KnowledgeBoat Logo
|
OPEN IN APP

Chapter 6

Ratio and Proportion

Class - 10 ML Aggarwal Understanding ICSE Mathematics



Exercise 6.1

Question 1

An alloy consists of 271227\dfrac{1}{2} kg of copper and 2342\dfrac{3}{4} kg of tin. Find the ratio by weight of tin to the alloy.

Answer

Weight of alloy = Weight of tin + Weight of copper

Weight of alloy=2712+234=552+114=110+114=1214\therefore \text{Weight of alloy} = 27\dfrac{1}{2} + 2\dfrac{3}{4} \\[0.5em] = \dfrac{55}{2} + \dfrac{11}{4} \\[0.5em] = \dfrac{110 + 11}{4} \\[0.5em] = \dfrac{121}{4}

Ratio by weight of tin to alloy = Weight of tinWeight of alloy\dfrac{\text{Weight of tin}}{\text{Weight of alloy}}

=1141214=11121=111= \dfrac{\dfrac{11}{4}}{\dfrac{121}{4}} \\[0.5em] = \dfrac{11}{121} \\[0.5em] = \dfrac{1}{11}

Hence, the ratio by weight of tin to alloy is 1 : 11.

Question 2

Find the compounded ratio of:

(i) 2 : 3 and 4 : 9

(ii) 4 : 5, 5 : 7 and 9 : 11

(iii) (a - b) : (a + b), (a + b)2 : (a2 + b2) and (a4 - b4) : (a2 - b2)2

Answer

(i) The compounded ratio of 2 : 3 and 4 : 9 is,

=23×49=827= \dfrac{2}{3} \times \dfrac{4}{9} \\[0.5em] = \dfrac{8}{27}

Hence, the compounded ratio is 8 : 27.

(ii) The compounded ratio of 4 : 5, 5 : 7 and 9 : 11 is,

=45×57×911=180385= \dfrac{4}{5} \times \dfrac{5}{7} \times \dfrac{9}{11} \\[0.5em] = \dfrac{180}{385} \\[0.5em]

Dividing numerator and denominator by 5, we get:

1803638577=3677\dfrac{\overset{36}{\bcancel{180}}}{\underset{77}{\bcancel{385}}} = \dfrac{36}{77}

Hence, the compounded ratio is 36 : 77.

(iii) The compounded ratio of (a - b) : (a + b), (a + b)2 : (a2 + b2) and (a4 - b4) : (a2 - b2)2 is,

=(ab)(a+b)×(a+b)2(a2+b2)×(a4b4)(a2b2)2=(ab)(a+b)×(a+b)(a+b)(a2+b2)×(a2b2)(a2+b2)(a2b2)(a2b2)=(ab)(a+b)(a2b2)=(a2b2)(a2b2)=11= \dfrac{(a - b)}{(a + b)} \times \dfrac{(a + b)^2}{(a^2 + b^2)} \times \dfrac{(a^4 - b^4)}{(a^2 - b^2)^2} \\[0.5em] = \dfrac{(a - b)}{\bcancel{(a + b)}} \times \dfrac{\bcancel{(a + b)}(a + b)}{\bcancel{(a^2 + b^2)}} \times \dfrac{\bcancel{(a^2 - b^2)}\bcancel{(a^2 + b^2)}}{\bcancel{(a^2 - b^2)}(a^2 - b^2)} \\[0.5em] = \dfrac{(a - b)(a + b)}{(a^2 - b^2)} \\[0.5em] = \dfrac{(a^2 - b^2)}{(a^2 - b^2)} \\[0.5em] = \dfrac{1}{1}

Hence, the compounded ratio is 1 : 1.

Question 3

Find the duplicate ratio of :

(i) 2 : 3

(ii) 5\sqrt{5} : 7

(iii) 5a : 6b

Answer

(i) The duplicate ratio of 2 : 3 is,

= 22 : 32 = 4 : 9

Hence, the duplicate ratio is 4 : 9.

(ii) The duplicate ratio of 5\sqrt{5} : 7 is,

= (5)(\sqrt{5})2 : 72 = 5 : 49

Hence, the duplicate ratio is 5 : 9.

(iii) The duplicate ratio of 5a : 6b is,

= (5a)2 : (6b)2 = 25a2 : 36b2

Hence, the duplicate ratio is 25a2 : 36b2.

Question 4

Find the triplicate ratio of :

(i) 3 : 4

(ii) 12:13\dfrac{1}{2} : \dfrac{1}{3}

(iii) 13 : 23

Answer

(i) The triplicate ratio of 3 : 4 is,

= 33 : 43 = 27 : 64

Hence, the triplicate ratio is 27 : 64.

(ii) The triplicate ratio of 12:13\dfrac{1}{2} : \dfrac{1}{3} is,

=(12)3:(13)3=(18):(127)=18127=278=27:8.=\big(\dfrac{1}{2}\big)^3 : \big(\dfrac{1}{3}\big)^3 \\[0.5em] = \big(\dfrac{1}{8}\big) : \big(\dfrac{1}{27}\big) \\[0.5em] = \dfrac{\dfrac{1}{8}}{\dfrac{1}{27}} \\[0.5em] = \dfrac{27}{8} = 27 : 8.

Hence, the triplicate ratio is 27 : 8.

(iii) The triplicate ratio of 13 : 23 is,

= (13)3 : (23)3 = 19 : 29 = 1: 512

Hence, the triplicate ratio is 1 : 512.

Question 5

Find the sub-duplicate ratio of :

(i) 9 : 16

(ii) 14:19\dfrac{1}{4} : \dfrac{1}{9}

(iii) 9a2 : 49b2

Answer

(i) The sub duplicate ratio of 9 : 16 is,

=9:16=3:4= \sqrt{9} : \sqrt{16} \\[0.5em] = 3 : 4

Hence, the sub-duplicate ratio is 3 : 4.

(ii) The sub duplicate ratio of 14:19\dfrac{1}{4} : \dfrac{1}{9} is,

=14:19=12:13=1213=32=3:2= \sqrt{\dfrac{1}{4}} : \sqrt{\dfrac{1}{9}} \\[0.5em] = \dfrac{1}{2} : \dfrac{1}{3} \\[0.5em] = \dfrac{\dfrac{1}{2}}{\dfrac{1}{3}} \\[0.5em] = \dfrac{3}{2} = 3 : 2

Hence, the sub-duplicate ratio is 3 : 2.

(iii) The sub duplicate ratio of 9a2 : 49b2 is,

=9a2:49b2=3a:7b= \sqrt{9a^2} : \sqrt{49b^2} \\[0.5em] = 3a : 7b

Hence, the sub-duplicate ratio is 3a : 7b.

Question 6

Find the sub-triplicate ratio of :

(i) 1 : 216

(ii) 18:1125\dfrac{1}{8} : \dfrac{1}{125}

(iii) 27a3 : 64b3

Answer

(i) The sub-triplicate ratio of 1 : 216 is,

=13:2163=1:6= \sqrt[3]{1} : \sqrt[3]{216} \\[0.5em] = 1 : 6

Hence, the sub-triplicate ratio is 1 : 6.

(ii) The sub-triplicate ratio of 18:1125\dfrac{1}{8} : \dfrac{1}{125} is,

=183:11253=12:15=1215=52=5:2= \sqrt[3]{\dfrac{1}{8}} : \sqrt[3]{\dfrac{1}{125}} \\[0.5em] = \dfrac{1}{2} : \dfrac{1}{5} \\[0.5em] = \dfrac{\dfrac{1}{2}}{\dfrac{1}{5}} \\[0.5em] = \dfrac{5}{2} = 5 : 2

Hence, the sub-triplicate ratio is 5 : 2.

(iii) The sub-triplicate ratio of 27a3 : 64b3 is,

=27a33:64b33=3a:4b= \sqrt[3]{27a^3} : \sqrt[3]{64b^3} \\[0.5em] = 3a : 4b

Hence, the sub-triplicate ratio is 3a : 4b.

Question 7

Find the reciprocal ratio of :

(i) 4 : 7

(ii) 32 : 42

(iii) 19:2\dfrac{1}{9} : 2

Answer

(i) The reciprocal ratio of 4 : 7 is,

=14:17=1417=74=7:4= \dfrac{1}{4} : \dfrac{1}{7} \\[0.5em] = \dfrac{\dfrac{1}{4}}{\dfrac{1}{7}} \\[0.5em] = \dfrac{7}{4} \\[0.5em] = 7 : 4

Hence, the reciprocal ratio is 7 : 4.

(ii) The reciprocal ratio of 32 : 42 is,

=132:142=19116=169=16:9= \dfrac{1}{3^2} : \dfrac{1}{4^2} \\[0.5em] = \dfrac{\dfrac{1}{9}}{\dfrac{1}{16}} \\[0.5em] = \dfrac{16}{9} \\[0.5em] = 16 : 9

Hence, the reciprocal ratio is 16 : 9.

(iii) The reciprocal ratio of 19:2\dfrac{1}{9} : 2 is,

=119:12=912=181=18:1= \dfrac{1}{\dfrac{1}{9}} : \dfrac{1}{2} \\[0.5em] = \dfrac{9}{\dfrac{1}{2}} \\[0.5em] = \dfrac{18}{1} \\[0.5em] = 18 : 1

Hence, the reciprocal ratio is 18 : 1.

Question 8

Arrange the following ratios in ascending order of magnitude :
2 : 3, 17 : 21, 11 : 14 and 5 : 7.

Answer

Given, ratios are 23,1721,1114,57.\dfrac{2}{3}, \dfrac{17}{21}, \dfrac{11}{14}, \dfrac{5}{7}.

We convert them into equivalent like fractions.

L.C.M. of 3, 21, 14, 7 = 42

23=2×143×14=2842,1721=17×221×2=3442,1114=11×314×3=3342,57=5×67×6=3042.\dfrac{2}{3} = \dfrac{2 \times 14}{3 \times 14} = \dfrac{28}{42}, \\[0.5em] \dfrac{17}{21} = \dfrac{17 \times 2}{21 \times 2} = \dfrac{34}{42}, \\[0.5em] \dfrac{11}{14} = \dfrac{11 \times 3}{14 \times 3} = \dfrac{33}{42}, \\[0.5em] \dfrac{5}{7} = \dfrac{5 \times 6}{7 \times 6} = \dfrac{30}{42}. \\[0.5em]

As, 28 < 30 < 33 < 34,

2842<3042<3342<344223<57<1114<1721\Rightarrow \dfrac{28}{42} \lt \dfrac{30}{42} \lt \dfrac{33}{42} \lt \dfrac{34}{42} \\[1em] \therefore \dfrac{2}{3} \lt \dfrac{5}{7} \lt \dfrac{11}{14} \lt \dfrac{17}{21}

Hence, the given ratios in ascending order are 2 : 3, 5 : 7, 11 : 14, 17 : 21.

Question 9(i)

If A : B = 2 : 3, B : C = 4 : 5 and C : D = 6 : 7, find A : D.

Answer

AB=23B=3A2\dfrac{A}{B} = \dfrac{2}{3} \\[0.5em] \Rightarrow B = \dfrac{3A}{2} \\[0.5em]

Putting this value of B in B : C

BC=453A2C=453A2=4C5C=15A8\dfrac{B}{C} = \dfrac{4}{5} \\[0.5em] \Rightarrow \dfrac{\dfrac{3A}{2}}{C} = \dfrac{4}{5} \\[0.5em] \Rightarrow \dfrac{3A}{2} = \dfrac{4C}{5} \\[0.5em] \Rightarrow C = \dfrac{15A}{8} \\[0.5em]

Putting this value of C in C : D

C:D=6:715A8D=6715A8D=67AD=48105=1635A:D=16:35.C : D = 6 : 7 \\[0.5em] \Rightarrow \dfrac{\dfrac{15A}{8}}{D} = \dfrac{6}{7} \\[0.5em] \Rightarrow \dfrac{15A}{8D} = \dfrac{6}{7} \\[0.5em] \Rightarrow \dfrac{A}{D} = \dfrac{48}{105} = \dfrac{16}{35} \\[0.5em] \Rightarrow A : D = 16 : 35.

Hence, the value of A : D is 16 : 35.

Question 9(ii)

If x : y = 2 : 3 and y : z = 4 : 7, find x : y : z.

Answer

Given, x : y = 2 : 3 and y : z = 4 : 7

To find x : y : z, we will make y same in both cases.

Taking L.C.M. of two values of y i.e. 3 and 4 = 12

So ,xy=2×43×4=812=8:12and yz=47=4×37×3=1221=12:21\text{So }, \dfrac{x}{y} = \dfrac{2 \times 4}{3 \times 4} = \dfrac{8}{12} = 8 : 12 \\[0.5em] \text{and } \dfrac{y}{z} = \dfrac{4}{7} = \dfrac{4 \times 3}{7 \times 3} = \dfrac{12}{21} = 12 : 21

∴ x : y : z = 8 : 12 : 21

Hence, the ratio of x : y : z is 8 : 12 : 21.

Question 10(i)

If A : B = 14:15\dfrac{1}{4} : \dfrac{1}{5} and B : C = 17:16\dfrac{1}{7} : \dfrac{1}{6}, find A : B : C.

Answer

Given, A : B = 14:15\dfrac{1}{4} : \dfrac{1}{5} = 5 : 4 and B : C = 17:16\dfrac{1}{7} : \dfrac{1}{6} = 6 : 7

To find A : B : C, we will make B same in both cases.

Taking L.C.M. of two values of B i.e. 4 and 6 = 12

So ,AB=5×34×3=1512=15:12and BC=67=6×27×2=1214=12:14\text{So }, \dfrac{A}{B} = \dfrac{5 \times 3}{4 \times 3} = \dfrac{15}{12} = 15 : 12 \\[0.5em] \text{and } \dfrac{B}{C} = \dfrac{6}{7} = \dfrac{6 \times 2}{7 \times 2} = \dfrac{12}{14} = 12 : 14 \\[0.5em]

∴ A : B : C = 15 : 12 : 14

Hence, the ratio of A : B : C is 15 : 12 : 14.

Question 10(ii)

If 3A = 4B = 6C, find A : B : C.

Answer

3A=4BAB=43A:B=4:33A = 4B \\[0.5em] \Rightarrow \dfrac{A}{B} = \dfrac{4}{3} \\[0.5em] \Rightarrow A : B = 4 : 3

Similarly,

4B=6CBC=64=32B:C=3:24B = 6C \\[0.5em] \Rightarrow \dfrac{B}{C} = \dfrac{6}{4} = \dfrac{3}{2} \\[0.5em] \Rightarrow B : C = 3 : 2

So we get,

A : B : C = 4 : 3 : 2

Hence, the ratio of A : B : C is 4 : 3 : 2.

Question 11(i)

If 3x+5y3x5y=73\dfrac{3x + 5y}{3x - 5y} = \dfrac{7}{3}, find x : y.

Answer

Given,

3x+5y3x5y=733(3x+5y)=7(3x5y)9x+15y=21x35y15y+35y=21x9x50y=12xx=50y12xy=5012=256x:y=25:6.\dfrac{3x + 5y}{3x - 5y} = \dfrac{7}{3} \\[0.5em] \Rightarrow 3(3x + 5y) = 7(3x - 5y) \\[0.5em] \Rightarrow 9x + 15y = 21x - 35y \\[0.5em] \Rightarrow 15y + 35y = 21x - 9x \\[0.5em] \Rightarrow 50y = 12x \\[0.5em] \Rightarrow x = \dfrac{50y}{12} \\[0.5em] \Rightarrow \dfrac{x}{y} = \dfrac{50}{12} = \dfrac{25}{6} \\[0.5em] \Rightarrow x : y = 25 : 6.

Hence, the ratio of x : y is 25 : 6.

Question 11(ii)

If a : b = 3 : 11, find (15a - 3b) : (9a + 5b).

Answer

a : b = 3 : 11 or,

ab=311\dfrac{a}{b} = \dfrac{3}{11}

We need to find 15a3b9a+5b\dfrac{15a - 3b}{9a + 5b}

Dividing the numerator and denominator by b,

15ab3bb9ab+5bb15ab39ab+5\Rightarrow \dfrac{\dfrac{15a}{b} - \dfrac{3b}{b}}{\dfrac{9a}{b} + \dfrac{5b}{b}} \\[0.5em] \Rightarrow \dfrac{\dfrac{15a}{ b} - 3}{\dfrac{9a}{b} + 5} \\[0.5em]

Putting value of ab=311\dfrac{a}{b} = \dfrac{3}{11},

15×31139×311+545331127+55111282=641=6:41\Rightarrow \dfrac{15 \times \dfrac{3}{11} - 3}{9 \times \dfrac{3}{11} + 5} \\[0.5em] \Rightarrow \dfrac{\dfrac{45 - 33}{11}}{\dfrac{27 + 55}{11} } \\[0.5em] \Rightarrow \dfrac{12}{82} = \dfrac{6}{41} = 6 : 41

Hence, the value of ratio is 6 : 41.

Question 12(i)

If (4x2 + xy) : (3xy - y2) = 12 : 5, find (x + 2y) : (2x + y).

Answer

Given, (4x2 + xy) : (3xy - y2) = 12 : 5

4x2+xy3xyy2=1255(4x2+xy)=12(3xyy2)20x2+5xy=36xy12y220x231xy+12y2=020x2y231xy+12=020(xy)231(xy)+12=020(xy)215(xy)16(xy)+12=05(xy)(4(xy)3)4(4(xy)3)(5(xy)4)(4(xy)3)=0(5(xy)4)=0 or (4(xy)3)=0xy=45 or xy=34.\Rightarrow \dfrac{4x^2 + xy}{3xy - y^2} = \dfrac{12}{5} \\[1em] \Rightarrow 5(4x^2 + xy) = 12(3xy - y^2) \\[1em] \Rightarrow 20x^2 + 5xy = 36xy - 12y^2 \\[1em] \Rightarrow 20x^2 - 31xy + 12y^2 = 0 \\[1em] \Rightarrow 20\dfrac{x^2}{y^2} - 31\dfrac{x}{y} + 12 = 0 \\[1em] \Rightarrow 20(\dfrac{x}{y})^2 - 31(\dfrac{x}{y}) + 12 = 0 \\[1em] \Rightarrow 20(\dfrac{x}{y})^2 - 15(\dfrac{x}{y}) - 16(\dfrac{x}{y})+ 12 = 0 \\[1em] \Rightarrow 5(\dfrac{x}{y})\big(4\big(\dfrac{x}{y}\big) - 3\big) - 4\big(4\big(\dfrac{x}{y}\big) - 3\big) \\[1em] \Rightarrow \big(5\big(\dfrac{x}{y}\big) - 4\big) \big(4\big(\dfrac{x}{y}\big) - 3\big) = 0 \\[1em] \Rightarrow \big(5\big(\dfrac{x}{y}\big) - 4\big) = 0 \text{ or } \big(4\big(\dfrac{x}{y}\big) - 3\big) = 0 \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{4}{5} \text{ or } \dfrac{x}{y} = \dfrac{3}{4}.

We need to find value of (x + 2y) : (2x + y) or x+2y2x+y\dfrac{x + 2y}{2x + y}

Dividing the numerator and denominator by y,

xy+22xy+1\Rightarrow \dfrac{\dfrac{x}{y} + 2}{\dfrac{2x}{y} + 1}

Putting value of xy=45\dfrac{x}{y} = \dfrac{4}{5},

45+285+11451351413=14:13.\Rightarrow \dfrac{\dfrac{4}{5} + 2}{\dfrac{8}{5} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{14}{5}}{\dfrac{13}{5}} \\[1em] \Rightarrow \dfrac{14}{13} = 14 : 13. \\[1em]

Putting value of xy=34\dfrac{x}{y} = \dfrac{3}{4},

34+264+11141041110=11:10\Rightarrow \dfrac{\dfrac{3}{4} + 2}{\dfrac{6}{4} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{11}{4}}{\dfrac{10}{4}} \\[1em] \Rightarrow \dfrac{11}{10} = 11 : 10

Hence, the value of ratio (x + 2y) : (2x + y) is 14 : 13 or 11 : 10.

Question 12(ii)

If y(3x - y) : x(4x + y) = 5 : 12, find (x2 + y2) : (x + y)2.

Answer

Given, y(3x - y) : x(4x + y) = 5 : 12

3xyy24x2+xy=51212(3xyy2)=5(4x2+xy)36xy12y2=20x2+5xy20x2+12y2+5xy36xy=020x231xy+12y2=0\therefore \dfrac{3xy - y^2}{4x^2 + xy} = \dfrac{5}{12} \\[0.5em] \Rightarrow 12(3xy - y^2) = 5(4x^2 + xy) \\[0.5em] \Rightarrow 36xy - 12y^2 = 20x^2 + 5xy \\[0.5em] \Rightarrow 20x^2 + 12y^2 + 5xy - 36xy = 0 \\[0.5em] \Rightarrow 20x^2 - 31xy + 12y^2 = 0 \\[0.5em]

Dividing the equation by y2,

20(xy)231(xy)+12=020(xy)216(xy)15(xy)+12=04(xy)(5(xy)4)3(5(xy)4)=0(5(xy)4)(4(xy)3)=05(xy)4=0 or 4(xy)3=0xy=45 or xy=34.\Rightarrow 20\big(\dfrac{x}{y}\big)^2 - 31\big(\dfrac{x}{y}\big) + 12 = 0 \\[1em] \Rightarrow 20\big(\dfrac{x}{y}\big)^2 - 16\big(\dfrac{x}{y}\big) - 15\big(\dfrac{x}{y}\big) + 12 = 0 \\[1em] \Rightarrow 4\big(\dfrac{x}{y}\big)(5\big(\dfrac{x}{y}\big) - 4) - 3(5\big(\dfrac{x}{y}\big) - 4) = 0 \\[1em] \Rightarrow (5\big(\dfrac{x}{y}\big) - 4)(4\big(\dfrac{x}{y}\big) - 3) = 0 \\[1em] \Rightarrow 5\big(\dfrac{x}{y}\big) - 4 = 0 \text{ or } 4\big(\dfrac{x}{y}\big) - 3 = 0 \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{4}{5} \text{ or } \dfrac{x}{y} = \dfrac{3}{4}.

We have to find value of (x2 + y2) : (x + y)2.

=(x2+y2):(x2+y2+2xy)=x2+y2x2+y2+2xy= (x^2 + y^2) : (x^2 + y^2 + 2xy) \\[0.5em] = \dfrac{x^2 + y^2}{x^2 + y^2 + 2xy} \\[0.5em]

Dividing numerator and denominator by y2,

=x2+y2y2x2+y2+2xyy2=(xy)2+1(xy)2+1+2(xy)= \dfrac{\dfrac{x^2 + y^2}{y^2}}{\dfrac{x^2 + y^2 + 2xy}{y^2}} \\[1em] = \dfrac{\big(\dfrac{x}{y}\big)^2 + 1}{\big(\dfrac{x}{y}\big)^2 + 1 + 2\big(\dfrac{x}{y}\big)} \\[1em]

Putting value of xy=45\dfrac{x}{y} = \dfrac{4}{5},

(45)2+1(45)2+1+2(45)=(1625)+1(1625)+1+(85)=16+252516+25+4025=4181=41:81\dfrac{\big(\dfrac{4}{5}\big)^2 + 1}{\big(\dfrac{4}{5}\big)^2 + 1 + 2\big(\dfrac{4}{5}\big)} \\[1em] = \dfrac{\big(\dfrac{16}{25}\big) + 1}{\big(\dfrac{16}{25}\big) + 1 + \big(\dfrac{8}{5}\big)} \\[1em] = \dfrac{\dfrac{16 + 25}{25}}{\dfrac{16 + 25 + 40}{25}} \\[1em] = \dfrac{41}{81} \\[1em] = 41 : 81 \\[1em]

Putting value of xy=34\dfrac{x}{y} = \dfrac{3}{4},

(34)2+1(34)2+1+2(34)=(916)+1(916)+1+(64)=9+16169+16+2416=2549=25:49\dfrac{\big(\dfrac{3}{4}\big)^2 + 1}{\big(\dfrac{3}{4}\big)^2 + 1 + 2\big(\dfrac{3}{4}\big)} \\[1em] = \dfrac{\big(\dfrac{9}{16}\big) + 1}{\big(\dfrac{9}{16}\big) + 1 + \big(\dfrac{6}{4}\big)} \\[1em] = \dfrac{\dfrac{9 + 16}{16}}{\dfrac{9 + 16 + 24}{16}} \\[1em] = \dfrac{25}{49} \\[1em] = 25 : 49

Hence, the value of ratio (x2 + y2) : (x + y)2 is 41 : 81 or 25 : 49.

Question 13(i)

If (x - 9) : (3x + 6) is the duplicate ratio of 4 : 9, find the value of x.

Answer

Duplicate ratio of 4 : 9 = 42 : 92 = 16 : 81.

According to question,

(x - 9) : (3x + 6) = 16 : 81

x93x+6=168181(x9)=16(3x+6)81x729=48x+9681x48x=96+72933x=825x=82533x=25.\Rightarrow \dfrac{x - 9}{3x + 6} = \dfrac{16}{81} \\[0.5em] \Rightarrow 81(x - 9) = 16(3x + 6) \\[0.5em] \Rightarrow 81x - 729 = 48x + 96 \\[0.5em] \Rightarrow 81x - 48x = 96 + 729 \\[0.5em] \Rightarrow 33x = 825 \\[0.5em] \Rightarrow x = \dfrac{825}{33} \\[0.5em] x = 25.

Hence, the value of x is 25.

Question 13(ii)

If (3x + 1) : (5x + 3) is the triplicate ratio of 3 : 4, find the value of x.

Answer

Triplicate ratio of 3 : 4 = 33 : 43 = 27 : 64.

According to question,

(3x + 1) : (5x + 3) = 27 : 64

3x+15x+3=276464(3x+1)=27(5x+3)192x+64=135x+81192x135x=816457x=17x=1757.\Rightarrow \dfrac{3x + 1}{5x + 3} = \dfrac{27}{64} \\[0.5em] \Rightarrow 64(3x + 1) = 27(5x + 3) \\[0.5em] \Rightarrow 192x + 64 = 135x + 81 \\[0.5em] \Rightarrow 192x - 135x = 81 - 64 \\[0.5em] \Rightarrow 57x = 17 \\[0.5em] \Rightarrow x = \dfrac{17}{57}.

Hence, the value of x is 1757\dfrac{17}{57}.

Question 13(iii)

If (x + 2y) : (2x - y) is equal to the duplicate ratio of 3 : 2, find x : y.

Answer

Duplicate ratio of 3 : 2 = 32 : 22 = 9 : 4.

According to question,

(x + 2y) : (2x - y) = 9 : 4

x+2y2xy=944(x+2y)=9(2xy)4x+8y=18x9y4x18x=9y8y14x=17yxy=1714xy=1714x:y=17:14\Rightarrow \dfrac{x + 2y}{2x - y} = \dfrac{9}{4} \\[0.5em] \Rightarrow 4(x + 2y) = 9(2x - y) \\[0.5em] \Rightarrow 4x + 8y = 18x - 9y \\[0.5em] \Rightarrow 4x - 18x = -9y - 8y \\[0.5em] \Rightarrow -14x = -17y \\[0.5em] \Rightarrow \dfrac{x}{y} = \dfrac{-17}{-14} \\[0.5em] \Rightarrow \dfrac{x}{y} = \dfrac{17}{14} \\[0.5em] \Rightarrow x : y = 17 : 14

Hence, the value of x : y is 17 : 14.

