan 44°3sec 20°cosec 70°+5cot (90° - 44°)tan 44°3sec (90° - 70°)cosec 70°+5tan 44°tan 44°3cosec 70°cosec 70°+513×1+513+53.\Rightarrow \dfrac{\text{cot 46°}}{\text{tan 44°}} - 3 \dfrac{\text{sec 20°}}{\text{cosec 70°}} + 5 \\[1em] \Rightarrow \dfrac{\text{cot (90° - 44°)}}{\text{tan 44°}} - 3 \dfrac{\text{sec (90° - 70°)}}{\text{cosec 70°}} + 5 \\[1em] \Rightarrow \dfrac{\text{tan 44°}}{\text{tan 44°}} - 3 \dfrac{\text{cosec 70°}}{\text{cosec 70°}} + 5 \\[1em] \Rightarrow 1 - 3 \times 1 + 5 \\[1em] \Rightarrow 1 - 3 + 5 \\[1em] \Rightarrow 3.

Hence, Option 3 is the correct option.

Question 1(d)

sin 67° . cos 23° + cos 67° . sin 23° is equal to :

  1. -1

  2. 2 sin 67°

  3. 2 cos 23°

  4. 1

Answer

Solving,

⇒ sin 67° . cos 23° + cos 67° . sin 23°

⇒ sin 67° . cos (90° - 67°) + cos 67° . sin (90° - 67°)

⇒ sin 67° . sin 67° + cos 67° . cos 67°

⇒ sin2 67° + cos2 67°

⇒ 1.

Hence, Option 4 is the correct option.

Question 1(e)

cos θ. cos (90° - θ)tan (90° - θ)\dfrac{\text{cos θ. cos (90° - θ)}}{\text{tan (90° - θ)}} is equivalent to :

  1. cos2 θ - 1

  2. sin2 θ

  3. sin2 θ - cos2 θ

  4. sin2 θ - 1

Answer

Solving,

cos θ. cos (90° - θ)tan (90° - θ)cos θ . sin θcot θcos θ . sin θcos θsin θcos θ . sin θ . sin θcos θsin2θ.\Rightarrow \dfrac{\text{cos θ. cos (90° - θ)}}{\text{tan (90° - θ)}} \\[1em] \Rightarrow \dfrac{\text{cos θ . sin θ}}{\text{cot θ}} \\[1em] \Rightarrow \dfrac{\text{cos θ . sin θ}}{\dfrac{\text{cos θ}}{\text{sin θ}}} \\[1em] \Rightarrow \dfrac{\text{cos θ . sin θ . sin θ}}{\text{cos θ}} \\[1em] \Rightarrow \text{sin}^2 θ.

Hence, Option 2 is the correct option.

Question 2(i)

Show that :

tan 10° tan 15° tan 75° tan 80° = 1

Answer

Solving L.H.S. of the equation :

⇒ tan 10° tan 15° tan 75° tan 80°

⇒ tan 10° tan 15° tan (90 - 15)° tan (90 - 10)°

By formula,

tan (90° - A) = cot A

⇒ tan 10° tan 15° cot 15° cot 10°

⇒ tan 10° × tan 15° ×1tan 15°×1tan 10°\times \dfrac{1}{\text{tan 15°}} \times \dfrac{1}{\text{tan 10°}}

⇒ 1.

Since, L.H.S. = R.H.S.

Hence, proved that tan 10° tan 15° tan 75° tan 80° = 1.

Question 2(ii)

Show that :

sin 42° sec 48° + cos 42° cosec 48° = 2

Answer

Solving L.H.S. of the equation :

⇒ sin 42° sec (90 - 42)° + cos 42° cosec (90 - 42)°

By formula,

sec (90° - A) = cosec A and cosec (90° - A) = sec A.

⇒ sin 42° cosec 42° + cos 42° sec 42°

⇒ sin 42° ×1sin 42°\times \dfrac{1}{\text{sin 42°}} + cos 42° ×1cos 42°\times \dfrac{1}{\text{cos 42°}}

⇒ 1 + 1

⇒ 2.

Since, L.H.S. = R.H.S.

Hence, proved that sin 42° sec 48° + cos 42° cosec 48° = 2.

Question 3

Express each of the following in terms of angles between 0° and 45° :

(i) sin 59° + tan 63°

(ii) cosec 68° + cot 72°

Answer

(i) Solving,

⇒ sin 59° + tan 63°

⇒ sin (90 - 31)° + tan (90 - 27)°

By formula,

sin (90° - A) = cos A and tan (90° - A) = cot A.

⇒ cos 31° + cot 27°.

Hence, sin 59° + tan 63° = cos 31° + cot 27°.

(ii) Solving,

⇒ cosec 68° + cot 72°

⇒ cosec (90 - 22)° + cot (90 - 18)°

By formula,

cosec (90° - A) = sec A and cot (90° - A) = tan A.

⇒ sec 22° + tan 18°.

Hence, cosec 68° + cot 72° = sec 22° + tan 18°.

Question 4(i)

Show that :

sin Asin(90° - A)+cos Acos(90° - A)\dfrac{\text{sin A}}{\text{sin(90° - A)}} + \dfrac{\text{cos A}}{\text{cos(90° - A)}} = sec A cosec A

Answer

To prove:

sin Asin(90° - A)+cos Acos(90° - A)\dfrac{\text{sin A}}{\text{sin(90° - A)}} + \dfrac{\text{cos A}}{\text{cos(90° - A)}} = sec A cosec A

By formula,

sin (90° - A) = cos A and cos (90° - A) = sin A.

Substituting above values in L.H.S. :

sin Acos A+cos Asin Asin2A+cos2Asin A cos A\Rightarrow \dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin A cos A}}

By formula,

sin2 A + cos2 A = 1

1sin A cos A1sin A×1cos Acosec A sec A.\Rightarrow \dfrac{1}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}} \times \dfrac{1}{\text{cos A}} \\[1em] \Rightarrow \text{cosec A sec A}.

Since, L.H.S. = R.H.S.

Hence, proved that sin Asin(90° - A)+cos Acos(90° - A)\dfrac{\text{sin A}}{\text{sin(90° - A)}} + \dfrac{\text{cos A}}{\text{cos(90° - A)}} = sec A cosec A.

Question 4(ii)

Show that :

sin A cos A - sin A cos (90° - A) cos Asec (90° - A)cos A sin (90° - A) sin Acosec (90° - A)\dfrac{\text{sin A cos (90° - A) cos A}}{\text{sec (90° - A)}} - \dfrac{\text{cos A sin (90° - A) sin A}}{\text{cosec (90° - A)}} = 0

Answer

By formula,

cos (90° - A) = sin A, sec (90° - A) = cosec A, cosec (90° - A) = sec A and sin (90° - A) = cos A.

sin A cos Asin A sin A cos Acosec Acos A cos A sin Asec Asin A cos Asin2Acos A1sin Acos2Asin A1cos Asin A cos Asin3A cos Acos3Asin Asin A cos Asin A cos A(sin2A+cos2A)\Rightarrow \text{sin A cos A} - \dfrac{\text{sin A sin A cos A}}{\text{cosec A}} - \dfrac{\text{cos A cos A sin A}}{\text{sec A}} \\[1em] \Rightarrow \text{sin A cos A} - \dfrac{\text{sin}^2 A \text{cos A}}{\dfrac{1}{\text{sin A}}} - \dfrac{\text{cos}^2 A \text{sin A}}{\dfrac{1}{\text{cos A}}} \\[1em] \Rightarrow \text{sin A cos A} - \text{sin}^3 A \text{ cos A} - \text{cos}^3 A \text{sin A} \\[1em] \Rightarrow \text{sin A cos A} - \text{sin A cos A}(\text{sin}^2 A + \text{cos}^2 A)

By formula,

sin2 A + cos2 A = 1.

sin A cos Asin A cos A0.\Rightarrow \text{sin A cos A} - \text{sin A cos A} \\[1em] \Rightarrow 0.

Since, L.H.S. = R.H.S.

Hence, proved that sin A cos A - sin A cos (90° - A) cos Asec (90° - A)cos A sin (90° - A) sin Acosec (90° - A)\dfrac{\text{sin A cos (90° - A) cos A}}{\text{sec (90° - A)}} - \dfrac{\text{cos A sin (90° - A) sin A}}{\text{cosec (90° - A)}} = 0.

Question 5

For triangle ABC, show that :

(i) sin A+B2=cosC2\dfrac{A + B}{2} = \text{cos} \dfrac{C}{2}

(ii) tan B+C2=cotA2\dfrac{B + C}{2} = \text{cot} \dfrac{A}{2}

Answer

(i) In triangle ABC,

⇒ ∠A + ∠B + ∠C = 180° [By angle sum property of triangle]

⇒ ∠A + ∠B = 180° - ∠C .........(1)

Given equation,

sin A+B2=cosC2\dfrac{A + B}{2} = \text{cos} \dfrac{C}{2}

Substituting value of (A + B) from (1) in L.H.S. of above equation :

sin180°C2sin(90°C2)\Rightarrow \text{sin} \dfrac{180° - C}{2} \\[1em] \Rightarrow \text{sin} \Big(90° - \dfrac{C}{2}\Big)

By formula,

sin(90° - θ) = cos θ

cosC2\therefore \text{cos} \dfrac{C}{2}.

Since, L.H.S. = R.H.S.

Hence, proved that sin A+B2=cosC2\dfrac{A + B}{2} = \text{cos} \dfrac{C}{2}.

(ii) In triangle ABC,

⇒ ∠A + ∠B + ∠C = 180° [By angle sum property of triangle]

⇒ ∠B + ∠C = 180° - ∠A .........(1)

Given equation,

tan B+C2=cotA2\dfrac{B + C}{2} = \text{cot} \dfrac{A}{2}

Substituting value of (B + C) from (1) in L.H.S. of above equation :

tan180°A2tan (90°A2)\Rightarrow \text{tan} \dfrac{180° - A}{2} \\[1em] \Rightarrow \text{tan } \Big(90° - \dfrac{A}{2}\Big)

By formula,

tan(90° - θ) = cot θ

cotA2\Rightarrow \text{cot} \dfrac{A}{2}.

Since, L.H.S. = R.H.S.

Hence, proved that tan B+C2=cotA2\dfrac{B + C}{2} = \text{cot} \dfrac{A}{2}.

Question 6(i)

Evaluate :

3 cos 80° cosec 10° + 2 sin 59° sec 31°

Answer

Solving,

⇒ 3 cos 80° cosec 10° + 2 sin 59° sec 31°

⇒ 3 cos 80° cosec (90 - 80)° + 2 sin 59° sec (90 - 59)°

By formula,

cosec(90° - θ) = sec θ and sec(90° - θ) = cosec θ

⇒ 3 cos 80° sec 80° + 2 sin 59° cosec 59°

⇒ 3 cos 80° ×1cos 80°\times \dfrac{1}{\text{cos 80°}} + 2 sin 59° ×1sin 59°\times \dfrac{1}{\text{sin 59°}}

⇒ 3 + 2

⇒ 5.

Hence, 3 cos 80° cosec 10° + 2 sin 59° sec 31° = 5.

Question 6(ii)

Evaluate :

sin 80°cos 10°\dfrac{\text{sin 80°}}{\text{cos 10°}} + sin 59° sec 31°

Answer

Solving,

sin 80°cos 10°+sin 59° sec 31°sin 80°cos 10°+sin 59° sec 31°sin (90 - 10)°cos 10°+sin 59° sec (90 - 59)°\Rightarrow \dfrac{\text{sin 80°}}{\text{cos 10°}} + \text{sin 59° sec 31°} \\[1em] \Rightarrow \dfrac{\text{sin 80°}}{\text{cos 10°}} + \text{sin 59° sec 31°} \\[1em] \Rightarrow \dfrac{\text{sin (90 - 10)°}}{\text{cos 10°}} + \text{sin 59° sec (90 - 59)°}

By formula,

sin(90° - θ) = cos θ and sec(90° - θ) = cosec θ

cos 10°cos 10°+sin 59° cosec 59°1+sin 59°×1sin 59°1+12.\Rightarrow \dfrac{\text{cos 10°}}{\text{cos 10°}} + \text{sin 59° cosec 59°} \\[1em] \Rightarrow 1 + \text{sin 59°} \times \dfrac{1}{\text{sin 59°}} \\[1em] \Rightarrow 1 + 1 \\[1em] \Rightarrow 2.

Hence, sin 80°cos 10°\dfrac{\text{sin 80°}}{\text{cos 10°}} + sin 59° sec 31° = 2.

Question 6(iii)

Evaluate :

tan(55° - A) - cot(35° + A)

Answer

Solving,

⇒ tan(55° - A) - cot(35° + A)

⇒ tan[90° - (35° + A)] - cot(35° + A)

By formula,

tan(90° - θ) = cot θ

⇒ cot(35° + A) - cot(35° + A)

⇒ 0.

Hence, tan(55° - A) - cot(35° + A) = 0

Question 6(iv)

Evaluate :

cosec (65° + A) - sec (25° - A)

Answer

Solving,

⇒ cosec (65° + A) - sec (25° - A)

⇒ cosec [90° - (25° - A)] - sec (25° - A)

By formula,

cosec(90° - θ) = sec θ

⇒ sec (25° - A) - sec (25° - A)

⇒ 0.

Hence, cosec (65° + A) - sec (25° - A) = 0.

Question 6(v)

Evaluate :

2tan 57°cot 33°cot 70°tan 20°22\dfrac{\text{tan 57°}}{\text{cot 33°}} - \dfrac{\text{cot 70°}}{\text{tan 20°}} - \sqrt{2}cos 45°

Answer

Solving,

2tan 57°cot 33°cot 70°tan 20°2cos 45°2tan 57°cot (90° - 57°)cot 70°tan (90° - 70°)2×12\Rightarrow 2\dfrac{\text{tan 57°}}{\text{cot 33°}} - \dfrac{\text{cot 70°}}{\text{tan 20°}} - \sqrt{2}\text{cos 45°} \\[1em] \Rightarrow 2\dfrac{\text{tan 57°}}{\text{cot (90° - 57°)}} - \dfrac{\text{cot 70°}}{\text{tan (90° - 70°)}} - \sqrt{2}\times \dfrac{1}{\sqrt{2}}

By formula,

tan(90° - θ) = cot θ and cot(90° - θ) = tan θ

2×tan 57°tan 57°cot 70°cot 70°12110.\Rightarrow 2 \times \dfrac{\text{tan 57°}}{\text{tan 57°}} - \dfrac{\text{cot 70°}}{\text{cot 70°}} - 1 \\[1em] \Rightarrow 2 - 1 - 1 \\[1em] \Rightarrow 0.

Hence, 2tan 57°cot 33°cot 70°tan 20°22\dfrac{\text{tan 57°}}{\text{cot 33°}} - \dfrac{\text{cot 70°}}{\text{tan 20°}} - \sqrt{2}cos 45° = 0.

