An alloy consists of 27 1 2 27\dfrac{1}{2} 27 2 1 kg of copper and 2 3 4 2\dfrac{3}{4} 2 4 3 kg of tin. Find the ratio by weight of tin to the alloy.
Answer
Weight of alloy = Weight of tin + Weight of copper
∴ Weight of alloy = 27 1 2 + 2 3 4 = 55 2 + 11 4 = 110 + 11 4 = 121 4 \therefore \text{Weight of alloy} = 27\dfrac{1}{2} + 2\dfrac{3}{4} \\[0.5em] = \dfrac{55}{2} + \dfrac{11}{4} \\[0.5em] = \dfrac{110 + 11}{4} \\[0.5em] = \dfrac{121}{4} ∴ Weight of alloy = 27 2 1 + 2 4 3 = 2 55 + 4 11 = 4 110 + 11 = 4 121
Ratio by weight of tin to alloy = Weight of tin Weight of alloy \dfrac{\text{Weight of tin}}{\text{Weight of alloy}} Weight of alloy Weight of tin
= 11 4 121 4 = 11 121 = 1 11 = \dfrac{\dfrac{11}{4}}{\dfrac{121}{4}} \\[0.5em] = \dfrac{11}{121} \\[0.5em] = \dfrac{1}{11} = 4 121 4 11 = 121 11 = 11 1
Hence, the ratio by weight of tin to alloy is 1 : 11.
Find the compounded ratio of:
(i) 2 : 3 and 4 : 9
(ii) 4 : 5, 5 : 7 and 9 : 11
(iii) (a - b) : (a + b), (a + b)2 : (a2 + b2 ) and (a4 - b4 ) : (a2 - b2 )2
Answer
(i) The compounded ratio of 2 : 3 and 4 : 9 is,
= 2 3 × 4 9 = 8 27 = \dfrac{2}{3} \times \dfrac{4}{9} \\[0.5em] = \dfrac{8}{27} = 3 2 × 9 4 = 27 8
Hence, the compounded ratio is 8 : 27.
(ii) The compounded ratio of 4 : 5, 5 : 7 and 9 : 11 is,
= 4 5 × 5 7 × 9 11 = 180 385 = \dfrac{4}{5} \times \dfrac{5}{7} \times \dfrac{9}{11} \\[0.5em] = \dfrac{180}{385} \\[0.5em] = 5 4 × 7 5 × 11 9 = 385 180
Dividing numerator and denominator by 5, we get:
180 36 385 77 = 36 77 \dfrac{\overset{36}{\bcancel{180}}}{\underset{77}{\bcancel{385}}} = \dfrac{36}{77} 77 385 180 36 = 77 36
Hence, the compounded ratio is 36 : 77.
(iii) The compounded ratio of (a - b) : (a + b), (a + b)2 : (a2 + b2 ) and (a4 - b4 ) : (a2 - b2 )2 is,
= ( a − b ) ( a + b ) × ( a + b ) 2 ( a 2 + b 2 ) × ( a 4 − b 4 ) ( a 2 − b 2 ) 2 = ( a − b ) ( a + b ) × ( a + b ) ( a + b ) ( a 2 + b 2 ) × ( a 2 − b 2 ) ( a 2 + b 2 ) ( a 2 − b 2 ) ( a 2 − b 2 ) = ( a − b ) ( a + b ) ( a 2 − b 2 ) = ( a 2 − b 2 ) ( a 2 − b 2 ) = 1 1 = \dfrac{(a - b)}{(a + b)} \times \dfrac{(a + b)^2}{(a^2 + b^2)} \times \dfrac{(a^4 - b^4)}{(a^2 - b^2)^2} \\[0.5em] = \dfrac{(a - b)}{\bcancel{(a + b)}} \times \dfrac{\bcancel{(a + b)}(a + b)}{\bcancel{(a^2 + b^2)}} \times \dfrac{\bcancel{(a^2 - b^2)}\bcancel{(a^2 + b^2)}}{\bcancel{(a^2 - b^2)}(a^2 - b^2)} \\[0.5em] = \dfrac{(a - b)(a + b)}{(a^2 - b^2)} \\[0.5em] = \dfrac{(a^2 - b^2)}{(a^2 - b^2)} \\[0.5em] = \dfrac{1}{1} = ( a + b ) ( a − b ) × ( a 2 + b 2 ) ( a + b ) 2 × ( a 2 − b 2 ) 2 ( a 4 − b 4 ) = ( a + b ) ( a − b ) × ( a 2 + b 2 ) ( a + b ) ( a + b ) × ( a 2 − b 2 ) ( a 2 − b 2 ) ( a 2 − b 2 ) ( a 2 + b 2 ) = ( a 2 − b 2 ) ( a − b ) ( a + b ) = ( a 2 − b 2 ) ( a 2 − b 2 ) = 1 1
Hence, the compounded ratio is 1 : 1.
Find the duplicate ratio of :
(i) 2 : 3
(ii) 5 \sqrt{5} 5 : 7
(iii) 5a : 6b
Answer
(i) The duplicate ratio of 2 : 3 is,
= 22 : 32 = 4 : 9
Hence, the duplicate ratio is 4 : 9.
(ii) The duplicate ratio of 5 \sqrt{5} 5 : 7 is,
= ( 5 ) (\sqrt{5}) ( 5 ) 2 : 72 = 5 : 49
Hence, the duplicate ratio is 5 : 9.
(iii) The duplicate ratio of 5a : 6b is,
= (5a)2 : (6b)2 = 25a2 : 36b2
Hence, the duplicate ratio is 25a2 : 36b2 .
Find the triplicate ratio of :
(i) 3 : 4
(ii) 1 2 : 1 3 \dfrac{1}{2} : \dfrac{1}{3} 2 1 : 3 1
(iii) 13 : 23
Answer
(i) The triplicate ratio of 3 : 4 is,
= 33 : 43 = 27 : 64
Hence, the triplicate ratio is 27 : 64.
(ii) The triplicate ratio of 1 2 : 1 3 \dfrac{1}{2} : \dfrac{1}{3} 2 1 : 3 1 is,
= ( 1 2 ) 3 : ( 1 3 ) 3 = ( 1 8 ) : ( 1 27 ) = 1 8 1 27 = 27 8 = 27 : 8. =\big(\dfrac{1}{2}\big)^3 : \big(\dfrac{1}{3}\big)^3 \\[0.5em] = \big(\dfrac{1}{8}\big) : \big(\dfrac{1}{27}\big) \\[0.5em] = \dfrac{\dfrac{1}{8}}{\dfrac{1}{27}} \\[0.5em] = \dfrac{27}{8} = 27 : 8. = ( 2 1 ) 3 : ( 3 1 ) 3 = ( 8 1 ) : ( 27 1 ) = 27 1 8 1 = 8 27 = 27 : 8.
Hence, the triplicate ratio is 27 : 8.
(iii) The triplicate ratio of 13 : 23 is,
= (13 )3 : (23 )3 = 19 : 29 = 1: 512
Hence, the triplicate ratio is 1 : 512.
Find the sub-duplicate ratio of :
(i) 9 : 16
(ii) 1 4 : 1 9 \dfrac{1}{4} : \dfrac{1}{9} 4 1 : 9 1
(iii) 9a2 : 49b2
Answer
(i) The sub duplicate ratio of 9 : 16 is,
= 9 : 16 = 3 : 4 = \sqrt{9} : \sqrt{16} \\[0.5em] = 3 : 4 = 9 : 16 = 3 : 4
Hence, the sub-duplicate ratio is 3 : 4.
(ii) The sub duplicate ratio of 1 4 : 1 9 \dfrac{1}{4} : \dfrac{1}{9} 4 1 : 9 1 is,
= 1 4 : 1 9 = 1 2 : 1 3 = 1 2 1 3 = 3 2 = 3 : 2 = \sqrt{\dfrac{1}{4}} : \sqrt{\dfrac{1}{9}} \\[0.5em] = \dfrac{1}{2} : \dfrac{1}{3} \\[0.5em] = \dfrac{\dfrac{1}{2}}{\dfrac{1}{3}} \\[0.5em] = \dfrac{3}{2} = 3 : 2 = 4 1 : 9 1 = 2 1 : 3 1 = 3 1 2 1 = 2 3 = 3 : 2
Hence, the sub-duplicate ratio is 3 : 2.
(iii) The sub duplicate ratio of 9a2 : 49b2 is,
= 9 a 2 : 49 b 2 = 3 a : 7 b = \sqrt{9a^2} : \sqrt{49b^2} \\[0.5em] = 3a : 7b = 9 a 2 : 49 b 2 = 3 a : 7 b
Hence, the sub-duplicate ratio is 3a : 7b.
Find the sub-triplicate ratio of :
(i) 1 : 216
(ii) 1 8 : 1 125 \dfrac{1}{8} : \dfrac{1}{125} 8 1 : 125 1
(iii) 27a3 : 64b3
Answer
(i) The sub-triplicate ratio of 1 : 216 is,
= 1 3 : 216 3 = 1 : 6 = \sqrt[3]{1} : \sqrt[3]{216} \\[0.5em] = 1 : 6 = 3 1 : 3 216 = 1 : 6
Hence, the sub-triplicate ratio is 1 : 6.
(ii) The sub-triplicate ratio of 1 8 : 1 125 \dfrac{1}{8} : \dfrac{1}{125} 8 1 : 125 1 is,
= 1 8 3 : 1 125 3 = 1 2 : 1 5 = 1 2 1 5 = 5 2 = 5 : 2 = \sqrt[3]{\dfrac{1}{8}} : \sqrt[3]{\dfrac{1}{125}} \\[0.5em] = \dfrac{1}{2} : \dfrac{1}{5} \\[0.5em] = \dfrac{\dfrac{1}{2}}{\dfrac{1}{5}} \\[0.5em] = \dfrac{5}{2} = 5 : 2 = 3 8 1 : 3 125 1 = 2 1 : 5 1 = 5 1 2 1 = 2 5 = 5 : 2
Hence, the sub-triplicate ratio is 5 : 2.
(iii) The sub-triplicate ratio of 27a3 : 64b3 is,
= 27 a 3 3 : 64 b 3 3 = 3 a : 4 b = \sqrt[3]{27a^3} : \sqrt[3]{64b^3} \\[0.5em] = 3a : 4b = 3 27 a 3 : 3 64 b 3 = 3 a : 4 b
Hence, the sub-triplicate ratio is 3a : 4b.
Find the reciprocal ratio of :
(i) 4 : 7
(ii) 32 : 42
(iii) 1 9 : 2 \dfrac{1}{9} : 2 9 1 : 2
Answer
(i) The reciprocal ratio of 4 : 7 is,
= 1 4 : 1 7 = 1 4 1 7 = 7 4 = 7 : 4 = \dfrac{1}{4} : \dfrac{1}{7} \\[0.5em] = \dfrac{\dfrac{1}{4}}{\dfrac{1}{7}} \\[0.5em] = \dfrac{7}{4} \\[0.5em] = 7 : 4 = 4 1 : 7 1 = 7 1 4 1 = 4 7 = 7 : 4
Hence, the reciprocal ratio is 7 : 4.
(ii) The reciprocal ratio of 32 : 42 is,
= 1 3 2 : 1 4 2 = 1 9 1 16 = 16 9 = 16 : 9 = \dfrac{1}{3^2} : \dfrac{1}{4^2} \\[0.5em] = \dfrac{\dfrac{1}{9}}{\dfrac{1}{16}} \\[0.5em] = \dfrac{16}{9} \\[0.5em] = 16 : 9 = 3 2 1 : 4 2 1 = 16 1 9 1 = 9 16 = 16 : 9
Hence, the reciprocal ratio is 16 : 9.
(iii) The reciprocal ratio of 1 9 : 2 \dfrac{1}{9} : 2 9 1 : 2 is,
= 1 1 9 : 1 2 = 9 1 2 = 18 1 = 18 : 1 = \dfrac{1}{\dfrac{1}{9}} : \dfrac{1}{2} \\[0.5em] = \dfrac{9}{\dfrac{1}{2}} \\[0.5em] = \dfrac{18}{1} \\[0.5em] = 18 : 1 = 9 1 1 : 2 1 = 2 1 9 = 1 18 = 18 : 1
Hence, the reciprocal ratio is 18 : 1.
Arrange the following ratios in ascending order of magnitude : 2 : 3, 17 : 21, 11 : 14 and 5 : 7.
Answer
Given, ratios are 2 3 , 17 21 , 11 14 , 5 7 . \dfrac{2}{3}, \dfrac{17}{21}, \dfrac{11}{14}, \dfrac{5}{7}. 3 2 , 21 17 , 14 11 , 7 5 .
We convert them into equivalent like fractions.
L.C.M. of 3, 21, 14, 7 = 42
2 3 = 2 × 14 3 × 14 = 28 42 , 17 21 = 17 × 2 21 × 2 = 34 42 , 11 14 = 11 × 3 14 × 3 = 33 42 , 5 7 = 5 × 6 7 × 6 = 30 42 . \dfrac{2}{3} = \dfrac{2 \times 14}{3 \times 14} = \dfrac{28}{42}, \\[0.5em] \dfrac{17}{21} = \dfrac{17 \times 2}{21 \times 2} = \dfrac{34}{42}, \\[0.5em] \dfrac{11}{14} = \dfrac{11 \times 3}{14 \times 3} = \dfrac{33}{42}, \\[0.5em] \dfrac{5}{7} = \dfrac{5 \times 6}{7 \times 6} = \dfrac{30}{42}. \\[0.5em] 3 2 = 3 × 14 2 × 14 = 42 28 , 21 17 = 21 × 2 17 × 2 = 42 34 , 14 11 = 14 × 3 11 × 3 = 42 33 , 7 5 = 7 × 6 5 × 6 = 42 30 .
As, 28 < 30 < 33 < 34,
⇒ 28 42 < 30 42 < 33 42 < 34 42 ∴ 2 3 < 5 7 < 11 14 < 17 21 \Rightarrow \dfrac{28}{42} \lt \dfrac{30}{42} \lt \dfrac{33}{42} \lt \dfrac{34}{42} \\[1em] \therefore \dfrac{2}{3} \lt \dfrac{5}{7} \lt \dfrac{11}{14} \lt \dfrac{17}{21} ⇒ 42 28 < 42 30 < 42 33 < 42 34 ∴ 3 2 < 7 5 < 14 11 < 21 17
Hence, the given ratios in ascending order are 2 : 3, 5 : 7, 11 : 14, 17 : 21.
If A : B = 2 : 3, B : C = 4 : 5 and C : D = 6 : 7, find A : D.
Answer
A B = 2 3 ⇒ B = 3 A 2 \dfrac{A}{B} = \dfrac{2}{3} \\[0.5em] \Rightarrow B = \dfrac{3A}{2} \\[0.5em] B A = 3 2 ⇒ B = 2 3 A
Putting this value of B in B : C
B C = 4 5 ⇒ 3 A 2 C = 4 5 ⇒ 3 A 2 = 4 C 5 ⇒ C = 15 A 8 \dfrac{B}{C} = \dfrac{4}{5} \\[0.5em] \Rightarrow \dfrac{\dfrac{3A}{2}}{C} = \dfrac{4}{5} \\[0.5em] \Rightarrow \dfrac{3A}{2} = \dfrac{4C}{5} \\[0.5em] \Rightarrow C = \dfrac{15A}{8} \\[0.5em] C B = 5 4 ⇒ C 2 3 A = 5 4 ⇒ 2 3 A = 5 4 C ⇒ C = 8 15 A
Putting this value of C in C : D
C : D = 6 : 7 ⇒ 15 A 8 D = 6 7 ⇒ 15 A 8 D = 6 7 ⇒ A D = 48 105 = 16 35 ⇒ A : D = 16 : 35. C : D = 6 : 7 \\[0.5em] \Rightarrow \dfrac{\dfrac{15A}{8}}{D} = \dfrac{6}{7} \\[0.5em] \Rightarrow \dfrac{15A}{8D} = \dfrac{6}{7} \\[0.5em] \Rightarrow \dfrac{A}{D} = \dfrac{48}{105} = \dfrac{16}{35} \\[0.5em] \Rightarrow A : D = 16 : 35. C : D = 6 : 7 ⇒ D 8 15 A = 7 6 ⇒ 8 D 15 A = 7 6 ⇒ D A = 105 48 = 35 16 ⇒ A : D = 16 : 35.
Hence, the value of A : D is 16 : 35.
If x : y = 2 : 3 and y : z = 4 : 7, find x : y : z.
Answer
Given, x : y = 2 : 3 and y : z = 4 : 7
To find x : y : z, we will make y same in both cases.
Taking L.C.M. of two values of y i.e. 3 and 4 = 12
So , x y = 2 × 4 3 × 4 = 8 12 = 8 : 12 and y z = 4 7 = 4 × 3 7 × 3 = 12 21 = 12 : 21 \text{So }, \dfrac{x}{y} = \dfrac{2 \times 4}{3 \times 4} = \dfrac{8}{12} = 8 : 12 \\[0.5em] \text{and } \dfrac{y}{z} = \dfrac{4}{7} = \dfrac{4 \times 3}{7 \times 3} = \dfrac{12}{21} = 12 : 21 So , y x = 3 × 4 2 × 4 = 12 8 = 8 : 12 and z y = 7 4 = 7 × 3 4 × 3 = 21 12 = 12 : 21
∴ x : y : z = 8 : 12 : 21
Hence, the ratio of x : y : z is 8 : 12 : 21.
If A : B = 1 4 : 1 5 \dfrac{1}{4} : \dfrac{1}{5} 4 1 : 5 1 and B : C = 1 7 : 1 6 \dfrac{1}{7} : \dfrac{1}{6} 7 1 : 6 1 , find A : B : C.
Answer
Given, A : B = 1 4 : 1 5 \dfrac{1}{4} : \dfrac{1}{5} 4 1 : 5 1 = 5 : 4 and B : C = 1 7 : 1 6 \dfrac{1}{7} : \dfrac{1}{6} 7 1 : 6 1 = 6 : 7
To find A : B : C, we will make B same in both cases.
Taking L.C.M. of two values of B i.e. 4 and 6 = 12
So , A B = 5 × 3 4 × 3 = 15 12 = 15 : 12 and B C = 6 7 = 6 × 2 7 × 2 = 12 14 = 12 : 14 \text{So }, \dfrac{A}{B} = \dfrac{5 \times 3}{4 \times 3} = \dfrac{15}{12} = 15 : 12 \\[0.5em] \text{and } \dfrac{B}{C} = \dfrac{6}{7} = \dfrac{6 \times 2}{7 \times 2} = \dfrac{12}{14} = 12 : 14 \\[0.5em] So , B A = 4 × 3 5 × 3 = 12 15 = 15 : 12 and C B = 7 6 = 7 × 2 6 × 2 = 14 12 = 12 : 14
∴ A : B : C = 15 : 12 : 14
Hence, the ratio of A : B : C is 15 : 12 : 14.
If 3A = 4B = 6C, find A : B : C.
Answer
3 A = 4 B ⇒ A B = 4 3 ⇒ A : B = 4 : 3 3A = 4B \\[0.5em] \Rightarrow \dfrac{A}{B} = \dfrac{4}{3} \\[0.5em] \Rightarrow A : B = 4 : 3 3 A = 4 B ⇒ B A = 3 4 ⇒ A : B = 4 : 3
Similarly,
4 B = 6 C ⇒ B C = 6 4 = 3 2 ⇒ B : C = 3 : 2 4B = 6C \\[0.5em] \Rightarrow \dfrac{B}{C} = \dfrac{6}{4} = \dfrac{3}{2} \\[0.5em] \Rightarrow B : C = 3 : 2 4 B = 6 C ⇒ C B = 4 6 = 2 3 ⇒ B : C = 3 : 2
So we get,
A : B : C = 4 : 3 : 2
Hence, the ratio of A : B : C is 4 : 3 : 2.
If 3 x + 5 y 3 x − 5 y = 7 3 \dfrac{3x + 5y}{3x - 5y} = \dfrac{7}{3} 3 x − 5 y 3 x + 5 y = 3 7 , find x : y.
Answer
Given,
3 x + 5 y 3 x − 5 y = 7 3 ⇒ 3 ( 3 x + 5 y ) = 7 ( 3 x − 5 y ) ⇒ 9 x + 15 y = 21 x − 35 y ⇒ 15 y + 35 y = 21 x − 9 x ⇒ 50 y = 12 x ⇒ x = 50 y 12 ⇒ x y = 50 12 = 25 6 ⇒ x : y = 25 : 6. \dfrac{3x + 5y}{3x - 5y} = \dfrac{7}{3} \\[0.5em] \Rightarrow 3(3x + 5y) = 7(3x - 5y) \\[0.5em] \Rightarrow 9x + 15y = 21x - 35y \\[0.5em] \Rightarrow 15y + 35y = 21x - 9x \\[0.5em] \Rightarrow 50y = 12x \\[0.5em] \Rightarrow x = \dfrac{50y}{12} \\[0.5em] \Rightarrow \dfrac{x}{y} = \dfrac{50}{12} = \dfrac{25}{6} \\[0.5em] \Rightarrow x : y = 25 : 6. 3 x − 5 y 3 x + 5 y = 3 7 ⇒ 3 ( 3 x + 5 y ) = 7 ( 3 x − 5 y ) ⇒ 9 x + 15 y = 21 x − 35 y ⇒ 15 y + 35 y = 21 x − 9 x ⇒ 50 y = 12 x ⇒ x = 12 50 y ⇒ y x = 12 50 = 6 25 ⇒ x : y = 25 : 6.
Hence, the ratio of x : y is 25 : 6.
If a : b = 3 : 11, find (15a - 3b) : (9a + 5b).
Answer
a : b = 3 : 11 or,
a b = 3 11 \dfrac{a}{b} = \dfrac{3}{11} b a = 11 3
We need to find 15 a − 3 b 9 a + 5 b \dfrac{15a - 3b}{9a + 5b} 9 a + 5 b 15 a − 3 b
Dividing the numerator and denominator by b,
⇒ 15 a b − 3 b b 9 a b + 5 b b ⇒ 15 a b − 3 9 a b + 5 \Rightarrow \dfrac{\dfrac{15a}{b} - \dfrac{3b}{b}}{\dfrac{9a}{b} + \dfrac{5b}{b}} \\[0.5em] \Rightarrow \dfrac{\dfrac{15a}{ b} - 3}{\dfrac{9a}{b} + 5} \\[0.5em] ⇒ b 9 a + b 5 b b 15 a − b 3 b ⇒ b 9 a + 5 b 15 a − 3
Putting value of a b = 3 11 \dfrac{a}{b} = \dfrac{3}{11} b a = 11 3 ,
⇒ 15 × 3 11 − 3 9 × 3 11 + 5 ⇒ 45 − 33 11 27 + 55 11 ⇒ 12 82 = 6 41 = 6 : 41 \Rightarrow \dfrac{15 \times \dfrac{3}{11} - 3}{9 \times \dfrac{3}{11} + 5} \\[0.5em] \Rightarrow \dfrac{\dfrac{45 - 33}{11}}{\dfrac{27 + 55}{11} } \\[0.5em] \Rightarrow \dfrac{12}{82} = \dfrac{6}{41} = 6 : 41 ⇒ 9 × 11 3 + 5 15 × 11 3 − 3 ⇒ 11 27 + 55 11 45 − 33 ⇒ 82 12 = 41 6 = 6 : 41
Hence, the value of ratio is 6 : 41.
If (4x2 + xy) : (3xy - y2 ) = 12 : 5, find (x + 2y) : (2x + y).
Answer
Given, (4x2 + xy) : (3xy - y2 ) = 12 : 5
⇒ 4 x 2 + x y 3 x y − y 2 = 12 5 ⇒ 5 ( 4 x 2 + x y ) = 12 ( 3 x y − y 2 ) ⇒ 20 x 2 + 5 x y = 36 x y − 12 y 2 ⇒ 20 x 2 − 31 x y + 12 y 2 = 0 ⇒ 20 x 2 y 2 − 31 x y + 12 = 0 ⇒ 20 ( x y ) 2 − 31 ( x y ) + 12 = 0 ⇒ 20 ( x y ) 2 − 15 ( x y ) − 16 ( x y ) + 12 = 0 ⇒ 5 ( x y ) ( 4 ( x y ) − 3 ) − 4 ( 4 ( x y ) − 3 ) ⇒ ( 5 ( x y ) − 4 ) ( 4 ( x y ) − 3 ) = 0 ⇒ ( 5 ( x y ) − 4 ) = 0 or ( 4 ( x y ) − 3 ) = 0 ⇒ x y = 4 5 or x y = 3 4 . \Rightarrow \dfrac{4x^2 + xy}{3xy - y^2} = \dfrac{12}{5} \\[1em] \Rightarrow 5(4x^2 + xy) = 12(3xy - y^2) \\[1em] \Rightarrow 20x^2 + 5xy = 36xy - 12y^2 \\[1em] \Rightarrow 20x^2 - 31xy + 12y^2 = 0 \\[1em] \Rightarrow 20\dfrac{x^2}{y^2} - 31\dfrac{x}{y} + 12 = 0 \\[1em] \Rightarrow 20(\dfrac{x}{y})^2 - 31(\dfrac{x}{y}) + 12 = 0 \\[1em] \Rightarrow 20(\dfrac{x}{y})^2 - 15(\dfrac{x}{y}) - 16(\dfrac{x}{y})+ 12 = 0 \\[1em] \Rightarrow 5(\dfrac{x}{y})\big(4\big(\dfrac{x}{y}\big) - 3\big) - 4\big(4\big(\dfrac{x}{y}\big) - 3\big) \\[1em] \Rightarrow \big(5\big(\dfrac{x}{y}\big) - 4\big) \big(4\big(\dfrac{x}{y}\big) - 3\big) = 0 \\[1em] \Rightarrow \big(5\big(\dfrac{x}{y}\big) - 4\big) = 0 \text{ or } \big(4\big(\dfrac{x}{y}\big) - 3\big) = 0 \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{4}{5} \text{ or } \dfrac{x}{y} = \dfrac{3}{4}. ⇒ 3 x y − y 2 4 x 2 + x y = 5 12 ⇒ 5 ( 4 x 2 + x y ) = 12 ( 3 x y − y 2 ) ⇒ 20 x 2 + 5 x y = 36 x y − 12 y 2 ⇒ 20 x 2 − 31 x y + 12 y 2 = 0 ⇒ 20 y 2 x 2 − 31 y x + 12 = 0 ⇒ 20 ( y x ) 2 − 31 ( y x ) + 12 = 0 ⇒ 20 ( y x ) 2 − 15 ( y x ) − 16 ( y x ) + 12 = 0 ⇒ 5 ( y x ) ( 4 ( y x ) − 3 ) − 4 ( 4 ( y x ) − 3 ) ⇒ ( 5 ( y x ) − 4 ) ( 4 ( y x ) − 3 ) = 0 ⇒ ( 5 ( y x ) − 4 ) = 0 or ( 4 ( y x ) − 3 ) = 0 ⇒ y x = 5 4 or y x = 4 3 .
We need to find value of (x + 2y) : (2x + y) or x + 2 y 2 x + y \dfrac{x + 2y}{2x + y} 2 x + y x + 2 y
Dividing the numerator and denominator by y,
⇒ x y + 2 2 x y + 1 \Rightarrow \dfrac{\dfrac{x}{y} + 2}{\dfrac{2x}{y} + 1} ⇒ y 2 x + 1 y x + 2
Putting value of x y = 4 5 \dfrac{x}{y} = \dfrac{4}{5} y x = 5 4 ,
⇒ 4 5 + 2 8 5 + 1 ⇒ 14 5 13 5 ⇒ 14 13 = 14 : 13. \Rightarrow \dfrac{\dfrac{4}{5} + 2}{\dfrac{8}{5} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{14}{5}}{\dfrac{13}{5}} \\[1em] \Rightarrow \dfrac{14}{13} = 14 : 13. \\[1em] ⇒ 5 8 + 1 5 4 + 2 ⇒ 5 13 5 14 ⇒ 13 14 = 14 : 13.
Putting value of x y = 3 4 \dfrac{x}{y} = \dfrac{3}{4} y x = 4 3 ,
⇒ 3 4 + 2 6 4 + 1 ⇒ 11 4 10 4 ⇒ 11 10 = 11 : 10 \Rightarrow \dfrac{\dfrac{3}{4} + 2}{\dfrac{6}{4} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{11}{4}}{\dfrac{10}{4}} \\[1em] \Rightarrow \dfrac{11}{10} = 11 : 10 ⇒ 4 6 + 1 4 3 + 2 ⇒ 4 10 4 11 ⇒ 10 11 = 11 : 10
Hence, the value of ratio (x + 2y) : (2x + y) is 14 : 13 or 11 : 10.
If y(3x - y) : x(4x + y) = 5 : 12, find (x2 + y2 ) : (x + y)2 .
Answer
Given, y(3x - y) : x(4x + y) = 5 : 12
∴ 3 x y − y 2 4 x 2 + x y = 5 12 ⇒ 12 ( 3 x y − y 2 ) = 5 ( 4 x 2 + x y ) ⇒ 36 x y − 12 y 2 = 20 x 2 + 5 x y ⇒ 20 x 2 + 12 y 2 + 5 x y − 36 x y = 0 ⇒ 20 x 2 − 31 x y + 12 y 2 = 0 \therefore \dfrac{3xy - y^2}{4x^2 + xy} = \dfrac{5}{12} \\[0.5em] \Rightarrow 12(3xy - y^2) = 5(4x^2 + xy) \\[0.5em] \Rightarrow 36xy - 12y^2 = 20x^2 + 5xy \\[0.5em] \Rightarrow 20x^2 + 12y^2 + 5xy - 36xy = 0 \\[0.5em] \Rightarrow 20x^2 - 31xy + 12y^2 = 0 \\[0.5em] ∴ 4 x 2 + x y 3 x y − y 2 = 12 5 ⇒ 12 ( 3 x y − y 2 ) = 5 ( 4 x 2 + x y ) ⇒ 36 x y − 12 y 2 = 20 x 2 + 5 x y ⇒ 20 x 2 + 12 y 2 + 5 x y − 36 x y = 0 ⇒ 20 x 2 − 31 x y + 12 y 2 = 0
Dividing the equation by y2 ,
⇒ 20 ( x y ) 2 − 31 ( x y ) + 12 = 0 ⇒ 20 ( x y ) 2 − 16 ( x y ) − 15 ( x y ) + 12 = 0 ⇒ 4 ( x y ) ( 5 ( x y ) − 4 ) − 3 ( 5 ( x y ) − 4 ) = 0 ⇒ ( 5 ( x y ) − 4 ) ( 4 ( x y ) − 3 ) = 0 ⇒ 5 ( x y ) − 4 = 0 or 4 ( x y ) − 3 = 0 ⇒ x y = 4 5 or x y = 3 4 . \Rightarrow 20\big(\dfrac{x}{y}\big)^2 - 31\big(\dfrac{x}{y}\big) + 12 = 0 \\[1em] \Rightarrow 20\big(\dfrac{x}{y}\big)^2 - 16\big(\dfrac{x}{y}\big) - 15\big(\dfrac{x}{y}\big) + 12 = 0 \\[1em] \Rightarrow 4\big(\dfrac{x}{y}\big)(5\big(\dfrac{x}{y}\big) - 4) - 3(5\big(\dfrac{x}{y}\big) - 4) = 0 \\[1em] \Rightarrow (5\big(\dfrac{x}{y}\big) - 4)(4\big(\dfrac{x}{y}\big) - 3) = 0 \\[1em] \Rightarrow 5\big(\dfrac{x}{y}\big) - 4 = 0 \text{ or } 4\big(\dfrac{x}{y}\big) - 3 = 0 \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{4}{5} \text{ or } \dfrac{x}{y} = \dfrac{3}{4}. ⇒ 20 ( y x ) 2 − 31 ( y x ) + 12 = 0 ⇒ 20 ( y x ) 2 − 16 ( y x ) − 15 ( y x ) + 12 = 0 ⇒ 4 ( y x ) ( 5 ( y x ) − 4 ) − 3 ( 5 ( y x ) − 4 ) = 0 ⇒ ( 5 ( y x ) − 4 ) ( 4 ( y x ) − 3 ) = 0 ⇒ 5 ( y x ) − 4 = 0 or 4 ( y x ) − 3 = 0 ⇒ y x = 5 4 or y x = 4 3 .
We have to find value of (x2 + y2 ) : (x + y)2 .
= ( x 2 + y 2 ) : ( x 2 + y 2 + 2 x y ) = x 2 + y 2 x 2 + y 2 + 2 x y = (x^2 + y^2) : (x^2 + y^2 + 2xy) \\[0.5em] = \dfrac{x^2 + y^2}{x^2 + y^2 + 2xy} \\[0.5em] = ( x 2 + y 2 ) : ( x 2 + y 2 + 2 x y ) = x 2 + y 2 + 2 x y x 2 + y 2
Dividing numerator and denominator by y2 ,
= x 2 + y 2 y 2 x 2 + y 2 + 2 x y y 2 = ( x y ) 2 + 1 ( x y ) 2 + 1 + 2 ( x y ) = \dfrac{\dfrac{x^2 + y^2}{y^2}}{\dfrac{x^2 + y^2 + 2xy}{y^2}} \\[1em] = \dfrac{\big(\dfrac{x}{y}\big)^2 + 1}{\big(\dfrac{x}{y}\big)^2 + 1 + 2\big(\dfrac{x}{y}\big)} \\[1em] = y 2 x 2 + y 2 + 2 x y y 2 x 2 + y 2 = ( y x ) 2 + 1 + 2 ( y x ) ( y x ) 2 + 1
Putting value of x y = 4 5 \dfrac{x}{y} = \dfrac{4}{5} y x = 5 4 ,
( 4 5 ) 2 + 1 ( 4 5 ) 2 + 1 + 2 ( 4 5 ) = ( 16 25 ) + 1 ( 16 25 ) + 1 + ( 8 5 ) = 16 + 25 25 16 + 25 + 40 25 = 41 81 = 41 : 81 \dfrac{\big(\dfrac{4}{5}\big)^2 + 1}{\big(\dfrac{4}{5}\big)^2 + 1 + 2\big(\dfrac{4}{5}\big)} \\[1em] = \dfrac{\big(\dfrac{16}{25}\big) + 1}{\big(\dfrac{16}{25}\big) + 1 + \big(\dfrac{8}{5}\big)} \\[1em] = \dfrac{\dfrac{16 + 25}{25}}{\dfrac{16 + 25 + 40}{25}} \\[1em] = \dfrac{41}{81} \\[1em] = 41 : 81 \\[1em] ( 5 4 ) 2 + 1 + 2 ( 5 4 ) ( 5 4 ) 2 + 1 = ( 25 16 ) + 1 + ( 5 8 ) ( 25 16 ) + 1 = 25 16 + 25 + 40 25 16 + 25 = 81 41 = 41 : 81
Putting value of x y = 3 4 \dfrac{x}{y} = \dfrac{3}{4} y x = 4 3 ,
( 3 4 ) 2 + 1 ( 3 4 ) 2 + 1 + 2 ( 3 4 ) = ( 9 16 ) + 1 ( 9 16 ) + 1 + ( 6 4 ) = 9 + 16 16 9 + 16 + 24 16 = 25 49 = 25 : 49 \dfrac{\big(\dfrac{3}{4}\big)^2 + 1}{\big(\dfrac{3}{4}\big)^2 + 1 + 2\big(\dfrac{3}{4}\big)} \\[1em] = \dfrac{\big(\dfrac{9}{16}\big) + 1}{\big(\dfrac{9}{16}\big) + 1 + \big(\dfrac{6}{4}\big)} \\[1em] = \dfrac{\dfrac{9 + 16}{16}}{\dfrac{9 + 16 + 24}{16}} \\[1em] = \dfrac{25}{49} \\[1em] = 25 : 49 ( 4 3 ) 2 + 1 + 2 ( 4 3 ) ( 4 3 ) 2 + 1 = ( 16 9 ) + 1 + ( 4 6 ) ( 16 9 ) + 1 = 16 9 + 16 + 24 16 9 + 16 = 49 25 = 25 : 49
Hence, the value of ratio (x2 + y2 ) : (x + y)2 is 41 : 81 or 25 : 49.
If (x - 9) : (3x + 6) is the duplicate ratio of 4 : 9, find the value of x.
Answer
Duplicate ratio of 4 : 9 = 42 : 92 = 16 : 81.
According to question,
(x - 9) : (3x + 6) = 16 : 81
⇒ x − 9 3 x + 6 = 16 81 ⇒ 81 ( x − 9 ) = 16 ( 3 x + 6 ) ⇒ 81 x − 729 = 48 x + 96 ⇒ 81 x − 48 x = 96 + 729 ⇒ 33 x = 825 ⇒ x = 825 33 x = 25. \Rightarrow \dfrac{x - 9}{3x + 6} = \dfrac{16}{81} \\[0.5em] \Rightarrow 81(x - 9) = 16(3x + 6) \\[0.5em] \Rightarrow 81x - 729 = 48x + 96 \\[0.5em] \Rightarrow 81x - 48x = 96 + 729 \\[0.5em] \Rightarrow 33x = 825 \\[0.5em] \Rightarrow x = \dfrac{825}{33} \\[0.5em] x = 25. ⇒ 3 x + 6 x − 9 = 81 16 ⇒ 81 ( x − 9 ) = 16 ( 3 x + 6 ) ⇒ 81 x − 729 = 48 x + 96 ⇒ 81 x − 48 x = 96 + 729 ⇒ 33 x = 825 ⇒ x = 33 825 x = 25.
Hence, the value of x is 25.
If (3x + 1) : (5x + 3) is the triplicate ratio of 3 : 4, find the value of x.
Answer
Triplicate ratio of 3 : 4 = 33 : 43 = 27 : 64.
According to question,
(3x + 1) : (5x + 3) = 27 : 64
⇒ 3 x + 1 5 x + 3 = 27 64 ⇒ 64 ( 3 x + 1 ) = 27 ( 5 x + 3 ) ⇒ 192 x + 64 = 135 x + 81 ⇒ 192 x − 135 x = 81 − 64 ⇒ 57 x = 17 ⇒ x = 17 57 . \Rightarrow \dfrac{3x + 1}{5x + 3} = \dfrac{27}{64} \\[0.5em] \Rightarrow 64(3x + 1) = 27(5x + 3) \\[0.5em] \Rightarrow 192x + 64 = 135x + 81 \\[0.5em] \Rightarrow 192x - 135x = 81 - 64 \\[0.5em] \Rightarrow 57x = 17 \\[0.5em] \Rightarrow x = \dfrac{17}{57}. ⇒ 5 x + 3 3 x + 1 = 64 27 ⇒ 64 ( 3 x + 1 ) = 27 ( 5 x + 3 ) ⇒ 192 x + 64 = 135 x + 81 ⇒ 192 x − 135 x = 81 − 64 ⇒ 57 x = 17 ⇒ x = 57 17 .
Hence, the value of x is 17 57 \dfrac{17}{57} 57 17 .
If (x + 2y) : (2x - y) is equal to the duplicate ratio of 3 : 2, find x : y.
Answer
Duplicate ratio of 3 : 2 = 32 : 22 = 9 : 4.
According to question,
(x + 2y) : (2x - y) = 9 : 4
⇒ x + 2 y 2 x − y = 9 4 ⇒ 4 ( x + 2 y ) = 9 ( 2 x − y ) ⇒ 4 x + 8 y = 18 x − 9 y ⇒ 4 x − 18 x = − 9 y − 8 y ⇒ − 14 x = − 17 y ⇒ x y = − 17 − 14 ⇒ x y = 17 14 ⇒ x : y = 17 : 14 \Rightarrow \dfrac{x + 2y}{2x - y} = \dfrac{9}{4} \\[0.5em] \Rightarrow 4(x + 2y) = 9(2x - y) \\[0.5em] \Rightarrow 4x + 8y = 18x - 9y \\[0.5em] \Rightarrow 4x - 18x = -9y - 8y \\[0.5em] \Rightarrow -14x = -17y \\[0.5em] \Rightarrow \dfrac{x}{y} = \dfrac{-17}{-14} \\[0.5em] \Rightarrow \dfrac{x}{y} = \dfrac{17}{14} \\[0.5em] \Rightarrow x : y = 17 : 14 ⇒ 2 x − y x + 2 y = 4 9 ⇒ 4 ( x + 2 y ) = 9 ( 2 x − y ) ⇒ 4 x + 8 y = 18 x − 9 y ⇒ 4 x − 18 x = − 9 y − 8 y ⇒ − 14 x = − 17 y ⇒ y x = − 14 − 17 ⇒ y x = 14 17 ⇒ x : y = 17 : 14
Hence, the value of x : y is 17 : 14.
Find two numbers in the ratio of 8 : 7 such that when each is decreased by 12 1 2 12\dfrac{1}{2} 12 2 1 , they are in ratio 11 : 9.
Answer
Since, numbers are in ratio 8 : 7, let the required numbers be 8x and 7x.
According to question,
8 x − 12 1 2 7 x − 12 1 2 = 11 9 ⇒ 8 x − 25 2 7 x − 25 2 = 11 9 ⇒ 16 x − 25 2 14 x − 25 2 = 11 9 ⇒ 16 x − 25 14 x − 25 = 11 9 ⇒ 9 ( 16 x − 25 ) = 11 ( 14 x − 25 ) ⇒ 144 x − 225 = 154 x − 275 ⇒ 144 x − 154 x = − 275 + 225 ⇒ − 10 x = − 50 ⇒ x = 5. \dfrac{8x - 12\dfrac{1}{2}}{7x - 12\dfrac{1}{2}} = \dfrac{11}{9} \\[1em] \Rightarrow \dfrac{8x - \dfrac{25}{2}}{7x - \dfrac{25}{2}} = \dfrac{11}{9} \\[1em] \Rightarrow \dfrac{\dfrac{16x - 25}{2}}{\dfrac{14x - 25}{2}} = \dfrac{11}{9} \\[1em] \Rightarrow \dfrac{16x - 25}{14x - 25} = \dfrac{11}{9} \\[1em] \Rightarrow 9(16x - 25) = 11(14x - 25) \\[1em] \Rightarrow 144x - 225 = 154x - 275 \\[1em] \Rightarrow 144x - 154x = -275 + 225 \\[1em] \Rightarrow -10x = -50 \\[1em] \Rightarrow x = 5. 7 x − 12 2 1 8 x − 12 2 1 = 9 11 ⇒ 7 x − 2 25 8 x − 2 25 = 9 11 ⇒ 2 14 x − 25 2 16 x − 25 = 9 11 ⇒ 14 x − 25 16 x − 25 = 9 11 ⇒ 9 ( 16 x − 25 ) = 11 ( 14 x − 25 ) ⇒ 144 x − 225 = 154 x − 275 ⇒ 144 x − 154 x = − 275 + 225 ⇒ − 10 x = − 50 ⇒ x = 5.
∴ x = 5, 8x = 40, 7x = 35.
Hence, the required numbers are 40, 35.
The income of a man is increased in the ratio 10 : 11. If the increase in his income is ₹ 600 per month, find his new income.
Answer
Let the present income = 10x and the new increased income = 11x.
So, the increase per month = 11x - 10x = x
Given, increase in his income is ₹600 per month.
∴ x = 600.
New income = 11x = 11 × 600 11 \times 600 11 × 600 = ₹6600.
Hence, the new income of man is ₹6600 per month.
A woman reduces her weight in the ratio 7 : 5. What does her weight become if originally it was 91 kg?
Answer
Given, a woman reduces her weight in ratio 7 : 5 and original weight = 91 kg.
