KnowledgeBoat Logo
|
OPEN IN APP

Chapter 9

Arithmetic and Geometric Progressions

Class - 10 ML Aggarwal Understanding ICSE Mathematics



Exercise 9.1

Question 1

For the following A.P.s, write the first term a and the common difference d.

(i) 3, 1, -1, -3, ....

(ii) 13,53,93,133,...\dfrac{1}{3}, \dfrac{5}{3}, \dfrac{9}{3}, \dfrac{13}{3}, ...

(iii) -3.2, -3, -2.8, -2.6, ...

Answer

(i) First term = a = 3 and common difference = d = 1 - 3 = -2.

(ii) First term = a = 13\dfrac{1}{3} and common difference = d = 5313=43\dfrac{5}{3} - \dfrac{1}{3} = \dfrac{4}{3}.

(iii) First term = a = -3.2 and common difference = d = -3 - (-3.2) = 0.2.

Question 2

Write first four of the terms of the A.P., when the first term a and the common difference a are given as follows :

(i) a = 10, d = 10

(ii) a = -2, d = 0

(iii) a = 4, d = -3

(iv) a = 12\dfrac{1}{2}, d = 16-\dfrac{1}{6}

Answer

(i) Here, a1 = a = 10,   a2 = a1 + d = 10 + 10 = 20,

a3 = a2 + d = 20 + 10 = 30,    a4 = a3 + d = 30 + 10 = 40.

Hence, the first four terms of A.P. are 10, 20, 30, 40.

(ii) Here, a1 = a = -2,   a2 = a1 + d = -2 + 0 = -2,

a3 = a2 + d = -2 + 0 = -2,    a4 = a3 + d = -2 + 0 = -2.

Hence, the first four terms of A.P. are -2, -2, -2, -2.

(iii) Here, a1 = a = 4,   a2 = a1 + d = 4 + (-3) = 1,

a3 = a2 + d = 1 + (-3) = -2,    a4 = a3 + d = -2 + (-3) = -5.

Hence, the first four terms of A.P. are 4, 1, -2, -5.

(iv) Here, a1 = a = 12\dfrac{1}{2},   a2 = a1 + d = 12+(16)=26=13\dfrac{1}{2} + \big(-\dfrac{1}{6}\big) = \dfrac{2}{6} = \dfrac{1}{3},

a3 = a2 + d = 26+(16)=16\dfrac{2}{6} + \big(-\dfrac{1}{6}\big) = \dfrac{1}{6},    a4 = a3 + d = 16+(16)\dfrac{1}{6} + \big(-\dfrac{1}{6}\big) = 0.

Hence, the first four terms of A.P. are 12,13,16,0\dfrac{1}{2}, \dfrac{1}{3}, \dfrac{1}{6}, 0.

Question 3

Which of the following lists of numbers form an A.P. ? If they form an A.P., find the common difference d and write the next three terms:

(i) 4, 10, 16, 22, ....

(ii) -2, 2, -2, 2, ....

(iii) 2, 4, 8, 16, ....

(iv) 2,52,3,72,....2, \dfrac{5}{2}, 3, \dfrac{7}{2}, ....

(v) -10, -6, -2, 2, ...

(vi) 12, 32, 52, 72, ....

Answer

(i) Given, 4, 10, 16, 22, ....

Here, a2 - a1 = 10 - 4 = 6,     a3 - a2 = 16 - 10 = 6,

          a4 - a3 = 22 - 16 = 6

i.e. any term - preceding term = 6, a fixed number.
Hence, the given list of numbers forms an A.P. with common difference = d = 6.

For the next three terms, we have:
    a5 = a4 + d = 22 + 6 = 28,
    a6 = a5 + d = 28 + 6 = 34,
    a7 = a6 + d = 34 + 6 = 40.

Hence, the given series is in A.P. with common difference d = 6 and the next three terms : 28, 34, 40.

(ii) Given, -2, 2, -2, 2, ....

Here, a2 - a1 = 2 - (-2) = 4,     a3 - a2 = -2 - 2 = -4,

          a4 - a3 = 2 - (-2) = 4

⇒ a2 - a1 = a4 - a3 ≠ a3 - a2.

Thus the difference of any term from its preceding term is not a fixed number.

Hence, the given series does not form an A.P.

(iii) Given, 2, 4, 8, 16, ....

Here, a2 - a1 = 4 - 2 = 2,     a3 - a2 = 8 - 4 = 4,

          a4 - a3 = 16 - 8 = 8

⇒ a2 - a1 ≠ a3 - a2 ≠ a4 - a3.

Thus the difference of any term from its preceding term is not a fixed number.

Hence, the given series does not form an A.P.

(iv) Given, 2,52,3,72,....2, \dfrac{5}{2}, 3, \dfrac{7}{2}, ....

Here, a2 - a1 = 522=12\dfrac{5}{2} - 2 = \dfrac{1}{2},     a3 - a2 = 352=123 - \dfrac{5}{2} = \dfrac{1}{2},

          a4 - a3 = 723=12\dfrac{7}{2} - 3 = \dfrac{1}{2}

i.e. any term - preceding term = 12\dfrac{1}{2}, a fixed number.
Hence, the given list of numbers forms an A.P. with common difference = d = 12\dfrac{1}{2}.

For the next three terms, we have:

    a5 = a4 + d = 72+12=82=4\dfrac{7}{2} + \dfrac{1}{2} = \dfrac{8}{2} = 4,

    a6 = a5 + d = 4+12=924 + \dfrac{1}{2} = \dfrac{9}{2},

    a7 = a6 + d = 92+12=102=5\dfrac{9}{2} + \dfrac{1}{2} = \dfrac{10}{2} = 5.

Hence, the given series is in A.P. with common difference d = 12\dfrac{1}{2} and the next three terms : 4, 92\dfrac{9}{2}, 5.

(v) Given, -10, -6, -2, 2, ...

Here, a2 - a1 = -6 - (-10) = 4,     a3 - a2 = -2 - (-6) = 4,

          a4 - a3 = 2 - (-2) = 4

i.e. any term - preceding term = 4, a fixed number.
Hence, the given list of numbers forms an A.P. with common difference = d = 4.

For the next three terms, we have:
    a5 = a4 + d = 2 + 4 = 6,
    a6 = a5 + d = 6 + 4 = 10,
    a7 = a6 + d = 10 + 4 = 14.

Hence, the given series is in A.P. with common difference d = 4 and the next three terms : 6, 10, 14.

(vi) Given, 12, 32, 52, 72, ....

or, 1, 9, 25, 49 ....

Here, a2 - a1 = 9 - 1 = 8,     a3 - a2 = 25 - 9 = 16,

          a4 - a3 = 49 - 25 = 24

⇒ a2 - a1 ≠ a3 - a2 ≠ a4 - a3.

Thus the difference of any term from its preceding term is not a fixed number.

Hence, the given series does not form an A.P.

Exercise 9.2

Question 1

Find the A.P. whose nth term is 7 - 3n. Also find the 20th term.

Answer

Given, an = 7 - 3n     (Eq 1)

Putting n = 1, 2, 3, 4, .... in (Eq 1), we get

a1 = 7 - 3 × 1 = 7 - 3 = 4,   a2 = 7 - 3 × 2 = 7 - 6 = 1
a3 = 7 - 3 × 3 = 7 - 9 = -2,   a4 = 7 - 3 × 4 = 7 - 12 = -5, ...

∴ Series = 4, 1, -2, -5 .....

Putting n = 20, for 20th term we get,

a20 = 7 - 3 × 20 = 7 - 60 = -53.

Hence, the A.P. is 4, 1, -2, -5 ..... and the 20th term is -53.

Question 2

Find the indicated terms in each of the following A.P.s :

(i) 1, 6, 11, 16, ....; a20

(ii) -4, -7, -10, -13, ...., a25, an

Answer

(i) The given list of numbers is 1, 6, 11, 16, ...

Here, a2 - a1 = 6 - 1 = 5,     a3 - a2 = 11 - 6 = 5,

          a4 - a3 = 16 - 11 = 5

i.e. any term - preceding term = 5, a fixed number.
So, the given list of numbers forms an A.P. with a = 1 and d = 5.

∴ nth term = an = a + (n - 1)d = 1 + (n - 1)5 = 1 + 5n - 5 = 5n - 4.

Putting n = 20, we get
a20 = 5 × 20 - 4 = 100 - 4 = 96.

Hence, a20 = 96.

(ii) The given list of numbers is -4, -7, -10, -13, ....

Here, a2 - a1 = -7 - (-4) = -3,     a3 - a2 = -10 - (-7) = -3,

          a4 - a3 = -13 - (-10) = -3

i.e. any term - preceding term = -3, a fixed number.
So, the given list of numbers forms an A.P. with a = -4 and d = -3.

∴ nth term = an = a + (n - 1)d = -4 + (n - 1)(-3) = -4 - 3n + 3 = -3n - 1.

Putting n = 25, we get
a25 = -3 × 25 - 1 = -75 - 1 = -76.

Hence, a25 = -76 and an = -3n - 1.

Question 3

Find the nth term and the 12th term of the list of numbers : 5, 2, -1, -4, ...

Answer

The given list of numbers is 5, 2, -1, -4, ....

Here, a2 - a1 = 2 - 5 = -3,     a3 - a2 = -1 - 2 = -3,

          a4 - a3 = -4 - (-1) = -3

i.e. any term - preceding term = -3, a fixed number.
So, the given list of numbers forms an A.P. with a = 5 and d = -3.

∴ nth term = an = a + (n - 1)d = 5 + (n - 1)(-3) = 5 - 3n + 3 = 8 - 3n.

Putting n = 12, we get
a12 = 8 - 3(12) = 8 - 36 = -28.

Hence, a12 = -28 and an = 8 - 3n.

Question 4(i)

If the common difference of an A.P. is -3 and the 18th term is -5, then find its first term.

Answer

The nth term of an A.P. is given by,

an = a + (n - 1)d.    (Eq 1)

Given , d = -3 and a18 = -5.

Putting d = -3, a18 = -5 and n = 18 in Eq 1 we get,

⇒ an = a + (n - 1)d
⇒ -5 = a + (18 - 1)(-3)
⇒ -5 = a + 17 × (-3)
⇒ -5 = a - 51
⇒ a = 51 - 5
⇒ a = 46.

Hence, the first term of A.P. is 46.

Question 4(ii)

If the first term of an A.P. is -18 and its 10th term is zero, then find its common difference.

Answer

The nth term of an A.P. is given by,

an = a + (n - 1)d.    (Eq 1)

Given , a = -18 and a10 = 0.

Putting a = -18, a10 = 0 and n = 10 in Eq 1 we get,

⇒ an = a + (n - 1)d
⇒ 0 = -18 + (10 - 1)d
⇒ 0 = -18 + 9d
⇒ 9d = 18
⇒ d = 2.

Hence, the common difference of A.P. is 2.

Question 5

Which term of the A.P.

(i) 3, 8, 13, 18, ... is 78 ?

(ii) 18,1512,13,...18, 15\dfrac{1}{2}, 13, ... is -47 ?

Answer

(i) The given A.P. is 3, 8, 13, 18 ....

Here, first term = a = 3 and common difference = d = 8 - 3 = 5.

Let 78 be nth term of the A.P., or an = 78

The nth term of A.P. is given by an = a + (n - 1)d

Putting value of d and an in above equation we get,

⇒ an = a + (n - 1)d
⇒ 78 = 3 + (n - 1)5
⇒ 78 = 3 + 5n - 5
⇒ 78 = 5n - 2
⇒ 5n = 78 + 2
⇒ 5n = 80
⇒ n = 16.

Hence, 78 is 16th term of the A.P.

(ii) The given A.P. is 18,1512,13,...18, 15\dfrac{1}{2}, 13, ...

Here, first term = a = 18 and common difference = d = 31218=31362=52\dfrac{31}{2} - 18 = \dfrac{31 - 36}{2} = -\dfrac{5}{2}.

Let -47 be nth term of the A.P., or an = -47

The nth term of A.P. is given by an = a + (n - 1)d

Putting value of a, d and an in above equation we get,

an=a+(n1)d47=18+(n1)(52)47=185n2+524718=55n265×2=55n130=55n5n=130+55n=135n=27.a_n = a + (n - 1)d \\[1em] \Rightarrow -47 = 18 + (n - 1)\Big(-\dfrac{5}{2}\Big) \\[1em] \Rightarrow -47 = 18 -\dfrac{5n}{2} + \dfrac{5}{2} \\[1em] \Rightarrow -47 - 18 = \dfrac{5 - 5n}{2} \\[1em] \Rightarrow -65 \times 2 = 5 - 5n \\[1em] \Rightarrow -130 = 5 - 5n \\[1em] \Rightarrow 5n = 130 + 5 \\[1em] \Rightarrow 5n = 135 \\[1em] \Rightarrow n = 27.

Hence, -47 is 27th term of the A.P.

Question 6(i)

Check whether -150 is a term of the A.P. 11, 8, 5, 2, ...

Answer

Here, a2 - a1 = 8 - 11 = -3,     a3 - a2 = 5 - 8 = -3,

          a4 - a3 = 2 - 5 = -3

i.e. any term - preceding term = -3, a fixed number.
So, the given list of numbers forms an A.P. with a = 11 and d = -3.

Now we want to find whether there exists a natural number n for which an = -150

⇒ a + (n - 1)d = -150
⇒ 11 + (n - 1)(-3) = -150
⇒ 11 - 3n + 3 = -150
⇒ 14 - 3n = -150
⇒ 3n = 14 + 150
⇒ 3n = 164
⇒ n = 542354\dfrac{2}{3}, which is not a natural number.

Hence, there is no term in the given list of numbers which is -150.

Question 6(ii)

Find whether 55 is a term of the A.P. 7, 10, 13, .... or not. If yes find which term is it.

Answer

Here, a2 - a1 = 10 - 7 = 3,     a3 - a2 = 13 - 10 = 3,

i.e. any term - preceding term = 3, a fixed number.
So, the given list of numbers forms an A.P. with a = 7 and d = 3.

Now we want to find whether there exists a natural number n for which an = 55

⇒ a + (n - 1)d = 55
⇒ 7 + (n - 1)3 = 55
⇒ 7 + 3n - 3 = 55
⇒ 4 + 3n = 55
⇒ 3n = 51
⇒ n = 17.

Hence, 55 is the 17th term of the A.P. 7, 10, 13 .....

Question 7(i)

Find the 20th term from the last term of the A.P. 3, 8, 13, ..., 253.

Answer

Here, common difference = d = 8 - 3 = 5 and last term = l = 253.

We know that the nth term from last is given by the formula:
nth term from end = l - (n - 1)d

∴ 20th term from end = 253 - (20 - 1)5 = 253 - 19 × 5 = 253 - 95 = 158.

Hence, the 20th term from last term of the A.P. 3, 8, 13, ...., 253 is 158.

Question 7(ii)

Find the 12th term from the end of A.P. -2, -4, -6, ...., -100.

Answer

Here, common difference = d = -4 - (-2) = -2 and last term = l = -100.

We know that the nth term from last is given by the formula:
nth term from end = l - (n - 1)d

∴ 20th term from end = -100 - (12 - 1)(-2) = -100 - 11 × (-2) = -100 + 22 = -78.

Hence, the 12th term from last term of the A.P. -2, -4, -6, ...., -100 is -78.

Question 8

Find the sum of the two middle most terms of the A.P.

43,1,23,....,413.-\dfrac{4}{3}, -1, -\dfrac{2}{3}, ...., 4\dfrac{1}{3}.

Answer

Here, a = 43 and d =1(43)=3+43=13-\dfrac{4}{3} \text{ and d } = -1- \big(-\dfrac{4}{3}\big) = \dfrac{-3 + 4}{3} = \dfrac{1}{3}

 and l =413=133.\text{ and l } = 4\dfrac{1}{3} = \dfrac{13}{3}.

We need to find the number of terms in the A.P.

an=a+(n1)d133=43+(n1)13133+43=(n1)3173=(n1)3\Rightarrow a_n = a + (n - 1)d \\[1em] \Rightarrow \dfrac{13}{3} = -\dfrac{4}{3} + (n - 1)\dfrac{1}{3} \\[1em] \Rightarrow \dfrac{13}{3} + \dfrac{4}{3} = \dfrac{(n - 1)}{3} \\[1em] \Rightarrow \dfrac{17}{3} = \dfrac{(n - 1)}{3}

On multiplying both sides by 3,

17=n117+1=nn=18.\Rightarrow 17 = n - 1 \\[1em] \Rightarrow 17 + 1 = n \\[1em] \Rightarrow n = 18.

Since, A.P. has 18 terms, therefore 9th and 10th terms are two middle most terms.

a9 = a + (9 - 1)d = a + 8d        (Eq 1)

a10 = a + (10 - 1)d = a + 9d     (Eq 2)

Adding Eq 1 and Eq 2,

a9 + a10 = a + 8d + a + 9d = 2a + 17d.

Hence, the sum of middle most terms

=2a+17d=2×43+17×13=83+173=8+173=93=3.= 2a + 17d \\[0.5em] = 2 \times -\dfrac{4}{3} + 17 \times \dfrac{1}{3} \\[0.5em] = -\dfrac{8}{3} + \dfrac{17}{3} \\[0.5em] = \dfrac{-8 + 17}{3} \\[0.5em] = \dfrac{9}{3} \\[0.5em] = 3.

Hence, the sum of the two middle most terms of the A.P. is equal to 3.

Question 9

Which term of the A.P. 53, 48, 43, .... is the first negative term?

Answer

Let us first evaluate which term is 0 because the next term will be the term containing first negative number.

a = 53, d = 48 - 53 = -5, an = 0.

By formula, an = a + (n - 1)d
⇒ an = 53 + (n - 1)(-5)
⇒ 0 = 53 - 5n + 5
⇒ 5n = 58
⇒ n = 113511\dfrac{3}{5}

The next term will be containing the first negative number.

Hence, the 12th term will contain the first negative number.

Question 10

Determine the A.P. whose third term is 16 and the 7th term exceeds the 5th term by 12.

Answer

Given, a3 = 16 (Eq 1)     and    a7 - a5 = 12 (Eq 2)

By using formula an = a + (n - 1)d on Eq 1 we get,

⇒ a3 = a + (3 - 1)d = 16
⇒ a + 2d = 16
⇒ a = 16 - 2d.             (Eq 3)

By using formula an = a + (n - 1)d on Eq 2 we get,

⇒ a7 - a5 = 12
⇒ a + (7 - 1)d - [a + (5 - 1)d] = 12
⇒ a + 6d - a - 4d = 12
⇒ 2d = 12 ⇒ d = 6.

∴ a = 16 - 2d = 16 - 2(6) = 16 - 12 = 4.

    a2 = a + d = 4 + 6 = 10,    a3 = a2 + d = 10 + 6 = 16,
    a4 = a3 + d = 16 + 6 = 22.

Hence, the A.P. is 4, 10, 16, 22 ....

Question 11

Find the 20th term of the A.P. whose 7th term is 24 less than the 11th term, first term being 12.

Answer

Given, a = 12 and a11 - a7 = 24 (Eq 1)

By using formula an = a + (n - 1)d for Eq 1 we get,

⇒ a11 - a7 = 24
⇒ a + (11 - 1)d - [a + (7 - 1)d] = 24
⇒ a + 10d - a - 6d = 24
⇒ 4d = 24
⇒ d = 6.

20th term of A.P. is,

a20 = 12 + (20 - 1)6 = 12 + 19 × 6 = 12 + 114 = 126.