Question 6(vi)

Evaluate :

cot241°tan249°2sin275°cos215°\dfrac{\text{cot}^2 41°}{\text{tan}^2 49°} - 2\dfrac{\text{sin}^2 75°}{\text{cos}^2 15°}

Answer

Solving,

cot241°tan249°2sin275°cos215°cot241°tan2(90°41°)2sin275°cos2(90°75°)\Rightarrow \dfrac{\text{cot}^2 41°}{\text{tan}^2 49°} - 2\dfrac{\text{sin}^2 75°}{\text{cos}^2 15°} \\[1em] \Rightarrow \dfrac{\text{cot}^2 41°}{\text{tan}^2 (90° - 41°)} - 2\dfrac{\text{sin}^2 75°}{\text{cos}^2 (90° - 75°)}

By formula,

tan (90° - θ) = cot θ and cos (90° - θ) = sin θ

cot241°cot241°2sin275°sin275°121.\Rightarrow \dfrac{\text{cot}^2 41°}{\text{cot}^2 41°} - 2\dfrac{\text{sin}^2 75°}{\text{sin}^2 75°} \\[1em] \Rightarrow 1 - 2 \\[1em] \Rightarrow -1.

Hence, cot241°tan249°2sin275°cos215°\dfrac{\text{cot}^2 41°}{\text{tan}^2 49°} - 2\dfrac{\text{sin}^2 75°}{\text{cos}^2 15°} = -1

Question 6(vii)

cos 70°sin 20°+cos 59°sin 31°8 sin230°\dfrac{\text{cos 70°}}{\text{sin 20°}} + \dfrac{\text{cos 59°}}{\text{sin 31°}} - \text{8 sin}^2 30°

Answer

Solving,

cos 70°sin 20°+cos 59°sin 31°8 sin230°cos 70°sin (90° - 70°)+cos 59°sin (90° - 59°)8 sin230°\Rightarrow \dfrac{\text{cos 70°}}{\text{sin 20°}} + \dfrac{\text{cos 59°}}{\text{sin 31°}} - \text{8 sin}^2 30° \\[1em] \Rightarrow \dfrac{\text{cos 70°}}{\text{sin (90° - 70°)}} + \dfrac{\text{cos 59°}}{\text{sin (90° - 59°)}} - \text{8 sin}^2 30°

By formula,

sin (90° - θ) = cos θ.

cos 70°cos 70°+cos 59°cos 59°8×(12)21+18×14220.\Rightarrow \dfrac{\text{cos 70°}}{\text{cos 70°}} + \dfrac{\text{cos 59°}}{\text{cos 59°}} - 8 \times \Big(\dfrac{1}{2}\Big)^2 \\[1em] \Rightarrow 1 + 1 - 8\times \dfrac{1}{4} \\[1em] \Rightarrow 2 - 2 \\[1em] \Rightarrow 0.

Hence, cos 70°sin 20°+cos 59°sin 31°8 sin230°\dfrac{\text{cos 70°}}{\text{sin 20°}} + \dfrac{\text{cos 59°}}{\text{sin 31°}} - \text{8 sin}^2 30° = 0.

Question 7

A triangle ABC is right angled at B; find the value of sec A. cosec C - tan A. cot Csin B\dfrac{\text{sec A. cosec C - tan A. cot C}}{\text{sin B}}

Answer

In triangle ABC,

⇒ ∠A + ∠B + ∠C = 180°

⇒ ∠A + 90° + ∠C = 180°

⇒ ∠A + ∠C = 90°

⇒ ∠A = 90° - ∠C.

Substituting value of A in sec A. cosec C - tan A. cot Csin B\dfrac{\text{sec A. cosec C - tan A. cot C}}{\text{sin B}} we get,

sec (90° - C). cosec C - tan (90° - C). cot Csin 90°\Rightarrow \dfrac{\text{sec (90° - C). cosec C - tan (90° - C). cot C}}{\text{sin 90°}}

By formula,

tan (90° - C) = cot c, sec (90° - C) = cosec C and cosec2 C - cot2 C = 1.

cosec C. cosec C - cot C. cot C1cosec2Ccot2C1.\Rightarrow \dfrac{\text{cosec C. cosec C - cot C. cot C}}{1} \\[1em] \Rightarrow \text{cosec}^2 C - \text{cot}^2 C \\[1em] \Rightarrow 1.

Hence, sec A. cosec C - tan A. cot Csin B\dfrac{\text{sec A. cosec C - tan A. cot C}}{\text{sin B}} = 1.

Question 8(i)

Find value of x, if :

sin x = sin 60° cos 30° + cos 60° sin 30°

Answer

Solving,

sin x=32×32+12×12sin x=34+14sin x=44sin x=1sin x=sin 90°x=90°.\Rightarrow \text{sin x} = \dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{3}}{2} + \dfrac{1}{2} \times \dfrac{1}{2} \\[1em] \Rightarrow \text{sin x} = \dfrac{3}{4} + \dfrac{1}{4} \\[1em] \Rightarrow \text{sin x} = \dfrac{4}{4} \\[1em] \Rightarrow \text{sin x} = 1 \\[1em] \Rightarrow \text{sin x} = \text{sin 90°} \\[1em] \Rightarrow x = 90°.

Hence, x = 90°.

Question 8(ii)

Find value of x, if :

cos x = cos 60° cos 30° - sin 60° sin 30°

Answer

Solving,

cos x=12×3232×12cos x=3434cos x=0cos x=cos 90°x=90°.\Rightarrow \text{cos x} = \dfrac{1}{2} \times \dfrac{\sqrt{3}}{2} - \dfrac{\sqrt{3}}{2} \times \dfrac{1}{2} \\[1em] \Rightarrow \text{cos x} = \dfrac{\sqrt{3}}{4} - \dfrac{\sqrt{3}}{4} \\[1em] \Rightarrow \text{cos x} = 0 \\[1em] \Rightarrow \text{cos x} = \text{cos 90°} \\[1em] \Rightarrow x = 90°.

Hence, x = 90°.

Question 8(iii)

Find value of x, if :

tan x = tan 60° - tan 30°1 + tan 60° tan 30°\dfrac{\text{tan 60° - tan 30°}}{\text{1 + tan 60° tan 30°}}

Answer

Solving,

tan x=tan 60° - tan 30°1 + tan 60° tan 30°tan x=3131+3×13tan x=3131+1tan x=232tan x=13tan x=tan 30°x=30°.\Rightarrow \text{tan x} = \dfrac{\text{tan 60° - tan 30°}}{\text{1 + tan 60° tan 30°}} \\[1em] \Rightarrow \text{tan x} = \dfrac{\sqrt{3} - \dfrac{1}{\sqrt{3}}}{1 + \sqrt{3} \times \dfrac{1}{\sqrt{3}}} \\[1em] \Rightarrow \text{tan x} = \dfrac{\dfrac{3 - 1}{\sqrt{3}}}{1 + 1} \\[1em] \Rightarrow \text{tan x} = \dfrac{\dfrac{2}{\sqrt{3}}}{2} \\[1em] \Rightarrow \text{tan x} = \dfrac{1}{\sqrt{3}} \\[1em] \Rightarrow \text{tan x} = \text{tan 30°} \\[1em] \Rightarrow x = 30°.

Hence, x = 30°.

Question 8(iv)

Find value of x, if :

sin 3x = 2 sin 30° cos 30°

Answer

Solving,

⇒ sin 3x = 2 sin 30° cos 30°

⇒ sin 3x = 2 ×12×32\times \dfrac{1}{2} \times \dfrac{\sqrt{3}}{2}

⇒ sin 3x = 32\dfrac{\sqrt{3}}{2}

⇒ sin 3x = sin 60°

⇒ 3x = 60°

⇒ x = 60°3\dfrac{60°}{3} = 20°.

Hence, x = 20°.

Question 8(v)

Find value of x, if :

cos(2x - 6°) = cos2 30° - cos2 60°

Answer

Solving,

⇒ cos(2x - 6°) = cos2 30° - cos2 60°

⇒ cos(2x - 6°) = (32)2(12)2\Big(\dfrac{\sqrt{3}}{2}\Big)^2 - \Big(\dfrac{1}{2}\Big)^2

⇒ cos(2x - 6°) = 3414\dfrac{3}{4} - \dfrac{1}{4}

⇒ cos(2x - 6°) = 24\dfrac{2}{4}

⇒ cos(2x - 6°) = 12\dfrac{1}{2}

⇒ cos(2x - 6°) = cos 60°

⇒ 2x - 6° = 60°

⇒ 2x = 66°

⇒ x = 33°.

Hence, x = 33°.

Question 9

In each case given below, find the value of angle A, where 0° ≤ A ≤ 90°.

(i) sin (90° - 3A). cosec 42° = 1

(ii) cos (90° - A). sec 77° = 1

Answer

(i) Given,

⇒ sin (90° - 3A). cosec 42° = 1

⇒ sin (90° - 3A) × 1sin 42°\dfrac{1}{\text{sin 42°}} = 1

⇒ sin (90° - 3A) = sin 42°

⇒ 90° - 3A = 42°

⇒ 3A = 90° - 42°

⇒ 3A = 48°

⇒ A = 16°.

Hence, A = 16°.

(ii) Given,

⇒ cos (90° - A). sec 77° = 1

⇒ cos (90° - A) × 1cos 77°\dfrac{1}{\text{cos 77°}} = 1

⇒ cos (90° - A) = cos 77°

⇒ 90° - A = 77°

⇒ A = 90° - 77°

⇒ A = 13°.

Hence, A = 13°.

Question 10(i)

Prove that :

cos(90° - θ) cos θcot θ\dfrac{\text{cos(90° - θ) cos θ}}{\text{cot θ}} = 1 - cos2 θ

Answer

By formula,

cos (90° - θ) = sin θ.

Solving L.H.S. of the equation

cos(90° - θ) cos θcot θsin θ cos θcos θsin θsin2θ1 - cos2θ.\Rightarrow \dfrac{\text{cos(90° - θ) cos θ}}{\text{cot θ}} \\[1em] \Rightarrow \dfrac{\text{sin θ cos θ}}{\dfrac{\text{cos θ}}{\text{sin θ}}} \\[1em] \Rightarrow \text{sin}^2 θ \\[1em] \Rightarrow \text{1 - cos}^2 θ.

Since, L.H.S. = R.H.S.

Hence, proved that cos(90° - θ) cos θcot θ\dfrac{\text{cos(90° - θ) cos θ}}{\text{cot θ}} = 1 - cos2 θ.

Question 11

Evaluate :

sin 35° cos 55° + cos 35° sin 55°cosec210°tan280°\dfrac{\text{sin 35° cos 55° + cos 35° sin 55°}}{\text{cosec}^2 10° - \text{tan}^2 80°}

Answer

Solving,

sin 35° cos 55° + cos 35° sin 55°cosec210°tan280°sin 35° cos (90° - 35°) + cos 35° sin (90° - 35°)cosec210°tan2(90°10°)\Rightarrow \dfrac{\text{sin 35° cos 55° + cos 35° sin 55°}}{\text{cosec}^2 10° - \text{tan}^2 80°} \\[1em] \Rightarrow \dfrac{\text{sin 35° cos (90° - 35°) + cos 35° sin (90° - 35°)}}{\text{cosec}^2 10° - \text{tan}^2 (90° - 10°)}

By formula,

sin(90° - θ) = cos θ, cos(90° - θ) = sin θ and tan(90° - θ) = cot θ.

sin 35° sin 35° + cos 35° cos 35°cosec210°cot210°sin235°+cos235°cosec210°cot210°\Rightarrow \dfrac{\text{sin 35° sin 35° + cos 35° cos 35°}}{\text{cosec}^2 10° - \text{cot}^2 10°} \\[1em] \Rightarrow \dfrac{\text{sin}^2 35° + \text{cos}^2 35°}{\text{cosec}^2 10° - \text{cot}^2 10°}

By formula,

sin2 θ + cos2 θ = 1 and cosec2 θ - cot2 θ = 1.

11\Rightarrow \dfrac{1}{1}

⇒ 1.

Hence, sin 35° cos 55° + cos 35° sin 55°cosec210°tan280°\dfrac{\text{sin 35° cos 55° + cos 35° sin 55°}}{\text{cosec}^2 10° - \text{tan}^2 80°} = 1.

Question 12

Evaluate :

sin2 34° + sin2 56° + 2 tan 18° tan 72° - cot2 30°

Answer

Solving,

⇒ sin2 34° + sin2 56° + 2 tan 18° tan 72° - cot2 30°

⇒ sin2 34° + sin2 (90° - 34°) + 2 tan 18° tan (90° - 18°) - cot2 30°

By formula,

sin(90° - A) = cos A and tan(90° - A) = cot A

⇒ sin2 34° + cos2 34° + 2 tan 18° cot 18° - cot2 30°

By formula,

sin2 θ + cos2 θ = 1

⇒ 1 + 2 tan 18° ×1tan 18°(3)2\times \dfrac{1}{\text{tan 18°}} - (\sqrt{3})^2

⇒ 1 + 2 - 3

⇒ 3 - 3

⇒ 0.

Hence, sin2 34° + sin2 56° + 2 tan 18° tan 72° - cot2 30° = 0.

Question 13

Evaluate :

cosec2 57° - tan2 33° + cos 44° cosec 46° - 2\sqrt{2} cos 45° - tan2 60°

Answer

Solving,

⇒ cosec2 57° - tan2 33° + cos 44° cosec 46° - 2\sqrt{2} cos 45° - tan2 60°

⇒ cosec2 57° - tan2 (90° - 57°) + cos 44° cosec (90° - 44°) - 2×12(3)2\sqrt{2} \times \dfrac{1}{\sqrt{2}} - (\sqrt{3})^2

By formula,

tan(90° - A) = cot A and cosec(90° - A) = sec A

⇒ cosec2 57° - cot2 57° + cos 44° sec 44° - 1 - 3

By formula,

cosec2 A - cot2 A = 1

⇒ 1 + cos 44° ×1cos 44°\times \dfrac{1}{\text{cos 44°}} - 1 - 3

⇒ 1 + 1 - 1 - 3

⇒ -2.

Hence, cosec2 57° - tan2 33° + cos 44° cosec 46° - 2\sqrt{2} cos 45° - tan2 60° = -2.

Exercise 21(D)

Question 1(a)

If 2 sin θ = 3\sqrt{3}, then :

  1. 2 cos θ + 1 = 0

  2. 1 - sin θ = 0

  3. cos θ = 3\sqrt{3}

  4. 2 cos θ = 1

Answer

Given,

⇒ 2 sin θ = 3\sqrt{3}

⇒ sin θ = 32\dfrac{\sqrt{3}}{2}

⇒ sin θ = sin 60°

⇒ θ = 60°

⇒ cos θ = cos 60°

⇒ 2 cos θ = 2 cos 60°

⇒ 2 cos θ = 2×122 \times \dfrac{1}{2}

⇒ 2 cos θ = 1.

Hence, Option 4 is the correct option.

Question 1(b)

If cos 62° 40' = x, the value of 1 + sin2 27° 20' is :

  1. 1 + x2

  2. 1 - x2

  3. x2 - 1

  4. 1 + x

Answer

Given,

⇒ cos 62° 40' = x

⇒ cos (90° - 27° 20') = x

⇒ sin 27° 20' = x

Substituting value of sin 27° 20' in 1 + sin2 27° 20', we get :

⇒ 1 + sin2 27° 20' = 1 + x2.

