KnowledgeBoat Logo
|
OPEN IN APP

Chapter 8

Matrices

Class - 10 ML Aggarwal Understanding ICSE Mathematics



Exercise 8.1

Question 1

Classify the following matrices :

(i) [2151]\text{(i) }\begin{bmatrix*}[r] 2 & -1 \\ 5 & 1 \end{bmatrix*} \\[0.5em]

(ii) [237]\text{(ii) } \begin{bmatrix} 2 & 3 & -7 \end{bmatrix} \\[0.5em]

(iii) [301]\text{(iii) } \begin{bmatrix*}[r] 3 \\ 0 \\ -1 \end{bmatrix*} \\[0.5em]

(iv) [240017]\text{(iv) } \begin{bmatrix} 2 & -4 \\ 0 & 0 \\ 1 & 7 \end{bmatrix} \\[0.5em]

(v) [278120]\text{(v) } \begin{bmatrix*}[r] 2 & 7 & 8 \\ -1 & \sqrt{2} & 0 \end{bmatrix*} \\[0.5em]

(vi) [000000].\text{(vi) } \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \\[0.5em]

Answer

(i) It is a square matrix of order 2.

(ii) It is a row matrix of order 1 x 3.

(iii) It is a column matrix of order 3 x 1.

(iv) It is a 3 x 2 matrix.

(v) It is a 2 x 3 matrix.

(vi) It is a zero matrix of order 2 x 3.

Question 2(i)

If a matrix has 4 elements, what are the possible orders it can have ?

Answer

If a matrix has 4 elements the possible orders are,

1 x 4, 2 x 2, 4 x 1.

Question 2(ii)

If a matrix has 8 elements, what are the possible orders it can have ?

Answer

If a matrix has 8 elements the possible orders are,

1 x 8, 4 x 2, 2 x 4, 8 x 1.

Question 3

Construct a 2 ×\times 2 matrix whose elements aij are given by

(i) aij = 2i - j

(ii) aij = i.j

Answer

(i) Given aij = 2i - j,

∴ a11 = 2(1) - 1 = 1, a12 = 2(1) - 2 = 0,
    a21 = 2(2) - 1 = 3, a22 = 2(2) - 2 = 2.

Hence, the required matrix =[1032]\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}.

(ii) Given aij = i.j,

∴ a11 = 1.1 = 1, a12 = 1.2 = 2,
    a21 = 2.1 = 2, a22 = 2.2 = 4.

Hence, the required matrix =[1224]\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.

Question 4

Find the values of x and y if [2x+y3x2y]=[54]\begin{bmatrix*}[r] 2x + y \\ 3x - 2y \end{bmatrix*} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}.

Answer

Given [2x+y3x2y]=[54]\begin{bmatrix*}[r] 2x + y \\ 3x - 2y \end{bmatrix*} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}.

By definition of equality of matrices, we get

2x + y = 5    [....Eq 1]
3x - 2y = 4    [....Eq 2]

2x + y = 5
⇒ y = 5 - 2x

Putting value of y in Eq 2,

3x - 2(5 - 2x) = 4
⇒ 3x - 10 + 4x = 4
⇒ 7x = 14
⇒ x = 2.

∴ x = 2, y = 5 - 2x = 5 - 4 = 1.

Hence, the value of x = 2 and y = 1.

Question 5

Find the values of x if [3x+yy2yx3]=[1253]\begin{bmatrix*}[r] 3x + y & -y \\ 2y - x & 3 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \\ -5 & 3 \end{bmatrix*}.

Answer

Given [3x+yy2yx3]=[1253]\begin{bmatrix*}[r] 3x + y & -y \\ 2y - x & 3 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \\ -5 & 3 \end{bmatrix*}

By definition of equality of matrices, we get

-y = 2 or y = -2 and
3x + y = 1

Putting value of y = -2 in above equation

⇒ 3x - 2 = 1
⇒ 3x = 3
⇒ x = 1

Hence, the value of x = 1.

Question 6

If [x+34y4x+y]=[5439]\begin{bmatrix*}[r] x + 3 & 4 \\ y - 4 & x + y \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 4 \\ 3 & 9 \end{bmatrix*}, find the values of x and y.

Answer

Given [x+34y4x+y]=[5439]\begin{bmatrix*}[r] x + 3 & 4 \\ y - 4 & x + y \end{bmatrix*} = \begin{bmatrix} 5 & 4 \\ 3 & 9 \end{bmatrix}.

By definition of equality of matrices, we get

    x + 3 = 5, y - 4 = 3 and x + y = 9
⇒ x = 2, y = 7 and x + y = 9.

Note that x = 2 and y = 7 satisfies the equation x + y = 9.

Hence, the value of x = 2 and y = 7.

Question 7

Find the values of x, y and z if [x+2635z]=[5y2+y320].\begin{bmatrix*}[r] x + 2 & 6 \\ 3 & 5z \end{bmatrix*} = \begin{bmatrix*}[r] -5 & y^2 + y \\ 3 & -20 \end{bmatrix*} .

Answer

Given [x+2635z]=[5y2+y320].\begin{bmatrix*}[r] x + 2 & 6 \\ 3 & 5z \end{bmatrix*} = \begin{bmatrix*}[r] -5 & y^2 + y \\ 3 & -20 \end{bmatrix*} .

By definition of equality of matrices, we get

x + 2 = -5 or x = -7,
y2 + y = 6       [....Eq 1],
5z = -20 or z = -4.

From Eq 1 we get,

y2+y6=0y2+3y2y6=0y(y+3)2(y+3)=0(y2)(y+3)=0y=2 or y=3.\Rightarrow y^2 + y - 6 = 0 \\[0.5em] \Rightarrow y^2 + 3y - 2y - 6 = 0 \\[0.5em] \Rightarrow y(y + 3) - 2(y + 3) = 0 \\[0.5em] \Rightarrow (y - 2)(y + 3) = 0 \\[0.5em] \Rightarrow y = 2 \text{ or } y = -3. \\[0.5em]

∴ x = -7, y = 2 or -3 and z = -4.

Hence, the values are:
x = -7, y = 2 and z = -4
OR
x = -7, y = -3 and z = -4.

Question 8

Find the values of x, y, a and b if [x2ya+2b3ab]=[3151]\begin{bmatrix*}[r] x - 2 & y \\ a + 2b & 3a - b \end{bmatrix*} = \begin{bmatrix*}[r] 3 & 1 \\ 5 & 1 \end{bmatrix*}.

Answer

Given, [x2ya+2b3ab]=[3151]\begin{bmatrix*}[r] x - 2 & y \\ a + 2b & 3a - b \end{bmatrix*} = \begin{bmatrix*}[r] 3 & 1 \\ 5 & 1 \end{bmatrix*}.

By definition of equality of matrices, we get

x - 2 = 3 or x = 5,
y = 1,
a + 2b = 5       [...Eq 1],
3a - b = 1        [...Eq 2].

From Eq 1 we get,

⇒ a + 2b = 5
⇒ a = 5 - 2b

Putting this value of a in Eq 2,

⇒ 3(5 - 2b) - b = 1
⇒ 15 - 6b - b = 1
⇒ 7b = 14
⇒ b = 2.

Using value of b to find value of a,

⇒ a = 5 - 2b
⇒ a = 5 - 2(2)
⇒ a = 5 - 4
⇒ a = 1.

∴ x = 5, y = 1, a = 1 and b = 2.

Hence, the values are:
x = 5, y = 1, a = 1 and b = 2.

Question 9

Find the values of a, b, c and d if [a+b35+cab]=[6d18].\begin{bmatrix*}[r] a + b & 3 \\ 5 + c & ab \end{bmatrix*} = \begin{bmatrix*}[r] 6 & d \\ -1 & 8 \end{bmatrix*} .

Answer

Given [a+b35+cab]=[6d18].\begin{bmatrix*}[r] a + b & 3 \\ 5 + c & ab \end{bmatrix*} = \begin{bmatrix*}[r] 6 & d \\ -1 & 8 \end{bmatrix*} .

By definition of equality of matrices, we get

d = 3,
5 + c = -1 or c = -6,
a + b = 6       [...Eq 1],
ab = 8            [...Eq 2].

Putting value of b from Eq 1 in Eq 2,

a+b=6 or b=6aa(6a)=86aa2=8a26a+8=0a24a2a+8=0a(a4)2(a4)=0(a2)(a4)=0a=2 or a=4.a + b = 6 \text{ or } b = 6 - a \\[1em] \Rightarrow a(6 - a) = 8 \\[0.5em] \Rightarrow 6a - a^2 = 8 \\[0.5em] \Rightarrow a^2 - 6a + 8 = 0 \\[0.5em] \Rightarrow a^2 - 4a - 2a + 8 = 0 \\[0.5em] \Rightarrow a(a - 4) - 2(a - 4) = 0 \\[0.5em] \Rightarrow (a - 2)(a - 4) = 0 \\[0.5em] \Rightarrow a = 2 \text{ or } a = 4.

Now, finding value of b = 6 - a,

if,  a = 2, b = 6 - 2 = 4.

or, a = 4, b = 6 - 4 = 2.

∴ a = 2 or 4, b = 4 or 2, c = -6 and d = 3.

Hence, the values are
a = 2, b = 4, c = -6, d = 3
OR
a = 4, b = 2, c = -6, d = 3.

Exercise 8.2

Question 1

Given that M=[2012] and N =[2012]\text{M} = \begin{bmatrix*}[r] 2 & 0 \\ 1 & 2 \end{bmatrix*} \text{ and N }= \begin{bmatrix*}[r] 2 & 0 \\ -1 & 2 \end{bmatrix*}, find M + 2N.

Answer

M + 2N =[2012]+2[2012]=[2012]+[4024]=[2+40+0122+4]=[6016]\text{M + 2N }= \begin{bmatrix*}[r] 2 & 0 \\ 1 & 2 \end{bmatrix*} + 2\begin{bmatrix*}[r] 2 & 0 \\ -1 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 0 \\ 1 & 2 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & 0 \\ -2 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 + 4 & 0 + 0 \\ 1 - 2 & 2 + 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6 & 0 \\ -1 & 6 \end{bmatrix*} \\[1em]

Hence, the matrix M + 2N = [6016]\begin{bmatrix*}[r] 6 & 0 \\ -1 & 6 \end{bmatrix*}.

Question 2

If A =[2031] and B =[0123]\text{If A }= \begin{bmatrix*}[r] 2 & 0 \\ -3 & 1 \end{bmatrix*} \text{ and B }= \begin{bmatrix*}[r] 0 & 1 \\ -2 & 3 \end{bmatrix*}, find 2A - 3B.

Answer

2A - 3B =2[2031]3[0123]=[4062][0369]=[4+0036(6)29]=[4307]\text{2A - 3B }= 2\begin{bmatrix*}[r] 2 & 0 \\ -3 & 1 \end{bmatrix*} - 3\begin{bmatrix*}[r] 0 & 1 \\ -2 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 0 \\ -6 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 0 & 3 \\ -6 & 9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 + 0 & 0 - 3 \\ -6 - (-6) & 2 - 9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & -3 \\ 0 & -7 \end{bmatrix*} \\[1em]

Hence, the matrix 2A - 3B = [4307].\begin{bmatrix*}[r] 4 & -3 \\ 0 & -7 \end{bmatrix*}.

Question 3

Simplify : sin A[sin Acos Acos Asin A]+cos A[cos Asin Asin Acos A]\text{sin A}\begin{bmatrix*}[r] \text{sin A} & -\text{cos A} \\ \text{cos A} & \text{sin A} \end{bmatrix*} + \text{cos A}\begin{bmatrix*}[r] \text{cos A} & \text{sin A} \\ -\text{sin A} & \text{cos A} \end{bmatrix*}.

Answer

Given,

sin A[sin Acos Acos Asin A]+cos A[cos Asin Asin Acos A][sin2 Asin A.cos Asin A.cos Asin2 A]+[cos2 Acos A.sin Acos A.sin Acos2 A]=[sin2 A+cos2 Asin A.cos A+cos A.sin Asin A.cos Acos A.sin Asin2 A+cos2 A]sin2 A+cos2 A=1=[1001]\Rightarrow \text{sin A}\begin{bmatrix*}[r] \text{sin A} & -\text{cos A} \\ \text{cos A} & \text{sin A} \end{bmatrix*} + \text{cos A}\begin{bmatrix*}[r] \text{cos A} & \text{sin A} \\ -\text{sin A} & \text{cos A} \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] \text{sin}^2\text{ A} & -\text{sin A}.\text{cos A} \\ \text{sin A}.\text{cos A} & \text{sin}^2\text{ A} \end{bmatrix*} + \begin{bmatrix*}[r] \text{cos}^2\text{ A} & \text{cos A}.\text{sin A} \\ -\text{cos A}.\text{sin A} & \text{cos}^2\text{ A} \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] \text{sin}^2\text{ A} + \text{cos}^2\text{ A} & -\text{sin A}.\text{cos A} + \text{cos A}.\text{sin A} \\ \text{sin A}.\text{cos A} - \text{cos A}.\text{sin A} & \text{sin}^2\text{ A} + \text{cos}^2\text{ A} \end{bmatrix*} \\[1em] \because \text{sin}^2\text{ A} + \text{cos}^2\text{ A} = 1 \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em]

Hence, on simplifying, the resultant matrix = [1001].\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}.

Question 4

If A =[1223], B =[2112] and C=[0321]\text{If A } = \begin{bmatrix*}[r] 1 & 2 \\ -2 & 3 \end{bmatrix*}, \text{ B } = \begin{bmatrix*}[r] -2 & -1 \\ 1 & 2 \end{bmatrix*} \text{ and C} = \begin{bmatrix*}[r] 0 & 3 \\ 2 & -1 \end{bmatrix*}, find A + 2B - 3C.

Answer

A + 2B - 3C =[1223]+2[2112]3[0321]=[1223]+[4224][0963]=[1+(4)02+(2)92+263+4(3)]=[39610]\text{A + 2B - 3C }= \begin{bmatrix*}[r] 1 & 2 \\ -2 & 3 \end{bmatrix*} + 2\begin{bmatrix*}[r] -2 & -1 \\ 1 & 2 \end{bmatrix*} - 3\begin{bmatrix*}[r] 0 & 3 \\ 2 & -1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 2 \\ -2 & 3 \end{bmatrix*} + \begin{bmatrix*}[r] -4 & -2 \\ 2 & 4 \end{bmatrix*} - \begin{bmatrix*}[r] 0 & 9 \\ 6 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + (-4) - 0 & 2 + (-2) - 9 \\ -2 + 2 - 6 & 3 + 4 - (-3) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -3 & -9 \\ -6 & 10 \end{bmatrix*}

Hence, the matrix A + 2B - 3C = [39610].\begin{bmatrix*}[r] -3 & -9 \\ -6 & 10 \end{bmatrix*}.

Question 5

If A = [0112] and B=[1211]\begin{bmatrix*}[r] 0 & -1 \\ 1 & 2 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] 1 & 2 \\ -1 & 1 \end{bmatrix*}, find the matrix X if

(i) 3A + X = B

(ii) X - 3B = 2A.

Answer

(i) 3A + X = B

⇒ X = B - 3A

X=[1211]3[0112]=[1211][0336]=[102(3)1316]=[1545]\Rightarrow X = \begin{bmatrix*}[r] 1 & 2 \\ -1 & 1 \end{bmatrix*} - 3\begin{bmatrix*}[r] 0 & -1 \\ 1 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 2 \\ -1 & 1 \end{bmatrix*} - \begin{bmatrix*}[r] 0 & -3 \\ 3 & 6 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 - 0 & 2 - (-3) \\ -1 - 3 & 1 - 6 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 5 \\ -4 & -5 \end{bmatrix*}

Hence, matrix X = [1545].\begin{bmatrix*}[r] 1 & 5 \\ -4 & -5 \end{bmatrix*}.

(ii) X - 3B = 2A

⇒ X = 2A + 3B

X=2[0112]+3[1211]=[0224]+[3633]=[0+32+62+(3)4+3]=[3417]X = 2\begin{bmatrix*}[r] 0 & -1 \\ 1 & 2 \end{bmatrix*} + 3\begin{bmatrix*}[r] 1 & 2 \\ -1 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 & -2 \\ 2 & 4 \end{bmatrix*} + \begin{bmatrix*}[r] 3 & 6 \\ -3 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 + 3 & -2 + 6 \\ 2 + (-3) & 4 + 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 3 & 4 \\ -1 & 7 \end{bmatrix*}

Hence, matrix X = [3417].\begin{bmatrix*}[r] 3 & 4 \\ -1 & 7 \end{bmatrix*}.

Question 6

Solve the matrix equation [2150]3X=[7426]\begin{bmatrix} 2 & 1 \\ 5 & 0 \end{bmatrix} - 3X = \begin{bmatrix*}[r] -7 & 4 \\ 2 & 6 \end{bmatrix*}

Answer

Given,

[2150]3X=[7426]3X=[2150][7426]3X=[2(7)145206]3X=[9336]X=13[9336]X=[3112]\Rightarrow \begin{bmatrix} 2 & 1 \\ 5 & 0 \end{bmatrix} - 3X = \begin{bmatrix*}[r] -7 & 4 \\ 2 & 6 \end{bmatrix*} \\[1em] \Rightarrow 3X = \begin{bmatrix} 2 & 1 \\ 5 & 0 \end{bmatrix} - \begin{bmatrix*}[r] -7 & 4 \\ 2 & 6 \end{bmatrix*} \\[1em] \Rightarrow 3X = \begin{bmatrix*}[r] 2 - (-7) & 1 - 4 \\ 5 - 2 & 0 - 6 \end{bmatrix*} \\[1em] \Rightarrow 3X = \begin{bmatrix*}[r] 9 & -3 \\ 3 & -6 \end{bmatrix*} \\[1em] \Rightarrow X = \dfrac{1}{3}\begin{bmatrix*}[r] 9 & -3 \\ 3 & -6 \end{bmatrix*} \\[1em] \Rightarrow X = \begin{bmatrix*}[r] 3 & -1 \\ 1 & -2 \end{bmatrix*}

Hence, matrix X = [3112].\begin{bmatrix*}[r] 3 & -1 \\ 1 & -2 \end{bmatrix*} .

Question 7

If [1423]+2M=3[3203],\begin{bmatrix*}[r] 1 & 4 \\ -2 & 3 \end{bmatrix*} + 2\text{M} = 3\begin{bmatrix*}[r] 3 & 2 \\ 0 & -3 \end{bmatrix*}, \\[1em] find the matrix M.