Question 14(i)

Find two numbers in the ratio of 8 : 7 such that when each is decreased by 121212\dfrac{1}{2}, they are in ratio 11 : 9.

Answer

Since, numbers are in ratio 8 : 7, let the required numbers be 8x and 7x.

According to question,

8x12127x1212=1198x2527x252=11916x25214x252=11916x2514x25=1199(16x25)=11(14x25)144x225=154x275144x154x=275+22510x=50x=5.\dfrac{8x - 12\dfrac{1}{2}}{7x - 12\dfrac{1}{2}} = \dfrac{11}{9} \\[1em] \Rightarrow \dfrac{8x - \dfrac{25}{2}}{7x - \dfrac{25}{2}} = \dfrac{11}{9} \\[1em] \Rightarrow \dfrac{\dfrac{16x - 25}{2}}{\dfrac{14x - 25}{2}} = \dfrac{11}{9} \\[1em] \Rightarrow \dfrac{16x - 25}{14x - 25} = \dfrac{11}{9} \\[1em] \Rightarrow 9(16x - 25) = 11(14x - 25) \\[1em] \Rightarrow 144x - 225 = 154x - 275 \\[1em] \Rightarrow 144x - 154x = -275 + 225 \\[1em] \Rightarrow -10x = -50 \\[1em] \Rightarrow x = 5.

∴ x = 5, 8x = 40, 7x = 35.

Hence, the required numbers are 40, 35.

Question 14(ii)

The income of a man is increased in the ratio 10 : 11. If the increase in his income is ₹ 600 per month, find his new income.

Answer

Let the present income = 10x and the new increased income = 11x.

So, the increase per month = 11x - 10x = x

Given, increase in his income is ₹600 per month.

∴ x = 600.

New income = 11x = 11×60011 \times 600 = ₹6600.

Hence, the new income of man is ₹6600 per month.

Question 15(i)

A woman reduces her weight in the ratio 7 : 5. What does her weight become if originally it was 91 kg?

Answer

Given, a woman reduces her weight in ratio 7 : 5 and original weight = 91 kg.

Original weightReduced weight=75Reduced weight=57×Original weightReduced weight=57×91 kgReduced weight=5×13=65 kg\therefore \dfrac{\text{Original weight}}{\text{Reduced weight}} = \dfrac{7}{5} \\[0.5em] \Rightarrow \text{Reduced weight} = \dfrac{5}{7} \times \text{Original weight} \\[0.5em] \Rightarrow \text{Reduced weight} = \dfrac{5}{7} \times 91 \text{ kg} \\[0.5em] \Rightarrow \text{Reduced weight} = 5 \times 13 = 65 \text{ kg}

Hence, the reduced weight of woman is 65 kg.

Question 15(ii)

A school collected ₹2100 for charity. It was decided to divide the money between an orphanage and a blind school in the ratio 3 : 4. How much money did each receive?

Answer

Amount collected for charity = ₹2100.

The ratio between orphanage and a blind school = 3 : 4.

Sum of ratio = 3 + 4 = 7

Orphanage share = 37×2100=900.\dfrac{3}{7} \times ₹2100 = ₹900.

Blind school share = 47×2100=1200.\dfrac{4}{7} \times ₹2100 = ₹1200.

Hence, the share of orphanage school is ₹900 and the share of blind school is ₹2100.

Question 16(i)

The sides of a triangle are in the ratio 7 : 5 : 3 and its perimeter is 30 cm. Find the lengths of sides.

Answer

Since the sides of triangle are in the ratio 7 : 5 : 3, let the sides be 7x, 5x and 3x.

Perimeter = Sum of sides of triangle

∴ 7x + 5x + 3x = 30
⇒ 15x = 30
⇒ x = 3015\dfrac{30}{15}
⇒ x = 2

∴ x = 2, 7x = 14, 5x = 10, 3x = 6.

Hence, the sides of the triangle are 14cm, 10cm, 6cm.

Question 16(ii)

If the angles of a triangle are in the ratio 2 : 3 : 4, find the angles.

Answer

Since the angles of triangle are in the ratio 2 : 3 : 4, let the angles be 2x, 3x and 4x.

Sum of angle of triangle = 180°

∴ 2x + 3x + 4x = 180
⇒ 9x = 180°
⇒ x = 180°9\dfrac{180°}{9}
⇒ x = 20°

∴ x = 20°, 2x = 40°, 3x = 60°, 4x = 80°.

Hence, the angles of triangle are 40°, 60°, 80°.

Question 17

Three numbers are in the ratio 12:13:14\dfrac{1}{2} : \dfrac{1}{3} : \dfrac{1}{4}. If the sum of their squares is 244, find the numbers.

Answer

The ratio is 12:13:14\dfrac{1}{2} : \dfrac{1}{3} : \dfrac{1}{4}.

L.C.M. of 2, 3, 4 = 12.

Ratio =12×12:13×12:14×12=6:4:3.\text{Ratio } = \dfrac{1}{2} \times 12 : \dfrac{1}{3} \times 12 : \dfrac{1}{4} \times 12 \\[0.5em] = 6 : 4 : 3.

Since the ratio is 6 : 4 : 3, let the numbers be 6x, 4x and 3x.

Given, sum of squares of numbers = 244.

∴ (6x)2 + (4x)2 + (3x)2 = 244
⇒ 36x2 + 16x2 + 9x2 = 244
⇒ 61x2 = 244
⇒ x2 = 24461\dfrac{244}{61}
⇒ x = 4\sqrt{4} = 2

∴ x = 2, 6x = 12, 4x = 8, 3x = 6.

Hence, the numbers are 12, 8 and 6.

Question 18(i)

A certain sum was divided among A, B and C in the ratio 7 : 5 : 4. If B got ₹500 more than C, find the total sum divided.

Answer

Since, the ratio of money divided among A : B : C is 7 : 5 : 4. So, the money received by A, B, C be 7x, 5x, 4x respectively.

Given, B receives 500 more than C.

∴ 5x - 4x = 500
x = 500.

Total money divided = 7x + 5x + 4x = 16x = ₹8000.

Hence, the total money divided is ₹8000.

Question 18(ii)

In a business, A invests ₹50000 for 6 months; B ₹60000 for 4 months and C ₹80000 for 5 months. If they together earn ₹18800, find share of each.

Answer

A invests ₹50000 for 6 months, total investment of A = ₹50000 x 6 = ₹300000.

B invests ₹60000 for 4 months, total investment of B = ₹60000 x 4 = ₹240000.

C ₹80000 for 5 months, total investment of C = ₹80000 x 5 = ₹400000.

Ratio of share of A, B and C = 300000 : 240000 : 400000 = 30 : 24 : 40.

Sum of ratios = 94.

Given, total earning = ₹18800.

Share of A = 3094×18800\dfrac{30}{94} \times 18800 = 56400094\dfrac{564000}{94} = ₹6000.

Share of B = 2494×18800\dfrac{24}{94} \times 18800 = 45120094\dfrac{451200}{94} = ₹4800.

Share of C = 4094×18800\dfrac{40}{94} \times 18800 = 75200094\dfrac{752000}{94} = ₹8000.

Hence, the shares of A, B and C are ₹6000, ₹4800 and ₹8000 respectively.

Question 19(i)

In a mixture of 45 litres, the ratio of milk to water is 13 : 2. How much water must be added to this mixture to make the ratio of milk to water as 3 : 1?

Answer

Ratio of milk to water = 13 : 2.

Total quantity of mixture = 45 litres

Sum of ratio = 13 + 2 = 15.

Quantity of milk = 1315\dfrac{13}{15} x 45 = 13 x 3 = 39 litres.

Quantity of water = 215\dfrac{2}{15} x 45 = 2 x 3 = 6 litres.

Let the water added be x litres, so quantity of water = (6 + x) litres.

Now ratio = 3 : 1

396+x=3139=3(6+x)39=18+3x3x=3918x=213x=7.\therefore \dfrac{39}{6 + x} = \dfrac{3}{1} \\[0.5em] \Rightarrow 39 = 3(6 + x) \\[0.5em] \Rightarrow 39 = 18 + 3x \\[0.5em] \Rightarrow 3x = 39 - 18 \\[0.5em] \Rightarrow x = \dfrac{21}{3} \\[0.5em] \Rightarrow x = 7.

The water that must be added is 7 litres.

Question 19(ii)

The ratio of the number of boys to the number of girls in a school of 560 pupils is 5 : 3. If 10 new boys are admitted, find how many new girls may be admitted so that the ratio of number of boys to the number of girls may change to 3 : 2.

Answer

Total students = 560

Ratio of the number of boys to the number of girls = 5 : 3.

Sum of ratio = 5 + 3 = 8.

Number of boys = 58\dfrac{5}{8} x 560 = 5 x 70 = 350.

Number of girls = 38\dfrac{3}{8} x 560 = 210.

10 new boys are admitted in school , so total boys now = 350 + 10 = 360.

Let new girls to be admitted be x, so now total girls = (210 + x)

New boys to girls ratio = 3 : 2

360:(210+x)=3:2360210+x=32720=3(210+x)3x+630=7203x=7206303x=90x=30.\therefore 360 : (210 + x) = 3 : 2 \\[0.5em] \Rightarrow \dfrac{360}{210 + x} = \dfrac{3}{2} \\[0.5em] \Rightarrow 720 = 3(210 + x) \\[0.5em] \Rightarrow 3x + 630 = 720 \\[0.5em] \Rightarrow 3x = 720 - 630 \\[0.5em] \Rightarrow 3x = 90 \\[0.5em] \Rightarrow x = 30.

Hence, the number of new girls to be admitted are 30.

Question 20(i)

The monthly pocket money of Ravi and Sanjeev are in the ratio 5 : 7. Their expenditures are in the ratio 3 : 5. If each saves ₹80 every month, find their monthly pocket money.

Answer

Pocket money ratio of Ravi and Sanjeev = 5 : 7, so let the pocket money be 5x and 7x.

Expenditure ratio of Ravi and Sanjeev = 3 : 5, so let the expenditure be 3y and 5y.

Given, each save ₹80 per month.

∴ For Ravi, savings = 5x - 3y = 80 and for Sanjeev, savings = 7x - 5y = 80.

First solving 5x - 3y = 80.

5x3y=805x=80+3yx=80+3y5\Rightarrow 5x - 3y = 80 \\[0.5em] \Rightarrow 5x = 80 + 3y \\[0.5em] x = \dfrac{80 + 3y}{5}

Putting above value of x in 7x - 5y = 80.

7(80+3y5)5y=80560+21y55y=80560+21y25y5=805604y5=80\Rightarrow 7\big(\dfrac{80 + 3y}{5}\big) - 5y = 80 \\[1em] \Rightarrow \dfrac{560 + 21y}{5} - 5y = 80 \\[1em] \Rightarrow \dfrac{560 + 21y - 25y}{5} = 80 \\[1em] \Rightarrow \dfrac{560 - 4y}{5} = 80

On cross multiplying,

5604y=400560400=4y4y=160y=40.\Rightarrow 560 - 4y = 400 \\[1em] \Rightarrow 560 - 400 = 4y \\[1em] \Rightarrow 4y = 160 \\[1em] y = 40.

∴ y = 40, x = 80+3y5=80+3×405=2005=40\dfrac{80 + 3y}{5} = \dfrac{80 + 3 \times 40}{5} = \dfrac{200}{5} = 40

∴ 5x = 200, 7x = 280.

Hence, the pocket money of Ravi and Sanjeev is ₹200 and ₹280 respectively.

Question 20(ii)

In class X of a school, the ratio of the number of boys to that of the girls is 4 : 3. If there were 20 more boys and 12 less girls, then the ratio would have been 2 : 1. How many students were there in the class?

Answer

Ratio of the number of boys to girls is 4 : 3, so let the number of boys be 4x and number of girls be 3x.

According to question,

4x + 20 : 3x - 12 = 2 : 1

4x+203x12=214x+20=2(3x12)4x+20=6x246x4x=20+242x=44x=22.\Rightarrow \dfrac{4x + 20}{3x - 12} = \dfrac{2}{1} \\[0.5em] \Rightarrow 4x + 20 = 2(3x - 12) \\[0.5em] \Rightarrow 4x + 20 = 6x - 24 \\[0.5em] \Rightarrow 6x - 4x = 20 + 24 \\[0.5em] \Rightarrow 2x = 44 \\[0.5em] \Rightarrow x = 22.

∴ Total number of students = 4x + 3x = 7x = 7×227 \times 22 = 154.

Hence, the total number of students are 154.

Question 21

In an examination, the ratio of passes to failures was 4 : 1. If 30 less had appeared and 20 less passed, the ratio of passes to failures would have been 5 : 1. How many students appeared for the examination?

Answer

Ratio of passes to failures = 4 : 1. So, the number of students passed = 4x and number of students failed = x.

Total students appeared for examination = 4x + x = 5x.

In second case, number of students appeared = 5x - 30.

Number of students passed in second case = 4x - 20.

So, number of students failed = (5x - 30) - (4x - 20) = 5x - 4x - 30 + 20 = x - 10.

According to question,

4x20x10=514x20=5(x10)4x20=5x504x5x=50+20x=30x=30.\dfrac{4x - 20}{x - 10} = \dfrac{5}{1} \\[0.5em] \Rightarrow 4x - 20 = 5(x - 10) \\[0.5em] \Rightarrow 4x - 20 = 5x - 50 \\[0.5em] \Rightarrow 4x - 5x = -50 + 20 \\[0.5em] \Rightarrow -x = -30 \\[0.5em] \Rightarrow x = 30.

∴ 5x = 150

Hence, total number of students appeared for examination were 150.

Exercise 6.2

Question 1

Find the value of x in the following proportions :

(i) 10 : 35 = x : 42

(ii) 3 : x = 24 : 2

(iii) 2.5 : 1.5 = x : 3

(iv) x : 50 :: 3 : 2.

Answer

(i) Given, 10 : 35 = x : 42

1035=x42x=1035×42x=42035x=12.\Rightarrow \dfrac{10}{35} = \dfrac{x}{42} \\[0.5em] \Rightarrow x = \dfrac{10}{35} \times 42 \\[0.5em] \Rightarrow x = \dfrac{420}{35} \\[0.5em] \Rightarrow x = 12.

Hence, the value of x = 12.

(ii) Given, 3 : x = 24 : 2

3x=242x=324×2x=624x=14.\Rightarrow \dfrac{3}{x} = \dfrac{24}{2} \\[0.5em] \Rightarrow x = \dfrac{3}{24} \times 2 \\[0.5em] \Rightarrow x = \dfrac{6}{24} \\[0.5em] \Rightarrow x = \dfrac{1}{4}.

Hence, the value of x = 14\dfrac{1}{4}.

(iii) Given, 2.5 : 1.5 = x : 3

2.51.5=x3x=2.51.5×3x=7.51.5x=5.\Rightarrow \dfrac{2.5}{1.5} = \dfrac{x}{3} \\[0.5em] \Rightarrow x = \dfrac{2.5}{1.5} \times 3 \\[0.5em] \Rightarrow x = \dfrac{7.5}{1.5} \\[0.5em] \Rightarrow x = 5.

Hence, the value of x = 5.

(iv) Given, x : 50 :: 3 : 2

x50=32x=32×50x=1502x=75.\Rightarrow \dfrac{x}{50} = \dfrac{3}{2} \\[0.5em] \Rightarrow x = \dfrac{3}{2} \times 50 \\[0.5em] \Rightarrow x = \dfrac{150}{2} \\[0.5em] \Rightarrow x = 75.

Hence, the value of x = 75.

Question 2

Find the fourth proportional to :

(i) 3, 12, 15

(ii) 13,14,15\dfrac{1}{3}, \dfrac{1}{4}, \dfrac{1}{5}

(iii) 1.5, 2.5, 4.5

(iv) 9.6 kg, 7.2 kg, 28.8 kg.

Answer

(i) Let the fourth proportion be x.

Then 3, 12, 15 and x are in proportion.

3:12::15:x312=15xx=153×12x=1803x=60.\Rightarrow 3 : 12 :: 15 : x \\[0.5em] \Rightarrow \dfrac{3}{12} = \dfrac{15}{x} \\[0.5em] \Rightarrow x = \dfrac{15}{3} \times 12 \\[0.5em] \Rightarrow x = \dfrac{180}{3} \\[0.5em] \Rightarrow x = 60.

Hence, the fourth proportion is 60.

(ii) Let the fourth proportion be x.

Then 13,14,15\dfrac{1}{3}, \dfrac{1}{4}, \dfrac{1}{5} and x are in proportion.

13:14::15:x1314=15xx=1513×14x=35×14x=320.\Rightarrow \dfrac{1}{3} : \dfrac{1}{4} :: \dfrac{1}{5} : x \\[0.5em] \Rightarrow \dfrac{\dfrac{1}{3}}{\dfrac{1}{4}} = \dfrac{\dfrac{1}{5}}{x} \\[0.5em] \Rightarrow x = \dfrac{\dfrac{1}{5}}{\dfrac{1}{3}} \times \dfrac{1}{4} \\[0.5em] \Rightarrow x = \dfrac{3}{5} \times \dfrac{1}{4} \\[0.5em] \Rightarrow x = \dfrac{3}{20}.

Hence, the fourth proportion is 320\dfrac{3}{20}.

(iii) Let the fourth proportion be x.

Then 1.5, 2.5, 4.5 and x are in proportion.

1.5:2.5::4.5:x1.52.5=4.5xx=4.51.5×2.5x=3×2.5x=7.5.\Rightarrow 1.5 : 2.5 :: 4.5 : x \\[0.5em] \Rightarrow \dfrac{1.5}{2.5} = \dfrac{4.5}{x} \\[0.5em] \Rightarrow x = \dfrac{4.5}{1.5} \times 2.5 \\[0.5em] \Rightarrow x = 3 \times 2.5 \\[0.5em] \Rightarrow x = 7.5.

Hence, the fourth proportion is 7.5.

(iv) Let the fourth proportion be x.

Then 9.6 kg, 7.2 kg, 28.8 kg and x are in proportion.

9.6:7.2::28.8:x9.67.2=28.8xx=28.89.6×7.2x=3×7.2x=21.6.\Rightarrow 9.6 : 7.2 :: 28.8 : x \\[0.5em] \Rightarrow \dfrac{9.6}{7.2} = \dfrac{28.8}{x} \\[0.5em] \Rightarrow x = \dfrac{28.8}{9.6} \times 7.2 \\[0.5em] \Rightarrow x = 3 \times 7.2 \\[0.5em] \Rightarrow x = 21.6.

Hence, the fourth proportion is 21.6 kg.

Question 3

Find the third proportional to :

(i) 5, 10

(ii) 0.24, 0.6

(iii) ₹3, ₹12

(iv) 5145\dfrac{1}{4} and 7.

Answer

(i) Let the third proportion be x, then 5, 10, x are in continued proportion.

510=10xx=105×10x=1005x=20.\Rightarrow \dfrac{5}{10} = \dfrac{10}{x} \\[0.5em] \Rightarrow x = \dfrac{10}{5} \times 10 \\[0.5em] \Rightarrow x = \dfrac{100}{5} \\[0.5em] \Rightarrow x = 20.

Hence, the third proportion is 20.

(ii) Let the third proportion be x, then 0.24, 0.6, x are in continued proportion.

0.240.6=0.6xx=0.60.24×0.6x=0.360.24x=1.5.\Rightarrow \dfrac{0.24}{0.6} = \dfrac{0.6}{x} \\[0.5em] \Rightarrow x = \dfrac{0.6}{0.24} \times 0.6 \\[0.5em] \Rightarrow x = \dfrac{0.36}{0.24} \\[0.5em] \Rightarrow x = 1.5.

Hence, the third proportion is 1.5.

(iii) Let the third proportion be x, then 3, 12, x are in continued proportion.

312=12xx=123×12x=1443x=48.\Rightarrow \dfrac{3}{12} = \dfrac{12}{x} \\[0.5em] \Rightarrow x = \dfrac{12}{3} \times 12 \\[0.5em] \Rightarrow x = \dfrac{144}{3} \\[0.5em] \Rightarrow x = 48.

Hence, the third proportion is ₹ 48.

(iv) Let the third proportion be x, then 5145\dfrac{1}{4}, 7, x are in continued proportion.

514=2142147=7xx=7214×7x=7×4×721x=283x=913.5\dfrac{1}{4} = \dfrac{21}{4} \\[0.5em] \Rightarrow \dfrac{\dfrac{21}{4}}{7} = \dfrac{7}{x} \\[0.5em] \Rightarrow x = \dfrac{7}{\dfrac{21}{4}} \times 7 \\[0.5em] \Rightarrow x = \dfrac{7 \times 4 \times 7}{21} \\[0.5em] \Rightarrow x = \dfrac{28}{3} \\[0.5em] \Rightarrow x = 9\dfrac{1}{3}.

Hence, the third proportion is 9139\dfrac{1}{3}.

Question 4

Find the mean proportion of :

(i) 5 and 80

(ii) 112\dfrac{1}{12} and 175\dfrac{1}{75}

(iii) 8.1 and 2.5

(iv) (a - b) and (a3 - a2b), a > b.

Answer

(i) Let the mean proportion be x.

5x=x80x2=5×80x2=400x=400x=20.\therefore \dfrac{5}{x} = \dfrac{x}{80} \\[0.5em] \Rightarrow x^2 = 5 \times 80 \\[0.5em] \Rightarrow x^2 = 400 \\[0.5em] \Rightarrow x = \sqrt{400} \\[0.5em] \Rightarrow x = 20.

Hence, the mean proportion is 20.

(ii) Let the mean proportion be x.

112x=x175x2=112×175x2=1900x=1900x=130\therefore \dfrac{\dfrac{1}{12}}{x} = \dfrac{x}{\dfrac{1}{75}} \\[0.5em] \Rightarrow x^2 = \dfrac{1}{12} \times \dfrac{1}{75} \\[0.5em] \Rightarrow x^2 = \dfrac{1}{900} \\[0.5em] \Rightarrow x = \sqrt{\dfrac{1}{900}} \\[0.5em] \Rightarrow x = \dfrac{1}{30}

Hence, the mean proportion is 130\dfrac{1}{30}.

(iii) Let the mean proportion be x.

8.1x=x2.5x2=8.1×2.5x2=20.25x=20.25x=4.5.\therefore \dfrac{8.1}{x} = \dfrac{x}{2.5} \\[0.5em] \Rightarrow x^2 = 8.1 \times 2.5 \\[0.5em] \Rightarrow x^2 = 20.25 \\[0.5em] \Rightarrow x = \sqrt{20.25} \\[0.5em] \Rightarrow x = 4.5.

Hence, the mean proportion is 4.5.

(iv) Let the mean proportion be x.

(ab)x=x(a3a2b)x2=(ab)×(a3a2b)x2=(a4a3ba3b+a2b2)x2=(a42a3b+a2b2)x2=a2(a22ab+b2)x2=a2(ab)2x=(a2(ab)2)x=a(ab).\therefore \dfrac{(a - b)}{x} = \dfrac{x}{(a^3 - a^2b)} \\[0.5em] \Rightarrow x^2 = (a - b) \times (a^3 - a^2b) \\[0.5em] \Rightarrow x^2 = (a^4 - a^3b - a^3b + a^2b^2) \\[0.5em] \Rightarrow x^2 = (a^4 - 2a^3b + a^2b^2) \\[0.5em] \Rightarrow x^2 = a^2(a^2 - 2ab + b^2) \\[0.5em] \Rightarrow x^2 = a^2(a - b)^2 \\[0.5em] \Rightarrow x = \sqrt{(a^2(a - b)^2)} \\[0.5em] \Rightarrow x = a(a - b).

Hence, the mean proportion is a(a - b).

Question 5

If a, 12, 16 and b are in continued proportion, find a and b.

Answer

Given, a, 12, 16 and b are in continued proportion.

a12=1216=16ba12=1216 and 1216=16ba=1216×12 and b=1612×16a=14416 and b=25612a=9 and b=643.\therefore \dfrac{a}{12} = \dfrac{12}{16} = \dfrac{16}{b} \\[1em] \Rightarrow \dfrac{a}{12} = \dfrac{12}{16} \text{ and } \dfrac{12}{16} = \dfrac{16}{b} \\[1em] \Rightarrow a = \dfrac{12}{16} \times 12 \text{ and } b = \dfrac{16}{12} \times 16 \\[1em] \Rightarrow a = \dfrac{144}{16} \text{ and } b = \dfrac{256}{12} \\[1em] \Rightarrow a = 9 \text{ and } b = \dfrac{64}{3}.

Hence, the value of a = 9 and b = 643\dfrac{64}{3}.

Question 6

What number must be added to each of the numbers 5, 11, 19 and 37 so that they are in proportion?

Answer

Let the number to be added be x. So, new numbers are 5 + x, 11 + x, 19 + x, 37 + x

Since, these numbers are in proportion,

5+x11+x=19+x37+x(5+x)(37+x)=(19+x)(11+x)(185+5x+37x+x2)=209+19x+11x+x2x2x2+42x30x+185209=012x24=012x=24x=2412=2.\therefore \dfrac{5 + x}{11 + x} = \dfrac{19 + x}{37 + x} \\[0.5em] \Rightarrow (5 + x)(37 + x) = (19 + x)(11 + x) \\[0.5em] (185 + 5x + 37x + x^2) = 209 + 19x + 11x + x^2 \\[0.5em] \Rightarrow x^2 - x^2 + 42x - 30x + 185 - 209 = 0 \\[0.5em] \Rightarrow 12x - 24 = 0 \\[0.5em] \Rightarrow 12x = 24 \\[0.5em] \Rightarrow x = \dfrac{24}{12} = 2.

Hence, the number that must be added to make the numbers in proportion is 2.

Question 7

What numbers should be subtracted from each of the numbers 23, 30, 57 and 78 so that remainders are in proportion?

Answer

Let the number to be subtracted be x. So, new numbers are 23 - x, 30 - x, 57 - x, 78 - x

Since, these numbers are in proportion,

23x30x=57x78x(23x)(78x)=(57x)(30x)(179423x78x+x2)=(171057x30x+x2)x2x2101x+87x+17941710=014x+84=014x=84x=6.\therefore \dfrac{23 - x}{30 - x} = \dfrac{57 - x}{78 - x} \\[0.5em] \Rightarrow (23 - x)(78 - x) = (57 - x)(30 - x) \\[0.5em] \Rightarrow (1794 - 23x - 78x + x^2) = (1710 - 57x - 30x + x^2) \\[0.5em] \Rightarrow x^2 - x^2 - 101x + 87x + 1794 - 1710 = 0 \\[0.5em] \Rightarrow -14x + 84 = 0 \\[0.5em] \Rightarrow 14x = 84 \\[0.5em] \Rightarrow x = 6.

Hence, the number that must be subtracted to make the numbers in proportion is 6.

Question 8

If k + 3, k + 2, 3k - 7 and 2k - 3 are in proportion, find k.