Hence, the 20th term of the A.P. is 126.

Question 12

Find the 31st term of an A.P. whose 11th term is 38 and 6th term is 73.

Answer

Given,
a11 = 38     (Eq 1)
a6 = 73       (Eq 2)

By using formula an = a + (n - 1)d for Eq 1 we get,

⇒ a11 = a + (11 - 1)d = 38
⇒ a + 10d = 38
⇒ a = 38 - 10d              (Eq 3)

By using formula an = a + (n - 1)d for Eq 2 we get,

⇒ a6 = a + (6 - 1)d = 73
⇒ a + 5d = 73                (Eq 4)

Putting value of a from Eq 3 in Eq 4 we get,

⇒ a + 5d = 73
⇒ 38 - 10d + 5d = 73
⇒ 38 - 5d = 73
⇒ 5d = 38 - 73
⇒ 5d = -35
⇒ d = -7.

∴ a = 38 - 10d = 38 - 10(-7) = 38 + 70 = 108.

and 31st term = a31 = a + (31 - 1)d = 108 + 30(-7) = 108 - 210 = -102.

Hence, the 31st term of the A.P. is -102.

Question 13

If the seventh term of an A.P. is 19\dfrac{1}{9} and its ninth term is 17,\dfrac{1}{7}, find its 63rd term.

Answer

Given,

a7 = 19\dfrac{1}{9}     (Eq 1)

a9 = 17\dfrac{1}{7}     (Eq 2)

By using formula an = a + (n - 1)d for Eq 1 we get,

⇒ a7 = a + (7 - 1)d = 19\dfrac{1}{9}

⇒ a + 6d = 19\dfrac{1}{9}

⇒ 9(a + 6d) = 1

⇒ 9a + 54d = 1

⇒ 9a = 1 - 54d

⇒ a = 154d9\dfrac{1 - 54d}{9}     (Eq 3)

By using formula an = a + (n - 1)d for Eq 2 we get,

⇒ a9 = a + (9 - 1)d = 17\dfrac{1}{7}

⇒ a + 8d = 17\dfrac{1}{7}     (Eq 4)

Putting value of a from Eq 3 in Eq 4 above,

154d9+8d=17154d+72d9=171+18d9=177+126d=9126d=2d=2126d=163a=154d9=154×1639=63549×63=99×63=163.\Rightarrow \dfrac{1 - 54d}{9} + 8d = \dfrac{1}{7} \\[1em] \Rightarrow \dfrac{1 - 54d + 72d}{9} = \dfrac{1}{7} \\[1em] \Rightarrow \dfrac{1 + 18d}{9} = \dfrac{1}{7} \\[1em] \Rightarrow 7 + 126d = 9 \\[1em] \Rightarrow 126d = 2 \\[1em] \Rightarrow d = \dfrac{2}{126} \\[1em] \Rightarrow d = \dfrac{1}{63} \\[1.5em] \therefore a = \dfrac{1 - 54d}{9} \\[1em] = \dfrac{1 - 54 \times \dfrac{1}{63}}{9} \\[1em] = \dfrac{63 - 54}{9 \times 63} \\[1em] = \dfrac{9}{9 \times 63} \\[1em] = \dfrac{1}{63}. \\[1em]

63rd term = a63 = a+(631)da + (63 - 1)d

=a+62d=163+62×163=163+6263=6363=1.= a + 62d \\[1em] = \dfrac{1}{63} + 62 \times \dfrac{1}{63} \\[1em] = \dfrac{1}{63} + \dfrac{62}{63} \\[1em] = \dfrac{63}{63} \\[1em] = 1.

Hence, 63rd term of the A.P. is 1.

Question 14(i)

The 15th term of an A.P. is 3 more than twice its 7th term. If the 10th term of the A.P. is 41, find its nth term.

Answer

Given,

a10 = 41,          (Eq 1)
a15 = 2a7 + 3.  (Eq 2)

By using formula an = a + (n - 1)d for Eq 1 we get,
⇒ a10 = a + (10 - 1)d = 41
⇒ a + 9d = 41
⇒ a = 41 - 9d     (Eq 3)

By using formula an = a + (n - 1)d for Eq 2 we get,
⇒ a15 = 2a7 + 3
⇒ a + (15 - 1)d = 2(a + (7 - 1)d) + 3
⇒ a + 14d = 2(a + 6d) + 3
⇒ a + 14d = 2a + 12d + 3

Putting value of a from Eq 3 in above equation
⇒ 41 - 9d + 14d = 2(41- 9d) + 12d + 3
⇒ 41 + 5d = 82 - 18d + 12d + 3
⇒ 41 + 5d = 82 - 6d + 3
⇒ 5d + 6d = 85 - 41
⇒ 11d = 44
⇒ d = 4.

∴ a = 41 - 9d = 41 - 9(4) = 41 - 36 = 5.

nth term = an = a + (n - 1)d = 5 + 4(n - 1) = 5 + 4n - 4 = 4n + 1.

Hence, the nth term of the A.P. is 4n + 1.

Question 14(ii)

The sum of 5th and 7th terms of an A.P. is 52 and the 10th term is 46. Find the A.P.

Answer

Given,

a5 + a7 = 52   (Eq 1)

a10 = 46         (Eq 2)

By using formula an = a + (n - 1)d for Eq 1 we get,
⇒ a5 + a7 = 52
⇒ a + (5 - 1)d + a + (7 - 1)d = 52
⇒ a + 4d + a + 6d = 52
⇒ 2a + 10d = 52
⇒ 2(a + 5d) = 52
⇒ a + 5d = 26
⇒ a = 26 - 5d    (Eq 3)

By using formula an = a + (n - 1)d for Eq 2 we get,
⇒ a10 = 46
⇒ a + (10 - 1)d = 46
⇒ a + 9d = 46

Putting value of a from Eq 3 in above equation
⇒ 26 - 5d + 9d = 46
⇒ 26 + 4d = 46
⇒ 4d = 46 - 26
⇒ 4d = 20
⇒ d = 5.

∴ a = 26 - 5d = 26 - 5 × 5 = 26 - 25 = 1.

We know a1 = a so,

a2 = a1 + d = 1 + 5 = 6,
a3 = a2 + d = 6 + 5 = 11,
a4 = a3 + d = 11 + 5 = 16.

Hence, the required A.P. is 1, 6, 11, 16, 21, ...

Question 15

If 8th term of an A.P. is zero, prove that its 38th term is triple of its 18th term.

Answer

Given,
a8 = 0

By using formula an = a + (n - 1)d for a8 we get,

⇒ a + (8 - 1)d = 0
⇒ a + 7d = 0
⇒ a = -7d.

So,
a38 = a + (38 - 1)d
      = a + 37d
      = -7d + 37d
      = 30d.

a18 = a + (18 - 1)d
      = a + 17d
      = -7d + 17d
      = 10d.

∴ a38 = 30d = 3 × 10d = 3 × a18.

Hence, proved that 38th term of the A.P. is triple of the 18th term.

Question 16

Which term of the A.P. 3, 10, 17, ... will be 84 more than its 13th term?

Answer

Here, common difference = d = 10 - 3 = 7 and a = 3.

Let the nth term of A.P. be 84 more than its 13th term so,

⇒ an - a13 = 84
⇒ a + (n - 1)d - (a + (13 - 1)d) = 84
⇒ 3 + 7(n - 1) - (3 + 12 × 7) = 84
⇒ 3 + 7n - 7 - (3 + 84) = 84
⇒ 7n - 4 - 87 = 84
⇒ 7n - 91 = 84
⇒ 7n = 84 + 91
⇒ 7n = 175
⇒ n = 25.

Hence, the 25th term of A.P. will be 84 more than 13th term.

Question 17(i)

How many two digits numbers are divisible by 3?

Answer

Two digit numbers which are divisible by 3 are :

12, 15, 18, 21, 24, ......, 99.

First number = a = 12 and common difference = d = 15 - 12 = 3.

Last number = 99.

By formula, an = a + (n - 1)d

⇒ 99 = 12 + 3(n - 1)
⇒ 99 = 12 + 3n - 3
⇒ 99 = 9 + 3n
⇒ 99 - 9 = 3n
⇒ 3n = 90
⇒ n = 30.

Hence, there are 30 two digit numbers that are divisible by 3.

Question 17(ii)

Find the number of natural numbers between 101 and 999 which are divisible by both 2 and 5.

Answer

The numbers which are divisible by both 2 and 5 are
110, 120, 130, 140 .....990.

The above numbers are in A.P. with common difference = d = 120 - 110 = 10 and first term = a = 110.

Last term = 990.

By formula, an = a + (n - 1)d

⇒ 990 = 110 + 10(n - 1)
⇒ 990 = 110 + 10n - 10
⇒ 990 = 100 + 10n
⇒ 990 - 100 = 10n
⇒ 10n = 890
⇒ n = 89.

Hence, there are 89 natural numbers between 101 and 999 that are divisible by 2 and 5.

Question 18

If the numbers n - 2, 4n - 1 and 5n + 2 are in A.P., find the value of n.

Answer

Here, a = a1 = n - 2, a2 = 4n - 1 and a3 = 5n + 2

Since, the numbers are in A.P. so,
a2 - a1 = d = a3 - a2

⇒ a2 - a1 = a3 - a2
⇒ 4n - 1 - (n - 2) = 5n + 2 - (4n - 1)
⇒ 4n - n - 1 + 2 = 5n - 4n + 2 + 1
⇒ 3n + 1 = n + 3
⇒ 3n - n = 3 - 1
⇒ 2n = 2
⇒ n = 1.

Hence, the value of n = 1.

Question 19

The sum of three numbers in A.P. is 3 and their product is -35. Find the numbers.

Answer

Let the three numbers that are in A.P. be a - d, a, a + d.

Given, sum of three numbers = 3
⇒ a - d + a + a + d = 3
⇒ 3a = 3
⇒ a = 1.

Given, product of the numbers = -35
⇒ (a - d)(a)(a + d) = -35

Putting the value of a = 1 in the above eq we get,

⇒ (1 - d)(1)(1 + d) = -35
⇒ (1 - d2) = -35
⇒ d2 = 1 + 35
⇒ d2 = 36
⇒ d = 36\sqrt{36}
⇒ d = +6, -6.

∴ a - d = 1 - 6 = -5 or 1 - (-6) = 7 and a + d = 1 + 6 = 7 or 1 + (-6) = -5

Hence, the numbers are -5, 1, 7.

Question 20

The sum of three numbers in A.P. is 30 and the ratio of the first number to the third number is 3 : 7. Find the numbers.

Answer

Let the three numbers that are in A.P. be a - d, a, a + d.

Given, sum of three numbers = 30
⇒ a - d + a + a + d = 30
⇒ 3a = 30
⇒ a = 10.

Given, the ratio of the first number to the third number = 3 : 7

ada+d=377(ad)=3(a+d)7a7d=3a+3d7a3a=3d+7d4a=10dd=4a10\Rightarrow \dfrac{a - d}{a + d} = \dfrac{3}{7} \\[0.5em] \Rightarrow 7(a - d) = 3(a + d) \\[0.5em] \Rightarrow 7a - 7d = 3a + 3d \\[0.5em] \Rightarrow 7a - 3a = 3d + 7d \\[0.5em] \Rightarrow 4a = 10d \\[0.5em] \Rightarrow d = \dfrac{4a}{10} \\[0.5em]

Putting the value of a = 10 we get,

d=4×1010d=4.\Rightarrow d = \dfrac{4 \times 10}{10} \\[0.5em] \Rightarrow d = 4.

∴ a - d = 10 - 4 = 6 and a + d = 10 + 4 = 14.

Hence, the numbers are 6, 10, 14.

Question 21

The sum of the first three terms of an A.P. is 33. If the product of the first and the third terms exceeds the second term by 29, find the A.P.

Answer

Let the three numbers be a - d, a, a + d.

Given , sum of these terms = 33
⇒ a - d + a + a + d = 33
⇒ 3a = 33
⇒ a = 11.

Given, the product of the first and the third terms exceeds the second term by 29
⇒ (a + d)(a - d) - a = 29

Putting the value of a = 11 we get,

⇒ (11 + d)(11 - d) - 11 = 29
⇒ (11)2 - d2 - 11 = 29
⇒ 121 - d2 - 11 = 29
⇒ 110 - d2 = 29
⇒ 110 - 29 = d2
⇒ d2 = 81
⇒ d = 81\sqrt{81}
⇒ d = +9, -9.

∴ a - d = 11 - 9 = 2 or 11 - (-9) = 20 and a + d = 11 + 9 = 20 or 11 + (-9) = 2.

Hence, the A.P. is 2, 11, 20, ... or 20, 11, 2, ....

Exercise 9.3

Question 1

Find the sum of the following A.P.s :

(i) 2, 7, 12 ... to 10 terms

(ii) 115,112,110,...\dfrac{1}{15}, \dfrac{1}{12}, \dfrac{1}{10}, ... to 11 terms

Answer

(i) Here, a = 2, d = 7 - 2 = 5 and n = 10.

We know that Sum = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

 Sum =102[2×2+(101)5]=5[4+9×5]=5×49=245.\therefore \text{ Sum } = \dfrac{10}{2}[2 \times 2 + (10 - 1)5] \\[1em] = 5[4 + 9 \times 5] \\[1em] = 5 \times 49 \\[1em] = 245.

Hence, the sum of the A.P. 2, 7, 12, ... upto 10 terms is 245.

(ii) Here, a = 115,d=112115=5460=160\dfrac{1}{15}, d = \dfrac{1}{12} - \dfrac{1}{15} = \dfrac{5 - 4}{60} = \dfrac{1}{60} and n = 11.

We know that Sum = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

 Sum =112[2×115+(111)160]=112[215+1060]=112×[2×4+1060]=112×1860\therefore \text{ Sum } = \dfrac{11}{2}[2 \times \dfrac{1}{15} + (11 - 1)\dfrac{1}{60}] \\[1em] = \dfrac{11}{2}\Big[\dfrac{2}{15} + \dfrac{10}{60}\Big] \\[1em] = \dfrac{11}{2} \times \Big[\dfrac{2 \times 4 + 10}{60}\Big] \\[1em] = \dfrac{11}{2} \times \dfrac{18}{60}

Dividing numerator and denominator by 6,

=198120=3320.= \dfrac{198}{120} \\[1em] = \dfrac{33}{20}. \\[1em]

Hence, the sum of the A.P. 115,112,110,...\dfrac{1}{15}, \dfrac{1}{12}, \dfrac{1}{10}, ... upto 11 terms is 3320\dfrac{33}{20}.

Question 2

Find the sums given below:

(i) 34 + 32 + 30 + .... + 10

(ii) -5 + (-8) + (-11) + .... + (-230)

Answer

(i) The given numbers form an A.P. with a = 34 and d = 32 - 34 = -2.

Let nth term be 10,
as, an = a + (n - 1)d

∴ 10 = 34 + (n - 1)(-2)
⇒ 10 = 34 - 2n + 2
⇒ 10 = 36 - 2n
⇒ 2n = 36 - 10
⇒ 2n = 26
⇒ n = 13.

Sum =n2[2a+(n1)d] Sum =132[2×34+(131)(2)]=132[68+12(2)]=132[6824]=132×44=13×22=286.\text{Sum } = \dfrac{n}{2}[2a + (n - 1)d] \\[1em] \therefore \text{ Sum } = \dfrac{13}{2}[2 \times 34 + (13 - 1)(-2)] \\[1em] = \dfrac{13}{2}[68 + 12(-2)] \\[1em] = \dfrac{13}{2}[68 - 24] \\[1em] = \dfrac{13}{2} \times 44 \\[1em] = 13 \times 22 \\[1em] = 286.

Hence, the sum of the series 34 + 32 + 30 + .... + 10 is 286.

(ii) The given numbers form an A.P. with a = -5 and d = -8 - (-5) = -3.

Let nth term be -230, then as, an = a + (n - 1)d

∴ -230 = -5 + (n - 1)(-3)
⇒ -230 = -5 -3n + 3
⇒ -230 = -2 - 3n
⇒ -230 + 2 = -3n
⇒ -228 = -3n
⇒ 3n = 228
⇒ n = 76.

Sum =n2[2a+(n1)d]Sum =762[2×5+(761)(3)]=38[10+75(3)]=38[10225]=38×235=8930.\text{Sum } = \dfrac{n}{2}[2a + (n - 1)d] \\[1 em] \therefore \text{Sum } = \dfrac{76}{2}[2 \times -5 + (76 - 1)(-3)] \\[1em] = 38[-10 + 75(-3)] \\[1em] = 38[-10 - 225] \\[1em] = 38 \times -235 \\[1em] = -8930.

Hence, the sum of the series -5 + (-8) + (-11) + .... + (-230) is -8930.

Question 3

In an A.P. (with usual notations):

(i) given a = 5, d = 3, an = 50, find n and Sn

(ii) given a = 7, a13 = 35, find d and S13

(iii) given d = 5, S9 = 75, find a and a9

(iv) given a = 8, an = 62, Sn = 210, find n and d

(v) given a = 3, n = 8, S = 192, find d.

Answer

(i) a = 5, d = 3, an = 50.

By formula an = a + (n - 1)d

⇒ 50 = 5 + (n - 1)3
⇒ 50 = 5 + 3n - 3
⇒ 50 = 2 + 3n
⇒ 50 - 2 = 3n
⇒ 48 = 3n
⇒ n = 16.

By formula Sn=n2[2a+(n1)d]S_n = \dfrac{n}{2}[2a + (n - 1)d]

Sn=162[2×5+(161)3]=8[10+15×3]=8×55=440.S_n = \dfrac{16}{2}[2 \times 5 + (16 - 1)3] \\[1em] = 8[10 + 15 \times 3] \\[1em] = 8 \times 55 \\[1em] = 440.

Hence, n = 16 and Sn = S16 = 440.

(ii) a = 7, a13 = 35

By formula an = a + (n - 1)d

⇒ 35 = 7 + (13 - 1)d
⇒ 35 = 7 + 12d
⇒ 35 - 7 = 12d
⇒ 28 = 12d
⇒ d = 2812\dfrac{28}{12} (Dividing by 4)

⇒ d = 73.\dfrac{7}{3}.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

S13=132[2×7+(131)(73)]=132[14+12×73]=132×[14+28]=132×42=13×21=273.S_{13} = \dfrac{13}{2}[2 \times 7 + (13 - 1)\Big(\dfrac{7}{3}\Big)] \\[1em] = \dfrac{13}{2}[14 + 12 \times \dfrac{7}{3}] \\[1em] = \dfrac{13}{2} \times [14 + 28] \\[1em] = \dfrac{13}{2} \times 42 \\[1em] = 13 \times 21 \\[1em] = 273.

Hence, d = 73\dfrac{7}{3} and Sn = S13 = 273.

(iii) d = 5, S9 = 75

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

S9=92[2×a+(91)5]75=92[2a+8×5]75=92×[2a+40]75=9(a+20)75=9a+1809a=751809a=105a=1059a=353S_9 = \dfrac{9}{2}[2 \times a + (9 - 1)5] \\[1em] \Rightarrow 75 = \dfrac{9}{2}[2a + 8 \times 5] \\[1em] \Rightarrow 75 = \dfrac{9}{2} \times [2a + 40] \\[1em] \Rightarrow 75 = 9(a + 20) \\[1em] \Rightarrow 75 = 9a + 180 \\[1em] \Rightarrow 9a = 75 - 180 \\[1em] \Rightarrow 9a = -105 \\[1em] \Rightarrow a = -\dfrac{105}{9} \\[1em] \Rightarrow a = -\dfrac{35}{3}

By formula an = a + (n - 1)d,

a9=353+(91)5=353+40=35+1203=853.\Rightarrow a_9 = -\dfrac{35}{3} + (9 - 1)5 \\[1em] = -\dfrac{35}{3} + 40 \\[1em] = \dfrac{-35 + 120}{3} \\[1em] = \dfrac{85}{3}.