Answer

Given,

[1423]+2M=3[3203][1423]+2M=[9609]2M=[9609][1423]2M=[91640(2)93]M=12[82212]M=[4116]\Rightarrow \begin{bmatrix*}[r] 1 & 4 \\ -2 & 3 \end{bmatrix*} + 2\text{M} = 3\begin{bmatrix*}[r] 3 & 2 \\ 0 & -3 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 & 4 \\ -2 & 3 \end{bmatrix*} + 2\text{M} = \begin{bmatrix*}[r] 9 & 6 \\ 0 & -9 \end{bmatrix*} \\[1em] \Rightarrow 2\text{M} = \begin{bmatrix*}[r] 9 & 6 \\ 0 & -9 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 4 \\ -2 & 3 \end{bmatrix*} \\[1em] \Rightarrow 2\text{M} = \begin{bmatrix*}[r] 9 - 1 & 6 - 4 \\ 0 - (-2) & -9 - 3 \end{bmatrix*} \\[1em] \Rightarrow \text{M} = \dfrac{1}{2}\begin{bmatrix*}[r] 8 & 2 \\ 2 & -12 \end{bmatrix*} \\[1em] \Rightarrow \text{M} = \begin{bmatrix*}[r] 4 & 1 \\ 1 & -6 \end{bmatrix*} \\[1em]

Hence, matrix M = [4116].\begin{bmatrix*}[r] 4 & 1 \\ 1 & -6 \end{bmatrix*}.

Question 8

Given A=[2620],B=[3240] and C=[4002].A = \begin{bmatrix*}[r] 2 & -6 \\ 2 & 0 \end{bmatrix*}, B = \begin{bmatrix*}[r] -3 & 2 \\ 4 & 0 \end{bmatrix*} \text{ and } C = \begin{bmatrix*}[r] 4 & 0 \\ 0 & 2 \end{bmatrix*}.

Find the matrix X such that A + 2X = 2B + C.

Answer

Putting values of A, B and C in A + 2X = 2B + C,

[2620]+2X=2[3240]+[4002]2X=[6480]+[4002][2620]2X=[6+424+0(6)8+020+20]X=12[41062]X=[2531]\Rightarrow \begin{bmatrix*}[r] 2 & -6 \\ 2 & 0 \end{bmatrix*} + 2X = 2\begin{bmatrix*}[r] -3 & 2 \\ 4 & 0 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & 0 \\ 0 & 2 \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] -6 & 4 \\ 8 & 0 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & 0 \\ 0 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & -6 \\ 2 & 0 \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] -6 + 4 - 2 & 4 + 0 - (-6) \\ 8 + 0 - 2 & 0 + 2 - 0 \end{bmatrix*} \\[1em] \Rightarrow X = \dfrac{1}{2}\begin{bmatrix*}[r] -4 & 10 \\ 6 & 2 \end{bmatrix*} \\[1em] \Rightarrow X = \begin{bmatrix*}[r] -2 & 5 \\ 3 & 1 \end{bmatrix*}

Hence, matrix X = [2531]\begin{bmatrix*}[r] -2 & 5 \\ 3 & 1 \end{bmatrix*}.

Question 9

Find X and Y if

X + Y=[7025] and X - Y=[3003].\text{X + Y} = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} \text{ and X - Y} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.

Answer

Given,

X + Y = [7025]\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}        (...Eq1)

X - Y = [3003]\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}         (...Eq2)

Adding both the equations,

X+Y+XY=[7025]+[3003]2X=[7+30+02+05+3]X=12[10028]X=[5014]\Rightarrow X + Y + X - Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \\[1em] \Rightarrow 2X = \begin{bmatrix} 7 + 3 & 0 + 0 \\ 2 + 0 & 5 + 3 \end{bmatrix} \\[1em] \Rightarrow X = \dfrac{1}{2}\begin{bmatrix} 10 & 0 \\ 2 & 8 \end{bmatrix} \\[1em] \Rightarrow X = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix} \\[1em]

From Eq 1 we get,

Y=[7025]X=[7025][5014]=[75002154]=[2011]X=[5014],Y=[2011].\Rightarrow Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} - X \\[1em] = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 - 5 & 0 - 0 \\ 2 - 1 & 5 - 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \\[1.5em] \therefore X = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix} , Y = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}.

Hence, X=[5014] and Y=[2011].X = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}.

Question 10

If 2[x79y5]+[6745]=[1072215],2\begin{bmatrix*}[r] x & 7 \\ 9 & y - 5 \end{bmatrix*} + \begin{bmatrix*}[r] 6 & -7 \\ 4 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 7 \\ 22 & 15 \end{bmatrix*}, find the values of x and y.

Answer

Given,

2[x79y5]+[6745]=[1072215][2x14182y10]+[6745]=[1072215][2x+614+(7)18+42y10+5]=[1072215]2x+6=10 and 2y5=152x=4 and 2y=20\Rightarrow 2\begin{bmatrix*}[r] x & 7 \\ 9 & y - 5 \end{bmatrix*} + \begin{bmatrix*}[r] 6 & -7 \\ 4 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 7 \\ 22 & 15 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x & 14 \\ 18 & 2y - 10 \end{bmatrix*} + \begin{bmatrix*}[r] 6 & -7 \\ 4 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 7 \\ 22 & 15 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x + 6 & 14 + (-7) \\ 18 + 4 & 2y - 10 + 5 \end{bmatrix*} = \begin{bmatrix*}[r] 10 & 7 \\ 22 & 15 \end{bmatrix*} \\[1em] \Rightarrow 2x + 6 = 10 \text{ and } 2y - 5 = 15 \\[1em] \Rightarrow 2x = 4 \text{ and } 2y = 20 \\[1em]

∴ x = 2 and y = 10.

Hence, the value of x = 2 and y = 10.

Question 11

If 2[345x]+[1y01]=[z0105],2\begin{bmatrix*}[r] 3 & 4 \\ 5 & x \end{bmatrix*} + \begin{bmatrix*}[r] 1 & y \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] z & 0 \\ 10 & 5 \end{bmatrix*}, find the values of x, y and z.

Answer

Given,

2[345x]+[1y01]=[z0105][68102x]+[1y01]=[z0105][6+18+y10+02x+1]=[z0105][78+y102x+1]=[z0105]7=z,8+y=0 and 2x+1=5z=7,y=8 and 2x=4z=7,y=8 and x=2.\Rightarrow 2\begin{bmatrix*}[r] 3 & 4 \\ 5 & x \end{bmatrix*} + \begin{bmatrix*}[r] 1 & y \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] z & 0 \\ 10 & 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 & 8 \\ 10 & 2x \end{bmatrix*} + \begin{bmatrix*}[r] 1 & y \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] z & 0 \\ 10 & 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 + 1 & 8 + y \\ 10 + 0 & 2x + 1 \end{bmatrix*} = \begin{bmatrix*}[r] z & 0 \\ 10 & 5 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 7 & 8 + y \\ 10 & 2x + 1 \end{bmatrix*} = \begin{bmatrix*}[r] z & 0 \\ 10 & 5 \end{bmatrix*} \\[1em] \Rightarrow 7 = z, 8 + y = 0 \text{ and } 2x + 1 = 5 \\[0.5em] \Rightarrow z = 7, y = -8 \text{ and } 2x = 4 \\[0.5em] \Rightarrow z = 7, y = -8 \text{ and } x = 2.

∴ x = 2, y = -8 and z = 7.

Hence, the values are x = 2, y = -8 and z = 7.

Question 12

If [521y+1]2[12x132]=[3872],\begin{bmatrix*}[r] 5 & 2 \\ -1 & y + 1 \end{bmatrix*} - 2\begin{bmatrix*}[r] 1 & 2x - 1 \\ 3 & -2 \end{bmatrix*} = \begin{bmatrix*}[r] 3 & -8 \\ -7 & 2 \end{bmatrix*}, find the values of x and y.

Answer

Given,

[521y+1]2[12x132]=[3872][521y+1][24x264]=[3872][5224x+216y+1(4)]=[3872][344x7y+5]=[3872]44x=8 and y+5=24x=8+4 and y=254x=12 and y=3\Rightarrow \begin{bmatrix*}[r] 5 & 2 \\ -1 & y + 1 \end{bmatrix*} - 2\begin{bmatrix*}[r] 1 & 2x - 1 \\ 3 & -2 \end{bmatrix*} = \begin{bmatrix*}[r] 3 & -8 \\ -7 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 5 & 2 \\ -1 & y + 1 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & 4x - 2 \\ 6 & -4 \end{bmatrix*} = \begin{bmatrix*}[r] 3 & -8 \\ -7 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 5 - 2 & 2 - 4x + 2 \\ -1 - 6 & y + 1 - (-4) \end{bmatrix*} = \begin{bmatrix*}[r] 3 & -8 \\ -7 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 & 4 - 4x \\ -7 & y + 5 \end{bmatrix*} = \begin{bmatrix*}[r] 3 & -8 \\ -7 & 2 \end{bmatrix*} \\[1em] \Rightarrow 4 - 4x = -8 \text{ and } y + 5 = 2 \\[0.5em] \Rightarrow 4x = 8 + 4 \text{ and } y = 2 - 5 \\[0.5em] \Rightarrow 4x = 12 \text{ and } y = -3 \\[0.5em]

∴ x = 3 and y = -3.

Hence, the value of x = 3 and y = -3.

Question 13

If [a342]+[2b12][112c]=[5073],\begin{bmatrix*}[r] a & 3 \\ 4 & 2 \end{bmatrix*} + \begin{bmatrix*}[r] 2 & b \\ 1 & -2 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 1 \\ -2 & c \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 0 \\ 7 & 3 \end{bmatrix*}, find the values of a, b and c.

Answer

Given,

[a342]+[2b12][112c]=[5073][a+213+b14+1(2)2+(2)c]=[5073][a+1b+27c]=[5073]a+1=5,b+2=0 and c=3\Rightarrow \begin{bmatrix*}[r] a & 3 \\ 4 & 2 \end{bmatrix*} + \begin{bmatrix*}[r] 2 & b \\ 1 & -2 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 1 \\ -2 & c \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 0 \\ 7 & 3 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a + 2 - 1 & 3 + b - 1 \\ 4 + 1 -(-2) & 2 + (-2) - c \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 0 \\ 7 & 3 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a + 1 & b + 2 \\ 7 & -c \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 0 \\ 7 & 3 \end{bmatrix*} \\[1em] \Rightarrow a + 1 = 5, b + 2 = 0 \text{ and } -c = 3 \\[1em]

∴ a = 4, b = -2 and c = -3.

Hence, the values are a = 4, b = -2 and c = -3.

Question 14

If A=[2a35],B=[237b],C=[c9111]A = \begin{bmatrix*}[r] 2 & a \\ -3 & 5 \end{bmatrix*}, B = \begin{bmatrix*}[r] -2 & 3 \\ 7 & b \end{bmatrix*}, C = \begin{bmatrix*}[r] c & 9 \\ -1 & -11 \end{bmatrix*} and 5A + 2B = C, find the values of a, b and c.

Answer

Given, 5A + 2B = C

5[2a35]+2[237b]=[c9111][105a1525]+[46142b]=[c9111][10+(4)5a+615+1425+2b]=[c9111][65a+6125+2b]=[c9111]6=c,5a+6=9 and 25+2b=11c=6,5a=3 and 2b=1125c=6,a=35 and 2b=36c=6,a=35 and b=18a=35,b=18 and c=6.\Rightarrow 5\begin{bmatrix*}[r] 2 & a \\ -3 & 5 \end{bmatrix*} + 2\begin{bmatrix*}[r] -2 & 3 \\ 7 & b \end{bmatrix*} = \begin{bmatrix*}[r] c & 9 \\ -1 & -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 10 & 5a \\ -15 & 25 \end{bmatrix*} + \begin{bmatrix*}[r] -4 & 6 \\ 14 & 2b \end{bmatrix*} = \begin{bmatrix*}[r] c & 9 \\ -1 & -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 10 + (-4) & 5a + 6 \\ -15 + 14 & 25 + 2b \end{bmatrix*} = \begin{bmatrix*}[r] c & 9 \\ -1 & -11 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 & 5a + 6 \\ -1 & 25 + 2b \end{bmatrix*} = \begin{bmatrix*}[r] c & 9 \\ -1 & -11 \end{bmatrix*} \\[1em] \Rightarrow 6 = c, 5a + 6 = 9 \text{ and } 25 + 2b = -11 \\[0.5em] \Rightarrow c = 6, 5a = 3 \text{ and } 2b = -11 - 25 \\[0.5em] \Rightarrow c = 6, a = \dfrac{3}{5} \text{ and } 2b = -36 \\[0.5em] \Rightarrow c = 6, a = \dfrac{3}{5} \text{ and } b = -18 \\[0.5em] \therefore a = \dfrac{3}{5}, b = -18 \text{ and } c = 6.

Hence, the values are a = 35,\bold{\dfrac{3}{5}}, b = -18 and c = 6.

Exercise 8.3

Question 1

If A = [3542] and B =[24],\begin{bmatrix*}[r] 3 & 5 \\ 4 & -2 \end{bmatrix*} \text{ and B } = \begin{bmatrix*}[r] 2 \\ 4 \end{bmatrix*}, is the product AB possible? Give a reason. If yes find AB.

Answer

The product is possible because number of rows in A = number of columns in B =

AB=[3542][24]=[3.2+5.44.2+(2).4]=[260]AB = \begin{bmatrix*}[r] 3 & 5 \\ 4 & -2 \end{bmatrix*} \begin{bmatrix*}[r] 2 \\ 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 3.2 + 5.4 \\ 4.2 + (-2).4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 26 \\ 0 \end{bmatrix*}

Hence, the matrix AB = [260].\begin{bmatrix*}[r] 26 \\ 0 \end{bmatrix*}.

Question 2

If A = [2513], B =[1132],\begin{bmatrix*}[r] 2 & 5 \\ 1 & 3 \end{bmatrix*}, \text{ B } = \begin{bmatrix*}[r] 1 & -1 \\ -3 & 2 \end{bmatrix*}, find AB and BA. Is AB = BA ?

Answer

 AB =[2513][1132]=[2.1+5.(3)2.(1)+5.21.1+3.(3)1.(1)+3.2]=[13885] BA =[1132][2513]=[1×2+(1)×11×5+(1)×33×2+2×13×5+2×3]=[21536+215+6]=[1249]\text{ AB } = \begin{bmatrix*}[r] 2 & 5 \\ 1 & 3 \end{bmatrix*} \begin{bmatrix*}[r] 1 & -1 \\ -3 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2.1 + 5.(-3) & 2.(-1) + 5.2 \\ 1.1 + 3.(-3) & 1.(-1) + 3.2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -13 & 8 \\ -8 & 5 \end{bmatrix*} \\[1em] \text{ BA } = \begin{bmatrix*}[r] 1 & -1 \\ -3 & 2 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 5 \\ 1 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 2 + (-1) \times 1 & 1 \times 5 + (-1) \times 3 \\ -3 \times 2 + 2 \times 1 & -3 \times 5 + 2 \times 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 - 1 & 5 - 3 \\ -6 + 2 & -15 + 6 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 2 \\ -4 & -9 \end{bmatrix*}

The matrix AB = [13885] and BA =[1249].\begin{bmatrix*}[r] -13 & 8 \\ -8 & 5 \end{bmatrix*} \text{ and BA } = \begin{bmatrix*}[r] 1 & 2 \\ -4 & -9 \end{bmatrix*}. AB ≠ BA.

Question 3

If A = [3724], B =[0253] and C =[1546],\begin{bmatrix*}[r] 3 & 7 \\ 2 & 4 \end{bmatrix*}, \text{ B } = \begin{bmatrix*}[r] 0 & 2 \\ 5 & 3 \end{bmatrix*} \text{ and C } = \begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*}, find AB - 5C.

Answer

AB5C=[3724][0253]5[1546]=[3×0+7×53×2+7×32×0+4×52×2+4×3][5252030]=[0+356+210+204+12][5252030]=[35527(25)20(20)1630]=[30524014]AB - 5C = \begin{bmatrix*}[r] 3 & 7 \\ 2 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 0 & 2 \\ 5 & 3 \end{bmatrix*} - 5\begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 3 \times 0 + 7 \times 5 & 3 \times 2 + 7 \times 3 \\ 2 \times 0 + 4 \times 5 & 2 \times 2 + 4 \times 3 \end{bmatrix*} \\[1em] - \begin{bmatrix*}[r] 5 & -25 \\ -20 & 30 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 + 35 & 6 + 21 \\ 0 + 20 & 4 + 12 \end{bmatrix*} - \begin{bmatrix*}[r] 5 & -25 \\ -20 & 30 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 35 - 5 & 27 - (-25) \\ 20 - (-20) & 16 - 30 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 30 & 52 \\ 40 & -14 \end{bmatrix*}

Hence, the matrix AB - 5C = [30524014].\begin{bmatrix*}[r] 30 & 52 \\ 40 & -14 \end{bmatrix*}.

Question 4

If A = [1221] and B =[2112],\begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \text{ and B } = \begin{bmatrix*}[r] 2 & 1 \\ 1 & 2 \end{bmatrix*}, find A(BA).

Answer

BA =[2112][1221]=[2×1+1×22×2+1×11×1+2×21×2+2×1]=[2+24+11+42+2]=[4554]A(BA) =A×BA=[1221][4554]=[1×4+2×51×5+2×42×4+1×52×5+1×4]=[4+105+88+510+4]=[14131314]\text{BA } = \begin{bmatrix*}[r] 2 & 1 \\ 1 & 2 \end{bmatrix*} \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 1 + 1 \times 2 & 2 \times 2 + 1 \times 1 \\ 1 \times 1 + 2 \times 2 & 1 \times 2 + 2 \times 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 + 2 & 4 + 1 \\ 1 + 4 & 2 + 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 5 \\ 5 & 4 \end{bmatrix*} \\[1.5em] \therefore \text{A(BA) } = \text{A} \times \text{BA} \\[1em] = \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 4 & 5 \\ 5 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 4 + 2 \times 5 & 1 \times 5 + 2 \times 4 \\ 2 \times 4 + 1 \times 5 & 2 \times 5 + 1 \times 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 + 10 & 5 + 8 \\ 8 + 5 & 10 + 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 14 & 13 \\ 13 & 14 \end{bmatrix*}

Hence, the matrix A(BA) = [14131314].\begin{bmatrix*}[r] 14 & 13 \\ 13 & 14 \end{bmatrix*}.

Question 5

Given the matrices :

 A =[2142], B =[3412] and C =[3102].\text { A } = \begin{bmatrix*}[r] 2 & 1 \\ 4 & 2 \end{bmatrix*}, \text{ B } = \begin{bmatrix*}[r] 3 & 4 \\ -1 & -2 \end{bmatrix*} \text{ and C } = \begin{bmatrix*}[r] -3 & 1 \\ 0 & -2 \end{bmatrix*} .

Find the products of (i) ABC (ii) ACB and state whether they are equal.