Answer

Since, k + 3, k + 2, 3k - 7 and 2k - 3 are in proportion,

k+3k+2=3k72k3(k+3)(2k3)=(3k7)(k+2)2k23k+6k9=3k2+6k7k142k2+3k9=3k2k142k23k2+3k+k9+14=0k2+4k+5=0\therefore \dfrac{k + 3}{k + 2} = \dfrac{3k - 7}{2k - 3} \\[0.5em] \Rightarrow (k + 3)(2k - 3) = (3k - 7)(k + 2) \\[0.5em] \Rightarrow 2k^2 - 3k + 6k - 9 = 3k^2 + 6k - 7k - 14 \\[0.5em] \Rightarrow 2k^2 + 3k - 9 = 3k^2 - k - 14 \\[0.5em] \Rightarrow 2k^2 - 3k^2 + 3k + k - 9 + 14 = 0 \\[0.5em] \Rightarrow -k^2 + 4k + 5 = 0

Multiplying equation by -1,

k24k5=0k25k+k5=0k(k5)+1(k5)=0(k+1)(k5)=0k+1=0 or k5=0k=1 or k=5.\Rightarrow k^2 - 4k - 5 = 0 \\[0.5em] \Rightarrow k^2 - 5k + k - 5 = 0 \\[0.5em] \Rightarrow k(k - 5) + 1(k - 5) = 0 \\[0.5em] \Rightarrow (k + 1)(k - 5) = 0 \\[0.5em] \Rightarrow k + 1 = 0 \text{ or } k - 5 = 0 \\[0.5em] \Rightarrow k = -1 \text{ or } k = 5.

Hence, the value of k is -1 and 5.

Question 9

If (x + 5) is the mean proportion between x + 2 and x + 9, find the value of x.

Answer

Since, (x + 5) is the mean proportion between x + 2 and x + 9,

x+2x+5=x+5x+9(x+5)2=(x+2)(x+9)(x2+25+10x)=(x2+9x+2x+18)x2x2+10x11x+2518=0x+7=0x=7.\therefore \dfrac{x + 2}{x + 5} = \dfrac{x + 5}{x + 9} \\[0.5em] \Rightarrow (x + 5)^2 = (x + 2)(x + 9) \\[0.5em] \Rightarrow (x^2 + 25 + 10x) = (x^2 + 9x + 2x + 18) \\[0.5em] \Rightarrow x^2 - x^2 + 10x - 11x + 25 - 18 = 0 \\[0.5em] \Rightarrow -x + 7 = 0 \\[0.5em] \Rightarrow x = 7.

Hence, the value of x is 7.

Question 10

What numbers must be added to each of the numbers 16, 26 and 40 so that the resulting numbers must be in continued proportion?

Answer

Let the number to be added to each number be x. So, the new numbers are 16 + x, 26 + x, 40 + x.

Since, new numbers are in continued proportion,

16+x26+x=26+x40+x(16+x)(40+x)=(26+x)(26+x)640+16x+40x+x2=676+26x+26x+x2x2x2+56x52x+640676=04x36=04x=36x=9.\therefore \dfrac{16 + x}{26 + x} = \dfrac{26 + x}{40 + x} \\[0.5em] \Rightarrow (16 + x)(40 + x) = (26 + x)(26 + x) \\[0.5em] \Rightarrow 640 + 16x + 40x + x^2 = 676 + 26x + 26x + x^2 \\[0.5em] \Rightarrow x^2 - x^2 + 56x - 52x + 640 - 676 = 0 \\[0.5em] \Rightarrow 4x - 36 = 0 \\[0.5em] \Rightarrow 4x = 36 \Rightarrow x = 9.

Hence, the number to be added to each number is 9.

Question 11

Find two numbers such that the mean proportional between them is 28 and the third proportional to them is 224.

Answer

Let the two numbers be x and y.

Given, 28 is the mean proportional between x and y.

x28=28yxy=28×28xy=784x=784y[....Eq 1]\therefore \dfrac{x}{28} = \dfrac{28}{y} \\[0.5em] \Rightarrow xy = 28 \times 28 \\[0.5em] \Rightarrow xy = 784 \\[0.5em] \Rightarrow x = \dfrac{784}{y} \qquad \text{[....Eq 1]}

Given, 224 is the third proportional to numbers.

xy=y224y2=224x\therefore \dfrac{x}{y} = \dfrac{y}{224} \\[0.5em] \Rightarrow y^2 = 224x \\[0.5em]

Putting value of x from equation 1 above:

y2=224(784y)y3=175616y=1756163y=5633y=56 and x=78456=14.\Rightarrow y^2 = 224\Big(\dfrac{784}{y}\Big) \\[0.5em] \Rightarrow y^3 = 175616 \\[0.5em] \Rightarrow y = \sqrt[3]{175616} \\[0.5em] \Rightarrow y = \sqrt[3]{56^3} \\[0.5em] \Rightarrow y = 56 \\[0.5em] \text{ and } x = \dfrac{784}{56} = 14.

Hence, the two numbers are 14 and 56.

Question 12

If b is the mean proportional between a and c , prove that a, c, a2 + b2 and b2 + c2 are proportional.

Answer

Given, b is the mean proportional between a and c then,

b2 = ac.    [....Eq 1]

If a, c, a2 + b2 and b2 + c2 are proportional then,

ac=a2+b2b2+c2a(b2+c2)=c(a2+b2)\Rightarrow \dfrac{a}{c} = \dfrac{a^2 + b^2}{b^2 + c^2} \\[0.5em] \Rightarrow a(b^2 + c^2) = c(a^2 + b^2) \\[0.5em]

Solving L.H.S first

   a(b2 + c2)
= a(ac + c2)     [Putting value of b2 from Eq 1]
= ac(a + c)

Solving R.H.S

   c(a2 + b2)
= c(a2 + ac) [Putting value of b2 from Eq 1]
= ac(a + c)

Since, L.H.S. = R.H.S = ac(a + c), hence the numbers,
a, c, a2 + b2 and b2 + c2 are in proportion.

Question 13

If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a2 + b2) and (b2 + c2).

Answer

Given, b is the mean proportional between a and c then,

b2 = ac.    [....Eq 1]

For (ab + bc) to be the mean proportional between (a2 + b2) and (b2 + c2) following condition must be satisfied,

(ab + bc)2 = (a2 + b2)(b2 + c2)

Solving L.H.S. first,

(ab+bc)2=a2b2+2ab2c+b2c2\Rightarrow (ab + bc)^2 \\[0.5em] = a^2b^2 + 2ab^2c + b^2c^2 \\[0.5em]

Putting value of b2 from equation 1:

=a2(ac)+2ac(ac)+c2(ac)=a3c+2a2c2+ac3=ac(a2+c2+2ac)=ac(a+c)2= a^2(ac) + 2ac(ac) + c^2(ac) \\[0.5em] = a^3c + 2a^2c^2 + ac^3 \\[0.5em] = ac(a^2 + c^2 + 2ac) \\[0.5em] = ac(a + c)^2

Now, solving R.H.S. ,

(a2+b2)(b2+c2)=(a2b2+a2c2+b4+b2c2)\Rightarrow (a^2 + b^2)(b^2 + c^2) \\[0.5em] = (a^2b^2 + a^2c^2 + b^4 + b^2c^2) \\[0.5em]

Putting value of b2 from equation 1:

=(a2(ac)+a2c2+(ac)2+(ac)(c2)=a3c+a2c2+a2c2+ac3=a3c+2a2c2+ac3=ac(a2+2ac+c2)=ac(a+c)2= (a^2(ac) + a^2c^2 + (ac)^2 + (ac)(c^2) \\[0.5em] = a^3c + a^2c^2 + a^2c^2 + ac^3 \\[0.5em] = a^3c + 2a^2c^2 + ac^3 \\[0.5em] = ac(a^2 + 2ac + c^2) \\[0.5em] = ac(a + c)^2

Since, L.H.S. = R.H.S. = ac(a + c)2 hence,
(ab + bc) is the mean proportional between (a2 + b2) and (b2 + c2).

Question 14

If y is the mean proportional between x and z, prove that

xyz(x + y + z)3 = (xy + yz + zx)3

Answer

Given, y is the mean proportional between x and z then,

y2 = xz    [....Eq 1]

Given, xyz(x + y + z)3 = (xy + yz + zx)3

Solving L.H.S. first,

   xyz(x + y + z)3
= xz.y(x + y + z)3
Putting value of xz as y2 from equation 1:
= y2.y(x + y + z)3
= y3(x + y + z)3
= (y(x + y + z))3
= (xy + y2 + yz)3
= (xy + xz + yz)3 = R.H.S.

L.H.S. = R.H.S. , hence proved, xyz(x + y + z)3 = (xy + yz + zx)3.

Question 15

If a + c = mb and 1b+1d=mc\dfrac{1}{b} + \dfrac{1}{d} = \dfrac{m}{c}, prove that a, b, c and d are in proportion.

Answer

Given,

a + c = mb and 1b+1d=mc\dfrac{1}{b} + \dfrac{1}{d} = \dfrac{m}{c}

Solving, a + c = mb

Dividing the equation by b,

ab+cb=m\Rightarrow \dfrac{a}{b} + \dfrac{c}{b} = m     [....Eq 1]

Now solving,

1b+1d=mc\dfrac{1}{b} + \dfrac{1}{d} = \dfrac{m}{c}

Multiplying the equation by c,

cb+cd=m\Rightarrow \dfrac{c}{b} + \dfrac{c}{d} = m

Putting the value of m from Equation 1,

cb+cd=ab+cbab+cb=cb+cdab=cd\Rightarrow \dfrac{c}{b} + \dfrac{c}{d} = \dfrac{a}{b} + \dfrac{c}{b} \\[0.5em] \Rightarrow \dfrac{a}{b} + \bcancel{\dfrac{c}{b}} = \bcancel{\dfrac{c}{b}} + \dfrac{c}{d} \\[0.5em] \Rightarrow \dfrac{a}{b} = \dfrac{c}{d}

Since, ab=cd\dfrac{a}{b} = \dfrac{c}{d} hence, a, b, c, d are in proportion.

Question 16

If xa=yb=zc,\dfrac{x}{a} =\dfrac{y}{b} = \dfrac{z}{c}, prove that

(i)x3a2+y3b2+z3c2=(x+y+z)3(a+b+c)2(ii)(a2x2+b2y2+c2z2a3x+b3y+c3z)3=xyzabc(iii)axby(a+b)(xy)+bycz(b+c)(yz)+czax(c+a)(zx)=3.\begin{array}{ll} \text{(i)} & \dfrac{x^3}{a^2} + \dfrac{y^3}{b^2} + \dfrac{z^3}{c^2} = \dfrac{(x + y + z)^3}{(a + b + c)^2} \\ \text{(ii)} & \Big(\dfrac{a^2x^2 + b^2y^2 + c^2z^2}{a^3x + b^3y + c^3z}\Big)^3 = \dfrac{xyz}{abc} \\ \text{(iii)} & \dfrac{ax - by}{(a + b)(x - y)} + \dfrac{by - cz}{(b + c)(y - z)} \\ & + \dfrac{cz - ax}{(c + a)(z - x)} = 3. \end{array}

Answer

(i) Let xa=yb=zc=k\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k

∴ x = ak, y = bk, z = ck.

L.H.S.=x3a2+y3b2+z3c2=a3k3a2+b3k3b2+c3k3c2=ak3+bk3+ck3=k3(a+b+c).\text{L.H.S.} = \dfrac{x^3}{a^2} + \dfrac{y^3}{b^2} + \dfrac{z^3}{c^2} \\[0.5em] = \dfrac{a^3k^3}{a^2} + \dfrac{b^3k^3}{b^2} + \dfrac{c^3k^3}{c^2} \\[0.5em] = ak^3 + bk^3 + ck^3 \\[0.5em] =k^3(a + b + c).

R.H.S.=(x+y+z)3(a+b+c)2=(ak+bk+ck)3(a+b+c)2=k3(a+b+c)3(a+b+c)2=k3(a+b+c).\text{R.H.S.} = \dfrac{(x + y + z)^3}{(a + b + c)^2} \\[0.5em] = \dfrac{(ak + bk + ck)^3}{(a + b + c)^2} \\[0.5em] = \dfrac{k^3(a + b + c)^3}{(a + b + c)^2} \\[0.5em] = k^3(a + b + c).

Since, L.H.S. = R.H.S.,

Hence proved, that

x3a2+y3b2+z3c2=(x+y+z)3(a+b+c)2\dfrac{x^3}{a^2} + \dfrac{y^3}{b^2} + \dfrac{z^3}{c^2} = \dfrac{(x + y + z)^3}{(a + b + c)^2}

(ii) Let xa=yb=zc=k\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k

∴ x = ak, y = bk, z = ck.

L.H.S.=(a2x2+b2y2+c2z2a3x+b3y+c3)3=(a2(ak)x+b2(bk)y+c2(ck)za3x+b3y+c3z)3=(a3xk+b3yk+c3zka3x+b3y+c3z)3=k3(a3x+b3y+c3z)3(a3x+b3y+c3z)3=k3=k×k×k=xa×yb×zc=xyzabc=R.H.S.\text{L.H.S.} = \Big(\dfrac{a^2x^2 + b^2y^2 + c^2z^2}{a^3x + b^3y + c^3}\Big)^3 \\[1em] = \Big(\dfrac{a^2(ak)x + b^2(bk)y + c^2(ck)z}{a^3x + b^3y + c^3z}\Big)^3 \\[1em] = \Big(\dfrac{a^3xk + b^3yk + c^3zk}{a^3x + b^3y + c^3z}\Big)^3 \\[1em] = \dfrac{k^3(a^3x + b^3y + c^3z)^3}{(a^3x + b^3y + c^3z)^3} \\[1em] = k^3 \\[1em] = k \times k \times k \\[1em] = \dfrac{x}{a} \times \dfrac{y}{b} \times \dfrac{z}{c} \\[1em] = \dfrac{xyz}{abc} = \text{R.H.S.}

Since, L.H.S. = R.H.S.

Hence proved, that (a2x2+b2y2+c2z2a3x+b3y+c3z)3=xyzabc\Big(\dfrac{a^2x^2 + b^2y^2 + c^2z^2}{a^3x + b^3y + c^3z}\Big)^3 = \dfrac{xyz}{abc}.

(iii) Let xa=yb=zc=k\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k

∴ x = ak, y = bk, z = ck.

L.H.S.=axby(a+b)(xy)+bycz(b+c)(yz)+czax(c+a)(zx)=a(ak)b(bk)(a+b)((ak)(bk))+b(bk)c(ck)(b+c)(bkck)+c(ck)a(ak)(c+a)(ckak)=a2kb2kk(a+b)(ab)+b2kc2kk(b+c)(bc)+c2ka2kk(c+a)(ca)=k(a2b2)k(a2b2)+k(b2c2)k(b2c2)+k(c2a2)k(c2a2)=1+1+1=3=R.H.S.\text{L.H.S.} = \dfrac{ax - by}{(a + b)(x - y)} + \dfrac{by - cz}{(b + c)(y - z)} + \dfrac{cz - ax}{(c + a)(z - x)} \\[1em] = \dfrac{a(ak) - b(bk)}{(a + b)((ak) - (bk))} + \dfrac{b(bk) - c(ck)}{(b + c)(bk - ck)} + \dfrac{c(ck) - a(ak)}{(c + a)(ck - ak)} \\[1em] = \dfrac{a^2k - b^2k}{k(a + b)(a - b)} + \dfrac{b^2k - c^2k}{k(b + c)(b - c)} + \dfrac{c^2k - a^2k}{k(c + a)(c - a)} \\[1em] = \dfrac{k(a^2 - b^2)}{k(a^2 - b^2)} + \dfrac{k(b^2 - c^2)}{k(b^2 - c^2)} + \dfrac{k(c^2 - a^2)}{k(c^2 - a^2)} \\[1em] = 1 + 1 + 1 \\[1em] = 3 = \text{R.H.S.}

Since, L.H.S. = R.H.S. hence proved that,

axby(a+b)(xy)+bycz(b+c)(yz)+czax(c+a)(zx)=3.\dfrac{ax - by}{(a + b)(x - y)} + \dfrac{by - cz}{(b + c)(y - z)} + \dfrac{cz - ax}{(c + a)(z - x)} = 3.

Question 17

If ab=cd=ef\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}, prove that

(i)(b2+d2+f2)(a2+c2+e2)=(ab+cd+ef)2(ii)(a3+c3)2(b3+d3)2=e6f6(iii)a2b2+c2d2+e2f2=acbd+cedf+aebf(iv)bdf(a+bb+c+dd+e+ff)3=27(a+b)(c+d)(e+f)\begin{array}{ll} \text{(i)} & (b^2 + d^2 + f^2)(a^2 + c^2 + e^2) \\ & = (ab + cd + ef)^2 \\ \text{(ii)} & \dfrac{(a^3 + c^3)^2}{(b^3 + d^3)^2} = \dfrac{e^6}{f^6} \\ \text{(iii)} & \dfrac{a^2}{b^2} + \dfrac{c^2}{d^2} + \dfrac{e^2}{f^2} \\ & = \dfrac{ac}{bd} + \dfrac{ce}{df} + \dfrac{ae}{bf} \\ \text{(iv)} & bdf\Big(\dfrac{a + b}{b} + \dfrac{c + d}{d} + \dfrac{e + f}{f}\Big)^3 \\ & = 27(a + b)(c + d)(e + f) \end{array}

Answer

(i) Let ab=cd=ef=k\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k

a=bk,c=dk,e=fk.\therefore a = bk, c = dk, e = fk.

L.H.S.=(b2+d2+f2)(a2+c2+e2)=(b2+d2+f2)(b2k2+d2k2+f2k2)=k2(b2+d2+f2)(b2+d2+f2)=k2(b2+d2+f2)2.R.H.S.=(ab+cd+ef)2=(bk.b+dk.d+fk.f)2=(b2k+d2k+f2k)2=k2(b2+d2+f2).\text{L.H.S.} = (b^2 + d^2 + f^2)(a^2 + c^2 + e^2) \\[0.5em] = (b^2 + d^2 + f^2)(b^2k^2 + d^2k^2 + f^2k^2) \\[0.5em] = k^2(b^2 + d^2 + f^2)(b^2 + d^2 + f^2) \\[0.5em] = k^2(b^2 + d^2 + f^2)^2. \\[1em] \text{R.H.S.} = (ab + cd + ef)^2 \\[0.5em] = (bk.b + dk.d + fk .f)^2 \\[0.5em] = (b^2k + d^2k + f^2k)^2 \\[0.5em] = k^2(b^2 + d^2 + f^2).

Since, L.H.S. = R.H.S. hence proved that, (b2 + d2 + f2)(a2 + c2 + e2) = (ab + cd + ef)2.

(ii) Let ab=cd=ef=k\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k

a=bk,c=dk,e=fk.\therefore a = bk, c = dk, e = fk.

L.H.S.=(a3+c3)2(b3+d3)2=(b3k3+d3k3)2(b3+d3)2=k6(b3+d3)2(b3+d3)2=k6R.H.S.=e6f6=f6k6f6=k6\text{L.H.S.} = \dfrac{(a^3 + c^3)^2}{(b^3 + d^3)^2} \\[1em] = \dfrac{(b^3k^3 + d^3k^3)^2}{(b^3 + d^3)^2} \\[1em] = \dfrac{k^6(b^3 + d^3)^2}{(b^3 + d^3)^2} \\[1em] = k^6 \\[1em] \text{R.H.S.} = \dfrac{e^6}{f^6} \\[1em] = \dfrac{f^6k^6}{f^6} \\[1em] = k^6

Since, L.H.S. = R.H.S.
Hence proved.

(iii) Let ab=cd=ef=k\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k

a=bk,c=dk,e=fk.\therefore a = bk, c = dk, e = fk.

L.H.S.=a2b2+c2d2+e2f2=b2k2b2+d2k2d2+f2k2f2=k2+k2+k2=3k2R.H.S.=acbd+cedf+aebf=(bk)dkbd+(dk)fkdf+(bk)fkbf=k2+k2+k2=3k2\text{L.H.S.} = \dfrac{a^2}{b^2} + \dfrac{c^2}{d^2} + \dfrac{e^2}{f^2} \\[1em] = \dfrac{b^2k^2}{b^2} + \dfrac{d^2k^2}{d^2} + \dfrac{f^2k^2}{f^2} \\[1em] = k^2 + k^2 + k^2 \\[1em] = 3k^2 \\[1em] \text{R.H.S.} = \dfrac{ac}{bd} + \dfrac{ce}{df} + \dfrac{ae}{bf} \\[1em] = \dfrac{(bk)dk}{bd} + \dfrac{(dk)fk}{df} + \dfrac{(bk)fk}{bf} \\[1em] = k^2 + k^2 + k^2 \\[1em] = 3k^2

Since, L.H.S. = R.H.S.
Hence proved.

(iv) Let ab=cd=ef=k\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k

a=bk,c=dk,e=fk.\therefore a = bk, c = dk, e = fk.

L.H.S.=bdf(a+bb+c+dd+e+ff)3=bdf(bk+bb+dk+dd+fk+ff)3=bdf(k+1+k+1+k+1)3=bdf(3k+3)3=bdf(3)3(k+1)3=27bdf(k+1)3.R.H.S.=27(a+b)(c+d)(e+f)=27(bk+b)(dk+d)(fk+f)=27b(k+1)d(k+1)f(k+1)=27bdf(k+1)3.\text{L.H.S.} = bdf\Big(\dfrac{a + b}{b} + \dfrac{c + d}{d} + \dfrac{e + f}{f}\Big)^3 \\[1em] = bdf\Big(\dfrac{bk + b}{b} + \dfrac{dk + d}{d} + \dfrac{fk + f}{f}\Big)^3 \\[1em] = bdf(k + 1 + k + 1 + k + 1)^3 \\[1em] = bdf(3k + 3)^3 \\[1em] = bdf(3)^3(k + 1)^3 \\[1em] = 27bdf(k + 1)^3. \\[1em] \text{R.H.S.} = 27(a + b)(c + d)(e + f) \\[1em] = 27(bk + b)(dk + d)(fk + f) \\[1em] = 27b(k + 1)d(k + 1)f(k + 1) \\[1em] = 27bdf(k + 1)^3.

Since, L.H.S. = R.H.S.
Hence proved.

Question 18

If ax = by = cz, prove that x2yz+y2zx+z2xy=bca2+cab2+abc2.\dfrac{x^2}{yz} + \dfrac{y^2}{zx} + \dfrac{z^2}{xy} = \dfrac{bc}{a^2} + \dfrac{ca}{b^2} + \dfrac{ab}{c^2}.

Answer

Let ax=by=cz=kx=ka,y=kb,z=kcL.H.S.=x2yz+y2zx+z2xy=k2a2kb×kc+k2b2kc×ka+k2c2ka×kb=k2×bck2×a2+k2×ack2×b2+k2×abk2×c2=bca2+acb2+abc2=R.H.S.\text{Let } ax = by = cz = k \\[1em] \therefore x = \dfrac{k}{a}, y = \dfrac{k}{b}, z = \dfrac{k}{c} \\[1em] \text{L.H.S.} = \dfrac{x^2}{yz} + \dfrac{y^2}{zx} + \dfrac{z^2}{xy} \\[1em] = \dfrac{\dfrac{k^2}{a^2}}{\dfrac{k}{b} \times \dfrac{k}{c}} + \dfrac{\dfrac{k^2}{b^2}}{\dfrac{k}{c} \times \dfrac{k}{a}} + \dfrac{\dfrac{k^2}{c^2}}{\dfrac{k}{a} \times \dfrac{k}{b}} \\[1em] = \dfrac{k^2 \times bc}{k^2 \times a^2} + \dfrac{k^2 \times ac}{k^2 \times b^2} + \dfrac{k^2 \times ab}{k^2 \times c^2} \\[1em] = \dfrac{bc}{a^2} + \dfrac{ac}{b^2} + \dfrac{ab}{c^2} = \text{R.H.S.} \\[1em]

Since, L.H.S. = R.H.S.
Hence proved.

Question 19

If a,b,c,da, b, c, d are in proportion, prove that :

(i)(5a+7b)(2c3d)=(5c+7d)(2a3b)(ii)(ma+nb):b=(mc+nd):d(iii)(a4+c4):(b4+d4)=a2c2:b2d2(iv)a2+abc2+cd=b22abd22cd(v)(a+c)3(b+d)3=a(ac)2b(bd)2(vi)a2+ab+b2a2ab+b2=c2+cd+d2c2cd+d2(vii)a2+b2c2+d2=ab+adbcbc+cdad(viii)abcd(1a2+1b2+1c2+1d2)=a2+b2+c2+d2.\begin{array}{ll} \text{(i)} & (5a + 7b)(2c - 3d) \\ & = (5c + 7d)(2a - 3b) \\ \text{(ii)} & (ma + nb) : b \\ & = (mc + nd) : d \\ \text{(iii)} & (a^4 + c^4) : (b^4 + d^4) \\ & = a^2c^2 : b^2d^2 \\ \text{(iv)} & \dfrac{a^2 + ab}{c^2 + cd} = \dfrac{b^2 - 2ab}{d^2 - 2cd} \\[1em] \text{(v)} & \dfrac{(a + c)^3}{(b + d)^3} = \dfrac{a(a - c)^2}{b(b - d)^2} \\[1em] \text{(vi)} & \dfrac{a^2 + ab + b^2}{a^2 - ab + b^2} \\ & = \dfrac{c^2 + cd + d^2}{c^2 - cd + d^2} \\ \text{(vii)} & \dfrac{a^2 + b^2}{c^2 + d^2} = \dfrac{ab + ad - bc}{bc + cd - ad} \\[1em] \text{(viii)} & abcd\Big(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2} + \dfrac{1}{d^2} \Big) \\ & = a^2 + b^2 + c^2 + d^2. \end{array}

Answer

(i) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=(5a+7b)(2c3d)=(5bk+7b)(2dk3d)=bd(5k+7)(2k3)R.H.S.=(5c+7d)(2a3b)=(5dk+7d)(2bk3b)=bd(5k+7)(2k3).\text{L.H.S.} = (5a + 7b)(2c - 3d) \\[0.5em] = (5bk + 7b)(2dk - 3d) \\[0.5em] = bd(5k + 7)(2k - 3) \\[1em] \text{R.H.S.} = (5c + 7d)(2a - 3b) \\[0.5em] = (5dk + 7d)(2bk - 3b) \\[0.5em] = bd(5k + 7)(2k - 3).

Since, L.H.S. = R.H.S.
Hence proved.

(ii) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=(ma+nb):b=ma+nbb\text{L.H.S.} = (ma + nb) : b \\[0.5em] = \dfrac{ma + nb}{b} \\[0.5em]

Putting value of a = bk,

=mbk+nbb=mk+n.R.H.S.=(mc+nd):d= \dfrac{mbk + nb}{b} \\[0.5em] = mk + n. \\[1em] \text{R.H.S.} = (mc + nd) : d \\[0.5em]

Putting value of c = dk,

=mdk+ndd=mk+n.= \dfrac{mdk + nd}{d} \\[0.5em] = mk + n.

Since, L.H.S. = R.H.S.
Hence proved.

(iii) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=(a4+c4):(b4+d4)=a4+c4b4+d4=k4b4+k4d4b4+d4=k4.R.H.S.=a2c2:b2d2=a2c2b2d2=(bk)2(dk)2b2d2=k4b2d2b2d2=k4.\text{L.H.S.} = (a^4 + c^4) : (b^4 + d^4) \\[1em] = \dfrac{a^4 + c^4}{b^4 + d^4} \\[1em] = \dfrac{k^4b^4 + k^4d^4}{b^4 + d^4} \\[1em] = k^4. \\[1em] \text{R.H.S.} = a^2c^2 : b^2d^2 \\[1em] = \dfrac{a^2c^2}{b^2d^2} \\[1em] = \dfrac{(bk)^2(dk)^2}{b^2d^2} \\[1em] = \dfrac{k^4b^2d^2}{b^2d^2} \\[1em] = k^4.