Hence, Option 1 is the correct option.

Question 1(c)

sin θ = 0.5 implies tan θ + cot θ is equal to :

  1. 2 : 3\sqrt{3}

  2. 3\sqrt{3} : 4

  3. 4 : 3\sqrt{3}

  4. 3\sqrt{3} : 2

Answer

Given,

⇒ sin θ = 0.5

⇒ sin θ = 510\dfrac{5}{10}

⇒ sin θ = 12\dfrac{1}{2}

⇒ sin θ = sin 30°

⇒ θ = 30°.

Substituting value of θ in tan θ + cot θ, we get :

⇒ tan θ + cot θ

⇒ tan 30° + cot 30°

13+3\dfrac{1}{\sqrt{3}} + \sqrt{3}

1+33\dfrac{1 + 3}{\sqrt{3}}

43\dfrac{4}{\sqrt{3}}

⇒ 4 : 3\sqrt{3}.

Hence, Option 3 is the correct option.

Question 1(d)

If cos 63° 36' = 0.4446, the value of sin 26° 24' is :

  1. 1

  2. 1 + 0.4446

  3. 0.4446

  4. 1 - 0.4446

Answer

Given,

⇒ cos 63° 36' = 0.4446

⇒ cos (90° - 26° 24') = 0.4446

⇒ sin 26° 24' = 0.4446

Hence, Option 3 is the correct option.

Question 2

Use tables to find sine of :

(i) 21°

(ii) 34° 42'

(iii) 47° 32'

(iv) 62° 57'

Answer

(i) From table,

sin 21° = 0.3584

Hence, sin 21° = 0.3584

(ii) From table,

sin 34° 42' = 0.5693

Hence, sin 34° 42' = 0.5693

(iii) From table,

sin 47° 30' = 0.7373

Difference of 2' = 0.0004       [To add]

∴ sin 47° 32' = 0.7373 + 0.0004 = 0.7377

Hence, sin 47° 32' = 0.7377

(iv) From table,

sin 62° 54' = 0.8902

Difference of 3' = 0.0004       [To add]

∴ sin 62° 57' = 0.8902 + 0.0004 = 0.8906

Hence, sin 62° 57' = 0.8906

Question 3

Use tables to find cosine of :

(i) 2° 4'

(ii) 8° 12'

(iii) 26° 32'

(iv) 65° 41'

Answer

(i) From table,

cos 2° 6' = 0.9993

Difference of 2' = 0       [To add]

∴ cos 2° 4' = 0.9993 + 0 = 0.9993

Hence, 2° 4' = 0.9993

(ii) From table,

cos 8° 12' = 0.9898

Hence, 8° 12' = 0.9898

(iii) From table,

cos 26° 30' = 0.8949

Difference of 2' = 0.0003       [To subtract]

∴ cos 26° 32' = 0.8949 - 0.0003 = 0.8946

Hence, 26° 32' = 0.8946

(iv) From table,

cos 65° 42' = 0.4115

Difference of 1' = 0.0003       [To add]

∴ cos 65° 41' = 0.4115 + 0.0003 = 0.4118

Hence, 65° 41' = 0.4118

Question 4

Use trigonometric tables to find tangent of :

(i) 37°

(ii) 42° 18'

Answer

(i) From table,

tan 37° = 0.7536

Hence, tan 37° = 0.7536

(ii) From table,

tan 42° 18' = 0.9099

Hence, tan 42° 18' = 0.9099

Question 5

Use tables to find the acute angle θ, if the value of sin θ is :

(i) 0.4848

(ii) 0.3827

Answer

(i) Let sin θ = 0.4848

From table,

sin 29° = 0.4848

⇒ θ = 29°.

Hence, θ = 29°.

(ii) Let sin θ = 0.3827

From graph,

sin 22° 30' = 0.3827

θ = 22° 30'.

Hence, θ = 22° 30'.

Question 6

Use tables to find the acute angle θ, if the value of cos θ is :

(i) 0.9848

(ii) 0.9574

Answer

(i) Let cos θ = 0.9848

From graph,

cos 10° = 0.9848

θ = 10°.

Hence, θ = 10°.

(ii) Let cos θ = 0.9574

From graph,

cos 16° 48' = 0.9573

cos θ - cos 16° 48' = 0.9574 - 0.9573 = 0.0004

From table,

Difference of 1' = 0.0004 [To subtract]

∴ θ = 16° 48' - 1' = 16° 47'.

Hence, θ = 16° 47'.

Question 7

Use tables to find the acute angle θ, if the value of tan θ is :

(i) 0.2419

(ii) 0.4741

Answer

(i) Let tan θ = 0.2419

From table,

tan 13° 36' = 0.2419

θ = 13° 36'.

Hence, θ = 13° 36'.

(ii) Let tan θ = 0.4741

From table,

tan 25° 18' = 0.4727

tan θ - tan 25° 18' = 0.4741 - 0.4727 = 0.0014

From table,

Difference of 4' = 0.0014

∴ θ = 25° 18' + 4' = 25° 22'.

Hence, θ = 25° 22'.

Test Yourself

Question 1(a)

For the given figure, which of the following conditions is true :

  1. cot γ < cot β

  2. cot γ > cot α

  3. cot β > cot α

  4. cot β < cot γ

For the given figure, which of the following conditions is true : Trigonometrical identities, Concise Mathematics Solutions ICSE Class 10.

Answer

From figure,

cot α = OAAB\dfrac{OA}{AB}

cot β = OAAC\dfrac{OA}{AC}

cot γ = OAAD\dfrac{OA}{AD}

Since, AB < AC < AD

∴ cot γ < cot β < cot α

Hence, Option 1 is the correct option.

Question 1(b)

If sin A = 45\dfrac{4}{5}, the value of 1cos (90° - A)1+cos (90° - A)\sqrt{\dfrac{1 - \text{cos (90° - A)}}{1 + \text{cos (90° - A)}}} is :

  1. 1

  2. 3

  3. 12\dfrac{1}{2}

  4. 13\dfrac{1}{3}

Answer

Given,

sin A = 45\dfrac{4}{5}

We need to find the value of:

1cos (90° - A)1+cos (90° - A)\sqrt{\dfrac{1 - \text{cos (90° - A)}}{1 + \text{cos (90° - A)}}}

Solving,

1cos (90° - A)1+cos (90° - A)1sin A1+sin A1451+455455+4515951×55×91913.\Rightarrow \sqrt{\dfrac{1 - \text{cos (90° - A)}}{1 + \text{cos (90° - A)}}} \\[1em] \Rightarrow \sqrt{\dfrac{1 - \text{sin A}}{1 + \text{sin A}}} \\[1em] \Rightarrow \sqrt{\dfrac{1 - \dfrac{4}{5}}{1 + \dfrac{4}{5}}} \\[1em] \Rightarrow \sqrt{\dfrac{\dfrac{5 - 4}{5}}{\dfrac{5 + 4}{5}}} \\[1em] \Rightarrow \sqrt{\dfrac{\dfrac{1}{5}}{\dfrac{9}{5}}} \\[1em] \Rightarrow \sqrt{\dfrac{1 \times 5}{5 \times 9}} \\[1em] \Rightarrow \sqrt{\dfrac{1}{9}} \\[1em] \Rightarrow \dfrac{1}{3}.

Hence, Option 4 is the correct option.

Question 1(c)

(1 + tan2 A) × cos2 A - 1 is :

  1. 1

  2. -2

  3. 0

  4. 2

Answer

Solving,

(1+tan2A)×cos2A1(1+sin2Acos2A)×cos2A1(cos2A+sin2Acos2A)×cos2A11cos2A×cos2A1110.\Rightarrow (1 + \text{tan}^2 A) \times \text{cos}^2 A - 1 \\[1em] \Rightarrow \Big(1 + \dfrac{\text{sin}^2 A}{\text{cos}^2 A}\Big) \times \text{cos}^2 A - 1 \\[1em] \Rightarrow \Big(\dfrac{\text{cos}^2 A + \text{sin}^2 A}{\text{cos}^2 A}\Big) \times \text{cos}^2 A - 1 \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 A} \times \text{cos}^2 A - 1 \\[1em] \Rightarrow 1 - 1 \\[1em] \Rightarrow 0.

Hence, Option 3 is the correct option.

Question 1(d)

sin A tan A1cos2A\dfrac{\text{sin A tan A}}{1 - \text{cos}^2 A} is equal to :

  1. cos A

  2. sec A

  3. cosec A

  4. sin A

Answer

Solving,

sin A tan A1cos2Asin A tan Asin2Atan Asin Asin Acos Asin Asin Asin A×cos A1cos Asec A.\Rightarrow \dfrac{\text{sin A tan A}}{1 - \text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{sin A tan A}}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{tan A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin A}}{\text{cos A}}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{sin A} \times \text{cos A}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} \\[1em] \Rightarrow \text{sec A}.

Hence, Option 2 is the correct option.

Question 1(e)

For acute angles α and β, if α > β, then :

A : cos α > cos β

B : tan α > tan β

C : sin α > sin β

D : cot α > cot β

Which of the above statement/statements is/are true :

  1. A and B

  2. B and C

  3. C and D

  4. D and A

Answer

For acute angles,

Greater the angle, greater is the sine and tangent of the angle.

Since,

α > β

∴ tan α > tan β

∴ sin α > sin β.

Hence, Option 2 is the correct option.

Question 1(f)

If M = x cos A + y sin A and N = x sin A - y cos A, then M2 + N2 is :

  1. x2 - y2

  2. y2 - x2

  3. x2 + y2

  4. (x + y)2

Answer

Substituting value of M and N in M2 + N2, we get :

⇒ (x cos A + y sin A)2 + (x sin A - y cos A)2

⇒ x2 cos2 A + y2 sin2 A + 2xy sin A cos A + x2 sin2 A + y2 cos2 A - 2xy sin A cos A

⇒ x2 cos2 A + y2 sin2 A + x2 sin2 A + y2 cos2 A

⇒ x2 cos2 A + x2 sin2 A + y2 sin2 A + y2 cos2 A

⇒ x2 (sin2 A + cos2 A) + y2 (sin2 A + cos2 A)

Substituting, sin2 A + cos2 A = 1, we get :

⇒ x2 × 1 + y2 × 1

⇒ x2 + y2.

Hence, Option 3 is the correct option.

Question 1(g)

tan 60° - tan 30°1+tan 60° tan 30°\dfrac{\text{tan 60° - tan 30°}}{1 + \text{tan 60° tan 30°}} is equal to :

  1. tan 30°

  2. tan 45°

  3. tan 60°

  4. none

Answer

Solving,

tan 60° - tan 30°1+tan 60° tan 30°3131+3×133131+123222313tan 30°.\Rightarrow \dfrac{\text{tan 60° - tan 30°}}{1 + \text{tan 60° tan 30°}} \\[1em] \Rightarrow \dfrac{\sqrt{3} - \dfrac{1}{\sqrt{3}}}{1 + \sqrt{3} \times \dfrac{1}{\sqrt{3}}} \\[1em] \Rightarrow \dfrac{\dfrac{3 - 1}{\sqrt{3}}}{1 + 1} \\[1em] \Rightarrow \dfrac{\dfrac{2}{\sqrt{3}}}{2} \\[1em] \Rightarrow \dfrac{2}{2\sqrt{3}} \\[1em] \Rightarrow \dfrac{1}{\sqrt{3}} \\[1em] \Rightarrow \text{tan 30°}.

Hence, Option 1 is the correct option.

Question 1(h)

3sin 47°cos 43°tan 50°cot 40°2 sin245°3\dfrac{\text{sin 47°}}{\text{cos 43°}} - \dfrac{\text{tan 50°}}{\text{cot 40°}} - \text{2 sin}^2 45° is equal to :

  1. 0

  2. -1

  3. 1

  4. 2

Answer

Solving,

3sin 47°cos 43°tan 50°cot 40°2 sin245°3sin 47°cos (90° - 47°)tan 50°cot (90° - 50°)2 sin245°3sin 47°sin 47°tan 50°tan 50°2×(12)23×112×123111.\Rightarrow 3\dfrac{\text{sin 47°}}{\text{cos 43°}} - \dfrac{\text{tan 50°}}{\text{cot 40°}} - \text{2 sin}^2 45° \\[1em] \Rightarrow 3\dfrac{\text{sin 47°}}{\text{cos (90° - 47°)}} - \dfrac{\text{tan 50°}}{\text{cot (90° - 50°)}} - \text{2 sin}^2 45° \\[1em] \Rightarrow 3\dfrac{\text{sin 47°}}{\text{sin 47°}} - \dfrac{\text{tan 50°}}{\text{tan 50°}} - 2 \times \Big(\dfrac{1}{\sqrt{2}}\Big)^2 \\[1em] \Rightarrow 3 \times 1 - 1 - 2 \times \dfrac{1}{2} \\[1em] \Rightarrow 3 - 1 - 1 \\[1em] \Rightarrow 1.

Hence, Option 3 is the correct option.

Question 1(i)

If sin 2x = 2 sin 45° cos 45°; the value of x is :

  1. 45°

  2. 90°

  3. 30°

  4. 60°

Answer

Solving,

⇒ sin 2x = 2 sin 45° cos 45°

⇒ sin 2x = 2×12×122 \times \dfrac{1}{\sqrt{2}} \times \dfrac{1}{\sqrt{2}}

⇒ sin 2x = 2×122 \times \dfrac{1}{2}

⇒ sin 2x = 1

⇒ sin 2x = sin 90°

⇒ 2x = 90°

⇒ x = 90°2\dfrac{90°}{2} = 45°.

Hence, Option 1 is the correct option.

Question 1(j)

For acute angle θ, sec2θ = 1 - tan2θ

Assertion(A): sec2θ = 1 - tan2θ is not a trigonometric identity.

Reason(R): For an acute angle θ, the trigonometric equation is an identity, if it is satisfied for every value of angle θ.

  1. A is true, R is false.

  2. A is false, R is true.

  3. Both A and R are true and R is correct reason for A.

  4. Both A and R are true and R is incorrect reason for A.

Answer

The valid trigonometric identity;

sec2θ = 1 + tan2θ

So, assertion (A) is true.

A trigonometric identity is an equation that holds true for all values of the variable (in this case, the angle θ) within its domain.

So, reason (R) is true.

∴ Both A and R are true and R is correct reason for A.

Hence, option 3 is the correct option.

Question 1(k)

(1 + tan2 A)(1 - sin A)(1 + sin A)

Assertion(A): The value of given trigonometric expression is 0.

Reason(R): The given expression is equal to sec2 A.cos2 A

  1. A is true, R is false.

  2. A is false, R is true.

  3. Both A and R are true and R is correct reason for A.

  4. Both A and R are true and R is incorrect reason for A.

Answer

Given,

⇒ (1 + tan2 A)(1 - sin A)(1 + sin A)

⇒ (1 + tan2 A)(1 - sin2 A)

⇒ (1 + tan2 A)cos2 A

⇒ sec2 A.cos2 A

So, reason (R) are true.