Answer

(i)

ABC =[2142][3412][3102]=[2×3+1×(1)2×4+1×(2)4×3+2×(1)4×4+2×(2)][3102]=[6182122164][3102]=[561012][3102]=[5×(3)+6×05×1+6×(2)10×(3)+12×010×1+12×(2)]=[15+051230+010+(24)]=[1573014]\text{ABC } = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}\begin{bmatrix*}[r] 3 & 4 \\ -1 & -2 \end{bmatrix*}\begin{bmatrix*}[r] -3 & 1 \\ 0 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 3 + 1 \times (-1) & 2 \times 4 + 1 \times (-2) \\ 4 \times 3 + 2 \times (-1) & 4 \times 4 + 2 \times (-2) \end{bmatrix*} \begin{bmatrix*}[r] -3 & 1 \\ 0 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6 - 1 & 8 - 2 \\ 12 - 2 & 16 - 4 \end{bmatrix*} \begin{bmatrix*}[r] -3 & 1 \\ 0 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix} 5 & 6 \\ 10 & 12 \end{bmatrix} \begin{bmatrix*}[r] -3 & 1 \\ 0 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 5 \times (-3) + 6 \times 0 & 5 \times 1 + 6 \times (-2) \\ 10 \times (-3) + 12 \times 0 & 10 \times 1 + 12 \times (-2) \end{bmatrix*} \\[1em] = \begin{bmatrix} -15 + 0 & 5 - 12 \\ -30 + 0 & 10 + (-24) \end{bmatrix} \\[1em] = \begin{bmatrix} -15 & -7 \\ -30 & -14 \end{bmatrix} \\[1em]

Hence, the matrix ABC = [1573014].\begin{bmatrix} -15 & -7 \\ -30 & -14 \end{bmatrix} .

(ii)

ACB =[2142][3102][3412]=[2×(3)+1×02×1+1×(2)4×(3)+2×04×1+2×(2)][3412]=[6+02212+044][3412]=[60120][3412]=[6×3+0×(1)6×4+0×(2)12×3+0×(1)12×4+0×(2)]=[18+024+036+048+0]=[18243648]\text{ACB } = \begin{bmatrix*}[r] 2 & 1 \\ 4 & 2 \end{bmatrix*} \begin{bmatrix*}[r] -3 & 1 \\ 0 & -2 \end{bmatrix*} \begin{bmatrix*}[r] 3 & 4 \\ -1 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times (-3) + 1 \times 0 & 2 \times 1 + 1 \times (-2) \\ 4 \times (-3) + 2 \times 0 & 4 \times 1 + 2 \times (-2) \end{bmatrix*} \begin{bmatrix*}[r] 3 & 4 \\ -1 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 + 0 & 2 - 2 \\ -12 + 0 & 4 - 4 \end{bmatrix*} \begin{bmatrix*}[r] 3 & 4 \\ -1 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 & 0 \\ -12 & 0 \end{bmatrix*} \begin{bmatrix*}[r] 3 & 4 \\ -1 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 \times 3 + 0 \times (-1) & -6 \times 4 + 0 \times (-2) \\ -12 \times 3 + 0 \times (-1) & -12 \times 4 + 0 \times (-2) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -18 + 0 & -24 + 0 \\ -36 + 0 & -48 + 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -18 & -24 \\ -36 & -48 \end{bmatrix*} \\[1em]

Hence, the matrix ACB = [18243648],\begin{bmatrix} -18 & -24 \\ -36 & -48 \end{bmatrix} , and matrix ABC ≠ ACB.

Question 6

Evaluate : [4 sin 30° 2 cos 60° sin 90°  2 cos 0°][4554].\begin{bmatrix} \text{4 sin 30° } & \text {2 cos 60°} \\ \text{ sin 90° } & \text{ 2 cos 0°} \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}.

Answer

[4 sin 30° 2 cos 60° sin 90°  2 cos 0°][4554] Since, sin 30° = cos 60° =12, sin 90° = cos 0° = 1.[4×122×1212×1][4554]=[2112][4554]=[2×4+1×52×5+1×41×4+2×51×5+2×4]=[8+510+44+105+8]=[13141413].\begin{bmatrix} \text{4 sin 30° } & \text {2 cos 60°} \\ \text{ sin 90° } & \text{ 2 cos 0°} \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix} \\[1em] \text{ Since, sin 30° = cos 60° } = \dfrac{1}{2}, \text { sin 90° = cos 0° = 1.} \\[1em] \Rightarrow \begin{bmatrix} 4 \times \dfrac{1}{2} & 2 \times \dfrac{1}{2} \\ 1 & 2 \times 1 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 \times 4 + 1 \times 5 & 2 \times 5 + 1 \times 4 \\ 1 \times 4 + 2 \times 5 & 1 \times 5 + 2 \times 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 8 + 5 & 10 + 4 \\ 4 + 10 & 5 + 8 \end{bmatrix} \\[1em] = \begin{bmatrix} 13 & 14 \\ 14 & 13 \end{bmatrix} .

Hence, the resultant matrix is [13141413].\begin{bmatrix} 13 & 14 \\ 14 & 13 \end{bmatrix}.

Question 7

If A = [1324] and B =[2346],\begin{bmatrix*}[r] -1 & 3 \\ 2 & 4 \end{bmatrix*} \text{ and B } = \begin{bmatrix*}[r] 2 & -3 \\ -4 & -6 \end{bmatrix*}, find the matrix AB + BA.

Answer

 AB =[1324][2346]=[1×2+3×41×(3)+3×(6)2×2+4×(4)2×(3)+4×(6)]=[212318416624]=[14151230]BA =[2346][1324]=[2×(1)+(3)×22×3+(3)×4(4)×(1)+(6)×2(4)×3+(6)×4]=[266124121224]=[86836]Given, AB + BA =[14151230]+[86836]=[14+(8)15+(6)12+(8)30+(36)]=[22212066].\text{ AB } = \begin{bmatrix*}[r] -1 & 3 \\ 2 & 4 \end{bmatrix*} \begin{bmatrix*}[r] 2 & -3 \\ -4 & -6 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -1 \times 2 + 3 \times -4 & -1 \times (-3) + 3 \times (-6) \\ 2 \times 2 + 4 \times (-4) & 2 \times (-3) + 4 \times (-6) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -2 - 12 & 3 - 18 \\ 4 - 16 & -6 - 24 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -14 & -15 \\ -12 & -30 \end{bmatrix*} \\[1em] \text{BA } = \begin{bmatrix*}[r] 2 & -3 \\ -4 & -6 \end{bmatrix*} \begin{bmatrix*}[r] -1 & 3 \\ 2 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times (-1) + (-3) \times 2 & 2 \times 3 + (-3) \times 4 \\ (-4) \times (-1) + (-6) \times 2 & (-4) \times 3 + (-6) \times 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -2 - 6 & 6 - 12 \\ 4 - 12 & -12 - 24 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -8 & -6 \\ -8 & -36 \end{bmatrix*} \\[1em] \text{Given, AB + BA } = \begin{bmatrix*}[r] -14 & -15 \\ -12 & -30 \end{bmatrix*} + \begin{bmatrix*}[r] -8 & -6 \\ -8 & -36 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -14 + (-8) & -15 + (-6) \\ -12 + (-8) & -30 + (-36) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -22 & -21 \\ -20 & -66 \end{bmatrix*}.

Hence, the matrix AB + BA = [22212066].\begin{bmatrix*}[r] -22 & -21 \\ -20 & -66 \end{bmatrix*}.

Question 8

If A = [1221]and B =[3221],\begin{bmatrix*}[r] 1 & -2 \\ 2 & -1 \end{bmatrix*} \text{and B } = \begin{bmatrix*}[r] 3 & 2 \\ -2 & 1 \end{bmatrix*}, find 2B - A2.

Answer

2B=2[3221]=[6442]A2=[1221][1221]=[1×1+(2)×21×(2)+(2)×(1)2×1+(1)×22×(2)+(1)×(1)]=[142+2224+1]=[3003]2BA2=[6442][3003]=[6(3)40402(3)]=[9445]2B = 2\begin{bmatrix*}[r] 3 & 2 \\ -2 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6 & 4 \\ -4 & 2 \end{bmatrix*} \\[1em] A^2 = \begin{bmatrix*}[r] 1 & -2 \\ 2 & -1 \end{bmatrix*} \begin{bmatrix*}[r] 1 & -2 \\ 2 & -1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + (-2) \times 2 & 1 \times (-2) + (-2) \times (-1) \\ 2 \times 1 + (-1) \times 2 & 2 \times (-2) + (-1)\times (-1) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 - 4 & -2 + 2 \\ 2 - 2 & -4 + 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -3 & 0 \\ 0 & -3 \end{bmatrix*} \\[1em] \therefore 2B - A^2 = \begin{bmatrix*}[r] 6 & 4 \\ -4 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] -3 & 0 \\ 0 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6 - (-3) & 4 - 0 \\ -4 - 0 & 2 - (-3) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 9 & 4 \\ -4 & 5 \end{bmatrix*}

Hence, the matrix 2B - A2 = [9445].\begin{bmatrix*}[r] 9 & 4 \\ -4 & 5 \end{bmatrix*}.

Question 9

If A = [1234], B =[2142] and C =[5174],\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \text{ B } = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \text{ and C } = \begin{bmatrix} 5 & 1 \\ 7 & 4 \end{bmatrix}, compute

(i)   A(B + C)

(ii)  (B + C)A

Answer

(i) A(B + C)

B + C =[2142]+[5174]=[2+51+14+72+4]=[72116] A(B + C) =[1234][72116]=[1×7+2×111×2+2×63×7+4×113×2+4×6]=[7+222+1221+446+24]=[29146530].\text{B + C } = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 1 \\ 7 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 + 5 & 1 + 1 \\ 4 + 7 & 2 + 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 & 2 \\ 11 & 6 \end{bmatrix} \\[1em] \therefore \text{ A(B + C) } = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & 2 \\ 11 & 6 \end{bmatrix} \\[1em] = \begin{bmatrix} 1 \times 7 + 2 \times 11 & 1 \times 2 + 2 \times 6 \\ 3 \times 7 + 4 \times 11 & 3 \times 2 + 4 \times 6 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 + 22 & 2 + 12 \\ 21 + 44 & 6 + 24 \end{bmatrix} \\[1em] = \begin{bmatrix} 29 & 14 \\ 65 & 30 \end{bmatrix}. \\[1em]

Hence, the matrix A(B + C) = [29146530].\begin{bmatrix} 29 & 14 \\ 65 & 30 \end{bmatrix}.

(ii) (B + C)A

B + C =[2142]+[5174]=[2+51+14+72+4]=[72116](B + C)A =[72116][1234]=[7×1+2×37×2+2×411×1+6×311×2+6×4]=[7+614+811+1822+24]=[13222946].\text{B + C } = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 1 \\ 7 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 2 + 5 & 1 + 1 \\ 4 + 7 & 2 + 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 & 2 \\ 11 & 6 \end{bmatrix} \\[1em] \therefore \text{(B + C)A } = \begin{bmatrix} 7 & 2 \\ 11 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 \times 1 + 2 \times 3 & 7 \times 2 + 2 \times 4 \\ 11 \times 1 + 6 \times 3 & 11 \times 2 + 6 \times 4 \end{bmatrix} \\[1em] = \begin{bmatrix} 7 + 6 & 14 + 8 \\ 11 + 18 & 22 + 24 \end{bmatrix} \\[1em] = \begin{bmatrix} 13 & 22 \\ 29 & 46 \end{bmatrix}.

Hence, the matrix (B + C)A = [13222946].\begin{bmatrix} 13 & 22 \\ 29 & 46 \end{bmatrix}.

Question 10

If A = [1223], B =[2132] and C =[1331],\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, \text{ B } = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \text{ and C } = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, find the matrix C(B - A).

Answer

BA=[2132][1223]=[21123223]=[1111]C(BA)=[1331][1111]=[1×1+3×11×(1)+3×(1)3×1+1×13×(1)+1×(1)]=[1+3133+131]=[4444].B - A = \begin{bmatrix*}[r] 2 & 1 \\ 3 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 2 \\ 2 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 - 1 & 1 - 2 \\ 3 - 2 & 2 - 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & -1 \\ 1 & -1 \end{bmatrix*} \\[1.5em] \therefore C(B - A) = \begin{bmatrix*}[r] 1 & 3 \\ 3 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 1 & -1 \\ 1 & -1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 3 \times 1 & 1 \times (-1) + 3 \times (-1) \\ 3 \times 1 + 1 \times 1 & 3 \times (-1) + 1 \times (-1) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 3 & -1 - 3 \\ 3 + 1 & -3 - 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & -4 \\ 4 & -4 \end{bmatrix*}.

Hence, the matrix C(B - A) = [4444]\begin{bmatrix} 4 & -4 \\ 4 & -4 \end{bmatrix}.

Question 11

Let A = [1021] and B =[2310],\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \text{ and B } = \begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*}, find A2 + AB + B2.

Answer

A2=[1021][1021]=[1×1+0×21×0+0×12×1+1×22×0+1×1]=[1+00+02+20+1]=[1041]AB=[1021][2310]=[1×2+0×(1)1×3+0×02×2+1×(1)2×3+1×0]=[2+03+0416+0]=[2336]B2=[2310][2310]=[2×2+3×(1)2×3+3×0(1)×2+0×(1)(1)×3+0×0]=[436+02+03+0]=[1623].A2+AB+B2=[1041]+[2336]+[1623]=[1+2+10+3+64+3+(2)1+6+(3)]=[4954].A^2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 1 \times 1 + 0 \times 2 & 1 \times 0 + 0 \times 1 \\ 2 \times 1 + 1 \times 2 & 2 \times 0 + 1 \times 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 1 + 0 & 0 + 0 \\ 2 + 2 & 0 + 1 \end{bmatrix} \\[1em] = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \\[1em] AB = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix} 1 \times 2 + 0 \times (-1) & 1 \times 3 + 0 \times 0 \\ 2 \times 2 + 1 \times (-1) & 2 \times 3 + 1 \times 0 \end{bmatrix} \\[1em] = \begin{bmatrix*}[r] 2 + 0 & 3 + 0 \\ 4 - 1 & 6 + 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 & 3 \\ 3 & 6 \end{bmatrix*} \\[1em] B^2 = \begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 3 \\ -1 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix} 2 \times 2 + 3 \times (-1) & 2 \times 3 + 3 \times 0 \\ (-1) \times 2 + 0 \times (-1) & (-1) \times 3 + 0 \times 0 \end{bmatrix} \\[1em] = \begin{bmatrix*}[r] 4 - 3 & 6 + 0 \\ -2 + 0 & -3 + 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 6 \\ -2 & -3 \end{bmatrix*}. \\[1em] \therefore A^2 + AB + B^2 = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix*}[r] 2 & 3 \\ 3 & 6 \end{bmatrix*} + \begin{bmatrix*}[r] 1 & 6 \\ -2 & -3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 2 + 1 & 0 + 3 + 6 \\ 4 + 3 + (-2) & 1 + 6 + (-3) \end{bmatrix*} \\[1em] = \begin{bmatrix} 4 & 9 \\ 5 & 4 \end{bmatrix}.

Hence, the matrix A2 + AB + B2 = [4954]\begin{bmatrix} 4 & 9 \\ 5 & 4 \end{bmatrix}.

Question 11(ii)

If A = [3051] and B[4210]\begin{bmatrix*}[r] 3 & 0 \\ 5 & 1 \end{bmatrix*} \text{ and B} \begin{bmatrix*}[r] -4 & 2 \\ 1 & 0 \end{bmatrix*}, find A2 - 2AB + B2.

Answer

Given, A = [3051] and B=[4210]\begin{bmatrix*}[r] 3 & 0 \\ 5 & 1 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] -4 & 2 \\ 1 & 0 \end{bmatrix*}

A2=[3051]×[3051]=[3×3+0×53×0+0×15×3+1×55×0+1×1]=[9+00+015+50+1]=[90201]2AB=2×[3051]×[4210]=[60102]×[4210]=[6×(4)+0×16×2+0×010×(4)+2×110×2+2×0]=[24+012+040+220+0]=[24123820]B2=[4210]×[4210]=[4×(4)+2×14×2+2×01×(4)+0×11×2+0×0]=[16+28+04+02+0]=[18842]\Rightarrow A^2 =\begin{bmatrix*}[r] 3 & 0 \\ 5 & 1 \end{bmatrix*} \times \begin{bmatrix*}[r] 3 & 0 \\ 5 & 1 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 3 \times 3 + 0 \times 5 & 3 \times 0 + 0 \times 1 \\ 5 \times 3 + 1 \times 5 & 5 \times 0 + 1 \times 1 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 9 + 0 & 0 + 0 \\ 15 + 5 & 0 + 1 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 9 & 0 \\ 20 & 1 \end{bmatrix*}\\[1em] \Rightarrow \text{2AB} = 2 \times \begin{bmatrix*}[r] 3 & 0 \\ 5 & 1 \end{bmatrix*} \times \begin{bmatrix*}[r] -4 & 2 \\ 1 & 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 6 & 0 \\ 10 & 2 \end{bmatrix*} \times \begin{bmatrix*}[r] -4 & 2 \\ 1 & 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 6 \times (-4) + 0 \times 1 & 6 \times 2 + 0 \times 0 \\ 10 \times (-4) + 2 \times 1 & 10 \times 2 + 2 \times 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] -24 + 0 & 12 + 0 \\ -40 + 2 & 20 + 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] -24 & 12 \\ -38 & 20 \end{bmatrix*}\\[1em] \Rightarrow \text{B}^2 = \begin{bmatrix*}[r] -4 & 2 \\ 1 & 0 \end{bmatrix*} \times \begin{bmatrix*}[r] -4 & 2 \\ 1 & 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] -4 \times (-4) + 2 \times 1 & -4 \times 2 + 2 \times 0 \\ 1 \times (-4) + 0 \times 1 & 1 \times 2 + 0 \times 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 16 + 2 & -8 + 0 \\ -4 + 0 & 2 + 0 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 18 & -8 \\ -4 & 2 \end{bmatrix*}

Substituting values in A2 - 2AB + B2, we get :

A22AB+B2=[90201][24123820]+[18842]=[9(24)+18012+(8)20(38)+(4)120+2]=[51205417]A^2 - 2AB + B^2 = \begin{bmatrix*}[r] 9 & 0 \\ 20 & 1 \end{bmatrix*} - \begin{bmatrix*}[r] -24 & 12 \\ -38 & 20 \end{bmatrix*} + \begin{bmatrix*}[r] 18 & -8 \\ -4 & 2 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 9 - (-24) + 18 & 0 - 12 + (-8) \\ 20 - (-38) + (-4) & 1 - 20 + 2 \end{bmatrix*}\\[1em] = \begin{bmatrix*}[r] 51 & -20 \\ 54 & -17 \end{bmatrix*}

Hence, the value of A2 - 2AB + B2 = [51205417]\begin{bmatrix*}[r] 51 & -20 \\ 54 & -17 \end{bmatrix*}

Question 12

Let A = [2102], B =[4132] and C =[3214],\begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*}, \text{ B } = \begin{bmatrix*}[r] 4 & 1 \\ -3 & -2 \end{bmatrix*} \text{ and C } = \begin{bmatrix*}[r] -3 & 2 \\ -1 & 4 \end{bmatrix*}, find A2 + AC - 5B.