∴ Original weight Reduced weight = 7 5 ⇒ Reduced weight = 5 7 × Original weight ⇒ Reduced weight = 5 7 × 91 kg ⇒ Reduced weight = 5 × 13 = 65 kg \therefore \dfrac{\text{Original weight}}{\text{Reduced weight}} = \dfrac{7}{5} \\[0.5em] \Rightarrow \text{Reduced weight} = \dfrac{5}{7} \times \text{Original weight} \\[0.5em] \Rightarrow \text{Reduced weight} = \dfrac{5}{7} \times 91 \text{ kg} \\[0.5em] \Rightarrow \text{Reduced weight} = 5 \times 13 = 65 \text{ kg} ∴ Reduced weight Original weight = 5 7 ⇒ Reduced weight = 7 5 × Original weight ⇒ Reduced weight = 7 5 × 91 kg ⇒ Reduced weight = 5 × 13 = 65 kg
Hence, the reduced weight of woman is 65 kg.
A school collected ₹2100 for charity. It was decided to divide the money between an orphanage and a blind school in the ratio 3 : 4. How much money did each receive?
Answer
Amount collected for charity = ₹2100.
The ratio between orphanage and a blind school = 3 : 4.
Sum of ratio = 3 + 4 = 7
Orphanage share = 3 7 × ₹ 2100 = ₹ 900. \dfrac{3}{7} \times ₹2100 = ₹900. 7 3 × ₹2100 = ₹900.
Blind school share = 4 7 × ₹ 2100 = ₹ 1200. \dfrac{4}{7} \times ₹2100 = ₹1200. 7 4 × ₹2100 = ₹1200.
Hence, the share of orphanage school is ₹900 and the share of blind school is ₹2100.
The sides of a triangle are in the ratio 7 : 5 : 3 and its perimeter is 30 cm. Find the lengths of sides.
Answer
Since the sides of triangle are in the ratio 7 : 5 : 3, let the sides be 7x, 5x and 3x.
Perimeter = Sum of sides of triangle
∴ 7x + 5x + 3x = 30 ⇒ 15x = 30 ⇒ x = 30 15 \dfrac{30}{15} 15 30 ⇒ x = 2
∴ x = 2, 7x = 14, 5x = 10, 3x = 6.
Hence, the sides of the triangle are 14cm, 10cm, 6cm.
If the angles of a triangle are in the ratio 2 : 3 : 4, find the angles.
Answer
Since the angles of triangle are in the ratio 2 : 3 : 4, let the angles be 2x, 3x and 4x.
Sum of angle of triangle = 180°
∴ 2x + 3x + 4x = 180 ⇒ 9x = 180° ⇒ x = 180 ° 9 \dfrac{180°}{9} 9 180° ⇒ x = 20°
∴ x = 20°, 2x = 40°, 3x = 60°, 4x = 80°.
Hence, the angles of triangle are 40°, 60°, 80°.
Three numbers are in the ratio 1 2 : 1 3 : 1 4 \dfrac{1}{2} : \dfrac{1}{3} : \dfrac{1}{4} 2 1 : 3 1 : 4 1 . If the sum of their squares is 244, find the numbers.
Answer
The ratio is 1 2 : 1 3 : 1 4 \dfrac{1}{2} : \dfrac{1}{3} : \dfrac{1}{4} 2 1 : 3 1 : 4 1 .
L.C.M. of 2, 3, 4 = 12.
Ratio = 1 2 × 12 : 1 3 × 12 : 1 4 × 12 = 6 : 4 : 3. \text{Ratio } = \dfrac{1}{2} \times 12 : \dfrac{1}{3} \times 12 : \dfrac{1}{4} \times 12 \\[0.5em] = 6 : 4 : 3. Ratio = 2 1 × 12 : 3 1 × 12 : 4 1 × 12 = 6 : 4 : 3.
Since the ratio is 6 : 4 : 3, let the numbers be 6x, 4x and 3x.
Given, sum of squares of numbers = 244.
∴ (6x)2 + (4x)2 + (3x)2 = 244 ⇒ 36x2 + 16x2 + 9x2 = 244 ⇒ 61x2 = 244 ⇒ x2 = 244 61 \dfrac{244}{61} 61 244 ⇒ x = 4 \sqrt{4} 4 = 2
∴ x = 2, 6x = 12, 4x = 8, 3x = 6.
Hence, the numbers are 12, 8 and 6.
A certain sum was divided among A, B and C in the ratio 7 : 5 : 4. If B got ₹500 more than C, find the total sum divided.
Answer
Since, the ratio of money divided among A : B : C is 7 : 5 : 4. So, the money received by A, B, C be 7x, 5x, 4x respectively.
Given, B receives 500 more than C.
∴ 5x - 4x = 500 x = 500.
Total money divided = 7x + 5x + 4x = 16x = ₹8000.
Hence, the total money divided is ₹8000.
In a business, A invests ₹50000 for 6 months; B ₹60000 for 4 months and C ₹80000 for 5 months. If they together earn ₹18800, find share of each.
Answer
A invests ₹50000 for 6 months, total investment of A = ₹50000 x 6 = ₹300000.
B invests ₹60000 for 4 months, total investment of B = ₹60000 x 4 = ₹240000.
C ₹80000 for 5 months, total investment of C = ₹80000 x 5 = ₹400000.
Ratio of share of A, B and C = 300000 : 240000 : 400000 = 30 : 24 : 40.
Sum of ratios = 94.
Given, total earning = ₹18800.
Share of A = 30 94 × 18800 \dfrac{30}{94} \times 18800 94 30 × 18800 = 564000 94 \dfrac{564000}{94} 94 564000 = ₹6000.
Share of B = 24 94 × 18800 \dfrac{24}{94} \times 18800 94 24 × 18800 = 451200 94 \dfrac{451200}{94} 94 451200 = ₹4800.
Share of C = 40 94 × 18800 \dfrac{40}{94} \times 18800 94 40 × 18800 = 752000 94 \dfrac{752000}{94} 94 752000 = ₹8000.
Hence, the shares of A, B and C are ₹6000, ₹4800 and ₹8000 respectively.
In a mixture of 45 litres, the ratio of milk to water is 13 : 2. How much water must be added to this mixture to make the ratio of milk to water as 3 : 1?
Answer
Ratio of milk to water = 13 : 2.
Total quantity of mixture = 45 litres
Sum of ratio = 13 + 2 = 15.
Quantity of milk = 13 15 \dfrac{13}{15} 15 13 x 45 = 13 x 3 = 39 litres.
Quantity of water = 2 15 \dfrac{2}{15} 15 2 x 45 = 2 x 3 = 6 litres.
Let the water added be x litres, so quantity of water = (6 + x) litres.
Now ratio = 3 : 1
∴ 39 6 + x = 3 1 ⇒ 39 = 3 ( 6 + x ) ⇒ 39 = 18 + 3 x ⇒ 3 x = 39 − 18 ⇒ x = 21 3 ⇒ x = 7. \therefore \dfrac{39}{6 + x} = \dfrac{3}{1} \\[0.5em] \Rightarrow 39 = 3(6 + x) \\[0.5em] \Rightarrow 39 = 18 + 3x \\[0.5em] \Rightarrow 3x = 39 - 18 \\[0.5em] \Rightarrow x = \dfrac{21}{3} \\[0.5em] \Rightarrow x = 7. ∴ 6 + x 39 = 1 3 ⇒ 39 = 3 ( 6 + x ) ⇒ 39 = 18 + 3 x ⇒ 3 x = 39 − 18 ⇒ x = 3 21 ⇒ x = 7.
The water that must be added is 7 litres.
The ratio of the number of boys to the number of girls in a school of 560 pupils is 5 : 3. If 10 new boys are admitted, find how many new girls may be admitted so that the ratio of number of boys to the number of girls may change to 3 : 2.
Answer
Total students = 560
Ratio of the number of boys to the number of girls = 5 : 3.
Sum of ratio = 5 + 3 = 8.
Number of boys = 5 8 \dfrac{5}{8} 8 5 x 560 = 5 x 70 = 350.
Number of girls = 3 8 \dfrac{3}{8} 8 3 x 560 = 210.
10 new boys are admitted in school , so total boys now = 350 + 10 = 360.
Let new girls to be admitted be x, so now total girls = (210 + x)
New boys to girls ratio = 3 : 2
∴ 360 : ( 210 + x ) = 3 : 2 ⇒ 360 210 + x = 3 2 ⇒ 720 = 3 ( 210 + x ) ⇒ 3 x + 630 = 720 ⇒ 3 x = 720 − 630 ⇒ 3 x = 90 ⇒ x = 30. \therefore 360 : (210 + x) = 3 : 2 \\[0.5em] \Rightarrow \dfrac{360}{210 + x} = \dfrac{3}{2} \\[0.5em] \Rightarrow 720 = 3(210 + x) \\[0.5em] \Rightarrow 3x + 630 = 720 \\[0.5em] \Rightarrow 3x = 720 - 630 \\[0.5em] \Rightarrow 3x = 90 \\[0.5em] \Rightarrow x = 30. ∴ 360 : ( 210 + x ) = 3 : 2 ⇒ 210 + x 360 = 2 3 ⇒ 720 = 3 ( 210 + x ) ⇒ 3 x + 630 = 720 ⇒ 3 x = 720 − 630 ⇒ 3 x = 90 ⇒ x = 30.
Hence, the number of new girls to be admitted are 30.
The monthly pocket money of Ravi and Sanjeev are in the ratio 5 : 7. Their expenditures are in the ratio 3 : 5. If each saves ₹80 every month, find their monthly pocket money.
Answer
Pocket money ratio of Ravi and Sanjeev = 5 : 7, so let the pocket money be 5x and 7x.
Expenditure ratio of Ravi and Sanjeev = 3 : 5, so let the expenditure be 3y and 5y.
Given, each save ₹80 per month.
∴ For Ravi, savings = 5x - 3y = 80 and for Sanjeev, savings = 7x - 5y = 80.
First solving 5x - 3y = 80.
⇒ 5 x − 3 y = 80 ⇒ 5 x = 80 + 3 y x = 80 + 3 y 5 \Rightarrow 5x - 3y = 80 \\[0.5em] \Rightarrow 5x = 80 + 3y \\[0.5em] x = \dfrac{80 + 3y}{5} ⇒ 5 x − 3 y = 80 ⇒ 5 x = 80 + 3 y x = 5 80 + 3 y
Putting above value of x in 7x - 5y = 80.
⇒ 7 ( 80 + 3 y 5 ) − 5 y = 80 ⇒ 560 + 21 y 5 − 5 y = 80 ⇒ 560 + 21 y − 25 y 5 = 80 ⇒ 560 − 4 y 5 = 80 \Rightarrow 7\big(\dfrac{80 + 3y}{5}\big) - 5y = 80 \\[1em] \Rightarrow \dfrac{560 + 21y}{5} - 5y = 80 \\[1em] \Rightarrow \dfrac{560 + 21y - 25y}{5} = 80 \\[1em] \Rightarrow \dfrac{560 - 4y}{5} = 80 ⇒ 7 ( 5 80 + 3 y ) − 5 y = 80 ⇒ 5 560 + 21 y − 5 y = 80 ⇒ 5 560 + 21 y − 25 y = 80 ⇒ 5 560 − 4 y = 80
On cross multiplying,
⇒ 560 − 4 y = 400 ⇒ 560 − 400 = 4 y ⇒ 4 y = 160 y = 40. \Rightarrow 560 - 4y = 400 \\[1em] \Rightarrow 560 - 400 = 4y \\[1em] \Rightarrow 4y = 160 \\[1em] y = 40. ⇒ 560 − 4 y = 400 ⇒ 560 − 400 = 4 y ⇒ 4 y = 160 y = 40.
∴ y = 40, x = 80 + 3 y 5 = 80 + 3 × 40 5 = 200 5 = 40 \dfrac{80 + 3y}{5} = \dfrac{80 + 3 \times 40}{5} = \dfrac{200}{5} = 40 5 80 + 3 y = 5 80 + 3 × 40 = 5 200 = 40
∴ 5x = 200, 7x = 280.
Hence, the pocket money of Ravi and Sanjeev is ₹200 and ₹280 respectively.
In class X of a school, the ratio of the number of boys to that of the girls is 4 : 3. If there were 20 more boys and 12 less girls, then the ratio would have been 2 : 1. How many students were there in the class?
Answer
Ratio of the number of boys to girls is 4 : 3, so let the number of boys be 4x and number of girls be 3x.
According to question,
4x + 20 : 3x - 12 = 2 : 1
⇒ 4 x + 20 3 x − 12 = 2 1 ⇒ 4 x + 20 = 2 ( 3 x − 12 ) ⇒ 4 x + 20 = 6 x − 24 ⇒ 6 x − 4 x = 20 + 24 ⇒ 2 x = 44 ⇒ x = 22. \Rightarrow \dfrac{4x + 20}{3x - 12} = \dfrac{2}{1} \\[0.5em] \Rightarrow 4x + 20 = 2(3x - 12) \\[0.5em] \Rightarrow 4x + 20 = 6x - 24 \\[0.5em] \Rightarrow 6x - 4x = 20 + 24 \\[0.5em] \Rightarrow 2x = 44 \\[0.5em] \Rightarrow x = 22. ⇒ 3 x − 12 4 x + 20 = 1 2 ⇒ 4 x + 20 = 2 ( 3 x − 12 ) ⇒ 4 x + 20 = 6 x − 24 ⇒ 6 x − 4 x = 20 + 24 ⇒ 2 x = 44 ⇒ x = 22.
∴ Total number of students = 4x + 3x = 7x = 7 × 22 7 \times 22 7 × 22 = 154.
Hence, the total number of students are 154.
In an examination, the ratio of passes to failures was 4 : 1. If 30 less had appeared and 20 less passed, the ratio of passes to failures would have been 5 : 1. How many students appeared for the examination?
Answer
Ratio of passes to failures = 4 : 1. So, the number of students passed = 4x and number of students failed = x.
Total students appeared for examination = 4x + x = 5x.
In second case, number of students appeared = 5x - 30.
Number of students passed in second case = 4x - 20.
So, number of students failed = (5x - 30) - (4x - 20) = 5x - 4x - 30 + 20 = x - 10.
According to question,
4 x − 20 x − 10 = 5 1 ⇒ 4 x − 20 = 5 ( x − 10 ) ⇒ 4 x − 20 = 5 x − 50 ⇒ 4 x − 5 x = − 50 + 20 ⇒ − x = − 30 ⇒ x = 30. \dfrac{4x - 20}{x - 10} = \dfrac{5}{1} \\[0.5em] \Rightarrow 4x - 20 = 5(x - 10) \\[0.5em] \Rightarrow 4x - 20 = 5x - 50 \\[0.5em] \Rightarrow 4x - 5x = -50 + 20 \\[0.5em] \Rightarrow -x = -30 \\[0.5em] \Rightarrow x = 30. x − 10 4 x − 20 = 1 5 ⇒ 4 x − 20 = 5 ( x − 10 ) ⇒ 4 x − 20 = 5 x − 50 ⇒ 4 x − 5 x = − 50 + 20 ⇒ − x = − 30 ⇒ x = 30.
∴ 5x = 150
Hence, total number of students appeared for examination were 150.
Find the value of x in the following proportions :
(i) 10 : 35 = x : 42
(ii) 3 : x = 24 : 2
(iii) 2.5 : 1.5 = x : 3
(iv) x : 50 :: 3 : 2.
Answer
(i) Given, 10 : 35 = x : 42
⇒ 10 35 = x 42 ⇒ x = 10 35 × 42 ⇒ x = 420 35 ⇒ x = 12. \Rightarrow \dfrac{10}{35} = \dfrac{x}{42} \\[0.5em] \Rightarrow x = \dfrac{10}{35} \times 42 \\[0.5em] \Rightarrow x = \dfrac{420}{35} \\[0.5em] \Rightarrow x = 12. ⇒ 35 10 = 42 x ⇒ x = 35 10 × 42 ⇒ x = 35 420 ⇒ x = 12.
Hence, the value of x = 12.
(ii) Given, 3 : x = 24 : 2
⇒ 3 x = 24 2 ⇒ x = 3 24 × 2 ⇒ x = 6 24 ⇒ x = 1 4 . \Rightarrow \dfrac{3}{x} = \dfrac{24}{2} \\[0.5em] \Rightarrow x = \dfrac{3}{24} \times 2 \\[0.5em] \Rightarrow x = \dfrac{6}{24} \\[0.5em] \Rightarrow x = \dfrac{1}{4}. ⇒ x 3 = 2 24 ⇒ x = 24 3 × 2 ⇒ x = 24 6 ⇒ x = 4 1 .
Hence, the value of x = 1 4 \dfrac{1}{4} 4 1 .
(iii) Given, 2.5 : 1.5 = x : 3
⇒ 2.5 1.5 = x 3 ⇒ x = 2.5 1.5 × 3 ⇒ x = 7.5 1.5 ⇒ x = 5. \Rightarrow \dfrac{2.5}{1.5} = \dfrac{x}{3} \\[0.5em] \Rightarrow x = \dfrac{2.5}{1.5} \times 3 \\[0.5em] \Rightarrow x = \dfrac{7.5}{1.5} \\[0.5em] \Rightarrow x = 5. ⇒ 1.5 2.5 = 3 x ⇒ x = 1.5 2.5 × 3 ⇒ x = 1.5 7.5 ⇒ x = 5.
Hence, the value of x = 5.
(iv) Given, x : 50 :: 3 : 2
⇒ x 50 = 3 2 ⇒ x = 3 2 × 50 ⇒ x = 150 2 ⇒ x = 75. \Rightarrow \dfrac{x}{50} = \dfrac{3}{2} \\[0.5em] \Rightarrow x = \dfrac{3}{2} \times 50 \\[0.5em] \Rightarrow x = \dfrac{150}{2} \\[0.5em] \Rightarrow x = 75. ⇒ 50 x = 2 3 ⇒ x = 2 3 × 50 ⇒ x = 2 150 ⇒ x = 75.
Hence, the value of x = 75.
Find the fourth proportional to :
(i) 3, 12, 15
(ii) 1 3 , 1 4 , 1 5 \dfrac{1}{3}, \dfrac{1}{4}, \dfrac{1}{5} 3 1 , 4 1 , 5 1
(iii) 1.5, 2.5, 4.5
(iv) 9.6 kg, 7.2 kg, 28.8 kg.
Answer
(i) Let the fourth proportion be x.
Then 3, 12, 15 and x are in proportion.
⇒ 3 : 12 : : 15 : x ⇒ 3 12 = 15 x ⇒ x = 15 3 × 12 ⇒ x = 180 3 ⇒ x = 60. \Rightarrow 3 : 12 :: 15 : x \\[0.5em] \Rightarrow \dfrac{3}{12} = \dfrac{15}{x} \\[0.5em] \Rightarrow x = \dfrac{15}{3} \times 12 \\[0.5em] \Rightarrow x = \dfrac{180}{3} \\[0.5em] \Rightarrow x = 60. ⇒ 3 : 12 :: 15 : x ⇒ 12 3 = x 15 ⇒ x = 3 15 × 12 ⇒ x = 3 180 ⇒ x = 60.
Hence, the fourth proportion is 60.
(ii) Let the fourth proportion be x.
Then 1 3 , 1 4 , 1 5 \dfrac{1}{3}, \dfrac{1}{4}, \dfrac{1}{5} 3 1 , 4 1 , 5 1 and x are in proportion.
⇒ 1 3 : 1 4 : : 1 5 : x ⇒ 1 3 1 4 = 1 5 x ⇒ x = 1 5 1 3 × 1 4 ⇒ x = 3 5 × 1 4 ⇒ x = 3 20 . \Rightarrow \dfrac{1}{3} : \dfrac{1}{4} :: \dfrac{1}{5} : x \\[0.5em] \Rightarrow \dfrac{\dfrac{1}{3}}{\dfrac{1}{4}} = \dfrac{\dfrac{1}{5}}{x} \\[0.5em] \Rightarrow x = \dfrac{\dfrac{1}{5}}{\dfrac{1}{3}} \times \dfrac{1}{4} \\[0.5em] \Rightarrow x = \dfrac{3}{5} \times \dfrac{1}{4} \\[0.5em] \Rightarrow x = \dfrac{3}{20}. ⇒ 3 1 : 4 1 :: 5 1 : x ⇒ 4 1 3 1 = x 5 1 ⇒ x = 3 1 5 1 × 4 1 ⇒ x = 5 3 × 4 1 ⇒ x = 20 3 .
Hence, the fourth proportion is 3 20 \dfrac{3}{20} 20 3 .
(iii) Let the fourth proportion be x.
Then 1.5, 2.5, 4.5 and x are in proportion.
⇒ 1.5 : 2.5 : : 4.5 : x ⇒ 1.5 2.5 = 4.5 x ⇒ x = 4.5 1.5 × 2.5 ⇒ x = 3 × 2.5 ⇒ x = 7.5. \Rightarrow 1.5 : 2.5 :: 4.5 : x \\[0.5em] \Rightarrow \dfrac{1.5}{2.5} = \dfrac{4.5}{x} \\[0.5em] \Rightarrow x = \dfrac{4.5}{1.5} \times 2.5 \\[0.5em] \Rightarrow x = 3 \times 2.5 \\[0.5em] \Rightarrow x = 7.5. ⇒ 1.5 : 2.5 :: 4.5 : x ⇒ 2.5 1.5 = x 4.5 ⇒ x = 1.5 4.5 × 2.5 ⇒ x = 3 × 2.5 ⇒ x = 7.5.
Hence, the fourth proportion is 7.5.
(iv) Let the fourth proportion be x.
Then 9.6 kg, 7.2 kg, 28.8 kg and x are in proportion.
⇒ 9.6 : 7.2 : : 28.8 : x ⇒ 9.6 7.2 = 28.8 x ⇒ x = 28.8 9.6 × 7.2 ⇒ x = 3 × 7.2 ⇒ x = 21.6. \Rightarrow 9.6 : 7.2 :: 28.8 : x \\[0.5em] \Rightarrow \dfrac{9.6}{7.2} = \dfrac{28.8}{x} \\[0.5em] \Rightarrow x = \dfrac{28.8}{9.6} \times 7.2 \\[0.5em] \Rightarrow x = 3 \times 7.2 \\[0.5em] \Rightarrow x = 21.6. ⇒ 9.6 : 7.2 :: 28.8 : x ⇒ 7.2 9.6 = x 28.8 ⇒ x = 9.6 28.8 × 7.2 ⇒ x = 3 × 7.2 ⇒ x = 21.6.
Hence, the fourth proportion is 21.6 kg.
Find the third proportional to :
(i) 5, 10
(ii) 0.24, 0.6
(iii) ₹3, ₹12
(iv) 5 1 4 5\dfrac{1}{4} 5 4 1 and 7.
Answer
(i) Let the third proportion be x, then 5, 10, x are in continued proportion.
⇒ 5 10 = 10 x ⇒ x = 10 5 × 10 ⇒ x = 100 5 ⇒ x = 20. \Rightarrow \dfrac{5}{10} = \dfrac{10}{x} \\[0.5em] \Rightarrow x = \dfrac{10}{5} \times 10 \\[0.5em] \Rightarrow x = \dfrac{100}{5} \\[0.5em] \Rightarrow x = 20. ⇒ 10 5 = x 10 ⇒ x = 5 10 × 10 ⇒ x = 5 100 ⇒ x = 20.
Hence, the third proportion is 20.
(ii) Let the third proportion be x, then 0.24, 0.6, x are in continued proportion.
⇒ 0.24 0.6 = 0.6 x ⇒ x = 0.6 0.24 × 0.6 ⇒ x = 0.36 0.24 ⇒ x = 1.5. \Rightarrow \dfrac{0.24}{0.6} = \dfrac{0.6}{x} \\[0.5em] \Rightarrow x = \dfrac{0.6}{0.24} \times 0.6 \\[0.5em] \Rightarrow x = \dfrac{0.36}{0.24} \\[0.5em] \Rightarrow x = 1.5. ⇒ 0.6 0.24 = x 0.6 ⇒ x = 0.24 0.6 × 0.6 ⇒ x = 0.24 0.36 ⇒ x = 1.5.
Hence, the third proportion is 1.5.
(iii) Let the third proportion be x, then 3, 12, x are in continued proportion.
⇒ 3 12 = 12 x ⇒ x = 12 3 × 12 ⇒ x = 144 3 ⇒ x = 48. \Rightarrow \dfrac{3}{12} = \dfrac{12}{x} \\[0.5em] \Rightarrow x = \dfrac{12}{3} \times 12 \\[0.5em] \Rightarrow x = \dfrac{144}{3} \\[0.5em] \Rightarrow x = 48. ⇒ 12 3 = x 12 ⇒ x = 3 12 × 12 ⇒ x = 3 144 ⇒ x = 48.
Hence, the third proportion is ₹ 48.
(iv) Let the third proportion be x, then 5 1 4 5\dfrac{1}{4} 5 4 1 , 7, x are in continued proportion.
5 1 4 = 21 4 ⇒ 21 4 7 = 7 x ⇒ x = 7 21 4 × 7 ⇒ x = 7 × 4 × 7 21 ⇒ x = 28 3 ⇒ x = 9 1 3 . 5\dfrac{1}{4} = \dfrac{21}{4} \\[0.5em] \Rightarrow \dfrac{\dfrac{21}{4}}{7} = \dfrac{7}{x} \\[0.5em] \Rightarrow x = \dfrac{7}{\dfrac{21}{4}} \times 7 \\[0.5em] \Rightarrow x = \dfrac{7 \times 4 \times 7}{21} \\[0.5em] \Rightarrow x = \dfrac{28}{3} \\[0.5em] \Rightarrow x = 9\dfrac{1}{3}. 5 4 1 = 4 21 ⇒ 7 4 21 = x 7 ⇒ x = 4 21 7 × 7 ⇒ x = 21 7 × 4 × 7 ⇒ x = 3 28 ⇒ x = 9 3 1 .
Hence, the third proportion is 9 1 3 9\dfrac{1}{3} 9 3 1 .
Find the mean proportion of :
(i) 5 and 80
(ii) 1 12 \dfrac{1}{12} 12 1 and 1 75 \dfrac{1}{75} 75 1
(iii) 8.1 and 2.5
(iv) (a - b) and (a3 - a2 b), a > b.
Answer
(i) Let the mean proportion be x.
∴ 5 x = x 80 ⇒ x 2 = 5 × 80 ⇒ x 2 = 400 ⇒ x = 400 ⇒ x = 20. \therefore \dfrac{5}{x} = \dfrac{x}{80} \\[0.5em] \Rightarrow x^2 = 5 \times 80 \\[0.5em] \Rightarrow x^2 = 400 \\[0.5em] \Rightarrow x = \sqrt{400} \\[0.5em] \Rightarrow x = 20. ∴ x 5 = 80 x ⇒ x 2 = 5 × 80 ⇒ x 2 = 400 ⇒ x = 400 ⇒ x = 20.
Hence, the mean proportion is 20.
(ii) Let the mean proportion be x.
∴ 1 12 x = x 1 75 ⇒ x 2 = 1 12 × 1 75 ⇒ x 2 = 1 900 ⇒ x = 1 900 ⇒ x = 1 30 \therefore \dfrac{\dfrac{1}{12}}{x} = \dfrac{x}{\dfrac{1}{75}} \\[0.5em] \Rightarrow x^2 = \dfrac{1}{12} \times \dfrac{1}{75} \\[0.5em] \Rightarrow x^2 = \dfrac{1}{900} \\[0.5em] \Rightarrow x = \sqrt{\dfrac{1}{900}} \\[0.5em] \Rightarrow x = \dfrac{1}{30} ∴ x 12 1 = 75 1 x ⇒ x 2 = 12 1 × 75 1 ⇒ x 2 = 900 1 ⇒ x = 900 1 ⇒ x = 30 1
Hence, the mean proportion is 1 30 \dfrac{1}{30} 30 1 .
(iii) Let the mean proportion be x.
∴ 8.1 x = x 2.5 ⇒ x 2 = 8.1 × 2.5 ⇒ x 2 = 20.25 ⇒ x = 20.25 ⇒ x = 4.5. \therefore \dfrac{8.1}{x} = \dfrac{x}{2.5} \\[0.5em] \Rightarrow x^2 = 8.1 \times 2.5 \\[0.5em] \Rightarrow x^2 = 20.25 \\[0.5em] \Rightarrow x = \sqrt{20.25} \\[0.5em] \Rightarrow x = 4.5. ∴ x 8.1 = 2.5 x ⇒ x 2 = 8.1 × 2.5 ⇒ x 2 = 20.25 ⇒ x = 20.25 ⇒ x = 4.5.
Hence, the mean proportion is 4.5.
(iv) Let the mean proportion be x.
∴ ( a − b ) x = x ( a 3 − a 2 b ) ⇒ x 2 = ( a − b ) × ( a 3 − a 2 b ) ⇒ x 2 = ( a 4 − a 3 b − a 3 b + a 2 b 2 ) ⇒ x 2 = ( a 4 − 2 a 3 b + a 2 b 2 ) ⇒ x 2 = a 2 ( a 2 − 2 a b + b 2 ) ⇒ x 2 = a 2 ( a − b ) 2 ⇒ x = ( a 2 ( a − b ) 2 ) ⇒ x = a ( a − b ) . \therefore \dfrac{(a - b)}{x} = \dfrac{x}{(a^3 - a^2b)} \\[0.5em] \Rightarrow x^2 = (a - b) \times (a^3 - a^2b) \\[0.5em] \Rightarrow x^2 = (a^4 - a^3b - a^3b + a^2b^2) \\[0.5em] \Rightarrow x^2 = (a^4 - 2a^3b + a^2b^2) \\[0.5em] \Rightarrow x^2 = a^2(a^2 - 2ab + b^2) \\[0.5em] \Rightarrow x^2 = a^2(a - b)^2 \\[0.5em] \Rightarrow x = \sqrt{(a^2(a - b)^2)} \\[0.5em] \Rightarrow x = a(a - b). ∴ x ( a − b ) = ( a 3 − a 2 b ) x ⇒ x 2 = ( a − b ) × ( a 3 − a 2 b ) ⇒ x 2 = ( a 4 − a 3 b − a 3 b + a 2 b 2 ) ⇒ x 2 = ( a 4 − 2 a 3 b + a 2 b 2 ) ⇒ x 2 = a 2 ( a 2 − 2 ab + b 2 ) ⇒ x 2 = a 2 ( a − b ) 2 ⇒ x = ( a 2 ( a − b ) 2 ) ⇒ x = a ( a − b ) .
Hence, the mean proportion is a(a - b).
If a, 12, 16 and b are in continued proportion, find a and b.
Answer
Given, a, 12, 16 and b are in continued proportion.
∴ a 12 = 12 16 = 16 b ⇒ a 12 = 12 16 and 12 16 = 16 b ⇒ a = 12 16 × 12 and b = 16 12 × 16 ⇒ a = 144 16 and b = 256 12 ⇒ a = 9 and b = 64 3 . \therefore \dfrac{a}{12} = \dfrac{12}{16} = \dfrac{16}{b} \\[1em] \Rightarrow \dfrac{a}{12} = \dfrac{12}{16} \text{ and } \dfrac{12}{16} = \dfrac{16}{b} \\[1em] \Rightarrow a = \dfrac{12}{16} \times 12 \text{ and } b = \dfrac{16}{12} \times 16 \\[1em] \Rightarrow a = \dfrac{144}{16} \text{ and } b = \dfrac{256}{12} \\[1em] \Rightarrow a = 9 \text{ and } b = \dfrac{64}{3}. ∴ 12 a = 16 12 = b 16 ⇒ 12 a = 16 12 and 16 12 = b 16 ⇒ a = 16 12 × 12 and b = 12 16 × 16 ⇒ a = 16 144 and b = 12 256 ⇒ a = 9 and b = 3 64 .
Hence, the value of a = 9 and b = 64 3 \dfrac{64}{3} 3 64 .
What number must be added to each of the numbers 5, 11, 19 and 37 so that they are in proportion?
Answer
Let the number to be added be x. So, new numbers are 5 + x, 11 + x, 19 + x, 37 + x
Since, these numbers are in proportion,
∴ 5 + x 11 + x = 19 + x 37 + x ⇒ ( 5 + x ) ( 37 + x ) = ( 19 + x ) ( 11 + x ) ( 185 + 5 x + 37 x + x 2 ) = 209 + 19 x + 11 x + x 2 ⇒ x 2 − x 2 + 42 x − 30 x + 185 − 209 = 0 ⇒ 12 x − 24 = 0 ⇒ 12 x = 24 ⇒ x = 24 12 = 2. \therefore \dfrac{5 + x}{11 + x} = \dfrac{19 + x}{37 + x} \\[0.5em] \Rightarrow (5 + x)(37 + x) = (19 + x)(11 + x) \\[0.5em] (185 + 5x + 37x + x^2) = 209 + 19x + 11x + x^2 \\[0.5em] \Rightarrow x^2 - x^2 + 42x - 30x + 185 - 209 = 0 \\[0.5em] \Rightarrow 12x - 24 = 0 \\[0.5em] \Rightarrow 12x = 24 \\[0.5em] \Rightarrow x = \dfrac{24}{12} = 2. ∴ 11 + x 5 + x = 37 + x 19 + x ⇒ ( 5 + x ) ( 37 + x ) = ( 19 + x ) ( 11 + x ) ( 185 + 5 x + 37 x + x 2 ) = 209 + 19 x + 11 x + x 2 ⇒ x 2 − x 2 + 42 x − 30 x + 185 − 209 = 0 ⇒ 12 x − 24 = 0 ⇒ 12 x = 24 ⇒ x = 12 24 = 2.
Hence, the number that must be added to make the numbers in proportion is 2.
What numbers should be subtracted from each of the numbers 23, 30, 57 and 78 so that remainders are in proportion?
Answer
Let the number to be subtracted be x. So, new numbers are 23 - x, 30 - x, 57 - x, 78 - x
Since, these numbers are in proportion,
∴ 23 − x 30 − x = 57 − x 78 − x ⇒ ( 23 − x ) ( 78 − x ) = ( 57 − x ) ( 30 − x ) ⇒ ( 1794 − 23 x − 78 x + x 2 ) = ( 1710 − 57 x − 30 x + x 2 ) ⇒ x 2 − x 2 − 101 x + 87 x + 1794 − 1710 = 0 ⇒ − 14 x + 84 = 0 ⇒ 14 x = 84 ⇒ x = 6. \therefore \dfrac{23 - x}{30 - x} = \dfrac{57 - x}{78 - x} \\[0.5em] \Rightarrow (23 - x)(78 - x) = (57 - x)(30 - x) \\[0.5em] \Rightarrow (1794 - 23x - 78x + x^2) = (1710 - 57x - 30x + x^2) \\[0.5em] \Rightarrow x^2 - x^2 - 101x + 87x + 1794 - 1710 = 0 \\[0.5em] \Rightarrow -14x + 84 = 0 \\[0.5em] \Rightarrow 14x = 84 \\[0.5em] \Rightarrow x = 6. ∴ 30 − x 23 − x = 78 − x 57 − x ⇒ ( 23 − x ) ( 78 − x ) = ( 57 − x ) ( 30 − x ) ⇒ ( 1794 − 23 x − 78 x + x 2 ) = ( 1710 − 57 x − 30 x + x 2 ) ⇒ x 2 − x 2 − 101 x + 87 x + 1794 − 1710 = 0 ⇒ − 14 x + 84 = 0 ⇒ 14 x = 84 ⇒ x = 6.
Hence, the number that must be subtracted to make the numbers in proportion is 6.
If k + 3, k + 2, 3k - 7 and 2k - 3 are in proportion, find k.
Answer
Since, k + 3, k + 2, 3k - 7 and 2k - 3 are in proportion,
∴ k + 3 k + 2 = 3 k − 7 2 k − 3 ⇒ ( k + 3 ) ( 2 k − 3 ) = ( 3 k − 7 ) ( k + 2 ) ⇒ 2 k 2 − 3 k + 6 k − 9 = 3 k 2 + 6 k − 7 k − 14 ⇒ 2 k 2 + 3 k − 9 = 3 k 2 − k − 14 ⇒ 2 k 2 − 3 k 2 + 3 k + k − 9 + 14 = 0 ⇒ − k 2 + 4 k + 5 = 0 \therefore \dfrac{k + 3}{k + 2} = \dfrac{3k - 7}{2k - 3} \\[0.5em] \Rightarrow (k + 3)(2k - 3) = (3k - 7)(k + 2) \\[0.5em] \Rightarrow 2k^2 - 3k + 6k - 9 = 3k^2 + 6k - 7k - 14 \\[0.5em] \Rightarrow 2k^2 + 3k - 9 = 3k^2 - k - 14 \\[0.5em] \Rightarrow 2k^2 - 3k^2 + 3k + k - 9 + 14 = 0 \\[0.5em] \Rightarrow -k^2 + 4k + 5 = 0 ∴ k + 2 k + 3 = 2 k − 3 3 k − 7 ⇒ ( k + 3 ) ( 2 k − 3 ) = ( 3 k − 7 ) ( k + 2 ) ⇒ 2 k 2 − 3 k + 6 k − 9 = 3 k 2 + 6 k − 7 k − 14 ⇒ 2 k 2 + 3 k − 9 = 3 k 2 − k − 14 ⇒ 2 k 2 − 3 k 2 + 3 k + k − 9 + 14 = 0 ⇒ − k 2 + 4 k + 5 = 0
Multiplying equation by -1,
⇒ k 2 − 4 k − 5 = 0 ⇒ k 2 − 5 k + k − 5 = 0 ⇒ k ( k − 5 ) + 1 ( k − 5 ) = 0 ⇒ ( k + 1 ) ( k − 5 ) = 0 ⇒ k + 1 = 0 or k − 5 = 0 ⇒ k = − 1 or k = 5. \Rightarrow k^2 - 4k - 5 = 0 \\[0.5em] \Rightarrow k^2 - 5k + k - 5 = 0 \\[0.5em] \Rightarrow k(k - 5) + 1(k - 5) = 0 \\[0.5em] \Rightarrow (k + 1)(k - 5) = 0 \\[0.5em] \Rightarrow k + 1 = 0 \text{ or } k - 5 = 0 \\[0.5em] \Rightarrow k = -1 \text{ or } k = 5. ⇒ k 2 − 4 k − 5 = 0 ⇒ k 2 − 5 k + k − 5 = 0 ⇒ k ( k − 5 ) + 1 ( k − 5 ) = 0 ⇒ ( k + 1 ) ( k − 5 ) = 0 ⇒ k + 1 = 0 or k − 5 = 0 ⇒ k = − 1 or k = 5.
Hence, the value of k is -1 and 5.
If (x + 5) is the mean proportion between x + 2 and x + 9, find the value of x.
Answer
Since, (x + 5) is the mean proportion between x + 2 and x + 9,
∴ x + 2 x + 5 = x + 5 x + 9 ⇒ ( x + 5 ) 2 = ( x + 2 ) ( x + 9 ) ⇒ ( x 2 + 25 + 10 x ) = ( x 2 + 9 x + 2 x + 18 ) ⇒ x 2 − x 2 + 10 x − 11 x + 25 − 18 = 0 ⇒ − x + 7 = 0 ⇒ x = 7. \therefore \dfrac{x + 2}{x + 5} = \dfrac{x + 5}{x + 9} \\[0.5em] \Rightarrow (x + 5)^2 = (x + 2)(x + 9) \\[0.5em] \Rightarrow (x^2 + 25 + 10x) = (x^2 + 9x + 2x + 18) \\[0.5em] \Rightarrow x^2 - x^2 + 10x - 11x + 25 - 18 = 0 \\[0.5em] \Rightarrow -x + 7 = 0 \\[0.5em] \Rightarrow x = 7. ∴ x + 5 x + 2 = x + 9 x + 5 ⇒ ( x + 5 ) 2 = ( x + 2 ) ( x + 9 ) ⇒ ( x 2 + 25 + 10 x ) = ( x 2 + 9 x + 2 x + 18 ) ⇒ x 2 − x 2 + 10 x − 11 x + 25 − 18 = 0 ⇒ − x + 7 = 0 ⇒ x = 7.
Hence, the value of x is 7.
What numbers must be added to each of the numbers 16, 26 and 40 so that the resulting numbers must be in continued proportion?
Answer
Let the number to be added to each number be x. So, the new numbers are 16 + x, 26 + x, 40 + x.
Since, new numbers are in continued proportion,
∴ 16 + x 26 + x = 26 + x 40 + x ⇒ ( 16 + x ) ( 40 + x ) = ( 26 + x ) ( 26 + x ) ⇒ 640 + 16 x + 40 x + x 2 = 676 + 26 x + 26 x + x 2 ⇒ x 2 − x 2 + 56 x − 52 x + 640 − 676 = 0 ⇒ 4 x − 36 = 0 ⇒ 4 x = 36 ⇒ x = 9. \therefore \dfrac{16 + x}{26 + x} = \dfrac{26 + x}{40 + x} \\[0.5em] \Rightarrow (16 + x)(40 + x) = (26 + x)(26 + x) \\[0.5em] \Rightarrow 640 + 16x + 40x + x^2 = 676 + 26x + 26x + x^2 \\[0.5em] \Rightarrow x^2 - x^2 + 56x - 52x + 640 - 676 = 0 \\[0.5em] \Rightarrow 4x - 36 = 0 \\[0.5em] \Rightarrow 4x = 36 \Rightarrow x = 9. ∴ 26 + x 16 + x = 40 + x 26 + x ⇒ ( 16 + x ) ( 40 + x ) = ( 26 + x ) ( 26 + x ) ⇒ 640 + 16 x + 40 x + x 2 = 676 + 26 x + 26 x + x 2 ⇒ x 2 − x 2 + 56 x − 52 x + 640 − 676 = 0 ⇒ 4 x − 36 = 0 ⇒ 4 x = 36 ⇒ x = 9.
Hence, the number to be added to each number is 9.
Find two numbers such that the mean proportional between them is 28 and the third proportional to them is 224.
Answer
Let the two numbers be x and y.
Given, 28 is the mean proportional between x and y.
∴ x 28 = 28 y ⇒ x y = 28 × 28 ⇒ x y = 784 ⇒ x = 784 y [....Eq 1] \therefore \dfrac{x}{28} = \dfrac{28}{y} \\[0.5em] \Rightarrow xy = 28 \times 28 \\[0.5em] \Rightarrow xy = 784 \\[0.5em] \Rightarrow x = \dfrac{784}{y} \qquad \text{[....Eq 1]} ∴ 28 x = y 28 ⇒ x y = 28 × 28 ⇒ x y = 784 ⇒ x = y 784 [....Eq 1]
Given, 224 is the third proportional to numbers.
∴ x y = y 224 ⇒ y 2 = 224 x \therefore \dfrac{x}{y} = \dfrac{y}{224} \\[0.5em] \Rightarrow y^2 = 224x \\[0.5em] ∴ y x = 224 y ⇒ y 2 = 224 x
Putting value of x from equation 1 above:
⇒ y 2 = 224 ( 784 y ) ⇒ y 3 = 175616 ⇒ y = 175616 3 ⇒ y = 56 3 3 ⇒ y = 56 and x = 784 56 = 14. \Rightarrow y^2 = 224\Big(\dfrac{784}{y}\Big) \\[0.5em] \Rightarrow y^3 = 175616 \\[0.5em] \Rightarrow y = \sqrt[3]{175616} \\[0.5em] \Rightarrow y = \sqrt[3]{56^3} \\[0.5em] \Rightarrow y = 56 \\[0.5em] \text{ and } x = \dfrac{784}{56} = 14. ⇒ y 2 = 224 ( y 784 ) ⇒ y 3 = 175616 ⇒ y = 3 175616 ⇒ y = 3 5 6 3 ⇒ y = 56 and x = 56 784 = 14.
Hence, the two numbers are 14 and 56.
If b is the mean proportional between a and c , prove that a, c, a2 + b2 and b2 + c2 are proportional.