1cos2A\dfrac{1}{\text{cos}^2 A} .cos2 A

⇒ 1.

So, assertion (A) is false.

∴ A is false, R is true.

Hence, option 2 is the correct option.

Question 1(l)

cos A = 32\dfrac{\sqrt{3}}{2} and sin B = 12\dfrac{1}{2}

Assertion (A): tan (A + B) = 3\sqrt{3}

Reason (R): cos A = 32\dfrac{\sqrt{3}}{2} ⇒ A = 30°

sin B = 12\dfrac{1}{2} ⇒ B = 30°

  1. A is true, R is false.

  2. A is false, R is true.

  3. Both A and R are true and R is correct reason for A.

  4. Both A and R are true and R is incorrect reason for A.

Answer

Given, cos A = 32\dfrac{\sqrt{3}}{2} and sin B = 12\dfrac{1}{2}

⇒ cos A = cos 30° and sin B = sin 30°

⇒ A = 30° and B = 30°

So, reason (R) is true.

tan(A + B) = tan(30° + 30°) = tan 60° = 3\sqrt{3}

Thus, tan (A + B) = 3\sqrt{3}

So, assertion (A) is true.

∴ Both A and R are true and R is correct reason for A.

Hence, option 3 is the correct option.

Question 1(m)

x = (cosec A + cot A)(1 - cos A)

Assertion (A): x = sin A

Reason (R): x = (1sin A+cos Asin A)(1cos A)=sin2Asin A=sin A\Big(\dfrac{1}{\text{sin A}} + \dfrac{\text{cos A}}{\text{sin A}}\Big)(1 - \text{cos A}) = \dfrac{\text{sin}^2 A}{\text{sin A}} = \text{sin A}

  1. A is true, R is false.

  2. A is false, R is true.

  3. Both A and R are true and R is correct reason for A.

  4. Both A and R are true and R is incorrect reason for A.

Answer

Given, x = (cosec A + cot A)(1 - cos A)

x=(1sin A+cos Asin A)(1cos A)=(1+cos Asin A)(1cos A)=(1+cos A)(1cos A)sin A=(1cos2Asin A)=(sin2Asin A)=sin A.\Rightarrow x = \Big(\dfrac{1}{\text{sin A}} + \dfrac{\text{cos A}}{\text{sin A}}\Big)(1 - \text{cos A})\\[1em] = \Big(\dfrac{1 + \text{cos A}}{\text{sin A}}\Big)(1 - \text{cos A})\\[1em] = \dfrac{(1 + \text{cos A})(1 - \text{cos A})}{\text{sin A}}\\[1em] = \Big(\dfrac{1 - \text{cos}^2 A}{\text{sin A}}\Big)\\[1em] = \Big(\dfrac{\text{sin}^2 A}{\text{sin A}}\Big)\\[1em] = \text{sin A}.

∴ Both A and R are true and R is correct reason for A.

Hence, option 3 is the correct option.

Question 1(n)

1sin Acos A\dfrac{1 - \text{sin A}}{\text{cos A}} = sec A - tan A

Statement (1): 1sin Acos A\dfrac{1 - \text{sin A}}{\text{cos A}} = sec A - tan A

1+sin Acos A\Rightarrow \dfrac{1 + \text{sin A}}{\text{cos A}} = sec A + tan A

Statement (2): 1sin Acos A1+sin Acos A\dfrac{1 - \text{sin A}}{\text{cos A}} - \dfrac{1 + \text{sin A}}{\text{cos A}} = 2sec A

  1. Both the statements are true.

  2. Both the statements are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given, 1sin Acos A\dfrac{1 - \text{sin A}}{\text{cos A}} = sec A - tan A

Taking L.H.S.

1sin Acos A1cos Asin Acos Asec Atan A\Rightarrow \dfrac{1 - \text{sin A}}{\text{cos A}}\\[1em] \Rightarrow \dfrac{1}{\text{cos A}} - \dfrac{\text{sin A}}{\text{cos A}}\\[1em] \Rightarrow \text{sec A} - \text{tan A}

As, L.H.S. = R.H.S., so equation is true.

Now, 1+sin Acos A\dfrac{1 + \text{sin A}}{\text{cos A}} = sec A + tan A

Taking L.H.S.

1+sin Acos A1cos A+sin Acos Asec A+tan A\Rightarrow \dfrac{1 + \text{sin A}}{\text{cos A}}\\[1em] \Rightarrow \dfrac{1}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}}\\[1em] \Rightarrow \text{sec A} + \text{tan A}

As, L.H.S. = R.H.S., so equation is true.

So, statement 1 is true.

Now, 1sin Acos A1+sin Acos A\dfrac{1 - \text{sin A}}{\text{cos A}} - \dfrac{1 + \text{sin A}}{\text{cos A}} = 2sec A

Solving L.H.S.

1sin Acos A1+sin Acos A\Rightarrow \dfrac{1 - \text{sin A}}{\text{cos A}} - \dfrac{1 + \text{sin A}}{\text{cos A}}

1cos Asin Acos A(1cos A+sin Acos A)\Rightarrow \dfrac{1}{\text{cos A}} - \dfrac{\text{sin A}}{\text{cos A}} - \Big(\dfrac{1}{\text{cos A}} + \dfrac{\text{sin A}}{\text{cos A}}\Big)

⇒ (sec A - tan A) - (sec A + tan A)

⇒ sec A - tan A - sec A - tan A

⇒ -2tan A.

As, L.H.S. ≠ R.H.S.

So, statement 2 is false.

∴ Statement 1 is true and statement 2 is false.

Hence, option 3 is the correct option.

Question 1(o)

cos2θ+11+cot2θ\text{cos}^2 θ + \dfrac{1}{1 + {\text{cot}^2 θ}} = x

Statement (1): x = 1

Statement (2): x = cos2θ+1cosec2θ\text{cos}^2 θ + \dfrac{1}{{\text{cosec}^2 θ}} = cos2 θ + sin2 θ

  1. Both the statement are true.

  2. Both the statement are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given, cos2θ+11+cot2θ\text{cos}^2 θ + \dfrac{1}{1 + {\text{cot}^2 θ}} = x

x=cos2θ+11+cot2θx=cos2θ+1cosec2θx=cos2θ+sin2θx=1\Rightarrow x = \text{cos}^2 θ + \dfrac{1}{1 + {\text{cot}^2 θ}}\\[1em] \Rightarrow x = \text{cos}^2 θ + \dfrac{1}{{\text{cosec}^2 θ}}\\[1em] \Rightarrow x = \text{cos}^2 θ + \text{sin}^2 θ\\[1em] \Rightarrow x = 1

∴ Both the statements are true.

Hence, option 1 is the correct option.

Question 1(p)

sin2θcos2θ1cos2θ\dfrac{\text{sin}^2 θ}{\text{cos}^2 θ} - \dfrac{1}{ \text{cos}^2 θ} = x

Statement (1): x = 1

Statement (2): x = sin2θ1cos2θ=cos2θcos2θ\dfrac{\text{sin}^2 θ - 1}{{\text{cos}^2 θ}} = \dfrac{-\text{cos}^2 θ}{{\text{cos}^2 θ}} = -1

  1. Both the statement are true.

  2. Both the statement are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given, sin2θcos2θ1cos2θ\dfrac{\text{sin}^2 θ}{\text{cos}^2 θ} - \dfrac{1}{ \text{cos}^2 θ} = x

x=sin2θcos2θ1cos2θx=sin2θ1cos2θx=sin2θ(sin2θ+cos2θ)cos2θx=sin2θsin2θcos2θcos2θx=cos2θcos2θx=1\Rightarrow x = \dfrac{\text{sin}^2 θ}{\text{cos}^2 θ} - \dfrac{1}{ \text{cos}^2 θ}\\[1em] \Rightarrow x = \dfrac{\text{sin}^2 θ - 1}{\text{cos}^2 θ}\\[1em] \Rightarrow x = \dfrac{\text{sin}^2 θ - (\text{sin}^2 θ + \text{cos}^2 θ)}{\text{cos}^2 θ} \\[1em] \Rightarrow x = \dfrac{\text{sin}^2 θ - \text{sin}^2 θ - \text{cos}^2 θ}{\text{cos}^2 θ}\\[1em] \Rightarrow x = \dfrac{- \text{cos}^2 θ}{\text{cos}^2 θ}\\[1em] \Rightarrow x = -1

∴ Statement 1 is false, and statement 2 is true.

Hence, option 4 is the correct option.

Question 1(q)

sin A = cos A and tan2 A + cot2 A + 2

Statement (1): A = 45°

tan2 A + cot2 A + 2 = 4

Statement (2): sin A = cos A ⇒ A = 45°

  1. Both the statement are true.

  2. Both the statement are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given, sin A = cos A

sin Acos A\dfrac{\text{sin A}}{\text{cos A}} = 1

⇒ tan A = 1

⇒ tan A = tan 45°

⇒ A = 45°

So, statement 2 is true.

Substituting value of A in tan2 A + cot2 A + 2, we get :

⇒ tan2 A + cot2 A + 2 = tan2 45° + cot2 45° + 2

= (1)2 + (1)2 + 2

= 1 + 1 + 2

= 4.

So, statement 1 is true.

∴ Both the statements are true.

Hence, option 1 is the correct option.

Question 2(i)

Prove the following identities :

1cos A + sin A+1cos A - sin A=2 cos A2 cos2A1\dfrac{1}{\text{cos A + sin A}} + \dfrac{1}{\text{cos A - sin A}} = \dfrac{\text{2 cos A}}{\text{2 cos}^2 A - 1}

Answer

Solving L.H.S. of the equation :

1cos A + sin A+1cos A - sin Acos A - sin A + cos A + sin Acos2Asin2A2 cos Acos2Asin2A\Rightarrow \dfrac{1}{\text{cos A + sin A}} + \dfrac{1}{\text{cos A - sin A}} \\[1em] \Rightarrow \dfrac{\text{cos A - sin A + cos A + sin A}}{\text{cos}^2 A - \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{2 cos A}}{\text{cos}^2 A - \text{sin}^2 A}

By formula,

sin2 A = 1 - cos2 A

2 cos Acos2A(1cos2A)2 cos A2 cos2A1.\Rightarrow \dfrac{\text{2 cos A}}{\text{cos}^2 A - (1 - \text{cos}^2 A)} \\[1em] \Rightarrow \dfrac{\text{2 cos A}}{\text{2 cos}^2 A - 1}.

Since, L.H.S. = R.H.S.

Hence, proved that 1cos A + sin A+1cos A - sin A=2 cos A2 cos2A1\dfrac{1}{\text{cos A + sin A}} + \dfrac{1}{\text{cos A - sin A}} = \dfrac{\text{2 cos A}}{\text{2 cos}^2 A - 1}.

Question 2(ii)

Prove the following identities :

1sin2A1 + cos A=cos A1 - \dfrac{\text{sin}^2 A}{\text{1 + cos A}} = \text{cos A}

Answer

By formula,

sin2 A = 1 - cos2 A

Solving L.H.S. of the equation :

11cos2A1 + cos A1(1 - cos A)(1 + cos A)1 + cos A1(1 - cos A)11+cos Acos A.\Rightarrow 1 - \dfrac{1 - \text{cos}^2 A}{\text{1 + cos A}} \\[1em] \Rightarrow 1 - \dfrac{\text{(1 - cos A)(1 + cos A)}}{\text{1 + cos A}} \\[1em] \Rightarrow 1 - (\text{1 - cos A}) \\[1em] \Rightarrow 1 - 1 + \text{cos A} \\[1em] \Rightarrow \text{cos A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1sin2A1 + cos A=cos A1 - \dfrac{\text{sin}^2 A}{\text{1 + cos A}} = \text{cos A}.

Question 2(iii)

Prove the following identities :

cos A1 + sin A+tan A = sec A\dfrac{\text{cos A}}{\text{1 + sin A}} + \text{tan A = sec A}

Answer

Solving L.H.S. of the equation :

cos A1 + sin A+tan Acos A1 + sin A+sin Acos Acos2A+sin A(1 + sin A)cos A(1 + sin A)cos2A+sin A + sin2Acos A(1 + sin A)\Rightarrow \dfrac{\text{cos A}}{\text{1 + sin A}} + \text{tan A}\\[1em] \Rightarrow \dfrac{\text{cos A}}{\text{1 + sin A}} + \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A + \text{sin A(1 + sin A)}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A + \text{sin A + sin}^2 A}{\text{cos A(1 + sin A)}}

By formula,

cos2 A + sin2 A = 1

1 + sin Acos A(1 + sin A)1cos Asec A.\Rightarrow \dfrac{\text{1 + sin A}}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} \\[1em] \Rightarrow \text{sec A}.

Since, L.H.S. = R.H.S.

Hence, proved that cos A1 + sin A+tan A = sec A\dfrac{\text{cos A}}{\text{1 + sin A}} + \text{tan A = sec A}.

Question 2(iv)

Prove the following identities :

sin A1 - cos Acot A = cosec A\dfrac{\text{sin A}}{\text{1 - cos A}} - \text{cot A = cosec A}

Answer

Solving L.H.S. of the equation :

sin A1 - cos Acot Asin A1 - cos Acos Asin Asin2Acos A(1 - cos A)sin A(1 - cos A)sin2Acos A + cos2Asin A(1 - cos A)\Rightarrow \dfrac{\text{sin A}}{\text{1 - cos A}} - \text{cot A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{1 - cos A}} - \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A - \text{cos A(1 - cos A)}}{\text{sin A(1 - cos A)}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A - \text{cos A + cos}^2 A}{\text{sin A(1 - cos A)}}

By formula,

sin2 A + cos2 A = 1

1 - cos Asin A(1 - cos A)1sin Acosec A.\Rightarrow \dfrac{\text{1 - cos A}}{\text{sin A(1 - cos A)}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}} \\[1em] \Rightarrow \text{cosec A}.

Since, L.H.S. = R.H.S.

Hence, proved that sin A1 - cos Acot A = cosec A\dfrac{\text{sin A}}{\text{1 - cos A}} - \text{cot A = cosec A}.

Question 2(v)

Prove the following identities :

1 - cos A1 + cos A=sin A1 + cos A\sqrt{\dfrac{\text{1 - cos A}}{\text{1 + cos A}}} = \dfrac{\text{sin A}}{\text{1 + cos A}}

Answer

Multiplying numerator and denominator of L.H.S. of above equation by 1+cos A\sqrt{1 + \text{cos A}} :

1cos A1 + cos A×1+cos A1+cos A1cos2A(1+cos A)2\Rightarrow \sqrt{\dfrac{1 - \text{cos A}}{\text{1 + cos A}}} \times \sqrt{\dfrac{1 + \text{cos A}}{1 + \text{cos A}}} \\[1em] \Rightarrow \sqrt{\dfrac{1 - \text{cos}^2 A}{(1 + \text{cos A})^2}}

By formula,

1 - cos2 A = sin2 A

sin2A1+cos Asin A1 + cos A.\Rightarrow \dfrac{\sqrt{\text{sin}^2 A}}{1 + \text{cos A}} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{1 + cos A}}.