Answer

A2=[2102][2102]=[2×2+1×02×1+1×(2)0×2+(2)×00×1+(2)×(2)]=[4+0220+00+4]=[4004].AC=[2102][3214]=[2×(3)+1×(1)2×2+1×40×(3)+(2)×(1)0×2+(2)×4]=[6+(1)4+40+20+(8)]=[7828].5B=5[4132]=[2051510]A2+AC5B=[4004]+[7828][2051510]=[4+(7)200+850+2(15)4+(8)(10)]=[233176].A^2 = \begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 2 + 1 \times 0 & 2 \times 1 + 1 \times (-2) \\ 0 \times 2 + (-2) \times 0 & 0 \times 1 + (-2) \times (-2) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 + 0 & 2 - 2 \\ 0 + 0 & 0 + 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 0 \\ 0 & 4 \end{bmatrix*}. \\[1.5em] AC = \begin{bmatrix*}[r] 2 & 1 \\ 0 & -2 \end{bmatrix*} \begin{bmatrix*}[r] -3 & 2 \\ -1 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times (-3) + 1 \times (-1) & 2 \times 2 + 1 \times 4 \\ 0 \times (-3) + (-2) \times (-1) & 0 \times 2 + (-2) \times 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -6 + (-1) & 4 + 4 \\ 0 + 2 & 0 + (-8) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -7 & 8 \\ 2 & -8 \end{bmatrix*}. \\[1.5em] 5B = 5 \begin{bmatrix*}[r] 4 & 1 \\ -3 & -2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 20 & 5 \\ -15 & -10 \end{bmatrix*} \\[1.5em] \therefore A^2 + AC - 5B = \begin{bmatrix*}[r] 4 & 0 \\ 0 & 4 \end{bmatrix*} + \begin{bmatrix*}[r] -7 & 8 \\ 2 & -8 \end{bmatrix*} - \begin{bmatrix*}[r] 20 & 5 \\ -15 & -10 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 + (-7) - 20 & 0 + 8 - 5 \\ 0 + 2 - (-15) & 4 + (-8) - (-10) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -23 & 3 \\ 17 & 6 \end{bmatrix*} .

Hence, the matrix A2 + AC - 5B = [233176].\begin{bmatrix*}[r] -23 & 3 \\ 17 & 6 \end{bmatrix*} .

Question 13

If A = [2357], B =[0417] and C =[1014],\begin{bmatrix*}[r] 2 & 3 \\ 5 & 7 \end{bmatrix*}, \text{ B } = \begin{bmatrix*}[r] 0 & 4 \\ -1 & 7 \end{bmatrix*} \text{ and C } = \begin{bmatrix*}[r] 1 & 0 \\ -1 & 4 \end{bmatrix*}, find AC + B2 - 10C.

Answer

AC=[2357][1014]=[2×1+3×(1)2×0+3×45×1+7×(1)5×0+7×4]=[230+12570+28]=[112228].AC = \begin{bmatrix*}[r] 2 & 3 \\ 5 & 7 \end{bmatrix*} \begin{bmatrix*}[r] 1 & 0 \\ -1 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 \times 1 + 3 \times (-1) & 2 \times 0 + 3 \times 4 \\ 5 \times 1 + 7 \times (-1) & 5 \times 0 + 7 \times 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2 - 3 & 0 + 12 \\ 5 - 7 & 0 + 28 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -1 & 12 \\ -2 & 28 \end{bmatrix*}.

B2=[0417][0417]=[0×0+4×(1)0×4+4×7(1)×0+7×(1)(1)×4+7×7]=[040+28074+49]=[428745].B^2 = \begin{bmatrix*}[r] 0 & 4 \\ -1 & 7 \end{bmatrix*} \begin{bmatrix*}[r] 0 & 4 \\ -1 & 7 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 \times 0 + 4 \times (-1) & 0 \times 4 + 4 \times 7 \\ (-1) \times 0 + 7 \times (-1) & (-1) \times 4 + 7 \times 7 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 - 4 & 0 + 28 \\ 0 - 7 & -4 + 49 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -4 & 28 \\ -7 & 45 \end{bmatrix*}.

10C=10[1014]=[1001040].AC+B210C=[112228]+[428745][1001040]=[1+(4)1012+2802+(7)(10)28+4540]=[1540133]10C = 10 \begin{bmatrix*}[r] 1 & 0 \\ -1 & 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 10 & 0 \\ -10 & 40 \end{bmatrix*}. \\[1em] \therefore AC + B^2 - 10C = \begin{bmatrix*}[r] -1 & 12 \\ -2 & 28 \end{bmatrix*} + \begin{bmatrix*}[r] -4 & 28 \\ -7 & 45 \end{bmatrix*} - \begin{bmatrix*}[r] 10 & 0 \\ -10 & 40 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -1 + (-4) - 10 & 12 + 28 - 0 \\ -2 + (-7) - (-10) & 28 + 45 - 40 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -15 & 40 \\ 1 & 33 \end{bmatrix*}

Hence, the matrix AC + B2 - 10C = [1540133]\begin{bmatrix*}[r] -15 & 40 \\ 1 & 33 \end{bmatrix*}.

Question 14

If A = [1001],\begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*}, find A2 and A3. Also state which of these is equal to A.

Answer

A2=[1001][1001]=[1×1+0×01×0+0×(1)0×1+(1)×00×0+(1)×(1)]=[1001]A^2 = \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*} \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 0 \times 0 & 1 \times 0 + 0 \times (-1) \\ 0 \times 1 + (-1) \times 0 & 0 \times 0 + (-1) \times (-1) \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}

A3=A2×A=[1001][1001]=[1×1+0×01×0+0×(1)0×1+1×00×0+1×(1)][1+00+00+001]=[1001]A^3 = A^2 \times A \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 0 \times 0 & 1 \times 0 + 0 \times (-1) \\ 0 \times 1 + 1 \times 0 & 0 \times 0 + 1 \times (-1) \end{bmatrix*} \\[1em] \begin{bmatrix*}[r] 1 + 0 & 0 + 0 \\ 0 + 0 & 0 -1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*}

Hence, the matrix A2=[1001] and A3=[1001].A^2 = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \text{ and } A^3 = \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*}.
Thus, A3 = A.

Question 15

If X = [4112],\begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*}, show that 6X - X2 = 9I where I is the unit matrix.

Answer

We have to prove 6X - X2 = 9I,

L.H.S. =6XX26XX2=6[4112][4112][4112]=[246612][4×4+1×(1)4×1+1×2(1)×4+2×(1)(1)×1+2×2]=[246612][1614+2421+4]=[246612][15663]=[2415666+6123]=[9009]\text{L.H.S. } = 6X - X^2 \\[1em] 6X - X^2 = 6\begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*}\begin{bmatrix*}[r] 4 & 1 \\ -1 & 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 24 & 6 \\ -6 & 12 \end{bmatrix*} - \begin{bmatrix*}[r] 4 \times 4 + 1 \times (-1) & 4 \times 1 + 1 \times 2 \\ (-1) \times 4 + 2 \times (-1) & (-1) \times 1 + 2 \times 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 24 & 6 \\ -6 & 12 \end{bmatrix*} - \begin{bmatrix*}[r] 16 - 1 & 4 + 2 \\ -4 - 2 & -1 + 4 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 24 & 6 \\ -6 & 12 \end{bmatrix*} - \begin{bmatrix*}[r] 15 & 6 \\ -6 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 24 - 15 & 6 - 6 \\ -6 + 6 & 12 - 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 9 & 0 \\ 0 & 9 \end{bmatrix*}

R.H.S. =9I9I=9[1001]=[9009].\text{R.H.S. } = 9I \\[1em] 9I = 9\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 9 & 0 \\ 0 & 9 \end{bmatrix*}.

Since, L.H.S. = [9009]\begin{bmatrix*}[r] 9 & 0 \\ 0 & 9 \end{bmatrix*} = R.H.S.
Hence, proved that 6X - X2 = 9I.

Question 16

Show that [1221]\begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} is a solution of the matrix equation X2 - 2X - 3I = 0 where I is the unit matrix of order 2.

Answer

I=[1001],X=[1221]I = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}, X = \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \\[1em]

Given,

X2 - 2X - 3I = 0

Putting value of X and I in above equation we get,

L.H.S. =[1221][1221]2[1221]3[1001]=[1×1+2×21×2+2×12×1+1×22×2+1×1][2442][3003][1+42+22+24+1][2442][3003][5445][2442][3003]=[523440440523]=[0000]\text{L.H.S. } = \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} - 2 \begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} - 3 \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 2 \times 2 & 1 \times 2 + 2 \times 1 \\ 2 \times 1 + 1 \times 2 & 2 \times 2 + 1 \times 1 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & 4 \\ 4 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 0 \\ 0 & 3 \end{bmatrix*} \\[1em] \begin{bmatrix*}[r] 1 + 4 & 2 + 2 \\ 2 + 2 & 4 + 1 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & 4 \\ 4 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 0 \\ 0 & 3 \end{bmatrix*} \\[1em] \begin{bmatrix*}[r] 5 & 4 \\ 4 & 5 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & 4 \\ 4 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 3 & 0 \\ 0 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 5 - 2 - 3 & 4 - 4 - 0 \\ 4 - 4 - 0 & 5 - 2 - 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*}

Since, L.H.S. = [0000]\begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} = R.H.S.
Hence, proved that X2 - 2X -3I = 0.

[1221]\begin{bmatrix*}[r] 1 & 2 \\ 2 & 1 \end{bmatrix*} is a solution of the matrix equation X2 - 2X - 3I = 0

Question 17

Find the matrix X of order 2 x 2 which satisfies the equation :

[3724][0253]+2X=[1546].\begin{bmatrix*}[r] 3 & 7 \\ 2 & 4 \end{bmatrix*} \begin{bmatrix*}[r] 0 & 2 \\ 5 & 3 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*}.

Answer

Given,

[3724][0253]+2X=[1546],[3×0+7×53×2+7×32×0+4×52×2+4×3]+2X=[1546][0+356+210+204+12]+2X=[1546][35272016]+2X=[1546]2X=[1546][35272016]2X=[135527420616]2X=[34322410]X=12[34322410]X=[1716125].\begin{bmatrix*}[r] 3 & 7 \\ 2 & 4 \end{bmatrix*} \begin{bmatrix*}[r] 0 & 2 \\ 5 & 3 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*}, \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 \times 0 + 7 \times 5 & 3 \times 2 + 7 \times 3 \\ 2 \times 0 + 4 \times 5 & 2 \times 2 + 4 \times 3 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 0 + 35 & 6 + 21 \\ 0 + 20 & 4 + 12 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 35 & 27 \\ 20 & 16 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] 1 & -5 \\ -4 & 6 \end{bmatrix*} - \begin{bmatrix*}[r] 35 & 27 \\ 20 & 16 \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] 1 - 35 & -5 - 27 \\ -4 - 20 & 6 - 16 \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] -34 & -32 \\ -24 & -10 \end{bmatrix*} \\[1em] \Rightarrow X = \dfrac{1}{2} \begin{bmatrix*}[r] -34 & -32 \\ -24 & -10 \end{bmatrix*} \\[1em] X = \begin{bmatrix*}[r] -17 & -16 \\ -12 & -5 \end{bmatrix*}.

Hence, the matrix X = [1716125]\begin{bmatrix*}[r] -17 & -16 \\ -12 & -5 \end{bmatrix*}.

Question 18

If A = [11xx],\begin{bmatrix*}[r] 1 & 1 \\ x & x \end{bmatrix*}, find the value of x so that A2 = O.

Answer

Given, A2 = O.

or,[11xx][11xx]=[0000]L.H.S.=[11xx][11xx]=[1×1+1×x1×1+1×xx×1+x×xx×1+x×x]=[1+x1+xx+x2x+x2]\text{or}, \begin{bmatrix*}[r] 1 & 1 \\ x & x \end{bmatrix*} \begin{bmatrix*}[r] 1 & 1 \\ x & x \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em] \text{L.H.S.} = \begin{bmatrix*}[r] 1 & 1 \\ x & x \end{bmatrix*} \begin{bmatrix*}[r] 1 & 1 \\ x & x \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 1 \times x & 1 \times 1 + 1 \times x \\ x \times 1 + x \times x & x \times 1 + x \times x \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + x & 1 + x \\ x + x^2 & x + x^2 \end{bmatrix*}

Comparing with R.H.S. we get,

⇒ 1 + x = 0 or x = -1      (...Eq 1)

⇒ x + x2 = 0                    (...Eq 2)

Putting the value x = -1 in equation 2,

⇒ -1 + (-1)2 = -1 + 1 = 0.

Since, x = -1 satisfies the equation,

Hence, the required value of x = -1.

Question 19(i)

Find x and y, if [3205][x2]=[5y].\begin{bmatrix*}[r] -3 & 2 \\ 0 & -5 \end{bmatrix*} \begin{bmatrix*}[r] x \\ 2 \end{bmatrix*} = \begin{bmatrix*}[r] -5 \\ y \end{bmatrix*}.

Answer

Given,

[3205][x2]=[5y]L.H.S.=[3205][x2]=[3×x+2×20×x+(5)×2]=[3x+410]\begin{bmatrix*}[r] -3 & 2 \\ 0 & -5 \end{bmatrix*} \begin{bmatrix*}[r] x \\ 2 \end{bmatrix*} = \begin{bmatrix*}[r] -5 \\ y \end{bmatrix*} \\[1em] \text{L.H.S.} = \begin{bmatrix*}[r] -3 & 2 \\ 0 & -5 \end{bmatrix*} \begin{bmatrix*}[r] x \\ 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -3 \times x + 2 \times 2 \\ 0 \times x + (-5) \times 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] -3x + 4 \\ -10 \end{bmatrix*} \\[1em]

Comparing L.H.S. with R.H.S.,

[3x+410]=[5y]\Rightarrow \begin{bmatrix*}[r] -3x + 4 \\ -10 \end{bmatrix*} = \begin{bmatrix*}[r] -5 \\ y \end{bmatrix*} \\[1em]

By equality of matrices,

⇒ -3x + 4 = -5 and -10 = y
⇒ -3x = -5 - 4 and y = -10
⇒ -3x = -9 and y = -10
∴ x = 3 and y = -10.

Hence, the values are x = 3 and y = -10.

Question 19(ii)

Find x and y, if [2xxy3y][32]=[169].\begin{bmatrix*}[r] 2x & x \\ y & 3y \end{bmatrix*} \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*} = \begin{bmatrix*}[r] 16 \\ 9 \end{bmatrix*}.

Answer

Given,

[2xxy3y][32]=[169]L.H.S.=[2xxy3y][32]=[2x×3+x×2y×3+3y×2]=[6x+2x3y+6y]=[8x9y]\begin{bmatrix*}[r] 2x & x \\ y & 3y \end{bmatrix*} \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*} = \begin{bmatrix*}[r] 16 \\ 9 \end{bmatrix*} \\[1em] \text{L.H.S.} = \begin{bmatrix*}[r] 2x & x \\ y & 3y \end{bmatrix*} \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 2x \times 3 + x \times 2 \\ y \times 3 + 3y \times 2 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 6x + 2x \\ 3y + 6y \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 8x \\ 9y \end{bmatrix*}

Comparing L.H.S. with R.H.S. we get,

[8x9y]=[169]8x=16 and 9y=9x=2 and y=1.\Rightarrow \begin{bmatrix*}[r] 8x \\ 9y \end{bmatrix*} = \begin{bmatrix*}[r] 16 \\ 9 \end{bmatrix*} \\[1em] \Rightarrow 8x = 16 \text{ and } 9y = 9 \\[1em] \therefore x = 2 \text{ and } y = 1.

Hence, the value of x = 2 and y = 1.

Question 20

Find the values of x and y if [x+yy2xxy][21]=[32].\begin{bmatrix*}[r] x + y & y \\ 2x & x - y \end{bmatrix*} \begin{bmatrix*}[r] 2 \\ -1 \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*}.

Answer

Given,

[x+yy2xxy][21]=[32][(x+y)×2+y×(1)2x×2+(xy)×(1)]=[32][2x+2yy4xx+y]=[32][2x+y3x+y]=[32]\begin{bmatrix*}[r] x + y & y \\ 2x & x - y \end{bmatrix*} \begin{bmatrix*}[r] 2 \\ -1 \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] (x + y) \times 2 + y \times (-1) \\ 2x \times 2 + (x - y) \times (-1) \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x + 2y - y \\ 4x - x + y \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x + y \\ 3x + y \end{bmatrix*} = \begin{bmatrix*}[r] 3 \\ 2 \end{bmatrix*} \\[1em]

By definition of equality of matrices we have,

⇒ 2x + y = 3 or y = 3 - 2x     (...Eq 1)
⇒ 3x + y = 2                         (...Eq 2)

Putting value of y from equation 1 in equation 2,

⇒ 3x + 3 - 2x = 2
⇒ x + 3 = 2
⇒ x = -1.

Now finding value of y,

⇒ y = 3 - 2x
⇒ y = 3 - 2(-1)
⇒ y = 3 + 2
⇒ y = 5.

Hence, the value of x = -1 and y = 5.

Question 21

If [1233][x00y]=[x090],\begin{bmatrix*}[r] 1 & 2 \\ 3 & 3 \end{bmatrix*} \begin{bmatrix*}[r] x & 0 \\ 0 & y \end{bmatrix*} = \begin{bmatrix*}[r] x & 0 \\ 9 & 0 \end{bmatrix*}, find the values of x and y.

Answer

Given,

[1233][x00y]=[x090][1×x+2×01×0+2×y3×x+3×03×0+3×y]=[x090][x+00+2y3x+00+3y]=[x090][x2y3x3y]=[x090]\begin{bmatrix*}[r] 1 & 2 \\ 3 & 3 \end{bmatrix*} \begin{bmatrix*}[r] x & 0 \\ 0 & y \end{bmatrix*} = \begin{bmatrix*}[r] x & 0 \\ 9 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 \times x + 2 \times 0 & 1 \times 0 + 2 \times y \\ 3 \times x + 3 \times 0 & 3 \times 0 + 3 \times y \end{bmatrix*} = \begin{bmatrix*}[r] x & 0 \\ 9 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x + 0 & 0 + 2y \\ 3x + 0 & 0 + 3y \end{bmatrix*} = \begin{bmatrix*}[r] x & 0 \\ 9 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x & 2y \\ 3x & 3y \end{bmatrix*} = \begin{bmatrix*}[r] x & 0 \\ 9 & 0 \end{bmatrix*} \\[1em]

By definition of equality of matrices,

⇒ 2y = 0, 3x = 9 and 3y = 0
⇒ y = 0, x = 3 and y = 0.

Hence, the values are x = 3 and y = 0.

Question 22

If [3425]=[abcd][1001],\begin{bmatrix*}[r] 3 & 4 \\ 2 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}, write down the values of a, b, c and d.

Answer

Given,

[3425]=[abcd][1001][3425]=[a×1+b×0a×0+b×1c×1+d×0c×0+d×1][3425]=[abcd]\begin{bmatrix*}[r] 3 & 4 \\ 2 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 & 4 \\ 2 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] a \times 1 + b \times 0 & a \times 0 + b \times 1 \\ c \times 1 + d \times 0 & c \times 0 + d \times 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 & 4 \\ 2 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*}

By definition of equality of matrices,

⇒ a = 3, b = 4, c = 2 and d = 5

Hence, the value of a = 3, b = 4, c = 2 and d = 5.