Hence, a = 353 and a9=853.-\dfrac{35}{3} \text{ and } a_9 = \dfrac{85}{3}.

(iv) a = 8, an = 62, Sn = 210.

By formula an = a + (n - 1)d

⇒ 62 = 8 + (n - 1)d
⇒ 62 - 8 = (n - 1)d
⇒ (n - 1)d = 54          (Eq 1)

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

210=n2[2×8+(n1)d]\Rightarrow 210 = \dfrac{n}{2}[2 \times 8 + (n - 1)d] \\[1em]

Putting value of (n - 1)d from Eq 1 in above equation,

n2[16+54]=210n2×70=21035n=210n=21035n=6From Eq 1, (n1)d=54(61)d=545d=54d=545 and n=6.\Rightarrow \dfrac{n}{2}[16 + 54] = 210 \\[1em] \Rightarrow \dfrac{n}{2} \times 70 = 210 \\[1em] \Rightarrow 35n = 210 \\[1em] \Rightarrow n = \dfrac{210}{35} \\[1em] \Rightarrow n = 6 \\[1em] \text{From Eq 1, } (n - 1)d = 54 \\[1em] \Rightarrow (6 - 1)d = 54 \\[1em] \Rightarrow 5d = 54 \\[1em] \therefore d = \dfrac{54}{5} \text{ and } n = 6.

Hence, the value of n = 6 and d = 545.\dfrac{54}{5}.

(v) a = 3, n = 8, S = 192.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ 192 = 82[2×3+(81)d]\dfrac{8}{2}[2 \times 3 + (8 - 1)d]
⇒ 192 = 4[6 + 7d]

1924\dfrac{192}{4} = 6 + 7d
⇒ 48 = 6 + 7d
⇒ 7d = 42
⇒ d = 6.

Hence, the value of d is 6.

Question 4(i)

The first term of an A.P. is 5, the last term is 45 and the sum is 400. Find the number of terms and the common difference.

Answer

Let nth be the last term so,
a = 5, l = an = 45, Sn = 400.

By formula an = a + (n - 1)d
⇒ 45 = 5 + (n - 1)d
⇒ 45 - 5 = (n - 1)d
⇒ (n - 1)d = 40      (Eq 1)

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

400=n2[2×5+(n1)d]\Rightarrow 400 = \dfrac{n}{2}[2 \times 5 + (n - 1)d]

Putting value of (n - 1)d from Eq 1 in above equation,

400=n2[10+40]n2×50=40025n=400n=16\Rightarrow 400 = \dfrac{n}{2}[10 + 40] \\[1em] \Rightarrow \dfrac{n}{2} \times 50 = 400 \\[1em] \Rightarrow 25n = 400 \\[1em] \Rightarrow n = 16

Putting value of n in Eq 1 we get,

(161)d=4015d=40d=4015=83.\Rightarrow (16 - 1)d = 40 \\[1em] \Rightarrow 15d = 40 \\[1em] \Rightarrow d = \dfrac{40}{15} = \dfrac{8}{3}. \\[1em]

Hence, number of terms = 16 and common difference = 83.\dfrac{8}{3}.

Question 4(ii)

The sum of first 15 terms of an A.P. is 750 and its first term is 15. Find its 20th term.

Answer

Given, a = 15, S15 = 750

By formula, Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

S15=152[2×15+(151)d]750=152[30+14d]750×2=450+210d450+210d=1500210d=1500450210d=1050d=1050210d=5.\Rightarrow S_{15} = \dfrac{15}{2}[2 \times 15 + (15 - 1)d] \\[1em] \Rightarrow 750 = \dfrac{15}{2}[30 + 14d] \\[1em] \Rightarrow 750 \times 2 = 450 + 210d \\[1em] \Rightarrow 450 + 210d = 1500 \\[1em] \Rightarrow 210d = 1500 - 450 \\[1em] \Rightarrow 210d = 1050 \\[1em] \Rightarrow d = \dfrac{1050}{210} \\[1em] \Rightarrow d = 5.

By formula, an = a + (n - 1)d
⇒ a20 = 15 + (20 - 1)5
⇒ a20 = 15 + 95
⇒ a20 = 110.

Hence, the 20th term of the A.P. is 110.

Question 5

The first and the last terms of an A.P. are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?

Answer

Given, a = 17, l = 350 and d = 9.

Let nth be the last term so,
l = an = 350

By formula, an = a + (n - 1)d
⇒ 350 = 17 + (n - 1)9
⇒ 350 = 17 + 9n - 9
⇒ 350 = 9n + 8
⇒ 9n = 350 - 8
⇒ 9n = 342
⇒ n = 38.

By formula, Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S38 = 382[2×17+(381)9]\dfrac{38}{2}[2 \times 17 + (38 - 1)9]
⇒ S38 = 19[34 + 37(9)]
⇒ 19[34 + 333]
⇒ 19(367)
⇒ 6973.

Hence, number of terms = 38 and the sum of the terms = 6973.

Question 6

Solve for x : 1 + 4 + 7 + 10 + ... + x = 287.

Answer

The above series is in A.P. because,
any term - preceding term = 3 = common difference.

Let there be n terms so, x = an.

Given, a = 1, d = 3 and Sn = 287.

By formula, Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

Sn=n2[2×1+(n1)3]287=n2[2+3n3]287×2=n[3n1]3n2n=5743n2n574=03n242n+41n574=03n(n14)+41(n14)=0(3n+41)(n14)=03n+41=0 or n14=0n=413 or n=14.\Rightarrow S_n = \dfrac{n}{2}[2 \times 1 + (n - 1)3] \\[1em] \Rightarrow 287 = \dfrac{n}{2}[2 + 3n - 3] \\[1em] \Rightarrow 287 \times 2 = n[3n - 1] \\[1em] \Rightarrow 3n^2 - n = 574 \\[1em] \Rightarrow 3n^2 - n - 574 = 0 \\[1em] 3n^2 - 42n + 41n - 574 = 0 \\[1em] 3n(n - 14) + 41(n - 14) = 0 \\[1em] (3n + 41)(n - 14) = 0 \\[1em] 3n + 41 = 0 \text{ or } n - 14 = 0 \\[1em] n = -\dfrac{41}{3} \text{ or } n = 14.

Since number of terms cannot be negative so n ≠ 413-\dfrac{41}{3}

∴ n = 14.

We know x = an so,

⇒ x = a + (n - 1)d
⇒ x = 1 + (14 - 1)3
⇒ x = 1 + 13(3)
⇒ x = 1 + 39
⇒ x = 40.

Hence, the value of x = 40.

Question 7(i)

How many terms of the A.P. 25, 22, 19, .... are needed to give the sum 116 ? Also find the last term.

Answer

Let the number of terms required be n.

For the given A.P.,
a = 25, d = 22 - 25 = -3, Sn = 116

By formula, Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

116=n2[2×25+(n1)(3)]116×2=n[503n+3]232=n[533n]232=53n3n23n253n+232=03n224n29n+232=03n(n8)29(n8)=0(3n29)(n8)=03n29=0 or n8=0n=293 or n=8.\Rightarrow 116 = \dfrac{n}{2}[2 \times 25 + (n - 1)(-3)] \\[1em] 116 \times 2 = n[50 - 3n + 3] \\[1em] 232 = n[53 - 3n] \\[1em] 232 = 53n - 3n^2 \\[1em] 3n^2 - 53n + 232 = 0 \\[1em] 3n^2 - 24n - 29n + 232 = 0 \\[1em] 3n(n - 8) - 29(n - 8) = 0 \\[1em] (3n - 29)(n - 8) = 0 \\[1em] 3n - 29 = 0 \text{ or } n - 8 = 0 \\[1em] n = \dfrac{29}{3} \text{ or } n = 8.

Since, number of terms will be a natural number so n ≠ 293\dfrac{29}{3}

∴ n = 8.

By formula Sn = n2[a+l]\dfrac{n}{2}[a + l]

⇒ 116 = 82[25+l]\dfrac{8}{2}[25 + l]
⇒ 116 = 4[25 + l]
⇒ 29 = 25 + l
⇒ 29 - 25 = l
⇒ l = 4.

Hence, number of terms = 8 and the last term = 4.

Question 7(ii)

How many terms of the A.P. 24, 21, 18, ... must be taken so that the sum is 78 ? Explain the double answer.

Answer

Let numbers of terms be n.
Given, a = 24, d = 21 - 24 = -3 and Sn = 78.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ 78 = n2[2×24+(n1)(3)]\dfrac{n}{2}[2 \times 24 + (n - 1)(-3)]
⇒ 78 × 2 = n[48 - 3n + 3]
⇒ 156 = n[51 - 3n]
⇒ 156 = 51n - 3n2
⇒ 3n2 - 51n + 156 = 0
⇒ 3n2 - 12n - 39n + 156 = 0
⇒ 3n(n - 4) - 39(n - 4) = 0
⇒ (3n - 39)(n - 4) = 0
⇒ 3n - 39 = 0 or n - 4 = 0
⇒ 3n = 39 or n = 4
⇒ n = 13 or n = 4.

Let's check sum of 4 terms
⇒ a4 = a3 + d
⇒ a4 = 18 + (-3) = 15

∴ S4 = 24 + 21 + 18 + 15 = 78.

By formula, an = a + (n - 1)d
⇒ a5 = 24 + (5 - 1)(-3)
⇒ a5 = 24 + 4(-3)
⇒ a5 = 24 - 12 = 12.

a6 = a5 + d = 12 + (-3) = 9
a7 = a6 + d = 9 + (-3) = 6
a8 = a7 + d = 6 + (-3) = 3
a9 = a8 + d = 3 + (-3) = 0
a10 = a9 + d = 0 + (-3) = -3
a11 = a10 + d = -3 + (-3) = -6
a12 = a11 + d = -6 + (-3) = -9
a13 = a12 + d = -9 + (-3) = -12.

Taking sum of from 5th term to 13th,

12 + 9 + 6 + 3 + 0 - 3 - 6 - 9 - 12 = 0

Since, the sum from 5tn term to 13th is zero hence, it will not add a value.

∴ n = 13 and 4.

Hence, the number of terms that can be taken for sum to be 78 can be 4 or 13.

Question 8

Find the sum of first 22 terms of an A.P. in which d = 7 and a22 is 149.

Answer

Given, d = 7 and a22 = 149.

By formula, an = a + (n - 1)d

⇒ 149 = a + (22 - 1)7
⇒ 149 = a + 21(7)
⇒ 149 = a + 147
⇒ a = 149 - 147
⇒ a = 2.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ Sn = 222[2×2+(221)7]\dfrac{22}{2}[2 \times 2 + (22 - 1)7]
⇒ Sn = 11[4 + 147]
⇒ Sn = 11 × 151
⇒ Sn = 1661.

Hence, the sum of first 22 terms of the A.P. is 1661.

Question 9

In an A.P., the 5th and 9th term are 4 and -12 respectively. Find :

(a) the first term

(b) common difference

(c) sum of the first 20 terms.

Answer

If first term is a and common difference is d of the A.P.

By formula,

nth term = an = a + (n - 1)d

Given,

⇒ 5th term = 4

⇒ a5 = 4

⇒ a + (5 - 1)d = 4

⇒ a + 4d = 4 .........(1)

⇒ 9th term = -12

⇒ a9 = -12

⇒ a + (9 - 1)d = -12

⇒ a + 8d = -12 .........(2)

Subtracting equation (1) from (2), we get :

⇒ (a + 8d) - (a + 4d) = -12 - 4

⇒ a - a + 8d - 4d = -16

⇒ 4d = -16

⇒ d = 164-\dfrac{16}{4}

⇒ d = -4.

Substituting value of d in equation (1), we get :

⇒ a + 4d = 4

⇒ a + 4(-4) = 4

⇒ a - 16 = 4

⇒ a = 4 + 16 = 20.

(a) Hence, first term of A.P. = 20.

(b) Common difference of A.P. = -4.

(c) By formula,

Sum of n terms of A.P. = n2(a+l)\dfrac{n}{2}(a + l)

Sum of first 20 terms of A.P. = n2(a+a20)\dfrac{n}{2}(a + a_{20})

=202[a+a+(201)d]=10(2a+19d)=10×(2×20+19×4)=10×(4076)=10×36=360.= \dfrac{20}{2}[a + a + (20 - 1)d] \\[1em] = 10(2a + 19d) \\[1em] = 10 \times (2 \times 20 + 19 \times -4) \\[1em] = 10 \times (40 - 76) \\[1em] = 10 \times -36 \\[1em] = -360.

Hence, sum of first 20 terms of A.P. = -360.

Question 10(i)

Find the sum of first 51 terms of the A.P. whose second and third terms are 14 and 18 respectively.

Answer

Given, a2 = 14 and a3 = 18.

common difference = d = any term - preceding term = a3 - a2 = 18 - 14 = 4.

By formula, an = a + (n - 1)d
⇒ a2 = a + 4(2 - 1)
⇒ 14 = a + 4
⇒ a = 10.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

S51=512[2×10+(511)4]=512[20+50×4]=512[20+200]=512×220=51×110=5610.\Rightarrow S_{51} = \dfrac{51}{2}[2 \times 10 + (51 - 1)4] \\[1em] = \dfrac{51}{2}[20 + 50 \times 4] \\[1em] = \dfrac{51}{2}[20 + 200] \\[1em] = \dfrac{51}{2} \times 220 \\[1em] = 51 \times 110 \\[1em] = 5610.

Hence, the sum of first 51 terms of the A.P. is 5610.

Question 10(ii)

The 4th term of an A.P. is 22 and 15th term is 66. Find the first term and the common difference. Hence, find the sum of first 8 terms of the A.P.

Answer

Given, a4 = 22 and a15 = 66.

By formula, an = a + (n - 1)d
⇒ a4 = a + (4 - 1)d
⇒ 22 = a + 3d
⇒ a = 22 - 3d         (Eq 1)

⇒ a15 = a + (15 - 1)d
⇒ 66 = a + 14d
Putting value of a from Eq 1 in above equation
⇒ 66 = 22 - 3d + 14d
⇒ 66 = 22 + 11d
⇒ 11d = 66 - 22
⇒ 11d = 44
⇒ d = 4.

Putting value of d in Eq 1,
⇒ a = 22 - 3(4)
⇒ a = 22 - 12
⇒ a = 10.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S8 = 82[2×10+(81)4]\dfrac{8}{2}[2 \times 10 + (8 - 1)4]
⇒ S8 = 4[20 + 28]
⇒ S8 = 4 × 48
⇒ S8 = 192.

Hence, first term = a = 10, common difference = d = 4 and sum of first 8 terms = S8 = 192.

Question 11

If the sum of first 6 terms of an A.P. is 36 and that of the first 16 terms is 256, find the sum of first 10 terms.

Answer

Given, S6 = 36 and S16 = 256.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S6 = 62[2a+(61)d]\dfrac{6}{2}[2a + (6 - 1)d]
⇒ 36 = 3[2a + 5d]
⇒ 2a + 5d = 12
⇒ 2a = 12 - 5d     (Eq 1)

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S16 = 162[2a+(161)d]\dfrac{16}{2}[2a + (16 - 1)d]
⇒ 256 = 8[2a + 15d]
⇒ 2a + 15d = 32
⇒ 2a = 32 - 15d

Putting value of 2a from Eq 1 in above equation,

⇒ 12 - 5d = 32 - 15d
⇒ -5d + 15d = 32 - 12
⇒ 10d = 20
⇒ d = 2.

∴ From Eq 1,
⇒ 2a = 12 - 5d
⇒ 2a = 12 - 5(2)
⇒ 2a = 2
⇒ a = 1.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S10 = 102[2×1+(101)2]\dfrac{10}{2}[2 \times 1 + (10 - 1)2]
⇒ S10 = 5[2 + 18]
⇒ S10 = 5 × 20
⇒ S10 = 100.

Hence, the sum of first 10 terms of the A.P. is 100.

Question 12

Show that a1, a2, a3, ..... form an A.P. where an is defined as an = 3 + 4n. Also find the sum of first 15 terms.

Answer

an = 3 + 4n
a1 = 3 + 4 × 1 = 3 + 4 = 7
a2 = 3 + 4 × 2 = 3 + 8 = 11
a3 = 3 + 4 × 3 = 3 + 12 = 15
a4 = 3 + 4 × 4 = 3 + 16 = 19.

Since, a4 - a3 = a3 - a2 = a2 - a1 = 4, i.e any term - preceding term = fixed number = 4.

∴ a1, a2, a3 ..... form an A.P.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

S15=152[2×7+(151)4]=152[14+14×4]=152[14+56]=152×70=15×35=525.\Rightarrow S_{15} = \dfrac{15}{2}[2 \times 7 + (15 - 1)4] \\[1em] = \dfrac{15}{2}[14 + 14 \times 4] \\[1em] = \dfrac{15}{2}[14 + 56] \\[1em] = \dfrac{15}{2} \times 70 \\[1em] = 15 \times 35 \\[1em] = 525.

Hence, the sum of first 15 terms of the A.P. is 525.

Question 13

The sum of first six terms of an arithmetic progression is 42. The ratio of the 10th term to the 30th term is 1 : 3. Calculate the first and the thirteenth term.

Answer

Given, S6 = 42 and a10 : a30 = 1 : 3

a10:a30=1:3a10a30=133a10=a30\Rightarrow a_{10} : a_{30} = 1 : 3 \\[1em] \Rightarrow \dfrac{a_{10}}{a_{30}} = \dfrac{1}{3} \\[1em] \Rightarrow 3a_{10} = a_{30}

By formula, an = a + (n - 1)d,

3[a+(101)d]=a+(301)d3(a+9d)=a+29d3a+27d=a+29d3aa=29d27d2a=2da=d.\Rightarrow 3[a + (10 - 1)d] = a + (30 - 1)d \\[1em] \Rightarrow 3(a + 9d) = a + 29d \\[1em] \Rightarrow 3a + 27d = a + 29d \\[1em] \Rightarrow 3a - a = 29d - 27d \\[1em] \Rightarrow 2a = 2d \\[1em] \Rightarrow a = d.

S6 = 42 or,

62[2a+(61)d]\dfrac{6}{2}[2a + (6 - 1)d] = 42

Since, a = d
⇒ 3[2d + 5d] = 42
⇒ 3 × 7d = 42
⇒ 21d = 42
⇒ d = 2.

Since, a = d hence a = 2.

By formula, an = a + (n - 1)d
⇒ a13 = 2 + (13 - 1)(2)
⇒ a13 = 2 + 24
⇒ a13 = 26.

Hence, the first term of the A.P. is 2 and the thirteenth term is 26.

Question 14

In an A.P., the sum of its first n terms is 6n - n2. Find its 25th term.

Answer

Given, Sn = 6n - n2.

So, sum of (n -1) terms will be

⇒ Sn - 1 = 6(n - 1) - (n - 1)2
⇒ Sn - 1 = 6n - 6 -(n2 + 1 - 2n)
⇒ Sn - 1 = 6n - 6 - n2 - 1 + 2n
⇒ Sn - 1 = 8n - n2 - 7.