Answer
Given, b is the mean proportional between a and c then,
b2 = ac. [....Eq 1]
If a, c, a2 + b2 and b2 + c2 are proportional then,
⇒ a c = a 2 + b 2 b 2 + c 2 ⇒ a ( b 2 + c 2 ) = c ( a 2 + b 2 ) \Rightarrow \dfrac{a}{c} = \dfrac{a^2 + b^2}{b^2 + c^2} \\[0.5em] \Rightarrow a(b^2 + c^2) = c(a^2 + b^2) \\[0.5em] ⇒ c a = b 2 + c 2 a 2 + b 2 ⇒ a ( b 2 + c 2 ) = c ( a 2 + b 2 )
Solving L.H.S first
a(b2 + c2 ) = a(ac + c2 ) [Putting value of b2 from Eq 1] = ac(a + c)
Solving R.H.S
c(a2 + b2 ) = c(a2 + ac) [Putting value of b2 from Eq 1] = ac(a + c)
Since, L.H.S. = R.H.S = ac(a + c), hence the numbers, a, c, a2 + b2 and b2 + c2 are in proportion.
If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a2 + b2 ) and (b2 + c2 ).
Answer
Given, b is the mean proportional between a and c then,
b2 = ac. [....Eq 1]
For (ab + bc) to be the mean proportional between (a2 + b2 ) and (b2 + c2 ) following condition must be satisfied,
(ab + bc)2 = (a2 + b2 )(b2 + c2 )
Solving L.H.S. first,
⇒ ( a b + b c ) 2 = a 2 b 2 + 2 a b 2 c + b 2 c 2 \Rightarrow (ab + bc)^2 \\[0.5em] = a^2b^2 + 2ab^2c + b^2c^2 \\[0.5em] ⇒ ( ab + b c ) 2 = a 2 b 2 + 2 a b 2 c + b 2 c 2
Putting value of b2 from equation 1:
= a 2 ( a c ) + 2 a c ( a c ) + c 2 ( a c ) = a 3 c + 2 a 2 c 2 + a c 3 = a c ( a 2 + c 2 + 2 a c ) = a c ( a + c ) 2 = a^2(ac) + 2ac(ac) + c^2(ac) \\[0.5em] = a^3c + 2a^2c^2 + ac^3 \\[0.5em] = ac(a^2 + c^2 + 2ac) \\[0.5em] = ac(a + c)^2 = a 2 ( a c ) + 2 a c ( a c ) + c 2 ( a c ) = a 3 c + 2 a 2 c 2 + a c 3 = a c ( a 2 + c 2 + 2 a c ) = a c ( a + c ) 2
Now, solving R.H.S. ,
⇒ ( a 2 + b 2 ) ( b 2 + c 2 ) = ( a 2 b 2 + a 2 c 2 + b 4 + b 2 c 2 ) \Rightarrow (a^2 + b^2)(b^2 + c^2) \\[0.5em] = (a^2b^2 + a^2c^2 + b^4 + b^2c^2) \\[0.5em] ⇒ ( a 2 + b 2 ) ( b 2 + c 2 ) = ( a 2 b 2 + a 2 c 2 + b 4 + b 2 c 2 )
Putting value of b2 from equation 1:
= ( a 2 ( a c ) + a 2 c 2 + ( a c ) 2 + ( a c ) ( c 2 ) = a 3 c + a 2 c 2 + a 2 c 2 + a c 3 = a 3 c + 2 a 2 c 2 + a c 3 = a c ( a 2 + 2 a c + c 2 ) = a c ( a + c ) 2 = (a^2(ac) + a^2c^2 + (ac)^2 + (ac)(c^2) \\[0.5em] = a^3c + a^2c^2 + a^2c^2 + ac^3 \\[0.5em] = a^3c + 2a^2c^2 + ac^3 \\[0.5em] = ac(a^2 + 2ac + c^2) \\[0.5em] = ac(a + c)^2 = ( a 2 ( a c ) + a 2 c 2 + ( a c ) 2 + ( a c ) ( c 2 ) = a 3 c + a 2 c 2 + a 2 c 2 + a c 3 = a 3 c + 2 a 2 c 2 + a c 3 = a c ( a 2 + 2 a c + c 2 ) = a c ( a + c ) 2
Since, L.H.S. = R.H.S. = ac(a + c)2 hence, (ab + bc) is the mean proportional between (a2 + b2 ) and (b2 + c2 ).
If y is the mean proportional between x and z, prove that
xyz(x + y + z)3 = (xy + yz + zx)3
Answer
Given, y is the mean proportional between x and z then,
y2 = xz [....Eq 1]
Given, xyz(x + y + z)3 = (xy + yz + zx)3
Solving L.H.S. first,
xyz(x + y + z)3 = xz.y(x + y + z)3 Putting value of xz as y2 from equation 1: = y2 .y(x + y + z)3 = y3 (x + y + z)3 = (y(x + y + z))3 = (xy + y2 + yz)3 = (xy + xz + yz)3 = R.H.S.
L.H.S. = R.H.S. , hence proved, xyz(x + y + z)3 = (xy + yz + zx)3 .
If a + c = mb and 1 b + 1 d = m c \dfrac{1}{b} + \dfrac{1}{d} = \dfrac{m}{c} b 1 + d 1 = c m , prove that a, b, c and d are in proportion.
Answer
Given,
a + c = mb and 1 b + 1 d = m c \dfrac{1}{b} + \dfrac{1}{d} = \dfrac{m}{c} b 1 + d 1 = c m
Solving, a + c = mb
Dividing the equation by b,
⇒ a b + c b = m \Rightarrow \dfrac{a}{b} + \dfrac{c}{b} = m ⇒ b a + b c = m [....Eq 1]
Now solving,
1 b + 1 d = m c \dfrac{1}{b} + \dfrac{1}{d} = \dfrac{m}{c} b 1 + d 1 = c m
Multiplying the equation by c,
⇒ c b + c d = m \Rightarrow \dfrac{c}{b} + \dfrac{c}{d} = m ⇒ b c + d c = m
Putting the value of m from Equation 1,
⇒ c b + c d = a b + c b ⇒ a b + c b = c b + c d ⇒ a b = c d \Rightarrow \dfrac{c}{b} + \dfrac{c}{d} = \dfrac{a}{b} + \dfrac{c}{b} \\[0.5em] \Rightarrow \dfrac{a}{b} + \bcancel{\dfrac{c}{b}} = \bcancel{\dfrac{c}{b}} + \dfrac{c}{d} \\[0.5em] \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} ⇒ b c + d c = b a + b c ⇒ b a + b c = b c + d c ⇒ b a = d c
Since, a b = c d \dfrac{a}{b} = \dfrac{c}{d} b a = d c hence, a, b, c, d are in proportion.
If x a = y b = z c , \dfrac{x}{a} =\dfrac{y}{b} = \dfrac{z}{c}, a x = b y = c z , prove that
(i) x 3 a 2 + y 3 b 2 + z 3 c 2 = ( x + y + z ) 3 ( a + b + c ) 2 (ii) ( a 2 x 2 + b 2 y 2 + c 2 z 2 a 3 x + b 3 y + c 3 z ) 3 = x y z a b c (iii) a x − b y ( a + b ) ( x − y ) + b y − c z ( b + c ) ( y − z ) + c z − a x ( c + a ) ( z − x ) = 3. \begin{array}{ll} \text{(i)} & \dfrac{x^3}{a^2} + \dfrac{y^3}{b^2} + \dfrac{z^3}{c^2} = \dfrac{(x + y + z)^3}{(a + b + c)^2} \\ \text{(ii)} & \Big(\dfrac{a^2x^2 + b^2y^2 + c^2z^2}{a^3x + b^3y + c^3z}\Big)^3 = \dfrac{xyz}{abc} \\ \text{(iii)} & \dfrac{ax - by}{(a + b)(x - y)} + \dfrac{by - cz}{(b + c)(y - z)} \\ & + \dfrac{cz - ax}{(c + a)(z - x)} = 3. \end{array} (i) (ii) (iii) a 2 x 3 + b 2 y 3 + c 2 z 3 = ( a + b + c ) 2 ( x + y + z ) 3 ( a 3 x + b 3 y + c 3 z a 2 x 2 + b 2 y 2 + c 2 z 2 ) 3 = ab c x yz ( a + b ) ( x − y ) a x − b y + ( b + c ) ( y − z ) b y − cz + ( c + a ) ( z − x ) cz − a x = 3.
Answer
(i) Let x a = y b = z c = k \dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k a x = b y = c z = k
∴ x = ak, y = bk, z = ck.
L.H.S. = x 3 a 2 + y 3 b 2 + z 3 c 2 = a 3 k 3 a 2 + b 3 k 3 b 2 + c 3 k 3 c 2 = a k 3 + b k 3 + c k 3 = k 3 ( a + b + c ) . \text{L.H.S.} = \dfrac{x^3}{a^2} + \dfrac{y^3}{b^2} + \dfrac{z^3}{c^2} \\[0.5em] = \dfrac{a^3k^3}{a^2} + \dfrac{b^3k^3}{b^2} + \dfrac{c^3k^3}{c^2} \\[0.5em] = ak^3 + bk^3 + ck^3 \\[0.5em] =k^3(a + b + c). L.H.S. = a 2 x 3 + b 2 y 3 + c 2 z 3 = a 2 a 3 k 3 + b 2 b 3 k 3 + c 2 c 3 k 3 = a k 3 + b k 3 + c k 3 = k 3 ( a + b + c ) .
R.H.S. = ( x + y + z ) 3 ( a + b + c ) 2 = ( a k + b k + c k ) 3 ( a + b + c ) 2 = k 3 ( a + b + c ) 3 ( a + b + c ) 2 = k 3 ( a + b + c ) . \text{R.H.S.} = \dfrac{(x + y + z)^3}{(a + b + c)^2} \\[0.5em] = \dfrac{(ak + bk + ck)^3}{(a + b + c)^2} \\[0.5em] = \dfrac{k^3(a + b + c)^3}{(a + b + c)^2} \\[0.5em] = k^3(a + b + c). R.H.S. = ( a + b + c ) 2 ( x + y + z ) 3 = ( a + b + c ) 2 ( ak + bk + c k ) 3 = ( a + b + c ) 2 k 3 ( a + b + c ) 3 = k 3 ( a + b + c ) .
Since, L.H.S. = R.H.S.,
Hence proved, that
x 3 a 2 + y 3 b 2 + z 3 c 2 = ( x + y + z ) 3 ( a + b + c ) 2 \dfrac{x^3}{a^2} + \dfrac{y^3}{b^2} + \dfrac{z^3}{c^2} = \dfrac{(x + y + z)^3}{(a + b + c)^2} a 2 x 3 + b 2 y 3 + c 2 z 3 = ( a + b + c ) 2 ( x + y + z ) 3
(ii) Let x a = y b = z c = k \dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k a x = b y = c z = k
∴ x = ak, y = bk, z = ck.
L.H.S. = ( a 2 x 2 + b 2 y 2 + c 2 z 2 a 3 x + b 3 y + c 3 ) 3 = ( a 2 ( a k ) x + b 2 ( b k ) y + c 2 ( c k ) z a 3 x + b 3 y + c 3 z ) 3 = ( a 3 x k + b 3 y k + c 3 z k a 3 x + b 3 y + c 3 z ) 3 = k 3 ( a 3 x + b 3 y + c 3 z ) 3 ( a 3 x + b 3 y + c 3 z ) 3 = k 3 = k × k × k = x a × y b × z c = x y z a b c = R.H.S. \text{L.H.S.} = \Big(\dfrac{a^2x^2 + b^2y^2 + c^2z^2}{a^3x + b^3y + c^3}\Big)^3 \\[1em] = \Big(\dfrac{a^2(ak)x + b^2(bk)y + c^2(ck)z}{a^3x + b^3y + c^3z}\Big)^3 \\[1em] = \Big(\dfrac{a^3xk + b^3yk + c^3zk}{a^3x + b^3y + c^3z}\Big)^3 \\[1em] = \dfrac{k^3(a^3x + b^3y + c^3z)^3}{(a^3x + b^3y + c^3z)^3} \\[1em] = k^3 \\[1em] = k \times k \times k \\[1em] = \dfrac{x}{a} \times \dfrac{y}{b} \times \dfrac{z}{c} \\[1em] = \dfrac{xyz}{abc} = \text{R.H.S.} L.H.S. = ( a 3 x + b 3 y + c 3 a 2 x 2 + b 2 y 2 + c 2 z 2 ) 3 = ( a 3 x + b 3 y + c 3 z a 2 ( ak ) x + b 2 ( bk ) y + c 2 ( c k ) z ) 3 = ( a 3 x + b 3 y + c 3 z a 3 x k + b 3 y k + c 3 z k ) 3 = ( a 3 x + b 3 y + c 3 z ) 3 k 3 ( a 3 x + b 3 y + c 3 z ) 3 = k 3 = k × k × k = a x × b y × c z = ab c x yz = R.H.S.
Since, L.H.S. = R.H.S.
Hence proved, that ( a 2 x 2 + b 2 y 2 + c 2 z 2 a 3 x + b 3 y + c 3 z ) 3 = x y z a b c \Big(\dfrac{a^2x^2 + b^2y^2 + c^2z^2}{a^3x + b^3y + c^3z}\Big)^3 = \dfrac{xyz}{abc} ( a 3 x + b 3 y + c 3 z a 2 x 2 + b 2 y 2 + c 2 z 2 ) 3 = ab c x yz .
(iii) Let x a = y b = z c = k \dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k a x = b y = c z = k
∴ x = ak, y = bk, z = ck.
L.H.S. = a x − b y ( a + b ) ( x − y ) + b y − c z ( b + c ) ( y − z ) + c z − a x ( c + a ) ( z − x ) = a ( a k ) − b ( b k ) ( a + b ) ( ( a k ) − ( b k ) ) + b ( b k ) − c ( c k ) ( b + c ) ( b k − c k ) + c ( c k ) − a ( a k ) ( c + a ) ( c k − a k ) = a 2 k − b 2 k k ( a + b ) ( a − b ) + b 2 k − c 2 k k ( b + c ) ( b − c ) + c 2 k − a 2 k k ( c + a ) ( c − a ) = k ( a 2 − b 2 ) k ( a 2 − b 2 ) + k ( b 2 − c 2 ) k ( b 2 − c 2 ) + k ( c 2 − a 2 ) k ( c 2 − a 2 ) = 1 + 1 + 1 = 3 = R.H.S. \text{L.H.S.} = \dfrac{ax - by}{(a + b)(x - y)} + \dfrac{by - cz}{(b + c)(y - z)} + \dfrac{cz - ax}{(c + a)(z - x)} \\[1em] = \dfrac{a(ak) - b(bk)}{(a + b)((ak) - (bk))} + \dfrac{b(bk) - c(ck)}{(b + c)(bk - ck)} + \dfrac{c(ck) - a(ak)}{(c + a)(ck - ak)} \\[1em] = \dfrac{a^2k - b^2k}{k(a + b)(a - b)} + \dfrac{b^2k - c^2k}{k(b + c)(b - c)} + \dfrac{c^2k - a^2k}{k(c + a)(c - a)} \\[1em] = \dfrac{k(a^2 - b^2)}{k(a^2 - b^2)} + \dfrac{k(b^2 - c^2)}{k(b^2 - c^2)} + \dfrac{k(c^2 - a^2)}{k(c^2 - a^2)} \\[1em] = 1 + 1 + 1 \\[1em] = 3 = \text{R.H.S.} L.H.S. = ( a + b ) ( x − y ) a x − b y + ( b + c ) ( y − z ) b y − cz + ( c + a ) ( z − x ) cz − a x = ( a + b ) (( ak ) − ( bk )) a ( ak ) − b ( bk ) + ( b + c ) ( bk − c k ) b ( bk ) − c ( c k ) + ( c + a ) ( c k − ak ) c ( c k ) − a ( ak ) = k ( a + b ) ( a − b ) a 2 k − b 2 k + k ( b + c ) ( b − c ) b 2 k − c 2 k + k ( c + a ) ( c − a ) c 2 k − a 2 k = k ( a 2 − b 2 ) k ( a 2 − b 2 ) + k ( b 2 − c 2 ) k ( b 2 − c 2 ) + k ( c 2 − a 2 ) k ( c 2 − a 2 ) = 1 + 1 + 1 = 3 = R.H.S.
Since, L.H.S. = R.H.S. hence proved that,
a x − b y ( a + b ) ( x − y ) + b y − c z ( b + c ) ( y − z ) + c z − a x ( c + a ) ( z − x ) = 3. \dfrac{ax - by}{(a + b)(x - y)} + \dfrac{by - cz}{(b + c)(y - z)} + \dfrac{cz - ax}{(c + a)(z - x)} = 3. ( a + b ) ( x − y ) a x − b y + ( b + c ) ( y − z ) b y − cz + ( c + a ) ( z − x ) cz − a x = 3.
If a b = c d = e f \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} b a = d c = f e , prove that
(i) ( b 2 + d 2 + f 2 ) ( a 2 + c 2 + e 2 ) = ( a b + c d + e f ) 2 (ii) ( a 3 + c 3 ) 2 ( b 3 + d 3 ) 2 = e 6 f 6 (iii) a 2 b 2 + c 2 d 2 + e 2 f 2 = a c b d + c e d f + a e b f (iv) b d f ( a + b b + c + d d + e + f f ) 3 = 27 ( a + b ) ( c + d ) ( e + f ) \begin{array}{ll} \text{(i)} & (b^2 + d^2 + f^2)(a^2 + c^2 + e^2) \\ & = (ab + cd + ef)^2 \\ \text{(ii)} & \dfrac{(a^3 + c^3)^2}{(b^3 + d^3)^2} = \dfrac{e^6}{f^6} \\ \text{(iii)} & \dfrac{a^2}{b^2} + \dfrac{c^2}{d^2} + \dfrac{e^2}{f^2} \\ & = \dfrac{ac}{bd} + \dfrac{ce}{df} + \dfrac{ae}{bf} \\ \text{(iv)} & bdf\Big(\dfrac{a + b}{b} + \dfrac{c + d}{d} + \dfrac{e + f}{f}\Big)^3 \\ & = 27(a + b)(c + d)(e + f) \end{array} (i) (ii) (iii) (iv) ( b 2 + d 2 + f 2 ) ( a 2 + c 2 + e 2 ) = ( ab + c d + e f ) 2 ( b 3 + d 3 ) 2 ( a 3 + c 3 ) 2 = f 6 e 6 b 2 a 2 + d 2 c 2 + f 2 e 2 = b d a c + df ce + b f a e b df ( b a + b + d c + d + f e + f ) 3 = 27 ( a + b ) ( c + d ) ( e + f )
Answer
(i) Let a b = c d = e f = k \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k b a = d c = f e = k
∴ a = b k , c = d k , e = f k . \therefore a = bk, c = dk, e = fk. ∴ a = bk , c = d k , e = f k .
L.H.S. = ( b 2 + d 2 + f 2 ) ( a 2 + c 2 + e 2 ) = ( b 2 + d 2 + f 2 ) ( b 2 k 2 + d 2 k 2 + f 2 k 2 ) = k 2 ( b 2 + d 2 + f 2 ) ( b 2 + d 2 + f 2 ) = k 2 ( b 2 + d 2 + f 2 ) 2 . R.H.S. = ( a b + c d + e f ) 2 = ( b k . b + d k . d + f k . f ) 2 = ( b 2 k + d 2 k + f 2 k ) 2 = k 2 ( b 2 + d 2 + f 2 ) . \text{L.H.S.} = (b^2 + d^2 + f^2)(a^2 + c^2 + e^2) \\[0.5em] = (b^2 + d^2 + f^2)(b^2k^2 + d^2k^2 + f^2k^2) \\[0.5em] = k^2(b^2 + d^2 + f^2)(b^2 + d^2 + f^2) \\[0.5em] = k^2(b^2 + d^2 + f^2)^2. \\[1em] \text{R.H.S.} = (ab + cd + ef)^2 \\[0.5em] = (bk.b + dk.d + fk .f)^2 \\[0.5em] = (b^2k + d^2k + f^2k)^2 \\[0.5em] = k^2(b^2 + d^2 + f^2). L.H.S. = ( b 2 + d 2 + f 2 ) ( a 2 + c 2 + e 2 ) = ( b 2 + d 2 + f 2 ) ( b 2 k 2 + d 2 k 2 + f 2 k 2 ) = k 2 ( b 2 + d 2 + f 2 ) ( b 2 + d 2 + f 2 ) = k 2 ( b 2 + d 2 + f 2 ) 2 . R.H.S. = ( ab + c d + e f ) 2 = ( bk . b + d k . d + f k . f ) 2 = ( b 2 k + d 2 k + f 2 k ) 2 = k 2 ( b 2 + d 2 + f 2 ) .
Since, L.H.S. = R.H.S. hence proved that, (b2 + d2 + f2 )(a2 + c2 + e2 ) = (ab + cd + ef)2 .
(ii) Let a b = c d = e f = k \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k b a = d c = f e = k
∴ a = b k , c = d k , e = f k . \therefore a = bk, c = dk, e = fk. ∴ a = bk , c = d k , e = f k .
L.H.S. = ( a 3 + c 3 ) 2 ( b 3 + d 3 ) 2 = ( b 3 k 3 + d 3 k 3 ) 2 ( b 3 + d 3 ) 2 = k 6 ( b 3 + d 3 ) 2 ( b 3 + d 3 ) 2 = k 6 R.H.S. = e 6 f 6 = f 6 k 6 f 6 = k 6 \text{L.H.S.} = \dfrac{(a^3 + c^3)^2}{(b^3 + d^3)^2} \\[1em] = \dfrac{(b^3k^3 + d^3k^3)^2}{(b^3 + d^3)^2} \\[1em] = \dfrac{k^6(b^3 + d^3)^2}{(b^3 + d^3)^2} \\[1em] = k^6 \\[1em] \text{R.H.S.} = \dfrac{e^6}{f^6} \\[1em] = \dfrac{f^6k^6}{f^6} \\[1em] = k^6 L.H.S. = ( b 3 + d 3 ) 2 ( a 3 + c 3 ) 2 = ( b 3 + d 3 ) 2 ( b 3 k 3 + d 3 k 3 ) 2 = ( b 3 + d 3 ) 2 k 6 ( b 3 + d 3 ) 2 = k 6 R.H.S. = f 6 e 6 = f 6 f 6 k 6 = k 6
Since, L.H.S. = R.H.S. Hence proved.
(iii) Let a b = c d = e f = k \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k b a = d c = f e = k
∴ a = b k , c = d k , e = f k . \therefore a = bk, c = dk, e = fk. ∴ a = bk , c = d k , e = f k .
L.H.S. = a 2 b 2 + c 2 d 2 + e 2 f 2 = b 2 k 2 b 2 + d 2 k 2 d 2 + f 2 k 2 f 2 = k 2 + k 2 + k 2 = 3 k 2 R.H.S. = a c b d + c e d f + a e b f = ( b k ) d k b d + ( d k ) f k d f + ( b k ) f k b f = k 2 + k 2 + k 2 = 3 k 2 \text{L.H.S.} = \dfrac{a^2}{b^2} + \dfrac{c^2}{d^2} + \dfrac{e^2}{f^2} \\[1em] = \dfrac{b^2k^2}{b^2} + \dfrac{d^2k^2}{d^2} + \dfrac{f^2k^2}{f^2} \\[1em] = k^2 + k^2 + k^2 \\[1em] = 3k^2 \\[1em] \text{R.H.S.} = \dfrac{ac}{bd} + \dfrac{ce}{df} + \dfrac{ae}{bf} \\[1em] = \dfrac{(bk)dk}{bd} + \dfrac{(dk)fk}{df} + \dfrac{(bk)fk}{bf} \\[1em] = k^2 + k^2 + k^2 \\[1em] = 3k^2 L.H.S. = b 2 a 2 + d 2 c 2 + f 2 e 2 = b 2 b 2 k 2 + d 2 d 2 k 2 + f 2 f 2 k 2 = k 2 + k 2 + k 2 = 3 k 2 R.H.S. = b d a c + df ce + b f a e = b d ( bk ) d k + df ( d k ) f k + b f ( bk ) f k = k 2 + k 2 + k 2 = 3 k 2
Since, L.H.S. = R.H.S. Hence proved.
(iv) Let a b = c d = e f = k \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k b a = d c = f e = k
∴ a = b k , c = d k , e = f k . \therefore a = bk, c = dk, e = fk. ∴ a = bk , c = d k , e = f k .
L.H.S. = b d f ( a + b b + c + d d + e + f f ) 3 = b d f ( b k + b b + d k + d d + f k + f f ) 3 = b d f ( k + 1 + k + 1 + k + 1 ) 3 = b d f ( 3 k + 3 ) 3 = b d f ( 3 ) 3 ( k + 1 ) 3 = 27 b d f ( k + 1 ) 3 . R.H.S. = 27 ( a + b ) ( c + d ) ( e + f ) = 27 ( b k + b ) ( d k + d ) ( f k + f ) = 27 b ( k + 1 ) d ( k + 1 ) f ( k + 1 ) = 27 b d f ( k + 1 ) 3 . \text{L.H.S.} = bdf\Big(\dfrac{a + b}{b} + \dfrac{c + d}{d} + \dfrac{e + f}{f}\Big)^3 \\[1em] = bdf\Big(\dfrac{bk + b}{b} + \dfrac{dk + d}{d} + \dfrac{fk + f}{f}\Big)^3 \\[1em] = bdf(k + 1 + k + 1 + k + 1)^3 \\[1em] = bdf(3k + 3)^3 \\[1em] = bdf(3)^3(k + 1)^3 \\[1em] = 27bdf(k + 1)^3. \\[1em] \text{R.H.S.} = 27(a + b)(c + d)(e + f) \\[1em] = 27(bk + b)(dk + d)(fk + f) \\[1em] = 27b(k + 1)d(k + 1)f(k + 1) \\[1em] = 27bdf(k + 1)^3. L.H.S. = b df ( b a + b + d c + d + f e + f ) 3 = b df ( b bk + b + d d k + d + f f k + f ) 3 = b df ( k + 1 + k + 1 + k + 1 ) 3 = b df ( 3 k + 3 ) 3 = b df ( 3 ) 3 ( k + 1 ) 3 = 27 b df ( k + 1 ) 3 . R.H.S. = 27 ( a + b ) ( c + d ) ( e + f ) = 27 ( bk + b ) ( d k + d ) ( f k + f ) = 27 b ( k + 1 ) d ( k + 1 ) f ( k + 1 ) = 27 b df ( k + 1 ) 3 .
Since, L.H.S. = R.H.S. Hence proved.
If ax = by = cz, prove that x 2 y z + y 2 z x + z 2 x y = b c a 2 + c a b 2 + a b c 2 . \dfrac{x^2}{yz} + \dfrac{y^2}{zx} + \dfrac{z^2}{xy} = \dfrac{bc}{a^2} + \dfrac{ca}{b^2} + \dfrac{ab}{c^2}. yz x 2 + z x y 2 + x y z 2 = a 2 b c + b 2 c a + c 2 ab .
Answer
Let a x = b y = c z = k ∴ x = k a , y = k b , z = k c L.H.S. = x 2 y z + y 2 z x + z 2 x y = k 2 a 2 k b × k c + k 2 b 2 k c × k a + k 2 c 2 k a × k b = k 2 × b c k 2 × a 2 + k 2 × a c k 2 × b 2 + k 2 × a b k 2 × c 2 = b c a 2 + a c b 2 + a b c 2 = R.H.S. \text{Let } ax = by = cz = k \\[1em] \therefore x = \dfrac{k}{a}, y = \dfrac{k}{b}, z = \dfrac{k}{c} \\[1em] \text{L.H.S.} = \dfrac{x^2}{yz} + \dfrac{y^2}{zx} + \dfrac{z^2}{xy} \\[1em] = \dfrac{\dfrac{k^2}{a^2}}{\dfrac{k}{b} \times \dfrac{k}{c}} + \dfrac{\dfrac{k^2}{b^2}}{\dfrac{k}{c} \times \dfrac{k}{a}} + \dfrac{\dfrac{k^2}{c^2}}{\dfrac{k}{a} \times \dfrac{k}{b}} \\[1em] = \dfrac{k^2 \times bc}{k^2 \times a^2} + \dfrac{k^2 \times ac}{k^2 \times b^2} + \dfrac{k^2 \times ab}{k^2 \times c^2} \\[1em] = \dfrac{bc}{a^2} + \dfrac{ac}{b^2} + \dfrac{ab}{c^2} = \text{R.H.S.} \\[1em] Let a x = b y = cz = k ∴ x = a k , y = b k , z = c k L.H.S. = yz x 2 + z x y 2 + x y z 2 = b k × c k a 2 k 2 + c k × a k b 2 k 2 + a k × b k c 2 k 2 = k 2 × a 2 k 2 × b c + k 2 × b 2 k 2 × a c + k 2 × c 2 k 2 × ab = a 2 b c + b 2 a c + c 2 ab = R.H.S.
Since, L.H.S. = R.H.S. Hence proved.
If a , b , c , d a, b, c, d a , b , c , d are in proportion, prove that :
(i) ( 5 a + 7 b ) ( 2 c − 3 d ) = ( 5 c + 7 d ) ( 2 a − 3 b ) (ii) ( m a + n b ) : b = ( m c + n d ) : d (iii) ( a 4 + c 4 ) : ( b 4 + d 4 ) = a 2 c 2 : b 2 d 2 (iv) a 2 + a b c 2 + c d = b 2 − 2 a b d 2 − 2 c d (v) ( a + c ) 3 ( b + d ) 3 = a ( a − c ) 2 b ( b − d ) 2 (vi) a 2 + a b + b 2 a 2 − a b + b 2 = c 2 + c d + d 2 c 2 − c d + d 2 (vii) a 2 + b 2 c 2 + d 2 = a b + a d − b c b c + c d − a d (viii) a b c d ( 1 a 2 + 1 b 2 + 1 c 2 + 1 d 2 ) = a 2 + b 2 + c 2 + d 2 . \begin{array}{ll} \text{(i)} & (5a + 7b)(2c - 3d) \\ & = (5c + 7d)(2a - 3b) \\ \text{(ii)} & (ma + nb) : b \\ & = (mc + nd) : d \\ \text{(iii)} & (a^4 + c^4) : (b^4 + d^4) \\ & = a^2c^2 : b^2d^2 \\ \text{(iv)} & \dfrac{a^2 + ab}{c^2 + cd} = \dfrac{b^2 - 2ab}{d^2 - 2cd} \\[1em] \text{(v)} & \dfrac{(a + c)^3}{(b + d)^3} = \dfrac{a(a - c)^2}{b(b - d)^2} \\[1em] \text{(vi)} & \dfrac{a^2 + ab + b^2}{a^2 - ab + b^2} \\ & = \dfrac{c^2 + cd + d^2}{c^2 - cd + d^2} \\ \text{(vii)} & \dfrac{a^2 + b^2}{c^2 + d^2} = \dfrac{ab + ad - bc}{bc + cd - ad} \\[1em] \text{(viii)} & abcd\Big(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2} + \dfrac{1}{d^2} \Big) \\ & = a^2 + b^2 + c^2 + d^2. \end{array} (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) ( 5 a + 7 b ) ( 2 c − 3 d ) = ( 5 c + 7 d ) ( 2 a − 3 b ) ( ma + nb ) : b = ( m c + n d ) : d ( a 4 + c 4 ) : ( b 4 + d 4 ) = a 2 c 2 : b 2 d 2 c 2 + c d a 2 + ab = d 2 − 2 c d b 2 − 2 ab ( b + d ) 3 ( a + c ) 3 = b ( b − d ) 2 a ( a − c ) 2 a 2 − ab + b 2 a 2 + ab + b 2 = c 2 − c d + d 2 c 2 + c d + d 2 c 2 + d 2 a 2 + b 2 = b c + c d − a d ab + a d − b c ab c d ( a 2 1 + b 2 1 + c 2 1 + d 2 1 ) = a 2 + b 2 + c 2 + d 2 .
Answer
(i) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = ( 5 a + 7 b ) ( 2 c − 3 d ) = ( 5 b k + 7 b ) ( 2 d k − 3 d ) = b d ( 5 k + 7 ) ( 2 k − 3 ) R.H.S. = ( 5 c + 7 d ) ( 2 a − 3 b ) = ( 5 d k + 7 d ) ( 2 b k − 3 b ) = b d ( 5 k + 7 ) ( 2 k − 3 ) . \text{L.H.S.} = (5a + 7b)(2c - 3d) \\[0.5em] = (5bk + 7b)(2dk - 3d) \\[0.5em] = bd(5k + 7)(2k - 3) \\[1em] \text{R.H.S.} = (5c + 7d)(2a - 3b) \\[0.5em] = (5dk + 7d)(2bk - 3b) \\[0.5em] = bd(5k + 7)(2k - 3). L.H.S. = ( 5 a + 7 b ) ( 2 c − 3 d ) = ( 5 bk + 7 b ) ( 2 d k − 3 d ) = b d ( 5 k + 7 ) ( 2 k − 3 ) R.H.S. = ( 5 c + 7 d ) ( 2 a − 3 b ) = ( 5 d k + 7 d ) ( 2 bk − 3 b ) = b d ( 5 k + 7 ) ( 2 k − 3 ) .
Since, L.H.S. = R.H.S. Hence proved.
(ii) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = ( m a + n b ) : b = m a + n b b \text{L.H.S.} = (ma + nb) : b \\[0.5em] = \dfrac{ma + nb}{b} \\[0.5em] L.H.S. = ( ma + nb ) : b = b ma + nb
Putting value of a = bk,
= m b k + n b b = m k + n . R.H.S. = ( m c + n d ) : d = \dfrac{mbk + nb}{b} \\[0.5em] = mk + n. \\[1em] \text{R.H.S.} = (mc + nd) : d \\[0.5em] = b mbk + nb = mk + n . R.H.S. = ( m c + n d ) : d
Putting value of c = dk,
= m d k + n d d = m k + n . = \dfrac{mdk + nd}{d} \\[0.5em] = mk + n. = d m d k + n d = mk + n .
Since, L.H.S. = R.H.S. Hence proved.
(iii) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = ( a 4 + c 4 ) : ( b 4 + d 4 ) = a 4 + c 4 b 4 + d 4 = k 4 b 4 + k 4 d 4 b 4 + d 4 = k 4 . R.H.S. = a 2 c 2 : b 2 d 2 = a 2 c 2 b 2 d 2 = ( b k ) 2 ( d k ) 2 b 2 d 2 = k 4 b 2 d 2 b 2 d 2 = k 4 . \text{L.H.S.} = (a^4 + c^4) : (b^4 + d^4) \\[1em] = \dfrac{a^4 + c^4}{b^4 + d^4} \\[1em] = \dfrac{k^4b^4 + k^4d^4}{b^4 + d^4} \\[1em] = k^4. \\[1em] \text{R.H.S.} = a^2c^2 : b^2d^2 \\[1em] = \dfrac{a^2c^2}{b^2d^2} \\[1em] = \dfrac{(bk)^2(dk)^2}{b^2d^2} \\[1em] = \dfrac{k^4b^2d^2}{b^2d^2} \\[1em] = k^4. L.H.S. = ( a 4 + c 4 ) : ( b 4 + d 4 ) = b 4 + d 4 a 4 + c 4 = b 4 + d 4 k 4 b 4 + k 4 d 4 = k 4 . R.H.S. = a 2 c 2 : b 2 d 2 = b 2 d 2 a 2 c 2 = b 2 d 2 ( bk ) 2 ( d k ) 2 = b 2 d 2 k 4 b 2 d 2 = k 4 .
Since, L.H.S. = R.H.S. Hence proved.
(iv) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = a 2 + a b c 2 + c d = b 2 k 2 + b 2 k d 2 k 2 + d 2 k = b 2 k ( k + 1 ) d 2 k ( k + 1 ) = b 2 d 2 R.H.S. = b 2 − 2 a b d 2 − 2 c d = b 2 − 2 b 2 k d 2 − 2 d 2 k = b 2 ( 1 − 2 k ) d 2 ( 1 − 2 k ) = b 2 d 2 . \text{L.H.S.} = \dfrac{a^2 + ab}{c^2 + cd} \\[1em] = \dfrac{b^2k^2 + b^2k}{d^2k^2 + d^2k} \\[1em] = \dfrac{b^2k(k + 1)}{d^2k(k + 1)} \\[1em] = \dfrac{b^2}{d^2} \\[1em] \text{R.H.S.} = \dfrac{b^2 - 2ab}{d^2 - 2cd} \\[1em] = \dfrac{b^2 - 2b^2k}{d^2 - 2d^2k} \\[1em] = \dfrac{b^2(1 - 2k)}{d^2(1 - 2k)} \\[1em] = \dfrac{b^2}{d^2}. L.H.S. = c 2 + c d a 2 + ab = d 2 k 2 + d 2 k b 2 k 2 + b 2 k = d 2 k ( k + 1 ) b 2 k ( k + 1 ) = d 2 b 2 R.H.S. = d 2 − 2 c d b 2 − 2 ab = d 2 − 2 d 2 k b 2 − 2 b 2 k = d 2 ( 1 − 2 k ) b 2 ( 1 − 2 k ) = d 2 b 2 .
Since, L.H.S. = R.H.S. Hence proved.
(v) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = ( a + c ) 3 ( b + d ) 3 = ( b k + d k ) 3 ( b + d ) 3 = k 3 ( b + d ) 3 ( b + d ) 3 = k 3 R.H.S. = a ( a − c ) 2 b ( b − d ) 2 = b k ( b k − d k ) 2 b ( b − d ) 2 = b k ( k 2 ( b − d ) 2 ) b ( b − d ) 2 = b k 3 ( b − d ) 2 b ( b − d ) 2 = k 3 . \text{L.H.S.} = \dfrac{(a + c)^3}{(b + d)^3} \\[1em] = \dfrac{(bk + dk)^3}{(b + d)^3} \\[1em] = \dfrac{k^3(b + d)^3}{(b + d)^3} \\[1em] = k^3 \\[1em] \text{R.H.S.} = \dfrac{a(a - c)^2}{b(b - d)^2} \\[1em] = \dfrac{bk(bk - dk)^2}{b(b - d)^2} \\[1em] = \dfrac{bk(k^2(b - d)^2)}{b(b - d)^2} \\[1em] = \dfrac{bk^3(b - d)^2}{b(b - d)^2} \\[1em] = k^3. L.H.S. = ( b + d ) 3 ( a + c ) 3 = ( b + d ) 3 ( bk + d k ) 3 = ( b + d ) 3 k 3 ( b + d ) 3 = k 3 R.H.S. = b ( b − d ) 2 a ( a − c ) 2 = b ( b − d ) 2 bk ( bk − d k ) 2 = b ( b − d ) 2 bk ( k 2 ( b − d ) 2 ) = b ( b − d ) 2 b k 3 ( b − d ) 2 = k 3 .
Since, L.H.S. = R.H.S. Hence proved.
(vi) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = a 2 + a b + b 2 a 2 − a b + b 2 = b 2 k 2 + ( b k ) b + b 2 b 2 k 2 − ( b k ) b + b 2 = b 2 k 2 + b 2 k + b 2 b 2 k 2 − b 2 k + b 2 = b 2 ( k 2 + k + 1 ) b 2 ( k 2 − k + 1 ) = k 2 + k + 1 k 2 − k + 1 R.H.S. = c 2 + c d + d 2 c 2 − c d + d 2 = d 2 k 2 + ( d k ) d + d 2 d 2 k 2 − ( d k ) d + d 2 = d 2 ( k 2 + k + 1 ) d 2 ( k 2 − k + 1 ) = k 2 + k + 1 k 2 − k + 1 . \text{L.H.S.} = \dfrac{a^2 + ab + b^2}{a^2 - ab + b^2} \\[1em] = \dfrac{b^2k^2 + (bk)b + b^2}{b^2k^2 - (bk)b + b^2} \\[1em] = \dfrac{b^2k^2 + b^2k + b^2}{b^2k^2 - b^2k + b^2} \\[1em] = \dfrac{b^2(k^2 + k + 1)}{b^2(k^2 - k + 1)} \\[1em] = \dfrac{k^2 + k + 1}{k^2 - k + 1} \\[1em] \text{R.H.S.} = \dfrac{c^2 + cd + d^2}{c^2 - cd + d^2} \\[1em] = \dfrac{d^2k^2 + (dk)d + d^2}{d^2k^2 - (dk)d + d^2} \\[1em] = \dfrac{d^2(k^2 + k + 1)}{d^2(k^2 - k + 1)} \\[1em] = \dfrac{k^2 + k + 1}{k^2 - k + 1}. L.H.S. = a 2 − ab + b 2 a 2 + ab + b 2 = b 2 k 2 − ( bk ) b + b 2 b 2 k 2 + ( bk ) b + b 2 = b 2 k 2 − b 2 k + b 2 b 2 k 2 + b 2 k + b 2 = b 2 ( k 2 − k + 1 ) b 2 ( k 2 + k + 1 ) = k 2 − k + 1 k 2 + k + 1 R.H.S. = c 2 − c d + d 2 c 2 + c d + d 2 = d 2 k 2 − ( d k ) d + d 2 d 2 k 2 + ( d k ) d + d 2 = d 2 ( k 2 − k + 1 ) d 2 ( k 2 + k + 1 ) = k 2 − k + 1 k 2 + k + 1 .
Since, L.H.S. = R.H.S. Hence proved.
(vii) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = a 2 + b 2 c 2 + d 2 = b 2 k 2 + b 2 d 2 k 2 + d 2 = b 2 ( k 2 + 1 ) d 2 ( k 2 + 1 ) = b 2 d 2 R.H.S. = a b + a d − b c b c + c d − a d = ( b k ) b + ( b k ) d − b ( d k ) b ( d k ) + ( d k ) d − ( b k ) d = b 2 k + b d k − b d k b d k + d 2 k − b d k = b 2 k d 2 k = b 2 d 2 . \text{L.H.S.} = \dfrac{a^2 + b^2}{c^2 + d^2} \\[1em] = \dfrac{b^2k^2 + b^2}{d^2k^2 + d^2} \\[1em] = \dfrac{b^2(k^2 + 1)}{d^2(k^2 + 1)} \\[1em] = \dfrac{b^2}{d^2} \\[1em] \text{R.H.S.} = \dfrac{ab + ad - bc}{bc + cd - ad} \\[1em] = \dfrac{(bk)b + (bk)d - b(dk)}{b(dk) + (dk)d - (bk)d} \\[1em] = \dfrac{b^2k + bdk - bdk}{bdk + d^2k - bdk} \\[1em] = \dfrac{b^2k}{d^2k} \\[1em] = \dfrac{b^2}{d^2}. L.H.S. = c 2 + d 2 a 2 + b 2 = d 2 k 2 + d 2 b 2 k 2 + b 2 = d 2 ( k 2 + 1 ) b 2 ( k 2 + 1 ) = d 2 b 2 R.H.S. = b c + c d − a d ab + a d − b c = b ( d k ) + ( d k ) d − ( bk ) d ( bk ) b + ( bk ) d − b ( d k ) = b d k + d 2 k − b d k b 2 k + b d k − b d k = d 2 k b 2 k = d 2 b 2 .
Since, L.H.S. = R.H.S. Hence proved.
(viii) a, b, c, d are in proportion
∴ a b = c d = k \therefore \dfrac{a}{b} = \dfrac{c}{d} = k ∴ b a = d c = k
Hence, a = bk, c = dk.