Question 23

Find the value of x given that A2 = B where,

A=[21201] and B=[4x01].A = \begin{bmatrix*}[r] 2 & 12 \\ 0 & 1 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*}.

Answer

Given A2=B,[21201][21201]=[4x01][2×2+12×02×12+12×10×2+1×00×12+1×1]=[4x01][4+024+120+00+1]=[4x01][43601]=[4x01]\text{Given } A^2 = B, \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 & 12 \\ 0 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 12 \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 2 + 12 \times 0 & 2 \times 12 + 12 \times 1 \\ 0 \times 2 + 1 \times 0 & 0 \times 12 + 1 \times 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 + 0 & 24 + 12 \\ 0 + 0 & 0 + 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & x \\ 0 & 1 \end{bmatrix*} \\[1em]

By definition of equality of matrices,

⇒ x = 36.

Hence, the value of x = 36.

Question 24

If A = [2x01]and B =[43601],\begin{bmatrix*}[r] 2 & x \\ 0 & 1 \end{bmatrix*} \text{and B } = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*}, find the value of x, given that A2 = B.

Answer

Given,

A2 = B

[2x01][2x01]=[43601][2×2+x×02×x+x×10×2+1×00×x+1×1]=[43601][4+02x+x0+00+1]=[43601][43x01]=[43601]\Rightarrow \begin{bmatrix*}[r] 2 & x \\ 0 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 2 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 2 + x \times 0 & 2 \times x + x \times 1 \\ 0 \times 2 + 1 \times 0 & 0 \times x + 1 \times 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 + 0 & 2x + x \\ 0 + 0 & 0 + 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 3x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 36 \\ 0 & 1 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

⇒ 3x = 36
∴ x = 12.

Hence, the value of x = 12.

Question 25

If A = [3x01] and B=[9160y],\begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*}, find x and y when A2 = B.

Answer

Given,

A2 = B

[3x01][3x01]=[9160y][3×3+x×03×x+x×10×3+1×00×x+1×1]=[9160y][9+03x+x0+00+1]=[9160y][94x01]=[9160y]\Rightarrow \begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 3 & x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 \times 3 + x \times 0 & 3 \times x + x \times 1 \\ 0 \times 3 + 1 \times 0 & 0 \times x + 1 \times 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 + 0 & 3x + x \\ 0 + 0 & 0 + 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 & 4x \\ 0 & 1 \end{bmatrix*} = \begin{bmatrix*}[r] 9 & 16 \\ 0 & -y \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

⇒ 4x = 16 and -y = 1
∴  x = 4 and y = -1.

Hence, the values are x = 4 and y = -1.

Question 26

Find x, y if [2031][12x]+3[21]=2[y3].\begin{bmatrix*}[r] -2 & 0 \\ 3 & 1 \end{bmatrix*} \begin{bmatrix*}[r] -1 \\ 2x \end{bmatrix*} + 3\begin{bmatrix*}[r] -2 \\ 1 \end{bmatrix*} = 2\begin{bmatrix*}[r] y \\ 3 \end{bmatrix*}.

Answer

Given,

[2031][12x]+3[21]=2[y3][(2)×(1)+0×2x3×(1)+1×2x]+[63]=[2y6][23+2x]+[63]=[2y6][2+(6)3+2x+3]=[2y6][42x]=[2y6]\begin{bmatrix*}[r] -2 & 0 \\ 3 & 1 \end{bmatrix*} \begin{bmatrix*}[r] -1 \\ 2x \end{bmatrix*} + 3\begin{bmatrix*}[r] -2 \\ 1 \end{bmatrix*} = 2\begin{bmatrix*}[r] y \\ 3 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] (-2) \times (-1) + 0 \times 2x \\ 3 \times (-1) + 1 \times 2x \end{bmatrix*} + \begin{bmatrix*}[r] -6 \\ 3 \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \\ -3 + 2x \end{bmatrix*} + \begin{bmatrix*}[r] -6 \\ 3 \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 + (-6) \\ -3 + 2x + 3 \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -4 \\ 2x \end{bmatrix*} = \begin{bmatrix*}[r] 2y \\ 6 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

2y = -4 and 2x = 6
∴  y = -2 and x = 3.

Hence, the values are x = 3 and y = -2.

Question 27

If [a110][4332]=[b114c],\begin{bmatrix*}[r] a & 1 \\ 1 & 0 \end{bmatrix*} \begin{bmatrix*}[r] 4 & 3 \\ -3 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] b & 11 \\ 4 & c \end{bmatrix*}, find a, b and c.

Answer

Given,

[a110][4332]=[b114c][a×4+1×(3)a×3+1×21×4+0×(3)1×3+0×2]=[b114c][4a33a+24+03+0]=[b114c][4a33a+243]=[b114c]\begin{bmatrix*}[r] a & 1 \\ 1 & 0 \end{bmatrix*} \begin{bmatrix*}[r] 4 & 3 \\ -3 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] b & 11 \\ 4 & c \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a \times 4 + 1 \times (-3) & a \times 3 + 1 \times 2 \\ 1 \times 4 + 0 \times (-3) & 1 \times 3 + 0 \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] b & 11 \\ 4 & c \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4a - 3 & 3a + 2 \\ 4 + 0 & 3 + 0 \end{bmatrix*} = \begin{bmatrix*}[r] b & 11 \\ 4 & c \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4a - 3 & 3a + 2 \\ 4 & 3 \end{bmatrix*} = \begin{bmatrix*}[r] b & 11 \\ 4 & c \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

4a - 3 = b        (...Eq 1)
3a + 2 = 11     (...Eq 2)
c = 3.

Solving (Eq 2) first,

⇒ 3a + 2 = 11
⇒ 3a = 9
⇒ a = 3.

Putting value of a in Eq 1,

⇒ 4a - 3 = b
⇒ 4(3) - 3 = b
⇒ 12 - 3 = b
⇒ b = 9

∴ a = 3, b = 9 and c = 3.

Hence, the value of a = 3, b = 9 and c = 3.

Question 28

If A = [2312],\begin{bmatrix*}[r] 2 & 3 \\ 1 & 2 \end{bmatrix*}, find x, y so that A2 = xA + yI.

Answer

Given,

=[2312], I =[1001]A2=xA+y[2312][2312]=x[2312]+y[1001][2×2+3×12×3+3×21×2+2×11×3+2×2]=[2x3xx2x]+[y00y][4+36+62+23+4]=[2x+y3x+0x+02x+y][71247]=[2x+y3x+0x+02x+y][71247]=[2x+y3xx2x+y]\text{A } = \begin{bmatrix*}[r] 2 & 3 \\ 1 & 2 \end{bmatrix*}, \text{ I } = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \text{A}^2 = x\text{A} + y\text{I } \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 & 3 \\ 1 & 2 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 3 \\ 1 & 2 \end{bmatrix*} = x \begin{bmatrix*}[r] 2 & 3 \\ 1 & 2 \end{bmatrix*} + y \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 2 + 3 \times 1 & 2 \times 3 + 3 \times 2 \\ 1 \times 2 + 2 \times 1 & 1 \times 3 + 2 \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] 2x & 3x \\ x & 2x \end{bmatrix*} + \begin{bmatrix*}[r] y & 0 \\ 0 & y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 + 3 & 6 + 6 \\ 2 + 2 & 3 + 4 \end{bmatrix*} = \begin{bmatrix*}[r] 2x + y & 3x + 0 \\ x + 0 & 2x + y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 7 & 12 \\ 4 & 7 \end{bmatrix*} = \begin{bmatrix*}[r] 2x + y & 3x + 0 \\ x + 0 & 2x + y \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 7 & 12 \\ 4 & 7 \end{bmatrix*} = \begin{bmatrix*}[r] 2x + y & 3x \\ x & 2x + y \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

3x = 12 or x = 4     (...Eq 1)

2x + y = 7              (...Eq 2)

Putting value of x from Eq1 in Eq 2,

⇒ 2(4) + y = 7
⇒ 8 + y = 7
⇒ y = 7 - 8
⇒ y = -1.

Hence, the value of x = 4 and y = -1.

Question 29

If P = [2639] and Q =[3xy2],\begin{bmatrix*}[r] 2 & 6 \\ 3 & 9 \end{bmatrix*} \text{ and Q } = \begin{bmatrix*}[r] 3 & x \\ y & 2 \end{bmatrix*}, find x, y such that PQ = O.

Answer

Given,

PQ = 0

[2639][3xy2]=[0000][2×3+6×y2×x+6×23×3+9×y3×x+9×2]=[0000][6+6y2x+129+9y3x+18]=[0000]\Rightarrow \begin{bmatrix*}[r] 2 & 6 \\ 3 & 9 \end{bmatrix*} \begin{bmatrix*}[r] 3 & x \\ y & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times 3 + 6 \times y & 2 \times x + 6 \times 2 \\ 3 \times 3 + 9 \times y & 3 \times x + 9 \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 6 + 6y & 2x + 12 \\ 9 + 9y & 3x + 18 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

⇒ 6 + 6y = 0 and 2x + 12 = 0
⇒ 6y = -6 and 2x = -12
⇒ y = -1 and x = -6.

Checking whether x = -6 and y = -1, satisfies other equations 9 + 9y = 0 and 3x + 18 = 0,

⇒ 9 + 9y = 0
⇒ 9 + 9(-1) = 0
⇒ 9 - 9 = 0 (L.H.S. = R.H.S.)

⇒ 3x + 18 = 0
⇒ 3(-6) + 18 = 0
⇒ -18 + 18 = 0 (L.H.S. = R.H.S.)

∴ x = -6 and y = -1.

Hence, the value of x = -6 and y = -1.

Question 30

Let M ×[1102]=[12]\times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} where M is a matrix.

(i) State the order of the matrix M.

(ii) Find the matrix M.

Answer

(i)

Since,

M×[1102]=[12]M×[1102]is a 1×2 matrix, but[1102] is a 2×2 matrix.M is a 1×2 matrix.\text{M} \times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \text{M} \times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} \text{is a } 1 \times 2 \text{ matrix, but} \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix}. \\[1em] \Rightarrow \text{M is a } 1 \times 2 \text{ matrix}.

The order of matrix M is 1 × 2.

(ii)

Let M =[xy]Given, M×[1102]=[12][xy]×[1102]=[12][x×1+y×0x×1+y×2]=[12][xx+2y]=[12]\text{Let M =} \begin{bmatrix*}[r] x & y \end{bmatrix*} \\[1em] \text{Given, } \text{M} \times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x & y \end{bmatrix*} \times \begin{bmatrix*}[r] 1 & 1 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x \times 1 + y \times 0 & x \times 1 + y \times 2 \\ \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x & x + 2y \\ \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

x = 1                (...Eq 1)
x + 2y = 2        (...Eq 2)

Putting value of x from Eq 1 in Eq 2,

⇒ x + 2y = 2
⇒ 1 + 2y = 2
⇒ 2y = 2 - 1
⇒ 2y = 1
⇒ y = 12\dfrac{1}{2}

Since, M =[xy]M=[112].\text{Since, M }= \begin{bmatrix*}[r] x & y \\ \end{bmatrix*} \\[1em] \therefore \text{M} = \begin{bmatrix*}[r] 1 & \dfrac{1}{2} \\ \end{bmatrix*}.

Hence, the matrix M = [112]\begin{bmatrix*}[r] 1 & \dfrac{1}{2} \end{bmatrix*}.

Question 31

Given [2134]X=[76],\begin{bmatrix*}[r] 2 & 1 \\ -3 & 4 \end{bmatrix*}X = \begin{bmatrix*}[r] 7 \\ 6 \end{bmatrix*}, write :

(i) the order of the matrix X

(ii) the matrix X.

Answer

(i) Since,

[2134]X=[76][2134]X is a 2×1 matrix, but[2134] is a 2×2 matrix.X is a 2×1 matrix.\begin{bmatrix*}[r] 2 & 1 \\ -3 & 4 \end{bmatrix*}X = \begin{bmatrix*}[r] 7 \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ -3 & 4 \end{bmatrix*}X \text{ is a } 2 \times 1 \text{ matrix, but} \begin{bmatrix*}[r] 2 & 1 \\ -3 & 4 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix}. \\[1em] \Rightarrow \text{X is a } 2 \times 1 \text{ matrix}.

The order of the matrix is 2 × 1.

(ii) Let X=[xy]\text{X} = \begin{bmatrix*}[r] x \\ y \end{bmatrix*}

Given,

[2134]X=[76][2134][xy]=[76][2×x+1×y3×x+4×y]=[76][2x+y3x+4y]=[76]\begin{bmatrix*}[r] 2 & 1 \\ -3 & 4 \end{bmatrix*}X = \begin{bmatrix*}[r] 7 \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 & 1 \\ -3 & 4 \end{bmatrix*} \begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2 \times x + 1 \times y \\ -3 \times x + 4 \times y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x + y \\ -3x + 4y \end{bmatrix*} = \begin{bmatrix*}[r] 7 \\ 6 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

2x + y = 7 or y = 7 - 2x     (...Eq 1)

-3x + 4y = 6                      (...Eq 2)

Putting value of y from Eq 1 in Eq 2

⇒ -3x + 4y = 6
⇒ -3x + 4(7 - 2x) = 6
⇒ -3x + 28 - 8x = 6
⇒ -11x = 6 - 28
⇒ -11x = -22
⇒ x = 2.

∴ x = 2 and y = 7 - 2x = 7 - 2(2) = 7 - 4 = 3.

Since, X=[xy]X=[23]\text{X} = \begin{bmatrix*}[r] x \\ y \end{bmatrix*} \\[1em] \therefore \text{X} = \begin{bmatrix*}[r] 2 \\ 3 \end{bmatrix*}

Hence, the matrix X=[23].\text{X} = \begin{bmatrix*}[r] 2 \\ 3 \end{bmatrix*} .

Question 32

Solve the matrix equation [41]X=[4812].\begin{bmatrix*}[r] 4 \\ 1 \end{bmatrix*} X = \begin{bmatrix*}[r] -4 & 8 \\ -1 & 2 \end{bmatrix*} .

Answer

Since,

[41]X=[4812][41]X is a 2×2 matrix, but[41] is a 2×1 matrix.X is a 1×2 matrix.\begin{bmatrix*}[r] 4 \\ 1 \end{bmatrix*} X = \begin{bmatrix*}[r] -4 & 8 \\ -1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 \\ 1 \end{bmatrix*} X \text{ is a } 2 \times 2 \text{ matrix, but} \begin{bmatrix*}[r] 4 \\ 1 \end{bmatrix*} \text{ is a } 2 \times 1 \text{ matrix}. \\[1em] \Rightarrow \text{X is a } 1 \times 2 \text{ matrix}.

We know that X matrix will be of order 1 × 2. So, let matrix X be [xy].\begin{bmatrix*}[r] x & y \end{bmatrix*}.

Given,

[41]X=[4812][41][xy]=[4812][4x4yxy]=[4812]\begin{bmatrix*}[r] 4 \\ 1 \end{bmatrix*} X = \begin{bmatrix*}[r] -4 & 8 \\ -1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 \\ 1 \end{bmatrix*} \begin{bmatrix*}[r] x & y \end{bmatrix*} = \begin{bmatrix*}[r] -4 & 8 \\ -1 & 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4x & 4y \\ x & y \end{bmatrix*} = \begin{bmatrix*}[r] -4 & 8 \\ -1 & 2 \end{bmatrix*} \\[1em]

From definition of equality of matrices we get,

⇒ x = -1 and y = 2.

Since, X =[xy]=[12]\text{Since, X }= \begin{bmatrix*}[r] x & y \\ \end{bmatrix*} \\[1em] \therefore \text{X } = \begin{bmatrix*}[r] -1 & 2 \\ \end{bmatrix*}

Hence, the matrix X=[12].\text{X} = \begin{bmatrix*}[r] -1 & 2 \end{bmatrix*}.

Question 33(i)

If A = [2145]and B =[32],\begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} \text{and B } = \begin{bmatrix*}[r] -3 \\ 2 \end{bmatrix*}, find matrix C such that AC = B.

Answer

Given,

AC = B

[2145]C=[32][2145]C is a 2×1 matrix, but[2145] is a 2×2 matrix.C is a 1×2 matrix.Let matrix C =[xy][2145][xy]=[32][2×x+(1)×y4×x+5×y]=[32][2xy4x+5y]=[32]\Rightarrow \begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} C = \begin{bmatrix*}[r] -3 \\ 2 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} C \text{ is a } 2 \times 1 \text{ matrix, but} \begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix}. \\[0.5em] \therefore \text{C is a } 1 \times 2 \text{ matrix}. \\[0.5em] \text{Let matrix C } = \begin{bmatrix*}[r] x \\ y \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} \begin{bmatrix*}[r] x \\ y \end{bmatrix*} = \begin{bmatrix*}[r] -3 \\ 2 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 2 \times x + (-1) \times y \\ -4 \times x + 5 \times y \end{bmatrix*} = \begin{bmatrix*}[r] -3 \\ 2 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 2x - y \\ -4x + 5y \end{bmatrix*} = \begin{bmatrix*}[r] -3 \\ 2 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ 2x - y = -3 or y = 2x + 3     (...Eq 1)

⇒ -4x + 5y = 2                        (...Eq 2)

Putting value of y from Eq 1 in Eq 2,

⇒ -4x + 5y = 2
⇒ -4x + 5(2x + 3) = 2
⇒ -4x + 10x + 15 = 2
⇒ 6x = 2 - 15
⇒ 6x = -13
⇒ x = 136-\dfrac{13}{6}

Now finding value of y,

y=2x+3=2(136)+3=266+3=26+186=86=43.y = 2x + 3 \\[1em] = 2\Big(-\dfrac{13}{6}\Big) + 3 \\[1em] = -\dfrac{26}{6} + 3 \\[1em] = \dfrac{-26 + 18}{6} \\[1em] = -\dfrac{8}{6} \\[1em] = -\dfrac{4}{3}.

∴ x = 136 and y =43.-\dfrac{13}{6} \text{ and y } = -\dfrac{4}{3}.

Since,

=[xy]C=[13643]\text{C }= \begin{bmatrix*}[r] x \\ y \end{bmatrix*} \\[1em] \therefore C = \begin{bmatrix*}[r] -\dfrac{13}{6} \\ -\dfrac{4}{3} \end{bmatrix*}

Hence, the matrix C = [13643].\begin{bmatrix*}[r] -\dfrac{13}{6} \\ -\dfrac{4}{3} \end{bmatrix*}.

Question 33(ii)

If A = [2145]and B =[03],\begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} \text{and B } = \begin{bmatrix*}[r] 0 & -3 \\ \end{bmatrix*}, find matrix C such that CA = B.

Answer

Given,

CA = B.