By formula, an = Sn - Sn - 1
⇒ an = 6n - n2 - (8n - n2 - 7)
⇒ an = 6n - 8n - n2 + n2 + 7
⇒ an = -2n + 7.

∴ a25 = -2(25) + 7 = -50 + 7 = -43.

Hence, the 25th term of the A.P. is -43.

Question 15

If Sn denotes the sum of first n terms of an A.P., prove that S30 = 3(S20 - S10).

Answer

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

We need to prove S30 = 3(S20 - S10).

L.H.S.=S30=302[2a+(301)d]=15[2a+29d]=30a+335dR.H.S.=3(S20S10)=3(202[2a+(201)d]102[2a+(101)d])=3(10[2a+19d]5[2a+9d])=3(20a+190d10a45d)=3(10a+145d)=30a+335d.\Rightarrow \text{L.H.S.} = S_{30} = \dfrac{30}{2}[2a + (30 - 1)d] \\[1em] = 15[2a + 29d] \\[1em] = 30a + 335d \\[1em] \Rightarrow \text{R.H.S.} = 3(S_{20} - S_{10}) \\[1em] = 3\Big(\dfrac{20}{2}[2a + (20 - 1)d] - \dfrac{10}{2}[2a + (10 - 1)d]\Big) \\[1em] = 3\Big(10[2a + 19d] - 5[2a + 9d]\Big) \\[1em] = 3(20a + 190d - 10a - 45d) \\[1em] = 3(10a + 145d) \\[1em] = 30a + 335d.

∴ L.H.S. = R.H.S. = 30a + 335d.

Hence, proved that S30 = 3(S20 - S10).

Question 16(i)

Find the sum of first positive 1000 integers.

Answer

We need to find 1 + 2 + 3 + 4 + ...... + 1000

The above series is an A.P. with first term a = 1, d = 1 and n = 1000.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S1000 = 10002[2×1+(10001)1]\dfrac{1000}{2}[2 \times 1 + (1000 - 1)1]
⇒ S1000 = 500[2 + 999]
⇒ S1000 = 500 × 1001
⇒ S1000 = 500500.

Hence, the sum of first 1000 positive integers is 500500.

Question 16(ii)

Find the sum of first 15 multiples of 8.

Answer

We need to find 8 + 16 + 24 + ..... + (15th term)

The above series forms an A.P. with a = 8 and d = 8.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S15 = 152[2×8+(151)8]\dfrac{15}{2}[2 \times 8 + (15 - 1)8]
⇒ 2S15 = 15[16 + 14(8)]
⇒ 2S15 = 15[128]
⇒ 2S15 = 1920
⇒ S15 = 960

Hence, the sum of first 15 terms is 960.

Question 17(i)

Find the sum of all two digit natural numbers which are divisible by 4.

Answer

The sum of series of the two digit natural numbers that are divisible by 4 is 12+16+20+....+96.12 + 16 + 20 + .... + 96.

a = 12, d = 16 - 12 = 4 and l = 96.

Let 96 be nth term then,

⇒ 96 = 12 + 4(n - 1)
⇒ 96 - 12 = 4n - 4
⇒ 84 = 4n - 4
⇒ 4n = 84 + 4
⇒ 4n = 88
⇒ n = 22.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S22 = 222[2×12+4(221)]\dfrac{22}{2}[2 \times 12 + 4(22 - 1)]
⇒ S22 = 11[24 + 84]
⇒ S22 = 11 × 108
⇒ S22 = 1188.

Hence, the sum of all two digits natural numbers which are divisible by 4 is 1188.

Question 17(ii)

Find the sum of all natural numbers between 100 and 200 which are divisible by 4.

Answer

The sum of natural numbers between 100 and 200 that are divisible by 4 is 104 + 108 + 112 + ..... + 196.

The above series is an A.P. with a = 104, d = 108 - 104 = 4 and l = 196.

Let 196 be nth term then,

⇒ 196 = 104 + 4(n - 1)
⇒ 196 - 104 = 4n - 4
⇒ 92 = 4n - 4
⇒ 4n = 92 + 4
⇒ 4n = 96
⇒ n = 24.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S24 = 242[2×104+4(241)]\dfrac{24}{2}[2 \times 104 + 4(24 - 1)]
⇒ S24 = 12[208 + 92]
⇒ S24 = 12 × 300
⇒ S24 = 3600.

Hence, the sum of all two digits natural numbers between 100 and 200 which are divisible by 4 is 3600.

Question 17(iii)

Find the sum of all multiples of 9 lying between 300 and 700.

Answer

The sum of all multiples of 9 lying between 300 and 700 is 306 + 315 + ..... + 693.

The above series is an A.P. with a = 306, d = 9 and l = 693.

Let 693 be nth term of the series then,

⇒ 693 = 306 + 9(n - 1)
⇒ 693 - 306 = 9n - 9
⇒ 387 = 9n - 9
⇒ 9n = 387 + 9
⇒ 9n = 396
⇒ n = 44.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S44 = 442[2×306+9(441)]\dfrac{44}{2}[2 \times 306 + 9(44 - 1)]
⇒ S44 = 22[612 + 387]
⇒ S44 = 22 × 999
⇒ S44 = 21978.

Hence, the sum of all multiples of 9 lying between 300 and 700 is 21978.

Question 17(iv)

Find the sum of all natural numbers less than 100 which are divisible by 6.

Answer

The sum of all natural numbers less than 100 which are divisible by 6 is given as 6 + 12 + 18 + .... + 96.

The above series is an A.P. with a = 6, d = 6 and l = 96.

Let 96 be nth term of the series then,

⇒ 96 = 6 + 6(n - 1)
⇒ 96 - 6 = 6n - 6
⇒ 90 = 6n - 6
⇒ 6n = 90 + 6
⇒ 6n = 96
⇒ n = 16.

By formula Sn = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

⇒ S16 = 162[2×6+6(161)]\dfrac{16}{2}[2 \times 6 + 6(16 - 1)]
⇒ S16 = 8[12 + 90]
⇒ S16 = 8 × 102
⇒ S16 = 816.

Hence, the sum of all natural numbers less than 100 which are divisible by 6 is 816.

Question 18

An arithmetic progression (A.P.) has 3 as its first term. The sum of the first 8 terms is twice the sum of the first 5 terms. Find the common difference of the A.P.

Answer

Let common difference be d.

a = 3

Sum of first n terms of an A.P. = n2(+ l)\dfrac{\text{n}}{2}(\text{a } + \text{ l})

Given,

The sum of the first 8 terms is twice the sum of the first 5 terms.

82(a+a8)=2×52(a+a5)4[a+a+(81)d]=5[a+a+(51)d]4[2a+7d]=5[2a+4d]4[2×3+7d]=5[2×3+4d]4[6+7d]=5[6+4d]24+28d=30+20d28d20d=30248d=6d=68=34.\therefore \dfrac{8}{2}(a + a_8) = 2 \times \dfrac{5}{2}(a + a_5) \\[1em] \Rightarrow 4[a + a + (8 - 1)d] = 5[a + a + (5 - 1)d] \\[1em] \Rightarrow 4[2a + 7d] = 5[2a + 4d] \\[1em] \Rightarrow 4[2 \times 3 + 7d] = 5[2 \times 3 + 4d] \\[1em] \Rightarrow 4[6 + 7d] = 5[6 + 4d] \\[1em] \Rightarrow 24 + 28d = 30 + 20d \\[1em] \Rightarrow 28d - 20d = 30 - 24 \\[1em] \Rightarrow 8d = 6 \\[1em] \Rightarrow d = \dfrac{6}{8} = \dfrac{3}{4}.

Hence, common difference = 34\dfrac{3}{4}.

Exercise 9.4

Question 1(i)

Find the next term of the list of numbers 16,13,23,...\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{2}{3}, ...

Answer

The given list of numbers 16,13,23,...\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{2}{3}, ... is a G.P. with first term a = 16\dfrac{1}{6} and common ratio = r = 2.

By formula, an = arn - 1

∴ a4 = 16(2)3=86=43.\dfrac{1}{6}(2)^3 = \dfrac{8}{6} = \dfrac{4}{3}.

Hence, the next term of the G.P. is 43\dfrac{4}{3}.

Question 1(ii)

Find the next term of the list of numbers 316,38,34,32,...\dfrac{3}{16}, -\dfrac{3}{8}, \dfrac{3}{4}, -\dfrac{3}{2}, ...

Answer

The given list of numbers,

316,38,34,32,...\dfrac{3}{16}, -\dfrac{3}{8}, \dfrac{3}{4}, -\dfrac{3}{2}, ... is a G.P with first term a = 316\dfrac{3}{16} and common ratio = r = -2.

By formula, an = arn - 1

∴ a5 = 316(2)4=316×16=3.\dfrac{3}{16}(-2)^4 = \dfrac{3}{16} \times 16 = 3.

Hence, the next term of the G.P. is 3.

Question 1(iii)

Find the 15th term of the series 3+13+133+....\sqrt{3} + \dfrac{1}{\sqrt{3}} + \dfrac{1}{3\sqrt{3}} + ....

Answer

The given list of numbers,

3+13+133+....\sqrt{3} + \dfrac{1}{\sqrt{3}} + \dfrac{1}{3\sqrt{3}} + .... is a G.P. with first term a = 3\sqrt{3} and common ratio = r = 13.\dfrac{1}{3}.

By formula, an = arn - 1

∴ a15 = 3(13)14=31/2(1314)=31/2×314=31/214=327/2.\sqrt{3}\Big(\dfrac{1}{3}\Big)^{14} = 3^{1/2}\Big(\dfrac{1}{3^{14}}\Big) = 3^{1/2}\times 3^{-14} = 3^{1/2 - 14} = 3^{-27/2} .

Hence, the 15th term of the G.P. is 327/23^{-27/2}.

Question 1(iv)

Find the 10th and nth terms of the list of numbers 5, 25, 125, ...

Answer

The given list of numbers 5, 25, 125 .... is a G.P. with first term a = 5 and r = 5.

By formula, an = arn - 1

a10=5(5)101=5(5)9=510.an=5(5)n1=5×5n×51=5n.a_{10} = 5(5)^{10 - 1} = 5(5)^9 = 5^{10}. \\[1em] a_n = 5(5)^{n - 1} = 5 \times 5^n \times 5^{-1} = 5^n.

Hence, the 10th term is 510 and nth term is 5n.

Question 1(v)

Find the 6th and the nth terms of the list of numbers 32,34,38,...\dfrac{3}{2}, \dfrac{3}{4}, \dfrac{3}{8}, ...

Answer

The given list of numbers

32,34,38,...\dfrac{3}{2}, \dfrac{3}{4}, \dfrac{3}{8}, ... is a G.P. with first term a = 32\dfrac{3}{2} and common ratio = r = 12.\dfrac{1}{2}.

By formula, an = arn - 1

a6=32(12)61=32(12)5=32×132=364.an=32(12)n1=32×2n×21=32n.a_6 = \dfrac{3}{2}\Big(\dfrac{1}{2}\Big)^{6 - 1} = \dfrac{3}{2}\Big(\dfrac{1}{2}\Big)^5 = \dfrac{3}{2} \times \dfrac{1}{32} = \dfrac{3}{64}. \\[1em] a_n = \dfrac{3}{2}\Big(\dfrac{1}{2}\Big)^{n - 1} = \dfrac{3}{2 \times 2^n \times 2^{-1}} = \dfrac{3}{2^n}.

Hence, the 6th term is 364 and nth term is 32n.\dfrac{3}{64} \text{ and nth term is } \dfrac{3}{2^n}.

Question 1(vi)

Find the 6th term from the end of the list of numbers 3, -6, 12, -24, .... , 12288.

Answer

The given list of numbers 3, -6, 12, -24, .... , 12288 is a G.P. with last term = l = 12288 and the common ratio = r = -2.

By formula, nth term from end = l(1r)n1l\Big(\dfrac{1}{r}\Big)^{n - 1}

7th term from end =12288(12)61=12288(12)5=1228832=384.\text{7th term from end } = 12288\Big(-\dfrac{1}{2}\Big)^{6 - 1} \\[1em] = 12288\Big(-\dfrac{1}{2}\Big)^5 \\[1em] = -\dfrac{12288}{32} \\[1em] = -384.

Hence, the 6th term from end of the G.P. is -384.

Question 2

Which term of the G.P.

(i) 2, 222\sqrt{2}, 4, .... is 128?

(ii) 1,13,19,.... is 12431, \dfrac{1}{3}, \dfrac{1}{9}, .... \text{ is } \dfrac{1}{243} ?

Answer

(i) Given a = 2, r = 2\sqrt{2}.

Let nth term be 128.

By formula, an = arn - 1.

128=2(2)n11282=(2)(n1)/264=(2)(n1)/226=(2)(n1)/2n12=6n1=12n=13.\Rightarrow 128 = 2(\sqrt{2})^{n - 1} \\[1em] \Rightarrow \dfrac{128}{2} = (2)^{(n - 1)/2} \\[1em] \Rightarrow 64 = (2)^{(n - 1)/2} \\[1em] \Rightarrow 2^6 = (2)^{(n - 1)/2} \\[1em] \Rightarrow \dfrac{n - 1}{2} = 6 \\[1em] \Rightarrow n - 1 = 12 \\[1em] \Rightarrow n = 13.

Hence, 128 is 13th term of the G.P.

(ii) Given a = 1, r = 13\dfrac{1}{3}.

Let nth term be 1243\dfrac{1}{243}.

By formula, an = arn - 1.

1243=1(13)n1135=13(n1)n1=5n=6.\Rightarrow \dfrac{1}{243} = 1\Big(\dfrac{1}{3}\Big)^{n - 1} \\[1em] \Rightarrow \dfrac{1}{3^5} = \dfrac{1}{3^{(n - 1)}} \\[1em] \Rightarrow n - 1 = 5 \\[1em] \Rightarrow n = 6.

Hence, 1243\dfrac{1}{243} is 6th term of the G.P.

Question 3

Determine the 12th term of a G.P. whose 8th term is 192 and common ratio is 2.

Answer

Given, a8 = 192 and r = 2.

By formula, an = arn - 1.

⇒ a8 = a(2)(8 - 1)
⇒ 192 = a(2)7
⇒ a = 19227=192128=32.\dfrac{192}{2^7} = \dfrac{192}{128} = \dfrac{3}{2}.

12th term of the G.P. is a12,

a12=32(2)121a12=32×211a12=3×210a12=3×1024a12=3072.\Rightarrow a_{12} = \dfrac{3}{2}(2)^{12 - 1} \\[1em] \Rightarrow a_{12} = \dfrac{3}{2} \times 2^{11} \\[1em] \Rightarrow a_{12} = 3 \times 2^{10} \\[1em] \Rightarrow a_{12} = 3 \times 1024 \\[1em] \Rightarrow a_{12} = 3072.

Hence, the 12th term of the G.P. is 3072.

Question 4

In a G.P., the third term is 24 and 6th term is 192. Find the 10th term.

Answer

Given, a3 = 24, a6 = 192.

By formula, an = arn - 1.

⇒ a3 = ar(3 - 1)
⇒ ar2 = 24.             (Eq 1)

⇒ a6 = ar(6 - 1)
⇒ ar5 = 192.            (Eq 2)

Dividing Eq 2 by Eq 1

ar5ar2=19224r3=8r3=(2)3r=2\Rightarrow \dfrac{ar^5}{ar^2} = \dfrac{192}{24} \\[1em] \Rightarrow r^3 = 8 \\[1em] \Rightarrow r^3 = (2)^3 \\[1em] \Rightarrow r = 2

Putting value of r in Eq 1,

a(2)2=244a=24a=610th term of G.P.=a10a10=6(2)101=6(2)9=6×512=3072.\Rightarrow a(2)^2 = 24 \\[1em] \Rightarrow 4a = 24 \\[1em] \Rightarrow a = 6 \\[1em] \text{10th term of G.P.} = a_{10} \\[1em] \Rightarrow a_{10} = 6(2)^{10 - 1} \\[1em] = 6(2)^9 = 6 \times 512 = 3072.

Hence, the 10th term of the G.P. is 3072.

Question 5

Find the number of terms of a G.P. whose first term is 34,\dfrac{3}{4}, common ratio is 2 and the last term is 384.

Answer

Let the number of terms be n.

Given, a = 34\dfrac{3}{4}, r = 2 and an = 384.

By formula, an = arn - 1.

384=34(2)n1384×43=(2)n1(2)n1=512(2)n1=(2)9n1=9n=10.\Rightarrow 384 = \dfrac{3}{4}(2)^{n - 1} \\[1em] \Rightarrow \dfrac{384 \times 4}{3} = (2)^{n - 1} \\[1em] \Rightarrow (2)^{n - 1} = 512 \\[1em] \Rightarrow (2)^{n - 1} = (2)^9 \\[1em] \Rightarrow n - 1 = 9 \\[1em] \Rightarrow n = 10.

Hence, the number of terms in the G.P. are 10.

Question 6

Find the value of x such that

(i) 27,x,72-\dfrac{2}{7}, x, -\dfrac{7}{2} are three consecutive terms of a G.P.

(ii) x + 9, x - 6 and 4 are three consecutive terms of a G.P.

(iii) x, x + 3, x + 9 are first three terms of a G.P.

Answer

(i) Since, 27,x,72-\dfrac{2}{7}, x, -\dfrac{7}{2} are three consecutive terms of a G.P.

So,

x27=r=72xx27=72xx2=72×27x2=1x21=0(x1)(x+1)=0x1=0 or x+1=0x=1 or x=1.\Rightarrow \dfrac{x}{-\dfrac{2}{7}} = r = \dfrac{-\dfrac{7}{2}}{x} \\[1em] \Rightarrow \dfrac{x}{-\dfrac{2}{7}} = \dfrac{-\dfrac{7}{2}}{x} \\[1em] \Rightarrow x^2 = -\dfrac{7}{2} \times -\dfrac{2}{7} \\[1em] \Rightarrow x^2 = 1 \\[1em] \Rightarrow x^2 - 1 = 0 \\[1em] \Rightarrow (x - 1)(x + 1) = 0 \\[1em] \Rightarrow x - 1 = 0 \text{ or } x + 1 = 0 \\[1em] \Rightarrow x = 1 \text{ or } x = -1.

Hence, the value of x = 1 or -1.

(ii) Since, x + 9, x - 6 and 4 are three consecutive terms of a G.P.

So,

x6x+9=r=4x6x6x+9=4x6(x6)2=4(x+9)x2+3612x=4x+36x212x4x+3636=0x216x=0x(x16)=0x=0 or x16=0x=0 or x=16.\Rightarrow \dfrac{x - 6}{x + 9} = r = \dfrac{4}{x - 6} \\[1em] \Rightarrow \dfrac{x - 6}{x + 9} = \dfrac{4}{x - 6} \\[1em] \Rightarrow (x - 6)^2 = 4(x + 9) \\[1em] \Rightarrow x^2 + 36 - 12x = 4x + 36 \\[1em] \Rightarrow x^2 - 12x - 4x + 36 - 36 = 0 \\[1em] \Rightarrow x^2 - 16x = 0 \\[1em] \Rightarrow x(x - 16) = 0 \\[1em] \Rightarrow x = 0 \text{ or } x - 16 = 0 \\[1em] \Rightarrow x = 0 \text{ or } x = 16.

Hence, the value of x = 0 or 16.