Since, L.H.S. = R.H.S.
Hence proved.

(iv) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=a2+abc2+cd=b2k2+b2kd2k2+d2k=b2k(k+1)d2k(k+1)=b2d2R.H.S.=b22abd22cd=b22b2kd22d2k=b2(12k)d2(12k)=b2d2.\text{L.H.S.} = \dfrac{a^2 + ab}{c^2 + cd} \\[1em] = \dfrac{b^2k^2 + b^2k}{d^2k^2 + d^2k} \\[1em] = \dfrac{b^2k(k + 1)}{d^2k(k + 1)} \\[1em] = \dfrac{b^2}{d^2} \\[1em] \text{R.H.S.} = \dfrac{b^2 - 2ab}{d^2 - 2cd} \\[1em] = \dfrac{b^2 - 2b^2k}{d^2 - 2d^2k} \\[1em] = \dfrac{b^2(1 - 2k)}{d^2(1 - 2k)} \\[1em] = \dfrac{b^2}{d^2}.

Since, L.H.S. = R.H.S.
Hence proved.

(v) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=(a+c)3(b+d)3=(bk+dk)3(b+d)3=k3(b+d)3(b+d)3=k3R.H.S.=a(ac)2b(bd)2=bk(bkdk)2b(bd)2=bk(k2(bd)2)b(bd)2=bk3(bd)2b(bd)2=k3.\text{L.H.S.} = \dfrac{(a + c)^3}{(b + d)^3} \\[1em] = \dfrac{(bk + dk)^3}{(b + d)^3} \\[1em] = \dfrac{k^3(b + d)^3}{(b + d)^3} \\[1em] = k^3 \\[1em] \text{R.H.S.} = \dfrac{a(a - c)^2}{b(b - d)^2} \\[1em] = \dfrac{bk(bk - dk)^2}{b(b - d)^2} \\[1em] = \dfrac{bk(k^2(b - d)^2)}{b(b - d)^2} \\[1em] = \dfrac{bk^3(b - d)^2}{b(b - d)^2} \\[1em] = k^3.

Since, L.H.S. = R.H.S.
Hence proved.

(vi) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=a2+ab+b2a2ab+b2=b2k2+(bk)b+b2b2k2(bk)b+b2=b2k2+b2k+b2b2k2b2k+b2=b2(k2+k+1)b2(k2k+1)=k2+k+1k2k+1R.H.S.=c2+cd+d2c2cd+d2=d2k2+(dk)d+d2d2k2(dk)d+d2=d2(k2+k+1)d2(k2k+1)=k2+k+1k2k+1.\text{L.H.S.} = \dfrac{a^2 + ab + b^2}{a^2 - ab + b^2} \\[1em] = \dfrac{b^2k^2 + (bk)b + b^2}{b^2k^2 - (bk)b + b^2} \\[1em] = \dfrac{b^2k^2 + b^2k + b^2}{b^2k^2 - b^2k + b^2} \\[1em] = \dfrac{b^2(k^2 + k + 1)}{b^2(k^2 - k + 1)} \\[1em] = \dfrac{k^2 + k + 1}{k^2 - k + 1} \\[1em] \text{R.H.S.} = \dfrac{c^2 + cd + d^2}{c^2 - cd + d^2} \\[1em] = \dfrac{d^2k^2 + (dk)d + d^2}{d^2k^2 - (dk)d + d^2} \\[1em] = \dfrac{d^2(k^2 + k + 1)}{d^2(k^2 - k + 1)} \\[1em] = \dfrac{k^2 + k + 1}{k^2 - k + 1}.

Since, L.H.S. = R.H.S.
Hence proved.

(vii) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=a2+b2c2+d2=b2k2+b2d2k2+d2=b2(k2+1)d2(k2+1)=b2d2R.H.S.=ab+adbcbc+cdad=(bk)b+(bk)db(dk)b(dk)+(dk)d(bk)d=b2k+bdkbdkbdk+d2kbdk=b2kd2k=b2d2.\text{L.H.S.} = \dfrac{a^2 + b^2}{c^2 + d^2} \\[1em] = \dfrac{b^2k^2 + b^2}{d^2k^2 + d^2} \\[1em] = \dfrac{b^2(k^2 + 1)}{d^2(k^2 + 1)} \\[1em] = \dfrac{b^2}{d^2} \\[1em] \text{R.H.S.} = \dfrac{ab + ad - bc}{bc + cd - ad} \\[1em] = \dfrac{(bk)b + (bk)d - b(dk)}{b(dk) + (dk)d - (bk)d} \\[1em] = \dfrac{b^2k + bdk - bdk}{bdk + d^2k - bdk} \\[1em] = \dfrac{b^2k}{d^2k} \\[1em] = \dfrac{b^2}{d^2}.

Since, L.H.S. = R.H.S.
Hence proved.

(viii) a, b, c, d are in proportion

ab=cd=k\therefore \dfrac{a}{b} = \dfrac{c}{d} = k

Hence, a = bk, c = dk.

L.H.S.=abcd(1a2+1b2+1c2+1d2)=(bk)b(dk)d(1b2k2+1b2+1d2k2+1d2)=b2d2k2(d2+d2k2+b2+b2k2b2d2k2)=d2(1+k2)+b2(1+k2)=(d2+b2)(1+k2).R.H.S.=a2+b2+c2+d2=b2k2+b2+d2k2+d2=b2(k2+1)+d2(k2+1)=(d2+b2)(1+k2).\text{L.H.S.} = abcd\Big(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2} + \dfrac{1}{d^2} \Big) \\[1em] = (bk)b(dk)d\Big(\dfrac{1}{b^2k^2} + \dfrac{1}{b^2} + \dfrac{1}{d^2k^2} + \dfrac{1}{d^2}\Big) \\[1em] = b^2d^2k^2\Big(\dfrac{d^2 + d^2k^2 + b^2 + b^2k^2}{b^2d^2k^2}\Big) \\[1em] = d^2(1 + k^2) + b^2(1 + k^2) \\[1em] = (d^2 + b^2)(1 + k^2). \\[1em] \text{R.H.S.} = a^2 + b^2 + c^2 + d^2 \\[1em] = b^2k^2 + b^2 + d^2k^2 + d^2 \\[1em] = b^2(k^2 + 1) + d^2(k^2 + 1) \\[1em] = (d^2 + b^2)(1 + k^2).

Since, L.H.S. = R.H.S.
Hence proved.

Question 20

If x, y, z are in continued proportion, prove that : (x+y)2(y+z)2=xz.\dfrac{(x + y)^2}{(y + z)^2} = \dfrac{x}{z}.

Answer

Since, x, y, z are in continued proportion

xy=yz=ky=zk and x=yk=zk2L.H.S.=(x+y)2(y+z)2=(zk2+zk)2(zk+z)2=z2k4+z2k2+2z2k3z2k2+z2+2z2k=z2k2(k2+1+2k)z2(k2+1+2k)=k2.R.H.S.=xz=zk2z=k2.\therefore \dfrac{x}{y} = \dfrac{y}{z} = k \\[1em] \Rightarrow y = zk \text{ and } x = yk = zk^2 \\[1em] \text{L.H.S.} = \dfrac{(x + y)^2}{(y + z)^2} \\[1em] = \dfrac{(zk^2 + zk)^2}{(zk + z)^2} \\[1em] = \dfrac{z^2k^4 + z^2k^2 + 2z^2k^3}{z^2k^2 + z^2 + 2z^2k} \\[1em] = \dfrac{z^2k^2(k^2 + 1 + 2k)}{z^2(k^2 + 1 + 2k)} \\[1em] = k^2. \\[1em] \text{R.H.S.} = \dfrac{x}{z} \\[1em] = \dfrac{zk^2}{z} = k^2.

Since, L.H.S. = R.H.S.
Hence proved.

Question 21

If a, b, c are in continued proportion, prove that :

pa2+qab+rb2pb2+qbc+rc2=ac.\dfrac{pa^2 + qab + rb^2}{pb^2 + qbc + rc^2} = \dfrac{a}{c}.

Answer

Since, a, b, c are in continued proportion

ab=bc=kb=ck and a=bk=ck2L.H.S.=pa2+qab+rb2pb2+qbc+rc2=p(ck2)2+q(ck2)(ck)+r(ck)2p(ck)2+q(ck)c+rc2=pc2k4+qc2k3+rc2k2pc2k2+qc2k+rc2=c2k2(pk2+qk+r)c2(pk2+qk+r)=k2R.H.S.=ac=ck2c=k2.\therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = \dfrac{pa^2 + qab + rb^2}{pb^2 + qbc + rc^2} \\[1em] = \dfrac{p(ck^2)^2 + q(ck^2)(ck) + r(ck)^2}{p(ck)^2 + q(ck)c + rc^2} \\[1em] = \dfrac{pc^2k^4 + qc^2k^3 + rc^2k^2}{pc^2k^2 + qc^2k + rc^2} \\[1em] = \dfrac{c^2k^2(pk^2 + qk + r)}{c^2(pk^2 + qk + r)} \\[1em] = k^2 \\[1em] \text{R.H.S.} = \dfrac{a}{c} \\[1em] = \dfrac{ck^2}{c} \\[1em] = k^2.

Since, L.H.S. = R.H.S. hence proved that,

pa2+qab+rb2pb2+qbc+rc2=ac.\dfrac{pa^2 + qab + rb^2}{pb^2 + qbc + rc^2} = \dfrac{a}{c}.

Question 22

If a,b,ca, b, c are in continued proportion prove that :

(i)a+bb+c=a2(bc)b2(ab)(ii)1a3+1b3+1c3=ab2c2+bc2a2+ca2b2(iii)a:c=(a2+b2):(b2+c2)(iv)a2b2c2(a4+b4+c4)=b2(a4+b4+c4)(v)abc(a+b+c)3=(ab+bc+ca)3(vi)(a+b+c)(ab+c)=a2+b2+c2.\begin{array}{ll} \text{(i)} & \dfrac{a + b}{b + c} = \dfrac{a^2(b - c)}{b^2(a - b)} \\ \text{(ii)} & \dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} \\ & = \dfrac{a}{b^2c^2} + \dfrac{b}{c^2a^2} + \dfrac{c}{a^2b^2} \\ \text{(iii)} & a : c = (a^2 + b^2) : (b^2 + c^2) \\ \text{(iv)} & a^2b^2c^2(a^{-4} + b^{-4} + c^{-4}) \\ & = b^{-2}(a^4 + b^4 + c^4) \\ \text{(v)} & abc(a + b + c)^3 \\ & = (ab + bc + ca)^3 \\ \text{(vi)} & (a + b + c)(a - b + c) \\ & = a^2 + b^2 + c^2. \end{array}

Answer

(i) Since, a, b, c are in continued proportion

ab=bc=kb=ck and a=bk=ck2L.H.S.=a+bb+c=ck2+ckck+c=ck(k+1)c(k+1)=k.R.H.S.=a2(bc)b2(ab)=(ck2)2(ckc)(ck)2(ck2ck)=c2k4c(k1)c2k2ck(k1)=c3k4(k1)c3k3(k1)=k.\therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = \dfrac{a + b}{b + c} \\[1em] = \dfrac{ck^2 + ck}{ck + c} \\[1em] = \dfrac{ck(k + 1)}{c(k + 1)} \\[1em] = k. \\[1em] \text{R.H.S.} = \dfrac{a^2(b - c)}{b^2(a - b)} \\[1em] = \dfrac{(ck^2)^2(ck - c)}{(ck)^2(ck^2 - ck)} \\[1em] = \dfrac{c^2k^4c(k - 1)}{c^2k^2ck(k - 1)} \\[1em] = \dfrac{c^3k^4(k - 1)}{c^3k^3(k - 1)} \\[1em] = k.

Since, L.H.S. = R.H.S. hence proved that,

a+bb+c=a2(bc)b2(ab)\dfrac{a + b}{b + c} = \dfrac{a^2(b - c)}{b^2(a - b)}.

(ii) Since, a, b, c are in continued proportion

ab=bc=kb=ck and a=bk=ck2L.H.S.=1a3+1b3+1c3=1(ck2)3+1(ck)3+1c3=1c3k6+1c3k3+1c3=1c3(1k6+1k3+1)R.H.S.=ab2c2+bc2a2+ca2b2=ck2(ck)2c2+ckc2(ck2)2+c(ck2)2(ck)2=ck2c4k2+ckc4k4+cc4k6=1c3+1c3k3+1c3k6=1c3(1+1k3+1k6)\therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = \dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} \\[1em] = \dfrac{1}{(ck^2)^3} + \dfrac{1}{(ck)^3} + \dfrac{1}{c^3} \\[1em] = \dfrac{1}{c^3k^6} + \dfrac{1}{c^3k^3} + \dfrac{1}{c^3} \\[1em] = \dfrac{1}{c^3}\Big(\dfrac{1}{k^6} + \dfrac{1}{k^3} + 1\Big) \\[1em] \text{R.H.S.} = \dfrac{a}{b^2c^2} + \dfrac{b}{c^2a^2} + \dfrac{c}{a^2b^2} \\[1em] = \dfrac{ck^2}{(ck)^2c^2} + \dfrac{ck}{c^2(ck^2)^2} + \dfrac{c}{(ck^2)^2(ck)^2} \\[1em] = \dfrac{ck^2}{c^4k^2} + \dfrac{ck}{c^4k^4} + \dfrac{c}{c^4k^6} \\[1em] = \dfrac{1}{c^3} + \dfrac{1}{c^3k^3} + \dfrac{1}{c^3k^6} \\[1em] = \dfrac{1}{c^3}\Big(1 + \dfrac{1}{k^3} + \dfrac{1}{k^6}\Big) \\[1em]

Since, L.H.S. = R.H.S. hence proved that,

1a3+1b3+1c3=ab2c2+bc2a2+ca2b2\dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} = \dfrac{a}{b^2c^2} + \dfrac{b}{c^2a^2} + \dfrac{c}{a^2b^2}.

(iii) Since, a, b, c are in continued proportion

ab=bc=kb=ck and a=bk=ck2L.H.S.=a:c=ac=ck2c=k2.R.H.S.=(a2+b2):(b2+c2)=a2+b2b2+c2=((ck2)2+(ck)2)((ck)2+c2)=c2k4+c2k2c2k2+c2=c2k2(k2+1)c2(k2+1)=k2.\therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = a : c \\[1em] = \dfrac{a}{c} \\[1em] = \dfrac{ck^2}{c} \\[1em] = k^2. \\[1em] \text{R.H.S.} = (a^2 + b^2) : (b^2 + c^2) \\[1em] = \dfrac{a^2 + b^2}{b^2 + c^2} \\[1em] = \dfrac{((ck^2)^2 + (ck)^2)}{((ck)^2 + c^2)} \\[1em] = \dfrac{c^2k^4 + c^2k^2}{c^2k^2 + c^2} \\[1em] = \dfrac{c^2k^2(k^2 + 1)}{c^2(k^2 + 1)} \\[1em] = k^2. \\[1em]

Since, L.H.S = R.H.S hence proved that,

a : c = (a2 + b2) : (b2 + c2).

(iv) Since, a, b, c are in continued proportion

ab=bc=kb=ck and a=bk=ck2L.H.S.=a2b2c2(a4+b4+c4)=(ck2)2(ck)2c2((ck2)4+(ck)4+c4)=c2k4c2k2c2(c4k8+c4k4+c4)=c6k6c4(k8+k4+1)=c2k6(1k8+1k4+1)=c2k6(1+k4+k8k8)=c2k6k8(1+k4+k8)=c2k2(1+k4+k8)R.H.S.=b2(a4+b4+c4)=(ck)2((ck2)4+(ck)4+c4)=c2k2(c4k8+c4k4+c4)=c2k2c4(k8+k4+1)=c2k2(k8+k4+1)=c2k2(1+k4+k8).\therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = a^2b^2c^2(a^{-4} + b^{-4} + c^{-4}) \\[1em] = (ck^2)^2(ck)^2c^2((ck^2)^{-4} + (ck)^{-4} + c^{-4}) \\[1em] = c^2k^4c^2k^2c^2(c^{-4}k^{-8} + c^{-4}k^{-4} + c^{-4}) \\[1em] = c^6k^6c^{-4}(k^{-8} + k^{-4} + 1) \\[1em] = c^2k^6\big(\dfrac{1}{k^8} + \dfrac{1}{k^4} + 1\big) \\[1em] = c^2k^6\big(\dfrac{1 + k^4 + k^8}{k^8}\big) \\[1em] = \dfrac{c^2k^6}{k^8}(1 + k^4 + k^8) \\[1em] = \dfrac{c^2}{k^2}(1 + k^4 + k^8) \\[1em] \text{R.H.S.} = b^{-2}(a^4 + b^4 + c^4) \\[1em] = (ck)^{-2}((ck^2)^4 + (ck)^4 + c^4) \\[1em] = c^{-2}k^{-2}(c^4k^8 + c^4k^4 + c^4) \\[1em] = c^{-2}k^{-2}c^4(k^8 + k^4 + 1) \\[1em] = c^2k^{-2}(k^8 + k^4 + 1) \\[1em] = \dfrac{c^2}{k^2}(1 + k^4 + k^8). \\[1em]

Since, L.H.S. = R.H.S. hence proved that,

a2b2c2(a-4 + b-4 + c-4) = b-2(a4 + b4 + c4).

(v) Since, a, b, c are in continued proportion

ab=bc=kb=ck and a=bk=ck2L.H.S.=abc(a+b+c)3=(ck2)(ck)c(ck2+ck+c)3=c3k3(c3(k2+k+1)3)=c6k3(k2+k+1)3R.H.S.=(ab+bc+ca)3=((ck2)(ck)+(ck)(c)+(c)(ck2))3=(c2k3+c2k+c2k2)3=((c2k)3(k2+1+k)3)=c6k3(k2+k+1)3.\therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = abc(a + b + c)^3 \\[1em] = (ck^2)(ck)c(ck^2 + ck + c)^3 \\[1em] = c^3k^3(c^3(k^2 + k + 1)^3) \\[1em] = c^6k^3(k^2 + k + 1)^3 \\[1em] \text{R.H.S.} = (ab + bc + ca)^3 \\[1em] = ((ck^2)(ck) + (ck)(c) + (c)(ck^2))^3 \\[1em] = (c^2k^3 + c^2k + c^2k^2)^3 \\[1em] = ((c^2k)^3(k^2 + 1 + k)^3) \\[1em] = c^6k^3(k^2 + k + 1)^3. \\[1em]

Since L.H.S. = R.H.S. hence proved that,

abc(a + b + c)3 = (ab + bc + ca)3.

(vi) Since, a, b, c are in continued proportion

ab=bc=kb=ck and a=bk=ck2L.H.S.=(a+b+c)(ab+c)=(ck2+ck+c)(ck2ck+c)=c(k2+k+1)c(k2k+1)=c2(k4k3+k2+k3k2+k+k2k+1)=c2(k4k3+k2+k3k2+k+k2k+1)=c2(k4+k2+1)R.H.S.=a2+b2+c2=(ck2)2+(ck)2+c2=c2k4+c2k2+c2=c2(k4+k2+1).\therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = (a + b + c)(a - b + c) \\[1em] = (ck^2 + ck + c)(ck^2 - ck + c) \\[1em] = c(k^2 + k + 1)c(k^2 - k + 1) \\[1em] = c^2(k^4 - k^3 + k^2 + k^3 - k^2 + k + k^2 - k + 1) \\[1em] = c^2(k^4 - \bcancel{k^3} + \bcancel{k^2} + \bcancel{k^3} - \bcancel{k^2} + \bcancel{k} + k^2 - \bcancel{k} + 1) \\[1em] = c^2(k^4 + k^2 + 1) \\[1em] \text{R.H.S.} = a^2 + b^2 + c^2 \\[1em] = (ck^2)^2 + (ck)^2 + c^2 \\[1em] = c^2k^4 + c^2k^2 + c^2 \\[1em] = c^2(k^4 + k^2 + 1). \\[1em]

Since, L.H.S. = R.H.S. hence proved that,

(a + b + c)(a - b + c) = a2 + b2 + c2.

Question 23

If a, b, c, d are in continued proportion, prove that :

(i) a3+b3+c3b3+c3+d3=ad\dfrac{a^3 + b^3 + c^3}{b^3 + c^3 + d^3} = \dfrac{a}{d}

(ii) (a2 - b2)(c2 - d2) = (b2 - c2)2

(iii) (a + d)(b + c) - (a + c)(b + d) = (b - c)2

(iv) a : d = triplicate ratio of (a - b) : (b - c)

(v) (abc+acb)2(dbc+dcb)2=(ad)2(1c21b2).\big(\dfrac{a - b}{c} + \dfrac{a - c}{b}\big)^2 - \big(\dfrac{d - b}{c} + \dfrac{d - c}{b}\big)^2 = (a - d)^2\big(\dfrac{1}{c^2} - \dfrac{1}{b^2}\big).

Answer

(i) Since, a, b, c, d are in continued proportion

ab=bc=cd=kc=dk,b=ck=(dk)k=dk2 and a=bk=(ck)k=(dk)k2=dk3.L.H.S.=a3+b3+c3b3+c3+d3=(dk3)3+(dk2)3+(dk)3(dk2)3+(dk)3+d3=d3k9+d3k6+d3k3d3k6+d3k3+d3=d3k3(k6+k3+1)d3(k6+k3+1)=k3.R.H.S.=ad=dk3d=k3.\therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = \dfrac{a^3 + b^3 + c^3}{b^3 + c^3 + d^3} \\[1em] = \dfrac{(dk^3)^3 + (dk^2)^3 + (dk)^3}{(dk^2)^3 + (dk)^3 + d^3} \\[1em] = \dfrac{d^3k^9 + d^3k^6 + d^3k^3}{d^3k^6 + d^3k^3 + d^3} \\[1em] = \dfrac{d^3k^3(k^6 + k^3 + 1)}{d^3(k^6 + k^3 + 1)} \\[1em] = k^3. \\[1em] \text{R.H.S.} = \dfrac{a}{d} \\[1em] = \dfrac{dk^3}{d} \\[1em] = k^3. \\[1em]

Since, L.H.S. = R.H.S. hence, proved that,

a3+b3+c3b3+c3+d3=ad\dfrac{a^3 + b^3 + c^3}{b^3 + c^3 + d^3} = \dfrac{a}{d}.

(ii) Since, a, b, c, d are in continued proportion

ab=bc=cd=kc=dk,b=ck=(dk)k=dk2 and a=bk=(ck)k=(dk)k2=dk3.L.H.S.=(a2b2)(c2d2)=[(dk3)2(dk2)2][(dk)2(d2)]=(d2k6d2k4)(d2k2d2)=d2k4(k21)d2(k21)=d4k4(k21)2.R.H.S.=(b2c2)2=((dk2)2(dk)2)2=(d2k4d2k2)2=(d2k4d2k2)(d2k4d2k2)=d2k2(k21)d2k2(k21)=d4k4(k21)2.\therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = (a^2 - b^2)(c^2 - d^2) \\[1em] = [(dk^3)^2 - (dk^2)^2][(dk)^2 - (d^2)] \\[1em] = (d^2k^6 - d^2k^4)(d^2k^2 - d^2) \\[1em] = d^2k^4(k^2 - 1)d^2(k^2 - 1) \\[1em] = d^4k^4(k^2 - 1)^2. \\[1em] \text{R.H.S.} = (b^2 - c^2)^2 \\[1em] = ((dk^2)^2 - (dk)^2)^2 \\[1em] = (d^2k^4 - d^2k^2)^2 \\[1em] = (d^2k^4- d^2k^2)(d^2k^4 - d^2k^2) \\[1em] = d^2k^2(k^2 - 1)d^2k^2(k^2 - 1) \\[1em] = d^4k^4(k^2 - 1)^2. \\[1em]

Since, L.H.S. = R.H.S. hence, proved that,

(a2 - b2)(c2 - d2) = (b2 - c2)2.

(iii) Since, a, b, c, d are in continued proportion

ab=bc=cd=kc=dk,b=ck=(dk)k=dk2 and a=bk=(ck)k=(dk)k2=dk3.L.H.S.=(a+d)(b+c)(a+c)(b+d)=(dk3+d)(dk2+dk)(dk3+dk)(dk2+d)=d(k3+1)dk(k+1)dk(k2+1)d(k2+1)=d2k[(k3+1)(k+1)(k2+1)2]=d2k[(k4+k3+k+1)(k4+1+2k2)]=d2k(k4k4+k32k2+k+11)=d2k(k32k2+k)=d2k(k(k22k+1))=d2k2(k22k+1)=d2k2(k1)2.R.H.S.=(bc)2=(dk2dk)2=[(dk)2(k1)2]=d2k2(k1)2.\therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = (a + d)(b + c) - (a + c)(b + d) \\[1em] = (dk^3 + d)(dk^2 + dk) - (dk^3 + dk)(dk^2 + d) \\[1em] = d(k^3 + 1)dk(k + 1) - dk(k^2 + 1)d(k^2 + 1) \\[1em] = d^2k[(k^3 + 1)(k + 1) - (k^2 + 1)^2] \\[1em] = d^2k[(k^4 + k^3 + k + 1) - (k^4 + 1 + 2k^2)] \\[1em] = d^2k(k^4 - k^4 + k^3 - 2k^2 + k + 1 - 1) \\[1em] = d^2k(k^3 - 2k^2 + k) \\[1em] = d^2k(k(k^2 - 2k + 1)) \\[1em] = d^2k^2(k^2 - 2k + 1) \\[1em] = d^2k^2(k - 1)^2. \\[1em] \text{R.H.S.} = (b - c)^2 \\[1em] = (dk^2 - dk)^2 \\[1em] = [(dk)^2(k - 1)^2] \\[1em] = d^2k^2(k - 1)^2.

Since, L.H.S = R.H.S, hence proved that,

(a + d)(b + c) - (a + c)(b + d) = (b - c)2.

(iv) Since, a, b, c, d are in continued proportion

ab=bc=cd=kc=dk,b=ck=(dk)k=dk2 and a=bk=(ck)k=(dk)k2=dk3.L.H.S.=a:d=ad=dk3d=k3.\therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = a : d \\[1em] = \dfrac{a}{d} \\[1em] = \dfrac{dk^3}{d} \\[1em] = k^3. \\[1em]

R.H.S. = triplicate ratio of (a - b) : (b - c)

=(ab)3:(bc)3=(ab)3(bc)3=(dk3dk2)3(dk2dk)3=[k(dk2dk)]3(dk2dk)3=k3(dk2dk)3(dk2dk)3=k3.= (a - b)^3 : (b - c)^3 \\[1em] = \dfrac{(a - b)^3}{(b - c)^3} \\[1em] = \dfrac{(dk^3 - dk^2)^3}{(dk^2 - dk)^3} \\[1em] = \dfrac{[k(dk^2 - dk)]^3}{(dk^2 - dk)^3} \\[1em] = \dfrac{k^3(dk^2 - dk)^3}{(dk^2 - dk)^3} \\[1em] = k^3.