L.H.S. = a b c d ( 1 a 2 + 1 b 2 + 1 c 2 + 1 d 2 ) = ( b k ) b ( d k ) d ( 1 b 2 k 2 + 1 b 2 + 1 d 2 k 2 + 1 d 2 ) = b 2 d 2 k 2 ( d 2 + d 2 k 2 + b 2 + b 2 k 2 b 2 d 2 k 2 ) = d 2 ( 1 + k 2 ) + b 2 ( 1 + k 2 ) = ( d 2 + b 2 ) ( 1 + k 2 ) . R.H.S. = a 2 + b 2 + c 2 + d 2 = b 2 k 2 + b 2 + d 2 k 2 + d 2 = b 2 ( k 2 + 1 ) + d 2 ( k 2 + 1 ) = ( d 2 + b 2 ) ( 1 + k 2 ) . \text{L.H.S.} = abcd\Big(\dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2} + \dfrac{1}{d^2} \Big) \\[1em] = (bk)b(dk)d\Big(\dfrac{1}{b^2k^2} + \dfrac{1}{b^2} + \dfrac{1}{d^2k^2} + \dfrac{1}{d^2}\Big) \\[1em] = b^2d^2k^2\Big(\dfrac{d^2 + d^2k^2 + b^2 + b^2k^2}{b^2d^2k^2}\Big) \\[1em] = d^2(1 + k^2) + b^2(1 + k^2) \\[1em] = (d^2 + b^2)(1 + k^2). \\[1em] \text{R.H.S.} = a^2 + b^2 + c^2 + d^2 \\[1em] = b^2k^2 + b^2 + d^2k^2 + d^2 \\[1em] = b^2(k^2 + 1) + d^2(k^2 + 1) \\[1em] = (d^2 + b^2)(1 + k^2). L.H.S. = ab c d ( a 2 1 + b 2 1 + c 2 1 + d 2 1 ) = ( bk ) b ( d k ) d ( b 2 k 2 1 + b 2 1 + d 2 k 2 1 + d 2 1 ) = b 2 d 2 k 2 ( b 2 d 2 k 2 d 2 + d 2 k 2 + b 2 + b 2 k 2 ) = d 2 ( 1 + k 2 ) + b 2 ( 1 + k 2 ) = ( d 2 + b 2 ) ( 1 + k 2 ) . R.H.S. = a 2 + b 2 + c 2 + d 2 = b 2 k 2 + b 2 + d 2 k 2 + d 2 = b 2 ( k 2 + 1 ) + d 2 ( k 2 + 1 ) = ( d 2 + b 2 ) ( 1 + k 2 ) .
Since, L.H.S. = R.H.S. Hence proved.
If x, y, z are in continued proportion, prove that : ( x + y ) 2 ( y + z ) 2 = x z . \dfrac{(x + y)^2}{(y + z)^2} = \dfrac{x}{z}. ( y + z ) 2 ( x + y ) 2 = z x .
Answer
Since, x, y, z are in continued proportion
∴ x y = y z = k ⇒ y = z k and x = y k = z k 2 L.H.S. = ( x + y ) 2 ( y + z ) 2 = ( z k 2 + z k ) 2 ( z k + z ) 2 = z 2 k 4 + z 2 k 2 + 2 z 2 k 3 z 2 k 2 + z 2 + 2 z 2 k = z 2 k 2 ( k 2 + 1 + 2 k ) z 2 ( k 2 + 1 + 2 k ) = k 2 . R.H.S. = x z = z k 2 z = k 2 . \therefore \dfrac{x}{y} = \dfrac{y}{z} = k \\[1em] \Rightarrow y = zk \text{ and } x = yk = zk^2 \\[1em] \text{L.H.S.} = \dfrac{(x + y)^2}{(y + z)^2} \\[1em] = \dfrac{(zk^2 + zk)^2}{(zk + z)^2} \\[1em] = \dfrac{z^2k^4 + z^2k^2 + 2z^2k^3}{z^2k^2 + z^2 + 2z^2k} \\[1em] = \dfrac{z^2k^2(k^2 + 1 + 2k)}{z^2(k^2 + 1 + 2k)} \\[1em] = k^2. \\[1em] \text{R.H.S.} = \dfrac{x}{z} \\[1em] = \dfrac{zk^2}{z} = k^2. ∴ y x = z y = k ⇒ y = z k and x = y k = z k 2 L.H.S. = ( y + z ) 2 ( x + y ) 2 = ( z k + z ) 2 ( z k 2 + z k ) 2 = z 2 k 2 + z 2 + 2 z 2 k z 2 k 4 + z 2 k 2 + 2 z 2 k 3 = z 2 ( k 2 + 1 + 2 k ) z 2 k 2 ( k 2 + 1 + 2 k ) = k 2 . R.H.S. = z x = z z k 2 = k 2 .
Since, L.H.S. = R.H.S. Hence proved.
If a, b, c are in continued proportion, prove that :
p a 2 + q a b + r b 2 p b 2 + q b c + r c 2 = a c . \dfrac{pa^2 + qab + rb^2}{pb^2 + qbc + rc^2} = \dfrac{a}{c}. p b 2 + q b c + r c 2 p a 2 + q ab + r b 2 = c a .
Answer
Since, a, b, c are in continued proportion
∴ a b = b c = k ⇒ b = c k and a = b k = c k 2 L.H.S. = p a 2 + q a b + r b 2 p b 2 + q b c + r c 2 = p ( c k 2 ) 2 + q ( c k 2 ) ( c k ) + r ( c k ) 2 p ( c k ) 2 + q ( c k ) c + r c 2 = p c 2 k 4 + q c 2 k 3 + r c 2 k 2 p c 2 k 2 + q c 2 k + r c 2 = c 2 k 2 ( p k 2 + q k + r ) c 2 ( p k 2 + q k + r ) = k 2 R.H.S. = a c = c k 2 c = k 2 . \therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = \dfrac{pa^2 + qab + rb^2}{pb^2 + qbc + rc^2} \\[1em] = \dfrac{p(ck^2)^2 + q(ck^2)(ck) + r(ck)^2}{p(ck)^2 + q(ck)c + rc^2} \\[1em] = \dfrac{pc^2k^4 + qc^2k^3 + rc^2k^2}{pc^2k^2 + qc^2k + rc^2} \\[1em] = \dfrac{c^2k^2(pk^2 + qk + r)}{c^2(pk^2 + qk + r)} \\[1em] = k^2 \\[1em] \text{R.H.S.} = \dfrac{a}{c} \\[1em] = \dfrac{ck^2}{c} \\[1em] = k^2. ∴ b a = c b = k ⇒ b = c k and a = bk = c k 2 L.H.S. = p b 2 + q b c + r c 2 p a 2 + q ab + r b 2 = p ( c k ) 2 + q ( c k ) c + r c 2 p ( c k 2 ) 2 + q ( c k 2 ) ( c k ) + r ( c k ) 2 = p c 2 k 2 + q c 2 k + r c 2 p c 2 k 4 + q c 2 k 3 + r c 2 k 2 = c 2 ( p k 2 + q k + r ) c 2 k 2 ( p k 2 + q k + r ) = k 2 R.H.S. = c a = c c k 2 = k 2 .
Since, L.H.S. = R.H.S. hence proved that,
p a 2 + q a b + r b 2 p b 2 + q b c + r c 2 = a c . \dfrac{pa^2 + qab + rb^2}{pb^2 + qbc + rc^2} = \dfrac{a}{c}. p b 2 + q b c + r c 2 p a 2 + q ab + r b 2 = c a .
If a , b , c a, b, c a , b , c are in continued proportion prove that :
(i) a + b b + c = a 2 ( b − c ) b 2 ( a − b ) (ii) 1 a 3 + 1 b 3 + 1 c 3 = a b 2 c 2 + b c 2 a 2 + c a 2 b 2 (iii) a : c = ( a 2 + b 2 ) : ( b 2 + c 2 ) (iv) a 2 b 2 c 2 ( a − 4 + b − 4 + c − 4 ) = b − 2 ( a 4 + b 4 + c 4 ) (v) a b c ( a + b + c ) 3 = ( a b + b c + c a ) 3 (vi) ( a + b + c ) ( a − b + c ) = a 2 + b 2 + c 2 . \begin{array}{ll} \text{(i)} & \dfrac{a + b}{b + c} = \dfrac{a^2(b - c)}{b^2(a - b)} \\ \text{(ii)} & \dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} \\ & = \dfrac{a}{b^2c^2} + \dfrac{b}{c^2a^2} + \dfrac{c}{a^2b^2} \\ \text{(iii)} & a : c = (a^2 + b^2) : (b^2 + c^2) \\ \text{(iv)} & a^2b^2c^2(a^{-4} + b^{-4} + c^{-4}) \\ & = b^{-2}(a^4 + b^4 + c^4) \\ \text{(v)} & abc(a + b + c)^3 \\ & = (ab + bc + ca)^3 \\ \text{(vi)} & (a + b + c)(a - b + c) \\ & = a^2 + b^2 + c^2. \end{array} (i) (ii) (iii) (iv) (v) (vi) b + c a + b = b 2 ( a − b ) a 2 ( b − c ) a 3 1 + b 3 1 + c 3 1 = b 2 c 2 a + c 2 a 2 b + a 2 b 2 c a : c = ( a 2 + b 2 ) : ( b 2 + c 2 ) a 2 b 2 c 2 ( a − 4 + b − 4 + c − 4 ) = b − 2 ( a 4 + b 4 + c 4 ) ab c ( a + b + c ) 3 = ( ab + b c + c a ) 3 ( a + b + c ) ( a − b + c ) = a 2 + b 2 + c 2 .
Answer
(i) Since, a, b, c are in continued proportion
∴ a b = b c = k ⇒ b = c k and a = b k = c k 2 L.H.S. = a + b b + c = c k 2 + c k c k + c = c k ( k + 1 ) c ( k + 1 ) = k . R.H.S. = a 2 ( b − c ) b 2 ( a − b ) = ( c k 2 ) 2 ( c k − c ) ( c k ) 2 ( c k 2 − c k ) = c 2 k 4 c ( k − 1 ) c 2 k 2 c k ( k − 1 ) = c 3 k 4 ( k − 1 ) c 3 k 3 ( k − 1 ) = k . \therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = \dfrac{a + b}{b + c} \\[1em] = \dfrac{ck^2 + ck}{ck + c} \\[1em] = \dfrac{ck(k + 1)}{c(k + 1)} \\[1em] = k. \\[1em] \text{R.H.S.} = \dfrac{a^2(b - c)}{b^2(a - b)} \\[1em] = \dfrac{(ck^2)^2(ck - c)}{(ck)^2(ck^2 - ck)} \\[1em] = \dfrac{c^2k^4c(k - 1)}{c^2k^2ck(k - 1)} \\[1em] = \dfrac{c^3k^4(k - 1)}{c^3k^3(k - 1)} \\[1em] = k. ∴ b a = c b = k ⇒ b = c k and a = bk = c k 2 L.H.S. = b + c a + b = c k + c c k 2 + c k = c ( k + 1 ) c k ( k + 1 ) = k . R.H.S. = b 2 ( a − b ) a 2 ( b − c ) = ( c k ) 2 ( c k 2 − c k ) ( c k 2 ) 2 ( c k − c ) = c 2 k 2 c k ( k − 1 ) c 2 k 4 c ( k − 1 ) = c 3 k 3 ( k − 1 ) c 3 k 4 ( k − 1 ) = k .
Since, L.H.S. = R.H.S. hence proved that,
a + b b + c = a 2 ( b − c ) b 2 ( a − b ) \dfrac{a + b}{b + c} = \dfrac{a^2(b - c)}{b^2(a - b)} b + c a + b = b 2 ( a − b ) a 2 ( b − c ) .
(ii) Since, a, b, c are in continued proportion
∴ a b = b c = k ⇒ b = c k and a = b k = c k 2 L.H.S. = 1 a 3 + 1 b 3 + 1 c 3 = 1 ( c k 2 ) 3 + 1 ( c k ) 3 + 1 c 3 = 1 c 3 k 6 + 1 c 3 k 3 + 1 c 3 = 1 c 3 ( 1 k 6 + 1 k 3 + 1 ) R.H.S. = a b 2 c 2 + b c 2 a 2 + c a 2 b 2 = c k 2 ( c k ) 2 c 2 + c k c 2 ( c k 2 ) 2 + c ( c k 2 ) 2 ( c k ) 2 = c k 2 c 4 k 2 + c k c 4 k 4 + c c 4 k 6 = 1 c 3 + 1 c 3 k 3 + 1 c 3 k 6 = 1 c 3 ( 1 + 1 k 3 + 1 k 6 ) \therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = \dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} \\[1em] = \dfrac{1}{(ck^2)^3} + \dfrac{1}{(ck)^3} + \dfrac{1}{c^3} \\[1em] = \dfrac{1}{c^3k^6} + \dfrac{1}{c^3k^3} + \dfrac{1}{c^3} \\[1em] = \dfrac{1}{c^3}\Big(\dfrac{1}{k^6} + \dfrac{1}{k^3} + 1\Big) \\[1em] \text{R.H.S.} = \dfrac{a}{b^2c^2} + \dfrac{b}{c^2a^2} + \dfrac{c}{a^2b^2} \\[1em] = \dfrac{ck^2}{(ck)^2c^2} + \dfrac{ck}{c^2(ck^2)^2} + \dfrac{c}{(ck^2)^2(ck)^2} \\[1em] = \dfrac{ck^2}{c^4k^2} + \dfrac{ck}{c^4k^4} + \dfrac{c}{c^4k^6} \\[1em] = \dfrac{1}{c^3} + \dfrac{1}{c^3k^3} + \dfrac{1}{c^3k^6} \\[1em] = \dfrac{1}{c^3}\Big(1 + \dfrac{1}{k^3} + \dfrac{1}{k^6}\Big) \\[1em] ∴ b a = c b = k ⇒ b = c k and a = bk = c k 2 L.H.S. = a 3 1 + b 3 1 + c 3 1 = ( c k 2 ) 3 1 + ( c k ) 3 1 + c 3 1 = c 3 k 6 1 + c 3 k 3 1 + c 3 1 = c 3 1 ( k 6 1 + k 3 1 + 1 ) R.H.S. = b 2 c 2 a + c 2 a 2 b + a 2 b 2 c = ( c k ) 2 c 2 c k 2 + c 2 ( c k 2 ) 2 c k + ( c k 2 ) 2 ( c k ) 2 c = c 4 k 2 c k 2 + c 4 k 4 c k + c 4 k 6 c = c 3 1 + c 3 k 3 1 + c 3 k 6 1 = c 3 1 ( 1 + k 3 1 + k 6 1 )
Since, L.H.S. = R.H.S. hence proved that,
1 a 3 + 1 b 3 + 1 c 3 = a b 2 c 2 + b c 2 a 2 + c a 2 b 2 \dfrac{1}{a^3} + \dfrac{1}{b^3} + \dfrac{1}{c^3} = \dfrac{a}{b^2c^2} + \dfrac{b}{c^2a^2} + \dfrac{c}{a^2b^2} a 3 1 + b 3 1 + c 3 1 = b 2 c 2 a + c 2 a 2 b + a 2 b 2 c .
(iii) Since, a, b, c are in continued proportion
∴ a b = b c = k ⇒ b = c k and a = b k = c k 2 L.H.S. = a : c = a c = c k 2 c = k 2 . R.H.S. = ( a 2 + b 2 ) : ( b 2 + c 2 ) = a 2 + b 2 b 2 + c 2 = ( ( c k 2 ) 2 + ( c k ) 2 ) ( ( c k ) 2 + c 2 ) = c 2 k 4 + c 2 k 2 c 2 k 2 + c 2 = c 2 k 2 ( k 2 + 1 ) c 2 ( k 2 + 1 ) = k 2 . \therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = a : c \\[1em] = \dfrac{a}{c} \\[1em] = \dfrac{ck^2}{c} \\[1em] = k^2. \\[1em] \text{R.H.S.} = (a^2 + b^2) : (b^2 + c^2) \\[1em] = \dfrac{a^2 + b^2}{b^2 + c^2} \\[1em] = \dfrac{((ck^2)^2 + (ck)^2)}{((ck)^2 + c^2)} \\[1em] = \dfrac{c^2k^4 + c^2k^2}{c^2k^2 + c^2} \\[1em] = \dfrac{c^2k^2(k^2 + 1)}{c^2(k^2 + 1)} \\[1em] = k^2. \\[1em] ∴ b a = c b = k ⇒ b = c k and a = bk = c k 2 L.H.S. = a : c = c a = c c k 2 = k 2 . R.H.S. = ( a 2 + b 2 ) : ( b 2 + c 2 ) = b 2 + c 2 a 2 + b 2 = (( c k ) 2 + c 2 ) (( c k 2 ) 2 + ( c k ) 2 ) = c 2 k 2 + c 2 c 2 k 4 + c 2 k 2 = c 2 ( k 2 + 1 ) c 2 k 2 ( k 2 + 1 ) = k 2 .
Since, L.H.S = R.H.S hence proved that,
a : c = (a2 + b2 ) : (b2 + c2 ).
(iv) Since, a, b, c are in continued proportion
∴ a b = b c = k ⇒ b = c k and a = b k = c k 2 L.H.S. = a 2 b 2 c 2 ( a − 4 + b − 4 + c − 4 ) = ( c k 2 ) 2 ( c k ) 2 c 2 ( ( c k 2 ) − 4 + ( c k ) − 4 + c − 4 ) = c 2 k 4 c 2 k 2 c 2 ( c − 4 k − 8 + c − 4 k − 4 + c − 4 ) = c 6 k 6 c − 4 ( k − 8 + k − 4 + 1 ) = c 2 k 6 ( 1 k 8 + 1 k 4 + 1 ) = c 2 k 6 ( 1 + k 4 + k 8 k 8 ) = c 2 k 6 k 8 ( 1 + k 4 + k 8 ) = c 2 k 2 ( 1 + k 4 + k 8 ) R.H.S. = b − 2 ( a 4 + b 4 + c 4 ) = ( c k ) − 2 ( ( c k 2 ) 4 + ( c k ) 4 + c 4 ) = c − 2 k − 2 ( c 4 k 8 + c 4 k 4 + c 4 ) = c − 2 k − 2 c 4 ( k 8 + k 4 + 1 ) = c 2 k − 2 ( k 8 + k 4 + 1 ) = c 2 k 2 ( 1 + k 4 + k 8 ) . \therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = a^2b^2c^2(a^{-4} + b^{-4} + c^{-4}) \\[1em] = (ck^2)^2(ck)^2c^2((ck^2)^{-4} + (ck)^{-4} + c^{-4}) \\[1em] = c^2k^4c^2k^2c^2(c^{-4}k^{-8} + c^{-4}k^{-4} + c^{-4}) \\[1em] = c^6k^6c^{-4}(k^{-8} + k^{-4} + 1) \\[1em] = c^2k^6\big(\dfrac{1}{k^8} + \dfrac{1}{k^4} + 1\big) \\[1em] = c^2k^6\big(\dfrac{1 + k^4 + k^8}{k^8}\big) \\[1em] = \dfrac{c^2k^6}{k^8}(1 + k^4 + k^8) \\[1em] = \dfrac{c^2}{k^2}(1 + k^4 + k^8) \\[1em] \text{R.H.S.} = b^{-2}(a^4 + b^4 + c^4) \\[1em] = (ck)^{-2}((ck^2)^4 + (ck)^4 + c^4) \\[1em] = c^{-2}k^{-2}(c^4k^8 + c^4k^4 + c^4) \\[1em] = c^{-2}k^{-2}c^4(k^8 + k^4 + 1) \\[1em] = c^2k^{-2}(k^8 + k^4 + 1) \\[1em] = \dfrac{c^2}{k^2}(1 + k^4 + k^8). \\[1em] ∴ b a = c b = k ⇒ b = c k and a = bk = c k 2 L.H.S. = a 2 b 2 c 2 ( a − 4 + b − 4 + c − 4 ) = ( c k 2 ) 2 ( c k ) 2 c 2 (( c k 2 ) − 4 + ( c k ) − 4 + c − 4 ) = c 2 k 4 c 2 k 2 c 2 ( c − 4 k − 8 + c − 4 k − 4 + c − 4 ) = c 6 k 6 c − 4 ( k − 8 + k − 4 + 1 ) = c 2 k 6 ( k 8 1 + k 4 1 + 1 ) = c 2 k 6 ( k 8 1 + k 4 + k 8 ) = k 8 c 2 k 6 ( 1 + k 4 + k 8 ) = k 2 c 2 ( 1 + k 4 + k 8 ) R.H.S. = b − 2 ( a 4 + b 4 + c 4 ) = ( c k ) − 2 (( c k 2 ) 4 + ( c k ) 4 + c 4 ) = c − 2 k − 2 ( c 4 k 8 + c 4 k 4 + c 4 ) = c − 2 k − 2 c 4 ( k 8 + k 4 + 1 ) = c 2 k − 2 ( k 8 + k 4 + 1 ) = k 2 c 2 ( 1 + k 4 + k 8 ) .
Since, L.H.S. = R.H.S. hence proved that,
a2 b2 c2 (a-4 + b-4 + c-4 ) = b-2 (a4 + b4 + c4 ).
(v) Since, a, b, c are in continued proportion
∴ a b = b c = k ⇒ b = c k and a = b k = c k 2 L.H.S. = a b c ( a + b + c ) 3 = ( c k 2 ) ( c k ) c ( c k 2 + c k + c ) 3 = c 3 k 3 ( c 3 ( k 2 + k + 1 ) 3 ) = c 6 k 3 ( k 2 + k + 1 ) 3 R.H.S. = ( a b + b c + c a ) 3 = ( ( c k 2 ) ( c k ) + ( c k ) ( c ) + ( c ) ( c k 2 ) ) 3 = ( c 2 k 3 + c 2 k + c 2 k 2 ) 3 = ( ( c 2 k ) 3 ( k 2 + 1 + k ) 3 ) = c 6 k 3 ( k 2 + k + 1 ) 3 . \therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = abc(a + b + c)^3 \\[1em] = (ck^2)(ck)c(ck^2 + ck + c)^3 \\[1em] = c^3k^3(c^3(k^2 + k + 1)^3) \\[1em] = c^6k^3(k^2 + k + 1)^3 \\[1em] \text{R.H.S.} = (ab + bc + ca)^3 \\[1em] = ((ck^2)(ck) + (ck)(c) + (c)(ck^2))^3 \\[1em] = (c^2k^3 + c^2k + c^2k^2)^3 \\[1em] = ((c^2k)^3(k^2 + 1 + k)^3) \\[1em] = c^6k^3(k^2 + k + 1)^3. \\[1em] ∴ b a = c b = k ⇒ b = c k and a = bk = c k 2 L.H.S. = ab c ( a + b + c ) 3 = ( c k 2 ) ( c k ) c ( c k 2 + c k + c ) 3 = c 3 k 3 ( c 3 ( k 2 + k + 1 ) 3 ) = c 6 k 3 ( k 2 + k + 1 ) 3 R.H.S. = ( ab + b c + c a ) 3 = (( c k 2 ) ( c k ) + ( c k ) ( c ) + ( c ) ( c k 2 ) ) 3 = ( c 2 k 3 + c 2 k + c 2 k 2 ) 3 = (( c 2 k ) 3 ( k 2 + 1 + k ) 3 ) = c 6 k 3 ( k 2 + k + 1 ) 3 .
Since L.H.S. = R.H.S. hence proved that,
abc(a + b + c)3 = (ab + bc + ca)3 .
(vi) Since, a, b, c are in continued proportion
∴ a b = b c = k ⇒ b = c k and a = b k = c k 2 L.H.S. = ( a + b + c ) ( a − b + c ) = ( c k 2 + c k + c ) ( c k 2 − c k + c ) = c ( k 2 + k + 1 ) c ( k 2 − k + 1 ) = c 2 ( k 4 − k 3 + k 2 + k 3 − k 2 + k + k 2 − k + 1 ) = c 2 ( k 4 − k 3 + k 2 + k 3 − k 2 + k + k 2 − k + 1 ) = c 2 ( k 4 + k 2 + 1 ) R.H.S. = a 2 + b 2 + c 2 = ( c k 2 ) 2 + ( c k ) 2 + c 2 = c 2 k 4 + c 2 k 2 + c 2 = c 2 ( k 4 + k 2 + 1 ) . \therefore \dfrac{a}{b} = \dfrac{b}{c} = k \\[1em] \Rightarrow b = ck \text{ and } a = bk = ck^2 \\[1em] \text{L.H.S.} = (a + b + c)(a - b + c) \\[1em] = (ck^2 + ck + c)(ck^2 - ck + c) \\[1em] = c(k^2 + k + 1)c(k^2 - k + 1) \\[1em] = c^2(k^4 - k^3 + k^2 + k^3 - k^2 + k + k^2 - k + 1) \\[1em] = c^2(k^4 - \bcancel{k^3} + \bcancel{k^2} + \bcancel{k^3} - \bcancel{k^2} + \bcancel{k} + k^2 - \bcancel{k} + 1) \\[1em] = c^2(k^4 + k^2 + 1) \\[1em] \text{R.H.S.} = a^2 + b^2 + c^2 \\[1em] = (ck^2)^2 + (ck)^2 + c^2 \\[1em] = c^2k^4 + c^2k^2 + c^2 \\[1em] = c^2(k^4 + k^2 + 1). \\[1em] ∴ b a = c b = k ⇒ b = c k and a = bk = c k 2 L.H.S. = ( a + b + c ) ( a − b + c ) = ( c k 2 + c k + c ) ( c k 2 − c k + c ) = c ( k 2 + k + 1 ) c ( k 2 − k + 1 ) = c 2 ( k 4 − k 3 + k 2 + k 3 − k 2 + k + k 2 − k + 1 ) = c 2 ( k 4 − k 3 + k 2 + k 3 − k 2 + k + k 2 − k + 1 ) = c 2 ( k 4 + k 2 + 1 ) R.H.S. = a 2 + b 2 + c 2 = ( c k 2 ) 2 + ( c k ) 2 + c 2 = c 2 k 4 + c 2 k 2 + c 2 = c 2 ( k 4 + k 2 + 1 ) .
Since, L.H.S. = R.H.S. hence proved that,
(a + b + c)(a - b + c) = a2 + b2 + c2 .
If a, b, c, d are in continued proportion, prove that :
(i) a 3 + b 3 + c 3 b 3 + c 3 + d 3 = a d \dfrac{a^3 + b^3 + c^3}{b^3 + c^3 + d^3} = \dfrac{a}{d} b 3 + c 3 + d 3 a 3 + b 3 + c 3 = d a
(ii) (a2 - b2 )(c2 - d2 ) = (b2 - c2 )2
(iii) (a + d)(b + c) - (a + c)(b + d) = (b - c)2
(iv) a : d = triplicate ratio of (a - b) : (b - c)
(v) ( a − b c + a − c b ) 2 − ( d − b c + d − c b ) 2 = ( a − d ) 2 ( 1 c 2 − 1 b 2 ) . \big(\dfrac{a - b}{c} + \dfrac{a - c}{b}\big)^2 - \big(\dfrac{d - b}{c} + \dfrac{d - c}{b}\big)^2 = (a - d)^2\big(\dfrac{1}{c^2} - \dfrac{1}{b^2}\big). ( c a − b + b a − c ) 2 − ( c d − b + b d − c ) 2 = ( a − d ) 2 ( c 2 1 − b 2 1 ) .
Answer
(i) Since, a, b, c, d are in continued proportion
∴ a b = b c = c d = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = b k = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = a 3 + b 3 + c 3 b 3 + c 3 + d 3 = ( d k 3 ) 3 + ( d k 2 ) 3 + ( d k ) 3 ( d k 2 ) 3 + ( d k ) 3 + d 3 = d 3 k 9 + d 3 k 6 + d 3 k 3 d 3 k 6 + d 3 k 3 + d 3 = d 3 k 3 ( k 6 + k 3 + 1 ) d 3 ( k 6 + k 3 + 1 ) = k 3 . R.H.S. = a d = d k 3 d = k 3 . \therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = \dfrac{a^3 + b^3 + c^3}{b^3 + c^3 + d^3} \\[1em] = \dfrac{(dk^3)^3 + (dk^2)^3 + (dk)^3}{(dk^2)^3 + (dk)^3 + d^3} \\[1em] = \dfrac{d^3k^9 + d^3k^6 + d^3k^3}{d^3k^6 + d^3k^3 + d^3} \\[1em] = \dfrac{d^3k^3(k^6 + k^3 + 1)}{d^3(k^6 + k^3 + 1)} \\[1em] = k^3. \\[1em] \text{R.H.S.} = \dfrac{a}{d} \\[1em] = \dfrac{dk^3}{d} \\[1em] = k^3. \\[1em] ∴ b a = c b = d c = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = bk = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = b 3 + c 3 + d 3 a 3 + b 3 + c 3 = ( d k 2 ) 3 + ( d k ) 3 + d 3 ( d k 3 ) 3 + ( d k 2 ) 3 + ( d k ) 3 = d 3 k 6 + d 3 k 3 + d 3 d 3 k 9 + d 3 k 6 + d 3 k 3 = d 3 ( k 6 + k 3 + 1 ) d 3 k 3 ( k 6 + k 3 + 1 ) = k 3 . R.H.S. = d a = d d k 3 = k 3 .
Since, L.H.S. = R.H.S. hence, proved that,
a 3 + b 3 + c 3 b 3 + c 3 + d 3 = a d \dfrac{a^3 + b^3 + c^3}{b^3 + c^3 + d^3} = \dfrac{a}{d} b 3 + c 3 + d 3 a 3 + b 3 + c 3 = d a .
(ii) Since, a, b, c, d are in continued proportion
∴ a b = b c = c d = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = b k = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = ( a 2 − b 2 ) ( c 2 − d 2 ) = [ ( d k 3 ) 2 − ( d k 2 ) 2 ] [ ( d k ) 2 − ( d 2 ) ] = ( d 2 k 6 − d 2 k 4 ) ( d 2 k 2 − d 2 ) = d 2 k 4 ( k 2 − 1 ) d 2 ( k 2 − 1 ) = d 4 k 4 ( k 2 − 1 ) 2 . R.H.S. = ( b 2 − c 2 ) 2 = ( ( d k 2 ) 2 − ( d k ) 2 ) 2 = ( d 2 k 4 − d 2 k 2 ) 2 = ( d 2 k 4 − d 2 k 2 ) ( d 2 k 4 − d 2 k 2 ) = d 2 k 2 ( k 2 − 1 ) d 2 k 2 ( k 2 − 1 ) = d 4 k 4 ( k 2 − 1 ) 2 . \therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = (a^2 - b^2)(c^2 - d^2) \\[1em] = [(dk^3)^2 - (dk^2)^2][(dk)^2 - (d^2)] \\[1em] = (d^2k^6 - d^2k^4)(d^2k^2 - d^2) \\[1em] = d^2k^4(k^2 - 1)d^2(k^2 - 1) \\[1em] = d^4k^4(k^2 - 1)^2. \\[1em] \text{R.H.S.} = (b^2 - c^2)^2 \\[1em] = ((dk^2)^2 - (dk)^2)^2 \\[1em] = (d^2k^4 - d^2k^2)^2 \\[1em] = (d^2k^4- d^2k^2)(d^2k^4 - d^2k^2) \\[1em] = d^2k^2(k^2 - 1)d^2k^2(k^2 - 1) \\[1em] = d^4k^4(k^2 - 1)^2. \\[1em] ∴ b a = c b = d c = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = bk = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = ( a 2 − b 2 ) ( c 2 − d 2 ) = [( d k 3 ) 2 − ( d k 2 ) 2 ] [( d k ) 2 − ( d 2 )] = ( d 2 k 6 − d 2 k 4 ) ( d 2 k 2 − d 2 ) = d 2 k 4 ( k 2 − 1 ) d 2 ( k 2 − 1 ) = d 4 k 4 ( k 2 − 1 ) 2 . R.H.S. = ( b 2 − c 2 ) 2 = (( d k 2 ) 2 − ( d k ) 2 ) 2 = ( d 2 k 4 − d 2 k 2 ) 2 = ( d 2 k 4 − d 2 k 2 ) ( d 2 k 4 − d 2 k 2 ) = d 2 k 2 ( k 2 − 1 ) d 2 k 2 ( k 2 − 1 ) = d 4 k 4 ( k 2 − 1 ) 2 .
Since, L.H.S. = R.H.S. hence, proved that,
(a2 - b2 )(c2 - d2 ) = (b2 - c2 )2 .
(iii) Since, a, b, c, d are in continued proportion
∴ a b = b c = c d = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = b k = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = ( a + d ) ( b + c ) − ( a + c ) ( b + d ) = ( d k 3 + d ) ( d k 2 + d k ) − ( d k 3 + d k ) ( d k 2 + d ) = d ( k 3 + 1 ) d k ( k + 1 ) − d k ( k 2 + 1 ) d ( k 2 + 1 ) = d 2 k [ ( k 3 + 1 ) ( k + 1 ) − ( k 2 + 1 ) 2 ] = d 2 k [ ( k 4 + k 3 + k + 1 ) − ( k 4 + 1 + 2 k 2 ) ] = d 2 k ( k 4 − k 4 + k 3 − 2 k 2 + k + 1 − 1 ) = d 2 k ( k 3 − 2 k 2 + k ) = d 2 k ( k ( k 2 − 2 k + 1 ) ) = d 2 k 2 ( k 2 − 2 k + 1 ) = d 2 k 2 ( k − 1 ) 2 . R.H.S. = ( b − c ) 2 = ( d k 2 − d k ) 2 = [ ( d k ) 2 ( k − 1 ) 2 ] = d 2 k 2 ( k − 1 ) 2 . \therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = (a + d)(b + c) - (a + c)(b + d) \\[1em] = (dk^3 + d)(dk^2 + dk) - (dk^3 + dk)(dk^2 + d) \\[1em] = d(k^3 + 1)dk(k + 1) - dk(k^2 + 1)d(k^2 + 1) \\[1em] = d^2k[(k^3 + 1)(k + 1) - (k^2 + 1)^2] \\[1em] = d^2k[(k^4 + k^3 + k + 1) - (k^4 + 1 + 2k^2)] \\[1em] = d^2k(k^4 - k^4 + k^3 - 2k^2 + k + 1 - 1) \\[1em] = d^2k(k^3 - 2k^2 + k) \\[1em] = d^2k(k(k^2 - 2k + 1)) \\[1em] = d^2k^2(k^2 - 2k + 1) \\[1em] = d^2k^2(k - 1)^2. \\[1em] \text{R.H.S.} = (b - c)^2 \\[1em] = (dk^2 - dk)^2 \\[1em] = [(dk)^2(k - 1)^2] \\[1em] = d^2k^2(k - 1)^2. ∴ b a = c b = d c = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = bk = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = ( a + d ) ( b + c ) − ( a + c ) ( b + d ) = ( d k 3 + d ) ( d k 2 + d k ) − ( d k 3 + d k ) ( d k 2 + d ) = d ( k 3 + 1 ) d k ( k + 1 ) − d k ( k 2 + 1 ) d ( k 2 + 1 ) = d 2 k [( k 3 + 1 ) ( k + 1 ) − ( k 2 + 1 ) 2 ] = d 2 k [( k 4 + k 3 + k + 1 ) − ( k 4 + 1 + 2 k 2 )] = d 2 k ( k 4 − k 4 + k 3 − 2 k 2 + k + 1 − 1 ) = d 2 k ( k 3 − 2 k 2 + k ) = d 2 k ( k ( k 2 − 2 k + 1 )) = d 2 k 2 ( k 2 − 2 k + 1 ) = d 2 k 2 ( k − 1 ) 2 . R.H.S. = ( b − c ) 2 = ( d k 2 − d k ) 2 = [( d k ) 2 ( k − 1 ) 2 ] = d 2 k 2 ( k − 1 ) 2 .
Since, L.H.S = R.H.S, hence proved that,
(a + d)(b + c) - (a + c)(b + d) = (b - c)2 .
(iv) Since, a, b, c, d are in continued proportion
∴ a b = b c = c d = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = b k = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = a : d = a d = d k 3 d = k 3 . \therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = a : d \\[1em] = \dfrac{a}{d} \\[1em] = \dfrac{dk^3}{d} \\[1em] = k^3. \\[1em] ∴ b a = c b = d c = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = bk = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = a : d = d a = d d k 3 = k 3 .
R.H.S. = triplicate ratio of (a - b) : (b - c)
= ( a − b ) 3 : ( b − c ) 3 = ( a − b ) 3 ( b − c ) 3 = ( d k 3 − d k 2 ) 3 ( d k 2 − d k ) 3 = [ k ( d k 2 − d k ) ] 3 ( d k 2 − d k ) 3 = k 3 ( d k 2 − d k ) 3 ( d k 2 − d k ) 3 = k 3 . = (a - b)^3 : (b - c)^3 \\[1em] = \dfrac{(a - b)^3}{(b - c)^3} \\[1em] = \dfrac{(dk^3 - dk^2)^3}{(dk^2 - dk)^3} \\[1em] = \dfrac{[k(dk^2 - dk)]^3}{(dk^2 - dk)^3} \\[1em] = \dfrac{k^3(dk^2 - dk)^3}{(dk^2 - dk)^3} \\[1em] = k^3. = ( a − b ) 3 : ( b − c ) 3 = ( b − c ) 3 ( a − b ) 3 = ( d k 2 − d k ) 3 ( d k 3 − d k 2 ) 3 = ( d k 2 − d k ) 3 [ k ( d k 2 − d k ) ] 3 = ( d k 2 − d k ) 3 k 3 ( d k 2 − d k ) 3 = k 3 .
Since, L.H.S. = R.H.S. hence proved that,
a : d = triplicate ratio of (a - b) : (b - c).
(v) Since, a, b, c, d are in continued proportion
∴ a b = b c = c d = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = b k = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = ( a − b c + a − c b ) 2 − ( d − b c + d − c b ) 2 . = ( d k 3 − d k 2 d k + d k 3 − d k d k 2 ) 2 − ( d − d k 2 d k + d − d k d k 2 ) 2 . = ( k ( d k 3 − d k 2 ) + d k 3 − d k d k 2 ) 2 − ( k ( d − d k 2 ) + d − d k d k 2 ) 2 . = ( d k 4 − d k 3 + d k 3 − d k d k 2 ) 2 − ( k d − d k 3 + d − d k d k 2 ) 2 . = ( d k 4 − d k d k 2 ) 2 − ( d − d k 3 d k 2 ) 2 . = ( d k ( k 3 − 1 ) d k 2 ) 2 − ( d ( 1 − k 3 ) d k 2 ) 2 = d 2 k 2 ( k 3 − 1 ) 2 d 2 k 4 − d 2 ( 1 − k 3 ) 2 d 2 k 4 = ( k 3 − 1 ) 2 k 2 − ( 1 − k 3 ) 2 k 4 = k 6 + 1 − 2 k 3 k 2 − 1 + k 6 − 2 k 3 k 4 = k 2 ( k 6 + 1 − 2 k 3 ) − ( 1 + k 6 − 2 k 3 ) k 4 = k 8 + k 2 − 2 k 5 − 1 − k 6 + 2 k 3 k 4 R.H.S. = ( a − d ) 2 ( 1 c 2 − 1 b 2 ) = ( d k 3 − d ) 2 ( 1 ( d k ) 2 − 1 ( d k 2 ) 2 ) = d 2 ( k 3 − 1 ) 2 ( 1 d 2 k 2 − 1 d 2 k 4 ) = d 2 d 2 k 2 ( k 3 − 1 ) 2 ( 1 − 1 k 2 ) = ( k 3 − 1 ) 2 ( k 2 − 1 ) k 4 = ( k 6 + 1 − 2 k 3 ) ( k 2 − 1 ) k 4 = k 8 − k 6 + k 2 − 1 + 2 k 3 − 2 k 5 k 4 \therefore \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k \\[1em] \therefore c = dk, b = ck = (dk)k = dk^2 \text{ and } a = bk = (ck)k = (dk)k^2 = dk^3. \\[1em] \text{L.H.S.} = \big(\dfrac{a - b}{c} + \dfrac{a - c}{b}\big)^2 - \big(\dfrac{d - b}{c} + \dfrac{d - c}{b}\big)^2. \\[1em] = \big(\dfrac{dk^3 - dk^2}{dk} + \dfrac{dk^3 - dk}{dk^2}\big)^2 - \big(\dfrac{d - dk^2}{dk} + \dfrac{d - dk}{dk^2}\big)^2. \\[1em] = \big(\dfrac{k(dk^3 - dk^2) + dk^3 - dk}{dk^2} \big)^2 - \big(\dfrac{k(d - dk^2) + d - dk}{dk^2}\big)^2. \\[1em] = \big(\dfrac{dk^4 - dk^3 + dk^3 - dk}{dk^2} \big)^2 - \big(\dfrac{kd - dk^3 + d - dk}{dk^2}\big)^2. \\[1em] = \big(\dfrac{dk^4 - dk}{dk^2} \big)^2 - \big(\dfrac{d - dk^3}{dk^2}\big)^2. \\[1em] = \big(\dfrac{dk(k^3 - 1)}{dk^2}\big)^2 - \big(\dfrac{d(1 - k^3)}{dk^2}\big)^2 \\[1em] = \dfrac{d^2k^2(k^3 - 1)^2}{d^2k^4} - \dfrac{d^2(1 - k^3)^2}{d^2k^4} \\[1em] = \dfrac{(k^3 - 1)^2}{k^2} - \dfrac{(1 - k^3)^2}{k^4} \\[1em] = \dfrac{k^6 + 1 -2k^3}{k^2} - \dfrac{1 + k^6 - 2k^3}{k^4} \\[1em] = \dfrac{k^2(k^6 + 1 - 2k^3) - (1 + k^6 - 2k^3)}{k^4} \\[1em] = \dfrac{k^8 + k^2 - 2k^5 - 1 - k^6 + 2k^3}{k^4} \\[1em] \text{R.H.S.} = (a - d)^2\big(\dfrac{1}{c^2} - \dfrac{1}{b^2}\big) \\[1em] = (dk^3 - d)^2\big(\dfrac{1}{(dk)^2} - \dfrac{1}{(dk^2)^2}\big) \\[1em] = d^2(k^3 - 1)^2 \big(\dfrac{1}{d^2k^2} - \dfrac{1}{d^2k^4}\big) \\[1em] = \dfrac{d^2}{d^2k^2}(k^3 - 1)^2\big(1 - \dfrac{1}{k^2}\big) \\[1em] = \dfrac{(k^3 - 1)^2(k^2 - 1)}{k^4} \\[1em] = \dfrac{(k^6 + 1 - 2k^3)(k^2 - 1)}{k^4} \\[1em] = \dfrac{k^8 - k^6 + k^2 - 1 + 2k^3 - 2k^5}{k^4} ∴ b a = c b = d c = k ∴ c = d k , b = c k = ( d k ) k = d k 2 and a = bk = ( c k ) k = ( d k ) k 2 = d k 3 . L.H.S. = ( c a − b + b a − c ) 2 − ( c d − b + b d − c ) 2 . = ( d k d k 3 − d k 2 + d k 2 d k 3 − d k ) 2 − ( d k d − d k 2 + d k 2 d − d k ) 2 . = ( d k 2 k ( d k 3 − d k 2 ) + d k 3 − d k ) 2 − ( d k 2 k ( d − d k 2 ) + d − d k ) 2 . = ( d k 2 d k 4 − d k 3 + d k 3 − d k ) 2 − ( d k 2 k d − d k 3 + d − d k ) 2 . = ( d k 2 d k 4 − d k ) 2 − ( d k 2 d − d k 3 ) 2 . = ( d k 2 d k ( k 3 − 1 ) ) 2 − ( d k 2 d ( 1 − k 3 ) ) 2 = d 2 k 4 d 2 k 2 ( k 3 − 1 ) 2 − d 2 k 4 d 2 ( 1 − k 3 ) 2 = k 2 ( k 3 − 1 ) 2 − k 4 ( 1 − k 3 ) 2 = k 2 k 6 + 1 − 2 k 3 − k 4 1 + k 6 − 2 k 3 = k 4 k 2 ( k 6 + 1 − 2 k 3 ) − ( 1 + k 6 − 2 k 3 ) = k 4 k 8 + k 2 − 2 k 5 − 1 − k 6 + 2 k 3 R.H.S. = ( a − d ) 2 ( c 2 1 − b 2 1 ) = ( d k 3 − d ) 2 ( ( d k ) 2 1 − ( d k 2 ) 2 1 ) = d 2 ( k 3 − 1 ) 2 ( d 2 k 2 1 − d 2 k 4 1 ) = d 2 k 2 d 2 ( k 3 − 1 ) 2 ( 1 − k 2 1 ) = k 4 ( k 3 − 1 ) 2 ( k 2 − 1 ) = k 4 ( k 6 + 1 − 2 k 3 ) ( k 2 − 1 ) = k 4 k 8 − k 6 + k 2 − 1 + 2 k 3 − 2 k 5
Since, L.H.S = R.H.S hence proved that,
( a − b c + a − c b ) 2 − ( d − b c + d − c b ) 2 = ( a − d ) 2 ( 1 c 2 − 1 b 2 ) . \big(\dfrac{a - b}{c} + \dfrac{a - c}{b}\big)^2 - \big(\dfrac{d - b}{c} + \dfrac{d - c}{b}\big)^2 = (a - d)^2\big(\dfrac{1}{c^2} - \dfrac{1}{b^2}\big). ( c a − b + b a − c ) 2 − ( c d − b + b d − c ) 2 = ( a − d ) 2 ( c 2 1 − b 2 1 ) .