Since, L.H.S. = R.H.S.

Hence, proved that 1cos A1 + cos A=sin A1 + cos A\sqrt{\dfrac{1 - \text{cos A}}{\text{1 + cos A}}} = \dfrac{\text{sin A}}{\text{1 + cos A}}.

Question 2(vi)

Prove the following identities :

1+(sec A - tan A)2cosec A (sec A - tan A)=2 tan A\dfrac{1 + \text{(sec A - tan A)}^2}{\text{cosec A (sec A - tan A)}} = \text{2 tan A}

Answer

By formula,

sec2 - tan2 A = 1

Solving L.H.S. of the equation :

1+(sec A - tan A)2cosec A (sec A - tan A)sec2Atan2A+(sec A - tan A)2cosec A (sec A - tan A)(sec A - tan A)(sec A + tan A) + (sec A - tan A)2cosec A (sec A - tan A)(sec A - tan A)[sec A + tan A + sec A - tan A]cosec A (sec A - tan A)2 sec Acosec A2×1cos A1sin A2sin Acos A2 tan A.\Rightarrow \dfrac{1 + \text{(sec A - tan A)}^2}{\text{cosec A (sec A - tan A)}} \\[1em] \Rightarrow \dfrac{\text{sec}^2 A - \text{tan}^2 A + \text{(sec A - tan A)}^2}{\text{cosec A (sec A - tan A)}} \\[1em] \Rightarrow \dfrac{\text{(sec A - tan A)(sec A + tan A) + (sec A - tan A)}^2}{\text{cosec A (sec A - tan A)}} \\[1em] \Rightarrow \dfrac{\text{(sec A - tan A)[sec A + tan A + sec A - tan A]}}{\text{cosec A (sec A - tan A)}} \\[1em] \Rightarrow \dfrac{\text{2 sec A}}{\text{cosec A}} \\[1em] \Rightarrow \dfrac{2 \times \dfrac{1}{\text{cos A}}}{\dfrac{1}{\text{sin A}}} \\[1em] \Rightarrow 2\dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \text{2 tan A}.

Since, L.H.S. = R.H.S.

Hence, proved that 1+(sec A - tan A)2cosec A (sec A - tan A)=2 tan A\dfrac{1 + \text{(sec A - tan A)}^2}{\text{cosec A (sec A - tan A)}} = \text{2 tan A}.

Question 2(vii)

Prove the following identities :

(cosec A - cot A)2+1sec A (cosec A - cot A)=2 cot A\dfrac{\text{(cosec A - cot A)}^2 + 1}{\text{sec A (cosec A - cot A)}} = \text{2 cot A}

Answer

By formula,

cosec2 A - cot2 A = 1

Solving L.H.S. of the equation :

(cosec A - cot A)2+1sec A (cosec A - cot A)(cosec A - cot A)2+cosec2Acot2Asec A (cosec A - cot A)(cosec A - cot A)2+(cosec A - cot A)(cosec A + cot A)sec A (cosec A - cot A)(cosec A - cot A)(cosec A - cot A + cosec A + cot A)sec A (cosec A - cot A)2 cosec Asec A2sin A1cos A2 cos Asin A2 cot A.\Rightarrow \dfrac{\text{(cosec A - cot A)}^2 + 1}{\text{sec A (cosec A - cot A)}} \\[1em] \Rightarrow \dfrac{\text{(cosec A - cot A)}^2 + \text{cosec}^2 A - \text{cot}^2 A}{\text{sec A (cosec A - cot A)}} \\[1em] \Rightarrow \dfrac{\text{(cosec A - cot A)}^2 + \text{(cosec A - cot A)(cosec A + cot A)}}{\text{sec A (cosec A - cot A)}} \\[1em] \Rightarrow \dfrac{\text{(cosec A - cot A)(cosec A - cot A + cosec A + cot A)}}{\text{sec A (cosec A - cot A)}} \\[1em] \Rightarrow \dfrac{\text{2 cosec A}}{\text{sec A}} \\[1em] \Rightarrow \dfrac{\dfrac{2}{\text{sin A}}}{\dfrac{1}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\text{2 cos A}}{\text{sin A}} \\[1em] \Rightarrow \text{2 cot A}.

Since, L.H.S. = R.H.S.

Hence, proved that (cosec A - cot A)2+1sec A (cosec A - cot A)=2 cot A\dfrac{\text{(cosec A - cot A)}^2 + 1}{\text{sec A (cosec A - cot A)}} = \text{2 cot A}.

Question 2(viii)

Prove the following identities :

cot2A(sec A - 11 + sin A)+sec2A(sin A - 11 + sec A)\text{cot}^2 A \Big(\dfrac{\text{sec A - 1}}{\text{1 + sin A}}\Big) + \text{sec}^2 A \Big(\dfrac{\text{sin A - 1}}{\text{1 + sec A}}\Big) = 0

Answer

Solving L.H.S. of above equation :

cot2A(sec A - 11 + sin A×sec A + 1sec A + 1)+sec2A(sin A - 11 + sec A)cot2A(sec2A1(1 + sin A)(sec A + 1))+sec2A(sin A - 11 + sec A)\Rightarrow \text{cot}^2 A \Big(\dfrac{\text{sec A - 1}}{\text{1 + sin A}}\times \dfrac{\text{sec A + 1}}{\text{sec A + 1}}\Big) + \text{sec}^2 A \Big(\dfrac{\text{sin A - 1}}{\text{1 + sec A}}\Big) \\[1em] \Rightarrow \text{cot}^2 A \Big(\dfrac{\text{sec}^2 A - 1}{\text{(1 + sin A)(sec A + 1)}}\Big) + \text{sec}^2 A \Big(\dfrac{\text{sin A - 1}}{\text{1 + sec A}}\Big)

By formula,

sec2 A - 1 = tan2 A

cot2A tan2A(1 + sin A)(sec A + 1)+sec2A(sin A - 11 + sec A)cot2A×1 cot2A(1 + sin A)(sec A + 1)+sec2A(sin A - 11 + sec A)1(1 + sin A)(sec A + 1)+sec2A(sin A - 11 + sec A)1+sec2A(sin A - 1)(1 + sin A)(1 + sin A)(sec A + 1)1sec2A(1 - sin A)(1 + sin A)(1 + sin A)(sec A + 1)1sec2A(1 - sin2A)(1 + sin A)(sec A + 1)1sec2A×cos2A(1 + sin A)(sec A + 1)11cos2A×cos2A(1 + sin A)(sec A + 1)11(1 + sin A)(sec A + 1)0.\Rightarrow \dfrac{\text{cot}^2 A \text{ tan}^2 A}{\text{(1 + sin A)(sec A + 1)}} + \text{sec}^2 A \Big(\dfrac{\text{sin A - 1}}{\text{1 + sec A}}\Big) \\[1em] \Rightarrow \dfrac{\text{cot}^2 A \times \dfrac{1}{\text{ cot}^2 A}}{\text{(1 + sin A)(sec A + 1)}} + \text{sec}^2 A \Big(\dfrac{\text{sin A - 1}}{\text{1 + sec A}}\Big) \\[1em] \Rightarrow \dfrac{1}{\text{(1 + sin A)(sec A + 1)}} + \text{sec}^2 A \Big(\dfrac{\text{sin A - 1}}{\text{1 + sec A}}\Big) \\[1em] \Rightarrow \dfrac{1 + \text{sec}^2 A\text{(sin A - 1)(1 + sin A)}}{\text{(1 + sin A)(sec A + 1)}} \\[1em] \Rightarrow \dfrac{1 - \text{sec}^2 A\text{(1 - sin A)(1 + sin A)}}{\text{(1 + sin A)(sec A + 1)}} \\[1em] \Rightarrow \dfrac{1 - \text{sec}^2 A\text{(1 - sin}^2 A)}{\text{(1 + sin A)(sec A + 1)}} \\[1em] \Rightarrow \dfrac{1 - \text{sec}^2 A \times \text{cos}^2 A}{\text{(1 + sin A)(sec A + 1)}} \\[1em] \Rightarrow \dfrac{1 - \dfrac{1}{\text{cos}^2 A} \times \text{cos}^2 A}{\text{(1 + sin A)(sec A + 1)}} \\[1em] \Rightarrow \dfrac{1 - 1}{\text{(1 + sin A)(sec A + 1)}} \\[1em] \Rightarrow 0.

Since, L.H.S. = R.H.S.

Hence, proved that cot2A(sec A - 11 + sin A)+sec2A(sin A - 11 + sec A)\text{cot}^2 A \Big(\dfrac{\text{sec A - 1}}{\text{1 + sin A}}\Big) + \text{sec}^2 A \Big(\dfrac{\text{sin A - 1}}{\text{1 + sec A}}\Big) = 0.

Question 2(ix)

Prove the following identities :

(12 sin2A)2cos4Asin4A\dfrac{(1 - \text{2 sin}^2 A)^2}{\text{cos}^4 A - \text{sin}^4 A} = 2 cos2 A - 1

Answer

Solving L.H.S. of the above equation :

(12 sin2A)2cos4Asin4A(12 sin2A)2(cos2Asin2A)(cos2A+sin2A)\Rightarrow \dfrac{(1 - \text{2 sin}^2 A)^2}{\text{cos}^4 A - \text{sin}^4 A} \\[1em] \Rightarrow \dfrac{(1 - \text{2 sin}^2 A)^2}{(\text{cos}^2 A - \text{sin}^2 A)(\text{cos}^2 A + \text{sin}^2 A)}

By formula,

cos2 A + sin2 A = 1 and cos2 A = 1 - sin2 A.

(12 sin2A)2(1sin2Asin2A)(12 sin2A)2(12 sin2A)1 - 2 sin2A12(1 - cos2A)12+2 cos2A2 cos2A1.\Rightarrow \dfrac{(1 - \text{2 sin}^2 A)^2}{(1 - \text{sin}^2 A - \text{sin}^2 A)} \\[1em] \Rightarrow \dfrac{(1 - \text{2 sin}^2 A)^2}{(1 - \text{2 sin}^2 A)}\\[1em] \Rightarrow \text{1 - 2 sin}^2 A \\[1em] \Rightarrow 1 - 2(\text{1 - cos}^2 A) \\[1em] \Rightarrow 1 - 2 + \text{2 cos}^2 A \\[1em] \Rightarrow \text{2 cos}^2 A - 1.

Since, L.H.S. = R.H.S.

Hence, proved that (12 sin2A)2cos4Asin4A\dfrac{(1 - \text{2 sin}^2 A)^2}{\text{cos}^4 A - \text{sin}^4 A} = 2 cos2 A - 1.

Question 2(x)

Prove the following identities :

sec4 A (1 - sin4 A) - 2 tan2 A = 1

Answer

Solving L.H.S. of the above equation :

⇒ sec4 A (1 - sin4 A) - 2 tan2 A

⇒ sec4 A (1 - sin2 A)(1 + sin2 A) - 2 tan2 A

By formula,

1 - sin2 A = cos2 A

⇒ sec4 A cos2 A (1 + sin2 A) - 2 tan2 A

⇒ sec4 A ×1sec2A\times \dfrac{1}{\text{sec}^2 A} (1 + sin2 A) - 2 tan2 A

⇒ sec2 A (1 + sin2 A) - 2 tan2 A

⇒ sec2 A + sec2 A sin2 A - 2 tan2 A

⇒ sec2 A + 1cos2A×\dfrac{1}{\text{cos}^2 A} \times sin2 A - 2 tan2 A

⇒ sec2 A + tan2 A - 2 tan2 A

⇒ sec2 A - tan2 A

⇒ 1.

Since, L.H.S. = R.H.S.

Hence, proved that sec4 A (1 - sin4 A) - 2 tan2 A = 1.

Question 2(xi)

Prove the following identities :

(1 + tan A + sec A)(1 + cot A - cosec A) = 2

Answer

Solving L.H.S. of the above equation :

(1+sin Acos A+1cos A)(1+cos Asin A1sin A)(cos A + sin A + 1cos A)(sin A + cos A - 1sin A)(sin A + cos A)2(1)2sin A cos Asin2A+cos2A+2 sin A cos A1sin A cos A\Rightarrow \Big(1 + \dfrac{\text{sin A}}{\text{cos A}} + \dfrac{1}{\text{cos A}}\Big)\Big(1 + \dfrac{\text{cos A}}{\text{sin A}} - \dfrac{1}{\text{sin A}}\Big) \\[1em] \Rightarrow \Big(\dfrac{\text{cos A + sin A + 1}}{\text{cos A}}\Big)\Big(\dfrac{\text{sin A + cos A - 1}}{\text{sin A}}\Big) \\[1em] \Rightarrow \dfrac{\text{(sin A + cos A)}^2 - (1)^2}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A + \text{2 sin A cos A} - 1}{\text{sin A cos A}}

By formula,

sin2 A + cos2 A = 1

1 - 1 + 2 sin A cos Asin A cos A2 sin A cos Asin A cos A2.\Rightarrow \dfrac{\text{1 - 1 + 2 sin A cos A}}{\text{sin A cos A}}\\[1em] \Rightarrow \dfrac{\text{2 sin A cos A}}{\text{sin A cos A}} \\[1em] \Rightarrow 2.

Since, L.H.S. = R.H.S.

Hence, proved that (1 + tan A + sec A)(1 + cot A - cosec A) = 2.

Question 3

If x = a cos θ and y = b cot θ, show that :

a2x2b2y2\dfrac{a^2}{x^2} - \dfrac{b^2}{y^2} = 1

Answer

Substituting value of x and y in L.H.S. of above equation :

a2a2 cos2θb2b2 cot2θ1cos2θ1cot2θ1cos2θ1cos2θsin2θ1cos2θsin2θcos2θ1sin2θcos2θcos2θcos2θ1.\Rightarrow \dfrac{a^2}{a^2 \text{ cos}^2 θ} - \dfrac{b^2}{b^2 \text{ cot}^2 θ} \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 θ} - \dfrac{1}{\text{cot}^2 θ} \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 θ} - \dfrac{1}{\dfrac{\text{cos}^2 θ}{\text{sin}^2 θ}} \\[1em] \Rightarrow \dfrac{1}{\text{cos}^2 θ} - \dfrac{\text{sin}^2 θ}{\text{cos}^2 θ} \\[1em] \Rightarrow \dfrac{1 - \text{sin}^2 θ}{\text{cos}^2 θ} \\[1em] \Rightarrow \dfrac{\text{cos}^2 θ}{\text{cos}^2 θ} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that a2x2b2y2\dfrac{a^2}{x^2} - \dfrac{b^2}{y^2} = 1.