(iii) Since, x, x + 3 and x + 9 are first three terms of a G.P.

So,

x+3x=r=x+9x+3x+3x=x+9x+3(x+3)2=x(x+9)x2+9+6x=x2+9xx2x2+9+6x9x=093x=03x=9x=3.\Rightarrow \dfrac{x + 3}{x} = r = \dfrac{x + 9}{x + 3} \\[1em] \Rightarrow \dfrac{x + 3}{x} = \dfrac{x + 9}{x + 3} \\[1em] \Rightarrow (x + 3)^2 = x(x + 9) \\[1em] \Rightarrow x^2 + 9 + 6x = x^2 + 9x \\[1em] \Rightarrow x^2 - x^2 + 9 + 6x - 9x = 0 \\[1em] \Rightarrow 9 - 3x = 0 \\[1em] \Rightarrow 3x = 9 \\[1em] \Rightarrow x = 3. \\[1em]

Hence, the value of x = 3.

Question 7

If the fourth, seventh and tenth terms of a G.P. are x, y, z respectively, prove that x, y, z are in G.P.

Answer

Given, a4 = x, a7 = y and a10 = z.

By formula, an = arn - 1.

⇒ x = a4 = a(r)3

⇒ y = a7 = a(r)6

⇒ z = a10 = a(r)9

From above equations,

yx=ar6ar3=r3.zy=ar9ar6=r3.\Rightarrow \dfrac{y}{x} = \dfrac{ar^6}{ar^3} = r^3. \\[1em] \Rightarrow \dfrac{z}{y} = \dfrac{ar^9}{ar^6} = r^3.

The above equations prove that the common ratio between x, y and z is r3.

Hence, x, y and z are in G.P. with common ratio = r3.

Question 8

The 5th, 8th and 11th terms of a G.P. are p, q and s respectively. Show that q2 = ps.

Answer

Let the first term of the G.P. be a and common ratio = r.

Given,

⇒ a5 = ar4 = p

⇒ a8 = ar7 = q

⇒ a11 = ar10 = s

We need to prove q2 = ps.

L.H.S. = q2

⇒ q2 = q × q = ar7 × ar7 = a2r14.

R.H.S. = ps

⇒ ps = p × s = ar4 × ar10 = a2r14.

∴ L.H.S. = R.H.S. = a2r14.

Hence, proved that q2 = ps.

Question 9

If a, a2 + 2 and a3 + 10 are in G.P., then find the value(s) of a.

Answer

Since a, a2 + 2 and a3 + 10 are in G.P.

a2+2a=r=a3+10a2+2a2+2a=a3+10a2+2(a2+2)2=a(a3+10)a4+4+4a2=a4+10aa4a4+4a210a+4=04a210a+4=04a28a2a+4=04a(a2)2(a2)=0(4a2)(a2)=04a2=0 or a2=0a=24 or a=2.a=12 or a=2.\therefore \dfrac{a^2 + 2}{a} = r = \dfrac{a^3 + 10}{a^2 + 2} \\[1em] \Rightarrow \dfrac{a^2 + 2}{a} = \dfrac{a^3 + 10}{a^2 + 2} \\[1em] \Rightarrow (a^2 + 2)^2 = a(a^3 + 10) \\[1em] \Rightarrow a^4 + 4 + 4a^2 = a^4 + 10a \\[1em] \Rightarrow a^4 - a^4 + 4a^2 - 10a + 4 = 0 \\[1em] \Rightarrow 4a^2 - 10a + 4 = 0 \\[1em] \Rightarrow 4a^2 - 8a - 2a + 4 = 0 \\[1em] \Rightarrow 4a(a - 2) - 2(a - 2) = 0 \\[1em] \Rightarrow (4a - 2)(a - 2) = 0 \\[1em] \Rightarrow 4a - 2 = 0 \text{ or } a - 2 = 0 \\[1em] \Rightarrow a = \dfrac{2}{4} \text{ or } a = 2. \\[1em] \Rightarrow a = \dfrac{1}{2} \text{ or } a = 2.

Hence, the required value(s) of a are 12\dfrac{1}{2} and 2.

Question 10

Find the geometric progression whose 4th term is 54 and the 7th term is 1458.

Answer

Given, a4 = 54 and a7 = 1458.

By formula, an = arn - 1.

⇒ a4 = a(r)4 - 1
⇒ 54 = ar3     (Eq 1)

⇒ a7 = a(r)7 - 1
⇒ 1458 = a(r)6     (Eq 2)

Dividing Eq 2 by Eq 1,

ar6ar3=145854r3=27r=273r=3\Rightarrow \dfrac{ar^6}{ar^3} = \dfrac{1458}{54} \\[1em] \Rightarrow r^3 = 27 \\[1em] \Rightarrow r = \sqrt[3]{27} \\[1em] \Rightarrow r = 3

Putting value of r in Eq 1,

a(3)3=5427a=54a=2.\Rightarrow a(3)^3 = 54 \\[1em] \Rightarrow 27a = 54 \\[1em] \Rightarrow a = 2.

a2 = ar = 2 × 3 = 6
a3 = ar2 = 2(3)2 = 2 × 9 = 18
a4 = ar3 = 2(3)3 = 2 × 27 = 54.

Hence, the required G.P. is 2, 6, 18, 54, ...

Question 11

The sum of first three terms of a G.P. is 3910\dfrac{39}{10} and their product is 1. Find the common ratio and the terms.

Answer

Given, S3 = 3910\dfrac{39}{10} and a1 × a2 × a3 = 1.

Let the three numbers that are in G.P. be ar,a,ar.\dfrac{a}{r}, a, ar.

ar×a×ar=1a3=1a=1.S3=3910ar+a+ar=3910a(1r+1+r)=39101(1+r+r2r)=391010(1+r+r2)=39r10+10r+10r2=39r10r2+10r39r+10=010r229r+10=010r225r4r+10=05r(2r5)2(2r5)=0(5r2)(2r5)=05r2=0 or 2r5=0r=25 or r=52First taking r =25Terms are : ar=125=52,a=1,ar=1×25=25.Now, taking r =52Terms are : ar=152=25,a=1,ar=1×52=52.\therefore \dfrac{a}{r} \times a \times ar = 1 \\[1em] \Rightarrow a^3 = 1 \\[1em] \Rightarrow a = 1. \\[1em] S_3 = \dfrac{39}{10} \\[1em] \Rightarrow \dfrac{a}{r} + a + ar = \dfrac{39}{10} \\[1em] \Rightarrow a\Big(\dfrac{1}{r} + 1 + r\Big) = \dfrac{39}{10} \\[1em] \Rightarrow 1\Big(\dfrac{1 + r + r^2}{r}\Big) = \dfrac{39}{10} \\[1em] \Rightarrow 10(1 + r + r^2) = 39r \\[1em] \Rightarrow 10 + 10r + 10r^2 = 39r \\[1em] \Rightarrow 10r^2 + 10r - 39r + 10 = 0 \\[1em] \Rightarrow 10r^2 - 29r + 10 = 0 \\[1em] \Rightarrow 10r^2 - 25r - 4r + 10 = 0 \\[1em] \Rightarrow 5r(2r - 5) - 2(2r - 5) = 0 \\[1em] \Rightarrow (5r - 2)(2r - 5) = 0 \\[1em] \Rightarrow 5r - 2 = 0 \text{ or } 2r - 5 = 0 \\[1em] \Rightarrow r = \dfrac{2}{5} \text{ or } r = \dfrac{5}{2} \\[1em] \text{First taking r } = \dfrac{2}{5} \\[1em] \therefore \text{Terms are : } \dfrac{a}{r} = \dfrac{1}{\dfrac{2}{5}} = \dfrac{5}{2}, a = 1, ar = 1 \times \dfrac{2}{5} = \dfrac{2}{5}. \\[1em] \text{Now, taking r } = \dfrac{5}{2} \\[1em] \therefore \text{Terms are : } \dfrac{a}{r} = \dfrac{1}{\dfrac{5}{2}} = \dfrac{2}{5}, a = 1, ar = 1 \times \dfrac{5}{2} = \dfrac{5}{2}. \\[1em]

Hence, common ratio is 25\dfrac{2}{5} or 52\dfrac{5}{2} and terms are 52,1,25\dfrac{5}{2}, 1, \dfrac{2}{5} or 25,1,52.\dfrac{2}{5}, 1, \dfrac{5}{2}.

Question 12

Three numbers are in A.P. and their sum is 15. If 1, 4 and 19 are added to these numbers respectively, the resulting numbers are in G.P. Find the numbers.

Answer

Let three numbers that are in A.P. be a - d, a, a + d.

Given, sum of three numbers = 15.

⇒ a - d + a + a + d = 15
⇒ 3a = 15
⇒ a = 5.

By adding 1, 4 and 19 in the terms become,

⇒ a - d + 1, a + 4 and a + d + 19
⇒ 5 - d + 1, 5 + 4 and 5 + d + 19
⇒ 6 - d, 9 and d + 24.

According to question these terms become in G.P.,

96d=d+249(d+24)(6d)=816dd2+14424d=816dd224d+14481=018dd2+63=0d2+18d63=0d2+21d3d63=0d(d+21)3(d+21)=0(d3)(d+21)=0d3=0 or d+21=0d=3 or d=21.\therefore \dfrac{9}{6 - d} = \dfrac{d + 24}{9} \\[1em] \Rightarrow (d + 24)(6 - d) = 81 \\[1em] \Rightarrow 6d - d^2 + 144 - 24d = 81 \\[1em] \Rightarrow 6d - d^2 - 24d + 144 - 81 = 0 \\[1em] \Rightarrow -18d - d^2 + 63 = 0 \\[1em] \Rightarrow d^2 + 18d - 63 = 0 \\[1em] \Rightarrow d^2 + 21d - 3d - 63 = 0 \\[1em] \Rightarrow d(d + 21) - 3(d + 21) = 0 \\[1em] \Rightarrow (d - 3)(d + 21) = 0 \\[0.5em] \Rightarrow d - 3 = 0 \text{ or } d + 21 = 0 \\[1em] \Rightarrow d = 3 \text{ or } d = -21.

Taking d = 3,

∴ a - d = 5 - 3 = 2, a = 5, a + d = 5 + 3 = 8.

Taking d = 21,

∴ a - d = 5 - 21 = -16, a = 5, a + d = 5 + 21 = 26.

Hence, the required numbers are 2, 5 and 8 or -16, 5 and 26.

Exercise 9.5

Question 1

Find the sum of :

(i) 20 terms of the series 2 + 6 + 18 + ...

(ii) 10 terms of the series 1 + 3\sqrt{3} + 3 + ....

(iii) 6 terms of the G.P. 1, 23,49,-\dfrac{2}{3}, \dfrac{4}{9}, ....

(iv) 5 terms and n terms of the series 1 + 23+49+....\dfrac{2}{3} + \dfrac{4}{9} + ....

Answer

(i) Sum = 2 + 6 + 18 + ..... + (20th term)

The above list of numbers is a G.P. with first term a = 2 and common ratio = r = 62=3.\dfrac{6}{2} = 3.

By formula,

Sn=a(rn1)r1S20=2((3)201)31=2(3201)2=3201.S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore S_{20} = \dfrac{2((3)^{20} - 1)}{3 - 1} \\[1em] = \dfrac{2(3^{20} - 1)}{2} \\[1em] = 3^{20} - 1.

Hence, the sum of the series is 320 - 1.

(ii) Sum = 1 + 3\sqrt{3} + 3 + .... + (10th term)

The above list of numbers is a G.P. with first term a = 1 and common ratio = r = 3.\sqrt{3}.

By formula,

Sn=a(rn1)r1S10=1((3)101)31=((3)10/21)31=35131S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore S_{10} = \dfrac{1((\sqrt{3})^{10} - 1)}{\sqrt{3} - 1} \\[1em] = \dfrac{((3)^{10/2} - 1)}{\sqrt{3} - 1} \\[1em] = \dfrac{3^5 - 1}{\sqrt{3} - 1}

Multiplying numerator and denominator by 3\sqrt{3} + 1,

=35131×3+13+1=242(3+1)(31)(3+1)=242(3+1)3+331=242(3+1)2=121(3+1).= \dfrac{3^5 - 1}{\sqrt{3} - 1} \times \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1} \\[1em] = \dfrac{242(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \\[1em] = \dfrac{242(\sqrt{3} + 1)}{3 + \sqrt{3} - \sqrt{3} - 1} \\[1em] = \dfrac{242(\sqrt{3} + 1)}{2} \\[1em] = 121(\sqrt{3} + 1).

Hence, the sum of the series is 121(3+1)121(\sqrt{3} + 1).

(iii) Sum = 1, 23,49,-\dfrac{2}{3}, \dfrac{4}{9}, ....(6th term)

The above list of numbers is a G.P. with first term a = 1 and common ratio = r = 23.-\dfrac{2}{3}.

By formula,

Sn=a(rn1)r1S6=1[(23)61]231=26361233=2636153=3(2636)36×5=6472935×5=6651215S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore S_{6} = \dfrac{1\Big[\Big(-\dfrac{2}{3}\Big)^6 - 1\Big]}{-\dfrac{2}{3} - 1} \\[1em] = \dfrac{\dfrac{2^6}{3^6} - 1}{\dfrac{-2 -3}{3}} \\[1em] = \dfrac{\dfrac{2^6}{3^6} - 1}{-\dfrac{5}{3}} \\[1em] = \dfrac{3(2^6 - 3^6)}{3^6 \times -5} \\[1em] = \dfrac{64 - 729}{3^5 \times -5} \\[1em] = \dfrac{-665}{-1215}

On dividing numerator and denominator by -5 we get,

=133243.= \dfrac{133}{243}.

Hence, the sum of the series is 133243\dfrac{133}{243}.

(iv) Sum upto 5 terms = 1 + 23+49+....\dfrac{2}{3} + \dfrac{4}{9} + .... + 5th term

The above list of numbers is a G.P. with first term a = 1 and common ratio = r = 23.\dfrac{2}{3}.

By formula,

Sn=a(rn1)r1S5=1[(23)51]231=25351233=2535113=3(2535)35×1=3224334×1=21181S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore S_5 = \dfrac{1\Big[\Big(\dfrac{2}{3}\Big)^5 - 1\Big]}{\dfrac{2}{3} - 1} \\[1em] = \dfrac{\dfrac{2^5}{3^5} - 1}{\dfrac{2 -3}{3}} \\[1em] = \dfrac{\dfrac{2^5}{3^5} - 1}{-\dfrac{1}{3}} \\[1em] = \dfrac{3(2^5 - 3^5)}{3^5 \times -1} \\[1em] = \dfrac{32 - 243}{3^4 \times -1} \\[1em] = \dfrac{-211}{-81}

On dividing numerator and denominator by -1 we get,

=21181= \dfrac{211}{81}

Sum of n terms = Sn=1[(23)n1]231S_n = \dfrac{1\Big[\Big(\dfrac{2}{3}\Big)^n - 1\Big]}{\dfrac{2}{3} - 1}

=(23)n1233=3[(23)n1]1=3[(23)n1]=3[1(23)n].= \dfrac{\Big(\dfrac{2}{3}\Big)^n - 1}{\dfrac{2 - 3}{3}} \\[1em] = \dfrac{3\Big[\Big(\dfrac{2}{3}\Big)^n - 1\Big]}{-1} \\[1em] = -3\Big[\Big(\dfrac{2}{3}\Big)^n - 1\Big] \\[1em] = 3\Big[1 - \Big(\dfrac{2}{3}\Big)^n\Big].

Hence, the sum of the series upto 5 terms is 21181\dfrac{211}{81} and upto n terms is 3[1(23)n]3\Big[1 - \Big(\dfrac{2}{3}\Big)^n\Big].

Question 2

Find the sum of the series 81 - 27 + 9 - ..... - 127\dfrac{1}{27}.

Answer

The above series is in G.P. with a = 81, r = 13 and l =127.-\dfrac{1}{3} \text{ and l } = -\dfrac{1}{27}.

Sum =alr1rSum =81(127)(13)1(13)=811811+13=65611813+13=65608143=6560×381×4=19680324\text{Sum } = \dfrac{a - lr}{1 - r} \\[1em] \therefore \text{Sum } = \dfrac{81 - \Big(-\dfrac{1}{27}\Big)(-\dfrac{1}{3})}{1 - \Big(-\dfrac{1}{3}\Big)} \\[1em] = \dfrac{81 - \dfrac{1}{81}}{1 + \dfrac{1}{3}} \\[1em] = \dfrac{\dfrac{6561 - 1}{81}}{\dfrac{3 + 1}{3}} \\[1em] = \dfrac{\dfrac{6560}{81}}{\dfrac{4}{3}} \\[1em] = \dfrac{6560 \times 3}{81 \times 4} \\[1em] = \dfrac{19680}{324}

Dividing numerator and denominator by 12 we get,

=164027.= \dfrac{1640}{27}.

Hence, the sum of the series 81 - 27 + 9 - ..... - 127 is 164027.\dfrac{1}{27} \text{ is } \dfrac{1640}{27}.

Question 3

The nth term of a G.P. is 128 and the sum of its n terms is 255. If its common ratio is 2, then find its first term.

Answer

Given, an = 128, r = 2 and Sn = 255.

By formula an = arn - 1
∴ 128 = a(2)n - 1

a2n2=1282n=256a. (Eq 1) \Rightarrow a\dfrac{2^n}{2} = 128 \\[1em] \Rightarrow 2^n = \dfrac{256}{a}. \text{ (Eq 1) }

By formula,

Sn=a(rn1)r1255=a(2n1)21S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore 255 = \dfrac{a(2^n - 1)}{2 - 1}

Putting value of 2n from Eq 1 in above Equation,

255=a(256a1)255=256aa=256255=1.\Rightarrow 255 = a\Big(\dfrac{256}{a} - 1\Big) \\[1em] \Rightarrow 255 = 256 - a \\[1em] \Rightarrow a = 256 - 255 = 1.

Hence, the first term of the G.P. is 1.

Question 4(i)

How many terms of the G.P. 3, 32, 33, .... are needed to give the sum 120?

Answer

The given series is a G.P. with a = 3 and r = 3.

Let n terms be required to give the sum of 120.

By formula,

Sn=a(rn1)r1120=3(3n1)31120=3(3n1)2240=3(3n1)80=3n181=3n34=3nn=4.S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore 120 = \dfrac{3(3^n - 1)}{3 - 1} \\[1em] \Rightarrow 120 = \dfrac{3(3^n - 1)}{2} \\[1em] \Rightarrow 240 = 3(3^n - 1) \\[1em] \Rightarrow 80 = 3^n - 1 \\[1em] \Rightarrow 81 = 3^n \\[1em] \Rightarrow 3^4 = 3^n \\[1em] \Rightarrow n = 4.

Hence, the required number of terms of the G.P. are 4.

Question 4(ii)

How many terms of the G.P. 1, 4, 16, ... must be taken to have their sum equal to 341?

Answer

The above series is a G.P. with a = 1 and r = 4.

Let n terms be required to give the sum of 341.

By formula,

Sn=a(rn1)r1341=1(4n1)41341=(4n1)3341×3=(4n1)1023=4n14n=10244n=45n=5.S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore 341 = \dfrac{1(4^n - 1)}{4 - 1} \\[1em] \Rightarrow 341 = \dfrac{(4^n - 1)}{3} \\[1em] \Rightarrow 341 \times 3 = (4^n - 1) \\[1em] \Rightarrow 1023 = 4^n - 1 \\[1em] \Rightarrow 4^n = 1024 \\[1em] \Rightarrow 4^n = 4^5 \\[1em] \therefore n = 5.