C[2145]=[03]C[2145] is a 1×2 matrix, but[2145] is a 2×2 matrix.C is a 1×2 matrix.Let matrix C =[xy][xy][2145]=[03][x×2+y×(4)x×(1)+y×5]=[03][2x4yx+5y]=[03]C\begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -3 \\ \end{bmatrix*} \\[1em] \Rightarrow C\begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} \text{ is a } 1 \times 2 \text{ matrix, but} \begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix}. \\[1em] \therefore \text{C is a } 1 \times 2 \text{ matrix}. \\[1em] \text{Let matrix C } = \begin{bmatrix*}[r] x & y \\ \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x & y \\ \end{bmatrix*} \begin{bmatrix*}[r] 2 & -1 \\ -4 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -3 \\ \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] x \times 2 + y \times (-4) & x \times (-1) + y \times 5 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -3 \\ \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x - 4y & -x + 5y \\ \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -3 \\ \end{bmatrix*}

By definition of equality of matrices we get,

2x - 4y = 0                             (...Eq 1)

-x + 5y = -3 or x = 5y + 3     (...Eq 2)

Putting value of x from Eq 2 in Eq 1,

⇒ 2x - 4y = 0
⇒ 2(5y + 3) - 4y = 0
⇒ 10y + 6 - 4y = 0
⇒ 6y + 6 = 0
⇒ 6y = -6
⇒ y = -1.

Now finding value of x,

⇒ x = 5y + 3 = 5(-1) + 3 = -5 + 3 = -2.

∴ x = -2, y = -1.

Since, C =[xy]C=[21]\text{Since, C }= \begin{bmatrix*}[r] x & y \\ \end{bmatrix*} \\[0.5em] \therefore C = \begin{bmatrix*}[r] -2 & -1 \\ \end{bmatrix*}

Hence, the matrix C = [21]\begin{bmatrix*}[r] -2 & -1 \\ \end{bmatrix*}.

Question 34

If A = [3412],\begin{bmatrix*}[r] 3 & -4 \\ -1 & 2 \end{bmatrix*}, find the matrix B such that BA = I, where I is the unity matrix of order 2.

Answer

Given,

BA = I

B[3412]=[1001]B[3412] is a 2×2 matrix, and[3412] is a 2×2 matrix.B is a 2×2 matrix.=[1001]\text{B}\begin{bmatrix*}[r] 3 & -4 \\ -1 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \text{B}\begin{bmatrix*}[r] 3 & -4 \\ -1 & 2 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix, and} \begin{bmatrix*}[r] 3 & -4 \\ -1 & 2 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix}. \\[1em] \therefore \text{B is a } 2 \times 2 \text{ matrix}. \\[1em] \text{I } = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}

We know that B will be of order 2 × 2. So, let

B=[abcd][abcd][3412]=[1001][a×3+b×(1)a×(4)+b×2c×3+d×(1)c×(4)+d×2]=[1001][3ab4a+2b3cd4c+2d]=[1001]\text{B} = \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \begin{bmatrix*}[r] 3 & -4 \\ -1 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a \times 3 + b \times (-1) & a \times (-4) + b \times 2 \\ c \times 3 + d \times (-1) & c \times (-4) + d \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3a - b & -4a + 2b \\ 3c - d & -4c + 2d \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

3a - b = 1          (...Eq 1)

-4a + 2b = 0
⇒ 4a = 2b
⇒ b = 2a           (...Eq 2)

3c - d = 0
⇒ d = 3c           (...Eq 3)

-4c + 2d = 1     (...Eq 4)

Putting value of b from Eq 2 in Eq 1

⇒ 3a - b = 1
⇒ 3a - 2a = 1
⇒ a = 1

∴ a = 1, b = 2a = 2.

Putting value of d from Eq 3 in Eq 4

⇒ -4c + 2d = 1
⇒ -4c + 2(3c) = 1
⇒ -4c + 6c = 1
⇒ 2c = 1
⇒ c = 12\dfrac{1}{2}

∴ c = 12\dfrac{1}{2}, d = 3c = 32\dfrac{3}{2}.

Since, B =[abcd]B=[121232]\text{Since, B }= \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \\[1em] \therefore \text{B} = \begin{bmatrix*}[r] 1 & 2 \\ \dfrac{1}{2} & \dfrac{3}{2} \end{bmatrix*}

Hence, the matrix B = [121232]\begin{bmatrix*}[r] 1 & 2 \\ \dfrac{1}{2} & \dfrac{3}{2} \end{bmatrix*}.

Question 35

Given [4211]\begin{bmatrix*}[r] 4 & 2 \\ -1 & 1 \end{bmatrix*} M = 6I, where M is a matrix and I is the unit matrix of order 2 × 2.

(i) State the order of matrix M.

(ii) Find the matrix M.

Answer

(i) Given,

[4211]M=6I[4211]M is a 2×2 matrix, and[4211] is a 2×2 matrix.M is a 2×2 matrix.\begin{bmatrix*}[r] 4 & 2 \\ -1 & 1 \end{bmatrix*} M = 6I \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 2 \\ -1 & 1 \end{bmatrix*} M \text{ is a } 2 \times 2 \text{ matrix, and} \begin{bmatrix*}[r] 4 & 2 \\ -1 & 1 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix}. \\[1em] \therefore \text{M is a } 2 \times 2 \text{ matrix}. \\[1em]

Hence, the matrix M is of order 2 × 2.

(ii) Let matrix M be [abcd].\begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*}.

Given,

[4211]M=6I[4211][abcd]=6[1001][4×a+2×c4×b+2×d(1)×a+1×c(1)×b+1×d]=[6006][4a+2c4b+2da+cb+d]=[6006]\begin{bmatrix*}[r] 4 & 2 \\ -1 & 1 \end{bmatrix*} M = 6I \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 2 \\ -1 & 1 \end{bmatrix*} \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} = 6\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 \times a + 2 \times c & 4 \times b + 2 \times d \\ (-1) \times a + 1 \times c & (-1) \times b + 1 \times d \end{bmatrix*} = \begin{bmatrix*}[r] 6 & 0 \\ 0 & 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4a + 2c & 4b + 2d \\ -a + c & -b + d \end{bmatrix*} = \begin{bmatrix*}[r] 6 & 0 \\ 0 & 6 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

4a + 2c = 6     (...Eq 1)

4b + 2d = 0
⇒ d = -2b       (...Eq 2)

-a + c = 0
⇒ a = c           (...Eq 3)

-b + d = 6       (...Eq 4)

Putting value of a from Eq 3 in Eq 1

⇒ 4a + 2c = 6
⇒ 4c + 2c = 6
⇒ 6c = 6
⇒ c = 1.

∴ c = 1 and a = c = 1.

Putting value of d from Eq 2 in Eq 4

⇒ -b + d = 6
⇒ -b + (-2b) = 6
⇒ -3b = 6
⇒ b = -2.

∴ b = -2 and d = -2b = 4.

Since,

M=[abcd]M=[1214]\text{M} = \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \\[1em] \therefore \text{M} = \begin{bmatrix*}[r] 1 & -2 \\ 1 & 4 \end{bmatrix*}

Hence, the matrix M=[1214]\text{M} = \begin{bmatrix*}[r] 1 & -2 \\ 1 & 4 \end{bmatrix*}.

Question 36

If B = [4251] and C=[1714713],\begin{bmatrix*}[r] -4 & 2 \\ 5 & -1 \end{bmatrix*} \text{ and C} = \begin{bmatrix*}[r] 17 & -1 \\ 47 & -13 \end{bmatrix*}, find the matrix A such that AB = C.

Answer

Given,

AB = C

A[4251] is a 2×2 matrix, and[4251] is a 2×2 matrix.A is a 2×2 matrix.\Rightarrow A\begin{bmatrix*}[r] -4 & 2 \\ 5 & -1 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix, and} \begin{bmatrix*}[r] 4 & 2 \\ 5 & -1 \end{bmatrix*} \text{ is a } 2 \times 2 \text{ matrix}. \\[1em] \therefore \text{A is a } 2 \times 2 \text{ matrix}.

We know that matrix A will be of order 2 × 2. Let matrix be

A=[abcd][abcd][4251]=[1714713][a×(4)+b×5a×2+b×(1)c×(4)+d×5c×2+d×(1)]=[1714713][4a+5b2ab4c+5d2cd]=[1714713]\text{A} = \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \begin{bmatrix*}[r] -4 & 2 \\ 5 & -1 \end{bmatrix*} = \begin{bmatrix*}[r] 17 & -1 \\ 47 & -13 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a \times (-4) + b \times 5 & a \times 2 + b \times (-1) \\ c \times (-4) + d \times 5 & c \times 2 + d \times (-1) \end{bmatrix*} = \begin{bmatrix*}[r] 17 & -1 \\ 47 & -13 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] -4a + 5b & 2a - b \\ -4c + 5d & 2c - d \end{bmatrix*} = \begin{bmatrix*}[r] 17 & -1 \\ 47 & -13 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

-4a + 5b = 17    (...Eq 1)

2a - b = -1
⇒ b = 2a + 1     (...Eq 2)

-4c + 5d = 47    (...Eq 3)

2c - d = -13
⇒ d = 2c + 13    (...Eq 4)

Putting value of b from Eq 2 in Eq 1

⇒ -4a + 5b = 17
⇒ -4a + 5(2a + 1) = 17
⇒ -4a + 10a + 5 = 17
⇒ 6a + 5 = 17
⇒ 6a = 12
⇒ a = 2.

∴ a = 2, b = 2a + 1 = 2(2) + 1 = 5.

Putting value of d from Eq 4 in Eq 3

⇒ -4c + 5d = 47
⇒ -4c + 5(2c + 13) = 47
⇒ -4c + 10c + 65 = 47
⇒ 6c + 65 = 47
⇒ 6c = -18
⇒ c = -3.

∴ c = -3, d = 2c + 13 = 2(-3) + 13 = 7.

Since,

A=[abcd]A=[2537]\text{A} = \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} \\[1em] \therefore \text{A} = \begin{bmatrix*}[r] 2 & 5 \\ -3 & 7 \end{bmatrix*}

Hence, the matrix A = [2537]\begin{bmatrix*}[r] 2 & 5 \\ -3 & 7 \end{bmatrix*}.

Question 37

If A = [4444]\begin{bmatrix*}[r] 4 & -4 \\ -4 & 4 \end{bmatrix*}, find A2. If A2 = pA, then find the value of p.

Answer

Given,

⇒ A2 = pA

[4444][4444]=p[4444][4×4+(4)×(4)4×(4)+(4)×44×4+4×(4)(4)×(4)+4×4]=p[4444][16+161616161616+16]=p[4444][32323232]=p[4444]32[1111]=4p[1111]32=4pp=324=8.\Rightarrow \begin{bmatrix*}[r] 4 & -4 \\ -4 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 4 & -4 \\ -4 & 4 \end{bmatrix*} = p\begin{bmatrix*}[r] 4 & -4 \\ -4 & 4 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 \times 4 + (-4) \times (-4) & 4 \times (-4) + (-4) \times 4 \\ -4 \times 4 + 4 \times (-4) & (-4) \times (-4) + 4 \times 4 \end{bmatrix*} = p\begin{bmatrix*}[r] 4 & -4 \\ -4 & 4 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 16 + 16 & -16 - 16 \\ -16 - 16 & 16 + 16 \end{bmatrix*} = p\begin{bmatrix*}[r] 4 & -4 \\ -4 & 4 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 32 & -32 \\ -32 & 32 \end{bmatrix*} = p\begin{bmatrix*}[r] 4 & -4 \\ -4 & 4 \end{bmatrix*} \\[1em] \Rightarrow 32\begin{bmatrix*}[r] 1 & -1 \\ -1 & 1 \end{bmatrix*} = 4p\begin{bmatrix*}[r] 1 & -1 \\ -1 & 1 \end{bmatrix*} \\[1em] \Rightarrow 32 = 4p \\[1em] \Rightarrow p = \dfrac{32}{4} = 8.

Hence, p = 8.

Multiple Choice Questions

Question 1

If [x+34y4x+y]=[5439],\begin{bmatrix*}[r] x + 3 & 4 \\ y - 4 & x + y \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 4 \\ 3 & 9 \end{bmatrix*}, then the values of x and y are

  1. x = 2, y = 7
  2. x = 7, y = 2
  3. x = 3, y = 6
  4. x = -2, y = 7

Answer

Given,

[x+34y4x+y]=[5439]\begin{bmatrix*}[r] x + 3 & 4 \\ y - 4 & x + y \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 4 \\ 3 & 9 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ x + 3 = 5 or x = 5 - 3 = 2.

⇒ y - 4 = 3 or y = 3 + 4 = 7.

⇒ x + y = 9.

Since, x = 2 and y = 7 satisfies the equation x + y = 9, hence, value of x = 2 and y = 7.

∴ Option 1 is the correct option.

Question 2

If [x+2yy3x4]=[4364],\begin{bmatrix*}[r] x + 2y & -y \\ 3x & 4 \end{bmatrix*} = \begin{bmatrix*}[r] -4 & 3 \\ 6 & 4 \end{bmatrix*}, then the values of x and y are

  1. x = 2, y = 3
  2. x = 2, y = -3
  3. x = -2, y = 3
  4. x = 3, y = 2

Answer

Given,

[x+2yy3x4]=[4364]\begin{bmatrix*}[r] x + 2y & -y \\ 3x & 4 \end{bmatrix*} = \begin{bmatrix*}[r] -4 & 3 \\ 6 & 4 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ x + 2y = -4     (...Eq 1)

⇒ -y = 3 or y = -3

⇒ 3x = 6 or x = 2

Putting, x = 2 and y = -3 in Eq 1,

⇒ x + 2y = -4
⇒ L.H.S. = 2 + 2(-3) = 2 - 6 = -4 = R.H.S.

Since, x = 2 and y = -3 satisfies the equation x + 2y = -4,

∴ x = 2 and y = -3.

∴ Option 2 is the correct option.

Question 3

If [x2y53y]=[6532],\begin{bmatrix*}[r] x - 2y & 5 \\ 3 & y \end{bmatrix*} = \begin{bmatrix*}[r] 6 & 5 \\ 3 & -2 \end{bmatrix*}, then the value of x is

  1. -2
  2. 0
  3. 1
  4. 2

Answer

Given,

[x2y53y]=[6532]\begin{bmatrix*}[r] x - 2y & 5 \\ 3 & y \end{bmatrix*} = \begin{bmatrix*}[r] 6 & 5 \\ 3 & -2 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices,

⇒ x - 2y = 6     (...Eq 1)

⇒ y = -2.

Putting value of y in Eq 1 we get,

⇒ x - 2y = 6
⇒ x - 2(-2) = 6
⇒ x + 4 = 6
⇒ x = 6 - 4
⇒ x = 2.

∴ x = 2.

∴ Option 4 is the correct option .

Question 4

If [x+2y3y4x2]=[0382],\begin{bmatrix*}[r] x + 2y & 3y \\ 4x & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -3 \\ 8 & 2 \end{bmatrix*}, then the value of x - y is

  1. -3
  2. 1
  3. 3
  4. 5

Answer

Given,

[x+2y3y4x2]=[0382]\begin{bmatrix*}[r] x + 2y & 3y \\ 4x & 2 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & -3 \\ 8 & 2 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ x + 2y = 0     (...Eq 1)

⇒ 3y = -3 or y = -1

⇒ 4x = 8 or x = 2

Putting the value of x = 2 and y = -1 in Eq 1

⇒ x + 2y = 0
⇒ L.H.S. = 2 + 2(-1) = 2 - 2 = 0 = R.H.S.

Since, x = 2 and y = -1 satisfies Eq 1

∴ x = 2, y = -1 and x - y = 2 - (-1) = 2 + 1 = 3.

∴ Option 3 is the correct option.

Question 5

If x[23]+y[10]=[106],x\begin{bmatrix*}[r] 2 \\ 3 \end{bmatrix*} + y\begin{bmatrix*}[r] -1 \\ 0 \end{bmatrix*} = \begin{bmatrix*}[r] 10 \\ 6 \end{bmatrix*}, then the values of x and y are

  1. x = 2, y = 6
  2. x = 2, y = -6
  3. x = 3, y = -4
  4. x = 3, y = -6

Answer

Given,

x[23]+y[10]=[106][2x3x]+[y0]=[106][2xy3x]=[106]x\begin{bmatrix*}[r] 2 \\ 3 \end{bmatrix*} + y\begin{bmatrix*}[r] -1 \\ 0 \end{bmatrix*} = \begin{bmatrix*}[r] 10 \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x \\ 3x \end{bmatrix*} + \begin{bmatrix*}[r] -y \\ 0 \end{bmatrix*} = \begin{bmatrix*}[r] 10 \\ 6 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 2x - y \\ 3x \end{bmatrix*} = \begin{bmatrix*}[r] 10 \\ 6 \end{bmatrix*} \\[1em]

By definition of equality of matrices we get,

⇒ 2x - y = 10          (...Eq 1)

⇒ 3x = 6 or x = 2.

Putting value of x in Eq 1

⇒ 2x - y = 10
⇒ 2(2) - y = 10
⇒ 4 - y = 10
⇒ y = 4 - 10
⇒ y = -6

∴ x = 2 and y = -6.

∴ Option 2 is the correct option.

Question 6

If A =[0110],\text{If A }= \begin{bmatrix*}[r] 0 & 1 \\ 1 & 0 \end{bmatrix*}, then A2 =

  1. [1100]\begin{bmatrix*}[r] 1 & 1 \\ 0 & 0 \end{bmatrix*}

  2. [0011]\begin{bmatrix*}[r] 0 & 0 \\ 1 & 1 \end{bmatrix*}

  3. [0110]\begin{bmatrix*}[r] 0 & 1 \\ 1 & 0 \end{bmatrix*}

  4. [1001]\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}

Answer

Given,

A=[0110]A2=[0110][0110]=[0×0+1×10×1+1×01×0+0×11×1+0×0]=[1001]A2=[1001].\text{A} = \begin{bmatrix*}[r] 0 & 1 \\ 1 & 0 \end{bmatrix*} \\[1em] \Rightarrow \text{A}^2 = \begin{bmatrix*}[r] 0 & 1 \\ 1 & 0 \end{bmatrix*}\begin{bmatrix*}[r] 0 & 1 \\ 1 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 \times 0 + 1 \times 1 & 0 \times 1 + 1 \times 0 \\ 1 \times 0 + 0 \times 1 & 1 \times 1 + 0 \times 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] \therefore \text{A}^2 = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}.

∴ Option 4 is the correct option.

Question 7

If A =[0010],\text{If A }= \begin{bmatrix*}[r] 0 & 0 \\ 1 & 0 \end{bmatrix*}, then A2 =

  1. A
  2. O
  3. I
  4. 2A

Answer

Given,

A=[0010]A2=[0010][0010]=[0×0+0×10×0+0×01×0+0×11×0+0×0]=[0000]A2=O.\text{A} = \begin{bmatrix*}[r] 0 & 0 \\ 1 & 0 \end{bmatrix*} \\[1em] \Rightarrow \text{A}^2 = \begin{bmatrix*}[r] 0 & 0 \\ 1 & 0 \end{bmatrix*}\begin{bmatrix*}[r] 0 & 0 \\ 1 & 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 \times 0 + 0 \times 1 & 0 \times 0 + 0 \times 0 \\ 1 \times 0 + 0 \times 1 & 1 \times 0 + 0 \times 0 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[1em] \therefore \text{A}^2 = O.