Question 4

If sec A + tan A = p, show that :

sin A = p21p2+1\dfrac{p^2 - 1}{p^2 + 1}

Answer

Substituting value of p in R.H.S. of the above equation :

(sec A + tan A)21(sec A + tan A)2+1sec2A+tan2A+2 sec A tan A1sec2A+tan2A+2 sec A tan A+1\Rightarrow \dfrac{\text{(sec A + tan A)}^2 - 1}{\text{(sec A + tan A)}^2 + 1} \\[1em] \Rightarrow \dfrac{\text{sec}^2 A + \text{tan}^2 A + \text{2 sec A tan A} - 1}{\text{sec}^2 A + \text{tan}^2 A + \text{2 sec A tan A} + 1}

By formula,

sec2 A - 1 = tan2 A and sec2 A = 1 + tan2 A

sec2A1+tan2A+2 sec A tan Asec2A+tan2A+1+2 sec A tan Atan2A+tan2A+2 sec A tan Asec2A+sec2A+2 sec A tan A2 tan2A+2 sec A tan A2 sec2A+2 sec A tan A2tan A(tan A + sec A)2 sec A(sec A + tan A)tan Asec Asin Acos A1cos Asin Acos A×cos Asin A.\Rightarrow \dfrac{\text{sec}^2 A - 1 + \text{tan}^2 A + \text{2 sec A tan A}}{\text{sec}^2 A + \text{tan}^2 A + 1 + \text{2 sec A tan A}} \\[1em] \Rightarrow \dfrac{\text{tan}^2 A + \text{tan}^2 A + \text{2 sec A tan A}}{\text{sec}^2 A + \text{sec}^2 A + \text{2 sec A tan A}} \\[1em] \Rightarrow \dfrac{\text{2 tan}^2 A + \text{2 sec A tan A}}{\text{2 sec}^2 A + \text{2 sec A tan A}} \\[1em] \Rightarrow \dfrac{2\text{tan A}(\text{tan A + sec A})}{\text{2 sec A(sec A + tan A)}} \\[1em] \Rightarrow \dfrac{\text{tan A}}{\text{sec A}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{sin A}}{\text{cos A}}}{\dfrac{1}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} \times \text{cos A} \\[1em] \Rightarrow \text{sin A}.

Since, L.H.S. = R.H.S.

Hence, proved that sin A = p21p2+1\dfrac{p^2 - 1}{p^2 + 1}.

Question 5(i)

If 2 sin A - 1 = 0, show that :

sin 3A = 3 sin A - 4 sin3 A

Answer

Given,

⇒ 2 sin A - 1 = 0

⇒ 2 sin A = 1

⇒ sin A = 12\dfrac{1}{2}

⇒ sin A = sin 30°

⇒ A = 30°.

Given equation : sin 3A = 3 sin A - 4 sin3 A

Substituting value of A in L.H.S. we get,

sin 3A = sin 3(30°) = sin 90° = 1.

Substituting value of A in R.H.S. we get,

⇒ 3 sin A - 4 sin3 A

⇒ 3 sin 30° - 4 sin3 30°

3×124×(12)33 \times \dfrac{1}{2} - 4 \times \Big(\dfrac{1}{2}\Big)^3

324×18\dfrac{3}{2} - 4 \times \dfrac{1}{8}

3212\dfrac{3}{2} - \dfrac{1}{2}

22\dfrac{2}{2}

⇒ 1.

Since, L.H.S. = R.H.S.

Hence, proved that sin 3A = 3 sin A - 4 sin3 A.

Question 5(ii)

If 4 cos2 A - 3 = 0, show that :

cos 3A = 4 cos3 A - 3 cos A

Answer

Given,

⇒ 4 cos2 A - 3 = 0

⇒ 4 cos2 A = 3

⇒ cos2 A = 34\dfrac{3}{4}

⇒ cos A = 34\sqrt{\dfrac{3}{4}}

⇒ cos A = 32\dfrac{\sqrt{3}}{2}.

⇒ cos A = cos 30°

⇒ A = 30°.

L.H.S. = cos 3A = cos 3(30°) = cos 90° = 0.

R.H.S. = 4 cos3 A - 3 cos A

= 4 cos3 30° - 3 cos 30°

= 4×(32)33×324 \times \Big(\dfrac{\sqrt{3}}{2}\Big)^3 - 3 \times \dfrac{\sqrt{3}}{2}

= 4×3383324 \times \dfrac{3\sqrt{3}}{8} - \dfrac{3\sqrt{3}}{2}

= 332332\dfrac{3\sqrt{3}}{2} - \dfrac{3\sqrt{3}}{2}

= 0.

Since, L.H.S. = R.H.S.

Hence, proved that cos 3A = 4 cos3 A - 3 cos A.

Question 6(i)

Evaluate :

2(tan 35°cot 55°)2+(cot 55°tan 35°)23(sec 40°cosec 50°)2\Big(\dfrac{\text{tan 35°}}{\text{cot 55°}}\Big)^2 + \Big(\dfrac{\text{cot 55°}}{\text{tan 35°}}\Big)^2 - 3\Big(\dfrac{\text{sec 40°}}{\text{cosec 50°}}\Big)

Answer

Solving,

2(tan 35°cot (90° - 35°))2+(cot (90° - 35°)tan 35°)23(sec (90°- 50°)cosec 50°)\Rightarrow 2\Big(\dfrac{\text{tan 35°}}{\text{cot (90° - 35°)}}\Big)^2 + \Big(\dfrac{\text{cot (90° - 35°)}}{\text{tan 35°}}\Big)^2 - 3\Big(\dfrac{\text{sec (90°- 50°)}}{\text{cosec 50°}}\Big)

By formula,

cot(90° - θ) = tan θ and sec(90° - θ) = cosec θ

2(tan 35°tan 35°)2+(tan 35°tan 35°)23(cosec 50°cosec 50°)2×(1)2+(1)23×12+130.\Rightarrow 2\Big(\dfrac{\text{tan 35°}}{\text{tan 35°}}\Big)^2 + \Big(\dfrac{\text{tan 35°}}{\text{tan 35°}}\Big)^2 - 3\Big(\dfrac{\text{cosec 50°}}{\text{cosec 50°}}\Big) \\[1em] \Rightarrow 2 \times (1)^2 + (1)^2 - 3 \times 1 \\[1em] \Rightarrow 2 + 1 - 3 \\[1em] \Rightarrow 0.

Hence, 2(tan 35°cot 55°)2+(cot 55°tan 35°)23(sec 40°cosec 50°)2\Big(\dfrac{\text{tan 35°}}{\text{cot 55°}}\Big)^2 + \Big(\dfrac{\text{cot 55°}}{\text{tan 35°}}\Big)^2 - 3\Big(\dfrac{\text{sec 40°}}{\text{cosec 50°}}\Big) = 0.

Question 6(ii)

sec 26° sin 64° + cosec 33°sec 57°\dfrac{\text{cosec 33°}}{\text{sec 57°}}

Answer

Solving,

⇒ sec 26° sin 64° + cosec 33°sec 57°\dfrac{\text{cosec 33°}}{\text{sec 57°}}

⇒ sec (90° - 64°) sin 64° + cosec 33°sec (90° - 33°)\dfrac{\text{cosec 33°}}{\text{sec (90° - 33°)}}

By formula,

sec(90° - θ) = cosec θ

⇒ cosec 64° sin 64° + cosec 33°cosec 33°\dfrac{\text{cosec 33°}}{\text{cosec 33°}}

1sin 64°×sin 64°+1\dfrac{1}{\text{sin 64°}} \times \text{sin 64°} + 1

⇒ 1 + 1

⇒ 2.

Hence, sec 26° sin 64° + cosec 33°sec 57°\dfrac{\text{cosec 33°}}{\text{sec 57°}} = 2.

Question 6(iii)

5 sin 66°cos 24°2 cot 85°tan 5°\dfrac{\text{5 sin 66°}}{\text{cos 24°}} - \dfrac{\text{2 cot 85°}}{\text{tan 5°}}

Answer

Solving,

5 sin 66°cos 24°2 cot 85°tan 5°\Rightarrow \dfrac{\text{5 sin 66°}}{\text{cos 24°}} - \dfrac{\text{2 cot 85°}}{\text{tan 5°}}

By formula,

sin (90° - θ) = cos θ and cot (90° - θ) = tan θ

5 sin (90° - 24°)cos 24°2 cot (90° - 5°)tan 5°5 cos 24°cos 24°2 tan 5°tan 5°523.\Rightarrow \dfrac{\text{5 sin (90° - 24°)}}{\text{cos 24°}} - \dfrac{\text{2 cot (90° - 5°)}}{\text{tan 5°}} \\[1em] \Rightarrow \dfrac{\text{5 cos 24°}}{\text{cos 24°}} - \dfrac{\text{2 tan 5°}}{\text{tan 5°}} \\[1em] \Rightarrow 5 - 2 \\[1em] \Rightarrow 3.

Hence, 5 sin 66°cos 24°2 cot 85°tan 5°\dfrac{\text{5 sin 66°}}{\text{cos 24°}} - \dfrac{\text{2 cot 85°}}{\text{tan 5°}} = 3.

Question 6(iv)

3 cos 80° cosec 10° + 2 cos 59° cosec 31°

Answer

Given,

⇒ 3 cos (90° - 10°) cosec 10° + 2 cos 59° cosec (90° - 59°)

By formula,

cosec (90° - θ) = sec θ and cos(90° - θ) = sin θ

⇒ 3 sin 10° cosec 10° + 2 cos 59° sec 59°

⇒ 3 sin 10° ×1sin 10°+2 cos 59°×1cos 59°\times \dfrac{1}{\text{sin 10°}} + 2 \text{ cos 59°} \times \dfrac{1}{\text{cos 59°}}

⇒ 3 + 2

⇒ 5.

Hence, 3 cos 80° cosec 10° + 2 cos 59° cosec 31° = 5.

Question 7(i)

Prove that :

tan (55° + x) = cot (35° - x)

Answer

Given equation : tan (55° + x) = cot (35° - x)

Solving L.H.S.

⇒ tan (55° + x)

⇒ tan [90° - (35° - x)]

By formula,

tan (90° - θ) = cot θ

⇒ cot (35° - x)

Since, L.H.S. = R.H.S.

Hence, proved that tan (55° + x) = cot (35° - x).

Question 7(ii)

sec (70° - θ) = cosec (20° + θ)

Answer

Given equation : sec (70° - θ) = cosec (20° + θ)

Solving L.H.S.

⇒ sec (70° - θ)

⇒ sec [90° - (20° + θ)]

By formula,

sec (90° - θ) = cosec θ

⇒ cosec (20° + θ)

Since, L.H.S. = R.H.S.

Hence, proved that sec (70° - θ) = cosec (20° + θ).

Question 7(iii)

sin(28° + A) = cos(62° - A)

Answer

Given equation : sin(28° + A) = cos(62° - A)

Solving L.H.S.

⇒ sin(28° + A)

⇒ sin [90° - (62° - A)]

By formula,

sin (90° - θ) = cos θ

⇒ cos (62° - A)

Since, L.H.S. = R.H.S.

Hence, proved that sin(28° + A) = cos(62° - A).

Question 7(iv)

11 + cos (90° - A)+11 - cos (90° - A)\dfrac{1}{\text{1 + cos (90° - A)}} + \dfrac{1}{\text{1 - cos (90° - A)}} = 2 cosec2 (90° - A)

Answer

By formula,

cos (90° - A) = sin A

Solving L.H.S. of above equation,

11 + sin A+11sin A1 - sin A + 1 + sin A(1 + sin A)(1 - sin A)21sin2A2cos2A2 sec2A2 cosec2(90°A) [ sec A= cosec(90° - A)]\Rightarrow \dfrac{1}{\text{1 + sin A}} + \dfrac{1}{1 - \text{sin A}} \\[1em] \Rightarrow \dfrac{\text{1 - sin A + 1 + sin A}}{\text{(1 + sin A)(1 - sin A)}} \\[1em] \Rightarrow \dfrac{2}{1 - \text{sin}^2 A} \\[1em] \Rightarrow \dfrac{2}{\text{cos}^2 A} \\[1em] \Rightarrow 2\text{ sec}^2 A \\[1em] \Rightarrow 2\text{ cosec}^2 (90° - A) \space [\because \text{ sec A} = \text{ cosec(90° - A)}]

Since, L.H.S. = R.H.S.

Hence, proved that 11 + cos (90° - A)+11 - cos (90° - A)\dfrac{1}{\text{1 + cos (90° - A)}} + \dfrac{1}{\text{1 - cos (90° - A)}} = 2 cosec2 (90° - A).

Question 8

If A and B are complementary angles, prove that :

(i) cot B + cos B = sec A cos B (1 + sin B)

(ii) cot A cot B - sin A cos B - cos A sin B = 0

(iii) cosec2 A + cosec2 B = cosec2 A cosec2 B

(iv) sin A + sin Bsin A - sin B+cos B - cos Acos B + cos A=22 sin2A1\dfrac{\text{sin A + sin B}}{\text{sin A - sin B}} + \dfrac{\text{cos B - cos A}}{\text{cos B + cos A}} = \dfrac{2}{\text{2 sin}^2 A - 1}

Answer

Given,

A + B = 90°

B = 90° - A and A = 90° - B.

(i) Substituting value of B in L.H.S. of equation :

cot (90° - A) + cos (90° - A)tan A + sin Asin Acos A+sin Asin A + sin A cos Acos Asin A(1 + cos A)cos Asin A sec A (1 + cos A)sin (90° - B) sec A [1 + cos (90° - B)]\Rightarrow \text{cot (90° - A) + cos (90° - A)} \\[1em] \Rightarrow \text{tan A + sin A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} + \text{sin A} \\[1em] \Rightarrow \dfrac{\text{sin A + sin A cos A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{sin A(1 + cos A)}}{\text{cos A}}\\[1em] \Rightarrow \text{sin A sec A (1 + cos A)} \\[1em] \Rightarrow \text{sin (90° - B) sec A [1 + cos (90° - B)]}

By formula,

sin (90° - B) = cos B and cos (90° - B) = sin B

⇒ cos B sec A (1 + sin B).

Since, L.H.S. = R.H.S.

Hence, proved that cot B + cos B = sec A cos B (1 + sin B).

(ii) Substituting value of B in L.H.S. of equation :

⇒ cot A cot (90° - A) - sin A cos (90° - A) - cos A sin (90° - A)

By formula,

cot (90° - A) = tan A, cos (90° - A) = sin A and sin (90° - A) = cos A

⇒ cot A tan A - sin A sin A - cos A cos A

⇒ cot A ×1cot A\times \dfrac{1}{\text{cot A}} - (sin2 A + cos2 A)

⇒ 1 - 1

⇒ 0.

Since, L.H.S. = R.H.S.

Hence, proved that cot A cot B - sin A cos B - cos A sin B = 0.

(iii) Substituting value of B in L.H.S. of equation :

⇒ cosec2 A + cosec2 (90° - A)

By formula,

cosec (90° - A) = sec A

1sin2A\dfrac{1}{\text{sin}^2 A} + sec2 A

1sin2A+1cos2A\dfrac{1}{\text{sin}^2 A} + \dfrac{1}{\text{cos}^2 A}

cos2A+sin2Asin2Acos2A\dfrac{\text{cos}^2 A + \text{sin}^2 A}{\text{sin}^2 A \text{cos}^2 A}

By formula,

sin2 A + cos2 A = 1 and sec (90° - A) = cosec A

1sin2Acos2A\dfrac{1}{\text{sin}^2 A \text{cos}^2 A}

⇒ cosec2 A sec2 A

⇒ cosec2 A sec2 (90° - B)

⇒ cosec2 A cosec2 B

Since, L.H.S. = R.H.S.