Hence, the required number of terms of the G.P. are 5.

Question 5

How many terms of the series,

2913+12+....\dfrac{2}{9} - \dfrac{1}{3} + \dfrac{1}{2} + .... will make the sum 5572\dfrac{55}{72} ?

Answer

The above series is a G.P. with a = 29 and r=1329=13×92=32\dfrac{2}{9} \text{ and } r = \dfrac{-\dfrac{1}{3}}{\dfrac{2}{9}} = -\dfrac{1}{3} \times \dfrac{9}{2} = -\dfrac{3}{2}.

Let n terms be required to give the sum of 5572\dfrac{55}{72}.

By formula,

Sn=a(rn1)r15572=29[(32)n1]3215572=2[(32)n1]9×(322)5572=4[(32)n1]9×(5)5572=4[(32)n1]4555×4572×4=(32)n12475288=(32)n12475288+1=(32)n2475+288288=(32)n(32)n=2187288S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore \dfrac{55}{72} = \dfrac{\dfrac{2}{9}\Big[\Big(-\dfrac{3}{2}\Big)^n - 1\Big]}{-\dfrac{3}{2} - 1} \\[1em] \Rightarrow \dfrac{55}{72} = \dfrac{2\Big[\Big(-\dfrac{3}{2}\Big)^n - 1\Big]}{9 \times \Big(\dfrac{-3 - 2}{2}\Big)} \\[1em] \Rightarrow \dfrac{55}{72} = \dfrac{4\Big[\Big(-\dfrac{3}{2}\Big)^n - 1\Big]}{9 \times (-5)} \\[1em] \Rightarrow \dfrac{55}{72} = \dfrac{4\Big[\Big(-\dfrac{3}{2}\Big)^n - 1\Big]}{-45} \\[1em] \Rightarrow \dfrac{55 \times -45}{72 \times 4} = \Big(-\dfrac{3}{2}\Big)^n - 1 \\[1em] \Rightarrow -\dfrac{2475}{288} = \Big(-\dfrac{3}{2}\Big)^n - 1 \\[1em] \Rightarrow -\dfrac{2475}{288} + 1 = \Big(-\dfrac{3}{2}\Big)^n \\[1em] \Rightarrow \dfrac{-2475 + 288}{288} = \Big(-\dfrac{3}{2}\Big)^n \\[1em] \Rightarrow \Big(-\dfrac{3}{2}\Big)^n = -\dfrac{2187}{288} \\[1em]

Dividing the numerator and denominator by 9

(32)n=24332(32)n=(32)5n=5.\Rightarrow \Big(-\dfrac{3}{2}\Big)^n = -\dfrac{243}{32} \\[1em] \Rightarrow \Big(-\dfrac{3}{2}\Big)^n = \Big(-\dfrac{3}{2}\Big)^5 \\[1em] \therefore n = 5.

Hence, the required number of terms of the G.P. are 5.

Question 6

The 2nd and 5th terms of a geometric series are 12 and 116-\dfrac{1}{2} \text{ and } \dfrac{1}{16} respectively. Find the sum of the series upto 8 terms.

Answer

Given,

a2=12a_2 = -\dfrac{1}{2} and a5=116a_5 = \dfrac{1}{16}

By formula, an=arn1a_n = ar^{n - 1} we get,

a2=ar and a5=ar4\Rightarrow a_2 = ar \text{ and } a_5 = ar^4

Dividing a5a_5 by a2a_2,

ar4ar=11612r3=18r3=(12)3r=12.\Rightarrow \dfrac{ar^4}{ar} = \dfrac{\dfrac{1}{16}}{-\dfrac{1}{2}} \\[1em] \Rightarrow r^3 = -\dfrac{1}{8} \\[1em] \Rightarrow r^3 = \Big(-\dfrac{1}{2}\Big)^3 \\[1em] \therefore r = -\dfrac{1}{2}.

Since, a2=ara_2 = ar or,

12=a(12)a=1.\Rightarrow -\dfrac{1}{2} = a\Big(-\dfrac{1}{2}\Big) \\[1em] \Rightarrow a = 1.

By formula,

Sn=a(rn1)r1S8=1[(12)81]121=12561122=125625632=255×2256×(3)=510768S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore S_8 = \dfrac{1\Big[\Big(-\dfrac{1}{2}\Big)^8 - 1\Big]}{-\dfrac{1}{2} - 1} \\[1em] = \dfrac{\dfrac{1}{256} - 1}{\dfrac{-1 - 2}{2}} \\[1em] = \dfrac{\dfrac{1 - 256}{256}}{\dfrac{-3}{2}} \\[1em] = \dfrac{-255 \times 2}{256 \times (-3)} \\[1em] = \dfrac{-510}{-768}

Dividing numerator and denominator by 6,

=85128.= \dfrac{85}{128}.

Hence, the sum of the series upto 8 terms is 85128\dfrac{85}{128}.

Question 7

The first term of a G.P. is 27 and 8th term is 181.\dfrac{1}{81}. Find the sum of its first 10 terms.

Answer

Given, a = 27 and a8=181.a_8 = \dfrac{1}{81}.

By formula,

an=arn1a8=ar7181=27r7181×27=r7134×33=r7r7=137r=13.a_n = ar^{n - 1} \\[1em] \therefore a_8 = ar^7 \\[1em] \Rightarrow \dfrac{1}{81} = 27r^7 \\[1em] \Rightarrow \dfrac{1}{81 \times 27} = r^7 \\[1em] \Rightarrow \dfrac{1}{3^4 \times 3^3} = r^7 \\[1em] \Rightarrow r^7 = \dfrac{1}{3^7} \\[1em] \Rightarrow r = \dfrac{1}{3}.

By formula,

Sn=a(rn1)r1S10=27[(13)101]131=27(13101)133=27(1310)31023=33(1310)3102×3=34(1310)2×310=342×(1310)310=812(3101310)=812(11310).S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \therefore S_{10} = \dfrac{27\Big[\Big(\dfrac{1}{3}\Big)^{10} - 1\Big]}{\dfrac{1}{3} - 1} \\[1em] = \dfrac{27(\dfrac{1}{3^{10}} - 1)}{\dfrac{1 - 3}{3}} \\[1em] = \dfrac{27 \dfrac{(1 - 3^{10})}{3^{10}}}{-\dfrac{2}{3}} \\[1em] = \dfrac{3^3 \dfrac{(1 - 3^{10})}{3^{10}}}{-2} \times 3 \\[1em] = \dfrac{3^4(1 - 3^{10})}{-2 \times 3^{10}} \\[1em] = \dfrac{3^4}{2} \times \dfrac{-(1 - 3^{10})}{3^{10}} \\[1em] = \dfrac{81}{2} \Big(\dfrac{3^{10} - 1}{3^{10}}\Big) \\[1em] = \dfrac{81}{2} \Big(1 - \dfrac{1}{3^{10}}\Big).

Hence, the sum of first 10 terms of G.P. is 812(11310).\dfrac{81}{2} \Big(1 - \dfrac{1}{3^{10}}\Big).

Question 8

Find the first term of the G.P. whose common ratio is 3, last term is 486 and the sum of whose terms is 728.

Answer

Given, r = 3, l = 486 and Sn = 728.

Let the last term be nth term.

Hence, l = an = 486.

Using formula,

an=arn1486=a(3)n1a3n3=4863na=486×33na=1458a=14583n. (Eq 1)a_n = ar^{n - 1} \\[1em] \Rightarrow 486 = a(3)^{n - 1} \\[1em] \Rightarrow a\dfrac{3^n}{3} = 486 \\[1em] \Rightarrow 3^na = 486 \times 3 \\[1em] \Rightarrow 3^na = 1458 \\[1em] \Rightarrow a = \dfrac{1458}{3^n}. \text{ (Eq 1)}

Given, Sn=728S_n = 728,

Putting value of a=14583na = \dfrac{1458}{3^n} in formula Sn=a(rn1)r1S_n = \dfrac{a(r^n - 1)}{r - 1} we get,

Sn=14583n(3n1)31728=145814583n2145814583n=728×214583n=1458145614583n=23n=145823n=729\Rightarrow S_n = \dfrac{\dfrac{1458}{3^n}(3^n - 1)}{3 - 1} \\[1em] \Rightarrow 728 = \dfrac{1458 - \dfrac{1458}{3^n}}{2} \\[1em] \Rightarrow 1458 - \dfrac{1458}{3^n} = 728 \times 2 \\[1em] \Rightarrow \dfrac{1458}{3^n} = 1458 - 1456 \\[1em] \Rightarrow \dfrac{1458}{3^n} = 2 \\[1em] \Rightarrow 3^n = \dfrac{1458}{2} \\[1em] \Rightarrow 3^n = 729

Putting the above value in Eq 1,

a=1458729a=2.\Rightarrow a = \dfrac{1458}{729} \\[1em] \therefore a = 2.

Hence, the first term of the G.P. is 2.

Question 9

In a G.P. the first term is 7, the last term is 448, and the sum is 889. Find the common ratio.

Answer

Let nth term be the last term of the G.P.

Given, a = 7, l = an = 448 and Sn = 889.

Using formula,

an=arn1448=7(r)n1rn1=64rnr=64rn=64r. (Eq 1)a_n = ar^{n - 1} \\[1em] \Rightarrow 448 = 7(r)^{n - 1} \\[1em] \Rightarrow r^{n - 1} = 64 \\[1em] \Rightarrow \dfrac{r^n}{r} = 64 \\[1em] \Rightarrow r^n = 64r. \text{ (Eq 1)} \\[1em]

Given, Sn = 889

Putting value of rn from Eq 1 in the formula Sn=a(rn1)r1S_n = \dfrac{a(r^n - 1)}{r - 1} we get,

889=7(64r1)r1889(r1)=448r7889r889=448r7889r448r=8897441r=882r=2.\Rightarrow 889 = \dfrac{7(64r - 1)}{r - 1} \\[1em] \Rightarrow 889(r - 1) = 448r - 7 \\[1em] \Rightarrow 889r - 889 = 448r - 7 \\[1em] \Rightarrow 889r - 448r = 889 - 7 \\[1em] \Rightarrow 441r = 882 \\[1em] \therefore r = 2.

Hence, the common ratio of the G.P. is 2.

Question 10

Find the third term of a G.P. whose common ratio is 3 and the sum of whose first seven terms is 2186.

Answer

Given, r = 3 and S7 = 2186.

Using formula Sn=a(rn1)r1S_n = \dfrac{a(r^n - 1)}{r - 1} we get,

S7=a(371)312186=a(21871)22186a2=2186a=2.\Rightarrow S_7 = \dfrac{a(3^7 - 1)}{3 - 1} \\[1em] \Rightarrow 2186 = \dfrac{a(2187 - 1)}{2} \\[1em] \Rightarrow \dfrac{2186a}{2} = 2186 \\[1em] \Rightarrow a = 2. \\[1em]

∴ Third term = a3 = ar2 = 2(3)2 = 18.

Hence, the third term of the G.P. is 18.

Question 11

If the first term of a G.P. is 5 and the sum of first three terms is 315,\dfrac{31}{5}, find the common ratio.

Answer

Given, a = 5 and S3 = 315\dfrac{31}{5}.

Using formula Sn=a(rn1)r1S_n = \dfrac{a(r^n - 1)}{r - 1} we get,

S3=5(r31)r1315=5(r31)r131(r1)=25(r31)25(r1)(r2+r+1)=31(r1)\Rightarrow S_3 = \dfrac{5(r^3 - 1)}{r - 1} \\[1em] \Rightarrow \dfrac{31}{5} = \dfrac{5(r^3 - 1)}{r - 1} \\[1em] \Rightarrow 31(r - 1) = 25(r^3 - 1) \\[1em] \Rightarrow 25(r - 1)(r^2 + r + 1) = 31(r - 1) \\[1em]

Dividing by (r - 1) on both sides we get,

25(r2+r+1)=3125r2+25r+25=3125r2+25r+2531=025r2+25r6=025r2+30r5r6=05r(5r+6)1(5r+6)=0(5r1)(5r+6)=05r1=0 or 5r+6=05r=1 or 5r=6r=15 or r=65.\Rightarrow 25(r^2 + r + 1) = 31 \\[1em] \Rightarrow 25r^2 + 25r + 25 = 31 \\[1em] \Rightarrow 25r^2 + 25r + 25 - 31 = 0 \\[1em] \Rightarrow 25r^2 + 25r - 6 = 0 \\[1em] \Rightarrow 25r^2 + 30r - 5r - 6 = 0 \\[1em] \Rightarrow 5r(5r + 6) - 1(5r + 6) = 0 \\[1em] \Rightarrow (5r - 1)(5r + 6) = 0 \\[1em] \Rightarrow 5r - 1 = 0 \text{ or } 5r + 6 = 0 \\[1em] \Rightarrow 5r = 1 \text{ or } 5r = -6 \\[1em] \Rightarrow r = \dfrac{1}{5} \text{ or } r = -\dfrac{6}{5}.

Hence, the common ratio of the G.P. is 15 or 65.\dfrac{1}{5} \text{ or } -\dfrac{6}{5}.

Question 12

In a Geometric Progression (G.P.) the first term is 24 and the fifth term is 8. Find the ninth term of the G.P.

Answer

Let first term of G.P. be a and common ratio be r.

Given,

First term (a) = 24

Fifth term (ar4) = 8

ar4a=824r4=13(r4)2=(13)2r8=19.\Rightarrow \dfrac{ar^4}{a} = \dfrac{8}{24} \\[1em] \Rightarrow r^4 = \dfrac{1}{3} \Rightarrow (r^4)^2 = \Big(\dfrac{1}{3}\Big)^2 \\[1em] \Rightarrow r^8 = \dfrac{1}{9}.

By formula,

Ninth term of G.P. (a9) = ar8

= 24×19=8324 \times \dfrac{1}{9} = \dfrac{8}{3}.

Hence, ninth term of G.P. = 83\dfrac{8}{3}.

Multiple Choice Questions

Question 1

The 10th term of the A.P. 5, 8, 11, 14, .... is

  1. 32

  2. 35

  3. 38

  4. 185

Answer

The above series is an A.P. with first term = a = 5 and common difference = d = 8 - 5 = 3.

We know that

    an = a + (n - 1)d
∴ a10 = 5 + (10 - 1) × 3 = 5 + 9 × 3 = 5 + 27 = 32.

Hence, Option 1 is the correct option.

Question 2

The 30th term of the A.P. 10, 7, 4, ... is

  1. 87

  2. 77

  3. -77

  4. -87

Answer

The above series is an A.P. with first term = a = 10 and common difference = d = 7 - 10 = -3.

We know that

    an = a + (n - 1)d
∴ a30 = 10 + (30 - 1) × (-3) = 10 + 29 × (-3) = 10 - 87 = -77.

Hence, Option 3 is the correct option.

Question 3

The 11th term of the A.P. 3,12,2,...-3, -\dfrac{1}{2}, 2, ... is

  1. 28

  2. 22

  3. -38

  4. 4812-48\dfrac{1}{2}

Answer

The above series is an A.P. with first term = a = -3 and common difference = 12(3)=12+3=1+62=52-\dfrac{1}{2} - (-3) = -\dfrac{1}{2} + 3 = -\dfrac{-1 + 6}{2} = \dfrac{5}{2}.

We know that

an = a + (n - 1)d

a11=3+(111)×52=3+10×52=3+25=22.\therefore a_{11} = -3 + (11 - 1) \times \dfrac{5}{2} \\[1em] = -3 + 10 \times \dfrac{5}{2} \\[1em] = -3 + 25 \\[1em] = 22.

Hence, Option 2 is the correct option.

Question 4

The 15th term from the last of the A.P. 7, 10, 13, ... , 130 is

  1. 49

  2. 85

  3. 88

  4. 110

Answer

Here, common difference = d = 10 - 7 = 3 and last term = l = 130.

We know that the nth term from the end is given by the formula:

    nth term from end = l - (n - 1)d
∴ 11th term from the end = 130 - (15 - 1) × 3 = 130 - 14 × 3 = 130 - 42 = 88.

Hence, Option 3 is the correct option.

Question 5

If the common difference of the A.P. is 5, then a18 - a13 is

  1. 5

  2. 20

  3. 25

  4. 30

Answer

Given d = 5,

We know that

    an = a + (n - 1)d
∴ a18 = a + (18 - 1) × 5 = a + 17 × 5 = a + 85.
    a13 = a + (13 - 1) × 5 = a + 12 × 5 = a + 60.

∴ a18 - a13 = a + 85 - (a + 60) = a - a + 85 - 60 = 25.

Hence, Option 3 is the correct option.

Question 6

In an A.P., if a18 - a14 = 32 then the common difference is

  1. 8

  2. -8

  3. -4

  4. 4

Answer

Given, a18 - a14 = 32.

We know that

    an = a + (n - 1)d
∴ a18 = a + (18 - 1) × d = a + 17d.
    a14 = a + (14 - 1) × d = a + 13d.

∴ a18 - a14 = a + 17d - (a + 13d) = a - a + 17d - 13d = 4d.

⇒ 4d = 32
⇒ d = 8.

Hence, Option 1 is the correct option.

Question 7

In an A.P., if d = -4, n = 7, an = 4, then a is

  1. 6

  2. 7

  3. 20

  4. 28

Answer

We know that

    an = a + (n - 1)d
∴ 4 = a + (7 - 1) × (-4)
⇒ 4 = a + 6 × (-4)
⇒ 4 = a - 24
⇒ a = 24 + 4
⇒ a = 28.

Hence, Option 4 is the correct option.

Question 8

In an A.P., if a = 3.5, d = 0, n = 101, then an will be

  1. 0

  2. 3.5

  3. 103.5

  4. 104.5

Answer

We know that

    an = a + (n - 1)d
∴ an = 3.5 + (101 - 1) × 0
⇒ an = 3.5 + 100 × 0
⇒ an = 3.5

Hence, Option 2 is the correct option.

Question 9

Which term of the A.P. 21, 42, 63, 84, ... is 210?

  1. 9th

  2. 10th

  3. 11th

  4. 12th

Answer

Here, a = 21, d = 42 - 21 = 21.

Let nth term be 210, so an = 210.

We know that

    an = a + (n - 1)d
∴ 210 = 21 + (n - 1) × 21
⇒ 210 = 21 + 21n - 21
⇒ 21n = 210
⇒ n = 10

Hence, Option 2 is the correct option.

Question 10

If the last term of A.P. 5, 3, 1, -1, .... is -41, then the A.P. consists of

  1. 46 terms

  2. 25 terms

  3. 24 terms

  4. 23 terms

Answer

Here, a = 5, d = 3 - 5 = -2.

Let nth term be -41, so an = -41.

We know that

    an = a + (n - 1)d
∴ -41 = 5 + (n - 1) × (-2)
⇒ -41 = 5 - 2n + 2
⇒ 7 - 2n = -41
⇒ 2n = 7 + 41
⇒ 2n = 48
⇒ n = 24.

Hence, Option 3 is the correct option.

Question 11

If k - 1, k + 1 and 2k + 3 are in A.P. , then the value of k is

  1. -2

  2. 0

  3. 2

  4. 4

Answer

We know that in an A.P.,

Common difference = d = any term - preceding term

∴ 2k + 3 - (k + 1) = k + 1 - (k - 1)
⇒ 2k - k + 3 - 1 = k - k + 1 - (-1)
⇒ k + 2 = 2
⇒ k = 0.