If a : b : : c : d, prove that
(i) 2 a + 5 b 2 a − 5 b = 2 c + 5 d 2 c − 5 d . (ii) 5 a + 11 b 5 c + 11 d = 5 a − 11 b 5 c − 11 d . (iii) ( 2 a + 3 b ) ( 2 c − 3 d ) = ( 2 a − 3 b ) ( 2 c + 3 d ) . (iv) ( l a + m b ) : ( l c + m d ) : : ( l a − m b ) : ( l c − m d ) . \begin{matrix} \text{(i)} & \dfrac{2a + 5b}{2a - 5b} = \dfrac{2c + 5d}{2c - 5d}. \\[0.5em] \text{(ii)} & \dfrac{5a + 11b}{5c + 11d} = \dfrac{5a - 11b}{5c - 11d}. \\[0.5em] \text{(iii)} & (2a + 3b)(2c - 3d) \\ & = (2a - 3b)(2c + 3d). \\ \text{(iv)} & (la + mb) : (lc + md) \\ & : : (la - mb) : (lc - md). \end{matrix} (i) (ii) (iii) (iv) 2 a − 5 b 2 a + 5 b = 2 c − 5 d 2 c + 5 d . 5 c + 11 d 5 a + 11 b = 5 c − 11 d 5 a − 11 b . ( 2 a + 3 b ) ( 2 c − 3 d ) = ( 2 a − 3 b ) ( 2 c + 3 d ) . ( l a + mb ) : ( l c + m d ) :: ( l a − mb ) : ( l c − m d ) .
Answer
(i) Given, a : b : : c : d,
⇒ a b = c d \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] ⇒ b a = d c
Multiplying the equation by 2 5 \dfrac{2}{5} 5 2 ,
⇒ 2 a 5 b = 2 c 5 d \Rightarrow \dfrac{2a}{5b} = \dfrac{2c}{5d} \\[0.5em] ⇒ 5 b 2 a = 5 d 2 c
By componendo and dividendo,
⇒ 2 a + 5 b 2 a − 5 b = 2 c + 5 d 2 c − 5 d \Rightarrow \dfrac{2a + 5b}{2a - 5b} = \dfrac{2c + 5d}{2c - 5d} \\[0.5em] ⇒ 2 a − 5 b 2 a + 5 b = 2 c − 5 d 2 c + 5 d
Hence, proved that 2 a + 5 b 2 a − 5 b = 2 c + 5 d 2 c − 5 d . \dfrac{2a + 5b}{2a - 5b} = \dfrac{2c + 5d}{2c - 5d}. 2 a − 5 b 2 a + 5 b = 2 c − 5 d 2 c + 5 d .
(ii) Given, a : b : : c : d,
⇒ a b = c d \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] ⇒ b a = d c
On multiplying the equation by 5 11 \dfrac{5}{11} 11 5 ,
⇒ 5 a 11 b = 5 c 11 d \Rightarrow \dfrac{5a}{11b} = \dfrac{5c}{11d} \\[0.5em] ⇒ 11 b 5 a = 11 d 5 c
By componendo and dividendo,
⇒ 5 a + 11 b 5 a − 11 b = 5 c + 11 d 5 c − 11 d \Rightarrow \dfrac{5a + 11b}{5a - 11b} = \dfrac{5c + 11d}{5c - 11d} \\[0.5em] ⇒ 5 a − 11 b 5 a + 11 b = 5 c − 11 d 5 c + 11 d
By alternendo,
⇒ 5 a + 11 b 5 c + 11 d = 5 a − 11 b 5 c − 11 d \Rightarrow \dfrac{5a + 11b}{5c + 11d} = \dfrac{5a - 11b}{5c - 11d} ⇒ 5 c + 11 d 5 a + 11 b = 5 c − 11 d 5 a − 11 b
Hence, proved that 5 a + 11 b 5 c + 11 d = 5 a − 11 b 5 c − 11 d . \dfrac{5a + 11b}{5c + 11d} = \dfrac{5a - 11b}{5c - 11d}. 5 c + 11 d 5 a + 11 b = 5 c − 11 d 5 a − 11 b .
(iii) Given, a : b : : c : d,
⇒ a b = c d \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] ⇒ b a = d c
On multiplying equation by 2 3 \dfrac{2}{3} 3 2 ,
⇒ 2 a 3 b = 2 c 3 d \Rightarrow \dfrac{2a}{3b} = \dfrac{2c}{3d} \\[0.5em] ⇒ 3 b 2 a = 3 d 2 c
By componendo and dividendo,
⇒ 2 a + 3 b 2 a − 3 b = 2 c + 3 d 2 c − 3 d \Rightarrow \dfrac{2a + 3b}{2a - 3b} = \dfrac{2c + 3d}{2c - 3d} \\[0.5em] ⇒ 2 a − 3 b 2 a + 3 b = 2 c − 3 d 2 c + 3 d
On cross multiplication,
⇒ ( 2 a + 3 b ) ( 2 c − 3 d ) = ( 2 c + 3 d ) ( 2 a − 3 b ) . \Rightarrow (2a + 3b)(2c - 3d) = (2c + 3d)(2a - 3b). ⇒ ( 2 a + 3 b ) ( 2 c − 3 d ) = ( 2 c + 3 d ) ( 2 a − 3 b ) .
Hence, proved that (2a + 3b)(2c - 3d) = (2a - 3b)(2c + 3d).
(iv) Given, a : b : : c : d,
⇒ a b = c d \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] ⇒ b a = d c
On multiplying the equation by l m \dfrac{l}{m} m l ,
⇒ l a m b = l c m d \Rightarrow \dfrac{la}{mb} = \dfrac{lc}{md} \\[0.5em] ⇒ mb l a = m d l c
By componendo and dividendo,
⇒ l a + m b l a − m b = l c + m d l c − m d \Rightarrow \dfrac{la + mb}{la - mb} = \dfrac{lc + md}{lc - md} \\[0.5em] ⇒ l a − mb l a + mb = l c − m d l c + m d
By alternendo,
⇒ l a + m b l c + m d = l a − m b l c − m d ⇒ ( l a + m b ) : ( l c + m d ) : : ( l a − m b ) : ( l c − m d ) . \Rightarrow \dfrac{la + mb}{lc + md} = \dfrac{la - mb}{lc - md} \\[0.5em] \Rightarrow (la + mb) : (lc + md) : : (la - mb) : (lc - md). ⇒ l c + m d l a + mb = l c − m d l a − mb ⇒ ( l a + mb ) : ( l c + m d ) :: ( l a − mb ) : ( l c − m d ) .
Hence, proved that (la + mb) : (lc + md) : : (la - mb) : (lc - md).
If 5 x + 7 y 5 u + 7 v = 5 x − 7 y 5 u − 7 v , show that x y = u v . \dfrac{5x + 7y}{5u + 7v} = \dfrac{5x - 7y}{5u - 7v}, \text{ show that } \dfrac{x}{y} = \dfrac{u}{v}. 5 u + 7 v 5 x + 7 y = 5 u − 7 v 5 x − 7 y , show that y x = v u .
Answer
Given,
5 x + 7 y 5 u + 7 v = 5 x − 7 y 5 u − 7 v \dfrac{5x + 7y}{5u + 7v} = \dfrac{5x - 7y}{5u - 7v} 5 u + 7 v 5 x + 7 y = 5 u − 7 v 5 x − 7 y
By alternendo,
⇒ 5 x + 7 y 5 x − 7 y = 5 u + 7 v 5 u − 7 v \Rightarrow \dfrac{5x + 7y}{5x - 7y} = \dfrac{5u + 7v}{5u - 7v} \\[0.5em] ⇒ 5 x − 7 y 5 x + 7 y = 5 u − 7 v 5 u + 7 v
By componendo & dividendo,
⇒ 5 x + 7 y + 5 x − 7 y 5 x + 7 y − 5 x + 7 y = 5 u + 7 v + 5 u − 7 v 5 u + 7 v − 5 u + 7 v ⇒ 10 x 14 y = 10 u 14 v \Rightarrow \dfrac{5x + 7y + 5x - 7y}{5x + 7y - 5x + 7y} = \dfrac{5u + 7v + 5u - 7v}{5u + 7v - 5u + 7v} \\[0.5em] \Rightarrow \dfrac{10x}{14y} = \dfrac{10u}{14v} \\[0.5em] ⇒ 5 x + 7 y − 5 x + 7 y 5 x + 7 y + 5 x − 7 y = 5 u + 7 v − 5 u + 7 v 5 u + 7 v + 5 u − 7 v ⇒ 14 y 10 x = 14 v 10 u
On dividing equation by 10 14 \dfrac{10}{14} 14 10 ,
⇒ x y = u v \Rightarrow \dfrac{x}{y} = \dfrac{u}{v} \\[0.5em] ⇒ y x = v u
Hence, proved that x y = u v . \dfrac{x}{y} = \dfrac{u}{v}. y x = v u .
8 a − 5 b 8 c − 5 d = 8 a + 5 b 8 c + 5 d , prove that a b = c d . \dfrac{8a - 5b}{8c - 5d} = \dfrac{8a + 5b}{8c + 5d}, \text{ prove that } \dfrac{a}{b} = \dfrac{c}{d}. 8 c − 5 d 8 a − 5 b = 8 c + 5 d 8 a + 5 b , prove that b a = d c .
Answer
Given,
8 a − 5 b 8 c − 5 d = 8 a + 5 b 8 c + 5 d \dfrac{8a - 5b}{8c - 5d} = \dfrac{8a + 5b}{8c + 5d} \\[0.5em] 8 c − 5 d 8 a − 5 b = 8 c + 5 d 8 a + 5 b
By alternendo,
⇒ 8 a − 5 b 8 a + 5 b = 8 c − 5 d 8 c + 5 d \Rightarrow \dfrac{8a - 5b}{8a + 5b} = \dfrac{8c - 5d}{8c + 5d} \\[0.5em] ⇒ 8 a + 5 b 8 a − 5 b = 8 c + 5 d 8 c − 5 d
By componendo & dividendo,
⇒ 8 a − 5 b + 8 a + 5 b 8 a − 5 b − 8 a − 5 b = 8 c − 5 d + 8 c + 5 d 8 c − 5 d − 8 c − 5 d ⇒ − 16 a 10 b = − 16 c 10 d \Rightarrow \dfrac{8a - 5b + 8a + 5b}{8a - 5b - 8a - 5b} = \dfrac{8c - 5d + 8c + 5d}{8c - 5d - 8c - 5d} \\[1em] \Rightarrow -\dfrac{16a}{10b} = -\dfrac{16c}{10d} ⇒ 8 a − 5 b − 8 a − 5 b 8 a − 5 b + 8 a + 5 b = 8 c − 5 d − 8 c − 5 d 8 c − 5 d + 8 c + 5 d ⇒ − 10 b 16 a = − 10 d 16 c
On dividing the equation by − 16 10 -\dfrac{16}{10} − 10 16 ,
⇒ a b = c d \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] ⇒ b a = d c
Hence, proved that a b = c d . \dfrac{a}{b} = \dfrac{c}{d}. b a = d c .
If (4a + 5b)(4c - 5d) = (4a - 5b)(4c + 5d), prove that a, b, c, d are in proportion.
Answer
Given, (4a + 5b)(4c - 5d) = (4a - 5b)(4c + 5d).
On cross-multiplication,
⇒ 4 a + 5 b 4 a − 5 b = 4 c + 5 d 4 c − 5 d \Rightarrow \dfrac{4a + 5b}{4a - 5b} = \dfrac{4c + 5d}{4c - 5d} \\[0.5em] ⇒ 4 a − 5 b 4 a + 5 b = 4 c − 5 d 4 c + 5 d
By componendo and dividendo,
⇒ 4 a + 5 b + 4 a − 5 b 4 a + 5 b − 4 a + 5 b = 4 c + 5 d + 4 c − 5 d 4 c + 5 d − 4 c + 5 d ⇒ 8 a 10 b = 8 c 10 d \Rightarrow \dfrac{4a + 5b + 4a - 5b}{4a + 5b - 4a + 5b} = \dfrac{4c + 5d + 4c - 5d}{4c + 5d - 4c + 5d} \\[0.5em] \Rightarrow \dfrac{8a}{10b} = \dfrac{8c}{10d} \\[0.5em] ⇒ 4 a + 5 b − 4 a + 5 b 4 a + 5 b + 4 a − 5 b = 4 c + 5 d − 4 c + 5 d 4 c + 5 d + 4 c − 5 d ⇒ 10 b 8 a = 10 d 8 c
On dividing the equation by 8 10 \dfrac{8}{10} 10 8 ,
⇒ a b = c d ⇒ a : b : : c : d . \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d. ⇒ b a = d c ⇒ a : b :: c : d .
Hence, proved that a, b, c, d are in proportion.
If (pa + qb) : (pc + qd) : : (pa - qb) : (pc - qd), prove that a : b : : c : d.
Answer
Given, (pa + qb) : (pc + qd) : : (pa - qb) : (pc - qd).
⇒ p a + q b p c + q d = p a − q b p c − q d \Rightarrow \dfrac{pa + qb}{pc + qd} = \dfrac{pa - qb}{pc - qd} \\[0.5em] ⇒ p c + q d p a + q b = p c − q d p a − q b
By alternendo,
⇒ p a + q b p a − q b = p c + q d p c − q d \Rightarrow \dfrac{pa + qb}{pa - qb} = \dfrac{pc + qd}{pc - qd} \\[0.5em] ⇒ p a − q b p a + q b = p c − q d p c + q d
By componendo and dividendo,
⇒ p a + q b + p a − q b p a + q b − p a + q b = p c + q d + p c − q d p c + q d − p c + q d ⇒ 2 p a 2 q b = 2 p c 2 q d \Rightarrow \dfrac{pa + qb + pa - qb}{pa + qb - pa + qb} = \dfrac{pc + qd + pc - qd}{pc + qd - pc + qd} \\[0.5em] \Rightarrow \dfrac{2pa}{2qb} = \dfrac{2pc}{2qd} \\[0.5em] ⇒ p a + q b − p a + q b p a + q b + p a − q b = p c + q d − p c + q d p c + q d + p c − q d ⇒ 2 q b 2 p a = 2 q d 2 p c
On dividing the equation by 2 p 2 q \dfrac{2p}{2q} 2 q 2 p ,
⇒ a b = c d ⇒ a : b : : c : d . \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d. ⇒ b a = d c ⇒ a : b :: c : d .
Hence, proved that a, b, c, d are in proportion.
If (ma + nb) : b : : (mc + nd) : d, prove that a, b, c, d are in proportion.
Answer
Given, (ma + nb) : b : : (mc + nd) : d.
⇒ ( m a + n b ) b = ( m c + n d ) d ⇒ d ( m a + n b ) = b ( m c + n d ) ⇒ m a d + n b d = b m c + b n d ⇒ m a d = b m c \Rightarrow \dfrac{(ma + nb)}{b} = \dfrac{(mc + nd)}{d} \\[0.5em] \Rightarrow d(ma + nb) = b(mc + nd) \\[0.5em] \Rightarrow mad + nbd = bmc + bnd \\[0.5em] \Rightarrow mad = bmc \\[0.5em] ⇒ b ( ma + nb ) = d ( m c + n d ) ⇒ d ( ma + nb ) = b ( m c + n d ) ⇒ ma d + nb d = bm c + bn d ⇒ ma d = bm c
On dividing equation by m,
⇒ a d = b c ⇒ a b = c d ⇒ a : b : : c : d . \Rightarrow ad = bc \\[0.5em] \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d. ⇒ a d = b c ⇒ b a = d c ⇒ a : b :: c : d .
Hence, proved that a, b, c, d are in proportion.
If (11a2 + 13b2 )(11c2 - 13d2 ) = (11a2 - 13b2 )(11c2 + 13d2 ), prove that a : b : : c : d.
Answer
Given, (11a2 + 13b2 )(11c2 - 13d2 ) = (11a2 - 13b2 )(11c2 + 13d2 ).
On cross-multiplication,
⇒ 11 a 2 + 13 b 2 11 a 2 − 13 b 2 = 11 c 2 + 13 d 2 11 c 2 − 13 d 2 \Rightarrow \dfrac{11a^2 + 13b^2}{11a^2 - 13b^2} = \dfrac{11c^2 + 13d^2}{11c^2 - 13d^2} \\[0.5em] ⇒ 11 a 2 − 13 b 2 11 a 2 + 13 b 2 = 11 c 2 − 13 d 2 11 c 2 + 13 d 2
By componendo and dividendo,
⇒ 11 a 2 + 13 b 2 + 11 a 2 − 13 b 2 11 a 2 + 13 b 2 − 11 a 2 + 13 b 2 = 11 c 2 + 13 d 2 + 11 c 2 − 13 d 2 11 c 2 + 13 d 2 − 11 c 2 + 13 d 2 ⇒ 22 a 2 26 b 2 = 22 c 2 26 d 2 \Rightarrow \dfrac{11a^2 + 13b^2 + 11a^2 - 13b^2}{11a^2 + 13b^2 - 11a^2 + 13b^2} = \dfrac{11c^2 + 13d^2 + 11c^2 - 13d^2}{11c^2 + 13d^2 - 11c^2 + 13d^2} \\[0.5em] \Rightarrow \dfrac{22a^2}{26b^2} = \dfrac{22c^2}{26d^2} \\[0.5em] ⇒ 11 a 2 + 13 b 2 − 11 a 2 + 13 b 2 11 a 2 + 13 b 2 + 11 a 2 − 13 b 2 = 11 c 2 + 13 d 2 − 11 c 2 + 13 d 2 11 c 2 + 13 d 2 + 11 c 2 − 13 d 2 ⇒ 26 b 2 22 a 2 = 26 d 2 22 c 2
On dividing the equation by 22 26 \dfrac{22}{26} 26 22 ,
⇒ a 2 b 2 = c 2 d 2 ⇒ ( a 2 b 2 ) = ( c 2 d 2 ) ⇒ a b = c d ⇒ a : b : : c : d . \Rightarrow \dfrac{a^2}{b^2} = \dfrac{c^2}{d^2} \\[0.5em] \Rightarrow \sqrt{\big(\dfrac{a^2}{b^2}\big)} = \sqrt{\big(\dfrac{c^2}{d^2}\big)} \\[0.5em] \Rightarrow \dfrac{a}{b} = \dfrac{c}{d} \\[0.5em] \Rightarrow a : b : : c : d. ⇒ b 2 a 2 = d 2 c 2 ⇒ ( b 2 a 2 ) = ( d 2 c 2 ) ⇒ b a = d c ⇒ a : b :: c : d .
Hence, proved that a, b, c, d are in proportion.
If x = 2 a b a + b \dfrac{2ab}{a + b} a + b 2 ab , find the value of x + a x − a + x + b x − b \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} x − a x + a + x − b x + b .
Answer
Given,
x = 2 a b a + b x a = 2 a b a + b a ∴ x a = 2 b a + b x = \dfrac{2ab}{a + b} \\[1em] \dfrac{x}{a} = \dfrac{\dfrac{2ab}{a + b}}{a} \\[1em] \therefore \dfrac{x}{a} = \dfrac{2b}{a + b} x = a + b 2 ab a x = a a + b 2 ab ∴ a x = a + b 2 b
By componendo and dividendo,
⇒ x + a x − a = 2 b + a + b 2 b − a − b ⇒ x + a x − a = 3 b + a b − a [....Eq 1] x b = 2 a b a + b b ∴ x b = 2 a a + b \Rightarrow \dfrac{x + a}{x - a} = \dfrac{2b + a + b}{2b - a - b } \\[0.5em] \Rightarrow \dfrac{x + a}{x - a} = \dfrac{3b + a}{b - a} \qquad \text{[....Eq 1]} \\[1.5em] \dfrac{x}{b} = \dfrac{\dfrac{2ab}{a + b}}{b} \\[1em] \therefore \dfrac{x}{b} = \dfrac{2a}{a + b} \\[1em] ⇒ x − a x + a = 2 b − a − b 2 b + a + b ⇒ x − a x + a = b − a 3 b + a [....Eq 1] b x = b a + b 2 ab ∴ b x = a + b 2 a
By componendo and dividendo,
⇒ x + b x − b = 2 a + a + b 2 a − a − b ⇒ x + b x − b = 3 a + b a − b [....Eq 2] \Rightarrow \dfrac{x + b}{x - b} = \dfrac{2a + a + b}{2a - a - b} \\[0.5em] \Rightarrow \dfrac{x + b}{x - b} = \dfrac{3a + b}{a - b} \qquad \text{[....Eq 2]} ⇒ x − b x + b = 2 a − a − b 2 a + a + b ⇒ x − b x + b = a − b 3 a + b [....Eq 2]
Adding Eq 1 and 2,
⇒ x + a x − a + x + b x − b = 3 b + a b − a + 3 a + b a − b ⇒ x + a x − a + x + b x − b = 3 b + a b − a − 3 a + b b − a ⇒ x + a x − a + x + b x − b = 3 b − b + a − 3 a b − a ⇒ x + a x − a + x + b x − b = 2 b − 2 a b − a ⇒ x + a x − a + x + b x − b = 2 ( b − a ) b − a = 2 \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{3b + a}{b - a} + \dfrac{3a + b}{a - b} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{3b + a}{b - a} - \dfrac{3a + b}{b - a} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{3b - b + a - 3a}{b - a} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{2b - 2a}{b - a} \\[1em] \Rightarrow \dfrac{x + a}{x - a} + \dfrac{x + b}{x - b} = \dfrac{2(b - a)}{b - a} = 2 \\[1em] ⇒ x − a x + a + x − b x + b = b − a 3 b + a + a − b 3 a + b ⇒ x − a x + a + x − b x + b = b − a 3 b + a − b − a 3 a + b ⇒ x − a x + a + x − b x + b = b − a 3 b − b + a − 3 a ⇒ x − a x + a + x − b x + b = b − a 2 b − 2 a ⇒ x − a x + a + x − b x + b = b − a 2 ( b − a ) = 2
Hence, the required value is 2.
If x = 8 a b a + b , \dfrac{8ab}{a + b}, a + b 8 ab , find the value of
x + 4 a x − 4 a + x + 4 b x − 4 b . \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b}. x − 4 a x + 4 a + x − 4 b x + 4 b .
Answer
Given,
x = 8 a b a + b x 4 a = 8 a b a + b 4 a ∴ x 4 a = 2 b a + b x = \dfrac{8ab}{a + b} \\[1em] \dfrac{x}{4a} = \dfrac{\dfrac{8ab}{a + b}}{4a} \\[1em] \therefore \dfrac{x}{4a} = \dfrac{2b}{a + b} x = a + b 8 ab 4 a x = 4 a a + b 8 ab ∴ 4 a x = a + b 2 b
By componendo and dividendo, ⇒ x + 4 a x − 4 a = 2 b + a + b 2 b − a − b ⇒ x + 4 a x − 4 a = 3 b + a b − a [....Eq 1] x 4 b = 8 a b a + b 4 b ∴ x 4 b = 2 a a + b \Rightarrow \dfrac{x + 4a}{x - 4a} = \dfrac{2b + a + b}{2b - a - b } \\[0.5em] \Rightarrow \dfrac{x + 4a}{x - 4a} = \dfrac{3b + a}{b - a} \qquad \text{[....Eq 1]} \\[1.5em] \dfrac{x}{4b} = \dfrac{\dfrac{8ab}{a + b}}{4b} \\[1em] \therefore \dfrac{x}{4b} = \dfrac{2a}{a + b} ⇒ x − 4 a x + 4 a = 2 b − a − b 2 b + a + b ⇒ x − 4 a x + 4 a = b − a 3 b + a [....Eq 1] 4 b x = 4 b a + b 8 ab ∴ 4 b x = a + b 2 a
By componendo and dividendo,
⇒ x + 4 b x − 4 b = 2 a + a + b 2 a − a − b ⇒ x + 4 b x − 4 b = 3 a + b a − b [....Eq 2] \Rightarrow \dfrac{x + 4b}{x - 4b} = \dfrac{2a + a + b}{2a - a - b} \\[0.5em] \Rightarrow \dfrac{x + 4b}{x - 4b} = \dfrac{3a + b}{a - b} \qquad \text{[....Eq 2]} ⇒ x − 4 b x + 4 b = 2 a − a − b 2 a + a + b ⇒ x − 4 b x + 4 b = a − b 3 a + b [....Eq 2]
Adding Eq 1 and 2,
⇒ x + 4 a x − 4 a + x + 4 b x − 4 b = 3 b + a b − a + 3 a + b a − b ⇒ x + 4 a x − 4 a + x + 4 b x − 4 b = 3 b + a b − a − 3 a + b b − a ⇒ x + 4 a x − 4 a + x + 4 b x − 4 b = 3 b − b + a − 3 a b − a ⇒ x + 4 a x − 4 a + x + 4 b x − 4 b = 2 b − 2 a b − a ⇒ x + 4 a x − 4 a + x + 4 b x − 4 b = 2 ( b − a ) b − a = 2 \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{3b + a}{b - a} + \dfrac{3a + b}{a - b} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{3b + a}{b - a} - \dfrac{3a + b}{b - a} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{3b - b + a - 3a}{b - a} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{2b - 2a}{b - a} \\[1em] \Rightarrow \dfrac{x + 4a}{x - 4a} + \dfrac{x + 4b}{x - 4b} = \dfrac{2(b - a)}{b - a} = 2 \\[1em] ⇒ x − 4 a x + 4 a + x − 4 b x + 4 b = b − a 3 b + a + a − b 3 a + b ⇒ x − 4 a x + 4 a + x − 4 b x + 4 b = b − a 3 b + a − b − a 3 a + b ⇒ x − 4 a x + 4 a + x − 4 b x + 4 b = b − a 3 b − b + a − 3 a ⇒ x − 4 a x + 4 a + x − 4 b x + 4 b = b − a 2 b − 2 a ⇒ x − 4 a x + 4 a + x − 4 b x + 4 b = b − a 2 ( b − a ) = 2
Hence, the required value is 2.
If x = 4 6 2 + 3 \dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}} 2 + 3 4 6 , find the value of
x + 2 2 x − 2 2 + x + 2 3 x − 2 3 \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} x − 2 2 x + 2 2 + x − 2 3 x + 2 3
Answer
Given,
x = 4 6 2 + 3 x 2 2 = 4 6 2 + 3 2 2 ∴ x 2 2 = 2 3 2 + 3 x = \dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}} \\[1em] \dfrac{x}{2\sqrt{2}} = \dfrac{\dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}}}{2\sqrt{2}} \\[1em] \therefore \dfrac{x}{2\sqrt{2}} = \dfrac{2\sqrt{3}}{\sqrt{2} + \sqrt{3}} x = 2 + 3 4 6 2 2 x = 2 2 2 + 3 4 6 ∴ 2 2 x = 2 + 3 2 3
By componendo and dividendo,
⇒ x + 2 2 x − 2 2 = 2 3 + 2 + 3 2 3 − 2 − 3 ⇒ x + 2 2 x − 2 2 = 3 3 + 2 3 − 2 [....Eq 1] x 2 3 = 4 6 2 + 3 2 3 ∴ x 2 3 = 2 2 2 + 3 \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} = \dfrac{2\sqrt{3} + \sqrt{2} + \sqrt{3}}{2\sqrt{3} - \sqrt{2} - \sqrt{3}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} = \dfrac{3\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \qquad \text{[....Eq 1]} \\[1.5em] \dfrac{x}{2\sqrt{3}} = \dfrac{\dfrac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}}}{2\sqrt{3}} \\[1em] \therefore \dfrac{x}{2\sqrt{3}} = \dfrac{2\sqrt{2}}{\sqrt{2} + \sqrt{3}} ⇒ x − 2 2 x + 2 2 = 2 3 − 2 − 3 2 3 + 2 + 3 ⇒ x − 2 2 x + 2 2 = 3 − 2 3 3 + 2 [....Eq 1] 2 3 x = 2 3 2 + 3 4 6 ∴ 2 3 x = 2 + 3 2 2
By componendo and dividendo,
⇒ x + 2 3 x − 2 3 = 2 2 + 2 + 3 2 2 − 2 − 3 ⇒ x + 2 3 x − 2 3 = 3 2 + 3 2 − 3 [....Eq 2] \Rightarrow \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{2\sqrt{2} + \sqrt{2} + \sqrt{3}}{2\sqrt{2} - \sqrt{2} - \sqrt{3}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} \qquad \text{[....Eq 2]} ⇒ x − 2 3 x + 2 3 = 2 2 − 2 − 3 2 2 + 2 + 3 ⇒ x − 2 3 x + 2 3 = 2 − 3 3 2 + 3 [....Eq 2]
Adding Eq 1 and 2,
⇒ x + 2 2 x − 2 2 + x + 2 3 x − 2 3 = 3 3 + 2 3 − 2 + 3 2 + 3 2 − 3 ⇒ x + 2 2 x − 2 2 + x + 2 3 x − 2 3 = 3 3 + 2 3 − 2 − 3 2 + 3 3 − 2 ⇒ x + 2 2 x − 2 2 + x + 2 3 x − 2 3 = 3 3 + 2 − 3 2 − 3 3 − 2 ⇒ x + 2 2 x − 2 2 + x + 2 3 x − 2 3 = 2 3 − 2 2 3 − 2 ⇒ x + 2 2 x − 2 2 + x + 2 3 x − 2 3 = 2 ( 3 − 2 ) 3 − 2 = 2. \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \dfrac{3\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} - \dfrac{3\sqrt{2} + \sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{3\sqrt{3} + \sqrt{2} - 3\sqrt{2} - \sqrt{3}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{2\sqrt{3} - 2\sqrt{2}}{\sqrt{3} - \sqrt{2}} \\[1em] \Rightarrow \dfrac{x + 2\sqrt{2}}{x - 2\sqrt{2}} + \dfrac{x + 2\sqrt{3}}{x - 2\sqrt{3}} = \dfrac{2(\sqrt{3} - \sqrt{2})}{\sqrt{3} - \sqrt{2}} = 2. \\[1em] ⇒ x − 2 2 x + 2 2 + x − 2 3 x + 2 3 = 3 − 2 3 3 + 2 + 2 − 3 3 2 + 3 ⇒ x − 2 2 x + 2 2 + x − 2 3 x + 2 3 = 3 − 2 3 3 + 2 − 3 − 2 3 2 + 3 ⇒ x − 2 2 x + 2 2 + x − 2 3 x + 2 3 = 3 − 2 3 3 + 2 − 3 2 − 3 ⇒ x − 2 2 x + 2 2 + x − 2 3 x + 2 3 = 3 − 2 2 3 − 2 2 ⇒ x − 2 2 x + 2 2 + x − 2 3 x + 2 3 = 3 − 2 2 ( 3 − 2 ) = 2.
Hence, the required value is 2.
Using properties of proportion, find x from the following equations :
(i) 2 − x + 2 + x 2 − x − 2 + x = 3 (ii) x + 4 + x − 10 x + 4 + x − 10 = 5 2 (iii) 1 + x + 1 − x 1 + x − 1 − x = a b (iv) 5 x + 2 x − 6 5 x − 2 x − 6 = 4 (v) a + x + a − x a + x − a − x = c d (vi) a + a 2 − 2 a x a − a 2 − 2 a x = b \begin{matrix} \text{(i)} & \dfrac{\sqrt{2 - x} + \sqrt{2 + x}}{\sqrt{2 - x} - \sqrt{2 + x}} = 3 \\[0.5em] \text{(ii)} & \dfrac{\sqrt{x + 4} + \sqrt{x - 10}}{\sqrt{x + 4} + \sqrt{x - 10}} = \dfrac{5}{2} \\[0.5em] \text{(iii)} & \dfrac{\sqrt{1 + x} + \sqrt{1 - x}}{\sqrt{1 + x} - \sqrt{1 - x}} = \dfrac{a}{b} \\[0.5em] \text{(iv)} & \dfrac{\sqrt{5x} + \sqrt{2x - 6}}{\sqrt{5x} - \sqrt{2x - 6}} = 4 \\[0.5em] \text{(v)} & \dfrac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} - \sqrt{a - x}} = \dfrac{c}{d} \\[0.5em] \text{(vi)} & \dfrac{a + \sqrt{a^2 - 2ax}}{a - \sqrt{a^2 - 2ax}} = b \end{matrix} (i) (ii) (iii) (iv) (v) (vi) 2 − x − 2 + x 2 − x + 2 + x = 3 x + 4 + x − 10 x + 4 + x − 10 = 2 5 1 + x − 1 − x 1 + x + 1 − x = b a 5 x − 2 x − 6 5 x + 2 x − 6 = 4 a + x − a − x a + x + a − x = d c a − a 2 − 2 a x a + a 2 − 2 a x = b
Answer
(i) Given,
2 − x + 2 + x 2 − x − 2 + x = 3 1 \dfrac{\sqrt{2 - x} + \sqrt{2 + x}}{\sqrt{2 - x} - \sqrt{2 + x}} = \dfrac{3}{1} 2 − x − 2 + x 2 − x + 2 + x = 1 3
Applying componendo and dividendo,
⇒ 2 − x + 2 + x + 2 − x − 2 + x 2 − x + 2 + x − 2 − x + 2 + x = 3 + 1 3 − 1 ⇒ 2 2 − x 2 2 + x = 4 2 ⇒ 2 − x 2 + x = 2 1 \Rightarrow\dfrac{\sqrt{2 - x} + \sqrt{2 + x} + \sqrt{2 - x} - \sqrt{2 + x}}{\sqrt{2 - x} + \sqrt{2 + x} - \sqrt{2 - x} + \sqrt{2 + x}} = \dfrac{3 + 1}{3 - 1} \\[1em] \Rightarrow \dfrac{2\sqrt{2 - x}}{2\sqrt{2 + x}} = \dfrac{4}{2} \\[1em] \Rightarrow \dfrac{\sqrt{2 - x}}{\sqrt{2 + x}} = \dfrac{2}{1} \\[1em] ⇒ 2 − x + 2 + x − 2 − x + 2 + x 2 − x + 2 + x + 2 − x − 2 + x = 3 − 1 3 + 1 ⇒ 2 2 + x 2 2 − x = 2 4 ⇒ 2 + x 2 − x = 1 2
Squaring both sides we get,
⇒ 2 − x 2 + x = 4 1 ⇒ ( 2 − x ) = 4 ( 2 + x ) ⇒ 2 − x = 8 + 4 x ⇒ 5 x = − 6 ⇒ x = − 6 5 . \Rightarrow \dfrac{2 - x}{2 + x} = \dfrac{4}{1} \\[0.5em] \Rightarrow (2 - x) = 4(2 + x) \\[0.5em] \Rightarrow 2 - x = 8 + 4x \\[0.5em] \Rightarrow 5x = -6 \\[0.5em] \Rightarrow x = -\dfrac{6}{5}. ⇒ 2 + x 2 − x = 1 4 ⇒ ( 2 − x ) = 4 ( 2 + x ) ⇒ 2 − x = 8 + 4 x ⇒ 5 x = − 6 ⇒ x = − 5 6 .
Hence, the value of x = − 6 5 . -\dfrac{6}{5}. − 5 6 .
(ii) Given,
x + 4 + x − 10 x + 4 − x − 10 = 5 2 \dfrac{\sqrt{x + 4} + \sqrt{x - 10}}{\sqrt{x + 4} - \sqrt{x - 10}} = \dfrac{5}{2} x + 4 − x − 10 x + 4 + x − 10 = 2 5
Applying componendo and dividendo,
⇒ x + 4 + x − 10 + x + 4 − x − 10 x + 4 + x − 10 − x − 4 + x − 10 = 5 + 2 5 − 2 ⇒ 2 x + 4 2 x − 10 = 7 3 ⇒ x + 4 x − 10 = 7 3 \Rightarrow\dfrac{\sqrt{x + 4} + \sqrt{x - 10} + \sqrt{x + 4} - \sqrt{x - 10}}{\sqrt{x + 4} + \sqrt{x - 10} - \sqrt{x - 4} + \sqrt{x - 10}} = \dfrac{5 + 2}{5 - 2} \\[1em] \Rightarrow \dfrac{2\sqrt{x + 4}}{2\sqrt{x - 10}} = \dfrac{7}{3} \\[1em] \Rightarrow \dfrac{\sqrt{x + 4}}{\sqrt{x - 10}} = \dfrac{7}{3} ⇒ x + 4 + x − 10 − x − 4 + x − 10 x + 4 + x − 10 + x + 4 − x − 10 = 5 − 2 5 + 2 ⇒ 2 x − 10 2 x + 4 = 3 7 ⇒ x − 10 x + 4 = 3 7
Squaring both sides,
⇒ x + 4 x − 10 = 49 9 ⇒ 9 ( x + 4 ) = 49 ( x − 10 ) ⇒ 9 x + 36 = 49 x − 490 ⇒ 40 x = 526 ⇒ x = 526 40 ⇒ x = 263 20 . \Rightarrow \dfrac{x + 4}{x - 10} = \dfrac{49}{9} \\[1em] \Rightarrow 9(x + 4) = 49(x - 10) \\[1em] \Rightarrow 9x + 36 = 49x - 490 \\[1em] \Rightarrow 40x = 526 \\[1em] \Rightarrow x = \dfrac{526}{40} \\[1em] \Rightarrow x = \dfrac{263}{20}. ⇒ x − 10 x + 4 = 9 49 ⇒ 9 ( x + 4 ) = 49 ( x − 10 ) ⇒ 9 x + 36 = 49 x − 490 ⇒ 40 x = 526 ⇒ x = 40 526 ⇒ x = 20 263 .
Hence, the value of x = 263 20 . \dfrac{263}{20}. 20 263 .
(iii) Given,
1 + x + 1 − x 1 + x − 1 − x = a b \dfrac{\sqrt{1 + x} + \sqrt{1 - x}}{\sqrt{1 + x} - \sqrt{1 - x}} = \dfrac{a}{b} 1 + x − 1 − x 1 + x + 1 − x = b a
Applying componendo and dividendo,
⇒ 1 + x + 1 − x + 1 + x − 1 − x 1 + x + 1 − x − 1 + x + 1 − x = a + b a − b ⇒ 2 1 + x 2 1 − x = a + b a − b ⇒ 1 + x 1 − x = a + b a − b \Rightarrow\dfrac{\sqrt{1 + x} + \sqrt{1 - x} + \sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x} - \sqrt{1 + x} + \sqrt{1 - x}} = \dfrac{a + b}{a - b} \\[1em] \Rightarrow \dfrac{2\sqrt{1 + x}}{2\sqrt{1 - x}} = \dfrac{a + b}{a - b} \\[1em] \Rightarrow \dfrac{\sqrt{1 + x}}{{\sqrt{1 - x}}} = \dfrac{a + b}{a - b} ⇒ 1 + x + 1 − x − 1 + x + 1 − x 1 + x + 1 − x + 1 + x − 1 − x = a − b a + b ⇒ 2 1 − x 2 1 + x = a − b a + b ⇒ 1 − x 1 + x = a − b a + b
Squaring both sides we get,
⇒ 1 + x 1 − x = ( a + b ) 2 ( a − b ) 2 \Rightarrow \dfrac{1 + x}{1 - x} = \dfrac{(a + b)^2}{(a - b)^2} \\[0.5em] ⇒ 1 − x 1 + x = ( a − b ) 2 ( a + b ) 2
By componendo and dividendo,
⇒ 1 + x + 1 − x 1 + x − 1 + x = ( a + b ) 2 + ( a − b ) 2 ( a + b ) 2 − ( a − b ) 2 ⇒ 2 2 x = a 2 + 2 a b + b 2 + a 2 − 2 a b + b 2 a 2 + 2 a b + b 2 − a 2 + 2 a b − b 2 ⇒ 2 2 x = 2 a 2 + 2 b 2 2 a b + 2 a b ⇒ 2 2 x = 2 ( a 2 + b 2 ) 4 a b ⇒ 1 x = a 2 + b 2 2 a b ⇒ x = 2 a b a 2 + b 2 . \Rightarrow \dfrac{1 + x + 1 - x}{1 + x - 1 + x} = \dfrac{(a + b)^2 + (a - b)^2}{(a + b)^2 - (a - b)^2} \\[1em] \Rightarrow \dfrac{2}{2x} = \dfrac{a^2 + 2ab + b^2 + a^2 - 2ab + b^2}{a^2 + 2ab + b^2 - a^2 + 2ab - b^2} \\[1em] \Rightarrow \dfrac{2}{2x} = \dfrac{2a^2 + 2b^2 }{2ab + 2ab} \\[1em] \Rightarrow \dfrac{2}{2x} = \dfrac{2(a^2 + b^2)}{4ab} \\[1em] \Rightarrow \dfrac{1}{x} = \dfrac{a^2 + b^2}{2ab} \\[1em] \Rightarrow x = \dfrac{2ab}{a^2 + b^2}. ⇒ 1 + x − 1 + x 1 + x + 1 − x = ( a + b ) 2 − ( a − b ) 2 ( a + b ) 2 + ( a − b ) 2 ⇒ 2 x 2 = a 2 + 2 ab + b 2 − a 2 + 2 ab − b 2 a 2 + 2 ab + b 2 + a 2 − 2 ab + b 2 ⇒ 2 x 2 = 2 ab + 2 ab 2 a 2 + 2 b 2 ⇒ 2 x 2 = 4 ab 2 ( a 2 + b 2 ) ⇒ x 1 = 2 ab a 2 + b 2 ⇒ x = a 2 + b 2 2 ab .
Hence, the value of x = 2 a b a 2 + b 2 . \dfrac{2ab}{a^2 + b^2}. a 2 + b 2 2 ab .
(iv) Given,
5 x + 2 x − 6 5 x − 2 x − 6 = 4. \dfrac{\sqrt{5x} + \sqrt{2x - 6}}{\sqrt{5x} - \sqrt{2x - 6}} = 4. 5 x − 2 x − 6 5 x + 2 x − 6 = 4.