Hence, proved that cosec2 A + cosec2 B = cosec2 A cosec2 B.

(iv) Solving L.H.S. of the equation :

sin A + sin Bsin A - sin B+cos B - cos Acos B + cos Asin A + sin Bsin A - sin B+cos (90° - A) - cos (90° - B)cos (90° - A) + cos (90° - B)\Rightarrow \dfrac{\text{sin A + sin B}}{\text{sin A - sin B}} + \dfrac{\text{cos B - cos A}}{\text{cos B + cos A}} \\[1em] \Rightarrow \dfrac{\text{sin A + sin B}}{\text{sin A - sin B}} + \dfrac{\text{cos (90° - A) - cos (90° - B)}}{\text{cos (90° - A) + cos (90° - B)}}

By formula,

cos (90° - θ) = sin θ and sin (90° - θ) = cos θ.

sin A + sin Bsin A - sin B+sin A - sin Bsin A + sin B(sin A + sin B)2+(sin A - sin B)2(sin A - sin B)(sin A + sin B)sin2A+sin2B+2 sin A sin B + sin2A+sin2B2 sin A sin Bsin2Asin2B2sin2A+sin2Bsin2Asin2B2sin2A+sin2(90°A)sin2Asin2(90°A)2sin2A+cos2Asin2Acos2A2×1sin2Acos2A2sin2Acos2A\Rightarrow \dfrac{\text{sin A + sin B}}{\text{sin A - sin B}} + \dfrac{\text{sin A - sin B}}{\text{sin A + sin B}} \\[1em] \Rightarrow \dfrac{\text{(sin A + sin B)}^2 + \text{(sin A - sin B)}^2}{\text{(sin A - sin B)(sin A + sin B)}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{sin}^2 B + \text{2 sin A sin B + sin}^2 A + \text{sin}^2 B - \text{2 sin A sin B}}{\text{sin}^2 A - \text{sin}^2 B} \\[1em] \Rightarrow 2 \dfrac{\text{sin}^2 A + \text{sin}^2 B}{\text{sin}^2 A - \text{sin}^2 B} \\[1em] \Rightarrow 2 \dfrac{\text{sin}^2 A + \text{sin}^2 (90° - A)}{\text{sin}^2 A - \text{sin}^2 (90° - A)} \\[1em] \Rightarrow 2 \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin}^2 A - \text{cos}^2 A} \\[1em] \Rightarrow \dfrac{2 \times 1}{\text{sin}^2 A - \text{cos}^2 A} \\[1em] \Rightarrow \dfrac{2}{\text{sin}^2 A - \text{cos}^2 A}

By formula,

cos2 A = 1 - sin2 A

2sin2A(1sin2A)2sin2A+sin2A122 sin2A1.\Rightarrow \dfrac{2}{\text{sin}^2 A - (1 - \text{sin}^2 A)} \\[1em] \Rightarrow \dfrac{2}{\text{sin}^2 A + \text{sin}^2 A - 1} \\[1em] \Rightarrow \dfrac{2}{\text{2 sin}^2 A - 1}.

Since, L.H.S. = R.H.S.

Hence, proved that sin A + sin Bsin A - sin B+cos B - cos Acos B + cos A=22 sin2A1\dfrac{\text{sin A + sin B}}{\text{sin A - sin B}} + \dfrac{\text{cos B - cos A}}{\text{cos B + cos A}} = \dfrac{2}{\text{2 sin}^2 A - 1}.

Question 9(i)

Prove that :

1sin A - cos A1sin A + cos A=2 cos A2 sin2A1\dfrac{1}{\text{sin A - cos A}} - \dfrac{1}{\text{sin A + cos A}} = \dfrac{\text{2 cos A}}{\text{2 sin}^2 A - 1}

Answer

Solving L.H.S. of the equation :

1sin A - cos A1sin A + cos Asin A + cos A - (sin A - cos A)(sin A - cos A)(sin A + cos A)sin A - sin A + cos A + cos Asin2Acos2A2 cos Asin2Acos2A\Rightarrow \dfrac{1}{\text{sin A - cos A}} - \dfrac{1}{\text{sin A + cos A}} \\[1em] \Rightarrow \dfrac{\text{sin A + cos A - (sin A - cos A)}}{\text{(sin A - cos A)(sin A + cos A)}} \\[1em] \Rightarrow \dfrac{\text{sin A - sin A + cos A + cos A}}{\text{sin}^2 A - \text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{2 cos A}}{\text{sin}^2 A - \text{cos}^2 A}

By formula,

cos2 A = 1 - sin2 A

2 cos Asin2A(1sin2A)2 cos Asin2A+sin2A12 cos A2 sin2A1.\Rightarrow \dfrac{\text{2 cos A}}{\text{sin}^2 A - (1 - \text{sin}^2 A)} \\[1em] \Rightarrow \dfrac{\text{2 cos A}}{\text{sin}^2 A + \text{sin}^2 A - 1} \\[1em] \Rightarrow \dfrac{\text{2 cos A}}{\text{2 sin}^2 A - 1}.

Since, L.H.S. = R.H.S.

Hence, proved that 1sin A - cos A1sin A + cos A=2 cos A2 sin2A1\dfrac{1}{\text{sin A - cos A}} - \dfrac{1}{\text{sin A + cos A}} = \dfrac{\text{2 cos A}}{\text{2 sin}^2 A - 1}.

Question 9(ii)

Prove that :

cot2Acosec A - 11\dfrac{\text{cot}^2 A}{\text{cosec A - 1}} - 1 = cosec A

Answer

Solving L.H.S. of the equation :

cot2Acosec A - 11cot2A(cosec A - 1)cosec A - 1cot2A+1cosec Acosec A - 1\Rightarrow \dfrac{\text{cot}^2 A}{\text{cosec A - 1}} - 1 \\[1em] \Rightarrow \dfrac{\text{cot}^2 A - \text{(cosec A - 1)}}{\text{cosec A - 1}} \\[1em] \Rightarrow \dfrac{\text{cot}^2 A + 1 - \text{cosec A}}{\text{cosec A - 1}}

By formula,

cot2 A + 1 = cosec2 A

cosec2Acosec Acosec A - 1cosec A(cosec A - 1)cosec A - 1cosec A.\Rightarrow \dfrac{\text{cosec}^2 A - \text{cosec A}}{\text{cosec A - 1}} \\[1em] \Rightarrow \dfrac{\text{cosec A(cosec A - 1)}}{\text{cosec A - 1}} \\[1em] \Rightarrow \text{cosec A}.

Since, L.H.S. = R.H.S.

Hence, proved that cot2Acosec A - 11\dfrac{\text{cot}^2 A}{\text{cosec A - 1}} - 1 = cosec A.

Question 9(iii)

Prove that :

cos A1 + sin A\dfrac{\text{cos A}}{\text{1 + sin A}} = sec A - tan A

Answer

Solving R.H.S. of the above equation :

sec A - tan A1cos Asin Acos A1 - sin Acos A1 - sin Acos A×1 + sin A1 + sin A1 - sin2Acos A(1+ sin A)1 - sin2Acos A(1 + sin A)cos2Acos A(1 + sin A)cos A1 + sin A.\Rightarrow \text{sec A - tan A} \\[1em] \Rightarrow \dfrac{1}{\text{cos A}} - \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - sin A}}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - sin A}}{\text{cos A}} \times \dfrac{\text{1 + sin A}}{\text{1 + sin A}} \\[1em] \Rightarrow \dfrac{\text{1 - sin}^2 A}{\text{cos A(1+ sin A)}} \\[1em] \Rightarrow \dfrac{\text{1 - sin}^2 A}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{cos A(1 + sin A)}} \\[1em] \Rightarrow \dfrac{\text{cos A}}{\text{1 + sin A}}.

Since, L.H.S. = R.H.S.

Hence, proved that cos A1 + sin A\dfrac{\text{cos A}}{\text{1 + sin A}} = sec A - tan A.

Question 9(iv)

Prove that :

cos A(1 + cot A) + sin A(1 + tan A) = sec A + cosec A

Answer

Solving L.H.S. of the above equation :

⇒ cos A(1 + cot A) + sin A(1 + tan A)

⇒ cos A + cos A cot A + sin A + sin A tan A

⇒ cos A + cos A ×cos Asin A+sin A+sin A×sin Acos A\times \dfrac{\text{cos A}}{\text{sin A}} + \text{sin A} + \text{sin A} \times \dfrac{\text{sin A}}{\text{cos A}}

⇒ cos A + sin2Acos A+ sin A +cos2Asin A\dfrac{\text{sin}^2 A}{\text{cos A}} + \text{ sin A } + \dfrac{\text{cos}^2 A}{\text{sin A}}

cos2A+sin2Acos A+sin2A+cos2Asin A\dfrac{\text{cos}^2 A + \text{sin}^2 A}{\text{cos A}} + \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin A}}

By formula,

sin2 A + cos2 A = 1.

1cos A+1sin A\dfrac{1}{\text{cos A}} + \dfrac{1}{\text{sin A}}

⇒ sec A + cosec A.

Since, L.H.S. = R.H.S.

Hence, proved that cos A(1 + cot A) + sin A(1 + tan A) = sec A + cosec A.

Question 9(v)

sec2A+cosec2A\sqrt{\text{sec}^2 A + \text{cosec}^2 A} = tan A + cot A

Answer

Solving L.H.S. of the above equation :

(1cos A)2+(1sin A)21cos2A+1sin2Asin2A+cos2Acos2A sin2A\Rightarrow \sqrt{\Big(\dfrac{1}{\text{cos A}}\Big)^2 + \Big(\dfrac{1}{\text{sin A}}\Big)^2} \\[1em] \Rightarrow \sqrt{\dfrac{1}{\text{cos}^2 A} + \dfrac{1}{\text{sin}^2 A}} \\[1em] \Rightarrow \sqrt{\dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{cos}^2 A\text{ sin}^2 A}}

By formula,

sin2 A + cos2 A = 1

1cos2A sin2A1sin A cos A.\Rightarrow \sqrt{\dfrac{1}{\text{cos}^2 A\text{ sin}^2 A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}\text{ cos A}}.

Solving R.H.S. of the equation :

tan A + cot Asin Acos A+cos Asin Asin2A+cos2Acos A sin A1sin A cos A.\Rightarrow \text{tan A + cot A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{cos A sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A cos A}}.

Since, L.H.S. = R.H.S.

Hence, proved that sec2A+cosec2A\sqrt{\text{sec}^2 A + \text{cosec}^2 A} = tan A + cot A.

Question 9(vi)

(sin A + cos A)(sec A + cosec A) = 2 + sec A cosec A

Answer

Solving L.H.S. of the above equation :

sin A sec A + sin A cosec A + cos A sec A + cos A cosec Asin A×1cos A+sin A×1sin A+cos A×1cos A+cos A×1sin Asin Acos A+1+1+cos Asin A2+sin2A+cos2Asin A cos A2+1sin A cos A2+cosec A sec A.\Rightarrow \text{sin A sec A + sin A cosec A + cos A sec A + cos A cosec A} \\[1em] \Rightarrow \text{sin A} \times \dfrac{1}{\text{cos A}} + \text{sin A} \times \dfrac{1}{\text{sin A}} + \text{cos A} \times \dfrac{1}{\text{cos A}} + \text{cos A} \times \dfrac{1}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} + 1 + 1 + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow 2 + \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin A cos A}} \\[1em] \Rightarrow 2 + \dfrac{1}{\text{sin A cos A}} \\[1em] \Rightarrow 2 + \text{cosec A sec A}.

Since, L.H.S. = R.H.S.

Hence, proved that (sin A + cos A)(sec A + cosec A) = 2 + sec A cosec A.

Question 9(vii)

(tan A + cot A)(cosec A - sin A)(sec A - cos A) = 1

Answer

Solving L.H.S. of the above equation :

(tan A + cot A)(cosec A - sin A)(sec A - cos A)(sin Acos A+cos Asin A)(1sin Asin A)(1cos Acos A)(sin2A+cos2Asin A cos A)(1sin2Asin A)(1cos2Acos A)\Rightarrow \text{(tan A + cot A)(cosec A - sin A)(sec A - cos A)} \\[1em] \Rightarrow \Big(\dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}}\Big)\Big(\dfrac{1}{\text{sin A}} - \text{sin A}\Big)\Big(\dfrac{1}{\text{cos A}} - \text{cos A}\Big) \\[1em] \Rightarrow \Big(\dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin A cos A}}\Big)\Big(\dfrac{1 - \text{sin}^2 A}{\text{sin A}}\Big)\Big(\dfrac{1 - \text{cos}^2 A}{\text{cos A}}\Big)

By formula,

sin2 A + cos2 A = 1, 1 - sin2 A = cos2 A and 1 - cos2 A = sin2 A.

1sin A cos A×cos2Asin A×sin2Acos Asin2Acos2Asin2Acos2A1.\Rightarrow \dfrac{1}{\text{sin A cos A}} \times \dfrac{\text{cos}^2 A}{\text{sin A}} \times \dfrac{\text{sin}^2 A}{\text{cos A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A \text{cos}^2 A}{\text{sin}^2 A \text{cos}^2 A} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that (tan A + cot A)(cosec A - sin A)(sec A - cos A) = 1.