Since, L.H.S. = R.H.S. hence proved that,

a : d = triplicate ratio of (a - b) : (b - c).

(v) Since, a, b, c, d are in continued proportion

ab=bc=cd=kc=dk,b=ck=(dk)k=dk2 and a=bk=(ck)k=(dk)k2=dk3.L.H.S.=(abc+acb)2(dbc+dcb)2.=(dk3dk2dk+dk3dkdk2)2(ddk2dk+ddkdk2)2.=(k(dk3dk2)+dk3dkdk2)2(k(ddk2)+ddkdk2)2.=(dk4dk3+dk3dkdk2)2(kddk3+ddkdk2)2.=(dk4dkdk2)2(ddk3dk2)2.=(dk(k31)dk2)2(d(1k3)dk2)2=d2k2(k31)2d2k4d2(1k3)2d2k4=(k31)2k2(1k3)2k4=k6+12k3k21+k62k3k4=k2(k6+12k3)(1+k62k3)k4=k8+k22k51k6+2k3k4R.H.S.=(ad)2(1c21b2)=(dk3d)2(1(dk)21(dk2)2)=d2(k31)2(1d2k21d2k4)=d2d2k2(k31)2(11k2)=(k31)2(k21)k4=(k6+12k3)(k21)k4=k8k6+k21+2k32k5k4\therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = \big(\dfrac{a - b}{c} + \dfrac{a - c}{b}\big)^2 - \big(\dfrac{d - b}{c} + \dfrac{d - c}{b}\big)^2. \\[1em] = \big(\dfrac{dk^3 - dk^2}{dk} + \dfrac{dk^3 - dk}{dk^2}\big)^2 - \big(\dfrac{d - dk^2}{dk} + \dfrac{d - dk}{dk^2}\big)^2. \\[1em] = \big(\dfrac{k(dk^3 - dk^2) + dk^3 - dk}{dk^2} \big)^2 - \big(\dfrac{k(d - dk^2) + d - dk}{dk^2}\big)^2. \\[1em] = \big(\dfrac{dk^4 - dk^3 + dk^3 - dk}{dk^2} \big)^2 - \big(\dfrac{kd - dk^3 + d - dk}{dk^2}\big)^2. \\[1em] = \big(\dfrac{dk^4 - dk}{dk^2} \big)^2 - \big(\dfrac{d - dk^3}{dk^2}\big)^2. \\[1em] = \big(\dfrac{dk(k^3 - 1)}{dk^2}\big)^2 - \big(\dfrac{d(1 - k^3)}{dk^2}\big)^2 \\[1em] = \dfrac{d^2k^2(k^3 - 1)^2}{d^2k^4} - \dfrac{d^2(1 - k^3)^2}{d^2k^4} \\[1em] = \dfrac{(k^3 - 1)^2}{k^2} - \dfrac{(1 - k^3)^2}{k^4} \\[1em] = \dfrac{k^6 + 1 -2k^3}{k^2} - \dfrac{1 + k^6 - 2k^3}{k^4} \\[1em] = \dfrac{k^2(k^6 + 1 - 2k^3) - (1 + k^6 - 2k^3)}{k^4} \\[1em] = \dfrac{k^8 + k^2 - 2k^5 - 1 - k^6 + 2k^3}{k^4} \\[1em] \text{R.H.S.} = (a - d)^2\big(\dfrac{1}{c^2} - \dfrac{1}{b^2}\big) \\[1em] = (dk^3 - d)^2\big(\dfrac{1}{(dk)^2} - \dfrac{1}{(dk^2)^2}\big) \\[1em] = d^2(k^3 - 1)^2 \big(\dfrac{1}{d^2k^2} - \dfrac{1}{d^2k^4}\big) \\[1em] = \dfrac{d^2}{d^2k^2}(k^3 - 1)^2\big(1 - \dfrac{1}{k^2}\big) \\[1em] = \dfrac{(k^3 - 1)^2(k^2 - 1)}{k^4} \\[1em] = \dfrac{(k^6 + 1 - 2k^3)(k^2 - 1)}{k^4} \\[1em] = \dfrac{k^8 - k^6 + k^2 - 1 + 2k^3 - 2k^5}{k^4}

Since, L.H.S = R.H.S hence proved that,

(abc+acb)2(dbc+dcb)2=(ad)2(1c21b2).\big(\dfrac{a - b}{c} + \dfrac{a - c}{b}\big)^2 - \big(\dfrac{d - b}{c} + \dfrac{d - c}{b}\big)^2 = (a - d)^2\big(\dfrac{1}{c^2} - \dfrac{1}{b^2}\big).

Exercise 6.3

Question 1

If a : b : : c : d, prove that

(i)2a+5b2a5b=2c+5d2c5d.(ii)5a+11b5c+11d=5a11b5c11d.(iii)(2a+3b)(2c3d)=(2a3b)(2c+3d).(iv)(la+mb):(lc+md)::(lamb):(lcmd).\begin{matrix} \text{(i)} & \dfrac{2a + 5b}{2a - 5b} = \dfrac{2c + 5d}{2c - 5d}. \\[0.5em] \text{(ii)} & \dfrac{5a + 11b}{5c + 11d} = \dfrac{5a - 11b}{5c - 11d}. \\[0.5em] \text{(iii)} & (2a + 3b)(2c - 3d) \\ & = (2a - 3b)(2c + 3d). \\ \text{(iv)} & (la + mb) : (lc + md) \\ & : : (la - mb) : (lc - md). \end{matrix}

Answer

(i) Given, a : b : : c : d,

ab=cd\Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em]

Multiplying the equation by 25\dfrac{2}{5},

2a5b=2c5d\Rightarrow \dfrac{2a}{5b} = \dfrac{2c}{5d} \\[0.5em]

By componendo and dividendo,

2a+5b2a5b=2c+5d2c5d\Rightarrow \dfrac{2a + 5b}{2a - 5b} = \dfrac{2c + 5d}{2c - 5d} \\[0.5em]

Hence, proved that 2a+5b2a5b=2c+5d2c5d.\dfrac{2a + 5b}{2a - 5b} = \dfrac{2c + 5d}{2c - 5d}.

(ii) Given, a : b : : c : d,

ab=cd\Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em]

On multiplying the equation by 511\dfrac{5}{11},

5a11b=5c11d\Rightarrow \dfrac{5a}{11b} = \dfrac{5c}{11d} \\[0.5em]

By componendo and dividendo,

5a+11b5a11b=5c+11d5c11d\Rightarrow \dfrac{5a + 11b}{5a - 11b} = \dfrac{5c + 11d}{5c - 11d} \\[0.5em]

By alternendo,

5a+11b5c+11d=5a11b5c11d\Rightarrow \dfrac{5a + 11b}{5c + 11d} = \dfrac{5a - 11b}{5c - 11d}

Hence, proved that 5a+11b5c+11d=5a11b5c11d.\dfrac{5a + 11b}{5c + 11d} = \dfrac{5a - 11b}{5c - 11d}.

(iii) Given, a : b : : c : d,

ab=cd\Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em]

On multiplying equation by 23\dfrac{2}{3},

2a3b=2c3d\Rightarrow \dfrac{2a}{3b} = \dfrac{2c}{3d} \\[0.5em]

By componendo and dividendo,

2a+3b2a3b=2c+3d2c3d\Rightarrow \dfrac{2a + 3b}{2a - 3b} = \dfrac{2c + 3d}{2c - 3d} \\[0.5em]

On cross multiplication,

(2a+3b)(2c3d)=(2c+3d)(2a3b).\Rightarrow (2a + 3b)(2c - 3d) = (2c + 3d)(2a - 3b).

Hence, proved that (2a + 3b)(2c - 3d) = (2a - 3b)(2c + 3d).

(iv) Given, a : b : : c : d,

ab=cd\Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em]

On multiplying the equation by lm\dfrac{l}{m},

lamb=lcmd\Rightarrow \dfrac{la}{mb} = \dfrac{lc}{md} \\[0.5em]

By componendo and dividendo,

la+mblamb=lc+mdlcmd\Rightarrow \dfrac{la + mb}{la - mb} = \dfrac{lc + md}{lc - md} \\[0.5em]

By alternendo,

la+mblc+md=lamblcmd(la+mb):(lc+md)::(lamb):(lcmd).\Rightarrow \dfrac{la + mb}{lc + md} = \dfrac{la - mb}{lc - md} \\[0.5em] \Rightarrow (la + mb) : (lc + md) : : (la - mb) : (lc - md).

Hence, proved that (la + mb) : (lc + md) : : (la - mb) : (lc - md).

Question 2(i)

If 5x+7y5u+7v=5x7y5u7v, show that xy=uv.\dfrac{5x + 7y}{5u + 7v} = \dfrac{5x - 7y}{5u - 7v}, \text{ show that } \dfrac{x}{y} = \dfrac{u}{v}.

Answer

Given,

5x+7y5u+7v=5x7y5u7v\dfrac{5x + 7y}{5u + 7v} = \dfrac{5x - 7y}{5u - 7v}

By alternendo,

5x+7y5x7y=5u+7v5u7v\Rightarrow \dfrac{5x + 7y}{5x - 7y} = \dfrac{5u + 7v}{5u - 7v} \\[0.5em]

By componendo & dividendo,

5x+7y+5x7y5x+7y5x+7y=5u+7v+5u7v5u+7v5u+7v10x14y=10u14v\Rightarrow \dfrac{5x + 7y + 5x - 7y}{5x + 7y - 5x + 7y} = \dfrac{5u + 7v + 5u - 7v}{5u + 7v - 5u + 7v} \\[0.5em] \Rightarrow \dfrac{10x}{14y} = \dfrac{10u}{14v} \\[0.5em]

On dividing equation by 1014\dfrac{10}{14},

xy=uv\Rightarrow \dfrac{x}{y} = \dfrac{u}{v} \\[0.5em]

Hence, proved that xy=uv.\dfrac{x}{y} = \dfrac{u}{v}.

Question 2(ii)

8a5b8c5d=8a+5b8c+5d, prove that ab=cd.\dfrac{8a - 5b}{8c - 5d} = \dfrac{8a + 5b}{8c + 5d}, \text{ prove that } \dfrac{a}{b} = \dfrac{c}{d}.

Answer

Given,

8a5b8c5d=8a+5b8c+5d\dfrac{8a - 5b}{8c - 5d} = \dfrac{8a + 5b}{8c + 5d} \\[0.5em]

By alternendo,

8a5b8a+5b=8c5d8c+5d\Rightarrow \dfrac{8a - 5b}{8a + 5b} = \dfrac{8c - 5d}{8c + 5d} \\[0.5em]

By componendo & dividendo,

8a5b+8a+5b8a5b8a5b=8c5d+8c+5d8c5d8c5d16a10b=16c10d\Rightarrow \dfrac{8a - 5b + 8a + 5b}{8a - 5b - 8a - 5b} = \dfrac{8c - 5d + 8c + 5d}{8c - 5d - 8c - 5d} \\[1em] \Rightarrow -\dfrac{16a}{10b} = -\dfrac{16c}{10d}

On dividing the equation by 1610-\dfrac{16}{10},

ab=cd\Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em]

Hence, proved that ab=cd.\dfrac{a}{b} = \dfrac{c}{d}.

Question 3

If (4a + 5b)(4c - 5d) = (4a - 5b)(4c + 5d), prove that a, b, c, d are in proportion.

Answer

Given, (4a + 5b)(4c - 5d) = (4a - 5b)(4c + 5d).

On cross-multiplication,

4a+5b4a5b=4c+5d4c5d\Rightarrow \dfrac{4a + 5b}{4a - 5b} = \dfrac{4c + 5d}{4c - 5d} \\[0.5em]

By componendo and dividendo,

4a+5b+4a5b4a+5b4a+5b=4c+5d+4c5d4c+5d4c+5d8a10b=8c10d\Rightarrow \dfrac{4a + 5b + 4a - 5b}{4a + 5b - 4a + 5b} = \dfrac{4c + 5d + 4c - 5d}{4c + 5d - 4c + 5d} \\[0.5em] \Rightarrow \dfrac{8a}{10b} = \dfrac{8c}{10d} \\[0.5em]

On dividing the equation by 810\dfrac{8}{10},

ab=cda:b::c:d.\Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d.

Hence, proved that a, b, c, d are in proportion.

Question 4

If (pa + qb) : (pc + qd) : : (pa - qb) : (pc - qd), prove that a : b : : c : d.

Answer

Given, (pa + qb) : (pc + qd) : : (pa - qb) : (pc - qd).

pa+qbpc+qd=paqbpcqd\Rightarrow \dfrac{pa + qb}{pc + qd} = \dfrac{pa - qb}{pc - qd} \\[0.5em]

By alternendo,

pa+qbpaqb=pc+qdpcqd\Rightarrow \dfrac{pa + qb}{pa - qb} = \dfrac{pc + qd}{pc - qd} \\[0.5em]

By componendo and dividendo,

pa+qb+paqbpa+qbpa+qb=pc+qd+pcqdpc+qdpc+qd2pa2qb=2pc2qd\Rightarrow \dfrac{pa + qb + pa - qb}{pa + qb - pa + qb} = \dfrac{pc + qd + pc - qd}{pc + qd - pc + qd} \\[0.5em] \Rightarrow \dfrac{2pa}{2qb} = \dfrac{2pc}{2qd} \\[0.5em]

On dividing the equation by 2p2q\dfrac{2p}{2q},

ab=cda:b::c:d.\Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d.

Hence, proved that a, b, c, d are in proportion.

Question 5

If (ma + nb) : b : : (mc + nd) : d, prove that a, b, c, d are in proportion.

Answer

Given, (ma + nb) : b : : (mc + nd) : d.

(ma+nb)b=(mc+nd)dd(ma+nb)=b(mc+nd)mad+nbd=bmc+bndmad=bmc\Rightarrow \dfrac{(ma + nb)}{b} = \dfrac{(mc + nd)}{d} \\[0.5em] \Rightarrow d(ma + nb) = b(mc + nd) \\[0.5em] \Rightarrow mad + nbd = bmc + bnd \\[0.5em] \Rightarrow mad = bmc \\[0.5em]

On dividing equation by m,

ad=bcab=cda:b::c:d.\Rightarrow ad = bc \\[0.5em] \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d.

Hence, proved that a, b, c, d are in proportion.

Question 6

If (11a2 + 13b2)(11c2 - 13d2) = (11a2 - 13b2)(11c2 + 13d2), prove that a : b : : c : d.

Answer

Given, (11a2 + 13b2)(11c2 - 13d2) = (11a2 - 13b2)(11c2 + 13d2).

On cross-multiplication,

11a2+13b211a213b2=11c2+13d211c213d2\Rightarrow \dfrac{11a^2 + 13b^2}{11a^2 - 13b^2} = \dfrac{11c^2 + 13d^2}{11c^2 - 13d^2} \\[0.5em]

By componendo and dividendo,

11a2+13b2+11a213b211a2+13b211a2+13b2=11c2+13d2+11c213d211c2+13d211c2+13d222a226b2=22c226d2\Rightarrow \dfrac{11a^2 + 13b^2 + 11a^2 - 13b^2}{11a^2 + 13b^2 - 11a^2 + 13b^2} = \dfrac{11c^2 + 13d^2 + 11c^2 - 13d^2}{11c^2 + 13d^2 - 11c^2 + 13d^2} \\[0.5em] \Rightarrow \dfrac{22a^2}{26b^2} = \dfrac{22c^2}{26d^2} \\[0.5em]

On dividing the equation by 2226\dfrac{22}{26},

a2b2=c2d2(a2b2)=(c2d2)ab=cda:b::c:d.\Rightarrow \dfrac{a^2}{b^2} = \dfrac{c^2}{d^2} \\[0.5em] \Rightarrow \sqrt{\big(\dfrac{a^2}{b^2}\big)} = \sqrt{\big(\dfrac{c^2}{d^2}\big)} \\[0.5em] \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d.

Hence, proved that a, b, c, d are in proportion.

Question 7

If x = 2aba+b\dfrac{2ab}{a + b}, find the value of x+axa+x+bxb\dfrac{x + a}{x - a} + \dfrac{x + b}{x - b}.

Answer

Given,

x=2aba+bxa=2aba+baxa=2ba+bx = \dfrac{2ab}{a + b} \\[1em] \dfrac{x}{a} = \dfrac{\dfrac{2ab}{a + b}}{a} \\[1em] \therefore \dfrac{x}{a} = \dfrac{2b}{a + b}

By componendo and dividendo,

x+axa=2b+a+b2babx+axa=3b+aba[....Eq 1]xb=2aba+bbxb=2aa+b\Rightarrow \dfrac{x + a}{x - a} = \dfrac{2b + a + b}{2b - a - b } \\[0.5em] \Rightarrow \dfrac{x + a}{x - a} = \dfrac{3b + a}{b - a} \qquad \text{[....Eq 1]} \\[1.5em] \dfrac{x}{b} = \dfrac{\dfrac{2ab}{a + b}}{b} \\[1em] \therefore \dfrac{x}{b} = \dfrac{2a}{a + b} \\[1em]

By componendo and dividendo,

x+bxb=2a+a+b2aabx+bxb=3a+bab[....Eq 2]\Rightarrow \dfrac{x + b}{x - b} = \dfrac{2a + a + b}{2a - a - b} \\[0.5em] \Rightarrow \dfrac{x + b}{x - b} = \dfrac{3a + b}{a - b} \qquad \text{[....Eq 2]}

Adding Eq 1 and 2,

x+axa+x+bxb=3b+aba+3a+babx+axa+x+bxb=3b+aba3a+bbax+axa+x+bxb=3bb+a3abax+axa+x+bxb=2b2abax+axa+x+bxb=2(ba)ba=2\Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{3b + a}{b - a} + \dfrac{3a + b}{a - b} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{3b + a}{b - a} - \dfrac{3a + b}{b - a} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{3b - b + a - 3a}{b - a} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{2b - 2a}{b - a} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{2(b - a)}{b - a} = 2 \\[1em]

Hence, the required value is 2.

Question 8

If x = 8aba+b,\dfrac{8ab}{a + b}, find the value of

x+4ax4a+x+4bx4b.\dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b}.

Answer

Given,

x=8aba+bx4a=8aba+b4ax4a=2ba+bx = \dfrac{8ab}{a + b} \\[1em] \dfrac{x}{4a} = \dfrac{\dfrac{8ab}{a + b}}{4a} \\[1em] \therefore \dfrac{x}{4a} = \dfrac{2b}{a + b}

By componendo and dividendo, x+4ax4a=2b+a+b2babx+4ax4a=3b+aba[....Eq 1]x4b=8aba+b4bx4b=2aa+b\Rightarrow \dfrac{x + 4a}{x - 4a} = \dfrac{2b + a + b}{2b - a - b } \\[0.5em] \Rightarrow \dfrac{x + 4a}{x - 4a} = \dfrac{3b + a}{b - a} \qquad \text{[....Eq 1]} \\[1.5em] \dfrac{x}{4b} = \dfrac{\dfrac{8ab}{a + b}}{4b} \\[1em] \therefore \dfrac{x}{4b} = \dfrac{2a}{a + b}

By componendo and dividendo,

x+4bx4b=2a+a+b2aabx+4bx4b=3a+bab[....Eq 2]\Rightarrow \dfrac{x + 4b}{x - 4b} = \dfrac{2a + a + b}{2a - a - b} \\[0.5em] \Rightarrow \dfrac{x + 4b}{x - 4b} = \dfrac{3a + b}{a - b} \qquad \text{[....Eq 2]}

Adding Eq 1 and 2,

x+4ax4a+x+4bx4b=3b+aba+3a+babx+4ax4a+x+4bx4b=3b+aba3a+bbax+4ax4a+x+4bx4b=3bb+a3abax+4ax4a+x+4bx4b=2b2abax+4ax4a+x+4bx4b=2(ba)ba=2\Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{3b + a}{b - a} + \dfrac{3a + b}{a - b} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{3b + a}{b - a} - \dfrac{3a + b}{b - a} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{3b - b + a - 3a}{b - a} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{2b - 2a}{b - a} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{2(b - a)}{b - a} = 2 \\[1em]

Hence, the required value is 2.

Question 9

If x = 462+3\dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}}, find the value of

x+22x22+x+23x23\dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}}

Answer

Given,

x=462+3x22=462+322x22=232+3x = \dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}} \\[1em] \dfrac{x}{2\sqrt{2}} = \dfrac{\dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}}}{2\sqrt{2}} \\[1em] \therefore \dfrac{x}{2\sqrt{2}} = \dfrac{2\sqrt{3}}{\sqrt{2} + \sqrt{3}}

By componendo and dividendo,

x+22x22=23+2+32323x+22x22=33+232[....Eq 1]x23=462+323x23=222+3\Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} = \dfrac{2\sqrt{3} + \sqrt{2} + \sqrt{3}}{2\sqrt{3} - \sqrt{2} - \sqrt{3}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} = \dfrac{3\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \qquad \text{[....Eq 1]} \\[1.5em] \dfrac{x}{2\sqrt{3}} = \dfrac{\dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}}}{2\sqrt{3}} \\[1em] \therefore \dfrac{x}{2\sqrt{3}} = \dfrac{2\sqrt{2}}{\sqrt{2} + \sqrt{3}}

By componendo and dividendo,

x+23x23=22+2+32223x+23x23=32+323[....Eq 2]\Rightarrow \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{2\sqrt{2} + \sqrt{2} + \sqrt{3}}{2\sqrt{2} - \sqrt{2} - \sqrt{3}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} \qquad \text{[....Eq 2]}

Adding Eq 1 and 2,

x+22x22+x+23x23=33+232+32+323x+22x22+x+23x23=33+23232+332x+22x22+x+23x23=33+232332x+22x22+x+23x23=232232x+22x22+x+23x23=2(32)32=2.\Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \dfrac{3\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} - \dfrac{3\sqrt{2} + \sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{3} + \sqrt{2} - 3\sqrt{2} - \sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{2\sqrt{3} - 2\sqrt{2}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{2(\sqrt{3} - \sqrt{2})}{\sqrt{3} - \sqrt{2}} = 2. \\[1em]

Hence, the required value is 2.

Question 10

Using properties of proportion, find x from the following equations :

(i)2x+2+x2x2+x=3(ii)x+4+x10x+4+x10=52(iii)1+x+1x1+x1x=ab(iv)5x+2x65x2x6=4(v)a+x+axa+xax=cd(vi)a+a22axaa22ax=b\begin{matrix} \text{(i)} & \dfrac{\sqrt{2 - x} + \sqrt{2 + x}}{\sqrt{2 - x} - \sqrt{2 + x}} = 3 \\[0.5em] \text{(ii)} & \dfrac{\sqrt{x + 4} + \sqrt{x - 10}}{\sqrt{x + 4} + \sqrt{x - 10}} = \dfrac{5}{2} \\[0.5em] \text{(iii)} & \dfrac{\sqrt{1 + x} + \sqrt{1 - x}}{\sqrt{1 + x} - \sqrt{1 - x}} = \dfrac{a}{b} \\[0.5em] \text{(iv)} & \dfrac{\sqrt{5x} + \sqrt{2x - 6}}{\sqrt{5x} - \sqrt{2x - 6}} = 4 \\[0.5em] \text{(v)} & \dfrac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} - \sqrt{a - x}} = \dfrac{c}{d} \\[0.5em] \text{(vi)} & \dfrac{a + \sqrt{a^2 - 2ax}}{a - \sqrt{a^2 - 2ax}} = b \end{matrix}

Answer

(i) Given,

2x+2+x2x2+x=31\dfrac{\sqrt{2 - x} + \sqrt{2 + x}}{\sqrt{2 - x} - \sqrt{2 + x}} = \dfrac{3}{1}

Applying componendo and dividendo,

2x+2+x+2x2+x2x+2+x2x+2+x=3+13122x22+x=422x2+x=21\Rightarrow\dfrac{\sqrt{2 - x} + \sqrt{2 + x} + \sqrt{2 - x} - \sqrt{2 + x}}{\sqrt{2 - x} + \sqrt{2 + x} - \sqrt{2 - x} + \sqrt{2 + x}} = \dfrac{3 + 1}{3 - 1} \\[1em] \Rightarrow \dfrac{2\sqrt{2 - x}}{2\sqrt{2 + x}} = \dfrac{4}{2} \\[1em] \Rightarrow \dfrac{\sqrt{2 - x}}{\sqrt{2 + x}} = \dfrac{2}{1} \\[1em]

Squaring both sides we get,

2x2+x=41(2x)=4(2+x)2x=8+4x5x=6x=65.\Rightarrow \dfrac{2 - x}{2 + x} = \dfrac{4}{1} \\[0.5em] \Rightarrow (2 - x) = 4(2 + x) \\[0.5em] \Rightarrow 2 - x = 8 + 4x \\[0.5em] \Rightarrow 5x = -6 \\[0.5em] \Rightarrow x = -\dfrac{6}{5}.

Hence, the value of x = 65.-\dfrac{6}{5}.

(ii) Given,

x+4+x10x+4x10=52\dfrac{\sqrt{x + 4} + \sqrt{x - 10}}{\sqrt{x + 4} - \sqrt{x - 10}} = \dfrac{5}{2}

Applying componendo and dividendo,

x+4+x10+x+4x10x+4+x10x4+x10=5+2522x+42x10=73x+4x10=73\Rightarrow\dfrac{\sqrt{x + 4} + \sqrt{x - 10} + \sqrt{x + 4} - \sqrt{x - 10}}{\sqrt{x + 4} + \sqrt{x - 10} - \sqrt{x - 4} + \sqrt{x - 10}} = \dfrac{5 + 2}{5 - 2} \\[1em] \Rightarrow \dfrac{2\sqrt{x + 4}}{2\sqrt{x - 10}} = \dfrac{7}{3} \\[1em] \Rightarrow \dfrac{\sqrt{x + 4}}{\sqrt{x - 10}} = \dfrac{7}{3}

Squaring both sides,

x+4x10=4999(x+4)=49(x10)9x+36=49x49040x=526x=52640x=26320.\Rightarrow \dfrac{x + 4}{x - 10} = \dfrac{49}{9} \\[1em] \Rightarrow 9(x + 4) = 49(x - 10) \\[1em] \Rightarrow 9x + 36 = 49x - 490 \\[1em] \Rightarrow 40x = 526 \\[1em] \Rightarrow x = \dfrac{526}{40} \\[1em] \Rightarrow x = \dfrac{263}{20}.

Hence, the value of x = 26320.\dfrac{263}{20}.