By componendo and dividendo,
⇒ 5 x + 2 x − 6 + 5 x − 2 x − 6 5 x + 2 x − 6 − 5 x + 2 x − 6 = 4 + 1 4 − 1 ⇒ 2 5 x 2 2 x − 6 = 5 3 ⇒ 5 x 2 x − 6 = 5 3 \Rightarrow \dfrac{\sqrt{5x} + \sqrt{2x - 6} + \sqrt{5x} - \sqrt{2x - 6}}{\sqrt{5x} + \sqrt{2x - 6} - \sqrt{5x} + \sqrt{2x - 6}} = \dfrac{4 + 1}{4 - 1} \\[1em] \Rightarrow \dfrac{2\sqrt{5x}}{2\sqrt{2x - 6}} = \dfrac{5}{3} \\[1em] \Rightarrow \dfrac{\sqrt{5x}}{\sqrt{2x - 6}} = \dfrac{5}{3} ⇒ 5 x + 2 x − 6 − 5 x + 2 x − 6 5 x + 2 x − 6 + 5 x − 2 x − 6 = 4 − 1 4 + 1 ⇒ 2 2 x − 6 2 5 x = 3 5 ⇒ 2 x − 6 5 x = 3 5
Squaring both sides,
⇒ ( 5 x 2 x − 6 ) 2 = ( 5 3 ) 2 ⇒ 5 x 2 x − 6 = 25 9 ⇒ 5 x × 9 = 25 ( 2 x − 6 ) ⇒ 45 x = 50 x − 150 ⇒ 5 x = 150 ⇒ x = 30. \Rightarrow \Big(\dfrac{\sqrt{5x}}{\sqrt{2x - 6}}\Big)^2 = \Big(\dfrac{5}{3}\Big)^2 \\[1em] \Rightarrow \dfrac{5x}{2x - 6} = \dfrac{25}{9} \\[1em] \Rightarrow 5x \times 9 = 25(2x - 6) \\[1em] \Rightarrow 45x = 50x - 150 \\[1em] \Rightarrow 5x = 150 \\[1em] \Rightarrow x = 30. ⇒ ( 2 x − 6 5 x ) 2 = ( 3 5 ) 2 ⇒ 2 x − 6 5 x = 9 25 ⇒ 5 x × 9 = 25 ( 2 x − 6 ) ⇒ 45 x = 50 x − 150 ⇒ 5 x = 150 ⇒ x = 30.
Hence, the value of x is 30.
(v) Given,
a + x + a − x a + x − a − x = c d \dfrac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} - \sqrt{a - x}} = \dfrac{c}{d} a + x − a − x a + x + a − x = d c
By componendo and dividendo,
⇒ a + x + a − x + a + x − a − x a + x + a − x − a + x + a − x = c + d c − d ⇒ 2 a + x 2 a − x = c + d c − d ⇒ a + x a − x = c + d c − d \Rightarrow \dfrac{\sqrt{a + x} + \sqrt{a - x} + \sqrt{a + x} - \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x} - \sqrt{a + x} + \sqrt{a - x}} = \dfrac{c + d}{c - d} \\[1em] \Rightarrow \dfrac{2\sqrt{a + x}}{2\sqrt{a - x}} = \dfrac{c + d}{c - d} \\[1em] \Rightarrow \dfrac{\sqrt{a + x}}{\sqrt{a - x}} = \dfrac{c + d}{c - d} ⇒ a + x + a − x − a + x + a − x a + x + a − x + a + x − a − x = c − d c + d ⇒ 2 a − x 2 a + x = c − d c + d ⇒ a − x a + x = c − d c + d
Squaring both sides,
⇒ a + x a − x = ( c + d c − d ) 2 ⇒ a + x a − x = c 2 + d 2 + 2 c d c 2 + d 2 − 2 c d \Rightarrow \dfrac{a + x}{a - x} = \Big(\dfrac{c + d}{c - d}\Big)^2 \\[1em] \Rightarrow \dfrac{a + x}{a - x} = \dfrac{c^2 + d^2 + 2cd}{c^2 + d^2 - 2cd} \\[1em] ⇒ a − x a + x = ( c − d c + d ) 2 ⇒ a − x a + x = c 2 + d 2 − 2 c d c 2 + d 2 + 2 c d
Again applying componendo and dividendo,
⇒ a + x + a − x a + x − a + x = c 2 + d 2 + 2 c d + c 2 + d 2 − 2 c d c 2 + d 2 + 2 c d − c 2 − d 2 + 2 c d ⇒ 2 a 2 x = 2 ( c 2 + d 2 ) 4 c d ⇒ a x = c 2 + d 2 2 c d ⇒ x = 2 a c d c 2 + d 2 \Rightarrow \dfrac{a + x + a - x}{a + x - a + x} = \dfrac{c^2 + d^2 + 2cd + c^2 + d^2 - 2cd}{c^2 + d^2 + 2cd - c^2 - d^2 + 2cd} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{2(c^2 + d^2)}{4cd} \\[1em] \Rightarrow \dfrac{a}{x} = \dfrac{c^2 + d^2}{2cd} \\[1em] \Rightarrow x = \dfrac{2acd}{c^2 + d^2} ⇒ a + x − a + x a + x + a − x = c 2 + d 2 + 2 c d − c 2 − d 2 + 2 c d c 2 + d 2 + 2 c d + c 2 + d 2 − 2 c d ⇒ 2 x 2 a = 4 c d 2 ( c 2 + d 2 ) ⇒ x a = 2 c d c 2 + d 2 ⇒ x = c 2 + d 2 2 a c d
Hence, the value of x is 2 a c d c 2 + d 2 . \dfrac{2acd}{c^2 + d^2}. c 2 + d 2 2 a c d .
(vi) Given,
a + a 2 − 2 a x a − a 2 − 2 a x = b 1 . \dfrac{a + \sqrt{a^2 - 2ax}}{a - \sqrt{a^2 - 2ax}} = \dfrac{b}{1}. a − a 2 − 2 a x a + a 2 − 2 a x = 1 b .
By componendo and dividendo,
⇒ a + a 2 − 2 a x + a − a 2 − 2 a x a + a 2 − 2 a x − a + a 2 − 2 a x = b + 1 b − 1 ⇒ 2 a 2 a 2 − 2 a x = b + 1 b − 1 ⇒ a a 2 − 2 a x = b + 1 b − 1 \Rightarrow \dfrac{a + \sqrt{a^2 - 2ax} + a - \sqrt{a^2 - 2ax}}{a + \sqrt{a^2 - 2ax} - a + \sqrt{a^2 - 2ax}} = \dfrac{b + 1}{b - 1} \\[1em] \Rightarrow \dfrac{2a}{2\sqrt{a^2 - 2ax}} = \dfrac{b + 1}{b - 1} \\[1em] \Rightarrow \dfrac{a}{\sqrt{a^2 - 2ax}} = \dfrac{b + 1}{b - 1} \\[1em] ⇒ a + a 2 − 2 a x − a + a 2 − 2 a x a + a 2 − 2 a x + a − a 2 − 2 a x = b − 1 b + 1 ⇒ 2 a 2 − 2 a x 2 a = b − 1 b + 1 ⇒ a 2 − 2 a x a = b − 1 b + 1
Squaring both sides,
⇒ a 2 a 2 − 2 a x = ( b + 1 b − 1 ) 2 ⇒ a 2 a 2 − 2 a x = b 2 + 1 + 2 b b 2 + 1 − 2 b \Rightarrow \dfrac{a^2}{a^2 - 2ax} = \Big(\dfrac{b + 1}{b - 1}\Big)^2 \\[1em] \Rightarrow \dfrac{a^2}{a^2 - 2ax} = \dfrac{b^2 + 1 + 2b}{b^2 + 1 - 2b} \\[1em] ⇒ a 2 − 2 a x a 2 = ( b − 1 b + 1 ) 2 ⇒ a 2 − 2 a x a 2 = b 2 + 1 − 2 b b 2 + 1 + 2 b
Applying componendo and dividendo again,
⇒ a 2 + a 2 − 2 a x a 2 − a 2 + 2 a x = b 2 + 1 + 2 b + b 2 + 1 − 2 b b 2 + 1 + 2 b − b 2 − 1 + 2 b ⇒ 2 a ( a − x ) 2 a x = 2 ( b 2 + 1 ) 4 b ⇒ a − x x = b 2 + 1 2 b \Rightarrow \dfrac{a^2 + a^2 - 2ax}{a^2 - a^2 + 2ax} = \dfrac{b^2 + 1 + 2b + b^2 + 1 - 2b}{b^2 + 1 + 2b - b^2 - 1 + 2b} \\[1em] \Rightarrow \dfrac{2a(a - x)}{2ax} = \dfrac{2(b^2 + 1)}{4b} \\[1em] \Rightarrow \dfrac{a - x}{x} = \dfrac{b^2 + 1}{2b} ⇒ a 2 − a 2 + 2 a x a 2 + a 2 − 2 a x = b 2 + 1 + 2 b − b 2 − 1 + 2 b b 2 + 1 + 2 b + b 2 + 1 − 2 b ⇒ 2 a x 2 a ( a − x ) = 4 b 2 ( b 2 + 1 ) ⇒ x a − x = 2 b b 2 + 1
On cross-multiplication,
⇒ 2 b ( a − x ) = x ( b 2 + 1 ) ⇒ 2 a b − 2 b x = b 2 x + x ⇒ b 2 x + x + 2 b x = 2 a b ⇒ x ( b 2 + 1 + 2 b ) = 2 a b ⇒ x ( b + 1 ) 2 = 2 a b ⇒ x = 2 a b ( b + 1 ) 2 . \Rightarrow 2b(a - x) = x(b^2 + 1) \\[0.5em] \Rightarrow 2ab - 2bx = b^2x + x \\[0.5em] \Rightarrow b^2x + x + 2bx = 2ab \\[0.5em] \Rightarrow x(b^2 + 1 + 2b) = 2ab \\[0.5em] \Rightarrow x(b + 1)^2 = 2ab \\[0.5em] \Rightarrow x = \dfrac{2ab}{(b + 1)^2}. ⇒ 2 b ( a − x ) = x ( b 2 + 1 ) ⇒ 2 ab − 2 b x = b 2 x + x ⇒ b 2 x + x + 2 b x = 2 ab ⇒ x ( b 2 + 1 + 2 b ) = 2 ab ⇒ x ( b + 1 ) 2 = 2 ab ⇒ x = ( b + 1 ) 2 2 ab .
Hence, the value of x is 2 a b ( b + 1 ) 2 . \dfrac{2ab}{(b + 1)^2}. ( b + 1 ) 2 2 ab .
Using properties of proportion, solve for x. Given that x is positive.
(i) 3 x + 9 x 2 − 5 3 x − 9 x 2 − 5 = 5 (ii) 2 x + 4 x 2 − 1 2 x − 4 x 2 − 1 = 4 \begin{matrix} \text{(i)} & \dfrac{3x + \sqrt{9x^2 - 5}}{3x - \sqrt{9x^2 - 5}} = 5 \\[0.5em] \text{(ii)} & \dfrac{2x + \sqrt{4x^2 - 1}}{2x - \sqrt{4x^2 - 1}} = 4 \end{matrix} (i) (ii) 3 x − 9 x 2 − 5 3 x + 9 x 2 − 5 = 5 2 x − 4 x 2 − 1 2 x + 4 x 2 − 1 = 4
Answer
(i) Given,
3 x + 9 x 2 − 5 3 x − 9 x 2 − 5 = 5 1 . \dfrac{3x + \sqrt{9x^2 - 5}}{3x - \sqrt{9x^2 - 5}} = \dfrac{5}{1}. 3 x − 9 x 2 − 5 3 x + 9 x 2 − 5 = 1 5 .
By componendo and dividendo,
⇒ 3 x + 9 x 2 − 5 + 3 x − 9 x 2 − 5 3 x + 9 x 2 − 5 − 3 x + 9 x 2 − 5 = 5 + 1 5 − 1 ⇒ 6 x 2 9 x 2 − 5 = 6 4 ⇒ x 9 x 2 − 5 = 1 2 \Rightarrow \dfrac{3x + \sqrt{9x^2 - 5} + 3x - \sqrt{9x^2 - 5}}{3x + \sqrt{9x^2 - 5} - 3x + \sqrt{9x^2 - 5}} = \dfrac{5 + 1}{5 - 1} \\[1em] \Rightarrow \dfrac{6x}{2\sqrt{9x^2 - 5}} = \dfrac{6}{4} \\[1em] \Rightarrow \dfrac{x}{\sqrt{9x^2 - 5}} = \dfrac{1}{2} ⇒ 3 x + 9 x 2 − 5 − 3 x + 9 x 2 − 5 3 x + 9 x 2 − 5 + 3 x − 9 x 2 − 5 = 5 − 1 5 + 1 ⇒ 2 9 x 2 − 5 6 x = 4 6 ⇒ 9 x 2 − 5 x = 2 1
Squaring both sides we get,
x 2 9 x 2 − 5 = 1 4 ⇒ 4 x 2 = 9 x 2 − 5 ⇒ 5 x 2 − 5 = 0 ⇒ 5 ( x 2 − 1 ) = 0 ⇒ ( x + 1 ) ( x − 1 ) = 0 ⇒ x = 1 , − 1. \dfrac{x^2}{9x^2 - 5} = \dfrac{1}{4} \\[0.5em] \Rightarrow 4x^2 = 9x^2 - 5 \\[0.5em] \Rightarrow 5x^2 - 5 = 0 \\[0.5em] \Rightarrow 5(x^2 - 1) = 0 \\[0.5em] \Rightarrow (x + 1)(x - 1) = 0 \\[0.5em] \Rightarrow x = 1, -1. 9 x 2 − 5 x 2 = 4 1 ⇒ 4 x 2 = 9 x 2 − 5 ⇒ 5 x 2 − 5 = 0 ⇒ 5 ( x 2 − 1 ) = 0 ⇒ ( x + 1 ) ( x − 1 ) = 0 ⇒ x = 1 , − 1.
Since, x is positive, hence, x ≠ -1.
Hence, the required value of x is 1.
(ii) Given,
2 x + 4 x 2 − 1 2 x − 4 x 2 − 1 = 4 1 . \dfrac{2x + \sqrt{4x^2 - 1}}{2x - \sqrt{4x^2 - 1}} = \dfrac{4}{1}. 2 x − 4 x 2 − 1 2 x + 4 x 2 − 1 = 1 4 .
By componendo and dividendo,
⇒ 2 x + 4 x 2 − 1 + 2 x − 4 x 2 − 1 2 x + 4 x 2 − 1 − 2 x + 4 x 2 − 1 = 4 + 1 4 − 1 ⇒ 4 x 2 4 x 2 − 1 = 5 3 ⇒ 2 x 4 x 2 − 1 = 5 3 \Rightarrow \dfrac{2x + \sqrt{4x^2 - 1} + 2x - \sqrt{4x^2 - 1}}{2x + \sqrt{4x^2 - 1} - 2x + \sqrt{4x^2 - 1}} = \dfrac{4 + 1}{4 - 1} \\[1em] \Rightarrow \dfrac{4x}{2\sqrt{4x^2 - 1}} = \dfrac{5}{3} \\[1em] \Rightarrow \dfrac{2x}{\sqrt{4x^2 - 1}} = \dfrac{5}{3} ⇒ 2 x + 4 x 2 − 1 − 2 x + 4 x 2 − 1 2 x + 4 x 2 − 1 + 2 x − 4 x 2 − 1 = 4 − 1 4 + 1 ⇒ 2 4 x 2 − 1 4 x = 3 5 ⇒ 4 x 2 − 1 2 x = 3 5
Squaring both sides we get,
4 x 2 4 x 2 − 1 = 25 9 ⇒ 4 x 2 × 9 = 25 ( 4 x 2 − 1 ) ⇒ 36 x 2 = 100 x 2 − 25 ⇒ 64 x 2 = 25 ⇒ x 2 = 25 64 ⇒ x = 25 64 ⇒ x = 5 8 or − 5 8 \dfrac{4x^2}{4x^2 - 1} = \dfrac{25}{9} \\[1em] \Rightarrow 4x^2 \times 9 = 25(4x^2 - 1) \\[1em] \Rightarrow 36x^2 = 100x^2 - 25 \\[1em] \Rightarrow 64x^2 = 25 \\[1em] \Rightarrow x^2 = \dfrac{25}{64} \\[1em] \Rightarrow x = \sqrt{\dfrac{25}{64}} \\[1em] \Rightarrow x = \dfrac{5}{8} \text{ or } -\dfrac{5}{8} \\[1em] 4 x 2 − 1 4 x 2 = 9 25 ⇒ 4 x 2 × 9 = 25 ( 4 x 2 − 1 ) ⇒ 36 x 2 = 100 x 2 − 25 ⇒ 64 x 2 = 25 ⇒ x 2 = 64 25 ⇒ x = 64 25 ⇒ x = 8 5 or − 8 5
Since, x is positive, hence, x ≠ − 5 8 . -\dfrac{5}{8}. − 8 5 .
Hence, the required value of x is 5 8 \dfrac{5}{8} 8 5 .
Solve : 1 + x + x 2 1 − x + x 2 = 62 ( 1 + x ) 63 ( 1 − x ) . \dfrac{1 + x + x^2}{1 - x + x^2} = \dfrac{62(1 + x)}{63(1 - x)}. 1 − x + x 2 1 + x + x 2 = 63 ( 1 − x ) 62 ( 1 + x ) .
Answer
Given,
1 + x + x 2 1 − x + x 2 = 62 ( 1 + x ) 63 ( 1 − x ) \dfrac{1 + x + x^2}{1 - x + x^2} = \dfrac{62(1 + x)}{63(1 - x)} 1 − x + x 2 1 + x + x 2 = 63 ( 1 − x ) 62 ( 1 + x )
⇒ ( 1 + x + x 2 ) ( 1 − x ) ( 1 − x + x 2 ) ( 1 + x ) = 62 63 ⇒ 1 + x + x 2 − x − x 2 − x 3 1 − x + x 2 + x − x 2 + x 3 = 62 63 ⇒ 1 − x + x − x 2 + x 2 − x 3 1 + x − x − x 2 + x 2 + x 3 = 62 63 ⇒ 1 − x 3 1 + x 3 = 62 63 \Rightarrow \dfrac{(1 + x + x^2)(1 - x)}{(1 - x + x^2)(1 + x)} = \dfrac{62}{63} \\[1em] \Rightarrow \dfrac{1 + x + x^2 -x -x^2 - x^3}{1 - x + x^2 + x - x^2 + x^3} = \dfrac{62}{63} \\[1em] \Rightarrow \dfrac{1 - \cancel{x} + \cancel{x} - \cancel{x^2} + \cancel{x^2} - x^3}{1 + \cancel{x} - \cancel{x} - \cancel{x^2} + \cancel{x^2} + x^3} = \dfrac{62}{63} \\[1em] \Rightarrow \dfrac{1 - x^3}{1 + x^3} = \dfrac{62}{63} ⇒ ( 1 − x + x 2 ) ( 1 + x ) ( 1 + x + x 2 ) ( 1 − x ) = 63 62 ⇒ 1 − x + x 2 + x − x 2 + x 3 1 + x + x 2 − x − x 2 − x 3 = 63 62 ⇒ 1 + x − x − x 2 + x 2 + x 3 1 − x + x − x 2 + x 2 − x 3 = 63 62 ⇒ 1 + x 3 1 − x 3 = 63 62
Again applying componendo and dividendo,
⇒ 1 − x 3 + 1 + x 3 1 − x 3 − 1 − x 3 = 62 + 63 62 − 63 ⇒ 2 − 2 x 3 = 125 − 1 ⇒ − 1 x 3 = − 125 ⇒ x 3 = 1 125 ⇒ x = 1 125 3 ⇒ x = 1 5 . \Rightarrow \dfrac{1 - x^3 + 1 + x^3}{1 - x^3 - 1 -x^3} = \dfrac{62 + 63}{62 - 63} \\[1em] \Rightarrow \dfrac{2}{-2x^3} = \dfrac{125}{-1} \\[1em] \Rightarrow -\dfrac{1}{x^3} = -125 \\[1em] \Rightarrow x^3 = \dfrac{1}{125} \\[1em] \Rightarrow x = \dfrac{1}{\sqrt[3]{125}} \\[1em] \Rightarrow x = \dfrac{1}{5}. ⇒ 1 − x 3 − 1 − x 3 1 − x 3 + 1 + x 3 = 62 − 63 62 + 63 ⇒ − 2 x 3 2 = − 1 125 ⇒ − x 3 1 = − 125 ⇒ x 3 = 125 1 ⇒ x = 3 125 1 ⇒ x = 5 1 .
Hence, the required value is 1 5 . \dfrac{1}{5}. 5 1 .
Solve for x : 16 ( a − x a + x ) 3 = a + x a − x . 16\Big(\dfrac{a - x}{a + x}\Big)^3 =\dfrac{a + x}{a - x}. 16 ( a + x a − x ) 3 = a − x a + x .
Answer
Given,
16 ( a − x a + x ) 3 = a + x a − x . 16\Big(\dfrac{a - x}{a + x}\Big)^3 =\dfrac{a + x}{a - x}. 16 ( a + x a − x ) 3 = a − x a + x .
⇒ ( a − x ) 3 ( a + x ) 3 × ( a − x ) ( a + x ) = 1 16 ⇒ ( a − x a + x ) 4 = ( 1 2 ) 4 or ( − 1 2 ) 4 ⇒ a − x a + x = 1 2 or − 1 2 \Rightarrow \dfrac{(a - x)^3}{(a + x)^3} \times \dfrac{(a - x)}{(a + x)} = \dfrac{1}{16} \\[1em] \Rightarrow \Big(\dfrac{a - x}{a + x}\Big)^4 = \Big(\dfrac{1}{2}\Big)^4 \text{ or } \Big(-\dfrac{1}{2}\Big)^4 \\[1em] \Rightarrow \dfrac{a - x}{a + x} = \dfrac{1}{2} \text{ or } -\dfrac{1}{2} ⇒ ( a + x ) 3 ( a − x ) 3 × ( a + x ) ( a − x ) = 16 1 ⇒ ( a + x a − x ) 4 = ( 2 1 ) 4 or ( − 2 1 ) 4 ⇒ a + x a − x = 2 1 or − 2 1
First Solving,
a − x a + x = 1 2 \dfrac{a - x}{a + x} = \dfrac{1}{2} a + x a − x = 2 1
By componendo and dividendo,
⇒ a − x + a + x a − x − a − x = 1 + 2 1 − 2 ⇒ − 2 a 2 x = − 3 ⇒ a x = 3 ⇒ x = a 3 . \Rightarrow \dfrac{a - x + a + x}{a - x - a - x} = \dfrac{1 + 2}{1 - 2} \\[1em] \Rightarrow -\dfrac{2a}{2x} = -3 \\[1em] \Rightarrow \dfrac{a}{x} = 3 \\[1em] \Rightarrow x = \dfrac{a}{3}. ⇒ a − x − a − x a − x + a + x = 1 − 2 1 + 2 ⇒ − 2 x 2 a = − 3 ⇒ x a = 3 ⇒ x = 3 a .
Now Solving,
a − x a + x = − 1 2 \dfrac{a - x}{a + x} = -\dfrac{1}{2} a + x a − x = − 2 1
By componendo and dividendo,
⇒ a − x + a + x a − x − a − x = 1 − 2 1 + 2 ⇒ − 2 a 2 x = − 1 3 ⇒ a x = 1 3 ⇒ x = 3 a . \Rightarrow \dfrac{a - x + a + x}{a - x - a - x} = \dfrac{1 - 2}{1 + 2}\\[1em] \Rightarrow -\dfrac{2a}{2x} = -\dfrac{1}{3} \\[1em] \Rightarrow \dfrac{a}{x} = \dfrac{1}{3} \\[1em] \Rightarrow x = 3a. \\[1em] ⇒ a − x − a − x a − x + a + x = 1 + 2 1 − 2 ⇒ − 2 x 2 a = − 3 1 ⇒ x a = 3 1 ⇒ x = 3 a .
Hence, the value of x is a 3 \dfrac{a}{3} 3 a and 3a.
If x = a + 1 + a − 1 a + 1 − a − 1 , \dfrac{\sqrt{a + 1} + \sqrt{a - 1}}{\sqrt{a + 1} - \sqrt{a - 1}}, a + 1 − a − 1 a + 1 + a − 1 , using properties of proportion, show that
x2 - 2ax + 1 = 0.
Answer
Given,
x 1 = a + 1 + a − 1 a + 1 − a − 1 . \dfrac{x}{1} = \dfrac{\sqrt{a + 1} + \sqrt{a - 1}}{\sqrt{a + 1} - \sqrt{a - 1}}. 1 x = a + 1 − a − 1 a + 1 + a − 1 .
Applying componendo and dividendo,
⇒ x + 1 x − 1 = a + 1 + a − 1 + a + 1 − a − 1 a + 1 + a − 1 − a + 1 + a − 1 ⇒ x + 1 x − 1 = 2 a + 1 2 a − 1 ⇒ x + 1 x − 1 = a + 1 a − 1 \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a + 1} + \sqrt{a - 1} + \sqrt{a + 1} - \sqrt{a - 1}}{\sqrt{a + 1} + \sqrt{a - 1} - \sqrt{a + 1} + \sqrt{a - 1}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt{a + 1}}{2\sqrt{a - 1}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a + 1}}{\sqrt{a - 1}} ⇒ x − 1 x + 1 = a + 1 + a − 1 − a + 1 + a − 1 a + 1 + a − 1 + a + 1 − a − 1 ⇒ x − 1 x + 1 = 2 a − 1 2 a + 1 ⇒ x − 1 x + 1 = a − 1 a + 1
Squaring both sides we get,
⇒ ( x + 1 x − 1 ) 2 = ( a + 1 a − 1 ) 2 ⇒ x 2 + 1 + 2 x x 2 + 1 − 2 x = a + 1 a − 1 \Rightarrow \Big(\dfrac{x + 1}{x - 1}\Big)^2 = \Big(\dfrac{\sqrt{a + 1}}{\sqrt{a - 1}}\Big)^2 \\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x}{x^2 + 1 - 2x} = \dfrac{a + 1}{a - 1} ⇒ ( x − 1 x + 1 ) 2 = ( a − 1 a + 1 ) 2 ⇒ x 2 + 1 − 2 x x 2 + 1 + 2 x = a − 1 a + 1
Again applying componendo and dividendo,
⇒ x 2 + 1 + 2 x + x 2 + 1 − 2 x x 2 + 1 + 2 x − x 2 − 1 + 2 x = a + 1 + a − 1 a + 1 − a + 1 ⇒ 2 ( x 2 + 1 ) 4 x = 2 a 2 ⇒ x 2 + 1 2 x = a ⇒ x 2 + 1 = 2 a x ⇒ x 2 − 2 a x + 1 = 0. \Rightarrow \dfrac{x^2 + 1 + \cancel{2x} + x^2 + 1 - \cancel{2x}}{\cancel{x^2} + \cancel{1} + 2x - \cancel{x^2} - \cancel{1} + 2x} = \dfrac{a + \cancel{1} + a - \cancel{1}}{\cancel{a} + 1 - \cancel{a} + 1} \\[1em] \Rightarrow \dfrac{2(x^2 + 1)}{4x} = \dfrac{2a}{2} \\[1em] \Rightarrow \dfrac{x^2 + 1}{2x} = a \\[1em] \Rightarrow x^2 + 1 = 2ax \\[1em] \Rightarrow x^2 - 2ax + 1 = 0. ⇒ x 2 + 1 + 2 x − x 2 − 1 + 2 x x 2 + 1 + 2 x + x 2 + 1 − 2 x = a + 1 − a + 1 a + 1 + a − 1 ⇒ 4 x 2 ( x 2 + 1 ) = 2 2 a ⇒ 2 x x 2 + 1 = a ⇒ x 2 + 1 = 2 a x ⇒ x 2 − 2 a x + 1 = 0.
Hence proved that, x2 - 2ax + 1 = 0.
If x = 2 a + 1 + 2 a − 1 2 a + 1 − 2 a − 1 \dfrac{\sqrt{2a + 1} + \sqrt{2a - 1}}{\sqrt{2a + 1} - \sqrt{2a - 1}} 2 a + 1 − 2 a − 1 2 a + 1 + 2 a − 1 , using properties of proportion, prove that x2 - 4ax + 1 = 0.
Answer
Given; x = 2 a + 1 + 2 a − 1 2 a + 1 − 2 a − 1 \dfrac{\sqrt{2a + 1} + \sqrt{2a - 1}}{\sqrt{2a + 1} - \sqrt{2a - 1}} 2 a + 1 − 2 a − 1 2 a + 1 + 2 a − 1
Applying componendo and dividendo on both sides we get :
⇒ x + 1 x − 1 = 2 a + 1 + 2 a − 1 + 2 a + 1 − 2 a − 1 2 a + 1 + 2 a − 1 − ( 2 a + 1 − 2 a − 1 ) ⇒ x + 1 x − 1 = 2 2 a + 1 2 2 a − 1 ⇒ x + 1 x − 1 = 2 a + 1 2 a − 1 Squaring both sides we get : ⇒ ( x + 1 ) 2 ( x − 1 ) 2 = 2 a + 1 2 a − 1 ⇒ x 2 + 1 + 2 x x 2 + 1 − 2 x = 2 a + 1 2 a − 1 Applying componendo and dividendo on both sides we get : ⇒ x 2 + 1 + 2 x + x 2 + 1 − 2 x x 2 + 1 + 2 x − ( x 2 + 1 − 2 x ) = 2 a + 1 + 2 a − 1 2 a + 1 − ( 2 a − 1 ) ⇒ 2 x 2 + 2 4 x = 4 a 2 ⇒ x 2 + 1 2 x = 2 a ⇒ x 2 + 1 = 4 a x ⇒ x 2 + 1 − 4 a x = 0 \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{2a + 1} + \sqrt{2a - 1} + \sqrt{2a + 1} - \sqrt{2a - 1}}{\sqrt{2a + 1} + \sqrt{2a - 1} - (\sqrt{2a + 1} - \sqrt{2a - 1})}\\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt{2a + 1}}{2\sqrt{2a - 1}}\\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{2a + 1}}{\sqrt{2a - 1}}\\[1em] \text{Squaring both sides we get :}\\[1em] \Rightarrow \dfrac{(x + 1)^2}{(x - 1)^2} = \dfrac{2a + 1}{2a - 1}\\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x}{x^2 + 1 - 2x} = \dfrac{2a + 1}{2a - 1}\\[1em] \text{Applying componendo and dividendo on both sides we get :}\\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x + x^2 + 1 - 2x}{x^2 + 1 + 2x - (x^2 + 1 - 2x)} = \dfrac{2a + 1 + 2a - 1}{2a + 1 - (2a - 1)}\\[1em] \Rightarrow \dfrac{2x^2 + 2}{4x} = \dfrac{4a}{2}\\[1em] \Rightarrow \dfrac{x^2 + 1}{2x} = 2a\\[1em] \Rightarrow x^2 + 1 = 4ax\\[1em] \Rightarrow x^2 + 1 - 4ax = 0 ⇒ x − 1 x + 1 = 2 a + 1 + 2 a − 1 − ( 2 a + 1 − 2 a − 1 ) 2 a + 1 + 2 a − 1 + 2 a + 1 − 2 a − 1 ⇒ x − 1 x + 1 = 2 2 a − 1 2 2 a + 1 ⇒ x − 1 x + 1 = 2 a − 1 2 a + 1 Squaring both sides we get : ⇒ ( x − 1 ) 2 ( x + 1 ) 2 = 2 a − 1 2 a + 1 ⇒ x 2 + 1 − 2 x x 2 + 1 + 2 x = 2 a − 1 2 a + 1 Applying componendo and dividendo on both sides we get : ⇒ x 2 + 1 + 2 x − ( x 2 + 1 − 2 x ) x 2 + 1 + 2 x + x 2 + 1 − 2 x = 2 a + 1 − ( 2 a − 1 ) 2 a + 1 + 2 a − 1 ⇒ 4 x 2 x 2 + 2 = 2 4 a ⇒ 2 x x 2 + 1 = 2 a ⇒ x 2 + 1 = 4 a x ⇒ x 2 + 1 − 4 a x = 0
Hence, proved that x2 - 4ax + 1 = 0.
Given x = a 2 + b 2 + a 2 − b 2 a 2 + b 2 − a 2 − b 2 , \dfrac{\sqrt{a^{2} + b^2} + \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} - \sqrt{a^2 - b^2}}, a 2 + b 2 − a 2 − b 2 a 2 + b 2 + a 2 − b 2 , use componendo and dividendo to prove that b2 = 2 a 2 x x 2 + 1 . \dfrac{2a^2x}{x^2 + 1}. x 2 + 1 2 a 2 x .
Answer
Given,
x = a 2 + b 2 + a 2 − b 2 a 2 + b 2 − a 2 − b 2 x = \dfrac{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} - \sqrt{a^2 - b^2}} x = a 2 + b 2 − a 2 − b 2 a 2 + b 2 + a 2 − b 2
By componendo and dividendo,
⇒ x + 1 x − 1 = a 2 + b 2 + a 2 − b 2 + a 2 + b 2 − a 2 − b 2 a 2 + b 2 + a 2 − b 2 − a 2 + b 2 + a 2 − b 2 ⇒ x + 1 x − 1 = 2 a 2 + b 2 2 a 2 − b 2 ⇒ x + 1 x − 1 = a 2 + b 2 a 2 − b 2 \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2} + \sqrt{a^2 + b^2} - \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2} - \sqrt{a^2 + b^2} + \sqrt{a^2 - b^2}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt{a^2 + b^2}}{2\sqrt{a^2 - b^2}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt{a^2 + b^2}}{\sqrt{a^2 - b^2}} ⇒ x − 1 x + 1 = a 2 + b 2 + a 2 − b 2 − a 2 + b 2 + a 2 − b 2 a 2 + b 2 + a 2 − b 2 + a 2 + b 2 − a 2 − b 2 ⇒ x − 1 x + 1 = 2 a 2 − b 2 2 a 2 + b 2 ⇒ x − 1 x + 1 = a 2 − b 2 a 2 + b 2
On squaring both sides,
⇒ ( x + 1 x − 1 ) 2 = a 2 + b 2 a 2 − b 2 ⇒ x 2 + 1 + 2 x x 2 + 1 − 2 x = a 2 + b 2 a 2 − b 2 \Rightarrow \Big(\dfrac{x + 1}{x - 1}\Big)^2 = \dfrac{a^2 + b^2}{a^2 - b^2} \\[1em] \Rightarrow \dfrac{x^2 + 1 + 2x}{x^2 + 1 - 2x} = \dfrac{a^2 + b^2}{a^2 - b^2} \\[1em] ⇒ ( x − 1 x + 1 ) 2 = a 2 − b 2 a 2 + b 2 ⇒ x 2 + 1 − 2 x x 2 + 1 + 2 x = a 2 − b 2 a 2 + b 2
Again applying componendo and dividendo,
⇒ x 2 + 1 + 2 x + x 2 + 1 − 2 x x 2 + 1 + 2 x − x 2 − 1 + 2 x = a 2 + b 2 + a 2 − b 2 a 2 + b 2 − a 2 + b 2 ⇒ 2 x 2 + 2 4 x = 2 a 2 2 b 2 ⇒ x 2 + 1 2 x = a 2 b 2 ⇒ b 2 = 2 a 2 x x 2 + 1 . \Rightarrow \dfrac{x^2 + 1 + \cancel{2x} + x^2 + 1 - \cancel{2x}}{\cancel{x^2} + \cancel{1} + 2x - \cancel{x^2} - \cancel{1} + 2x} = \dfrac{a^2 + \cancel{b^2} + a^2 - \cancel{b^2}}{\cancel{a^2} + b^2 - \cancel{a^2} + b^2} \\[1em] \Rightarrow \dfrac{2x^2 + 2}{4x} = \dfrac{2a^2}{2b^2} \\[1em] \Rightarrow \dfrac{x^2 + 1}{2x} = \dfrac{a^2}{b^2}\\[1em] \Rightarrow b^2 = \dfrac{2a^2x}{x^2 + 1}. ⇒ x 2 + 1 + 2 x − x 2 − 1 + 2 x x 2 + 1 + 2 x + x 2 + 1 − 2 x = a 2 + b 2 − a 2 + b 2 a 2 + b 2 + a 2 − b 2 ⇒ 4 x 2 x 2 + 2 = 2 b 2 2 a 2 ⇒ 2 x x 2 + 1 = b 2 a 2 ⇒ b 2 = x 2 + 1 2 a 2 x .
Hence, proved that b 2 = 2 a 2 x x 2 + 1 . b^2 = \dfrac{2a^2x}{x^2 + 1}. b 2 = x 2 + 1 2 a 2 x .
Given that a 3 + 3 a b 2 b 3 + 3 a 2 b = 63 62 . \dfrac{a^3 + 3ab^2}{b^3 + 3a^2b} = \dfrac{63}{62}. b 3 + 3 a 2 b a 3 + 3 a b 2 = 62 63 . Using componendo and dividendo, find a : b.
Answer
Given,
a 3 + 3 a b 2 b 3 + 3 a 2 b = 63 62 \dfrac{a^3 + 3ab^2}{b^3 + 3a^2b} = \dfrac{63}{62} b 3 + 3 a 2 b a 3 + 3 a b 2 = 62 63
By componendo and dividendo,
⇒ a 3 + 3 a b 2 + b 3 + 3 a 2 b a 3 + 3 a b 2 − b 3 − 3 a 2 b = 63 + 62 63 − 62 ⇒ ( a + b a − b ) 3 = 125 ⇒ ( a + b a − b ) 3 = ( 5 ) 3 ⇒ a + b a − b = 5 ⇒ a + b = 5 a − 5 b ⇒ 5 a − a = b + 5 b ⇒ 4 a = 6 b ⇒ a b = 6 4 = 2 3 ⇒ a : b = 3 : 2. \Rightarrow \dfrac{a^3 + 3ab^2 + b^3 + 3a^2b}{a^3 + 3ab^2 - b^3 - 3a^2b} = \dfrac{63 + 62}{63 - 62} \\[1em] \Rightarrow \Big(\dfrac{a + b}{a - b}\Big)^3 = 125 \\[1em] \Rightarrow \Big(\dfrac{a + b}{a - b}\Big)^3 = (5)^3 \\[1em] \Rightarrow \dfrac{a + b}{a - b} = 5 \\[1em] \Rightarrow a + b = 5a - 5b \\[1em] \Rightarrow 5a - a = b + 5b \\[1em] \Rightarrow 4a = 6b \\[1em] \Rightarrow \dfrac{a}{b} = \dfrac{6}{4} = \dfrac{2}{3} \\[1em] \Rightarrow a : b = 3 : 2. ⇒ a 3 + 3 a b 2 − b 3 − 3 a 2 b a 3 + 3 a b 2 + b 3 + 3 a 2 b = 63 − 62 63 + 62 ⇒ ( a − b a + b ) 3 = 125 ⇒ ( a − b a + b ) 3 = ( 5 ) 3 ⇒ a − b a + b = 5 ⇒ a + b = 5 a − 5 b ⇒ 5 a − a = b + 5 b ⇒ 4 a = 6 b ⇒ b a = 4 6 = 3 2 ⇒ a : b = 3 : 2.
Hence, the value of a : b = 3 : 2.
Given x 3 + 12 x 6 x 2 + 8 = y 3 + 27 y 9 y 2 + 27 . \dfrac{x^3 + 12x}{6x^2 + 8} = \dfrac{y^3 + 27y}{9y^2 + 27}. 6 x 2 + 8 x 3 + 12 x = 9 y 2 + 27 y 3 + 27 y . Using componendo and dividendo, find x : y.
Answer
Given,
x 3 + 12 x 6 x 2 + 8 = y 3 + 27 y 9 y 2 + 27 \dfrac{x^3 + 12x}{6x^2 + 8} = \dfrac{y^3 + 27y}{9y^2 + 27} 6 x 2 + 8 x 3 + 12 x = 9 y 2 + 27 y 3 + 27 y
By componendo and dividendo,
⇒ x 3 + 12 x + 6 x 2 + 8 x 3 + 12 x − 6 x 2 − 8 = y 3 + 27 y + 9 y 2 + 27 y 3 + 27 y − 9 y 2 − 27 ⇒ x 3 + ( 3 × x × 2 2 ) + ( 3 × x 2 × 2 ) + 2 3 x 3 + ( 3 × x × 2 2 ) − ( 3 × x 2 × 2 ) − 2 3 = y 3 + ( 3 × y × 3 2 ) + ( 3 × y 2 × 3 ) + 3 3 y 3 + ( 3 × y × 3 2 ) − ( 3 × y 2 × 3 ) − 3 3 ⇒ ( x + 2 x − 2 ) 3 = ( y + 3 y − 3 ) 3 ⇒ x + 2 x − 2 = y + 3 y − 3 \Rightarrow \dfrac{x^3 + 12x + 6x^2 + 8}{x^3 + 12x - 6x^2 - 8} = \dfrac{y^3 + 27y + 9y^2 + 27}{y^3 + 27y - 9y^2 - 27} \\[1em] \Rightarrow \dfrac{x^3 + (3 \times x \times 2^2 ) + (3 \times x^2 \times 2 ) + 2^3}{x^3 + (3 \times x \times 2^2 ) - (3 \times x^2 \times 2 ) - 2^3} \\[1em] = \dfrac{y^3 + (3 \times y \times 3^2) + (3 \times y^2 \times 3) + 3^3}{y^3 + (3 \times y \times 3^2) - (3 \times y^2 \times 3) - 3^3} \\[1em] \Rightarrow \Big(\dfrac{x + 2}{x - 2}\Big)^3 = \Big(\dfrac{y + 3}{y - 3}\Big)^3 \\[1em] \Rightarrow \dfrac{x + 2}{x - 2} = \dfrac{y + 3}{y - 3} ⇒ x 3 + 12 x − 6 x 2 − 8 x 3 + 12 x + 6 x 2 + 8 = y 3 + 27 y − 9 y 2 − 27 y 3 + 27 y + 9 y 2 + 27 ⇒ x 3 + ( 3 × x × 2 2 ) − ( 3 × x 2 × 2 ) − 2 3 x 3 + ( 3 × x × 2 2 ) + ( 3 × x 2 × 2 ) + 2 3 = y 3 + ( 3 × y × 3 2 ) − ( 3 × y 2 × 3 ) − 3 3 y 3 + ( 3 × y × 3 2 ) + ( 3 × y 2 × 3 ) + 3 3 ⇒ ( x − 2 x + 2 ) 3 = ( y − 3 y + 3 ) 3 ⇒ x − 2 x + 2 = y − 3 y + 3
Again applying componendo and dividendo,
⇒ x + 2 + x − 2 x + 2 − x + 2 = y + 3 + y − 3 y + 3 − y + 3 ⇒ 2 x 4 = 2 y 6 ⇒ x y = 2 6 × 4 2 ⇒ x y = 2 3 ⇒ x : y = 2 : 3. \Rightarrow \dfrac{x + \cancel{2} + x - \cancel{2}}{\cancel{x} + 2 - \cancel{x} + 2} = \dfrac{y + \cancel{3} + y - \cancel{3}}{\cancel{y} + 3 - \cancel{y} + 3} \\[1em] \Rightarrow \dfrac{2x}{4} = \dfrac{2y}{6} \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{2}{6} \times \dfrac{4}{2} \\[1em] \Rightarrow \dfrac{x}{y} = \dfrac{2}{3} \\[1em] \Rightarrow x : y = 2 : 3. ⇒ x + 2 − x + 2 x + 2 + x − 2 = y + 3 − y + 3 y + 3 + y − 3 ⇒ 4 2 x = 6 2 y ⇒ y x = 6 2 × 2 4 ⇒ y x = 3 2 ⇒ x : y = 2 : 3.
Hence, the value of ratio x : y is 2 : 3.
Using the properties of proportion, solve the following equation for x;
given x 3 + 3 x 3 x 2 + 1 = 341 91 . \dfrac{x^3 + 3x}{3x^2 + 1} = \dfrac{341}{91}. 3 x 2 + 1 x 3 + 3 x = 91 341 .