Hence, Option 2 is the correct option.

Question 12

The 21st term of an A.P. whose first two terms are -3 and 4 is

  1. 17

  2. 137

  3. 143

  4. -143

Answer

Given a = -3 and a2 = 4

We know that

    an = a + (n - 1)d
∴ a2 = -3 + (2 - 1) × d
⇒ 4 = -3 + d
⇒ d = 4 + 3
⇒ d = 7.

    a21 = -3 + (21 - 1) × 7
⇒ a21 = -3 + 20 × 7
⇒ a21 = -3 + 140
⇒ a21 = 137.

Hence, Option 2 is the correct option.

Question 13

If the first term of an A.P. is -5 and the common difference is 2, then the sum of its first 6 terms is

  1. 0

  2. 5

  3. 6

  4. 15

Answer

Given, a = -5 and d = 2.

We know that,

Sn=n2[2a+(n1)d]S6=62[2×5+(61)×2]=3[10+5×2]=3[10+10]=3×0=0.S_n = \dfrac{n}{2}[2a + (n - 1)d] \\[1em] \therefore S_6 = \dfrac{6}{2}[2 \times -5 + (6 - 1) \times 2] \\[1em] = 3[-10 + 5 \times 2] \\[1em] = 3[-10 + 10] \\[1em] = 3 \times 0 \\[1em] = 0.

Hence, Option 1 is the correct option.

Question 14

The sum of 25 terms of the A.P., 23,23,23,...-\dfrac{2}{3}, -\dfrac{2}{3}, -\dfrac{2}{3}, ... is

  1. 0

  2. 23-\dfrac{2}{3}

  3. 503-\dfrac{50}{3}

  4. -50

Answer

The above series is an A.P. with first term = 23-\dfrac{2}{3} and common difference = d = 23(23)=0-\dfrac{2}{3} - \Big(-\dfrac{2}{3}\Big) = 0

We know that,

Sn=n2[2a+(n1)d]S25=252[2×23+(251)×0]=252[43+24×0]=252×43=503.S_n = \dfrac{n}{2}[2a + (n - 1)d] \\[1em] \therefore S_{25} = \dfrac{25}{2}\Big[2 \times -\dfrac{2}{3} + (25 - 1) \times 0\Big] \\[1em] = \dfrac{25}{2}\Big[-\dfrac{4}{3} + 24 \times 0\Big] \\[1em] = \dfrac{25}{2} \times -\dfrac{4}{3} \\[1em] = -\dfrac{50}{3}.

Hence, Option 3 is the correct option.

Question 15

In an A.P. if a = 1, an = 20 and Sn = 399, then n is

  1. 19

  2. 21

  3. 38

  4. 42

Answer

Given a = 1, an = 20 and Sn = 399.

We know that

    an = a + (n - 1)d
∴ an = 1 + (n - 1) × d
⇒ 20 = 1 + (n - 1)d
⇒ (n - 1)d = 20 - 1
⇒ (n - 1)d = 19
⇒ d = 19n1\dfrac{19}{n - 1}.

The formula for sum of A.P. is given by,

Sn=n2[2a+(n1)d]Sn=n2[2×1+(n1)×d]399=n2[2+(n1)×19n1]399=n2[2+19]n2×21=399n=399×221n=79821n=38.S_n = \dfrac{n}{2}[2a + (n - 1)d] \\[1em] \therefore S_n = \dfrac{n}{2}[2 \times 1 + (n - 1) \times d] \\[1em] \Rightarrow 399 = \dfrac{n}{2}[2 + (n - 1) \times \dfrac{19}{n - 1}] \\[1em] \Rightarrow 399 = \dfrac{n}{2}[2 + 19] \\[1em] \Rightarrow \dfrac{n}{2} \times 21 = 399 \\[1em] \Rightarrow n = \dfrac{399 \times 2}{21} \\[1em] \Rightarrow n = \dfrac{798}{21} \\[1em] \Rightarrow n = 38.

Hence, Option 3 is the correct option.

Question 16

In an A.P., if a = -5, l = 21 and S = 200, then n is equal to

  1. 50

  2. 40

  3. 32

  4. 25

Answer

We know that

    l = a + (n - 1)d
∴ 21 = -5 + (n - 1) × d
⇒ (n - 1)d = 21 + 5
⇒ (n - 1)d = 26
⇒ d = 26n1\dfrac{26}{n - 1}.

The formula for sum of A.P. is given by,

Sn=n2[2a+(n1)d]Sn=n2[2×(5)+(n1)×26n1]200=n2[10+(n1)×26n1]200=n2[10+26]n2×16=2008n=200n=2008n=25.S_n = \dfrac{n}{2}[2a + (n - 1)d] \\[1em] \therefore S_n = \dfrac{n}{2}[2 \times (-5) + (n - 1) \times \dfrac{26}{n - 1}] \\[1em] \Rightarrow 200 = \dfrac{n}{2}[-10 + (n - 1) \times \dfrac{26}{n - 1}] \\[1em] \Rightarrow 200 = \dfrac{n}{2}[-10 + 26] \\[1em] \Rightarrow \dfrac{n}{2} \times 16 = 200 \\[1em] \Rightarrow 8n = 200 \\[1em] \Rightarrow n = \dfrac{200}{8} \\[1em] \Rightarrow n = 25.

Hence, Option 4 is the correct option.

Question 17

The sum of first five multiples of 3 is

  1. 45

  2. 55

  3. 65

  4. 75

Answer

First five multiples of 3 are : 3, 6, 9, 12, 15.

The above series is an A.P. with first term = a = 3 and common difference = d = 3.

The formula for sum of A.P. is given by,

Sn=n2[2a+(n1)d]S5=52[2×3+(51)×3]=52[6+4×3]=52[6+12]=52×18=45.S_n = \dfrac{n}{2}[2a + (n - 1)d] \\[1em] \therefore S_5 = \dfrac{5}{2}[2 \times 3 + (5 - 1) \times 3] \\[1em] = \dfrac{5}{2}[6 + 4 \times 3] \\[1em] = \dfrac{5}{2}[6 + 12] \\[1em] = \dfrac{5}{2} \times 18 \\[1em] = 45.

Hence, Option 1 is the correct option.

Question 18

The number of two digit numbers which are divisible by 3 is

  1. 33

  2. 31

  3. 30

  4. 29

Answer

Two digit numbers which are divisible by 3 are 12, 15, 18, 21, ..... , 99.

The above series is an A.P. with first term = a = 12 and common difference = d = 15 - 12 = 3.

Let 99 be the nth term, we know that

    an = a + (n - 1)d
∴ 99 = 12 + (n - 1) × 3
⇒ 99 = 12 + 3n - 3
⇒ 3n + 9 = 99
⇒ 3n = 90
⇒ n = 30.

Hence, Option 3 is the correct option.

Question 19

The number of multiples of 4 that lie between 10 and 250 is

  1. 62

  2. 60

  3. 59

  4. 55

Answer

The multiples of 4 that lie between 10 and 250 are 12, 16, 20, ....., 248.

The above series is an A.P. with first term = a = 12 and common difference = d = 16 - 12 = 4.

Let 248 be the nth term, we know that

    an = a + (n - 1)d
∴ 248 = 12 + (n - 1) × 4
⇒ 248 = 12 + 4n - 4
⇒ 4n = 248 - 8
⇒ 4n = 240
⇒ n = 60.

Hence, Option 2 is the correct option.

Question 20

The sum of first 10 even whole numbers is

  1. 110

  2. 90

  3. 55

  4. 45

Answer

The first 10 even whole numbers are 0, 2, 4, 6, 8, 10, 12, 14, 16 , 18.

Sum of an A.P. is given by,

Sn=n2(a+l)S10=102(0+18)=5×18=90.S_n = \dfrac{n}{2}(a + l) \\[1em] \therefore S_{10} = \dfrac{10}{2}(0 + 18) \\[1em] = 5 \times 18 \\[1em] = 90.

Hence, Option 2 is the correct option.

Question 21

The 11th term of the G.P. 18,14,2,1,....\dfrac{1}{8}, -\dfrac{1}{4}, 2, -1, .... is

  1. 64

  2. -64

  3. 128

  4. -128

Answer

Given, a = 18\dfrac{1}{8} and common ratio = r = 1418=2.\dfrac{-\dfrac{1}{4}}{\dfrac{1}{8}} = -2.

We know that

    an = arn - 1

a11=18(2)111=18(2)10=18×210=21023=27=128.\therefore a_{11} = \dfrac{1}{8}(-2)^{11 - 1} \\[1em] = \dfrac{1}{8}(-2)^{10} \\[1em] = \dfrac{1}{8} \times 2^{10} \\[1em] = \dfrac{2^{10}}{2^3} \\[1em] = 2^7 \\[1em] = 128.

Hence, Option 3 is the correct option.

Question 22

The 5th term from the end of the G.P. 2, 6, 18, ...., 13122 is

  1. 162

  2. 486

  3. 54

  4. 1458

Answer

The above series is a G.P. with a = 2 and d = 62=3.\dfrac{6}{2} = 3.

nth from end = l(1r)n1l\Big(\dfrac{1}{r}\Big)^{n - 1}

∴ 5th term from end = 13122×(13)5113122 \times \Big(\dfrac{1}{3}\Big)^{5 - 1}

=13122×134=1312281=162.= 13122 \times \dfrac{1}{3^4} \\[1em] = \dfrac{13122}{81} \\[1em] = 162.

Hence, Option 1 is the correct option.

Question 23

If k, 2(k + 1), 3(k + 1) are three consecutive terms of a G.P., then the value of k is

  1. -1

  2. -4

  3. 1

  4. 4

Answer

In a G.P.,

 any term  preceding term = common ratio .2(k+1)k=3(k+1)2(k+1) (Eq 1) (2k+2)(2k+2)=k(3k+3)4k2+4k+4k+4=3k2+3k4k23k2+8k3k+4=0k2+5k+4=0k2+k+4k+4=0k(k+1)+4(k+1)=0(k+1)(k+4)=\dfrac{\text{ any term }}{\text{ preceding term }} = \text{ common ratio }. \\[1em] \therefore \dfrac{2(k + 1)}{k} = \dfrac{3(k + 1)}{2(k + 1)} \text{ (Eq 1) } \\[1em] \Rightarrow (2k + 2)(2k + 2) = k(3k + 3) \\[1em] \Rightarrow 4k^2 + 4k + 4k + 4 = 3k^2 + 3k \\[1em] \Rightarrow 4k^2 - 3k^2 + 8k - 3k + 4 = 0 \\[1em] \Rightarrow k^2 + 5k + 4 = 0 \\[1em] \Rightarrow k^2 + k + 4k + 4 = 0 \\[1em] \Rightarrow k(k + 1) + 4(k + 1) = 0 \\[1em] \Rightarrow (k + 1)(k + 4) =

But k+1k + 1 ≠ 0 as that will not satisfy Eq 1

k+4=0k=4.\Rightarrow k + 4 = 0 \\[1em] \Rightarrow k = -4.

Hence, Option 2 is the correct option.

Assertion-Reason Type Question

Question 1

Given is a sequence of three terms : -1, -5, -9,......

Assertion (A): They are consecutive term of an arithmetic progression.

Reason (R): Difference between two successive term is -3.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given sequence : -1, -5, -9,......

Difference between 2nd term and 1st term,

⇒ a2 - a1 = -5 - (-1)

= -5 + 1 = -4

Difference between 3rd term and 2nd term,

⇒ a3 - a2 = -9 - (-5)

= -9 + 5 = -4.

Since, difference between consecutive terms is equal.

Thus, the given sequence is in arithmetic progression with common difference -4.

Thus, Assertion (A) is true, but Reason (R) is false.

Hence, option 1 is the correct option.

Question 2

Tn = 4 - 2n is the nth term of an A.P.

Assertion (A): This A.P. will have all terms negative after 2nd term.

Reason (R): The common difference is negative.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given, Tn = 4 - 2n

⇒ T1 = 4 - 2 x 1

= 4 - 2 = 2

⇒ T2 = 4 - 2 x 2

= 4 - 4 = 0

⇒ T3 = 4 - 2 x 3

= 4 - 6 = -2

⇒ T4 = 4 - 2 x 4

= 4 - 8 = -4

So, the sequence 2, 0, -2, -4, ..............

After 2nd term, this A.P. will have all terms negative.

So, assertion (A) is true.

Common difference, Tn - Tn - 1

= [4 - 2n] - [4 - 2(n - 1)]

= 4 - 2n - [4 - 2n + 2]

= 4 - 2n - 4 + 2n - 2

= -2.

So, reason (R) is true and reason (R) is the correct explanation of assertion (A).

Hence, option 3 is the correct option.

Question 3

Observe the sequence of the terms : 3, 8, 13, ..............

Assertion (A): 53 is a term of this A.P.

Reason (R): Its first term is 3 and common difference is 5.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given sequence: 3, 8, 13, ..............

First term = 3

Difference between second and first term :

⇒ a2 - a1 = 8 - 3 = 5

Difference between third and second term :

⇒ a3 - a2 = 13 - 8 = 5

Thus, the above sequence is an A.P. with first term (a) = 3 and common difference (d) = 5.

So, reason (R) is true.

By formula,

an = a + (n - 1)d

If 53 is a term of this A.P., then

⇒ 53 = 3 + (n - 1)5

⇒ 53 - 3 = (n - 1)5

⇒ 50 = (n - 1)5

⇒ n - 1 = 505\dfrac{50}{5}

⇒ n - 1 = 10

⇒ n = 10 + 1 = 11.

Thus, 53 is 11th term of the A.P.

So, assertion (A) is true.

Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Question 4

Given x, y, z are in A.P.

Assertion (A): z, y, x are in A.P.

Reason (R): The term of an A.P. taken in reverse order also forms an A.P.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given x, y, z are in A.P.

Common difference, d = difference of two consecutive terms,

⇒ a2 - a1 = y - x

⇒ a3 - a2 = z - y

If x, y, z are in A.P., then d will be equal, y - x = z - y

⇒ x - z = 2y ..................(1)

If z, y, x are in A.P.

⇒ a2 - a1 = y - z

⇒ a3 - a2 = x - y

If z, y, x are in A.P., then d will be equal, y - z = x - y

⇒ -z + x = 2y

⇒ z - x = -2y

From equation (1), we can write that z, y, x are in A.P. with negative d.

So, assertion (A) is true.

From above we can conclude that the term in A.P. taken in reverse order also form an A.P.

So, reason (R) is true. And, reason (R) is the correct explanation of assertion (A).

Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Question 5

Assertion (A): The sum of first 99 natural numbers is 4950.

Reason (R): The sum of first n natural numbers is n(n+1)2\dfrac{n(n + 1)}{2}.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Let first n natural numbers : 1, 2, 3, ......., n.

The above sequence is an A.P. with first term = 1, common difference = 1 and number of terms = n.

By formula,

Sum of an A.P. = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

Substituting values we get :

S=n2×[2×1+(n1)×1]=n2×[2+n1]=n2×(n+1).S = \dfrac{n}{2} \times [2 \times 1 + (n - 1) \times 1] \\[1em] = \dfrac{n}{2} \times [2 + n - 1] \\[1em] = \dfrac{n}{2} \times (n + 1).

So, reason (R) is true.

When n = 99.

The sum of first 99 natural numbers

=99(99+1)2=99×1002=99002=4950= \dfrac{99(99 + 1)}{2}\\[1em] = \dfrac{99 \times 100}{2}\\[1em] = \dfrac{9900}{2}\\[1em] = 4950

So, assertion (A) is true and, reason (R) is the correct explanation of assertion (A).

Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Chapter Test

Question 1

Write the first four terms of the A.P. when its first term is -5 and common difference is -3.

Answer

Given, a = -5 and d = -3.

We know that

   an = a + (n - 1)d
∴ a2 = -5 + (2 - 1) × (-3) = -5 + (-3) = -5 - 3 = -8.
   a3 = -5 + (3 - 1) × (-3) = -5 + 2 × -3 = -5 - 6 = -11.
   a4 = -5 + (4 - 1) × (-3) = -5 + 3 × -3 = -5 - 9 = -14.

Hence, the first four terms of the A.P. are -5, -8, -11, -14.

Question 2

Verify that each of the following lists of numbers is an A.P., and then write its next three terms:

(i) 0, 14,12,34,...\dfrac{1}{4}, \dfrac{1}{2}, \dfrac{3}{4}, ...

(ii) 5, 143,133,4,...\dfrac{14}{3}, \dfrac{13}{3}, 4, ...

Answer

(i) Here,

a2a1=140=14,a3a2=1214=214=14.a_2 - a_1 = \dfrac{1}{4} - 0 = \dfrac{1}{4},\\[1em] a_3 - a_2 = \dfrac{1}{2} - \dfrac{1}{4} = \dfrac{2 - 1}{4} = \dfrac{1}{4}. \\[1em]

i.e. any term - preceding term = 14\dfrac{1}{4} = fixed number.

Hence, the given list of numbers forms an A.P.

For the next terms, we have,

a5=a4+d=34+14=44=1,a6=a5+d=1+14=4+14=54,a7=a6+d=54+14=64=32.a_5 = a_4 + d = \dfrac{3}{4} + \dfrac{1}{4} = \dfrac{4}{4} = 1, \\[1em] a_6 = a_5 + d = 1 + \dfrac{1}{4} = \dfrac{4 + 1}{4} = \dfrac{5}{4}, \\[1em] a_7 = a_6 + d = \dfrac{5}{4} + \dfrac{1}{4} = \dfrac{6}{4} = \dfrac{3}{2}.

So, the next three terms are 1,54,32.1, \dfrac{5}{4}, \dfrac{3}{2}.

(ii) Here,

a2a1=1435=14153=13,a3a2=133143=13143=13.a_2 - a_1 = \dfrac{14}{3} - 5 = \dfrac{14 - 15}{3} = -\dfrac{1}{3},\\[1em] a_3 - a_2 = \dfrac{13}{3} - \dfrac{14}{3} = \dfrac{13 - 14}{3} = -\dfrac{1}{3}. \\[1em]

i.e. any term - preceding term = 13-\dfrac{1}{3} = fixed number.
Hence, the given list of numbers forms an A.P.

For the next terms, we have,

a5=a4+d=4+(13)=413=1213=113,a6=a5+d=113+(13)=11313=103,a7=a6+d=103+(13)=10313=93=3.a_5 = a_4 + d = 4 + \Big(-\dfrac{1}{3}\Big) = 4 - \dfrac{1}{3} = \dfrac{12 - 1}{3} = \dfrac{11}{3}, \\[1em] a_6 = a_5 + d = \dfrac{11}{3} + \Big(-\dfrac{1}{3}\Big) = \dfrac{11}{3} - \dfrac{1}{3} = \dfrac{10}{3}, \\[1em] a_7 = a_6 + d = \dfrac{10}{3} + \Big(-\dfrac{1}{3}\Big) = \dfrac{10}{3} - \dfrac{1}{3} = \dfrac{9}{3} = 3.

So, the next three terms are 113,103,3.\dfrac{11}{3}, \dfrac{10}{3}, 3.

Question 3

The nth term of an A.P. is 6n + 2. Find the common difference.

Answer

Given, an = 6n + 2.

∴ a1 = 6(1) + 2 = 6 + 2 = 8,
    a2 = 6(2) + 2 = 12 + 2 = 14.

We know that, d = any term - preceding term

∴ d = a2 - a1 = 14 - 8 = 6.