(iii) Given,

1+x+1x1+x1x=ab\dfrac{\sqrt{1 + x} + \sqrt{1 - x}}{\sqrt{1 + x} - \sqrt{1 - x}} = \dfrac{a}{b}

Applying componendo and dividendo,

1+x+1x+1+x1x1+x+1x1+x+1x=a+bab21+x21x=a+bab1+x1x=a+bab\Rightarrow\dfrac{\sqrt{1 + x} + \sqrt{1 - x} + \sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x} - \sqrt{1 + x} + \sqrt{1 - x}} = \dfrac{a + b}{a - b} \\[1em] \Rightarrow \dfrac{2\sqrt{1 + x}}{2\sqrt{1 - x}} = \dfrac{a + b}{a - b} \\[1em] \Rightarrow \dfrac{\sqrt{1 + x}}{{\sqrt{1 - x}}} = \dfrac{a + b}{a - b}

Squaring both sides we get,

1+x1x=(a+b)2(ab)2\Rightarrow \dfrac{1 + x}{1 - x} = \dfrac{(a + b)^2}{(a - b)^2} \\[0.5em]

By componendo and dividendo,

1+x+1x1+x1+x=(a+b)2+(ab)2(a+b)2(ab)222x=a2+2ab+b2+a22ab+b2a2+2ab+b2a2+2abb222x=2a2+2b22ab+2ab22x=2(a2+b2)4ab1x=a2+b22abx=2aba2+b2.\Rightarrow \dfrac{1 + x + 1 - x}{1 + x - 1 + x} = \dfrac{(a + b)^2 + (a - b)^2}{(a + b)^2 - (a - b)^2} \\[1em] \Rightarrow \dfrac{2}{2x} = \dfrac{a^2 + 2ab + b^2 + a^2 - 2ab + b^2}{a^2 + 2ab + b^2 - a^2 + 2ab - b^2} \\[1em] \Rightarrow \dfrac{2}{2x} = \dfrac{2a^2 + 2b^2 }{2ab + 2ab} \\[1em] \Rightarrow \dfrac{2}{2x} = \dfrac{2(a^2 + b^2)}{4ab} \\[1em] \Rightarrow \dfrac{1}{x} = \dfrac{a^2 + b^2}{2ab} \\[1em] \Rightarrow x = \dfrac{2ab}{a^2 + b^2}.

Hence, the value of x = 2aba2+b2.\dfrac{2ab}{a^2 + b^2}.

(iv) Given,

5x+2x65x2x6=4.\dfrac{\sqrt{5x} + \sqrt{2x - 6}}{\sqrt{5x} - \sqrt{2x - 6}} = 4.

By componendo and dividendo,

5x+2x6+5x2x65x+2x65x+2x6=4+14125x22x6=535x2x6=53\Rightarrow \dfrac{\sqrt{5x} + \sqrt{2x - 6} + \sqrt{5x} - \sqrt{2x - 6}}{\sqrt{5x} + \sqrt{2x - 6} - \sqrt{5x} + \sqrt{2x - 6}} = \dfrac{4 + 1}{4 - 1} \\[1em] \Rightarrow \dfrac{2\sqrt{5x}}{2\sqrt{2x - 6}} = \dfrac{5}{3} \\[1em] \Rightarrow \dfrac{\sqrt{5x}}{\sqrt{2x - 6}} = \dfrac{5}{3}

Squaring both sides,

(5x2x6)2=(53)25x2x6=2595x×9=25(2x6)45x=50x1505x=150x=30.\Rightarrow \Big(\dfrac{\sqrt{5x}}{\sqrt{2x - 6}}\Big)^2 = \Big(\dfrac{5}{3}\Big)^2 \\[1em] \Rightarrow \dfrac{5x}{2x - 6} = \dfrac{25}{9} \\[1em] \Rightarrow 5x \times 9 = 25(2x - 6) \\[1em] \Rightarrow 45x = 50x - 150 \\[1em] \Rightarrow 5x = 150 \\[1em] \Rightarrow x = 30.

Hence, the value of x is 30.

(v) Given,

a+x+axa+xax=cd\dfrac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} - \sqrt{a - x}} = \dfrac{c}{d}

By componendo and dividendo,

a+x+ax+a+xaxa+x+axa+x+ax=c+dcd2a+x2ax=c+dcda+xax=c+dcd\Rightarrow \dfrac{\sqrt{a + x} + \sqrt{a - x} + \sqrt{a + x} - \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x} - \sqrt{a + x} + \sqrt{a - x}} = \dfrac{c + d}{c - d} \\[1em] \Rightarrow \dfrac{2\sqrt{a + x}}{2\sqrt{a - x}} = \dfrac{c + d}{c - d} \\[1em] \Rightarrow \dfrac{\sqrt{a + x}}{\sqrt{a - x}} = \dfrac{c + d}{c - d}

Squaring both sides,

a+xax=(c+dcd)2a+xax=c2+d2+2cdc2+d22cd\Rightarrow \dfrac{a + x}{a - x} = \Big(\dfrac{c + d}{c - d}\Big)^2 \\[1em] \Rightarrow \dfrac{a + x}{a - x} = \dfrac{c^2 + d^2 + 2cd}{c^2 + d^2 - 2cd} \\[1em]

Again applying componendo and dividendo,

a+x+axa+xa+x=c2+d2+2cd+c2+d22cdc2+d2+2cdc2d2+2cd2a2x=2(c2+d2)4cdax=c2+d22cdx=2acdc2+d2\Rightarrow \dfrac{a + x + a - x}{a + x - a + x} = \dfrac{c^2 + d^2 + 2cd + c^2 + d^2 - 2cd}{c^2 + d^2 + 2cd - c^2 - d^2 + 2cd} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{2(c^2 + d^2)}{4cd} \\[1em] \Rightarrow \dfrac{a}{x} = \dfrac{c^2 + d^2}{2cd} \\[1em] \Rightarrow x = \dfrac{2acd}{c^2 + d^2}

Hence, the value of x is 2acdc2+d2.\dfrac{2acd}{c^2 + d^2}.

(vi) Given,

a+a22axaa22ax=b1.\dfrac{a + \sqrt{a^2 - 2ax}}{a - \sqrt{a^2 - 2ax}} = \dfrac{b}{1}.

By componendo and dividendo,

a+a22ax+aa22axa+a22axa+a22ax=b+1b12a2a22ax=b+1b1aa22ax=b+1b1\Rightarrow \dfrac{a + \sqrt{a^2 - 2ax} + a - \sqrt{a^2 - 2ax}}{a + \sqrt{a^2 - 2ax} - a + \sqrt{a^2 - 2ax}} = \dfrac{b + 1}{b - 1} \\[1em] \Rightarrow \dfrac{2a}{2\sqrt{a^2 - 2ax}} = \dfrac{b + 1}{b - 1} \\[1em] \Rightarrow \dfrac{a}{\sqrt{a^2 - 2ax}} = \dfrac{b + 1}{b - 1} \\[1em]

Squaring both sides,

a2a22ax=(b+1b1)2a2a22ax=b2+1+2bb2+12b\Rightarrow \dfrac{a^2}{a^2 - 2ax} = \Big(\dfrac{b + 1}{b - 1}\Big)^2 \\[1em] \Rightarrow \dfrac{a^2}{a^2 - 2ax} = \dfrac{b^2 + 1 + 2b}{b^2 + 1 - 2b} \\[1em]

Applying componendo and dividendo again,

a2+a22axa2a2+2ax=b2+1+2b+b2+12bb2+1+2bb21+2b2a(ax)2ax=2(b2+1)4baxx=b2+12b\Rightarrow \dfrac{a^2 + a^2 - 2ax}{a^2 - a^2 + 2ax} = \dfrac{b^2 + 1 + 2b + b^2 + 1 - 2b}{b^2 + 1 + 2b - b^2 - 1 + 2b} \\[1em] \Rightarrow \dfrac{2a(a - x)}{2ax} = \dfrac{2(b^2 + 1)}{4b} \\[1em] \Rightarrow \dfrac{a - x}{x} = \dfrac{b^2 + 1}{2b}

On cross-multiplication,

2b(ax)=x(b2+1)2ab2bx=b2x+xb2x+x+2bx=2abx(b2+1+2b)=2abx(b+1)2=2abx=2ab(b+1)2.\Rightarrow 2b(a - x) = x(b^2 + 1) \\[0.5em] \Rightarrow 2ab - 2bx = b^2x + x \\[0.5em] \Rightarrow b^2x + x + 2bx = 2ab \\[0.5em] \Rightarrow x(b^2 + 1 + 2b) = 2ab \\[0.5em] \Rightarrow x(b + 1)^2 = 2ab \\[0.5em] \Rightarrow x = \dfrac{2ab}{(b + 1)^2}.

Hence, the value of x is 2ab(b+1)2.\dfrac{2ab}{(b + 1)^2}.

Question 11

Using properties of proportion, solve for x. Given that x is positive.

(i)3x+9x253x9x25=5(ii)2x+4x212x4x21=4\begin{matrix} \text{(i)} & \dfrac{3x + \sqrt{9x^2 - 5}}{3x - \sqrt{9x^2 - 5}} = 5 \\[0.5em] \text{(ii)} & \dfrac{2x + \sqrt{4x^2 - 1}}{2x - \sqrt{4x^2 - 1}} = 4 \end{matrix}

Answer

(i) Given,

3x+9x253x9x25=51.\dfrac{3x + \sqrt{9x^2 - 5}}{3x - \sqrt{9x^2 - 5}} = \dfrac{5}{1}.

By componendo and dividendo,

3x+9x25+3x9x253x+9x253x+9x25=5+1516x29x25=64x9x25=12\Rightarrow \dfrac{3x + \sqrt{9x^2 - 5} + 3x - \sqrt{9x^2 - 5}}{3x + \sqrt{9x^2 - 5} - 3x + \sqrt{9x^2 - 5}} = \dfrac{5 + 1}{5 - 1} \\[1em] \Rightarrow \dfrac{6x}{2\sqrt{9x^2 - 5}} = \dfrac{6}{4} \\[1em] \Rightarrow \dfrac{x}{\sqrt{9x^2 - 5}} = \dfrac{1}{2}

Squaring both sides we get,

x29x25=144x2=9x255x25=05(x21)=0(x+1)(x1)=0x=1,1.\dfrac{x^2}{9x^2 - 5} = \dfrac{1}{4} \\[0.5em] \Rightarrow 4x^2 = 9x^2 - 5 \\[0.5em] \Rightarrow 5x^2 - 5 = 0 \\[0.5em] \Rightarrow 5(x^2 - 1) = 0 \\[0.5em] \Rightarrow (x + 1)(x - 1) = 0 \\[0.5em] \Rightarrow x = 1, -1.

Since, x is positive, hence, x ≠ -1.

Hence, the required value of x is 1.

(ii) Given,

2x+4x212x4x21=41.\dfrac{2x + \sqrt{4x^2 - 1}}{2x - \sqrt{4x^2 - 1}} = \dfrac{4}{1}.

By componendo and dividendo,

2x+4x21+2x4x212x+4x212x+4x21=4+1414x24x21=532x4x21=53\Rightarrow \dfrac{2x + \sqrt{4x^2 - 1} + 2x - \sqrt{4x^2 - 1}}{2x + \sqrt{4x^2 - 1} - 2x + \sqrt{4x^2 - 1}} = \dfrac{4 + 1}{4 - 1} \\[1em] \Rightarrow \dfrac{4x}{2\sqrt{4x^2 - 1}} = \dfrac{5}{3} \\[1em] \Rightarrow \dfrac{2x}{\sqrt{4x^2 - 1}} = \dfrac{5}{3}

Squaring both sides we get,

4x24x21=2594x2×9=25(4x21)36x2=100x22564x2=25x2=2564x=2564x=58 or 58\dfrac{4x^2}{4x^2 - 1} = \dfrac{25}{9} \\[1em] \Rightarrow 4x^2 \times 9 = 25(4x^2 - 1) \\[1em] \Rightarrow 36x^2 = 100x^2 - 25 \\[1em] \Rightarrow 64x^2 = 25 \\[1em] \Rightarrow x^2 = \dfrac{25}{64} \\[1em] \Rightarrow x = \sqrt{\dfrac{25}{64}} \\[1em] \Rightarrow x = \dfrac{5}{8} \text{ or } -\dfrac{5}{8} \\[1em]

Since, x is positive, hence, x ≠ 58.-\dfrac{5}{8}.

Hence, the required value of x is 58\dfrac{5}{8}.

Question 12

Solve : 1+x+x21x+x2=62(1+x)63(1x).\dfrac{1 + x + x^2}{1 - x + x^2} = \dfrac{62(1 + x)}{63(1 - x)}.

Answer

Given,

1+x+x21x+x2=62(1+x)63(1x)\dfrac{1 + x + x^2}{1 - x + x^2} = \dfrac{62(1 + x)}{63(1 - x)}

(1+x+x2)(1x)(1x+x2)(1+x)=62631+x+x2xx2x31x+x2+xx2+x3=62631x+xx2+x2x31+xxx2+x2+x3=62631x31+x3=6263\Rightarrow \dfrac{(1 + x + x^2)(1 - x)}{(1 - x + x^2)(1 + x)} = \dfrac{62}{63} \\[1em] \Rightarrow \dfrac{1 + x + x^2 -x -x^2 - x^3}{1 - x + x^2 + x - x^2 + x^3} = \dfrac{62}{63} \\[1em] \Rightarrow \dfrac{1 - \cancel{x} + \cancel{x} - \cancel{x^2} + \cancel{x^2} - x^3}{1 + \cancel{x} - \cancel{x} - \cancel{x^2} + \cancel{x^2} + x^3} = \dfrac{62}{63} \\[1em] \Rightarrow \dfrac{1 - x^3}{1 + x^3} = \dfrac{62}{63}

Again applying componendo and dividendo,

1x3+1+x31x31x3=62+63626322x3=12511x3=125x3=1125x=11253x=15.\Rightarrow \dfrac{1 - x^3 + 1 + x^3}{1 - x^3 - 1 -x^3} = \dfrac{62 + 63}{62 - 63} \\[1em] \Rightarrow \dfrac{2}{-2x^3} = \dfrac{125}{-1} \\[1em] \Rightarrow -\dfrac{1}{x^3} = -125 \\[1em] \Rightarrow x^3 = \dfrac{1}{125} \\[1em] \Rightarrow x = \dfrac{1}{\sqrt[3]{125}} \\[1em] \Rightarrow x = \dfrac{1}{5}.

Hence, the required value is 15.\dfrac{1}{5}.

Question 13

Solve for x : 16(axa+x)3=a+xax.16\Big(\dfrac{a - x}{a + x}\Big)^3 =\dfrac{a + x}{a - x}.

Answer

Given,

16(axa+x)3=a+xax.16\Big(\dfrac{a - x}{a + x}\Big)^3 =\dfrac{a + x}{a - x}.

(ax)3(a+x)3×(ax)(a+x)=116(axa+x)4=(12)4 or (12)4axa+x=12 or 12\Rightarrow \dfrac{(a - x)^3}{(a + x)^3} \times \dfrac{(a - x)}{(a + x)} = \dfrac{1}{16} \\[1em] \Rightarrow \Big(\dfrac{a - x}{a + x}\Big)^4 = \Big(\dfrac{1}{2}\Big)^4 \text{ or } \Big(-\dfrac{1}{2}\Big)^4 \\[1em] \Rightarrow \dfrac{a - x}{a + x} = \dfrac{1}{2} \text{ or } -\dfrac{1}{2}

First Solving,

axa+x=12\dfrac{a - x}{a + x} = \dfrac{1}{2}

By componendo and dividendo,

ax+a+xaxax=1+2122a2x=3ax=3x=a3.\Rightarrow \dfrac{a - x + a + x}{a - x - a - x} = \dfrac{1 + 2}{1 - 2} \\[1em] \Rightarrow -\dfrac{2a}{2x} = -3 \\[1em] \Rightarrow \dfrac{a}{x} = 3 \\[1em] \Rightarrow x = \dfrac{a}{3}.

Now Solving,

axa+x=12\dfrac{a - x}{a + x} = -\dfrac{1}{2}

By componendo and dividendo,

ax+a+xaxax=121+22a2x=13ax=13x=3a.\Rightarrow \dfrac{a - x + a + x}{a - x - a - x} = \dfrac{1 - 2}{1 + 2}\\[1em] \Rightarrow -\dfrac{2a}{2x} = -\dfrac{1}{3} \\[1em] \Rightarrow \dfrac{a}{x} = \dfrac{1}{3} \\[1em] \Rightarrow x = 3a. \\[1em]

Hence, the value of x is a3\dfrac{a}{3} and 3a.

Question 14(i)

If x = a+1+a1a+1a1,\dfrac{\sqrt{a + 1} + \sqrt{a - 1}}{\sqrt{a + 1} - \sqrt{a - 1}}, using properties of proportion, show that

x2 - 2ax + 1 = 0.

Answer

Given,

x1=a+1+a1a+1a1.\dfrac{x}{1} = \dfrac{\sqrt{a + 1} + \sqrt{a - 1}}{\sqrt{a + 1} - \sqrt{a - 1}}.

Applying componendo and dividendo,

x+1x1=a+1+a1+a+1a1a+1+a1a+1+a1x+1x1=2a+12a1x+1x1=a+1a1\Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a + 1} + \sqrt{a - 1} + \sqrt{a + 1} - \sqrt{a - 1}}{\sqrt{a + 1} + \sqrt{a - 1} - \sqrt{a + 1} + \sqrt{a - 1}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt{a + 1}}{2\sqrt{a - 1}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a + 1}}{\sqrt{a - 1}}

Squaring both sides we get,

(x+1x1)2=(a+1a1)2x2+1+2xx2+12x=a+1a1\Rightarrow \Big(\dfrac{x + 1}{x - 1}\Big)^2 = \Big(\dfrac{\sqrt{a + 1}}{\sqrt{a - 1}}\Big)^2 \\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x}{x^2 + 1 - 2x} = \dfrac{a + 1}{a - 1}

Again applying componendo and dividendo,

x2+1+2x+x2+12xx2+1+2xx21+2x=a+1+a1a+1a+12(x2+1)4x=2a2x2+12x=ax2+1=2axx22ax+1=0.\Rightarrow \dfrac{x^2 + 1 + \cancel{2x} + x^2 + 1 - \cancel{2x}}{\cancel{x^2} + \cancel{1} + 2x - \cancel{x^2} - \cancel{1} + 2x} = \dfrac{a + \cancel{1} + a - \cancel{1}}{\cancel{a} + 1 - \cancel{a} + 1} \\[1em] \Rightarrow \dfrac{2(x^2 + 1)}{4x} = \dfrac{2a}{2} \\[1em] \Rightarrow \dfrac{x^2 + 1}{2x} = a \\[1em] \Rightarrow x^2 + 1 = 2ax \\[1em] \Rightarrow x^2 - 2ax + 1 = 0.

Hence proved that, x2 - 2ax + 1 = 0.

Question 14(ii)

If x = 2a+1+2a12a+12a1\dfrac{\sqrt{2a + 1} + \sqrt{2a - 1}}{\sqrt{2a + 1} - \sqrt{2a - 1}}, using properties of proportion, prove that x2 - 4ax + 1 = 0.

Answer

Given; x = 2a+1+2a12a+12a1\dfrac{\sqrt{2a + 1} + \sqrt{2a - 1}}{\sqrt{2a + 1} - \sqrt{2a - 1}}

Applying componendo and dividendo on both sides we get :

x+1x1=2a+1+2a1+2a+12a12a+1+2a1(2a+12a1)x+1x1=22a+122a1x+1x1=2a+12a1Squaring both sides we get :(x+1)2(x1)2=2a+12a1x2+1+2xx2+12x=2a+12a1Applying componendo and dividendo on both sides we get :x2+1+2x+x2+12xx2+1+2x(x2+12x)=2a+1+2a12a+1(2a1)2x2+24x=4a2x2+12x=2ax2+1=4axx2+14ax=0\Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{2a + 1} + \sqrt{2a - 1} + \sqrt{2a + 1} - \sqrt{2a - 1}}{\sqrt{2a + 1} + \sqrt{2a - 1} - (\sqrt{2a + 1} - \sqrt{2a - 1})}\\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt{2a + 1}}{2\sqrt{2a - 1}}\\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{2a + 1}}{\sqrt{2a - 1}}\\[1em] \text{Squaring both sides we get :}\\[1em] \Rightarrow \dfrac{(x + 1)^2}{(x - 1)^2} = \dfrac{2a + 1}{2a - 1}\\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x}{x^2 + 1 - 2x} = \dfrac{2a + 1}{2a - 1}\\[1em] \text{Applying componendo and dividendo on both sides we get :}\\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x + x^2 + 1 - 2x}{x^2 + 1 + 2x - (x^2 + 1 - 2x)} = \dfrac{2a + 1 + 2a - 1}{2a + 1 - (2a - 1)}\\[1em] \Rightarrow \dfrac{2x^2 + 2}{4x} = \dfrac{4a}{2}\\[1em] \Rightarrow \dfrac{x^2 + 1}{2x} = 2a\\[1em] \Rightarrow x^2 + 1 = 4ax\\[1em] \Rightarrow x^2 + 1 - 4ax = 0

Hence, proved that x2 - 4ax + 1 = 0.

Question 15

Given x = a2+b2+a2b2a2+b2a2b2,\dfrac{\sqrt{a^{2} + b^2} + \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} - \sqrt{a^2 - b^2}}, use componendo and dividendo to prove that b2 = 2a2xx2+1.\dfrac{2a^2x}{x^2 + 1}.

Answer

Given,

x=a2+b2+a2b2a2+b2a2b2x = \dfrac{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} - \sqrt{a^2 - b^2}}

By componendo and dividendo,

x+1x1=a2+b2+a2b2+a2+b2a2b2a2+b2+a2b2a2+b2+a2b2x+1x1=2a2+b22a2b2x+1x1=a2+b2a2b2\Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2} + \sqrt{a^2 + b^2} - \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2} - \sqrt{a^2 + b^2} + \sqrt{a^2 - b^2}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt{a^2 + b^2}}{2\sqrt{a^2 - b^2}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a^2 + b^2}}{\sqrt{a^2 - b^2}}

On squaring both sides,

(x+1x1)2=a2+b2a2b2x2+1+2xx2+12x=a2+b2a2b2\Rightarrow \Big(\dfrac{x + 1}{x - 1}\Big)^2 = \dfrac{a^2 + b^2}{a^2 - b^2} \\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x}{x^2 + 1 - 2x} = \dfrac{a^2 + b^2}{a^2 - b^2} \\[1em]

Again applying componendo and dividendo,

x2+1+2x+x2+12xx2+1+2xx21+2x=a2+b2+a2b2a2+b2a2+b22x2+24x=2a22b2x2+12x=a2b2b2=2a2xx2+1.\Rightarrow \dfrac{x^2 + 1 + \cancel{2x} + x^2 + 1 - \cancel{2x}}{\cancel{x^2} + \cancel{1} + 2x - \cancel{x^2} - \cancel{1} + 2x} = \dfrac{a^2 + \cancel{b^2} + a^2 - \cancel{b^2}}{\cancel{a^2} + b^2 - \cancel{a^2} + b^2} \\[1em] \Rightarrow \dfrac{2x^2 + 2}{4x} = \dfrac{2a^2}{2b^2} \\[1em] \Rightarrow \dfrac{x^2 + 1}{2x} = \dfrac{a^2}{b^2}\\[1em] \Rightarrow b^2 = \dfrac{2a^2x}{x^2 + 1}.

Hence, proved that b2=2a2xx2+1.b^2 = \dfrac{2a^2x}{x^2 + 1}.

Question 16

Given that a3+3ab2b3+3a2b=6362.\dfrac{a^3 + 3ab^2}{b^3 + 3a^2b} = \dfrac{63}{62}. Using componendo and dividendo, find a : b.

Answer

Given,

a3+3ab2b3+3a2b=6362\dfrac{a^3 + 3ab^2}{b^3 + 3a^2b} = \dfrac{63}{62}

By componendo and dividendo,

a3+3ab2+b3+3a2ba3+3ab2b33a2b=63+626362(a+bab)3=125(a+bab)3=(5)3a+bab=5a+b=5a5b5aa=b+5b4a=6bab=64=23a:b=3:2.\Rightarrow \dfrac{a^3 + 3ab^2 + b^3 + 3a^2b}{a^3 + 3ab^2 - b^3 - 3a^2b} = \dfrac{63 + 62}{63 - 62} \\[1em] \Rightarrow \Big(\dfrac{a + b}{a - b}\Big)^3 = 125 \\[1em] \Rightarrow \Big(\dfrac{a + b}{a - b}\Big)^3 = (5)^3 \\[1em] \Rightarrow \dfrac{a + b}{a - b} = 5 \\[1em] \Rightarrow a + b = 5a - 5b \\[1em] \Rightarrow 5a - a = b + 5b \\[1em] \Rightarrow 4a = 6b \\[1em] \Rightarrow \dfrac{a}{b} = \dfrac{6}{4} = \dfrac{2}{3} \\[1em] \Rightarrow a : b = 3 : 2.

Hence, the value of a : b = 3 : 2.

Question 17

Given x3+12x6x2+8=y3+27y9y2+27.\dfrac{x^3 + 12x}{6x^2 + 8} = \dfrac{y^3 + 27y}{9y^2 + 27}. Using componendo and dividendo, find x : y.

Answer

Given,

x3+12x6x2+8=y3+27y9y2+27\dfrac{x^3 + 12x}{6x^2 + 8} = \dfrac{y^3 + 27y}{9y^2 + 27}

By componendo and dividendo,

x3+12x+6x2+8x3+12x6x28=y3+27y+9y2+27y3+27y9y227x3+(3×x×22)+(3×x2×2)+23x3+(3×x×22)(3×x2×2)23=y3+(3×y×32)+(3×y2×3)+33y3+(3×y×32)(3×y2×3)33(x+2x2)3=(y+3y3)3x+2x2=y+3y3\Rightarrow \dfrac{x^3 + 12x + 6x^2 + 8}{x^3 + 12x - 6x^2 - 8} = \dfrac{y^3 + 27y + 9y^2 + 27}{y^3 + 27y - 9y^2 - 27} \\[1em] \Rightarrow \dfrac{x^3 + (3 \times x \times 2^2 ) + (3 \times x^2 \times 2 ) + 2^3}{x^3 + (3 \times x \times 2^2 ) - (3 \times x^2 \times 2 ) - 2^3} \\[1em] = \dfrac{y^3 + (3 \times y \times 3^2) + (3 \times y^2 \times 3) + 3^3}{y^3 + (3 \times y \times 3^2) - (3 \times y^2 \times 3) - 3^3} \\[1em] \Rightarrow \Big(\dfrac{x + 2}{x - 2}\Big)^3 = \Big(\dfrac{y + 3}{y - 3}\Big)^3 \\[1em] \Rightarrow \dfrac{x + 2}{x - 2} = \dfrac{y + 3}{y - 3}

Again applying componendo and dividendo,

x+2+x2x+2x+2=y+3+y3y+3y+32x4=2y6xy=26×42xy=23x:y=2:3.\Rightarrow \dfrac{x + \cancel{2} + x - \cancel{2}}{\cancel{x} + 2 - \cancel{x} + 2} = \dfrac{y + \cancel{3} + y - \cancel{3}}{\cancel{y} + 3 - \cancel{y} + 3} \\[1em] \Rightarrow \dfrac{2x}{4} = \dfrac{2y}{6} \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{2}{6} \times \dfrac{4}{2} \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{2}{3} \\[1em] \Rightarrow x : y = 2 : 3.

Hence, the value of ratio x : y is 2 : 3.

Question 18

Using the properties of proportion, solve the following equation for x;

given x3+3x3x2+1=34191.\dfrac{x^3 + 3x}{3x^2 + 1} = \dfrac{341}{91}.