Answer
Given,
x 3 + 3 x 3 x 2 + 1 = 341 91 \dfrac{x^3 + 3x}{3x^2 + 1} = \dfrac{341}{91} 3 x 2 + 1 x 3 + 3 x = 91 341
Applying componendo and dividendo,
⇒ x 3 + 3 x + 3 x 2 + 1 x 3 + 3 x − 3 x 2 − 1 = 341 + 91 341 − 91 ⇒ ( x + 1 ) 3 ( x − 1 ) 3 = 432 250 ⇒ ( x + 1 ) 3 ( x − 1 ) 3 = 216 125 ⇒ ( x + 1 x − 1 ) 3 = ( 6 5 ) 3 ⇒ x + 1 x − 1 = 6 5 \Rightarrow \dfrac{x^3 + 3x + 3x^2 + 1}{x^3 + 3x - 3x^2 - 1} = \dfrac{341 + 91}{341 - 91} \\[1em] \Rightarrow \dfrac{(x + 1)^3}{(x - 1)^3} = \dfrac{432}{250} \\[1em] \Rightarrow \dfrac{(x + 1)^3}{(x - 1)^3} = \dfrac{216}{125} \\[1em] \Rightarrow \Big(\dfrac{x + 1}{x - 1}\Big)^3 = \Big(\dfrac{6}{5}\Big)^3 \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{6}{5} ⇒ x 3 + 3 x − 3 x 2 − 1 x 3 + 3 x + 3 x 2 + 1 = 341 − 91 341 + 91 ⇒ ( x − 1 ) 3 ( x + 1 ) 3 = 250 432 ⇒ ( x − 1 ) 3 ( x + 1 ) 3 = 125 216 ⇒ ( x − 1 x + 1 ) 3 = ( 5 6 ) 3 ⇒ x − 1 x + 1 = 5 6
Again applying componendo and dividendo,
⇒ x + 1 + x − 1 x + 1 − x + 1 = 6 + 5 6 − 5 ⇒ 2 x 2 = 11 1 ⇒ x = 11. \Rightarrow \dfrac{x + \cancel{1} + x - \cancel{1}}{\cancel{x} + 1 - \cancel{x} + 1} = \dfrac{6 + 5}{6 - 5} \\[1em] \Rightarrow \dfrac{2x}{2} = \dfrac{11}{1} \\[1em] \Rightarrow x = 11. ⇒ x + 1 − x + 1 x + 1 + x − 1 = 6 − 5 6 + 5 ⇒ 2 2 x = 1 11 ⇒ x = 11.
Hence, the value of x is 11.
If x + y a x + b y = y + z a y + b z = z + x a z + b x \dfrac{x + y}{ax + by} = \dfrac{y + z}{ay + bz} = \dfrac{z + x}{az + bx} a x + b y x + y = a y + b z y + z = a z + b x z + x , prove that each of these ratio is equal to 2 a + b , \dfrac{2}{a + b}, a + b 2 , unless x + y + z = 0.
Answer
We know that if a b = c d = e f \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} b a = d c = f e , then each ratio
= a + c + e b + d + f = sum of antecedents sum of consequents = \dfrac{a + c + e}{b + d + f} = \dfrac{\text{sum of antecedents}}{\text{sum of consequents}} = b + d + f a + c + e = sum of consequents sum of antecedents
∴ x + y a x + b y = y + z a y + b z = z + x a z + b x = x + y + y + z + z + x a x + b y + a y + b z + a z + b x = 2 ( x + y + z ) a ( x + y + z ) + b ( x + y + z ) = 2 ( x + y + z ) ( a + b ) ( x + y + z ) = 2 a + b . \therefore \dfrac{x + y}{ax + by} = \dfrac{y + z}{ay + bz} = \dfrac{z + x}{az + bx} \\[1em] = \dfrac{x + y + y + z + z + x}{ax + by + ay + bz + az + bx} \\[1em] = \dfrac{2(x + y + z)}{a(x + y + z) + b(x + y + z)} \\[1em] = \dfrac{2(x + y + z)}{(a + b)(x + y + z)} \\[1em] = \dfrac{2}{a + b}. ∴ a x + b y x + y = a y + b z y + z = a z + b x z + x = a x + b y + a y + b z + a z + b x x + y + y + z + z + x = a ( x + y + z ) + b ( x + y + z ) 2 ( x + y + z ) = ( a + b ) ( x + y + z ) 2 ( x + y + z ) = a + b 2 .
Hence, proved that,
x + y a x + b y = y + z a y + b z = z + x a z + b x = 2 a + b . \dfrac{x + y}{ax + by} = \dfrac{y + z}{ay + bz} = \dfrac{z + x}{az + bx} = \dfrac{2}{a + b}. a x + b y x + y = a y + b z y + z = a z + b x z + x = a + b 2 .
Multiple Choice Questions
The ratio of 4 litres to 900 mL is
4 : 9 40 : 9 9 : 40 20 : 9 Answer
4 litres = 4 x 1000 ml = 4000 ml
Ratio = 4000 900 = 40 9 \dfrac{4000}{900} = \dfrac{40}{9} 900 4000 = 9 40 = 40 : 9.
∴ Option 2 is the correct option.
When the number 210 is increased in the ratio 5 : 7, the new number is
150 180 294 420 Answer
Let new number be x. Since, 210 is increased in the ratio 5 : 7,
∴ 210 x = 5 7 ⇒ x = 210 × 7 5 ⇒ x = 294. \therefore \dfrac{210}{x} = \dfrac{5}{7} \\[0.5em] \Rightarrow x = 210 \times \dfrac{7}{5} \\[0.5em] \Rightarrow x = 294. ∴ x 210 = 7 5 ⇒ x = 210 × 5 7 ⇒ x = 294.
∴ Option 3 is the correct option.
Two numbers are in the ratio 7 : 9. If the sum of the numbers is 288, then the smaller number is
126 162 112 144 Answer
Since, two numbers are in the ratio 7 : 9, let the numbers be 7x, 9x.
Given, the sum of two numbers = 288.
∴ 7x + 9x = 288 ⇒ 16x = 288 ⇒ x = 288 16 \dfrac{288}{16} 16 288 ⇒ x = 18.
Smaller number = 7x = 126.
∴ Option 1 is the correct option.
The ratio of number of edges of a cube to the number of its faces is
2 : 1 1 : 2 3 : 8 8 : 3 Answer
Number of edges in a cube = 12
Number of faces in cube = 6
Ratio of number of edges to the number of faces = 12 6 = 2 1 \dfrac{12}{6} = \dfrac{2}{1} 6 12 = 1 2 = 2 : 1.
∴ Option 1 is the correct option.
If x, 12, 8 and 32 are in proportion, then the value of x is
6 4 3 2 Answer
Given, x : 12 : : 8 : 32
⇒ x 12 = 8 32 ⇒ x = 12 × 8 32 ⇒ x = 3. \Rightarrow \dfrac{x}{12} = \dfrac{8}{32} \\[0.5em] \Rightarrow x = 12 \times \dfrac{8}{32} \\[0.5em] \Rightarrow x = 3. ⇒ 12 x = 32 8 ⇒ x = 12 × 32 8 ⇒ x = 3.
∴ Option 3 is the correct option.
The fourth proportional to 3, 4, 5 is
6
20 3 \dfrac{20}{3} 3 20
15 4 \dfrac{15}{4} 4 15
12 5 \dfrac{12}{5} 5 12
Answer
Let the fourth proportional be x.
So, the numbers 3, 4, 5, x are in proportion.
∴ 3 : 4 : : 5 : x ⇒ 3 4 = 5 x ⇒ x = 5 × 4 3 ⇒ x = 20 3 . \therefore 3 : 4 : : 5 : x \\[0.5em] \Rightarrow \dfrac{3}{4} = \dfrac{5}{x} \\[0.5em] \Rightarrow x = 5 \times \dfrac{4}{3} \\[0.5em] \Rightarrow x = \dfrac{20}{3}. ∴ 3 : 4 :: 5 : x ⇒ 4 3 = x 5 ⇒ x = 5 × 3 4 ⇒ x = 3 20 .
∴ Option 2 is the correct option.
The third proportional to 6 1 4 6\dfrac{1}{4} 6 4 1 and 5 is
4
7 1 2 7\dfrac{1}{2} 7 2 1
3
none of these
Answer
Let the third proportional be x.
Hence, the numbers 6 1 4 6\dfrac{1}{4} 6 4 1 , 5, x are in continued in proportion.
∴ 25 4 : 5 : : 5 : x ⇒ 25 4 5 = 5 x ⇒ 25 20 = 5 x ⇒ x = 5 × 20 25 ⇒ x = 4. \therefore \dfrac{25}{4} : 5 : : 5 : x \\[0.5em] \Rightarrow \dfrac{\dfrac{25}{4}}{5} = \dfrac{5}{x} \\[0.5em] \Rightarrow \dfrac{25}{20} = \dfrac{5}{x} \\[0.5em] \Rightarrow x = 5 \times \dfrac{20}{25} \\[0.5em] \Rightarrow x = 4. ∴ 4 25 : 5 :: 5 : x ⇒ 5 4 25 = x 5 ⇒ 20 25 = x 5 ⇒ x = 5 × 25 20 ⇒ x = 4.
∴ Option 1 is the correct option.
The mean proportional between 1 2 \dfrac{1}{2} 2 1 and 128 is
64 32 16 8 Answer
Let the mean proportional be x.
Hence, the numbers are 1 2 \dfrac{1}{2} 2 1 , x and 128 are in continued in proportion.
∴ 1 2 : x : : x : 128 ⇒ 1 2 x = x 128 ⇒ x 2 = 1 2 × 128 ⇒ x 2 = 64 ⇒ x = 64 ⇒ x = 8. \therefore \dfrac{1}{2} : x : : x : 128 \\[0.5em] \Rightarrow \dfrac{\dfrac{1}{2}}{x} = \dfrac{x}{128} \\[0.5em] \Rightarrow x^2 = \dfrac{1}{2} \times 128 \\[0.5em] \Rightarrow x^2 = 64 \\[0.5em] \Rightarrow x = \sqrt{64} \\[0.5em] \Rightarrow x = 8. ∴ 2 1 : x :: x : 128 ⇒ x 2 1 = 128 x ⇒ x 2 = 2 1 × 128 ⇒ x 2 = 64 ⇒ x = 64 ⇒ x = 8.
∴ Option 4 is the correct option.
The table shows the values of x and y, where x is proportional to y. What are the values of M and N ?
M = 4, N = 9
M = 9, N = 3
M = 9, N = 4
M = 12, N = 0
Answer
Given, x is proportional to y.
⇒ 6 M = 12 18 ⇒ M = 6 × 18 12 ⇒ M = 108 12 ⇒ M = 9. 12 18 = N 6 ⇒ N = 12 × 6 18 ⇒ N = 72 18 ⇒ N = 4. \Rightarrow \dfrac{6}{M} = \dfrac{12}{18} \\[1em] \Rightarrow M = \dfrac{6 \times 18}{12} \\[1em] \Rightarrow M = \dfrac{108}{12} \\[1em] \Rightarrow M = 9. \\[1.5em] \dfrac{12}{18} = \dfrac{N}{6} \\[1em] \Rightarrow N = \dfrac{12 \times 6}{18} \\[1em] \Rightarrow N = \dfrac{72}{18} \\[1em] \Rightarrow N = 4. ⇒ M 6 = 18 12 ⇒ M = 12 6 × 18 ⇒ M = 12 108 ⇒ M = 9. 18 12 = 6 N ⇒ N = 18 12 × 6 ⇒ N = 18 72 ⇒ N = 4.
Hence, Option 3 is the correct option.
The given table shows the distance covered and the time taken by a train moving at a uniform speed along a straight track.
Distance (in m) Time (in sec) 60 2 90 x y 5
The values of x and y are :
x = 4, y = 150
x = 3, y = 100
x = 4, y = 100
x = 3, y = 150
Answer
Speed = Distance Time \dfrac{\text{Distance}}{\text{Time}} Time Distance
Average speed = 60 2 \dfrac{60}{2} 2 60 = 30 km/hr
⇒ 90 x = 30 ⇒ x = 90 30 = 3. ⇒ y 5 = 30 ⇒ y = 30 × 5 = 150. \Rightarrow \dfrac{90}{x} = 30 \\[1em] \Rightarrow x = \dfrac{90}{30} = 3. \\[1em] \phantom{\Rightarrow} \dfrac{y}{5} = 30 \\[1em] \Rightarrow y = 30 \times 5 = 150. ⇒ x 90 = 30 ⇒ x = 30 90 = 3. ⇒ 5 y = 30 ⇒ y = 30 × 5 = 150.
Hence, Option 4 is the correct option.
A mixture of paint is prepared by mixing 2 parts of red pigments with 5 parts of the base. Using the given information in the following table, find the values of a, b and c to get the required mixture of paint.
Parts of red pigment Parts of base 2 5 4 a b 12.5 6 c
a = 10, b = 10, c = 10
a = 5, b = 2, c = 5
a = 10, b = 5, c = 10
a = 10, b = 5, c = 15
Answer
Given,
2 parts of red pigments is mixed with 5 parts of the base.
∴ 4 a = 2 5 ⇒ a = 4 × 5 2 = 20 2 = 10. ∴ b 12.5 = 2 5 ⇒ b = 2 5 × 12.5 = 2 × 2.5 = 5 ∴ 6 c = 2 5 ⇒ c = 6 × 5 2 = 3 × 5 = 15. \therefore \dfrac{4}{a} = \dfrac{2}{5} \\[1em] \Rightarrow a = \dfrac{4 \times 5}{2} = \dfrac{20}{2} = 10. \\[1em] \therefore \dfrac{b}{12.5} = \dfrac{2}{5} \\[1em] \Rightarrow b = \dfrac{2}{5} \times 12.5 = 2 \times 2.5 = 5 \\[1em] \therefore \dfrac{6}{c} = \dfrac{2}{5} \\[1em] \Rightarrow c = \dfrac{6 \times 5}{2} = 3 \times 5 = 15. ∴ a 4 = 5 2 ⇒ a = 2 4 × 5 = 2 20 = 10. ∴ 12.5 b = 5 2 ⇒ b = 5 2 × 12.5 = 2 × 2.5 = 5 ∴ c 6 = 5 2 ⇒ c = 2 6 × 5 = 3 × 5 = 15.
Hence, Option 4 is the correct option.
Assertion-Reason Type Questions
Assertion (A): Mean proportion between 2 3 and 15 2 \dfrac{2}{3} \text{ and } \dfrac{15}{2} 3 2 and 2 15 is 5.
Reason (R): Mean proportion between two numbers is the positive square root of their product.
Assertion (A) is true, but Reason (R) is false.
Assertion (A) is false, but Reason (R) is true.
Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).
Answer
The mean proportion between two numbers a and b is defined as a b \sqrt{ab} ab
So, reason (R) is true.
When two numbers are 2 3 and 15 2 \dfrac{2}{3} \text{ and } \dfrac{15}{2} 3 2 and 2 15
Mean proportion = 2 3 × 15 2 = 30 6 = 5 \text{Mean proportion} = \sqrt{\dfrac{2}{3} \times \dfrac{15}{2}}\\[1em] = \sqrt{\dfrac{30}{6}}\\[1em] = \sqrt{5} Mean proportion = 3 2 × 2 15 = 6 30 = 5
So, assertion (A) is false.
Thus, Assertion (A) is false, but Reason (R) is true.
Hence, option 2 is the correct option.
a, b and c are in continued proportion.
Assertion (A): a is first proportion.
Reason (R): The first proportion is always the smallest of the three numbers.
Assertion (A) is true, but Reason (R) is false.
Assertion (A) is false, but Reason (R) is true.
Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).
Answer
Three numbers a, b, c are in continued proportion if:
a b = b c \dfrac{a}{b} = \dfrac{b}{c} b a = c b
⇒ b2 = ac
Here, a is called the first proportion, b is the mean (or geometric mean), c is the third proportion.
So, assertion (A) is true.
Lets take an example, a = 9, b = 6 and c = 4.
When three numbers a, b, c are in continued proportion if:
⇒ a b = b c ⇒ 9 6 = 6 4 ⇒ 3 2 = 3 2 \Rightarrow \dfrac{a}{b} = \dfrac{b}{c}\\[1em] \Rightarrow \dfrac{9}{6} = \dfrac{6}{4}\\[1em] \Rightarrow\dfrac{3}{2} = \dfrac{3}{2} ⇒ b a = c b ⇒ 6 9 = 4 6 ⇒ 2 3 = 2 3
Here, a = 9 is first proportion but it is not the smallest number among three.
So, reason (R) is false.
Thus, Assertion (A) is true, but Reason (R) is false.
Hence, option 1 is the correct option.
a, b, c and d are in proportion.
Assertion (A): a + b, a - b, c + d and c - d are in proportion.
Reason (R): a b = c d \dfrac{a}{b} = \dfrac{c}{d} b a = d c .
Assertion (A) is true, but Reason (R) is false.
Assertion (A) is false, but Reason (R) is true.
Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).
Answer
Given,
a, b, c and d are in proportion.
∴ a b = c d \therefore \dfrac{a}{b} = \dfrac{c}{d} ∴ b a = d c
So, reason (R) is true.
Applying componendo and dividendo, we get
⇒ a + b a − b = c + d c − d \Rightarrow \dfrac{a + b}{a - b} = \dfrac{c + d}{c - d} ⇒ a − b a + b = c − d c + d
Therefore, a + b, a - b, c + d and c - d are in proportion.
So, assertion (A) is true and reason (R) correctly explains assertion (A).
Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Hence, option 3 is the correct option.
a, b, c and d are in proportion.
Assertion (A): a - c, c, b - d, d are in proportion.
Reason (R): a, c, b and d are in proportion.
Assertion (A) is true, but Reason (R) is false.
Assertion (A) is false, but Reason (R) is true.
Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).
Answer
Given,
a, b, c and d are in proportion.
∴ a b = c d ⇒ a c = b d . \therefore \dfrac{a}{b} = \dfrac{c}{d} \\[1em] \Rightarrow \dfrac{a}{c} = \dfrac{b}{d}. ∴ b a = d c ⇒ c a = d b .
∴ a, c, b and d are in proportion.
So, reason (R) is true.
⇒ a c = b d ⇒ a c − 1 = b d − 1 ⇒ a − c c = b − d d \Rightarrow \dfrac{a}{c} = \dfrac{b}{d}\\[1em] \Rightarrow \dfrac{a}{c} - 1 = \dfrac{b}{d} - 1\\[1em] \Rightarrow \dfrac{a - c}{c} = \dfrac{b - d}{d} ⇒ c a = d b ⇒ c a − 1 = d b − 1 ⇒ c a − c = d b − d
We can say that a - c, c, b - d, d are in proportion.
So, assertion (A) is true and reason (R) correctly explains assertion (A).
Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Hence, option 3 is the correct option.
Find the compounded ratio of
(a + b)2 : (a - b)2 , (a2 - b2 ) : (a2 + b2 ) and (a4 - b4 ) : (a + b)4 .
Answer
The compounded ratio is :
( a + b ) 2 ( a − b ) 2 × ( a 2 − b 2 ) ( a 2 + b 2 ) × ( a 4 − b 4 ) ( a + b ) 4 = ( a + b ) 2 ( a − b ) 2 × ( a − b ) ( a + b ) ( a 2 + b 2 ) × ( a 2 − b 2 ) ( a 2 + b 2 ) ( a + b ) 4 = ( a + b ) 2 ( a − b ) 2 × ( a − b ) ( a + b ) ( a 2 + b 2 ) × ( a − b ) ( a + b ) ( a 2 + b 2 ) ( a + b ) 4 = ( a + b ) 4 ( a − b ) 2 ( a 2 + b 2 ) ( a − b ) 2 ( a 2 + b 2 ) ( a + b ) 4 = 1 1 = 1 : 1. \dfrac{(a + b)^2}{(a - b)^2} \times \dfrac{(a^2 - b^2)}{(a^2 + b^2)} \times \dfrac{(a^4 - b^4)}{(a + b)^4} \\[1em] = \dfrac{(a + b)^2}{(a - b)^2} \times \dfrac{(a - b)(a + b)}{(a^2 + b^2)} \times \dfrac{(a^2 - b^2)(a^2 + b^2)}{(a + b)^4} \\[1em] = \dfrac{(a + b)^2}{(a - b)^2} \times \dfrac{(a - b)(a + b)}{(a^2 + b^2)} \times \dfrac{(a - b)(a + b)(a^2 + b^2)}{(a + b)^4} \\[1em] = \dfrac{(a + b)^4(a - b)^2(a^2 + b^2)}{(a - b)^2(a^2 + b^2)(a + b)^4} \\[1em] = \dfrac{1}{1} = 1 : 1 . ( a − b ) 2 ( a + b ) 2 × ( a 2 + b 2 ) ( a 2 − b 2 ) × ( a + b ) 4 ( a 4 − b 4 ) = ( a − b ) 2 ( a + b ) 2 × ( a 2 + b 2 ) ( a − b ) ( a + b ) × ( a + b ) 4 ( a 2 − b 2 ) ( a 2 + b 2 ) = ( a − b ) 2 ( a + b ) 2 × ( a 2 + b 2 ) ( a − b ) ( a + b ) × ( a + b ) 4 ( a − b ) ( a + b ) ( a 2 + b 2 ) = ( a − b ) 2 ( a 2 + b 2 ) ( a + b ) 4 ( a + b ) 4 ( a − b ) 2 ( a 2 + b 2 ) = 1 1 = 1 : 1.
Hence, the compounded ratio is 1 : 1.
If (7p + 3q) : (3p - 2q) = 43 : 2, find p : q.
Answer
Given, (7p + 3q) : (3p - 2q) = 43 : 2.
⇒ 7 p + 3 q 3 p − 2 q = 43 2 ⇒ 2 ( 7 p + 3 q ) = 43 ( 3 p − 2 q ) ⇒ 14 p + 6 q = 129 p − 86 q ⇒ 92 q = 115 p ⇒ p q = 92 115 = 4 5 . \Rightarrow \dfrac{7p + 3q}{3p - 2q} = \dfrac{43}{2} \\[1em] \Rightarrow 2(7p + 3q) = 43(3p - 2q) \\[1em] \Rightarrow 14p + 6q = 129p - 86q \\[1em] \Rightarrow 92q = 115p \\[1em] \Rightarrow \dfrac{p}{q} = \dfrac{92}{115} = \dfrac{4}{5}. \\[1em] ⇒ 3 p − 2 q 7 p + 3 q = 2 43 ⇒ 2 ( 7 p + 3 q ) = 43 ( 3 p − 2 q ) ⇒ 14 p + 6 q = 129 p − 86 q ⇒ 92 q = 115 p ⇒ q p = 115 92 = 5 4 .
Hence, the value of ratio p : q is 4 : 5.
If a : b = 3 : 5, find (3a + 5b) : (7a - 2b).
Answer
Given,
a b = 3 5 ∴ a = 3 b 5 \dfrac{a}{b} = \dfrac{3}{5} \\[1em] \therefore a = \dfrac{3b}{5} b a = 5 3 ∴ a = 5 3 b
Putting value of a in the ratio (3a + 5b) : (7a - 2b),
= 3 × 3 b 5 + 5 b 7 × 3 b 5 − 2 b = 9 b 5 + 5 b 21 b 5 − 2 b = 9 b + 25 b 5 21 b − 10 b 5 = 34 b 11 b = 34 11 = 34 : 11. = \dfrac{3 \times \dfrac{3b}{5} + 5b}{7 \times \dfrac{3b}{5} - 2b} \\[1em] = \dfrac{\dfrac{9b}{5} + 5b}{\dfrac{21b}{5} - 2b} \\[1em] = \dfrac{\dfrac{9b + 25b}{5}}{\dfrac{21b - 10b}{5}} \\[1em] = \dfrac{34b}{11b} \\[1em] = \dfrac{34}{11} = 34 : 11. = 7 × 5 3 b − 2 b 3 × 5 3 b + 5 b = 5 21 b − 2 b 5 9 b + 5 b = 5 21 b − 10 b 5 9 b + 25 b = 11 b 34 b = 11 34 = 34 : 11.
Hence, the value of ratio (3a + 5b) : (7a - 2b) is 34 : 11.
The ratio of the shorter sides of a right-angled triangle is 5 : 12. If the perimeter of the triangle is 360 cm, find the length of the longest side.
Answer
Let the length of the shorter side be 5x cm and 12x cm.
Length of hypotenuse = ( 5 x ) 2 + ( 12 x ) 2 cm \sqrt{(5x)^2 + (12x)^2} \text{ cm} ( 5 x ) 2 + ( 12 x ) 2 cm
= 25 x 2 + 144 x 2 cm = 169 x 2 cm = 13 x cm = \sqrt{25x^2 + 144x^2} \text{ cm} \\[0.75em] = \sqrt{169x^2} \text{ cm} \\[0.75em] = 13x \text{ cm} \\[0.75em] = 25 x 2 + 144 x 2 cm = 169 x 2 cm = 13 x cm
According to given,
5 x + 12 x + 13 x = 360 30 x = 360 x = 12. 5x + 12x + 13x = 360 \\[0.5em] 30x = 360 \\[0.5em] x = 12. 5 x + 12 x + 13 x = 360 30 x = 360 x = 12.
∴ x = 12, 13x = 13 × \times × 12 = 156.
Hence, the length of longest side is 156 cm.
The ratio of the pocket money saved by Lokesh and his sister is 5 : 6. If the sister saves ₹ 30 more, how much more the brother should save in order to keep the ratio of their savings unchanged.
Answer
Let the savings of Lokesh and his sister are 5x and 6x.
Let Lokesh save ₹ y more then according to question,
⇒ 5 x + y 6 x + 30 = 5 6 ⇒ 6 ( 5 x + y ) = 5 ( 6 x + 30 ) ⇒ 30 x + 6 y = 30 x + 150 ⇒ 6 y = 150 ⇒ y = 25. \Rightarrow \dfrac{5x + y}{6x + 30} = \dfrac{5}{6} \\[0.5em] \Rightarrow 6(5x + y) = 5(6x + 30) \\[0.5em] \Rightarrow 30x + 6y = 30x + 150 \\[0.5em] \Rightarrow 6y = 150 \\[0.5em] \Rightarrow y = 25. ⇒ 6 x + 30 5 x + y = 6 5 ⇒ 6 ( 5 x + y ) = 5 ( 6 x + 30 ) ⇒ 30 x + 6 y = 30 x + 150 ⇒ 6 y = 150 ⇒ y = 25.
Hence, Lokesh should save ₹ 25 more.
In an examination, the number of those who passed and the number of those who failed were in the ratio 3 : 1. Had 8 more appeared, and 6 less passed, the ratio of passed to failures would have been 2 : 1. Find the number of candidates who appeared.
Answer
In first case, Let the number of students passed = 3x and failed = x. Total candidates appeared = 3x + x = 4x.
In second case, Total candidates appeared = 4x + 8 Number of passed students = 3x - 6 Number of failed students = (4x + 8) - (3x - 6) = 4x + 8 - 3x + 6 = x + 14.
According to question, ratio of number of passed to failed student in this case = 2 : 1.
∴ 3 x − 6 x + 14 = 2 1 ⇒ ( 3 x − 6 ) = 2 ( x + 14 ) ⇒ 3 x − 6 = 2 x + 28 ⇒ 3 x − 2 x = 28 + 6 ⇒ x = 34. \therefore \dfrac{3x - 6}{x + 14} = \dfrac{2}{1} \\[0.5em] \Rightarrow (3x - 6) = 2(x + 14) \\[0.5em] \Rightarrow 3x - 6 = 2x + 28 \\[0.5em] \Rightarrow 3x - 2x = 28 + 6 \\[0.5em] \Rightarrow x = 34. ∴ x + 14 3 x − 6 = 1 2 ⇒ ( 3 x − 6 ) = 2 ( x + 14 ) ⇒ 3 x − 6 = 2 x + 28 ⇒ 3 x − 2 x = 28 + 6 ⇒ x = 34.
∴ x = 34, 4x = 136.
Hence, the number of students who appeared were 136.
What number must be added to each of the numbers 4, 6, 8, 11 to make them proportional ?
Answer
Let x be added to each number.
So, 4 + x, 6 + x, 8 + x and 11 + x must be in proportion.
∴ 4 + x 6 + x = 8 + x 11 + x ⇒ ( 4 + x ) × ( 11 + x ) = ( 8 + x ) × ( 6 + x ) ⇒ 44 + 4 x + 11 x + x 2 = 48 + 8 x + 6 x + x 2 ⇒ 44 + 15 x + x 2 = 48 + 14 x + x 2 ⇒ 15 x − 14 x = 48 − 44 ⇒ x = 4. \therefore \dfrac{4 + x}{6 + x} = \dfrac{8 + x}{11 + x} \\[1em] \Rightarrow (4 + x) \times (11 + x) = (8 + x) \times (6 + x) \\[1em] \Rightarrow 44 + 4x + 11x + x^2 = 48 + 8x + 6x + x^2\\[1em] \Rightarrow 44 + 15x + x^2 = 48 + 14x + x^2 \\[1em] \Rightarrow 15x - 14x = 48 - 44 \\[1em] \Rightarrow x = 4. ∴ 6 + x 4 + x = 11 + x 8 + x ⇒ ( 4 + x ) × ( 11 + x ) = ( 8 + x ) × ( 6 + x ) ⇒ 44 + 4 x + 11 x + x 2 = 48 + 8 x + 6 x + x 2 ⇒ 44 + 15 x + x 2 = 48 + 14 x + x 2 ⇒ 15 x − 14 x = 48 − 44 ⇒ x = 4.
Hence, required number is 4.
If (a + 2b + c), (a - c) and (a - 2b + c) are in continued proportion, prove that b is the mean proportional between a and c.
Answer
Since, the numbers are in continued proportion,
∴ ( a + 2 b + c ) ( a − c ) = ( a − c ) ( a − 2 b + c ) ⇒ ( a + 2 b + c ) ( a − 2 b + c ) = ( a − c ) 2 ⇒ ( a 2 − 2 a b + a c + 2 a b − 4 b 2 + 2 b c + a c − 2 b c + c 2 ) = ( a 2 + c 2 − 2 a c ) ⇒ a 2 + c 2 + 2 a c − 4 b 2 = a 2 + c 2 − 2 a c ⇒ 4 b 2 = 4 a c ⇒ b 2 = a c . \therefore \dfrac{(a + 2b + c)}{(a - c)} = \dfrac{(a - c)}{(a - 2b + c)} \\[1em] \Rightarrow (a + 2b + c)(a - 2b + c) = (a - c)^2 \\[1em] \Rightarrow (a^2 - 2ab + ac + 2ab - 4b^2 + 2bc + ac - 2bc + c^2) = (a^2 + c^2 - 2ac) \\[1em] \Rightarrow a^2 + c^2 + 2ac - 4b^2 = a^2 + c^2 - 2ac \\[1em] \Rightarrow 4b^2 = 4ac \\[1em] \Rightarrow b^2 = ac. ∴ ( a − c ) ( a + 2 b + c ) = ( a − 2 b + c ) ( a − c ) ⇒ ( a + 2 b + c ) ( a − 2 b + c ) = ( a − c ) 2 ⇒ ( a 2 − 2 ab + a c + 2 ab − 4 b 2 + 2 b c + a c − 2 b c + c 2 ) = ( a 2 + c 2 − 2 a c ) ⇒ a 2 + c 2 + 2 a c − 4 b 2 = a 2 + c 2 − 2 a c ⇒ 4 b 2 = 4 a c ⇒ b 2 = a c .
Since, b2 = 4ac, hence proved that b is the mean proportional between a and c.
If 2, 6, p, 54 and q are in continued proportion, find the values of p and q.
Answer
2, 6, p, 54 and q are in continued proportion then,
⇒ 2 6 = 6 p = p 54 = 54 q . Solving, 2 6 = 6 p for p, ⇒ p = 6 2 × 6 ⇒ p = 18. Now solving, p 54 = 54 q for q, ⇒ q = 54 p × 54 ⇒ q = 54 18 × 54 ⇒ q = 3 × 54 ⇒ q = 162. \Rightarrow \dfrac{2}{6} = \dfrac{6}{p} = \dfrac{p}{54} = \dfrac{54}{q}.\\[1em] \text{Solving, } \dfrac{2}{6} = \dfrac{6}{p} \text{ for p,} \\[1em] \Rightarrow p = \dfrac{6}{2} \times 6 \\[1em] \Rightarrow p = 18. \\[1em] \text{Now solving, } \dfrac{p}{54} = \dfrac{54}{q} \text{ for q,} \\[1em] \Rightarrow q = \dfrac{54}{p} \times 54 \\[1em] \Rightarrow q = \dfrac{54}{18} \times 54 \\[1em] \Rightarrow q = 3 \times 54 \\[1em] \Rightarrow q = 162. ⇒ 6 2 = p 6 = 54 p = q 54 . Solving, 6 2 = p 6 for p, ⇒ p = 2 6 × 6 ⇒ p = 18. Now solving, 54 p = q 54 for q, ⇒ q = p 54 × 54 ⇒ q = 18 54 × 54 ⇒ q = 3 × 54 ⇒ q = 162.
Hence, the value of p = 18 and q = 162.
If a, b, c, d, e are in continued proportion, prove that a : e = a4 : b4 .
Answer
Since, a, b, c, d, e are in continued proportion.
Let, a b = b c = c d = d e = k . \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = \dfrac{d}{e} = k. b a = c b = d c = e d = k .
∴ d = ek, c = ek2 , b = ek3 , a = ek4 .
Now,
L.H.S. = a e = e k 4 e = k 4 R.H.S. = ( a 4 ) ( b 4 ) = ( e k 4 ) 4 ( e k 3 ) 4 = e 4 k 16 e 4 k 12 = k 4 \text{L.H.S. } = \dfrac{a}{e} \\[1em] = \dfrac{ek^4}{e} = k^4 \\[1em] \text{R.H.S. } = \dfrac{(a^4)}{(b^4)} \\[1em] = \dfrac{(ek^4)^4}{(ek^3)^4} \\[1em] = \dfrac{e^4k^{16}}{e^4k^{12}} \\[1em] = k^4 L.H.S. = e a = e e k 4 = k 4 R.H.S. = ( b 4 ) ( a 4 ) = ( e k 3 ) 4 ( e k 4 ) 4 = e 4 k 12 e 4 k 16 = k 4
Since, L.H.S. = R.H.S. hence, proved that a : e = a4 : b4 .
Find two numbers whose mean proportional is 16 and the third proportional is 128.
Answer
Let the two numbers be a and b.
Given, mean proportional between a and b is 16.
∴ a b = 16 [....Eq 1] \therefore \sqrt{ab} = 16 \qquad \text{[....Eq 1]} ∴ ab = 16 [....Eq 1]
Given, third proportional is 128.
∴ a b = b 128 ⇒ a = b 2 128 [....Eq 2] \therefore \dfrac{a}{b} = \dfrac{b}{128} \\[0.5em] \Rightarrow a = \dfrac{b^2}{128} \qquad \text{[....Eq 2]} ∴ b a = 128 b ⇒ a = 128 b 2 [....Eq 2]
Putting this value of a in Eq 1,
⇒ ( b 2 128 ) b = 16 ⇒ ( b 3 128 ) = 16 \Rightarrow \sqrt{\Big(\dfrac{b^2}{128}\Big)b} = 16 \\[0.5em] \Rightarrow \sqrt{\Big(\dfrac{b^3}{128}\Big)} = 16 ⇒ ( 128 b 2 ) b = 16 ⇒ ( 128 b 3 ) = 16
Squaring both sides,
⇒ b 3 128 = 256 ⇒ b 3 = 256 × 128 ⇒ b 3 = 32768 ⇒ b = 32768 3 ⇒ b = 32 \Rightarrow \dfrac{b^3}{128} = 256 \\[1em] \Rightarrow b^3 = 256 \times 128 \\[1em] \Rightarrow b^3 = 32768 \\[1em] \Rightarrow b = \sqrt[3]{32768} \\[1em] \Rightarrow b = 32 ⇒ 128 b 3 = 256 ⇒ b 3 = 256 × 128 ⇒ b 3 = 32768 ⇒ b = 3 32768 ⇒ b = 32
Putting value of b in Eq 2, a = b 2 128 [....Eq 2] ⇒ a = ( 32 ) 2 128 ⇒ a = 1024 128 ⇒ a = 8 a = \dfrac{b^2}{128} \qquad \text{[....Eq 2]} \\[1em] \Rightarrow a = \dfrac{(32)^2}{128} \\[1em] \Rightarrow a = \dfrac{1024}{128} \\[1em] \Rightarrow a = 8 a = 128 b 2 [....Eq 2] ⇒ a = 128 ( 32 ) 2 ⇒ a = 128 1024 ⇒ a = 8
Hence, the value of a = 8 and b = 32.
If q is the mean proportional between p and r, prove that :
p 2 − 3 q 2 + r 2 = q 4 ( 1 p 2 − 3 q 2 + 1 r 2 ) . p^2 - 3q^2 + r^2 = q^4\Big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\Big). p 2 − 3 q 2 + r 2 = q 4 ( p 2 1 − q 2 3 + r 2 1 ) .
Answer
Since, q is the mean proportional between p and r,
∴ q 2 = p r \therefore q^2 = pr ∴ q 2 = p r
Given,
⇒ p 2 − 3 q 2 + r 2 = q 4 ( 1 p 2 − 3 q 2 + 1 r 2 ) . L.H.S. = p 2 − 3 q 2 + r 2 = p 2 + r 2 − 3 p r . R.H.S. = q 4 ( 1 p 2 − 3 q 2 + 1 r 2 ) ⇒ p 2 r 2 ( 1 p 2 − 3 p r + 1 r 2 ) ⇒ p 2 r 2 ( r 2 − 3 p r + p 2 p 2 r 2 ) ⇒ p 2 + r 2 − 3 p r . \Rightarrow p^2 - 3q^2 + r^2 = q^4\Big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\Big). \\[1em] \text{L.H.S.} = p^2 - 3q^2 + r^2 \\[1em] = p^2 + r^2 - 3pr. \\[1em] \text{R.H.S.} = q^4\Big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\Big) \\[1em] \Rightarrow p^2r^2\Big(\dfrac{1}{p^2} - \dfrac{3}{pr} + \dfrac{1}{r^2}\Big) \\[1em] \Rightarrow p^2r^2\Big(\dfrac{r^2 - 3pr + p^2}{p^2r^2}\Big) \\[1em] \Rightarrow p^2 + r^2 - 3pr. ⇒ p 2 − 3 q 2 + r 2 = q 4 ( p 2 1 − q 2 3 + r 2 1 ) . L.H.S. = p 2 − 3 q 2 + r 2 = p 2 + r 2 − 3 p r . R.H.S. = q 4 ( p 2 1 − q 2 3 + r 2 1 ) ⇒ p 2 r 2 ( p 2 1 − p r 3 + r 2 1 ) ⇒ p 2 r 2 ( p 2 r 2 r 2 − 3 p r + p 2 ) ⇒ p 2 + r 2 − 3 p r .
Since, L.H.S. = R.H.S. hence proved that,
p 2 − 3 q 2 + r 2 = q 4 ( 1 p 2 − 3 q 2 + 1 r 2 ) . p^2 - 3q^2 + r^2 = q^4\big(\dfrac{1}{p^2} - \dfrac{3}{q^2} + \dfrac{1}{r^2}\big). p 2 − 3 q 2 + r 2 = q 4 ( p 2 1 − q 2 3 + r 2 1 ) .
If a b = c d = e f \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} b a = d c = f e , prove that each ratio is equal to
(i) 3 a 2 − 5 c 2 + 7 e 2 3 b 2 − 5 d 2 + 7 f 2 \sqrt{\dfrac{3a^2 - 5c^2 + 7e^2}{3b^2 - 5d^2 + 7f^2}} 3 b 2 − 5 d 2 + 7 f 2 3 a 2 − 5 c 2 + 7 e 2
(ii) ( 2 a 3 + 5 c 3 + 7 e 3 2 b 3 + 5 d 3 + 7 f 3 ) 1 / 3 . \Big(\dfrac{2a^3 + 5c^3 + 7e^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3}. ( 2 b 3 + 5 d 3 + 7 f 3 2 a 3 + 5 c 3 + 7 e 3 ) 1/3 .
Answer
(i) Let, a b = c d = e f = k , \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k, b a = d c = f e = k , then,
a = bk, c = dk, e = fk.
Given,
3 a 2 − 5 c 2 + 7 e 2 3 b 2 − 5 d 2 + 7 f 2 \sqrt{\dfrac{3a^2 - 5c^2 + 7e^2}{3b^2 - 5d^2 + 7f^2}} 3 b 2 − 5 d 2 + 7 f 2 3 a 2 − 5 c 2 + 7 e 2
Putting values of a, c, e in above equation,
= 3 ( b k ) 2 − 5 ( d k ) 2 + 7 ( f k ) 2 3 b 2 − 5 d 2 + 7 f 2 = 3 b 2 k 2 − 5 d 2 k 2 + 7 f 2 k 2 3 b 2 − 5 d 2 + 7 f 2 = k 2 ( 3 b 2 − 5 d 2 + 7 f 2 3 b 2 − 5 d 2 + 7 f 2 ) = k . = \sqrt{\dfrac{3(bk)^2 - 5(dk)^2 + 7(fk)^2}{3b^2 - 5d^2 + 7f^2}} \\[1em] = \sqrt{\dfrac{3b^2k^2 - 5d^2k^2 + 7f^2k^2}{3b^2 - 5d^2 + 7f^2}} \\[1em] = \sqrt{k^2\Big(\dfrac{3b^2 - 5d^2 + 7f^2}{3b^2 - 5d^2 + 7f^2}\Big)} \\[1em] = k. = 3 b 2 − 5 d 2 + 7 f 2 3 ( bk ) 2 − 5 ( d k ) 2 + 7 ( f k ) 2 = 3 b 2 − 5 d 2 + 7 f 2 3 b 2 k 2 − 5 d 2 k 2 + 7 f 2 k 2 = k 2 ( 3 b 2 − 5 d 2 + 7 f 2 3 b 2 − 5 d 2 + 7 f 2 ) = k .
Since, the values of all ratios = k. Hence, proved.
(ii) Let, a b = c d = e f = k , \dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = k, b a = d c = f e = k , then,
a = bk, c = dk, e = fk.
Given,
( 2 a 3 + 5 c 3 + 7 e 3 2 b 3 + 5 d 3 + 7 f 3 ) 1 / 3 \Big(\dfrac{2a^3 + 5c^3 + 7e^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3} ( 2 b 3 + 5 d 3 + 7 f 3 2 a 3 + 5 c 3 + 7 e 3 ) 1/3
Putting values of a, c, e in above equation, = ( 2 ( b k ) 3 + 5 ( d k ) 3 + 7 ( f k ) 3 2 b 3 + 5 d 3 + 7 f 3 ) 1 / 3 = ( 2 b 3 k 3 + 5 d 3 k 3 + 7 f 3 k 3 2 b 3 + 5 d 3 + 7 f 3 ) 1 / 3 = [ k 3 ( 2 b 3 + 5 d 3 + 7 f 3 2 b 3 + 5 d 3 + 7 f 3 ) ] 1 / 3 = k 3 × 1 / 3 = k . = \Big(\dfrac{2(bk)^3 + 5(dk)^3 + 7(fk)^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3} \\[1em] = \Big(\dfrac{2b^3k^3 + 5d^3k^3 + 7f^3k^3}{2b^3 + 5d^3 + 7f^3}\Big)^{1/3} \\[1em] = \Big[k^3\Big(\dfrac{2b^3 + 5d^3 + 7f^3}{2b^3 + 5d^3 + 7f^3}\Big)\Big]^{1/3} \\[1em] = k^{3 \times 1/3} \\[1em] = k. = ( 2 b 3 + 5 d 3 + 7 f 3 2 ( bk ) 3 + 5 ( d k ) 3 + 7 ( f k ) 3 ) 1/3 = ( 2 b 3 + 5 d 3 + 7 f 3 2 b 3 k 3 + 5 d 3 k 3 + 7 f 3 k 3 ) 1/3 = [ k 3 ( 2 b 3 + 5 d 3 + 7 f 3 2 b 3 + 5 d 3 + 7 f 3 ) ] 1/3 = k 3 × 1/3 = k .