∴ Option 2 is the correct option.

Question 8

If A =[1011],\text{If A }= \begin{bmatrix*}[r] 1 & 0 \\ 1 & 1 \end{bmatrix*}, then A2 =

  1. [2011]\begin{bmatrix*}[r] 2 & 0 \\ 1 & 1 \end{bmatrix*}

  2. [1012]\begin{bmatrix*}[r] 1 & 0 \\ 1 & 2 \end{bmatrix*}

  3. [1021]\begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*}

  4. none of these

Answer

Given,

A=[1011]A2=[1011][1011]=[1×1+0×11×0+0×11×1+1×11×0+1×1]=[1021]A2=[1021].\text{A} = \begin{bmatrix*}[r] 1 & 0 \\ 1 & 1 \end{bmatrix*} \\[0.5em] \Rightarrow \text{A}^2 = \begin{bmatrix*}[r] 1 & 0 \\ 1 & 1 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 0 \\ 1 & 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 1 \times 1 + 0 \times 1 & 1 \times 0 + 0 \times 1 \\ 1 \times 1 + 1 \times 1 & 1 \times 0 + 1 \times 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*} \\[0.5em] \therefore \text{A}^2 = \begin{bmatrix*}[r] 1 & 0 \\ 2 & 1 \end{bmatrix*}.

∴ Option 3 is the correct option.

Question 9

If A =[3112],\text{If A }= \begin{bmatrix*}[r] 3 & 1 \\ -1 & 2 \end{bmatrix*}, then A2 =

  1. [8553]\begin{bmatrix*}[r] 8 & 5 \\ -5 & 3 \end{bmatrix*}

  2. [8553]\begin{bmatrix*}[r] 8 & -5 \\ 5 & 3 \end{bmatrix*}

  3. [8553]\begin{bmatrix*}[r] 8 & -5 \\ -5 & -3 \end{bmatrix*}

  4. [8553]\begin{bmatrix*}[r] 8 & -5 \\ -5 & 3 \end{bmatrix*}

Answer

Given,

A=[3112]A2=[3112][3112]=[3×3+1×(1)3×1+1×2(1)×3+2×(1)(1)×1+2×2]=[913+2321+4]=[8553]A2=[8553].\text{A} = \begin{bmatrix*}[r] 3 & 1 \\ -1 & 2 \end{bmatrix*} \\[0.5em] \Rightarrow \text{A}^2 = \begin{bmatrix*}[r] 3 & 1 \\ -1 & 2 \end{bmatrix*}\begin{bmatrix*}[r] 3 & 1 \\ -1 & 2 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 3 \times 3 + 1 \times (-1) & 3 \times 1 + 1 \times 2 \\ (-1) \times 3 + 2 \times (-1) & (-1) \times 1 + 2 \times 2 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 9 - 1 & 3 + 2 \\ -3 - 2 & -1 + 4 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 8 & 5 \\ -5 & 3 \end{bmatrix*} \\[0.5em] \therefore \text{A}^2 = \begin{bmatrix*}[r] 8 & 5 \\ -5 & 3 \end{bmatrix*}.

∴ Option 1 is the correct option.

Question 10

If matrix 𝐴 = [2202] and A2=[4x04]\begin{bmatrix*}[r] 2 & 2 \\ 0 & 2 \end{bmatrix*}\text{ and } A^2 = \begin{bmatrix*}[r] 4 & x \\ 0 & 4 \end{bmatrix*}, then the value of x is :

  1. 2

  2. 4

  3. 8

  4. 10

Answer

A2=[2202][2202]A2=[2×2+2×02×2+2×20×2+2×00×2+2×2][4x04]=[4+04+40+00+4][4x04]=[4804]x=8.\phantom{\Rightarrow} A^2 = \begin{bmatrix*}[r] 2 & 2 \\ 0 & 2 \end{bmatrix*}\begin{bmatrix*}[r] 2 & 2 \\ 0 & 2 \end{bmatrix*} \\[1em] \Rightarrow A^2 = \begin{bmatrix*}[r] 2 \times 2 + 2\times 0 & 2 \times 2 + 2 \times 2 \\ 0 \times 2 + 2 \times 0 & 0 \times 2 + 2 \times 2 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & x \\ 0 & 4 \end{bmatrix*} = \begin{bmatrix*}[r] 4 + 0 & 4 + 4 \\ 0 + 0 & 0 + 4 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & x \\ 0 & 4 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 8 \\ 0 & 4 \end{bmatrix*} \\[1em] \Rightarrow x = 8.

Hence, Option 3 is the correct option.

Question 11

If A = [2222],\begin{bmatrix*}[r] 2 & -2 \\ -2 & 2 \end{bmatrix*}, then A2 = pA, then the value of p is

  1. 2

  2. 4

  3. -2

  4. -4

Answer

Given,

A2=pA[2222][2222]=p[2222][2×2+(2)×(2)2×(2)+(2)×22×2+2×(2)(2)×(2)+2×2]=p[2222][4+444444+4]=p[2222][8888]=[2p2p2p2p]\text{A}^2 = pA \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 2 & -2 \\ -2 & 2 \end{bmatrix*} \begin{bmatrix*}[r] 2 & -2 \\ -2 & 2 \end{bmatrix*} = p\begin{bmatrix*}[r] 2 & -2 \\ -2 & 2 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 2 \times 2 + (-2) \times (-2) & 2 \times (-2) + (-2) \times 2 \\ -2 \times 2 + 2 \times (-2) & (-2) \times (-2) + 2 \times 2 \end{bmatrix*} = p\begin{bmatrix*}[r] 2 & -2 \\ -2 & 2 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 4 + 4 & -4 - 4 \\ -4 - 4 & 4 + 4 \end{bmatrix*} = p\begin{bmatrix*}[r] 2 & -2 \\ -2 & 2 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 8 & -8 \\ -8 & 8 \end{bmatrix*} = \begin{bmatrix*}[r] 2p & -2p \\ -2p & 2p \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ 2p = 8

∴ p = 4.

∴ Option 2 is the correct option.

Question 12

The product AB of two matrices A and B is possible if

  1. A and B have same number of rows.

  2. A and B have same number of columns.

  3. The number of columns of A is equal to the number of rows of B.

  4. The number of rows of A is equal to the number of columns of B.

Answer

Matrix multiplication is possible if the number of columns of the first matrix is the same as the number of rows as the second matrix.

So, AB is possible if the number of columns of A is equal to the number of rows of B.

Hence, option 3 is the correct option.

Question 13

If A = [12] and B=[1203]\begin{bmatrix*}[r] -1 & 2 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] 1 & -2 \\ 0 & 3 \end{bmatrix*}. Which of the following operations is possible ?

  1. A - B

  2. A + B

  3. AB

  4. BA

Answer

Order of A : 1 × 2 and order of B : 2 × 2

Since, no. of columns in A is same as the no. of rows in B.

∴ AB is possible.

Hence, Option 3 is the correct option.

Assertion-Reason Type Questions

Question 1

A, B and C are square matrices of order 2 such that AB = C.

Assertion (A): BA = C

Reason (R): Matrix multiplication is not always commutative.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given, A, B and C are square matrices of order 2 such that AB = C.

Matrix multiplication is not always commutative.

So, reason (R) is true.

⇒ AB ≠ BA

So, BA is not necessarily equal to C.

So, assertion (A) is false.

Thus, Assertion (A) is false, but Reason (R) is true.

Hence, option 2 is the correct option.

Question 2

A, B and C are square matrices of order 2 such that AB = C.

Assertion (A): Product BA need not be equal to C.

Reason (R): Matrix multiplication is not associative.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given, A, B and C are square matrices of order 2 such that AB = C.

Matrix multiplication is not always commutative.

∴ AB is not necessarily equal to BA.

So, BA is not necessarily equal to C.

So, assertion (A) is true.

Matrix multiplication is associative.

So, reason (R) is false.

Assertion (A) is true, but Reason (R) is false.

Hence, option 1 is the correct option.

Question 3

If A = [32] and B=[1420]\begin{bmatrix*}[r] 3 & -2 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] -1 & 4 \\ 2 & 0 \end{bmatrix*}

Assertion (A): Product AB of the two matrices A and B is possible.

Reason (R): Number of columns of matrix A is equal to number of rows in matrix B.

  1. Assertion (A) is true, but Reason (R) is false.

  2. Assertion (A) is false, but Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).

Answer

Given, A = [32] and B=[1420]\begin{bmatrix*}[r] 3 & -2 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] -1 & 4 \\ 2 & 0 \end{bmatrix*}

To multiply two matrices, the number of columns of the first matrix must equal the number of rows of the second matrix.

Matrix A has 1 row and 2 columns.

Matrix B has 2 rows and 2 columns.

So, reason (R) is true.

The number of columns in A is 2 and number of rows in B is also 2.

So, product AB is defined.

So, both A and R are true and R is the correct explanation of assertion A.

Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Chapter Test

Question 1

Find the values of a and b if,

[a+3b2+206]=[2a+13b0b25b].\begin{bmatrix*}[r] a + 3 & b^2 + 2 \\ 0 & -6 \end{bmatrix*} = \begin{bmatrix*}[r] 2a + 1 & 3b \\ 0 & b^2 - 5b \end{bmatrix*}.

Answer

By definition of equality of matrices we get,

⇒ a + 3 = 2a + 1 or a = 2

⇒ b2 + 2 = 3b     (...Eq 1)

⇒ b2 - 5b = -6     (...Eq 2)

Solving Eq 1 for b,

⇒ b2 + 2 = 3b
⇒ b2 - 3b + 2 = 0
⇒ b2 - 2b - b + 2 = 0
⇒ b(b - 2) - 1(b - 2) = 0
⇒ (b - 1)(b - 2) = 0
⇒ b = 1 or b = 2.

Checking whether the value of b = 1 satisfies Eq 2

⇒ b2 - 5b = -6

L.H.S. = b2 - 5b = (1)2 - 5(1) = -4.

L.H.S. \neq R.H.S., so b = 1 is not the solution.

Checking whether the value of b = 2 satisfies Eq 2

⇒ b2 - 5b = -6

L.H.S. = b2 - 5b
= (2)2 - 5(2)
= 4 - 10
= -6 = R.H.S..

∴ a = 2 and b = 2.

Hence, the values are a = 2 and b = 2.

Question 2

Find a, b, c and d if 3[abcd]=[4a+bc+d3]+[a612d]3\begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} = \begin{bmatrix*}[r] 4 & a + b \\ c + d & 3 \end{bmatrix*} + \begin{bmatrix*}[r] a & 6 \\ -1 & 2d \end{bmatrix*}

Answer

Given,

3[abcd]=[4a+bc+d3]+[a612d][3a3b3c3d]=[4+aa+b+6c+d13+2d]3\begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} = \begin{bmatrix*}[r] 4 & a + b \\ c + d & 3 \end{bmatrix*} + \begin{bmatrix*}[r] a & 6 \\ -1 & 2d \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 3a & 3b \\ 3c & 3d \end{bmatrix*} = \begin{bmatrix*}[r] 4 + a & a + b + 6 \\ c + d - 1 & 3 + 2d \end{bmatrix*} \\[0.5em]

By definition of equality of matrices

⇒ 3a = 4 + a     (...Eq 1)

⇒ 3b = a + b + 6     (...Eq 2)

⇒ 3c = c + d - 1     (...Eq 3)

⇒ 3d = 3 + 2d     (...Eq 4)

Solving Eq 1 we get,

⇒ 3a = 4 + a
⇒ 3a - a = 4
⇒ 2a = 4
⇒ a = 2.

Solving Eq 2 by putting value of a from Eq 1 we get,

⇒ 3b = a + b + 6
⇒ 3b = 2 + b + 6
⇒ 3b = b + 8
⇒ 3b - b = 8
⇒ 2b = 8
⇒ b = 4.

Solving Eq 4 we get,

⇒ 3d = 3 + 2d
⇒ 3d - 2d = 3
⇒ d = 3.

Solving Eq 3 by putting value of d from Eq 4 we get,

⇒ 3c = c + d - 1
⇒ 3c = c + 3 - 1
⇒ 3c - c = 2
⇒ 2c = 2
⇒ c = 1.

∴ a = 2, b = 4, c = 1 and d = 3.

Hence, the value of a = 2, b = 4, c = 1 and d = 3.

Question 3

Determine the matrices A and B when

A + 2B = [1263] and 2A - B=[2121].\begin{bmatrix*}[r] 1 & 2 \\ 6 & -3 \end{bmatrix*} \text{ and 2A - B} = \begin{bmatrix*}[r] 2 & -1 \\ 2 & -1 \end{bmatrix*}.

Answer

Given,

A + 2B=[1263]....[Eq 1] 2A - B=[2121]....[Eq 2] \text{A + 2B} = \begin{bmatrix*}[r] 1 & 2 \\ 6 & -3 \end{bmatrix*} \qquad \text{....[Eq 1] } \\[1em] \text{2A - B} = \begin{bmatrix*}[r] 2 & -1 \\ 2 & -1 \end{bmatrix*} \qquad \text{....[Eq 2] } \\[1em]

Multiplying Eq 1 by 2,

2A+4B=[24126]\Rightarrow 2A + 4B = \begin{bmatrix*}[r] 2 & 4 \\ 12 & -6 \end{bmatrix*} \\[1em]

Subtracting Eq 2 from above equation we get,

2A+4B(2AB)=[24126][2121]2A2A+4B(B)=[224(1)1226(1)]5B=[05105]B=15[05105]B=[0121].\Rightarrow 2A + 4B - (2A - B) = \begin{bmatrix*}[r] 2 & 4 \\ 12 & -6 \end{bmatrix*} - \begin{bmatrix*}[r] 2 & -1 \\ 2 & -1 \end{bmatrix*} \\[1em] \Rightarrow 2A - 2A + 4B - (-B) = \begin{bmatrix*}[r] 2 - 2 & 4 - (-1) \\ 12 - 2 & -6 - (-1) \end{bmatrix*} \\[1em] \Rightarrow 5B = \begin{bmatrix*}[r] 0 & 5 \\ 10 & -5 \end{bmatrix*} \\[1em] \Rightarrow B = \dfrac{1}{5}\begin{bmatrix*}[r] 0 & 5 \\ 10 & -5 \end{bmatrix*} \\[1em] \Rightarrow B = \begin{bmatrix*}[r] 0 & 1 \\ 2 & -1 \end{bmatrix*}. \\[1em]

Putting value of matrix B in Eq 1,

A+2[0121]=[1263]A+[0242]=[1263]A=[1263][0242]A=[1022643(2)]A=[1021].A=[1021] and B=[0121].\Rightarrow A + 2 \begin{bmatrix*}[r] 0 & 1 \\ 2 & -1 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \\ 6 & -3 \end{bmatrix*} \\[1em] \Rightarrow A + \begin{bmatrix*}[r] 0 & 2 \\ 4 & -2 \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 2 \\ 6 & -3 \end{bmatrix*} \\[1em] \Rightarrow A = \begin{bmatrix*}[r] 1 & 2 \\ 6 & -3 \end{bmatrix*} - \begin{bmatrix*}[r] 0 & 2 \\ 4 & -2 \end{bmatrix*} \\[1em] \Rightarrow A = \begin{bmatrix*}[r] 1 - 0 & 2 - 2 \\ 6 - 4 & -3 - (-2) \end{bmatrix*} \\[1em] \Rightarrow A = \begin{bmatrix*}[r] 1 & 0 \\ 2 & -1 \end{bmatrix*}. \\[1em] \therefore A = \begin{bmatrix*}[r] 1 & 0 \\ 2 & -1 \end{bmatrix*} \text{ and } B = \begin{bmatrix*}[r] 0 & 1 \\ 2 & -1 \end{bmatrix*}.

Hence, the value of A=[1021]and B=[0121].\text{A} = \begin{bmatrix*}[r] 1 & 0 \\ 2 & -1 \end{bmatrix*} \text{and B} = \begin{bmatrix*}[r] 0 & 1 \\ 2 & -1 \end{bmatrix*}.

Question 4(i)

Find the matrix B if A = [4123]\begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} and A2 = A + 2B.

Answer

Given, A2 = A + 2B.

[4123][4123]=[4123]+2B[4×4+1×24×1+1×32×4+3×22×1+3×3]=[4123]+2B[16+24+38+62+9]=[4123]+2B[1871411]=[4123]+2B2B=[1871411][4123]2B=[18471142113]2B=[146128]B=[7364].\Rightarrow \begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} \begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} + 2B \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 4 \times 4 + 1 \times 2 & 4 \times 1 + 1 \times 3 \\ 2 \times 4 + 3 \times 2 & 2 \times 1 + 3 \times 3 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} + 2B \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 16 + 2 & 4 + 3 \\ 8 + 6 & 2 + 9 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} + 2B \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 18 & 7 \\ 14 & 11 \end{bmatrix*} = \begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} + 2B \\[0.5em] \Rightarrow 2B = \begin{bmatrix*}[r] 18 & 7 \\ 14 & 11 \end{bmatrix*} - \begin{bmatrix*}[r] 4 & 1 \\ 2 & 3 \end{bmatrix*} \\[0.5em] \Rightarrow 2B = \begin{bmatrix*}[r] 18 - 4 & 7 - 1 \\ 14 - 2 & 11 - 3 \end{bmatrix*} \\[0.5em] \Rightarrow 2B = \begin{bmatrix*}[r] 14 & 6 \\ 12 & 8 \end{bmatrix*} \\[0.5em] \therefore B = \begin{bmatrix*}[r] 7 & 3 \\ 6 & 4 \end{bmatrix*}.

Hence, the matrix B = [7364].\begin{bmatrix*}[r] 7 & 3 \\ 6 & 4 \end{bmatrix*}.

Question 4(ii)

If A=[1234],B=[0125] and C =[2011],A = \begin{bmatrix*}[r] 1 & 2 \\ -3 & 4 \end{bmatrix*}, B = \begin{bmatrix*}[r] 0 & 1 \\ -2 & 5 \end{bmatrix*} \text{ and C } = \begin{bmatrix*}[r] -2 & 0 \\ -1 & 1 \end{bmatrix*}, find A(4B - 3C).

Answer

We need to find the value of A(4B - 3C).