Answer

Given,

x3+3x3x2+1=34191\dfrac{x^3 + 3x}{3x^2 + 1} = \dfrac{341}{91}

Applying componendo and dividendo,

x3+3x+3x2+1x3+3x3x21=341+9134191(x+1)3(x1)3=432250(x+1)3(x1)3=216125(x+1x1)3=(65)3x+1x1=65\Rightarrow \dfrac{x^3 + 3x + 3x^2 + 1}{x^3 + 3x - 3x^2 - 1} = \dfrac{341 + 91}{341 - 91} \\[1em] \Rightarrow \dfrac{(x + 1)^3}{(x - 1)^3} = \dfrac{432}{250} \\[1em] \Rightarrow \dfrac{(x + 1)^3}{(x - 1)^3} = \dfrac{216}{125} \\[1em] \Rightarrow \Big(\dfrac{x + 1}{x - 1}\Big)^3 = \Big(\dfrac{6}{5}\Big)^3 \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{6}{5}

Again applying componendo and dividendo,

x+1+x1x+1x+1=6+5652x2=111x=11.\Rightarrow \dfrac{x + \cancel{1} + x - \cancel{1}}{\cancel{x} + 1 - \cancel{x} + 1} = \dfrac{6 + 5}{6 - 5} \\[1em] \Rightarrow \dfrac{2x}{2} = \dfrac{11}{1} \\[1em] \Rightarrow x = 11.

Hence, the value of x is 11.

Question 19

If x+yax+by=y+zay+bz=z+xaz+bx\dfrac{x + y}{ax + by} = \dfrac{y + z}{ay + bz} = \dfrac{z + x}{az + bx}, prove that each of these ratio is equal to 2a+b,\dfrac{2}{a + b}, unless x + y + z = 0.

Answer

We know that if ab=cd=ef\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}, then each ratio

=a+c+eb+d+f=sum of antecedentssum of consequents= \dfrac{a + c + e}{b + d + f} = \dfrac{\text{sum of antecedents}}{\text{sum of consequents}}

x+yax+by=y+zay+bz=z+xaz+bx=x+y+y+z+z+xax+by+ay+bz+az+bx=2(x+y+z)a(x+y+z)+b(x+y+z)=2(x+y+z)(a+b)(x+y+z)=2a+b.\therefore \dfrac{x + y}{ax + by} = \dfrac{y + z}{ay + bz} = \dfrac{z + x}{az + bx} \\[1em] = \dfrac{x + y + y + z + z + x}{ax + by + ay + bz + az + bx} \\[1em] = \dfrac{2(x + y + z)}{a(x + y + z) + b(x + y + z)} \\[1em] = \dfrac{2(x + y + z)}{(a + b)(x + y + z)} \\[1em] = \dfrac{2}{a + b}.

Hence, proved that,

x+yax+by=y+zay+bz=z+xaz+bx=2a+b.\dfrac{x + y}{ax + by} = \dfrac{y + z}{ay + bz} = \dfrac{z + x}{az + bx} = \dfrac{2}{a + b}.

Multiple Choice Questions

Question 1

The ratio of 4 litres to 900 mL is

  1. 4 : 9
  2. 40 : 9
  3. 9 : 40
  4. 20 : 9

Answer

4 litres = 4 x 1000 ml = 4000 ml

Ratio = 4000900=409\dfrac{4000}{900} = \dfrac{40}{9} = 40 : 9.

∴ Option 2 is the correct option.

Question 2

When the number 210 is increased in the ratio 5 : 7, the new number is

  1. 150
  2. 180
  3. 294
  4. 420

Answer

Let new number be x. Since, 210 is increased in the ratio 5 : 7,

210x=57x=210×75x=294.\therefore \dfrac{210}{x} = \dfrac{5}{7} \\[0.5em] \Rightarrow x = 210 \times \dfrac{7}{5} \\[0.5em] \Rightarrow x = 294.

∴ Option 3 is the correct option.

Question 3

Two numbers are in the ratio 7 : 9. If the sum of the numbers is 288, then the smaller number is

  1. 126
  2. 162
  3. 112
  4. 144

Answer

Since, two numbers are in the ratio 7 : 9, let the numbers be 7x, 9x.

Given, the sum of two numbers = 288.

∴ 7x + 9x = 288
⇒ 16x = 288
⇒ x = 28816\dfrac{288}{16}
⇒ x = 18.

Smaller number = 7x = 126.

∴ Option 1 is the correct option.

Question 4

The ratio of number of edges of a cube to the number of its faces is

  1. 2 : 1
  2. 1 : 2
  3. 3 : 8
  4. 8 : 3

Answer

Number of edges in a cube = 12

Number of faces in cube = 6

Ratio of number of edges to the number of faces = 126=21\dfrac{12}{6} = \dfrac{2}{1} = 2 : 1.

∴ Option 1 is the correct option.

Question 5

If x, 12, 8 and 32 are in proportion, then the value of x is

  1. 6
  2. 4
  3. 3
  4. 2

Answer

Given, x : 12 : : 8 : 32

x12=832x=12×832x=3.\Rightarrow \dfrac{x}{12} = \dfrac{8}{32} \\[0.5em] \Rightarrow x = 12 \times \dfrac{8}{32} \\[0.5em] \Rightarrow x = 3.

∴ Option 3 is the correct option.

Question 6

The fourth proportional to 3, 4, 5 is

  1. 6

  2. 203\dfrac{20}{3}

  3. 154\dfrac{15}{4}

  4. 125\dfrac{12}{5}

Answer

Let the fourth proportional be x.

So, the numbers 3, 4, 5, x are in proportion.

3:4::5:x34=5xx=5×43x=203.\therefore 3 : 4 : : 5 : x \\[0.5em] \Rightarrow \dfrac{3}{4} = \dfrac{5}{x} \\[0.5em] \Rightarrow x = 5 \times \dfrac{4}{3} \\[0.5em] \Rightarrow x = \dfrac{20}{3}.

∴ Option 2 is the correct option.

Question 7

The third proportional to 6146\dfrac{1}{4} and 5 is

  1. 4

  2. 7127\dfrac{1}{2}

  3. 3

  4. none of these

Answer

Let the third proportional be x.

Hence, the numbers 6146\dfrac{1}{4}, 5, x are in continued in proportion.

254:5::5:x2545=5x2520=5xx=5×2025x=4.\therefore \dfrac{25}{4} : 5 : : 5 : x \\[0.5em] \Rightarrow \dfrac{\dfrac{25}{4}}{5} = \dfrac{5}{x} \\[0.5em] \Rightarrow \dfrac{25}{20} = \dfrac{5}{x} \\[0.5em] \Rightarrow x = 5 \times \dfrac{20}{25} \\[0.5em] \Rightarrow x = 4.

∴ Option 1 is the correct option.

Question 8

The mean proportional between 12\dfrac{1}{2} and 128 is

  1. 64
  2. 32
  3. 16
  4. 8

Answer

Let the mean proportional be x.

Hence, the numbers are 12\dfrac{1}{2}, x and 128 are in continued in proportion.

12:x::x:12812x=x128x2=12×128x2=64x=64x=8.\therefore \dfrac{1}{2} : x : : x : 128 \\[0.5em] \Rightarrow \dfrac{\dfrac{1}{2}}{x} = \dfrac{x}{128} \\[0.5em] \Rightarrow x^2 = \dfrac{1}{2} \times 128 \\[0.5em] \Rightarrow x^2 = 64 \\[0.5em] \Rightarrow x = \sqrt{64} \\[0.5em] \Rightarrow x = 8.

∴ Option 4 is the correct option.

Question 9

The table shows the values of x and y, where x is proportional to y. What are the values of M and N ?

xy
6M
1218
N6
  1. M = 4, N = 9

  2. M = 9, N = 3

  3. M = 9, N = 4

  4. M = 12, N = 0

Answer

Given, x is proportional to y.

6M=1218M=6×1812M=10812M=9.1218=N6N=12×618N=7218N=4.\Rightarrow \dfrac{6}{M} = \dfrac{12}{18} \\[1em] \Rightarrow M = \dfrac{6 \times 18}{12} \\[1em] \Rightarrow M = \dfrac{108}{12} \\[1em] \Rightarrow M = 9. \\[1.5em] \dfrac{12}{18} = \dfrac{N}{6} \\[1em] \Rightarrow N = \dfrac{12 \times 6}{18} \\[1em] \Rightarrow N = \dfrac{72}{18} \\[1em] \Rightarrow N = 4.

Hence, Option 3 is the correct option.

Question 10

The given table shows the distance covered and the time taken by a train moving at a uniform speed along a straight track.

Distance (in m)Time (in sec)
602
90x
y5

The values of x and y are :

  1. x = 4, y = 150

  2. x = 3, y = 100

  3. x = 4, y = 100

  4. x = 3, y = 150

Answer

Speed = DistanceTime\dfrac{\text{Distance}}{\text{Time}}

Average speed = 602\dfrac{60}{2} = 30 km/hr

90x=30x=9030=3.y5=30y=30×5=150.\Rightarrow \dfrac{90}{x} = 30 \\[1em] \Rightarrow x = \dfrac{90}{30} = 3. \\[1em] \phantom{\Rightarrow} \dfrac{y}{5} = 30 \\[1em] \Rightarrow y = 30 \times 5 = 150.

Hence, Option 4 is the correct option.

Question 11

A mixture of paint is prepared by mixing 2 parts of red pigments with 5 parts of the base. Using the given information in the following table, find the values of a, b and c to get the required mixture of paint.

Parts of red pigmentParts of base
25
4a
b12.5
6c
  1. a = 10, b = 10, c = 10

  2. a = 5, b = 2, c = 5

  3. a = 10, b = 5, c = 10

  4. a = 10, b = 5, c = 15

Answer

Given,

2 parts of red pigments is mixed with 5 parts of the base.

4a=25a=4×52=202=10.b12.5=25b=25×12.5=2×2.5=56c=25c=6×52=3×5=15.\therefore \dfrac{4}{a} = \dfrac{2}{5} \\[1em] \Rightarrow a = \dfrac{4 \times 5}{2} = \dfrac{20}{2} = 10. \\[1em] \therefore \dfrac{b}{12.5} = \dfrac{2}{5} \\[1em] \Rightarrow b = \dfrac{2}{5} \times 12.5 = 2 \times 2.5 = 5 \\[1em] \therefore \dfrac{6}{c} = \dfrac{2}{5} \\[1em] \Rightarrow c = \dfrac{6 \times 5}{2} = 3 \times 5 = 15.

Hence, Option 4 is the correct option.

Assertion-Reason Type Questions

Question 1

Assertion (A): Mean proportion between 23 and 152\dfrac{2}{3} \text{ and } \dfrac{15}{2} is 5.

Reason (R): Mean proportion between two numbers is the positive square root of their product.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

The mean proportion between two numbers a and b is defined as ab\sqrt{ab}

So, reason (R) is true.

When two numbers are 23 and 152\dfrac{2}{3} \text{ and } \dfrac{15}{2}

Mean proportion=23×152=306=5\text{Mean proportion} = \sqrt{\dfrac{2}{3} \times \dfrac{15}{2}}\\[1em] = \sqrt{\dfrac{30}{6}}\\[1em] = \sqrt{5}

So, assertion (A) is false.

Thus, Assertion (A) is false, but Reason (R) is true.

Hence, option 2 is the correct option.

Question 2

a, b and c are in continued proportion.

Assertion (A): a is first proportion.

Reason (R): The first proportion is always the smallest of the three numbers.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Three numbers a, b, c are in continued proportion if:

ab=bc\dfrac{a}{b} = \dfrac{b}{c}

⇒ b2 = ac

Here, a is called the first proportion, b is the mean (or geometric mean), c is the third proportion.

So, assertion (A) is true.

Lets take an example, a = 9, b = 6 and c = 4.

When three numbers a, b, c are in continued proportion if:

ab=bc96=6432=32\Rightarrow \dfrac{a}{b} = \dfrac{b}{c}\\[1em] \Rightarrow \dfrac{9}{6} = \dfrac{6}{4}\\[1em] \Rightarrow\dfrac{3}{2} = \dfrac{3}{2}

Here, a = 9 is first proportion but it is not the smallest number among three.

So, reason (R) is false.

Thus, Assertion (A) is true, but Reason (R) is false.

Hence, option 1 is the correct option.

Question 3

a, b, c and d are in proportion.

Assertion (A): a + b, a - b, c + d and c - d are in proportion.

Reason (R): ab=cd\dfrac{a}{b} = \dfrac{c}{d}.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given,

a, b, c and d are in proportion.

ab=cd\therefore \dfrac{a}{b} = \dfrac{c}{d}

So, reason (R) is true.

Applying componendo and dividendo, we get

a+bab=c+dcd\Rightarrow \dfrac{a + b}{a - b} = \dfrac{c + d}{c - d}

Therefore, a + b, a - b, c + d and c - d are in proportion.

So, assertion (A) is true and reason (R) correctly explains assertion (A).

Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Question 4

a, b, c and d are in proportion.

Assertion (A): a - c, c, b - d, d are in proportion.

Reason (R): a, c, b and d are in proportion.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given,

a, b, c and d are in proportion.

ab=cdac=bd.\therefore \dfrac{a}{b} = \dfrac{c}{d} \\[1em] \Rightarrow \dfrac{a}{c} = \dfrac{b}{d}.

∴ a, c, b and d are in proportion.

So, reason (R) is true.

ac=bdac1=bd1acc=bdd\Rightarrow \dfrac{a}{c} = \dfrac{b}{d}\\[1em] \Rightarrow \dfrac{a}{c} - 1 = \dfrac{b}{d} - 1\\[1em] \Rightarrow \dfrac{a - c}{c} = \dfrac{b - d}{d}

We can say that a - c, c, b - d, d are in proportion.

So, assertion (A) is true and reason (R) correctly explains assertion (A).

Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Chapter Test

Question 1

Find the compounded ratio of

(a + b)2 : (a - b)2, (a2 - b2) : (a2 + b2) and (a4 - b4) : (a + b)4.

Answer

The compounded ratio is :

(a+b)2(ab)2×(a2b2)(a2+b2)×(a4b4)(a+b)4=(a+b)2(ab)2×(ab)(a+b)(a2+b2)×(a2b2)(a2+b2)(a+b)4=(a+b)2(ab)2×(ab)(a+b)(a2+b2)×(ab)(a+b)(a2+b2)(a+b)4=(a+b)4(ab)2(a2+b2)(ab)2(a2+b2)(a+b)4=11=1:1.\dfrac{(a + b)^2}{(a - b)^2} \times \dfrac{(a^2 - b^2)}{(a^2 + b^2)} \times \dfrac{(a^4 - b^4)}{(a + b)^4} \\[1em] = \dfrac{(a + b)^2}{(a - b)^2} \times \dfrac{(a - b)(a + b)}{(a^2 + b^2)} \times \dfrac{(a^2 - b^2)(a^2 + b^2)}{(a + b)^4} \\[1em] = \dfrac{(a + b)^2}{(a - b)^2} \times \dfrac{(a - b)(a + b)}{(a^2 + b^2)} \times \dfrac{(a - b)(a + b)(a^2 + b^2)}{(a + b)^4} \\[1em] = \dfrac{(a + b)^4(a - b)^2(a^2 + b^2)}{(a - b)^2(a^2 + b^2)(a + b)^4} \\[1em] = \dfrac{1}{1} = 1 : 1 .

Hence, the compounded ratio is 1 : 1.

Question 2

If (7p + 3q) : (3p - 2q) = 43 : 2, find p : q.

Answer

Given, (7p + 3q) : (3p - 2q) = 43 : 2.

7p+3q3p2q=4322(7p+3q)=43(3p2q)14p+6q=129p86q92q=115ppq=92115=45.\Rightarrow \dfrac{7p + 3q}{3p - 2q} = \dfrac{43}{2} \\[1em] \Rightarrow 2(7p + 3q) = 43(3p - 2q) \\[1em] \Rightarrow 14p + 6q = 129p - 86q \\[1em] \Rightarrow 92q = 115p \\[1em] \Rightarrow \dfrac{p}{q} = \dfrac{92}{115} = \dfrac{4}{5}. \\[1em]

Hence, the value of ratio p : q is 4 : 5.

Question 3

If a : b = 3 : 5, find (3a + 5b) : (7a - 2b).

Answer

Given,

ab=35a=3b5\dfrac{a}{b} = \dfrac{3}{5} \\[1em] \therefore a = \dfrac{3b}{5}

Putting value of a in the ratio (3a + 5b) : (7a - 2b),

=3×3b5+5b7×3b52b=9b5+5b21b52b=9b+25b521b10b5=34b11b=3411=34:11.= \dfrac{3 \times \dfrac{3b}{5} + 5b}{7 \times \dfrac{3b}{5} - 2b} \\[1em] = \dfrac{\dfrac{9b}{5} + 5b}{\dfrac{21b}{5} - 2b} \\[1em] = \dfrac{\dfrac{9b + 25b}{5}}{\dfrac{21b - 10b}{5}} \\[1em] = \dfrac{34b}{11b} \\[1em] = \dfrac{34}{11} = 34 : 11.

Hence, the value of ratio (3a + 5b) : (7a - 2b) is 34 : 11.

Question 4

The ratio of the shorter sides of a right-angled triangle is 5 : 12. If the perimeter of the triangle is 360 cm, find the length of the longest side.

Answer

Let the length of the shorter side be 5x cm and 12x cm.

Length of hypotenuse = (5x)2+(12x)2 cm\sqrt{(5x)^2 + (12x)^2} \text{ cm}

=25x2+144x2 cm=169x2 cm=13x cm= \sqrt{25x^2 + 144x^2} \text{ cm} \\[0.75em] = \sqrt{169x^2} \text{ cm} \\[0.75em] = 13x \text{ cm} \\[0.75em]

According to given,

5x+12x+13x=36030x=360x=12.5x + 12x + 13x = 360 \\[0.5em] 30x = 360 \\[0.5em] x = 12.

∴ x = 12, 13x = 13 ×\times 12 = 156.

Hence, the length of longest side is 156 cm.

Question 5

The ratio of the pocket money saved by Lokesh and his sister is 5 : 6. If the sister saves ₹ 30 more, how much more the brother should save in order to keep the ratio of their savings unchanged.

Answer

Let the savings of Lokesh and his sister are 5x and 6x.

Let Lokesh save ₹ y more then according to question,

5x+y6x+30=566(5x+y)=5(6x+30)30x+6y=30x+1506y=150y=25.\Rightarrow \dfrac{5x + y}{6x + 30} = \dfrac{5}{6} \\[0.5em] \Rightarrow 6(5x + y) = 5(6x + 30) \\[0.5em] \Rightarrow 30x + 6y = 30x + 150 \\[0.5em] \Rightarrow 6y = 150 \\[0.5em] \Rightarrow y = 25.

Hence, Lokesh should save ₹ 25 more.

Question 6

In an examination, the number of those who passed and the number of those who failed were in the ratio 3 : 1. Had 8 more appeared, and 6 less passed, the ratio of passed to failures would have been 2 : 1. Find the number of candidates who appeared.

Answer

In first case,
Let the number of students passed = 3x and failed = x.
Total candidates appeared = 3x + x = 4x.

In second case,
Total candidates appeared = 4x + 8
Number of passed students = 3x - 6
Number of failed students = (4x + 8) - (3x - 6)
= 4x + 8 - 3x + 6
= x + 14.

According to question, ratio of number of passed to failed student in this case = 2 : 1.

3x6x+14=21(3x6)=2(x+14)3x6=2x+283x2x=28+6x=34.\therefore \dfrac{3x - 6}{x + 14} = \dfrac{2}{1} \\[0.5em] \Rightarrow (3x - 6) = 2(x + 14) \\[0.5em] \Rightarrow 3x - 6 = 2x + 28 \\[0.5em] \Rightarrow 3x - 2x = 28 + 6 \\[0.5em] \Rightarrow x = 34.

∴ x = 34, 4x = 136.

Hence, the number of students who appeared were 136.

Question 7

What number must be added to each of the numbers 4, 6, 8, 11 to make them proportional ?

Answer

Let x be added to each number.

So, 4 + x, 6 + x, 8 + x and 11 + x must be in proportion.

4+x6+x=8+x11+x(4+x)×(11+x)=(8+x)×(6+x)44+4x+11x+x2=48+8x+6x+x244+15x+x2=48+14x+x215x14x=4844x=4.\therefore \dfrac{4 + x}{6 + x} = \dfrac{8 + x}{11 + x} \\[1em] \Rightarrow (4 + x) \times (11 + x) = (8 + x) \times (6 + x) \\[1em] \Rightarrow 44 + 4x + 11x + x^2 = 48 + 8x + 6x + x^2\\[1em] \Rightarrow 44 + 15x + x^2 = 48 + 14x + x^2 \\[1em] \Rightarrow 15x - 14x = 48 - 44 \\[1em] \Rightarrow x = 4.

Hence, required number is 4.

Question 8

If (a + 2b + c), (a - c) and (a - 2b + c) are in continued proportion, prove that b is the mean proportional between a and c.

Answer

Since, the numbers are in continued proportion,

(a+2b+c)(ac)=(ac)(a2b+c)(a+2b+c)(a2b+c)=(ac)2(a22ab+ac+2ab4b2+2bc+ac2bc+c2)=(a2+c22ac)a2+c2+2ac4b2=a2+c22ac4b2=4acb2=ac.\therefore \dfrac{(a + 2b + c)}{(a - c)} = \dfrac{(a - c)}{(a - 2b + c)} \\[1em] \Rightarrow (a + 2b + c)(a - 2b + c) = (a - c)^2 \\[1em] \Rightarrow (a^2 - 2ab + ac + 2ab - 4b^2 + 2bc + ac - 2bc + c^2) = (a^2 + c^2 - 2ac) \\[1em] \Rightarrow a^2 + c^2 + 2ac - 4b^2 = a^2 + c^2 - 2ac \\[1em] \Rightarrow 4b^2 = 4ac \\[1em] \Rightarrow b^2 = ac.

Since, b2 = 4ac, hence proved that b is the mean proportional between a and c.

Question 9

If 2, 6, p, 54 and q are in continued proportion, find the values of p and q.

Answer

2, 6, p, 54 and q are in continued proportion then,

26=6p=p54=54q.Solving, 26=6p for p,p=62×6p=18.Now solving, p54=54q for q,q=54p×54q=5418×54q=3×54q=162.\Rightarrow \dfrac{2}{6} = \dfrac{6}{p} = \dfrac{p}{54} = \dfrac{54}{q}.\\[1em] \text{Solving, } \dfrac{2}{6} = \dfrac{6}{p} \text{ for p,} \\[1em] \Rightarrow p = \dfrac{6}{2} \times 6 \\[1em] \Rightarrow p = 18. \\[1em] \text{Now solving, } \dfrac{p}{54} = \dfrac{54}{q} \text{ for q,} \\[1em] \Rightarrow q = \dfrac{54}{p} \times 54 \\[1em] \Rightarrow q = \dfrac{54}{18} \times 54 \\[1em] \Rightarrow q = 3 \times 54 \\[1em] \Rightarrow q = 162.

Hence, the value of p = 18 and q = 162.

Question 10

If a, b, c, d, e are in continued proportion, prove that a : e = a4 : b4.

Answer

Since, a, b, c, d, e are in continued proportion.

Let, ab=bc=cd=de=k.\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = \dfrac{d}{e} = k.

∴ d = ek, c = ek2, b = ek3, a = ek4.

Now,

L.H.S. =ae=ek4e=k4R.H.S. =(a4)(b4)=(ek4)4(ek3)4=e4k16e4k12=k4\text{L.H.S. } = \dfrac{a}{e} \\[1em] = \dfrac{ek^4}{e} = k^4 \\[1em] \text{R.H.S. } = \dfrac{(a^4)}{(b^4)} \\[1em] = \dfrac{(ek^4)^4}{(ek^3)^4} \\[1em] = \dfrac{e^4k^{16}}{e^4k^{12}} \\[1em] = k^4

Since, L.H.S. = R.H.S. hence, proved that a : e = a4 : b4.

Question 11

Find two numbers whose mean proportional is 16 and the third proportional is 128.

Answer

Let the two numbers be a and b.

Given, mean proportional between a and b is 16.

ab=16[....Eq 1]\therefore \sqrt{ab} = 16 \qquad \text{[....Eq 1]}

Given, third proportional is 128.

ab=b128a=b2128[....Eq 2]\therefore \dfrac{a}{b} = \dfrac{b}{128} \\[0.5em] \Rightarrow a = \dfrac{b^2}{128} \qquad \text{[....Eq 2]}

Putting this value of a in Eq 1,

(b2128)b=16(b3128)=16\Rightarrow \sqrt{\Big(\dfrac{b^2}{128}\Big)b} = 16 \\[0.5em] \Rightarrow \sqrt{\Big(\dfrac{b^3}{128}\Big)} = 16

Squaring both sides,

b3128=256b3=256×128b3=32768b=327683b=32\Rightarrow \dfrac{b^3}{128} = 256 \\[1em] \Rightarrow b^3 = 256 \times 128 \\[1em] \Rightarrow b^3 = 32768 \\[1em] \Rightarrow b = \sqrt[3]{32768} \\[1em] \Rightarrow b = 32

Putting value of b in Eq 2, a=b2128[....Eq 2]a=(32)2128a=1024128a=8a = \dfrac{b^2}{128} \qquad \text{[....Eq 2]} \\[1em] \Rightarrow a = \dfrac{(32)^2}{128} \\[1em] \Rightarrow a = \dfrac{1024}{128} \\[1em] \Rightarrow a = 8

Hence, the value of a = 8 and b = 32.

Question 12

If q is the mean proportional between p and r, prove that :

p23q2+r2=q4(1p23q2+1r2).p^2 - 3q^2 + r^2 = q^4\Big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\Big).

Answer

Since, q is the mean proportional between p and r,

q2=pr\therefore q^2 = pr

Given,

p23q2+r2=q4(1p23q2+1r2).L.H.S.=p23q2+r2=p2+r23pr.R.H.S.=q4(1p23q2+1r2)p2r2(1p23pr+1r2)p2r2(r23pr+p2p2r2)p2+r23pr.\Rightarrow p^2 - 3q^2 + r^2 = q^4\Big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\Big). \\[1em] \text{L.H.S.} = p^2 - 3q^2 + r^2 \\[1em] = p^2 + r^2 - 3pr. \\[1em] \text{R.H.S.} = q^4\Big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\Big) \\[1em] \Rightarrow p^2r^2\Big(\dfrac{1}{p^2} - \dfrac{3}{pr} + \dfrac{1}{r^2}\Big) \\[1em] \Rightarrow p^2r^2\Big(\dfrac{r^2 - 3pr + p^2}{p^2r^2}\Big) \\[1em] \Rightarrow p^2 + r^2 - 3pr.

Since, L.H.S. = R.H.S. hence proved that,

p23q2+r2=q4(1p23q2+1r2).p^2 - 3q^2 + r^2 = q^4\big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\big).

Question 13

If ab=cd=ef\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}, prove that each ratio is equal to

(i) 3a25c2+7e23b25d2+7f2\sqrt{\dfrac{3a^2 - 5c^2 + 7e^2}{3b^2 - 5d^2 + 7f^2}}

(ii) (2a3+5c3+7e32b3+5d3+7f3)1/3.\Big(\dfrac{2a^3 + 5c^3 + 7e^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3}.

Answer

(i) Let, ab=cd=ef=k,\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k, then,

a = bk, c = dk, e = fk.