Since, the values of all ratios = k. Hence, proved.
If x a = y b = z c \dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} a x = b y = c z , prove that
3 x 3 − 5 y 3 + 4 z 3 3 a 3 − 5 b 3 + 4 c 3 = ( 3 x − 5 y + 4 z 3 a − 5 b + 4 c ) 3 . \dfrac{3x^3 - 5y^3 + 4z^3}{3a^3 - 5b^3 + 4c^3} = \Big(\dfrac{3x - 5y + 4z}{3a - 5b + 4c}\Big)^3. 3 a 3 − 5 b 3 + 4 c 3 3 x 3 − 5 y 3 + 4 z 3 = ( 3 a − 5 b + 4 c 3 x − 5 y + 4 z ) 3 .
Answer
Let x a = y b = z c = k , \dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = k, a x = b y = c z = k , then,
x = ak, y = bk, z = ck.
Given,
3 x 3 − 5 y 3 + 4 z 3 3 a 3 − 5 b 3 + 4 c 3 = ( 3 x − 5 y + 4 z 3 a − 5 b + 4 c ) 3 \dfrac{3x^3 - 5y^3 + 4z^3}{3a^3 - 5b^3 + 4c^3} = \Big(\dfrac{3x - 5y + 4z}{3a - 5b + 4c}\Big)^3 3 a 3 − 5 b 3 + 4 c 3 3 x 3 − 5 y 3 + 4 z 3 = ( 3 a − 5 b + 4 c 3 x − 5 y + 4 z ) 3
Putting values of x, y, z in above equation and solving L.H.S.,
= 3 ( a k ) 3 − 5 ( b k ) 3 + 4 ( c k ) 3 3 a 3 − 5 b 3 + 4 c 3 = 3 a 3 k 3 − 5 b 3 k 3 + 4 c 3 k 3 3 a 3 − 5 b 3 + 4 c 3 = k 3 ( 3 a 3 − 5 b 3 + 4 c 3 3 a 3 − 5 b 3 + 4 c 3 ) = k 3 . = \dfrac{3(ak)^3 - 5(bk)^3 + 4(ck)^3}{3a^3 - 5b^3 + 4c^3} \\[1em] = \dfrac{3a^3k^3 - 5b^3k^3 + 4c^3k^3}{3a^3 - 5b^3 + 4c^3} \\[1em] = k^3\Big(\dfrac{3a^3 - 5b^3 + 4c^3}{3a^3 - 5b^3 + 4c^3}\Big) \\[1em] = k^3. = 3 a 3 − 5 b 3 + 4 c 3 3 ( ak ) 3 − 5 ( bk ) 3 + 4 ( c k ) 3 = 3 a 3 − 5 b 3 + 4 c 3 3 a 3 k 3 − 5 b 3 k 3 + 4 c 3 k 3 = k 3 ( 3 a 3 − 5 b 3 + 4 c 3 3 a 3 − 5 b 3 + 4 c 3 ) = k 3 .
Solving, R.H.S. now, = ( 3 ( a k ) − 5 ( b k ) + 4 ( c k ) 3 a − 5 b + 4 c ) 3 = [ k ( 3 a − 5 b + 4 c 3 a − 5 b + 4 c ) ] 3 = k 3 . = \Big(\dfrac{3(ak) - 5(bk) + 4(ck)}{3a - 5b + 4c}\Big)^3 \\[1em] = \Big[k\Big(\dfrac{3a - 5b + 4c}{3a - 5b + 4c}\Big)\Big]^3 \\[1em] = k^3. = ( 3 a − 5 b + 4 c 3 ( ak ) − 5 ( bk ) + 4 ( c k ) ) 3 = [ k ( 3 a − 5 b + 4 c 3 a − 5 b + 4 c ) ] 3 = k 3 .
Since, L.H.S. = R.H.S. Hence, proved that,
3 x 3 − 5 y 3 + 4 z 3 3 a 3 − 5 b 3 + 4 c 3 = ( 3 x − 5 y + 4 z 3 a − 5 b + 4 c ) 3 \dfrac{3x^3 - 5y^3 + 4z^3}{3a^3 - 5b^3 + 4c^3} = \Big(\dfrac{3x - 5y + 4z}{3a - 5b + 4c}\Big)^3 3 a 3 − 5 b 3 + 4 c 3 3 x 3 − 5 y 3 + 4 z 3 = ( 3 a − 5 b + 4 c 3 x − 5 y + 4 z ) 3 .
If x : a = y : b, prove that,
x 4 + a 4 x 3 + a 3 + y 4 + b 4 y 3 + b 3 = ( x + y ) 4 + ( a + b ) 4 ( x + y ) 3 + ( a + b ) 3 . \dfrac{x^4 + a^4}{x^3 + a^3} + \dfrac{y^4 + b^4}{y^3 + b^3} = \dfrac{(x + y)^4 + (a + b)^4}{(x + y)^3 + (a + b)^3}. x 3 + a 3 x 4 + a 4 + y 3 + b 3 y 4 + b 4 = ( x + y ) 3 + ( a + b ) 3 ( x + y ) 4 + ( a + b ) 4 .
Answer
Given, x : a = y : b,
Let, x a \dfrac{x}{a} a x = y b \dfrac{y}{b} b y = k
∴ x = ak, y = bk
Putting values of x and y in L.H.S. first,
= ( a k ) 4 + a 4 ( a k ) 3 + a 3 + ( b k ) 4 + b 4 ( b k ) 3 + b 3 = a 4 ( k 4 + 1 ) a 3 ( k 3 + 1 ) + b 4 ( k 4 + 1 ) b 3 ( k 3 + 1 ) = a ( k 4 + 1 ) + b ( k 4 + 1 ) k 3 + 1 = ( a + b ) ( k 4 + 1 ) k 3 + 1 = \dfrac{(ak)^4 + a^4}{(ak)^3 + a^3} + \dfrac{(bk)^4 + b^4}{(bk)^3 + b^3} \\[1em] = \dfrac{a^4(k^4 + 1)}{a^3(k^3 + 1)} + \dfrac{b^4(k^4 + 1)}{b^3(k^3 + 1)} \\[1em] = \dfrac{a(k^4 + 1) + b(k^4 + 1)}{k^3 + 1} \\[1em] = \dfrac{(a + b)(k^4 + 1)}{k^3 + 1} = ( ak ) 3 + a 3 ( ak ) 4 + a 4 + ( bk ) 3 + b 3 ( bk ) 4 + b 4 = a 3 ( k 3 + 1 ) a 4 ( k 4 + 1 ) + b 3 ( k 3 + 1 ) b 4 ( k 4 + 1 ) = k 3 + 1 a ( k 4 + 1 ) + b ( k 4 + 1 ) = k 3 + 1 ( a + b ) ( k 4 + 1 )
Now, putting values in R.H.S., = ( x + y ) 4 + ( a + b ) 4 ( x + y ) 3 + ( a + b ) 3 = ( a k + b k ) 4 + ( a + b ) 4 ( a k + b k ) 3 + ( a + b ) 3 = k 4 ( a + b ) 4 + ( a + b ) 4 k 3 ( a + b ) 3 + ( a + b ) 3 = ( a + b ) 4 ( k 4 + 1 ) ( a + b ) 3 ( k 3 + 1 ) = ( a + b ) ( k 4 + 1 ) k 3 + 1 . = \dfrac{(x + y)^4 + (a + b)^4}{(x + y)^3 + (a + b)^3} \\[1em] = \dfrac{(ak + bk)^4 + (a + b)^4}{(ak + bk)^3 + (a + b)^3} \\[1em] = \dfrac{k^4(a + b)^4 + (a + b)^4}{k^3(a + b)^3 + (a + b)^3} \\[1em] = \dfrac{(a + b)^4(k^4 + 1)}{(a + b)^3(k^3 + 1)} \\[1em] = \dfrac{(a + b)(k^4 + 1)}{k^3 + 1}. = ( x + y ) 3 + ( a + b ) 3 ( x + y ) 4 + ( a + b ) 4 = ( ak + bk ) 3 + ( a + b ) 3 ( ak + bk ) 4 + ( a + b ) 4 = k 3 ( a + b ) 3 + ( a + b ) 3 k 4 ( a + b ) 4 + ( a + b ) 4 = ( a + b ) 3 ( k 3 + 1 ) ( a + b ) 4 ( k 4 + 1 ) = k 3 + 1 ( a + b ) ( k 4 + 1 ) .
Since, L.H.S. = R.H.S. Hence, proved that,
x 4 + a 4 x 3 + a 3 + y 4 + b 4 y 3 + b 3 = ( x + y ) 4 + ( a + b ) 4 ( x + y ) 3 + ( a + b ) 3 . \dfrac{x^4 + a^4}{x^3 + a^3} + \dfrac{y^4 + b^4}{y^3 + b^3} = \dfrac{(x + y)^4 + (a + b)^4}{(x + y)^3 + (a + b)^3}. x 3 + a 3 x 4 + a 4 + y 3 + b 3 y 4 + b 4 = ( x + y ) 3 + ( a + b ) 3 ( x + y ) 4 + ( a + b ) 4 .
If x b + c − a = y c + a − b = z a + b − c , \dfrac{x}{b + c - a} = \dfrac{y}{c + a - b} = \dfrac{z}{a + b - c}, b + c − a x = c + a − b y = a + b − c z , prove that each ratio is equal to
x + y + z a + b + c . \dfrac{x + y + z}{a + b + c}. a + b + c x + y + z .
Answer
Let, x b + c − a = y c + a − b = z a + b − c = k . \dfrac{x}{b + c - a} = \dfrac{y}{c + a - b} = \dfrac{z}{a + b - c} = k. b + c − a x = c + a − b y = a + b − c z = k .
∴ x = k(b + c - a), y = k(c + a - b), z = k(a + b - c).
Putting values of x, y and z in x + y + z a + b + c \dfrac{x + y + z}{a + b + c} a + b + c x + y + z we get,
k ( b + c − a ) + k ( c + a − b ) + k ( a + b − c ) a + b + c = k b + k c − a k + k c + a k − b k + a k + b k − k c a + b + c = k ( a + b + c ) ( a + b + c ) = k . \dfrac{k(b + c - a) + k(c + a - b) + k(a + b - c)}{a + b + c} \\[1em] = \dfrac{kb + kc - \cancel{ak} + \cancel{kc} + \cancel{ak} - \cancel{bk} + ak + \cancel{bk} - \cancel{kc}}{a + b + c} \\[1em] = \dfrac{k(a + b + c)}{(a + b + c)} \\[1em] = k. a + b + c k ( b + c − a ) + k ( c + a − b ) + k ( a + b − c ) = a + b + c kb + k c − ak + k c + ak − bk + ak + bk − k c = ( a + b + c ) k ( a + b + c ) = k .
Since, the value of all ratios = k, hence, each ratio = x + y + z a + b + c . \dfrac{x + y + z}{a + b + c}. a + b + c x + y + z .
If a : b = 9 : 10, find the value of
(i) 5 a + 3 b 5 a − 3 b \dfrac{5a + 3b}{5a - 3b} 5 a − 3 b 5 a + 3 b
(ii) 2 a 2 − 3 b 2 2 a 2 + 3 b 2 . \dfrac{2a^2 - 3b^2}{2a^2 + 3b^2}. 2 a 2 + 3 b 2 2 a 2 − 3 b 2 .
Answer
(i) Given,
a b = 9 10 ⇒ a = 9 b 10 \dfrac{a}{b} = \dfrac{9}{10} \\[0.5em] \Rightarrow a = \dfrac{9b}{10} b a = 10 9 ⇒ a = 10 9 b
Putting a = 9 b 10 a = \dfrac{9b}{10} a = 10 9 b in 5 a + 3 b 5 a − 3 b \dfrac{5a + 3b}{5a - 3b} 5 a − 3 b 5 a + 3 b , we get,
5 × 9 b 10 + 3 b 5 × 9 b 10 − 3 b = 9 b 2 + 3 b 9 b 2 − 3 b = 9 b + 6 b 2 9 b − 6 b 2 = 15 b 3 b = 5. \dfrac{5 \times \dfrac{9b}{10} + 3b}{5 \times \dfrac{9b}{10} - 3b} \\[1em] = \dfrac{\dfrac{9b}{2} + 3b}{\dfrac{9b}{2} - 3b} \\[1em] = \dfrac{\dfrac{9b + 6b}{2}}{\dfrac{9b - 6b}{2}} \\[1em] = \dfrac{15b}{3b} \\[1em] = 5. 5 × 10 9 b − 3 b 5 × 10 9 b + 3 b = 2 9 b − 3 b 2 9 b + 3 b = 2 9 b − 6 b 2 9 b + 6 b = 3 b 15 b = 5.
Hence, the value of 5 a + 3 b 5 a − 3 b \dfrac{5a + 3b}{5a - 3b} 5 a − 3 b 5 a + 3 b = 5.
(ii) Given,
a b = 9 10 ⇒ a = 9 b 10 \dfrac{a}{b} = \dfrac{9}{10} \\[0.5em] \Rightarrow a = \dfrac{9b}{10} b a = 10 9 ⇒ a = 10 9 b
Putting a = 9 b 10 a = \dfrac{9b}{10} a = 10 9 b in 2 a 2 − 3 b 2 2 a 2 + 3 b 2 \dfrac{2a^2 - 3b^2}{2a^2 + 3b^2} 2 a 2 + 3 b 2 2 a 2 − 3 b 2 , we get,
2 × ( 9 b 10 ) 2 − 3 b 2 2 × ( 9 b 10 ) 2 + 3 b 2 = 2 × 81 b 2 100 − 3 b 2 2 × 81 b 2 100 + 3 b 2 = 81 b 2 − 150 b 2 50 81 b 2 + 150 b 2 50 = − 69 b 2 231 b 2 = − 23 77 . \dfrac{2 \times \Big(\dfrac{9b}{10}\Big)^2 - 3b^2}{2 \times \Big(\dfrac{9b}{10}\Big)^2 + 3b^2} \\[1em] = \dfrac{2 \times \dfrac{81b^2}{100} - 3b^2}{2 \times \dfrac{81b^2}{100} + 3b^2} \\[1em] = \dfrac{\dfrac{81b^2 - 150b^2}{50}}{\dfrac{81b^2 + 150b^2}{50}} \\[1em] = -\dfrac{69b^2}{231b^2} \\[1em] = -\dfrac{23}{77}. 2 × ( 10 9 b ) 2 + 3 b 2 2 × ( 10 9 b ) 2 − 3 b 2 = 2 × 100 81 b 2 + 3 b 2 2 × 100 81 b 2 − 3 b 2 = 50 81 b 2 + 150 b 2 50 81 b 2 − 150 b 2 = − 231 b 2 69 b 2 = − 77 23 .
Hence, the value of 2 a 2 − 3 b 2 2 a 2 + 3 b 2 = − 23 77 \dfrac{2a^2 - 3b^2}{2a^2 + 3b^2} = -\dfrac{23}{77} 2 a 2 + 3 b 2 2 a 2 − 3 b 2 = − 77 23 .
If (3x2 + 2y2 ) : (3x2 - 2y2 ) = 11 : 9, find the value of 3 x 4 + 25 y 4 3 x 4 − 25 y 4 . \dfrac{3x^4 + 25y^4}{3x^4 - 25y^4}. 3 x 4 − 25 y 4 3 x 4 + 25 y 4 .
Answer
Given,
3 x 2 + 2 y 2 3 x 2 − 2 y 2 = 11 9 \dfrac{3x^2 + 2y^2}{3x^2 - 2y^2} = \dfrac{11}{9} 3 x 2 − 2 y 2 3 x 2 + 2 y 2 = 9 11
Applying componendo and dividendo to above equation,
⇒ 3 x 2 + 2 y 2 + 3 x 2 − 2 y 2 3 x 2 + 2 y 2 − 3 x 2 + 2 y 2 = 11 + 9 11 − 9 ⇒ 6 x 2 4 y 2 = 20 2 ⇒ 3 x 2 2 y 2 = 10 ⇒ x 2 y 2 = 20 3 \Rightarrow \dfrac{3x^2 + 2y^2 + 3x^2 - 2y^2}{3x^2 + 2y^2 - 3x^2 + 2y^2} = \dfrac{11 + 9}{11 - 9} \\[1em] \Rightarrow \dfrac{6x^2}{4y^2} = \dfrac{20}{2} \\[1em] \Rightarrow \dfrac{3x^2}{2y^2} = 10 \\[1em] \Rightarrow \dfrac{x^2}{y^2} = \dfrac{20}{3} ⇒ 3 x 2 + 2 y 2 − 3 x 2 + 2 y 2 3 x 2 + 2 y 2 + 3 x 2 − 2 y 2 = 11 − 9 11 + 9 ⇒ 4 y 2 6 x 2 = 2 20 ⇒ 2 y 2 3 x 2 = 10 ⇒ y 2 x 2 = 3 20
Putting value of x 2 y 2 \dfrac{x^2}{y^2} y 2 x 2 = 20 3 \dfrac{20}{3} 3 20 in 3 x 4 + 25 y 4 3 x 4 − 25 y 4 \dfrac{3x^4 + 25y^4}{3x^4 - 25y^4} 3 x 4 − 25 y 4 3 x 4 + 25 y 4 ,
⇒ 3 ( x 2 y 2 ) 2 + 25 3 ( x 2 y 2 ) 2 − 25 ⇒ 3 ( 400 9 ) + 25 3 ( 400 9 ) − 25 ⇒ 400 3 + 25 400 3 − 25 ⇒ 400 + 75 3 400 − 75 3 ⇒ 475 325 ⇒ 19 13 . \Rightarrow \dfrac{3\big(\dfrac{x^2}{y^2}\big)^2 + 25}{3\big(\dfrac{x^2}{y^2}\big)^2 - 25} \\[1em] \Rightarrow \dfrac{3\big(\dfrac{400}{9}\big) + 25}{3\big(\dfrac{400}{9}\big) - 25} \\[1em] \Rightarrow \dfrac{\dfrac{400}{3} + 25}{\dfrac{400}{3} - 25} \\[1em] \Rightarrow \dfrac{\dfrac{400 + 75}{3}}{\dfrac{400 - 75}{3}} \\[1em] \Rightarrow \dfrac{475}{325} \\[1em] \Rightarrow \dfrac{19}{13}. ⇒ 3 ( y 2 x 2 ) 2 − 25 3 ( y 2 x 2 ) 2 + 25 ⇒ 3 ( 9 400 ) − 25 3 ( 9 400 ) + 25 ⇒ 3 400 − 25 3 400 + 25 ⇒ 3 400 − 75 3 400 + 75 ⇒ 325 475 ⇒ 13 19 .
Hence, the value of 3 x 4 + 25 y 4 3 x 4 − 25 y 4 is 19 13 . \dfrac{3x^4 + 25y^4}{3x^4 - 25y^4} \text{ is } \dfrac{19}{13}. 3 x 4 − 25 y 4 3 x 4 + 25 y 4 is 13 19 .
If x = 2 m a b a + b , \dfrac{2mab}{a + b}, a + b 2 mab , find the value of
x + m a x − m a + x + m b x − m b . \dfrac{x + ma}{x - ma} + \dfrac{x + mb}{x - mb}. x − ma x + ma + x − mb x + mb .
Answer
x = 2 m a b a + b x = \dfrac{2mab}{a + b} x = a + b 2 mab
Putting this value of x in
= x + m a x − m a + x + m b x − m b = 2 m a b a + b + m a 2 m a b a + b − m a + 2 m a b a + b + m b 2 m a b a + b − m b = 2 m a b + m a 2 + m a b a + b 2 m a b − m a 2 − m a b a + b + 2 m a b + m b 2 + m a b a + b 2 m a b − m b 2 − m a b a + b = 2 m a b + m a 2 + m a b 2 m a b − m a 2 − m a b + 2 m a b + m b 2 + m a b 2 m a b − m b 2 − m a b = m a ( 2 b + a + b ) m a ( 2 b − a − b ) + m b ( 2 a + b + a ) m b ( 2 a − b − a ) = 3 b + a b − a + 3 a + b a − b = 3 b + a b − a − 3 a + b b − a = 3 b + a − 3 a − b b − a = 2 b − 2 a b − a = 2 ( b − a ) ( b − a ) = 2. \phantom{= }\dfrac{x + ma}{x - ma} + \dfrac{x + mb}{x - mb} \\[1.5em] = \dfrac{\dfrac{2mab}{a + b} + ma}{\dfrac{2mab}{a + b} - ma} + \dfrac{\dfrac{2mab}{a + b} + mb}{\dfrac{2mab}{a + b} - mb} \\[1em] = \dfrac{\dfrac{2mab + ma^2 + mab}{a + b}}{\dfrac{2mab - ma^2 - mab}{a + b}} + \dfrac{\dfrac{2mab + mb^2 + mab}{a + b}}{\dfrac{2mab - mb^2 - mab}{a + b}} \\[1em] = \dfrac{2mab + ma^2 + mab}{2mab - ma^2 - mab} + \dfrac{2mab + mb^2 + mab}{2mab - mb^2 - mab} \\[1em] = \dfrac{ma(2b + a + b)}{ma(2b - a - b)} + \dfrac{mb(2a + b + a)}{mb(2a - b - a)} \\[1em] = \dfrac{3b + a}{b - a} + \dfrac{3a + b}{a - b} \\[1em] = \dfrac{3b + a}{b - a} - \dfrac{3a + b}{b - a} \\[1em] = \dfrac{3b + a - 3a - b}{b - a} \\[1em] = \dfrac{2b - 2a}{b - a} \\[1em] = \dfrac{2(b - a)}{(b - a)} \\[1em] = 2. = x − ma x + ma + x − mb x + mb = a + b 2 mab − ma a + b 2 mab + ma + a + b 2 mab − mb a + b 2 mab + mb = a + b 2 mab − m a 2 − mab a + b 2 mab + m a 2 + mab + a + b 2 mab − m b 2 − mab a + b 2 mab + m b 2 + mab = 2 mab − m a 2 − mab 2 mab + m a 2 + mab + 2 mab − m b 2 − mab 2 mab + m b 2 + mab = ma ( 2 b − a − b ) ma ( 2 b + a + b ) + mb ( 2 a − b − a ) mb ( 2 a + b + a ) = b − a 3 b + a + a − b 3 a + b = b − a 3 b + a − b − a 3 a + b = b − a 3 b + a − 3 a − b = b − a 2 b − 2 a = ( b − a ) 2 ( b − a ) = 2.
Hence, the value of x + m a x − m a + x + m b x − m b = 2. \dfrac{x + ma}{x - ma} + \dfrac{x + mb}{x - mb} = 2. x − ma x + ma + x − mb x + mb = 2.
If x = p a b a + b \dfrac{pab}{a + b} a + b p ab , prove that
x + p a x − p a − x + p b x − p b = 2 ( a 2 − b 2 ) a b . \dfrac{x + pa}{x - pa} - \dfrac{x + pb}{x - pb} = \dfrac{2(a^2 - b^2)}{ab}. x − p a x + p a − x − p b x + p b = ab 2 ( a 2 − b 2 ) .
Answer
Given,
x = p a b a + b ⇒ x p a = b a + b and x p b = a a + b x = \dfrac{pab}{a + b} \\[1em] \Rightarrow \dfrac{x}{pa} = \dfrac{b}{a + b} \text{ and } \dfrac{x}{pb} = \dfrac{a}{a + b} x = a + b p ab ⇒ p a x = a + b b and p b x = a + b a
Applying componendo and dividendo on both equations,
⇒ x + p a x − p a = b + a + b b − a − b and x + p b x − p b = a + a + b a − a − b ⇒ x + p a x − p a = − 2 b + a a and x + p b x − p b = − 2 a + b b \Rightarrow \dfrac{x + pa}{x - pa} = \dfrac{b + a + b}{b - a - b} \text{ and } \dfrac{x + pb}{x - pb} = \dfrac{a + a + b}{a - a - b} \\[1em] \Rightarrow \dfrac{x + pa}{x - pa} = -\dfrac{2b + a}{a} \text{ and } \dfrac{x + pb}{x - pb} = -\dfrac{2a + b}{b} ⇒ x − p a x + p a = b − a − b b + a + b and x − p b x + p b = a − a − b a + a + b ⇒ x − p a x + p a = − a 2 b + a and x − p b x + p b = − b 2 a + b
Subtracting both the equations,
⇒ x + p a x − p a − x + p b x − p b = − 2 b + a a − ( − 2 a + b b ) = − 2 b + a a + 2 a + b b = − 2 b 2 − a b + 2 a 2 + a b a b = 2 ( a 2 − b 2 ) a b = R.H.S. \Rightarrow \dfrac{x + pa}{x - pa} - \dfrac{x + pb}{x - pb} = -\dfrac{2b + a}{a} - \Big(-\dfrac{2a + b}{b}\Big) \\[1em] = -\dfrac{2b + a}{a} + \dfrac{2a + b}{b} \\[1em] = \dfrac{-2b^2 - \cancel{ab} + 2a^2 + \cancel{ab}}{ab} \\[1em] = \dfrac{2(a^2 - b^2)}{ab} = \text{R.H.S.} \\[1em] ⇒ x − p a x + p a − x − p b x + p b = − a 2 b + a − ( − b 2 a + b ) = − a 2 b + a + b 2 a + b = ab − 2 b 2 − ab + 2 a 2 + ab = ab 2 ( a 2 − b 2 ) = R.H.S.
Since, L.H.S. = R.H.S. , hence, proved that,
x + p a x − p a − x + p b x − p b = 2 ( a 2 − b 2 ) a b . \dfrac{x + pa}{x - pa} - \dfrac{x + pb}{x - pb} = \dfrac{2(a^2 - b^2)}{ab}. x − p a x + p a − x − p b x + p b = ab 2 ( a 2 − b 2 ) .
Find x from the equation :
a + x + a 2 − x 2 a + x − a 2 − x 2 = b x . \dfrac{a + x + \sqrt{a^2 - x^2}}{a + x - \sqrt{a^2 - x^2}} = \dfrac{b}{x}. a + x − a 2 − x 2 a + x + a 2 − x 2 = x b .
Answer
Given,
a + x + a 2 − x 2 a + x − a 2 − x 2 = b x \dfrac{a + x + \sqrt{a^2 - x^2}}{a + x - \sqrt{a^2 - x^2}} = \dfrac{b}{x} a + x − a 2 − x 2 a + x + a 2 − x 2 = x b
Applying componendo and dividendo,
⇒ a + x + a 2 − x 2 + a + x − a 2 − x 2 a + x + a 2 − x 2 − a − x + a 2 − x 2 = b + x b − x ⇒ 2 ( a + x ) 2 a 2 − x 2 = b + x b − x ⇒ ( a + x ) a 2 − x 2 = b + x b − x \Rightarrow \dfrac{a + x + \sqrt{a^2 - x^2} + a + x - \sqrt{a^2 - x^2}}{a + x + \sqrt{a^2 - x^2} - a - x + \sqrt{a^2 - x^2}} = \dfrac{b + x}{b - x} \\[1em] \Rightarrow \dfrac{2(a + x)}{2\sqrt{a^2 - x^2}} = \dfrac{b + x}{b - x} \\[1em] \Rightarrow \dfrac{(a + x)}{\sqrt{a^2 - x^2}} = \dfrac{b + x}{b - x} \\[1em] ⇒ a + x + a 2 − x 2 − a − x + a 2 − x 2 a + x + a 2 − x 2 + a + x − a 2 − x 2 = b − x b + x ⇒ 2 a 2 − x 2 2 ( a + x ) = b − x b + x ⇒ a 2 − x 2 ( a + x ) = b − x b + x
Squaring both sides,
⇒ ( a + x ) 2 a 2 − x 2 = ( b + x ) 2 ( b − x ) 2 ⇒ ( a + x ) 2 ( a + x ) ( a − x ) = ( b + x ) 2 ( b − x ) 2 ⇒ ( a + x ) ( a − x ) = ( b + x ) 2 ( b − x ) 2 \Rightarrow \dfrac{(a + x)^2}{a^2 - x^2} = \dfrac{(b + x)^2}{(b - x)^2} \\[1em] \Rightarrow \dfrac{(a + x)^2}{(a + x)(a - x)} = \dfrac{(b + x)^2}{(b - x)^2} \\[1em] \Rightarrow \dfrac{(a + x)}{(a - x)} = \dfrac{(b + x)^2}{(b - x)^2} \\[1em] ⇒ a 2 − x 2 ( a + x ) 2 = ( b − x ) 2 ( b + x ) 2 ⇒ ( a + x ) ( a − x ) ( a + x ) 2 = ( b − x ) 2 ( b + x ) 2 ⇒ ( a − x ) ( a + x ) = ( b − x ) 2 ( b + x ) 2
Again applying componendo and dividendo,
⇒ a + x + a − x a + x − a + x = ( b + x ) 2 + ( b − x ) 2 ( b + x ) 2 − ( b − x ) 2 ⇒ 2 a 2 x = b 2 + x 2 + 2 b x + b 2 + x 2 − 2 b x b 2 + x 2 + 2 b x − ( b 2 + x 2 − 2 b x ) ⇒ 2 a 2 x = b 2 + b 2 + x 2 + x 2 + 2 b x − 2 b x b 2 − b 2 + x 2 − x 2 + 2 b x − ( − 2 b x ) ⇒ 2 a 2 x = 2 ( b 2 + x 2 ) 4 b x ⇒ a x = b 2 + x 2 2 b x \Rightarrow \dfrac{a + x + a - x}{a + x - a + x} = \dfrac{(b + x)^2 + (b - x)^2}{(b + x)^2 - (b - x)^2} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{b^2 + x^2 + 2bx + b^2 + x^2 - 2bx}{b^2 + x^2 + 2bx - (b^2 + x^2 - 2bx)} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{b^2 + b^2 + x^2 + x^2 + 2bx - 2bx}{b^2 - b^2 + x^2 - x^2 + 2bx - (-2bx)} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{2(b^2 + x^2)}{4bx} \\[1em] \Rightarrow \dfrac{a}{x} = \dfrac{b^2 + x^2}{2bx} ⇒ a + x − a + x a + x + a − x = ( b + x ) 2 − ( b − x ) 2 ( b + x ) 2 + ( b − x ) 2 ⇒ 2 x 2 a = b 2 + x 2 + 2 b x − ( b 2 + x 2 − 2 b x ) b 2 + x 2 + 2 b x + b 2 + x 2 − 2 b x ⇒ 2 x 2 a = b 2 − b 2 + x 2 − x 2 + 2 b x − ( − 2 b x ) b 2 + b 2 + x 2 + x 2 + 2 b x − 2 b x ⇒ 2 x 2 a = 4 b x 2 ( b 2 + x 2 ) ⇒ x a = 2 b x b 2 + x 2
Multiplying both sides by x we get,
⇒ a = b 2 + x 2 2 b \Rightarrow a = \dfrac{b^2 + x^2}{2b} ⇒ a = 2 b b 2 + x 2
On cross-multiplication,
⇒ 2 a b = b 2 + x 2 ⇒ x 2 = 2 a b − b 2 ⇒ x = 2 a b − b 2 . \Rightarrow 2ab = b^2 + x^2 \\[1em] \Rightarrow x^2 = 2ab - b^2 \\[1em] \Rightarrow x = \sqrt{2ab - b^2}. ⇒ 2 ab = b 2 + x 2 ⇒ x 2 = 2 ab − b 2 ⇒ x = 2 ab − b 2 .
Hence, the value of x is 2 a b − b 2 . \sqrt{2ab - b^2}. 2 ab − b 2 .
If x = a + 1 3 + a − 1 3 a + 1 3 − a − 1 3 , \dfrac{\sqrt[3]{a + 1} + \sqrt[3]{a - 1}}{\sqrt[3]{a + 1} - \sqrt[3]{a - 1}}, 3 a + 1 − 3 a − 1 3 a + 1 + 3 a − 1 ,
prove that x3 - 3ax2 + 3x - a = 0.
Answer
Given,
x 1 = a + 1 3 + a − 1 3 a + 1 3 − a − 1 3 \dfrac{x}{1} = \dfrac{\sqrt[3]{a + 1} + \sqrt[3]{a - 1}}{\sqrt[3]{a + 1} - \sqrt[3]{a - 1}} 1 x = 3 a + 1 − 3 a − 1 3 a + 1 + 3 a − 1
Applying componendo and dividendo,
⇒ x + 1 x − 1 = a + 1 3 + a − 1 3 + a + 1 3 − a − 1 3 a + 1 3 + a − 1 3 − a + 1 3 + a − 1 3 ⇒ x + 1 x − 1 = 2 a + 1 3 2 a − 1 3 \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{\sqrt[3]{a + 1} + \sqrt[3]{a - 1} + \sqrt[3]{a + 1} - \sqrt[3]{a - 1}}{\sqrt[3]{a + 1} + \sqrt[3]{a - 1} - \sqrt[3]{a + 1} + \sqrt[3]{a - 1}} \\[1em] \Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{2\sqrt[3]{a + 1}}{2\sqrt[3]{a - 1}} ⇒ x − 1 x + 1 = 3 a + 1 + 3 a − 1 − 3 a + 1 + 3 a − 1 3 a + 1 + 3 a − 1 + 3 a + 1 − 3 a − 1 ⇒ x − 1 x + 1 = 2 3 a − 1 2 3 a + 1
Cubing both the sides,
⇒ ( x + 1 ) 3 ( x − 1 ) 3 = a + 1 a − 1 \Rightarrow \dfrac{(x + 1)^3}{(x - 1)^3} = \dfrac{a + 1}{a - 1} ⇒ ( x − 1 ) 3 ( x + 1 ) 3 = a − 1 a + 1
Again applying componendo and dividendo,
⇒ ( x + 1 ) 3 + ( x − 1 ) 3 ( x + 1 ) 3 − ( x − 1 ) 3 = a + 1 + a − 1 a + 1 − a + 1 ⇒ x 3 + 1 + 3 x ( x + 1 ) + x 3 − 1 − 3 x ( x − 1 ) x 3 + 1 + 3 x ( x + 1 ) − ( x 3 − 1 − 3 x ( x − 1 ) ) = 2 a 2 ⇒ x 3 + x 3 + 1 − 1 + 3 x 2 − 3 x 2 + 3 x + 3 x x 3 − x 3 + 1 + 1 + 3 x 2 + 3 x 2 + 3 x − 3 x = 2 a 2 ⇒ 2 x 3 + 6 x 2 + 6 x 2 = a ⇒ 2 ( x 3 + 3 x ) 2 ( 1 + 3 x 2 ) = a ⇒ x 3 + 3 x 1 + 3 x 2 = a \Rightarrow \dfrac{(x + 1)^3 + (x - 1)^3}{(x + 1)^3 - (x - 1)^3} = \dfrac{a + \cancel{1} + a - \cancel{1}}{\cancel{a} + 1 - \cancel{a} + 1} \\[1em] \Rightarrow \dfrac{x^3 + 1 + 3x(x + 1) + x^3 - 1 - 3x(x - 1)}{x^3 + 1 + 3x(x + 1) - (x^3 - 1 - 3x(x - 1))} = \dfrac{2a}{2} \\[1em] \Rightarrow \dfrac{x^3 + x^3 + 1 - 1 + 3x^2 - 3x^2 + 3x + 3x}{x^3 - x^3 + 1 + 1 + 3x^2 + 3x^2 + 3x - 3x} = \dfrac{2a}{2} \\[1em] \Rightarrow \dfrac{2x^3 + 6x}{2 + 6x^2} = a \\[1em] \Rightarrow \dfrac{2(x^3 + 3x)}{2(1 + 3x^2)} = a \\[1em] \Rightarrow \dfrac{x^3 + 3x}{1 + 3x^2} = a ⇒ ( x + 1 ) 3 − ( x − 1 ) 3 ( x + 1 ) 3 + ( x − 1 ) 3 = a + 1 − a + 1 a + 1 + a − 1 ⇒ x 3 + 1 + 3 x ( x + 1 ) − ( x 3 − 1 − 3 x ( x − 1 )) x 3 + 1 + 3 x ( x + 1 ) + x 3 − 1 − 3 x ( x − 1 ) = 2 2 a ⇒ x 3 − x 3 + 1 + 1 + 3 x 2 + 3 x 2 + 3 x − 3 x x 3 + x 3 + 1 − 1 + 3 x 2 − 3 x 2 + 3 x + 3 x = 2 2 a ⇒ 2 + 6 x 2 2 x 3 + 6 x = a ⇒ 2 ( 1 + 3 x 2 ) 2 ( x 3 + 3 x ) = a ⇒ 1 + 3 x 2 x 3 + 3 x = a
On cross-multiplication,
⇒ x 3 + 3 x = a ( 1 + 3 x 2 ) ⇒ x 3 + 3 x = a + 3 a x 2 ⇒ x 3 − 3 a x 2 + 3 x − a = 0. \Rightarrow x^3 + 3x = a(1 + 3x^2) \\[1em] \Rightarrow x^3 + 3x = a + 3ax^2 \\[1em] \Rightarrow x^3 - 3ax^2 + 3x - a = 0. ⇒ x 3 + 3 x = a ( 1 + 3 x 2 ) ⇒ x 3 + 3 x = a + 3 a x 2 ⇒ x 3 − 3 a x 2 + 3 x − a = 0.
Hence, proved that x3 - 3ax2 + 3x - a = 0.
If ( a + b ) 3 ( a − b ) 3 = 64 27 \dfrac{(a + b)^3}{(a - b)^3} = \dfrac{64}{27} ( a − b ) 3 ( a + b ) 3 = 27 64
(a) Find a + b a − b \dfrac{a + b}{a - b} a − b a + b
(b) Hence using properties of proportion, find a : b.
Answer
(a) Solving,
⇒ ( a + b ) 3 ( a − b ) 3 = 64 27 ⇒ ( a + b ) 3 ( a − b ) 3 = 4 3 3 3 ⇒ ( a + b a − b ) 3 = ( 4 3 ) 3 ⇒ a + b a − b = 4 3 \Rightarrow \dfrac{(a + b)^3}{(a - b)^3} = \dfrac{64}{27} \\[1em] \Rightarrow \dfrac{(a + b)^3}{(a - b)^3} = \dfrac{4^3}{3^3} \\[1em] \Rightarrow \Big(\dfrac{a + b}{a - b}\Big)^3 = \Big(\dfrac{4}{3}\Big)^3 \\[1em] \Rightarrow \dfrac{a + b}{a - b} = \dfrac{4}{3} \\[1em] ⇒ ( a − b ) 3 ( a + b ) 3 = 27 64 ⇒ ( a − b ) 3 ( a + b ) 3 = 3 3 4 3 ⇒ ( a − b a + b ) 3 = ( 3 4 ) 3 ⇒ a − b a + b = 3 4
Hence, a + b a − b = 4 3 . \dfrac{a + b}{a - b} = \dfrac{4}{3}. a − b a + b = 3 4 .
(b) Solving further,
⇒ 3 ( a + b ) = 4 ( a − b ) ⇒ 3 a + 3 b = 4 a − 4 b ⇒ 4 a − 3 a = 3 b + 4 b ⇒ a = 7 b ⇒ a b = 7 1 ⇒ a : b = 7 : 1. \Rightarrow 3(a + b) = 4(a - b) \\[1em] \Rightarrow 3a + 3b = 4a - 4b \\[1em] \Rightarrow 4a - 3a = 3b + 4b \\[1em] \Rightarrow a = 7b \\[1em] \Rightarrow \dfrac{a}{b} = \dfrac{7}{1} \\[1em] \Rightarrow a : b = 7 : 1. ⇒ 3 ( a + b ) = 4 ( a − b ) ⇒ 3 a + 3 b = 4 a − 4 b ⇒ 4 a − 3 a = 3 b + 4 b ⇒ a = 7 b ⇒ b a = 1 7 ⇒ a : b = 7 : 1.
Hence, a : b = 7 : 1.
If x, y and z are in continued proportion, prove that :
x y 2 . z 2 + y z 2 . x 2 + z x 2 . y 2 = 1 x 3 + 1 y 3 + 1 z 3 \dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} = \dfrac{1}{x^3} + \dfrac{1}{y^3} + \dfrac{1}{z^3} y 2 . z 2 x + z 2 . x 2 y + x 2 . y 2 z = x 3 1 + y 3 1 + z 3 1
Answer
Given,
x, y and z are in continued proportion.
∴ x y = y z ⇒ y 2 = x z \therefore \dfrac{x}{y} = \dfrac{y}{z} \\[1em] \Rightarrow y^2 = xz ∴ y x = z y ⇒ y 2 = x z
To prove :
x y 2 . z 2 + y z 2 . x 2 + z x 2 . y 2 = 1 x 3 + 1 y 3 + 1 z 3 \dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} = \dfrac{1}{x^3} + \dfrac{1}{y^3} + \dfrac{1}{z^3} y 2 . z 2 x + z 2 . x 2 y + x 2 . y 2 z = x 3 1 + y 3 1 + z 3 1
Solving L.H.S.,
⇒ x y 2 . z 2 + y z 2 . x 2 + z x 2 . y 2 ⇒ x 3 + y 3 + z 3 x 2 . y 2 . z 2 ⇒ x 3 + y 3 + z 3 x 2 . x z . z 2 ⇒ x 3 + y 3 + z 3 x 3 . z 3 ⇒ x 3 x 3 . z 3 + y 3 x 3 z 3 + z 3 x 3 . z 3 ⇒ 1 z 3 + y 3 ( x z ) 3 + 1 x 3 ⇒ 1 z 3 + y 3 ( y 2 ) 3 + 1 x 3 ⇒ 1 z 3 + y 3 y 6 + 1 x 3 ⇒ 1 z 3 + 1 y 3 + 1 x 3 . \Rightarrow \dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} \\[1em] \Rightarrow \dfrac{x^3 + y^3 + z^3}{x^2.y^2.z^2} \\[1em] \Rightarrow \dfrac{x^3 + y^3 + z^3}{x^2.xz.z^2} \\[1em] \Rightarrow \dfrac{x^3 + y^3 + z^3}{x^3.z^3} \\[1em] \Rightarrow \dfrac{x^3}{x^3.z^3} + \dfrac{y^3}{x^3z^3} + \dfrac{z^3}{x^3.z^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{y^3}{(xz)^3} + \dfrac{1}{x^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{y^3}{(y^2)^3} + \dfrac{1}{x^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{y^3}{y^6} + \dfrac{1}{x^3} \\[1em] \Rightarrow \dfrac{1}{z^3} + \dfrac{1}{y^3} + \dfrac{1}{x^3}. ⇒ y 2 . z 2 x + z 2 . x 2 y + x 2 . y 2 z ⇒ x 2 . y 2 . z 2 x 3 + y 3 + z 3 ⇒ x 2 . x z . z 2 x 3 + y 3 + z 3 ⇒ x 3 . z 3 x 3 + y 3 + z 3 ⇒ x 3 . z 3 x 3 + x 3 z 3 y 3 + x 3 . z 3 z 3 ⇒ z 3 1 + ( x z ) 3 y 3 + x 3 1 ⇒ z 3 1 + ( y 2 ) 3 y 3 + x 3 1 ⇒ z 3 1 + y 6 y 3 + x 3 1 ⇒ z 3 1 + y 3 1 + x 3 1 .
Since, L.H.S. = R.H.S.
Hence, proved that x y 2 . z 2 + y z 2 . x 2 + z x 2 . y 2 = 1 x 3 + 1 y 3 + 1 z 3 \dfrac{x}{y^2.z^2} + \dfrac{y}{z^2.x^2} + \dfrac{z}{x^2.y^2} = \dfrac{1}{x^3} + \dfrac{1}{y^3} + \dfrac{1}{z^3} y 2 . z 2 x + z 2 . x 2 y + x 2 . y 2 z = x 3 1 + y 3 1 + z 3 1 .