A(4B - 3C)=[1234](4[0125]3[2011])=[1234]([04820][6033])=[1234][0(6)408(3)203]=[1234][64517]=[1×6+2×(5)1×4+2×173×6+4×(5)3×4+4×17]=[6104+34182012+68]=[4383856].\text{A(4B - 3C)} = \begin{bmatrix*}[r] 1 & 2 \\ -3 & 4 \end{bmatrix*} \Big(4\begin{bmatrix*}[r] 0 & 1 \\ -2 & 5 \end{bmatrix*} - 3\begin{bmatrix*}[r] -2 & 0 \\ -1 & 1 \end{bmatrix*}\Big) \\[0.5em] = \begin{bmatrix*}[r] 1 & 2 \\ -3 & 4 \end{bmatrix*} \Big(\begin{bmatrix*}[r] 0 & 4 \\ -8 & 20 \end{bmatrix*} - \begin{bmatrix*}[r] -6 & 0 \\ -3 & 3 \end{bmatrix*}\Big) \\[0.5em] = \begin{bmatrix*}[r] 1 & 2 \\ -3 & 4 \end{bmatrix*} \begin{bmatrix*}[r] 0 - (-6) & 4 - 0 \\ -8 - (-3) & 20 - 3 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 1 & 2 \\ -3 & 4 \end{bmatrix*} \begin{bmatrix*}[r] 6 & 4 \\ -5 & 17 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 1 \times 6 + 2 \times (-5) & 1 \times 4 + 2 \times 17 \\ -3 \times 6 + 4 \times (-5) & -3 \times 4 + 4 \times 17 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 6 - 10 & 4 + 34 \\ -18 - 20 & -12 + 68 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] -4 & 38 \\ -38 & 56 \end{bmatrix*}.

Hence, the value of A(4B - 3C) = [4383856].\begin{bmatrix*}[r] -4 & 38 \\ -38 & 56 \end{bmatrix*}.

Question 5

If A=[1324],B=[1224],C=[4115] and I=[1001]A = \begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}, B = \begin{bmatrix*}[r] 1 & 2 \\ 2 & 4 \end{bmatrix*}, C = \begin{bmatrix*}[r] 4 & 1 \\ 1 & 5 \end{bmatrix*} \text{ and } I = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}. Find A(B + C) - 14I.

Answer

B + C = [1224]+[4115]=[5339]\begin{bmatrix*}[r] 1 & 2 \\ 2 & 4 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & 1 \\ 1 & 5 \end{bmatrix*} = \begin{bmatrix*}[r] 5 & 3 \\ 3 & 9 \end{bmatrix*}

Substituting values we get :

A(B+C)14I=[1324][5339]14[1001]=[1×5+3×31×3+3×92×5+4×32×3+4×9][140014]=[5+93+2710+126+36][140014]=[14302242][140014]=[14143002204214]=[0302228].A(B + C) - 14I = \begin{bmatrix*}[r] 1 & 3 \\ 2 & 4 \end{bmatrix*}\begin{bmatrix*}[r] 5 & 3 \\ 3 & 9 \end{bmatrix*} - 14\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 5 + 3 \times 3 & 1 \times 3 + 3 \times 9 \\ 2 \times 5 + 4 \times 3 & 2 \times 3 + 4 \times 9 \end{bmatrix*} - \begin{bmatrix*}[r] 14 & 0 \\ 0 & 14 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 5 + 9 & 3 + 27 \\ 10 + 12 & 6 + 36 \end{bmatrix*} - \begin{bmatrix*}[r] 14 & 0 \\ 0 & 14 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 14 & 30 \\ 22 & 42 \end{bmatrix*} - \begin{bmatrix*}[r] 14 & 0 \\ 0 & 14 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 14 - 14 & 30 - 0 \\ 22 - 0 & 42 - 14 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 0 & 30 \\ 22 & 28 \end{bmatrix*}.

Hence, A(B + C) - 14I = [0302228].\begin{bmatrix*}[r] 0 & 30 \\ 22 & 28 \end{bmatrix*}.

Question 6

If A = [3205] and B =[1012],\begin{bmatrix*}[r] 3 & 2 \\ 0 & 5 \end{bmatrix*} \text{ and B } = \begin{bmatrix*}[r] 1 & 0 \\ 1 & 2 \end{bmatrix*}, find each of the following and state if they are equal :

(i) (A + B)(A - B)

(ii) A2 - B2

Answer

(i) We need to find the value of (A + B)(A - B)

(A+B)(AB)=([3205]+[1012])([3205][1012])=[3+12+00+15+2][31200152]=[4217][2213]=[4×2+2×(1)4×2+2×31×2+7×(1)1×2+7×3]=[828+6272+21]=[614523].(A + B)(A - B) = \Big(\begin{bmatrix*}[r] 3 & 2 \\ 0 & 5 \end{bmatrix*} + \begin{bmatrix*}[r] 1 & 0 \\ 1 & 2 \end{bmatrix*}\Big)\Big(\begin{bmatrix*}[r] 3 & 2 \\ 0 & 5 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 0 \\ 1 & 2 \end{bmatrix*}\Big) \\[0.5em] = \begin{bmatrix*}[r] 3 + 1 & 2 + 0 \\ 0 + 1 & 5 + 2 \end{bmatrix*} \begin{bmatrix*}[r] 3 - 1 & 2 - 0 \\ 0 - 1 & 5 - 2 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 4 & 2 \\ 1 & 7 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 2 \\ -1 & 3 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 4 \times 2 + 2 \times (-1) & 4 \times 2 + 2 \times 3 \\ 1 \times 2 + 7 \times (-1) & 1 \times 2 + 7 \times 3 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 8 - 2 & 8 + 6 \\ 2 - 7 & 2 + 21 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 6 & 14 \\ -5 & 23 \end{bmatrix*}.

Hence, the value of (A + B)(A - B) = [614523]\begin{bmatrix*}[r] 6 & 14 \\ -5 & 23 \end{bmatrix*}.

(ii) We need to find the value of A2 - B2

A2B2=[3205][3205][1012][1012]=[3×3+2×03×2+2×50×3+5×00×2+5×5][1×1+0×11×0+0×21×1+2×11×0+2×2]=[916025][1034]=[9116003254]=[816321].A^2 - B^2 = \begin{bmatrix*}[r] 3 & 2 \\ 0 & 5 \end{bmatrix*} \begin{bmatrix*}[r] 3 & 2 \\ 0 & 5 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 0 \\ 1 & 2 \end{bmatrix*} \begin{bmatrix*}[r] 1 & 0 \\ 1 & 2 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 3 \times 3 + 2 \times 0 & 3 \times 2 + 2 \times 5 \\ 0 \times 3 + 5 \times 0 & 0 \times 2 + 5 \times 5 \end{bmatrix*} - \begin{bmatrix*}[r] 1 \times 1 + 0 \times 1 & 1 \times 0 + 0 \times 2 \\ 1 \times 1 + 2 \times 1 & 1 \times 0 + 2 \times 2 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 9 & 16 \\ 0 & 25 \end{bmatrix*} - \begin{bmatrix*}[r] 1 & 0 \\ 3 & 4 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 9 - 1 & 16 - 0 \\ 0 - 3 & 25 - 4 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 8 & 16 \\ -3 & 21 \end{bmatrix*} .

Hence, the value of A2B2=[816321] and (A + B)(A - B) A2B2.A^2 - B^2 = \begin{bmatrix*}[r] 8 & 16 \\ -3 & 21 \end{bmatrix*} \text{ and (A + B)(A - B) } \neq A^2 - B^2.

Question 7

If A = [3542],\begin{bmatrix*}[r] 3 & -5 \\ -4 & 2 \end{bmatrix*}, find A2 - 5A - 14I, where I is unit matrix of order 2 × 2.

Answer

We need to find the value of A2 - 5A - 14I.

A25A14I=[3542][3542]5[3542]14[1001]=[3×3+(5)×(4)3×(5)+(5)×2(4)×3+2×(4)(4)×(5)+2×2][15252010][140014]=[9+20151012820+4][15252010][140014]=[29252024][15252010][140014]=[29151425(25)020(20)0241014]=[292925+2520+202424]=[0000]A^2 - 5A -14I = \begin{bmatrix*}[r] 3 & -5 \\ -4 & 2 \end{bmatrix*} \begin{bmatrix*}[r] 3 & -5 \\ -4 & 2 \end{bmatrix*} - 5\begin{bmatrix*}[r] 3 & -5 \\ -4 & 2 \end{bmatrix*} - 14\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 3 \times 3 + (-5) \times (-4) & 3 \times (-5) + (-5) \times 2 \\ (-4) \times 3 + 2 \times (-4) & (-4) \times (-5) + 2 \times 2 \end{bmatrix*} - \begin{bmatrix*}[r] 15 & -25 \\ -20 & 10 \end{bmatrix*} - \begin{bmatrix*}[r] 14 & 0 \\ 0 & 14 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 9 + 20 & -15 - 10 \\ -12 - 8 & 20 + 4 \end{bmatrix*} - \begin{bmatrix*}[r] 15 & -25 \\ -20 & 10 \end{bmatrix*} - \begin{bmatrix*}[r] 14 & 0 \\ 0 & 14 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 29 & -25 \\ -20 & 24 \end{bmatrix*} - \begin{bmatrix*}[r] 15 & -25 \\ -20 & 10 \end{bmatrix*} - \begin{bmatrix*}[r] 14 & 0 \\ 0 & 14 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 29 - 15 - 14 & -25 - (-25) - 0 \\ -20 - (-20) - 0 & 24 - 10 - 14 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 29 - 29 & -25 + 25 \\ -20 + 20 & 24 - 24 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[0.5em]

Hence, the value of A25A14I=[0000].A^2 - 5A - 14I = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*}.

Question 8

If A=[33pq] and A2=O,A = \begin{bmatrix*}[r] 3 & 3 \\ p & q \end{bmatrix*} \text{ and } A^2 = O, find p and q.

Answer

Given, A2 = O.

[33pq][33pq]=[0000][3×3+3×p3×3+3×qp×3+q×pp×3+q×q]=[0000][9+3p9+3q3p+qp3p+q2]=[0000]\Rightarrow \begin{bmatrix*}[r] 3 & 3 \\ p & q \end{bmatrix*} \begin{bmatrix*}[r] 3 & 3 \\ p & q \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 3 \times 3 + 3 \times p & 3 \times 3 + 3 \times q \\ p \times 3 + q \times p & p \times 3 + q \times q \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 9 + 3p & 9 + 3q \\ 3p + qp & 3p + q^2 \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 0 \\ 0 & 0 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ 9 + 3p = 0 or 3p = -9 or p = -3

⇒ 9 + 3q = 0 or 3q = -9 or q = -3

⇒ 3p + qp = 0     (Eq 1)

⇒ 3p + q2 = 0     (Eq 2)

Checking whether p = -3 and q = -3 satisfy Eq 1,

⇒ 3p + qp = 0

L.H.S. = 3(-3) + (-3)(-3) = -9 + 9 = 0 = R.H.S.

Checking whether p = -3 and q = -3 satisfy Eq 2,

⇒ 3p + q2 = 0

L.H.S. = 3(-3) + (-3)2 = -9 + 9 = 0 = R.H.S.

Since, p = -3 and q = -3 satisfies Eq 1 and Eq 2,

∴ p = -3 and q = -3.

Hence, the values are p = -3 and q = -3.

Question 9

If [1001][abcd]=[1001],\begin{bmatrix*}[r] -1 & 0 \\ 0 & 1 \end{bmatrix*} \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*}, find a, b, c and d.

Answer

Given,

[1001][abcd]=[1001][1×a+0×c1×b+0×d0×a+1×c0×b+1×d]=[1001][abcd]=[1001]\begin{bmatrix*}[r] -1 & 0 \\ 0 & 1 \end{bmatrix*} \begin{bmatrix*}[r] a & b \\ c & d \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] -1 \times a + 0 \times c & -1 \times b + 0 \times d \\ 0 \times a + 1 \times c & 0 \times b + 1 \times d \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] -a & -b \\ c & d \end{bmatrix*} = \begin{bmatrix*}[r] 1 & 0 \\ 0 & -1 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ -a = 1 or a = -1

⇒ -b = 0 or b = 0

⇒ c = 0

⇒ d = -1.

Hence, the value of a = -1, b = 0, c = 0 and d = -1.

Question 10

Find a and b if [abb4b+4a2][2002]=[22140].\begin{bmatrix*}[r] a - b & b - 4 \\ b + 4 & a - 2 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 0 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] -2 & -2 \\ 14 & 0 \end{bmatrix*}.

Answer

Given,

[abb4b+4a2][2002]=[22140][(ab)×2+(b4)×0(ab)×0+(b4)×2(b+4)×2+(a2)×0(b+4)×0+(a2)×2]=[22140][2a2b2b82b+82a4]=[22140]\begin{bmatrix*}[r] a - b & b - 4 \\ b + 4 & a - 2 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 0 \\ 0 & 2 \end{bmatrix*} = \begin{bmatrix*}[r] -2 & -2 \\ 14 & 0 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] (a - b) \times 2 + (b - 4) \times 0 & (a - b) \times 0 + (b - 4) \times 2 \\ (b + 4) \times 2 + (a - 2) \times 0 & (b + 4) \times 0 + (a - 2) \times 2 \end{bmatrix*} = \begin{bmatrix*}[r] -2 & -2 \\ 14 & 0 \end{bmatrix*} \\[0.5em] \Rightarrow \begin{bmatrix*}[r] 2a - 2b & 2b - 8 \\ 2b + 8 & 2a - 4 \end{bmatrix*} = \begin{bmatrix*}[r] -2 & -2 \\ 14 & 0 \end{bmatrix*} \\[0.5em]

By definition of equality of matrices we get,

⇒ 2a - 4 = 0 or 2a = 4 or a = 2

⇒ 2b - 8 = -2 or 2b = -2 + 8 = 6 or b = 3

⇒ 2a - 2b = -2     (Eq 1)

Checking whether a = 2 and b = 3 satisfies Eq 1,

⇒ 2a - 2b = -2

L.H.S. = 2a - 2b = 2(2) - 2(3) = 4 - 6 = -2 = R.H.S.

∴ a = 2 and b = 3.

Hence, the values are a = 2 and b = 3.

Question 11

If A = [sec 60°cos 90°-3 tan 45°sin 90°] and B =[0cot 45°23 sin 90°],\begin{bmatrix*}[r] \text{sec 60°} & \text{cos 90°} \\ \text{-3 tan 45°} & \text{sin 90°} \end{bmatrix*} \text{ and B } = \begin{bmatrix*}[r] 0 & \text{cot 45°} \\ -2 & \text{3 sin 90°} \end{bmatrix*}, find

(i) 2A - 3B

(ii) A2

(iii) BA

Answer

(i) Given,

A=[sec 60°cos 90°-3 tan 45°sin 90°]=[2031]B=[0cot 45°23 sin 90°]=[0123]2A - 3B=2[2031]3[0123]=[4062][0369]=[40036(6)29]=[4307].\text{A} = \begin{bmatrix*}[r] \text{sec 60°} & \text{cos 90°} \\ \text{-3 tan 45°} & \text{sin 90°} \end{bmatrix*} = \begin{bmatrix*}[r] 2 & 0 \\ -3 & 1 \end{bmatrix*} \\[1em] \text{B} = \begin{bmatrix*}[r] 0 & \text{cot 45°} \\ -2 & \text{3 sin 90°} \end{bmatrix*} = \begin{bmatrix*}[r] 0 & 1 \\ -2 & 3 \end{bmatrix*} \\[1em] \text{2A - 3B} = 2\begin{bmatrix*}[r] 2 & 0 \\ -3 & 1 \end{bmatrix*} - 3 \begin{bmatrix*}[r] 0 & 1 \\ -2 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 0 \\ -6 & 2 \end{bmatrix*} - \begin{bmatrix*}[r] 0 & 3 \\ -6 & 9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 - 0 & 0 - 3 \\ -6 - (-6) & 2 - 9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & -3 \\ 0 & -7 \end{bmatrix*}.

Hence, the value of 2A - 3B =[4307].= \begin{bmatrix*}[r] 4 & -3 \\ 0 & -7 \end{bmatrix*}.

(ii) Given,

A2=[2031][2031]=[2×2+0×(3)2×0+0×1(3)×2+1×(3)(3)×0+1×1]=[4+00+0630+1]=[4091].\text{A}^2 = \begin{bmatrix*}[r] 2 & 0 \\ -3 & 1 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 0 \\ -3 & 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 2 \times 2 + 0 \times (-3) & 2 \times 0 + 0 \times 1 \\ (-3) \times 2 + 1 \times (-3) & (-3) \times 0 + 1 \times 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 4 + 0 & 0 + 0 \\ -6 - 3 & 0 + 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 4 & 0 \\ -9 & 1 \end{bmatrix*}.

Hence, the value of A2=[4091].\text{A}^2 = \begin{bmatrix*}[r] 4 & 0 \\ -9 & 1 \end{bmatrix*}.

(iii)

BA =[0123][2031]=[0×2+1×(3)0×0+1×12×2+3×(3)2×0+3×1]=[31133].\text{BA } = \begin{bmatrix*}[r] 0 & 1 \\ -2 & 3 \end{bmatrix*} \begin{bmatrix*}[r] 2 & 0 \\ -3 & 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] 0 \times 2 + 1 \times (-3) & 0 \times 0 + 1 \times 1 \\ -2 \times 2 + 3 \times (-3) & -2 \times 0 + 3 \times 1 \end{bmatrix*} \\[0.5em] = \begin{bmatrix*}[r] -3 & 1 \\ -13 & 3 \end{bmatrix*}.

Hence, the value of matrix BA = [31133].\begin{bmatrix*}[r] -3 & 1 \\ -13 & 3 \end{bmatrix*}.

Question 12

Given matrix, X = [1183] and I=[1001],\begin{bmatrix*}[r] 1 & 1 \\ 8 & 3 \end{bmatrix*} \text{ and } I = \begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*}, prove that X2 = 4X + 5I.

Answer

Given,

X2 = 4X + 5I

Solving for L.H.S.,

X2=[1183][1183]=[1×1+1×81×1+1×38×1+3×88×1+3×3]=[1+81+38+248+9]=[943217].X^2 = \begin{bmatrix*}[r] 1 & 1 \\ 8 & 3 \end{bmatrix*}\begin{bmatrix*}[r] 1 & 1 \\ 8 & 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 \times 1 + 1 \times 8 & 1 \times 1 + 1\times 3 \\ 8 \times 1 + 3 \times 8 & 8 \times 1 + 3 \times 3 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 1 + 8 & 1 + 3 \\ 8 + 24 & 8 + 9 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 9 & 4 \\ 32 & 17 \end{bmatrix*}.

Solving for R.H.S.,

4X+5I=4[1183]+5[1001]=[443212]+[5005]=[4+54+032+012+5]=[943217].4X + 5I = 4\begin{bmatrix*}[r] 1 & 1 \\ 8 & 3 \end{bmatrix*} + 5\begin{bmatrix*}[r] 1 & 0 \\ 0 & 1 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 & 4 \\ 32 & 12 \end{bmatrix*} + \begin{bmatrix*}[r] 5 & 0 \\ 0 & 5 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 4 + 5 & 4 + 0 \\ 32 + 0 & 12 + 5 \end{bmatrix*} \\[1em] = \begin{bmatrix*}[r] 9 & 4 \\ 32 & 17 \end{bmatrix*}.

Since, L.H.S. = R.H.S.

Hence, proved that X2 = 4X + 5I.

PrevNext