Given,

3a25c2+7e23b25d2+7f2\sqrt{\dfrac{3a^2 - 5c^2 + 7e^2}{3b^2 - 5d^2 + 7f^2}}

Putting values of a, c, e in above equation,

=3(bk)25(dk)2+7(fk)23b25d2+7f2=3b2k25d2k2+7f2k23b25d2+7f2=k2(3b25d2+7f23b25d2+7f2)=k.= \sqrt{\dfrac{3(bk)^2 - 5(dk)^2 + 7(fk)^2}{3b^2 - 5d^2 + 7f^2}} \\[1em] = \sqrt{\dfrac{3b^2k^2 - 5d^2k^2 + 7f^2k^2}{3b^2 - 5d^2 + 7f^2}} \\[1em] = \sqrt{k^2\Big(\dfrac{3b^2 - 5d^2 + 7f^2}{3b^2 - 5d^2 + 7f^2}\Big)} \\[1em] = k.

Since, the values of all ratios = k. Hence, proved.

(ii) Let, ab=cd=ef=k,\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k, then,

a = bk, c = dk, e = fk.

Given,

(2a3+5c3+7e32b3+5d3+7f3)1/3\Big(\dfrac{2a^3 + 5c^3 + 7e^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3}

Putting values of a, c, e in above equation, =(2(bk)3+5(dk)3+7(fk)32b3+5d3+7f3)1/3=(2b3k3+5d3k3+7f3k32b3+5d3+7f3)1/3=[k3(2b3+5d3+7f32b3+5d3+7f3)]1/3=k3×1/3=k.= \Big(\dfrac{2(bk)^3 + 5(dk)^3 + 7(fk)^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3} \\[1em] = \Big(\dfrac{2b^3k^3 + 5d^3k^3 + 7f^3k^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3} \\[1em] = \Big[k^3\Big(\dfrac{2b^3 + 5d^3 + 7f^3}{2b^3 + 5d^3 + 7f^3}\Big)\Big]^{1/3} \\[1em] = k^{3 \times 1/3} \\[1em] = k.

Since, the values of all ratios = k. Hence, proved.

Question 14

If xa=yb=zc\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}, prove that

3x35y3+4z33a35b3+4c3=(3x5y+4z3a5b+4c)3.\dfrac{3x^3 - 5y^3 + 4z^3}{3a^3 - 5b^3 + 4c^3} = \Big(\dfrac{3x - 5y + 4z}{3a - 5b + 4c}\Big)^3.

Answer

Let xa=yb=zc=k,\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k, then,

x = ak, y = bk, z = ck.

Given,

3x35y3+4z33a35b3+4c3=(3x5y+4z3a5b+4c)3\dfrac{3x^3 - 5y^3 + 4z^3}{3a^3 - 5b^3 + 4c^3} = \Big(\dfrac{3x - 5y + 4z}{3a - 5b + 4c}\Big)^3

Putting values of x, y, z in above equation and solving L.H.S.,

=3(ak)35(bk)3+4(ck)33a35b3+4c3=3a3k35b3k3+4c3k33a35b3+4c3=k3(3a35b3+4c33a35b3+4c3)=k3.= \dfrac{3(ak)^3 - 5(bk)^3 + 4(ck)^3}{3a^3 - 5b^3 + 4c^3} \\[1em] = \dfrac{3a^3k^3 - 5b^3k^3 + 4c^3k^3}{3a^3 - 5b^3 + 4c^3} \\[1em] = k^3\Big(\dfrac{3a^3 - 5b^3 + 4c^3}{3a^3 - 5b^3 + 4c^3}\Big) \\[1em] = k^3.

Solving, R.H.S. now, =(3(ak)5(bk)+4(ck)3a5b+4c)3=[k(3a5b+4c3a5b+4c)]3=k3.= \Big(\dfrac{3(ak) - 5(bk) + 4(ck)}{3a - 5b + 4c}\Big)^3 \\[1em] = \Big[k\Big(\dfrac{3a - 5b + 4c}{3a - 5b + 4c}\Big)\Big]^3 \\[1em] = k^3.

Since, L.H.S. = R.H.S. Hence, proved that,

3x35y3+4z33a35b3+4c3=(3x5y+4z3a5b+4c)3\dfrac{3x^3 - 5y^3 + 4z^3}{3a^3 - 5b^3 + 4c^3} = \Big(\dfrac{3x - 5y + 4z}{3a - 5b + 4c}\Big)^3.

Question 15

If x : a = y : b, prove that,

x4+a4x3+a3+y4+b4y3+b3=(x+y)4+(a+b)4(x+y)3+(a+b)3.\dfrac{x^4 + a^4}{x^3 + a^3} + \dfrac{y^4 + b^4}{y^3 + b^3} = \dfrac{(x + y)^4 + (a + b)^4}{(x + y)^3 + (a + b)^3}.

Answer

Given, x : a = y : b,

Let, xa\dfrac{x}{a} = yb\dfrac{y}{b} = k

∴ x = ak, y = bk

Putting values of x and y in L.H.S. first,

=(ak)4+a4(ak)3+a3+(bk)4+b4(bk)3+b3=a4(k4+1)a3(k3+1)+b4(k4+1)b3(k3+1)=a(k4+1)+b(k4+1)k3+1=(a+b)(k4+1)k3+1= \dfrac{(ak)^4 + a^4}{(ak)^3 + a^3} + \dfrac{(bk)^4 + b^4}{(bk)^3 + b^3} \\[1em] = \dfrac{a^4(k^4 + 1)}{a^3(k^3 + 1)} + \dfrac{b^4(k^4 + 1)}{b^3(k^3 + 1)} \\[1em] = \dfrac{a(k^4 + 1) + b(k^4 + 1)}{k^3 + 1} \\[1em] = \dfrac{(a + b)(k^4 + 1)}{k^3 + 1}

Now, putting values in R.H.S., =(x+y)4+(a+b)4(x+y)3+(a+b)3=(ak+bk)4+(a+b)4(ak+bk)3+(a+b)3=k4(a+b)4+(a+b)4k3(a+b)3+(a+b)3=(a+b)4(k4+1)(a+b)3(k3+1)=(a+b)(k4+1)k3+1.= \dfrac{(x + y)^4 + (a + b)^4}{(x + y)^3 + (a + b)^3} \\[1em] = \dfrac{(ak + bk)^4 + (a + b)^4}{(ak + bk)^3 + (a + b)^3} \\[1em] = \dfrac{k^4(a + b)^4 + (a + b)^4}{k^3(a + b)^3 + (a + b)^3} \\[1em] = \dfrac{(a + b)^4(k^4 + 1)}{(a + b)^3(k^3 + 1)} \\[1em] = \dfrac{(a + b)(k^4 + 1)}{k^3 + 1}.

Since, L.H.S. = R.H.S. Hence, proved that,

x4+a4x3+a3+y4+b4y3+b3=(x+y)4+(a+b)4(x+y)3+(a+b)3.\dfrac{x^4 + a^4}{x^3 + a^3} + \dfrac{y^4 + b^4}{y^3 + b^3} = \dfrac{(x + y)^4 + (a + b)^4}{(x + y)^3 + (a + b)^3}.

Question 16

If xb+ca=yc+ab=za+bc,\dfrac{x}{b + c - a} = \dfrac{y}{c + a - b} = \dfrac{z}{a + b - c}, prove that each ratio is equal to

x+y+za+b+c.\dfrac{x + y + z}{a + b + c}.

Answer

Let, xb+ca=yc+ab=za+bc=k.\dfrac{x}{b + c - a} = \dfrac{y}{c + a - b} = \dfrac{z}{a + b - c} = k.

∴ x = k(b + c - a), y = k(c + a - b), z = k(a + b - c).

Putting values of x, y and z in x+y+za+b+c\dfrac{x + y + z}{a + b + c} we get,

k(b+ca)+k(c+ab)+k(a+bc)a+b+c=kb+kcak+kc+akbk+ak+bkkca+b+c=k(a+b+c)(a+b+c)=k.\dfrac{k(b + c - a) + k(c + a - b) + k(a + b - c)}{a + b + c} \\[1em] = \dfrac{kb + kc - \cancel{ak} + \cancel{kc} + \cancel{ak} - \cancel{bk} + ak + \cancel{bk} - \cancel{kc}}{a + b + c} \\[1em] = \dfrac{k(a + b + c)}{(a + b + c)} \\[1em] = k.

Since, the value of all ratios = k, hence, each ratio = x+y+za+b+c.\dfrac{x + y + z}{a + b + c}.

Question 17

If a : b = 9 : 10, find the value of

(i) 5a+3b5a3b\dfrac{5a + 3b}{5a - 3b}

(ii) 2a23b22a2+3b2.\dfrac{2a^2 - 3b^2}{2a^2 + 3b^2}.

Answer

(i) Given,

ab=910a=9b10\dfrac{a}{b} = \dfrac{9}{10} \\[0.5em] \Rightarrow a = \dfrac{9b}{10}

Putting a=9b10a = \dfrac{9b}{10} in 5a+3b5a3b\dfrac{5a + 3b}{5a - 3b}, we get,

5×9b10+3b5×9b103b=9b2+3b9b23b=9b+6b29b6b2=15b3b=5.\dfrac{5 \times \dfrac{9b}{10} + 3b}{5 \times \dfrac{9b}{10} - 3b} \\[1em] = \dfrac{\dfrac{9b}{2} + 3b}{\dfrac{9b}{2} - 3b} \\[1em] = \dfrac{\dfrac{9b + 6b}{2}}{\dfrac{9b - 6b}{2}} \\[1em] = \dfrac{15b}{3b} \\[1em] = 5.

Hence, the value of 5a+3b5a3b\dfrac{5a + 3b}{5a - 3b} = 5.

(ii) Given,

ab=910a=9b10\dfrac{a}{b} = \dfrac{9}{10} \\[0.5em] \Rightarrow a = \dfrac{9b}{10}

Putting a=9b10a = \dfrac{9b}{10} in 2a23b22a2+3b2\dfrac{2a^2 - 3b^2}{2a^2 + 3b^2}, we get,

2×(9b10)23b22×(9b10)2+3b2=2×81b21003b22×81b2100+3b2=81b2150b25081b2+150b250=69b2231b2=2377.\dfrac{2 \times \Big(\dfrac{9b}{10}\Big)^2 - 3b^2}{2 \times \Big(\dfrac{9b}{10}\Big)^2 + 3b^2} \\[1em] = \dfrac{2 \times \dfrac{81b^2}{100} - 3b^2}{2 \times \dfrac{81b^2}{100} + 3b^2} \\[1em] = \dfrac{\dfrac{81b^2 - 150b^2}{50}}{\dfrac{81b^2 + 150b^2}{50}} \\[1em] = -\dfrac{69b^2}{231b^2} \\[1em] = -\dfrac{23}{77}.

Hence, the value of 2a23b22a2+3b2=2377\dfrac{2a^2 - 3b^2}{2a^2 + 3b^2} = -\dfrac{23}{77}.

Question 18

If (3x2 + 2y2) : (3x2 - 2y2) = 11 : 9, find the value of 3x4+25y43x425y4.\dfrac{3x^4 + 25y^4}{3x^4 - 25y^4}.

Answer

Given,

3x2+2y23x22y2=119\dfrac{3x^2 + 2y^2}{3x^2 - 2y^2} = \dfrac{11}{9}

Applying componendo and dividendo to above equation,

3x2+2y2+3x22y23x2+2y23x2+2y2=11+91196x24y2=2023x22y2=10x2y2=203\Rightarrow \dfrac{3x^2 + 2y^2 + 3x^2 - 2y^2}{3x^2 + 2y^2 - 3x^2 + 2y^2} = \dfrac{11 + 9}{11 - 9} \\[1em] \Rightarrow \dfrac{6x^2}{4y^2} = \dfrac{20}{2} \\[1em] \Rightarrow \dfrac{3x^2}{2y^2} = 10 \\[1em] \Rightarrow \dfrac{x^2}{y^2} = \dfrac{20}{3}

Putting value of x2y2\dfrac{x^2}{y^2} = 203\dfrac{20}{3} in 3x4+25y43x425y4\dfrac{3x^4 + 25y^4}{3x^4 - 25y^4},

3(x2y2)2+253(x2y2)2253(4009)+253(4009)254003+25400325400+7534007534753251913.\Rightarrow \dfrac{3\big(\dfrac{x^2}{y^2}\big)^2 + 25}{3\big(\dfrac{x^2}{y^2}\big)^2 - 25} \\[1em] \Rightarrow \dfrac{3\big(\dfrac{400}{9}\big) + 25}{3\big(\dfrac{400}{9}\big) - 25} \\[1em] \Rightarrow \dfrac{\dfrac{400}{3} + 25}{\dfrac{400}{3} - 25} \\[1em] \Rightarrow \dfrac{\dfrac{400 + 75}{3}}{\dfrac{400 - 75}{3}} \\[1em] \Rightarrow \dfrac{475}{325} \\[1em] \Rightarrow \dfrac{19}{13}.

Hence, the value of 3x4+25y43x425y4 is 1913.\dfrac{3x^4 + 25y^4}{3x^4 - 25y^4} \text{ is } \dfrac{19}{13}.

Question 19

If x = 2maba+b,\dfrac{2mab}{a + b}, find the value of

x+maxma+x+mbxmb.\dfrac{x + ma}{x - ma} + \dfrac{x + mb}{x - mb}.

Answer

x=2maba+bx = \dfrac{2mab}{a + b}

Putting this value of x in

=x+maxma+x+mbxmb=2maba+b+ma2maba+bma+2maba+b+mb2maba+bmb=2mab+ma2+maba+b2mabma2maba+b+2mab+mb2+maba+b2mabmb2maba+b=2mab+ma2+mab2mabma2mab+2mab+mb2+mab2mabmb2mab=ma(2b+a+b)ma(2bab)+mb(2a+b+a)mb(2aba)=3b+aba+3a+bab=3b+aba3a+bba=3b+a3abba=2b2aba=2(ba)(ba)=2.\phantom{= }\dfrac{x + ma}{x - ma} + \dfrac{x + mb}{x - mb} \\[1.5em] = \dfrac{\dfrac{2mab}{a + b} + ma}{\dfrac{2mab}{a + b} - ma} + \dfrac{\dfrac{2mab}{a + b} + mb}{\dfrac{2mab}{a + b} - mb} \\[1em] = \dfrac{\dfrac{2mab + ma^2 + mab}{a + b}}{\dfrac{2mab - ma^2 - mab}{a + b}} + \dfrac{\dfrac{2mab + mb^2 + mab}{a + b}}{\dfrac{2mab - mb^2 - mab}{a + b}} \\[1em] = \dfrac{2mab + ma^2 + mab}{2mab - ma^2 - mab} + \dfrac{2mab + mb^2 + mab}{2mab - mb^2 - mab} \\[1em] = \dfrac{ma(2b + a + b)}{ma(2b - a - b)} + \dfrac{mb(2a + b + a)}{mb(2a - b - a)} \\[1em] = \dfrac{3b + a}{b - a} + \dfrac{3a + b}{a - b} \\[1em] = \dfrac{3b + a}{b - a} - \dfrac{3a + b}{b - a} \\[1em] = \dfrac{3b + a - 3a - b}{b - a} \\[1em] = \dfrac{2b - 2a}{b - a} \\[1em] = \dfrac{2(b - a)}{(b - a)} \\[1em] = 2.

Hence, the value of x+maxma+x+mbxmb=2.\dfrac{x + ma}{x - ma} + \dfrac{x + mb}{x - mb} = 2.

Question 20

If x = paba+b\dfrac{pab}{a + b}, prove that

x+paxpax+pbxpb=2(a2b2)ab.\dfrac{x + pa}{x - pa} - \dfrac{x + pb}{x - pb} = \dfrac{2(a^2 - b^2)}{ab}.

Answer

Given,

x=paba+bxpa=ba+b and xpb=aa+bx = \dfrac{pab}{a + b} \\[1em] \Rightarrow \dfrac{x}{pa} = \dfrac{b}{a + b} \text{ and } \dfrac{x}{pb} = \dfrac{a}{a + b}

Applying componendo and dividendo on both equations,

x+paxpa=b+a+bbab and x+pbxpb=a+a+baabx+paxpa=2b+aa and x+pbxpb=2a+bb\Rightarrow \dfrac{x + pa}{x - pa} = \dfrac{b + a + b}{b - a - b} \text{ and } \dfrac{x + pb}{x - pb} = \dfrac{a + a + b}{a - a - b} \\[1em] \Rightarrow \dfrac{x + pa}{x - pa} = -\dfrac{2b + a}{a} \text{ and } \dfrac{x + pb}{x - pb} = -\dfrac{2a + b}{b}

Subtracting both the equations,

x+paxpax+pbxpb=2b+aa(2a+bb)=2b+aa+2a+bb=2b2ab+2a2+abab=2(a2b2)ab=R.H.S.\Rightarrow \dfrac{x + pa}{x - pa} - \dfrac{x + pb}{x - pb} = -\dfrac{2b + a}{a} - \Big(-\dfrac{2a + b}{b}\Big) \\[1em] = -\dfrac{2b + a}{a} + \dfrac{2a + b}{b} \\[1em] = \dfrac{-2b^2 - \cancel{ab} + 2a^2 + \cancel{ab}}{ab} \\[1em] = \dfrac{2(a^2 - b^2)}{ab} = \text{R.H.S.} \\[1em]

Since, L.H.S. = R.H.S. , hence, proved that,

x+paxpax+pbxpb=2(a2b2)ab.\dfrac{x + pa}{x - pa} - \dfrac{x + pb}{x - pb} = \dfrac{2(a^2 - b^2)}{ab}.

Question 21

Find x from the equation :

a+x+a2x2a+xa2x2=bx.\dfrac{a + x + \sqrt{a^2 - x^2}}{a + x - \sqrt{a^2 - x^2}} = \dfrac{b}{x}.

Answer

Given,

a+x+a2x2a+xa2x2=bx\dfrac{a + x + \sqrt{a^2 - x^2}}{a + x - \sqrt{a^2 - x^2}} = \dfrac{b}{x}

Applying componendo and dividendo,

a+x+a2x2+a+xa2x2a+x+a2x2ax+a2x2=b+xbx2(a+x)2a2x2=b+xbx(a+x)a2x2=b+xbx\Rightarrow \dfrac{a + x + \sqrt{a^2 - x^2} + a + x - \sqrt{a^2 - x^2}}{a + x + \sqrt{a^2 - x^2} - a - x + \sqrt{a^2 - x^2}} = \dfrac{b + x}{b - x} \\[1em] \Rightarrow \dfrac{2(a + x)}{2\sqrt{a^2 - x^2}} = \dfrac{b + x}{b - x} \\[1em] \Rightarrow \dfrac{(a + x)}{\sqrt{a^2 - x^2}} = \dfrac{b + x}{b - x} \\[1em]

Squaring both sides,

(a+x)2a2x2=(b+x)2(bx)2(a+x)2(a+x)(ax)=(b+x)2(bx)2(a+x)(ax)=(b+x)2(bx)2\Rightarrow \dfrac{(a + x)^2}{a^2 - x^2} = \dfrac{(b + x)^2}{(b - x)^2} \\[1em] \Rightarrow \dfrac{(a + x)^2}{(a + x)(a - x)} = \dfrac{(b + x)^2}{(b - x)^2} \\[1em] \Rightarrow \dfrac{(a + x)}{(a - x)} = \dfrac{(b + x)^2}{(b - x)^2} \\[1em]

Again applying componendo and dividendo,

a+x+axa+xa+x=(b+x)2+(bx)2(b+x)2(bx)22a2x=b2+x2+2bx+b2+x22bxb2+x2+2bx(b2+x22bx)2a2x=b2+b2+x2+x2+2bx2bxb2b2+x2x2+2bx(2bx)2a2x=2(b2+x2)4bxax=b2+x22bx\Rightarrow \dfrac{a + x + a - x}{a + x - a + x} = \dfrac{(b + x)^2 + (b - x)^2}{(b + x)^2 - (b - x)^2} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{b^2 + x^2 + 2bx + b^2 + x^2 - 2bx}{b^2 + x^2 + 2bx - (b^2 + x^2 - 2bx)} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{b^2 + b^2 + x^2 + x^2 + 2bx - 2bx}{b^2 - b^2 + x^2 - x^2 + 2bx - (-2bx)} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{2(b^2 + x^2)}{4bx} \\[1em] \Rightarrow \dfrac{a}{x} = \dfrac{b^2 + x^2}{2bx}

Multiplying both sides by x we get,

a=b2+x22b\Rightarrow a = \dfrac{b^2 + x^2}{2b}

On cross-multiplication,

2ab=b2+x2x2=2abb2x=2abb2.\Rightarrow 2ab = b^2 + x^2 \\[1em] \Rightarrow x^2 = 2ab - b^2 \\[1em] \Rightarrow x = \sqrt{2ab - b^2}.

Hence, the value of x is 2abb2.\sqrt{2ab - b^2}.

Question 22

If x = a+13+a13a+13a13,\dfrac{\sqrt[3]{a + 1} + \sqrt[3]{a - 1}}{\sqrt[3]{a + 1} - \sqrt[3]{a - 1}},

prove that x3 - 3ax2 + 3x - a = 0.

Answer

Given,

x1=a+13+a13a+13a13\dfrac{x}{1} = \dfrac{\sqrt[3]{a + 1} + \sqrt[3]{a - 1}}{\sqrt[3]{a + 1} - \sqrt[3]{a - 1}}

Applying componendo and dividendo,

x+1x1=a+13+a13+a+13a13a+13+a13a+13+a13x+1x1=2a+132a13\Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt[3]{a + 1} + \sqrt[3]{a - 1} + \sqrt[3]{a + 1} - \sqrt[3]{a - 1}}{\sqrt[3]{a + 1} + \sqrt[3]{a - 1} - \sqrt[3]{a + 1} + \sqrt[3]{a - 1}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt[3]{a + 1}}{2\sqrt[3]{a - 1}}

Cubing both the sides,

(x+1)3(x1)3=a+1a1\Rightarrow \dfrac{(x + 1)^3}{(x - 1)^3} = \dfrac{a + 1}{a - 1}

Again applying componendo and dividendo,

(x+1)3+(x1)3(x+1)3(x1)3=a+1+a1a+1a+1x3+1+3x(x+1)+x313x(x1)x3+1+3x(x+1)(x313x(x1))=2a2x3+x3+11+3x23x2+3x+3xx3x3+1+1+3x2+3x2+3x3x=2a22x3+6x2+6x2=a2(x3+3x)2(1+3x2)=ax3+3x1+3x2=a\Rightarrow \dfrac{(x + 1)^3 + (x - 1)^3}{(x + 1)^3 - (x - 1)^3} = \dfrac{a + \cancel{1} + a - \cancel{1}}{\cancel{a} + 1 - \cancel{a} + 1} \\[1em] \Rightarrow \dfrac{x^3 + 1 + 3x(x + 1) + x^3 - 1 - 3x(x - 1)}{x^3 + 1 + 3x(x + 1) - (x^3 - 1 - 3x(x - 1))} = \dfrac{2a}{2} \\[1em] \Rightarrow \dfrac{x^3 + x^3 + 1 - 1 + 3x^2 - 3x^2 + 3x + 3x}{x^3 - x^3 + 1 + 1 + 3x^2 + 3x^2 + 3x - 3x} = \dfrac{2a}{2} \\[1em] \Rightarrow \dfrac{2x^3 + 6x}{2 + 6x^2} = a \\[1em] \Rightarrow \dfrac{2(x^3 + 3x)}{2(1 + 3x^2)} = a \\[1em] \Rightarrow \dfrac{x^3 + 3x}{1 + 3x^2} = a

On cross-multiplication,

x3+3x=a(1+3x2)x3+3x=a+3ax2x33ax2+3xa=0.\Rightarrow x^3 + 3x = a(1 + 3x^2) \\[1em] \Rightarrow x^3 + 3x = a + 3ax^2 \\[1em] \Rightarrow x^3 - 3ax^2 + 3x - a = 0.

Hence, proved that x3 - 3ax2 + 3x - a = 0.

Question 23

If (a+b)3(ab)3=6427\dfrac{(a + b)^3}{(a - b)^3} = \dfrac{64}{27}

(a) Find a+bab\dfrac{a + b}{a - b}

(b) Hence using properties of proportion, find a : b.

Answer

(a) Solving,

(a+b)3(ab)3=6427(a+b)3(ab)3=4333(a+bab)3=(43)3a+bab=43\Rightarrow \dfrac{(a + b)^3}{(a - b)^3} = \dfrac{64}{27} \\[1em] \Rightarrow \dfrac{(a + b)^3}{(a - b)^3} = \dfrac{4^3}{3^3} \\[1em] \Rightarrow \Big(\dfrac{a + b}{a - b}\Big)^3 = \Big(\dfrac{4}{3}\Big)^3 \\[1em] \Rightarrow \dfrac{a + b}{a - b} = \dfrac{4}{3} \\[1em]

Hence, a+bab=43.\dfrac{a + b}{a - b} = \dfrac{4}{3}.

(b) Solving further,

3(a+b)=4(ab)3a+3b=4a4b4a3a=3b+4ba=7bab=71a:b=7:1.\Rightarrow 3(a + b) = 4(a - b) \\[1em] \Rightarrow 3a + 3b = 4a - 4b \\[1em] \Rightarrow 4a - 3a = 3b + 4b \\[1em] \Rightarrow a = 7b \\[1em] \Rightarrow \dfrac{a}{b} = \dfrac{7}{1} \\[1em] \Rightarrow a : b = 7 : 1.

Hence, a : b = 7 : 1.

Question 24

If x, y and z are in continued proportion, prove that :

xy2.z2+yz2.x2+zx2.y2=1x3+1y3+1z3\dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} = \dfrac{1}{x^3} + \dfrac{1}{y^3} + \dfrac{1}{z^3}

Answer

Given,

x, y and z are in continued proportion.

xy=yzy2=xz\therefore \dfrac{x}{y} = \dfrac{y}{z} \\[1em] \Rightarrow y^2 = xz

To prove :

xy2.z2+yz2.x2+zx2.y2=1x3+1y3+1z3\dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} = \dfrac{1}{x^3} + \dfrac{1}{y^3} + \dfrac{1}{z^3}

Solving L.H.S.,

xy2.z2+yz2.x2+zx2.y2x3+y3+z3x2.y2.z2x3+y3+z3x2.xz.z2x3+y3+z3x3.z3x3x3.z3+y3x3z3+z3x3.z31z3+y3(xz)3+1x31z3+y3(y2)3+1x31z3+y3y6+1x31z3+1y3+1x3.\Rightarrow \dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} \\[1em] \Rightarrow \dfrac{x^3 + y^3 + z^3}{x^2.y^2.z^2} \\[1em] \Rightarrow \dfrac{x^3 + y^3 + z^3}{x^2.xz.z^2} \\[1em] \Rightarrow \dfrac{x^3 + y^3 + z^3}{x^3.z^3} \\[1em] \Rightarrow \dfrac{x^3}{x^3.z^3} + \dfrac{y^3}{x^3z^3} + \dfrac{z^3}{x^3.z^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{y^3}{(xz)^3} + \dfrac{1}{x^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{y^3}{(y^2)^3} + \dfrac{1}{x^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{y^3}{y^6} + \dfrac{1}{x^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{1}{y^3} + \dfrac{1}{x^3}.

Since, L.H.S. = R.H.S.

Hence, proved that xy2.z2+yz2.x2+zx2.y2=1x3+1y3+1z3\dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} = \dfrac{1}{x^3} + \dfrac{1}{y^3} + \dfrac{1}{z^3}.

PrevNext