Hence, the common difference of the A.P. is 6.

Question 4

Show that the list of numbers 9, 12, 15, 18, ... form an A.P. Find its 16th term and the nth term.

Answer

Here,
a2 - a1 = 12 - 9 = 3,
a3 - a2 = 15 - 12 = 3.

i.e. any term - preceding term = 3 = fixed number,

Hence, given list of numbers forms an A.P. with first term = a = 9 and common difference = d = 3.

We know that,

an = a + (n - 1)d = 9 + (n - 1) × 3 = 9 + 3n - 3 = 6 + 3n.

Since, an = 6 + 3n, so

a16 = 6 + 3 × 16 = 6 + 48 = 54.

Hence, the an = 3n + 6 and a16 = 54.

Question 5

Find the 6th term from the end of the A.P. 17, 14, 11, ...., -40.

Answer

Given, a = 17, l = -40 and d = 14 - 17 = -3.

nth term from the end = l - (n - 1)d

∴ 6th term from the end = -40 - (6 - 1) × (-3) = -40 - 5 × -3 = -40 + 15 = -25.

Hence, 6th term from the end is -25.

Question 6

If the 8th term of an A.P. is 31 and the 15th term is 16 more than its 11th term, then find the A.P.

Answer

Given, a8 = 31 and a15 - a11 = 16.

We know that

⇒ an = a + (n - 1)d
∴ a8 = a + 7d      (Eq 1)
   a15 = a + 14d and
   a11 = a + 10d.

Given, a15 - a11 = 16.
∴ a + 14d - (a + 10d) = 16
⇒ a - a + 14d - 10d = 16
⇒ 4d = 16
⇒ d = 4.

Putting value of d in Eq 1
⇒ a8 = a + 7d
⇒ a + 7 × 4 = 31
⇒ a + 28 = 31
⇒ a = 31 - 28
⇒ a = 3.

Hence, the terms of A.P. are

a2 = a1 + d = 3 + 4 = 7,
a3 = a2 + d = 7 + 4 = 11,
a4 = a3 + d = 11 + 4 = 15.

Hence, the terms of the A.P. are 3, 7, 11, 15, ....

Question 7

The 17th term of an A.P. is 5 more than twice its 8th term. If the 11th term of the A.P. is 43, then find the nth term.

Answer

We know that

an = a + (n - 1)d

According to question,

⇒ a17 = 2(a8) + 5
⇒ a + 16d = 2(a + 7d) + 5
⇒ a + 16d = 2a + 14d + 5
⇒ 2a - a + 14d - 16d + 5 = 0
⇒ a - 2d + 5 = 0
⇒ a = 2d - 5.     (Eq 1)

Given, a11 = 43

⇒ a + 10d = 43
⇒ 2d - 5 + 10d = 43
⇒ 12d = 43 + 5
⇒ 12d = 48
⇒ d = 4.

Putting value of d in Eq 1,

⇒ a = 2d - 5
⇒ a = 2 × 4 - 5 = 8 - 5 = 3.

∴ an = 3 + (n - 1) × 4 = 3 + 4n - 4 = 4n - 1.

Hence, the nth term of the A.P. is 4n - 1.

Question 8

The 19th term of an A.P. is equal to three times its 6th term. If its 9th term is 19, find the A.P.

Answer

We know that

    an = a + (n - 1)d

According to question,

⇒ a19 = 3(a6)
⇒ a + 18d = 3(a + 5d)
⇒ a + 18d = 3a + 15d
⇒ 3a - a = 18d - 15d
⇒ 2a = 3d
⇒ a = 32d\dfrac{3}{2}d     (Eq 1)

Given, a9 = 19

a+8d=1932d+8d=193d+16d2=1919d2=19d=1919×2d=2.\Rightarrow a + 8d = 19 \\[1em] \Rightarrow \dfrac{3}{2}d + 8d = 19 \\[1em] \Rightarrow \dfrac{3d + 16d}{2} = 19 \\[1em] \Rightarrow \dfrac{19d}{2} = 19 \\[1em] \Rightarrow d = \dfrac{19}{19} \times 2 \\[1em] \Rightarrow d = 2. \\[1em]

Putting value of d in Eq 1 we get,

a=32da=32×2a=3.\Rightarrow a = \dfrac{3}{2}d \\[1em] \Rightarrow a = \dfrac{3}{2} \times 2 \\[1em] \Rightarrow a = 3.

Hence, the terms of A.P. are

a2 = a1 + d = 3 + 2 = 5,
a3 = a2 + d = 5 + 2 = 7,
a4 = a3 + d = 7 + 2 = 9.

Hence, the terms of the A.P. are 3, 5, 7, 9, ....

Question 9

If the 3rd and the 9th terms of an A.P. are 4 and -8 respectively, then which term of the A.P. is zero ?

Answer

We know that

    an = a + (n - 1)d

Given,

    a3 = 4 and a9 = -8
∴ a + 2d = 4 and a + 8d = -8

Subtracting the two Equations,

⇒ a + 8d - (a + 2d) = -8 - 4
⇒ a - a + 8d - 2d = -12
⇒ 6d = -12
⇒ d = -2.

Putting value of d in a + 2d = 4

⇒ a + 2 × (-2) = 4
⇒ a - 4 = 4
⇒ a = 4 + 4
⇒ a = 8.

Let nth term of the A.P. be zero so, an = 0.

⇒ a + (n - 1)d = 0
⇒ 8 + (n - 1) × (-2) = 0
⇒ 8 - 2n + 2 = 0
⇒ 10 - 2n = 0
⇒ 2n = 10
⇒ n = 5.

Hence, the 5th term of the A.P. is zero.

Question 10

Which term of the list of the numbers 5, 2, -1, -4, .... is -55?

Answer

The above list is an A.P. with a = 5 and d = 2 - 5 = -3.

Let the nth term of the A.P. be -55 or, an = -55.

We know that

an = a + (n - 1)d

⇒ -55 = 5 + (n - 1) × (-3)
⇒ -55 = 5 - 3n + 3
⇒ -55 = 8 - 3n
⇒ 3n = 8 + 55
⇒ 3n = 63
⇒ n = 21.

Hence, the 21st term of the A.P. is -55..

Question 11

The 24th term of an A.P. is twice its 10th term. Show that its 72nd term is four times its 15th term.

Answer

We know that

an = a + (n - 1)d

Given,
a24 = 2(a10)
∴ a + 23d = 2(a + 9d)
⇒ a + 23d = 2a + 18d
⇒ 2a - a = 23d - 18d
⇒ a = 5d.

By using formula for nth term and a = 5d

a72 = a + 71d = 5d + 71d = 76d
a15 = a + 14d = 5d + 14d = 19d

∴ 4a15 = 4 × 19d = 76d = a72.

Hence, proved that 72nd term is four times the 15th term of the A.P.

Question 12

Which term of the list of the numbers 20,1914,1812,1734,...20, 19\dfrac{1}{4}, 18\dfrac{1}{2}, 17\dfrac{3}{4}, ... is the first negative term?

Answer

The above series is an A.P. with a = 20 and

d=191420=77420=77804=34.d = 19\dfrac{1}{4} - 20 \\[1em] = \dfrac{77}{4} - 20 \\[1em] = \dfrac{77 - 80}{4} \\[1em] = -\dfrac{3}{4}.

Let nth term be the first negative number.

We know that

an = a + (n - 1)d

an=20+(n1)×34=2034n+34=80+3434n=83434n\therefore a_n = 20 + (n - 1) \times -\dfrac{3}{4} \\[1em] = 20 - \dfrac{3}{4}n + \dfrac{3}{4} \\[1em] = \dfrac{80 + 3}{4} - \dfrac{3}{4}n \\[1em] = \dfrac{83}{4} - \dfrac{3}{4}n \\[1em]

Since an is a negative number

an<083434n<034n>834n>834×43n>833n>2723n=28.\therefore a_n \lt 0 \\[1em] \Rightarrow \dfrac{83}{4} - \dfrac{3}{4}n \lt 0 \\[1em] \Rightarrow \dfrac{3}{4}n \gt \dfrac{83}{4} \\[1em] \Rightarrow n \gt \dfrac{83}{4} \times \dfrac{4}{3} \\[1em] \Rightarrow n \gt \dfrac{83}{3} \\[1em] \Rightarrow n \gt 27\dfrac{2}{3} \\[1em] \therefore n = 28.

Hence, 28th term is the first negative number in the A.P.

Question 13

How many three digit numbers are divisible by 9 ?

Answer

The three digit numbers that are divisible by 9 are 108, 117, 126, ....., 999.

The above series is in A.P. with a = 108, d = 117 - 108 = 9 and l = 999.

Let the nth term be last term

∴ an = 999.

We know that

an = a + (n - 1)d

⇒ 999 = 108 + (n - 1) × 9
⇒ 108 + 9n - 9 = 999
⇒ 9n + 99 = 999
⇒ 9n = 900
⇒ n = 100.

Hence, 100 three digit numbers are divisible by 9.

Question 14

The sum of three numbers in A.P. is -3 and the product is 8. Find the numbers.

Answer

Let the three numbers in A.P. be a - d, a, a + d.

Given, Sn = -3

⇒ a - d + a + a + d = -3
⇒ 3a = -3
⇒ a = -1.

Given, product of numbers = 8

⇒ (a - d)a(a + d) = 8

Putting value of a = -1

⇒ (-1 - d)(-1)(-1 + d) = 8
⇒ (d + 1)(d - 1) = 8
⇒ d2 - 1 = 8
⇒ d2 = 9
⇒ d = -3, 3.

Putting d = -3
Numbers ⇒ a - d = -1 - (-3) = -1 + 3 = 2, a = -1, a + d = -1 + (-3) = -4.

Putting d = 3
Numbers ⇒ a - d = -1 - 3 = -4, a = -1, a + d = -1 + 3 = 2.

Hence, the three numbers in A.P. are -4, -1, 2 or 2, -1, -4.

Question 15

The angles of a quadrilateral are in A.P. If the greatest angle is double of the smallest angle, find all the four angles.

Answer

Let the angles of quadrilateral be a, (a + d), (a + 2d), (a + 3d).

According to question greatest angle is twice the smallest angle,

⇒ (a + 3d) = 2a
⇒ 2a - a = 3d
⇒ a = 3d.

By putting values of a = 3d , the angles become,

a = 3d

a + d = 3d + d = 4d

a + 2d = 3d + 2d = 5d

a + 3d = 3d + 3d = 6d

Sum of angles of quadrilateral = 360°.

∴ 3d + 4d + 5d + 6d = 360°
⇒ 18d = 360°
⇒ d = 20°.

Hence, the angles are

⇒ 3d = 3 × 20° = 60°

⇒ 4d = 4 × 20° = 80°

⇒ 5d = 5 × 20° = 100°

⇒ 6d = 6 × 20° = 120°.

Hence, the angles of the quadrilateral are 60°, 80°, 100°, 120°.

Question 16

Find the sum of first 20 terms of an A.P. whose nth term is 15 - 4n.

Answer

Since, an = 15 - 4n

∴ a1 = 15 - 4(1) = 15 - 4 = 11 and a20 = 15 - 4(20) = 15 - 80 = -65.

We know that

Sn=n2[a+l]S20=202[11+(65)]=10[54]=540.S_n = \dfrac{n}{2}[a + l] \\[1em] \therefore S_{20} = \dfrac{20}{2}[11 + (-65)] \\[1em] = 10[-54] \\[1em] = -540.

Hence, the sum of first 20 terms of an A.P. is -540.

Question 17

Ten students of a class are lined up according to their heights. Height of first student is 150 cm, and every next student is 2 cm more in height. What is the total sum of heights of these ten students ?

Answer

Total number of students (n) = 10

Height of first student (a) = 150 cm

Difference between height of every next student (d) = 2 cm

Since, the height difference between every next student is equal, so it can be considered an A.P.

By formula,

Sum of A.P. (S) = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

Substituting values we get :

S=102×[2×150+(101)×2]=5×[300+9×2]=5×[300+18]=5×318=1590 cm.S = \dfrac{10}{2} \times [2 \times 150 + (10 - 1) \times 2] \\[1em] = 5 \times [300 + 9 \times 2] \\[1em] = 5 \times [300 + 18] \\[1em] = 5 \times 318 \\[1em] = 1590 \text{ cm}.

Hence, the total sum of heights of ten students = 1590 cm.

Question 18

Find the geometric progression whose 4th term is 54 and 7th term is 1458.

Answer

Given, a4 = 54 and a7 = 1458.

We know that in G.P.

   an = arn - 1
∴ a4 = ar3 and a7 = ar6.

Dividing a7 by a4,

ar6ar3=145854r3=27r=273r=3.\Rightarrow \dfrac{ar^6}{ar^3} = \dfrac{1458}{54} \\[1em] \Rightarrow r^3 = 27 \\[1em] \Rightarrow r = \sqrt[3]{27} \\[1em] \therefore r = 3. \\[1em]

Putting value of r in ar3 = 54,

a(3)3=5427a=54a=2.\Rightarrow a(3)^3 = 54 \\[1em] \Rightarrow 27a = 54 \\[1em] \Rightarrow a = 2. \\[1em]

Terms of G.P. are

⇒ a2 = ar = 2 × 3 = 6,
⇒ a3 = ar2 = 2 × 32 = 18,
⇒ a4 = ar3 = 2 × 33 = 54.

Hence, the G.P. is 2, 6, 18, 54, ....

Question 19

The fourth term of a G.P. is the square of its second term and the first term is -3. Find its 7th term.

Answer

Given, a4 = (a2)2 and a = -3.

   an = arn - 1
∴ a4 = ar3 and a2 = ar.

Since, a4 = (a2)2
∴ ar3 = (ar)2
⇒ (-3)r3 = (-3r)2
⇒ -3r3 = 9r2
⇒ 9r2 + 3r3 = 0
⇒ r2(9 + 3r) = 0
⇒ r2 = 0 or 9 + 3r = 0
⇒ r = 0 or r = -3.

As common ratio cannot be equal to zero so, r ≠ 0.

a7 = ar6 = (-3)(-3)6 = -3 × 729 = -2187.

Hence, the 7th term of the G.P. is -2187.

Question 20

If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively, prove that x, y, z are in G.P.

Answer

Given, a4 = x, a10 = y and a16 = z.

We know that
   an = arn - 1
∴ a4 = ar3 = x, a10 = ar9 = y and a16 = ar15 = z.

Dividing y by x we get,

yx=ar9ar3=r6\dfrac{y}{x} = \dfrac{ar^9}{ar^3} = r^6

Dividing z by y we get,

zy=ar15ar9=r6yz=zy.\dfrac{z}{y} = \dfrac{ar^{15}}{ar^9} = r^6 \\[1em] \therefore \dfrac{y}{z} = \dfrac{z}{y}.

Hence, proved that x, y, z are in G.P.

Question 21

How many terms of the G.P. 3,32,34,....3, \dfrac{3}{2}, \dfrac{3}{4}, .... are needed to give the sum 3069512?\dfrac{3069}{512}?

Answer

Here, a = 3 and r = 323=32×3=12.\dfrac{\dfrac{3}{2}}{3} = \dfrac{3}{2 \times 3} = \dfrac{1}{2}.

Let n terms are needed for the sum.

Sn=a(rn1)r13069512=3[(12)n1]1213069512=3[(12)n1]1223069512=6[(12)n1]3069512×6=1(12)n(12)n=130693072(12)n=307230693072(12)n=33072(12)n=11024(12)n=(12)10n=10.S_n = \dfrac{a(r^n - 1)}{r - 1} \\[1em] \Rightarrow \dfrac{3069}{512} = \dfrac{3\Big[\Big(\dfrac{1}{2}\Big)^n - 1\Big]}{\dfrac{1}{2} - 1} \\[1em] \Rightarrow \dfrac{3069}{512} = \dfrac{3\Big[\Big(\dfrac{1}{2}\Big)^n - 1\Big]}{\dfrac{1 - 2}{2}} \\[1em] \Rightarrow \dfrac{3069}{512} = -6\Big[\Big(\dfrac{1}{2}\Big)^n - 1\Big] \\[1em] \Rightarrow \dfrac{3069}{512 \times 6} = 1 - \Big(\dfrac{1}{2}\Big)^n \\[1em] \Rightarrow \Big(\dfrac{1}{2}\Big)^n = 1 - \dfrac{3069}{3072} \\[1em] \Rightarrow \Big(\dfrac{1}{2}\Big)^n = \dfrac{3072 - 3069}{3072} \\[1em] \Rightarrow \Big(\dfrac{1}{2}\Big)^n = \dfrac{3}{3072} \\[1em] \Rightarrow \Big(\dfrac{1}{2}\Big)^n = \dfrac{1}{1024} \\[1em] \Rightarrow \Big(\dfrac{1}{2}\Big)^n = \Big(\dfrac{1}{2}\Big)^{10} \\[1em] \therefore n = 10.

Hence, 10 terms of the G.P. are required for the sum of 3069512\dfrac{3069}{512}.

Question 22

15, 30, 60, 120 ...... are in G.P. (Geometric Progression).

(a) Find the nth term of this G.P. in terms of n.

(b) How many terms of the above G.P. will give the sum 945 ?

Answer

Given,

G.P. : 15, 30, 60, 120 ......

First term (a) = 15

Common ratio (r) = 3015\dfrac{30}{15} = 2

(a) nth term of G.P. = arn - 1 = 15 x 2n - 1

= 152\dfrac{15}{2} x 2n

= 7.5 x 2n

Hence, nth term of the given G.P. is 7.5 x 2n

(b) Let sum of n terms of G.P. is 945.

By formula,

Sum of n terms of G.P. = a(rn1)(r1)\dfrac{a(r^n - 1)}{(r - 1)}

Substituting values we get :

945=15.(2n1)21945=15.(2n1)12n1=945152n1=632n=63+12n=642n=26n=6.\Rightarrow 945 = \dfrac{15.(2^n - 1)}{2 - 1} \\[1em] \Rightarrow 945 = \dfrac{15.(2^n - 1)}{1} \\[1em] \Rightarrow 2^n - 1 = \dfrac{945}{15} \\[1em] \Rightarrow 2^n - 1 = 63 \\[1em] \Rightarrow 2^n = 63 + 1 \\[1em] \Rightarrow 2^n = 64 \\[1em] \Rightarrow 2^n = 2^6 \\[1em] \Rightarrow n = 6.

Hence, sum of 6 terms of G.P. = 945.

Question 23

The roots of the equation (q - r)x2 + (r - p)x + (p - q) = 0 are equal.

Prove that : 2q = p + r, that is, p, q and r are in A.P.

Answer

Given,

The roots of the equation (q - r)x2 + (r - p)x + (p - q) = 0 are equal.

∴ Discriminant (D) = 0

⇒ b2 - 4ac = 0

⇒ (r - p)2 - 4 × (q - r) × (p - q) = 0

⇒ r2 + p2 - 2pr - 4(qp - q2 - rp + qr) = 0

⇒ r2 + p2 - 2pr - 4qp + 4q2 + 4rp - 4qr = 0

⇒ r2 + p2 + 2pr - 4qp - 4qr + 4q2 = 0

⇒ (p + r)2 - 4q(p + r) + 4q2 = 0

Let p + r = y

⇒ y2 - 4qy + 4q2 = 0

⇒ (y - 2q)2 = 0

⇒ y - 2q = 0

⇒ y = 2q

⇒ p + r = 2q.

Hence, proved that p + r = 2q.

PrevNext