Question 9(viii)

cot2 A - cot2 B = cos2Acos2Bsin2A sin2B\dfrac{\text{cos}^2 \text{A} - \text{cos}^2 \text{B}}{\text{sin}^2 \text{A} \text{ sin}^2 \text{B}} = cosec2 A - cosec2 B

Answer

Solving,

cot2Acot2Bcos2Asin2Acos2Bsin2Bcos2A sin2Bcos2B sin2Asin2A sin2B\Rightarrow \text{cot}^2 A - \text{cot}^2 B \\[1em] \Rightarrow \dfrac{\text{cos}^2 A}{\text{sin}^2 A} - \dfrac{\text{cos}^2 B}{\text{sin}^2 B} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A \text{ sin}^2 B - \text{cos}^2 B \text{ sin}^2 A}{\text{sin}^2 A \text{ sin}^2 B} \\[1em]

By formula,

sin2 θ = 1 - cos2 θ

cos2A(1 cos2B)cos2B(1 cos2A)sin2A sin2Bcos2Acos2Acos2Bcos2B+cos2Acos2Bsin2A sin2Bcos2Acos2Bsin2A sin2B1 - sin2A(1sin2B)sin2A sin2B11sin2A+sin2Bsin2A sin2Bsin2A+sin2Bsin2A sin2Bsin2Asin2A sin2B+sin2Bsin2A sin2B1sin2B+1sin2Acosec2B+cosec2Acosec2Acosec2B.\Rightarrow \dfrac{\text{cos}^2 A (1 - \text{ cos}^2 B) - \text{cos}^2 B (1 - \text{ cos}^2 A)}{\text{sin}^2 A \text{ sin}^2 B} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A - \text{cos}^2 A \text{cos}^2 B - \text{cos}^2 B + \text{cos}^2 A \text{cos}^2 B}{\text{sin}^2 A \text{ sin}^2 B} \\[1em] \Rightarrow \dfrac{\text{cos}^2 A - \text{cos}^2 B}{\text{sin}^2 A \text{ sin}^2 B} \\[1em] \Rightarrow \dfrac{\text{1 - sin}^2 A - (1 - \text{sin}^2 B)}{\text{sin}^2 A \text{ sin}^2 B} \\[1em] \Rightarrow \dfrac{1 - 1 - \text{sin}^2 A + \text{sin}^2 B}{\text{sin}^2 A \text{ sin}^2 B} \\[1em] \Rightarrow \dfrac{-\text{sin}^2 A + \text{sin}^2 B}{\text{sin}^2 A \text{ sin}^2 B} \\[1em] \Rightarrow -\dfrac{\text{sin}^2 A}{\text{sin}^2 A \text{ sin}^2 B} + \dfrac{\text{sin}^2 B}{\text{sin}^2 A \text{ sin}^2 B} \\[1em] \Rightarrow -\dfrac{1}{\text{sin}^2 B} + \dfrac{1}{\text{sin}^2 A} \\[1em] \Rightarrow -\text{cosec}^2 B + \text{cosec}^2 A \\[1em] \Rightarrow \text{cosec}^2 A - \text{cosec}^2 B.

Hence, proved that cot2 A - cot2 B = cos2Acos2Bsin2A sin2B\dfrac{\text{cos}^2 \text{A} - \text{cos}^2 \text{B}}{\text{sin}^2 \text{A} \text{ sin}^2 \text{B}} = cosec2 A - cosec2 B.

Question 9(ix)

Prove that :

cot A - 12 - sec2A=cot A1 + tan A\dfrac{\text{cot A - 1}}{\text{2 - sec}^2 A} = \dfrac{\text{cot A}}{\text{1 + tan A}}

Answer

Solving L.H.S. of the above equation :

1tan A12 - (1 + tan2A)1 - tan Atan A21tan2A1 - tan Atan A(1 - tan2A)1 - tan Atan A(1 - tan A)(1 + tan A)1tan A(1 + tan A)11cot A(1 + tan A)cot A1 + tan A.\Rightarrow \dfrac{\dfrac{1}{\text{tan A}} - 1}{\text{2 - (1 + tan}^2 A)} \\[1em] \Rightarrow \dfrac{\dfrac{\text{1 - tan A}}{\text{tan A}}}{2 - 1 - \text{tan}^2 A} \\[1em] \Rightarrow \dfrac{\text{1 - tan A}}{\text{tan A(1 - tan}^2 A)} \\[1em] \Rightarrow \dfrac{\text{1 - tan A}}{\text{tan A(1 - tan A)(1 + tan A)}} \\[1em] \Rightarrow \dfrac{1}{\text{tan A(1 + tan A)}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{1}{\text{cot A}} \text{(1 + tan A)}} \\[1em] \Rightarrow \dfrac{\text{cot A}}{\text{1 + tan A}}.

Since, L.H.S. = R.H.S.

Hence, proved that cot A - 12 - sec2A=cot A1 + tan A\dfrac{\text{cot A - 1}}{\text{2 - sec}^2 A} = \dfrac{\text{cot A}}{\text{1 + tan A}}.

Question 10

If 4 cos2 A - 3 = 0 and 0° ≤ A ≤ 90°; then prove that :

(i) sin 3A = 3 sin A - 4 sin3 A

(ii) cos 3A = 4 cos3 A - 3 cos A

Answer

Given,

⇒ 4 cos2 A - 3 = 0

⇒ 4 cos2 A = 3

⇒ cos2 A = 34\dfrac{3}{4}

⇒ cos A = 34=32\sqrt{\dfrac{3}{4}} = \dfrac{\sqrt{3}}{2}.

⇒ cos A = cos 30°

⇒ A = 30°.

(i) To prove:

sin 3A = 3 sin A - 4 sin3 A

Solving L.H.S. of the equation :

⇒ sin 3A = sin 3(30°)

= sin 90° = 1.

Solving R.H.S. of the equation :

⇒ 3 sin A - 4 sin3 A

⇒ 3 sin 30° - 4 sin3 30°

⇒ 3 ×124×(12)3\times \dfrac{1}{2} - 4 \times \Big(\dfrac{1}{2}\Big)^3

324×18\dfrac{3}{2} - 4 \times \dfrac{1}{8}

3212\dfrac{3}{2} - \dfrac{1}{2}

22\dfrac{2}{2}

⇒ 1.

Since, L.H.S. = R.H.S.

Hence, proved that sin 3A = 3 sin A - 4 sin3 A.

(ii) To prove:

cos 3A = 4 cos3 A - 3 cos A

Solving L.H.S.

⇒ cos 3A = cos 3(30°) = cos 90° = 0.

Solving R.H.S.

⇒ 4 cos3 A - 3 cos A

⇒ 4 cos3 30° - 3 cos 30°

⇒ 4 ×(32)33×32\times \Big(\dfrac{\sqrt{3}}{2}\Big)^3 - 3 \times \dfrac{\sqrt{3}}{2}

⇒ 4 ×338332\times \dfrac{3\sqrt{3}}{8} - \dfrac{3\sqrt{3}}{2}

332332\dfrac{3\sqrt{3}}{2} - \dfrac{3\sqrt{3}}{2}

⇒ 0.

Since, L.H.S. = R.H.S.

Hence, proved that cos 3A = 4 cos3 A - 3 cos A

Question 11

Find A, if 0° ≤ A ≤ 90° and :

(i) 2 cos2 A - 1 = 0

(ii) sin 3A - 1 = 0

(iii) 4 sin2 A - 3 = 0

(iv) cos2 A - cos A = 0

(v) 2 cos2 A + cos A - 1 = 0

Answer

(i) Solving,

⇒ 2 cos2 A - 1 = 0

⇒ 2 cos2 A = 1

⇒ cos2 A = 12\dfrac{1}{2}

⇒ cos A = 12\sqrt{\dfrac{1}{2}}

⇒ cos A = 12\dfrac{1}{\sqrt{2}}

⇒ cos A = cos 45°

⇒ A = 45°.

Hence, A = 45°.

(ii) Solving,

⇒ sin 3A - 1 = 0

⇒ sin 3A = 1

⇒ sin 3A = sin 90°

⇒ 3A = 90°

⇒ A = 30°.

Hence, A = 30°.

(iii) Solving,

⇒ 4 sin2 A - 3 = 0

⇒ 4 sin2 A = 3

⇒ sin2 A = 34\dfrac{3}{4}

⇒ sin A = 34\sqrt{\dfrac{3}{4}}

⇒ sin A = 32\dfrac{\sqrt{3}}{2}

⇒ sin A = sin 60°

⇒ A = 60°.

Hence, A = 60°.

(iv) Solving,

⇒ cos2 A - cos A = 0

⇒ cos A(cos A - 1) = 0

⇒ cos A = 0 or cos A - 1 = 0

⇒ cos A = 0 or cos A = 1

⇒ cos A = cos 90° or cos A = cos 0°

⇒ A = 90° or A = 0°.

Hence, A = 0° or 90°.

(v) Solving,

⇒ 2 cos2 A + cos A - 1 = 0

⇒ 2 cos2 A + 2 cos A - cos A - 1 = 0

⇒ 2 cos A(cos A + 1) - 1(cos A + 1) = 0

⇒ (2 cos A - 1)(cos A + 1) = 0

⇒ 2 cos A = 1 or cos A = -1

⇒ cos A = 12\dfrac{1}{2} or cos A = -1

Since, cos A cannot be negative in the range 0° ≤ A ≤ 90°.

∴ cos A = 12\dfrac{1}{2}

⇒ cos A = cos 60°

⇒ A = 60°

Hence, A = 60°.

Question 12

If 0° < A < 90°; find A if :

(i) cos A1 - sin A+cos A1 + sin A=4\dfrac{\text{cos A}}{\text{1 - sin A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = 4

(ii) sin Asec A - 1+sin Asec A + 1\dfrac{\text{sin A}}{\text{sec A - 1}} + \dfrac{\text{sin A}}{\text{sec A + 1}} = 2

Answer

(i) Solving L.H.S. of the equation :

cos A1 - sin A+cos A1 + sin A=4cos A(1 + sin A) + cos A(1 - sin A)(1 + sin A)(1 - sin A)cos A + cos A sin A + cos A - cos A sin A1 - sin2A\Rightarrow \dfrac{\text{cos A}}{\text{1 - sin A}} + \dfrac{\text{cos A}}{\text{1 + sin A}} = 4 \\[1em] \Rightarrow \dfrac{\text{cos A(1 + sin A) + cos A(1 - sin A)}}{\text{(1 + sin A)(1 - sin A)}} \\[1em] \Rightarrow \dfrac{\text{cos A + cos A sin A + cos A - cos A sin A}}{\text{1 - sin}^2 A}

By formula,

1 - sin2 A = cos2 A

2 cos Acos2A2cos A2 sec A.\Rightarrow \dfrac{\text{2 cos A}}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{2}{\text{cos A}} \\[1em] \Rightarrow 2\text{ sec A}.

Given, R.H.S. = 4

∴ 2 sec A = 4

⇒ sec A = 2

⇒ sec A = sec 60°

⇒ A = 60°.

Hence, A = 60°.

(ii) Solving L.H.S. of the equation :

sin Asec A - 1+sin Asec A + 1=2sin A(sec A + 1) + sin A(sec A - 1)(sec A - 1)(sec A + 1)sin A sec A + sin A + sin A sec A - sin Asec2A12 sin A sec Asec2A1\Rightarrow \dfrac{\text{sin A}}{\text{sec A - 1}} + \dfrac{\text{sin A}}{\text{sec A + 1}} = 2 \\[1em] \Rightarrow \dfrac{\text{sin A(sec A + 1) + sin A(sec A - 1)}}{\text{(sec A - 1)(sec A + 1)}} \\[1em] \Rightarrow \dfrac{\text{sin A sec A + sin A + sin A sec A - sin A}}{\text{sec}^2 A - 1} \\[1em] \Rightarrow \dfrac{\text{2 sin A sec A}}{\text{sec}^2 A - 1}

By formula,

sec2 A - 1 = tan2 A

2 sin A×1cos Atan2A2 tan Atan2A2tan A2 cot A.\Rightarrow \dfrac{\text{2 sin A} \times \dfrac{1}{\text{cos A}}}{\text{tan}^2 A} \\[1em] \Rightarrow \dfrac{\text{2 tan A}}{\text{tan}^2 A} \\[1em] \Rightarrow \dfrac{2}{\text{tan A}} \\[1em] \Rightarrow \text{2 cot A}.

Given, R.H.S. = 2

∴ 2 cot A = 2

⇒ cot A = 1

⇒ cot A = cot 45°

⇒ A = 45°.

Hence, A = 45°.

Question 13

Prove that :

(cosec A - sin A)(sec A - cos A) sec2 A = tan A

Answer

Solving L.H.S. of the equation :

(1sin Asin A)(1cos Acos A)sec2A(1 - sin2Asin A)×(1 - cos2Acos A)×sec2A\Rightarrow \Big(\dfrac{1}{\text{sin A}} - \text{sin A}\Big) \Big(\dfrac{1}{\text{cos A}} - \text{cos A}\Big)\text{sec}^2 \text{A} \\[1em] \Rightarrow \Big(\dfrac{\text{1 - sin}^2 A}{\text{sin A}}\Big) \times \Big(\dfrac{\text{1 - cos}^2 A}{\text{cos A}}\Big) \times \text{sec}^2 A

By formula,

1 - sin2 A = cos2 A and 1 - cos2 A = sin2 A

cos2Asin A×sin2Acos A×1cos2Asin Acos Atan A.\Rightarrow \dfrac{\text{cos}^2 A}{\text{sin A}} \times \dfrac{\text{sin}^2 A}{\text{cos A}} \times \dfrac{1}{\text{cos}^2 A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} \\[1em] \Rightarrow \text{tan A}.

Since, L.H.S. = R.H.S.

Hence, proved that (cosec A - sin A)(sec A - cos A) sec2 A = tan A

Question 14

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.

Answer

Given equation,

⇒ (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.

Solving L.H.S. of the equation :

(sin θ + cos θ)(tan θ + cot θ)(sin θ + cos θ)(sin θcos θ+cos θsin θ)(sin θ + cos θ)(sin2θ+cos2θcos θ sin θ)\Rightarrow \text{(sin θ + cos θ)(tan θ + cot θ)} \\[1em] \Rightarrow \text{(sin θ + cos θ)}\Big(\dfrac{\text{sin θ}}{\text{cos θ}} + \dfrac{\text{cos θ}}{\text{sin θ}}\Big) \\[1em] \Rightarrow \text{(sin θ + cos θ)}\Big(\dfrac{\text{sin}^2 θ + \text{cos}^2 θ}{\text{cos θ sin θ}}\Big)

By formula,

sin2 θ + cos2 θ = 1.

(sin θ + cos θ)×1cos θ sin θsin θcos θ sin θ+cos θcos θ sin θ1cos θ+1sin θsec θ + cosec θ.\Rightarrow \text{(sin θ + cos θ)} \times \dfrac{1}{\text{cos θ sin θ}} \\[1em] \Rightarrow \dfrac{\text{sin θ}}{\text{cos θ sin θ}} + \dfrac{\text{cos θ}}{\text{cos θ sin θ}} \\[1em] \Rightarrow \dfrac{1}{\text{cos θ}} + \dfrac{1}{\text{sin θ}} \\[1em] \Rightarrow \text{sec θ + cosec θ}.

Hence, proved that (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.

Question 15

Evaluate without using trigonometric tables,

sin2 28° + sin2 62° + tan2 38° - cot2 52° + 14sec2 30°\dfrac{1}{4} \text{sec}^2 \space 30°

Answer

Solving,

⇒ sin2 28° + sin2 62° + tan2 38° - cot2 52° + 14sec2 30°\dfrac{1}{4} \text{sec}^2 \space 30°

⇒ sin2 28° + sin2 (90° - 28°) + tan2 (90° - 52°) - cot2 52° + 14×(23)2\dfrac{1}{4} \times \Big(\dfrac{2}{\sqrt{3}}\Big)^2

By formula,

sin(90° - θ) = cos θ and tan(90° - θ) = cot θ

⇒ sin2 28° + cos2 28° + cot2 52° - cot2 52° + 14×43\dfrac{1}{4} \times \dfrac{4}{3}

By formula,

sin2 θ + cos2 θ = 1

⇒ 1 + 13\dfrac{1}{3}

1131\dfrac{1}{3}.

Hence, sin2 28° + sin2 62° + tan2 38° - cot2 52° + 14sec230°=113\dfrac{1}{4} \text{sec}^2 30° = 1\dfrac{1}{3}.

PrevNext