KnowledgeBoat Logo
|
OPEN IN APP

Chapter 5

Quadratic Equations

Class - 10 RS Aggarwal Mathematics Solutions



Exercise 5A

Question 1

Find which of the following are the solutions of equation 6x2 - x - 2 = 0 ?

  1. 12\dfrac{1}{2}

  2. 12\dfrac{-1}{2}

  3. 23\dfrac{2}{3}

Answer

Given,

⇒ 6x2 - x - 2 = 0

⇒ 6x2 - 4x + 3x - 2 = 0

⇒ 2x(3x - 2) + 1(3x - 2) = 0

⇒ (2x + 1)(3x - 2) = 0

⇒ 2x + 1 = 0 or 3x - 2 = 0      [Using Zero-product rule]

⇒ 2x = -1 or 3x = 2

x=12x = -\dfrac{1}{2} or x = 23\dfrac{2}{3}.

Hence, 12,23-\dfrac{1}{2}, \dfrac{2}{3} are the solutions of equation 6x2 - x - 2 = 0.

Question 2

Determine whether x = 13-\dfrac{1}{3} and x = 23\dfrac{2}{3} are the solutions of the equation 9x2 - 3x - 2 = 0.

Answer

Given,

⇒ 9x2 - 3x - 2 = 0

⇒ 9x2 - 6x + 3x - 2 = 0

⇒ 3x(3x - 2) + 1(3x - 2) = 0

⇒ (3x + 1)(3x - 2) = 0

⇒ 3x + 1 = 0 or 3x - 2 = 0      [Using Zero-product rule]

⇒ 3x = -1 or 3x = 2

⇒ x = 13\dfrac{-1}{3} or x = 23\dfrac{2}{3}.

Hence, 13,23\dfrac{-1}{3}, \dfrac{2}{3} are the solutions of the equation 9x2 - 3x - 2 = 0.

Question 3

Solve the following equation by factorization:

16x2 = 25

Answer

Given,

⇒ 16x2 = 25

⇒ 16x2 - 25 = 0

⇒ (4x)2 - (5)2 = 0

⇒ (4x + 5)(4x - 5) = 0

⇒ 4x + 5 = 0 or 4x - 5 = 0      [Using Zero-product rule]

⇒ 4x = -5 or 4x = 5

⇒ x = 54\dfrac{-5}{4} or x = 54\dfrac{5}{4}.

Hence, x = {54,54}\Big\lbrace\dfrac{5}{4}, \dfrac{-5}{4}\Big\rbrace.

Question 4

Solve the Following equation by factorization:

x2 + 2x = 24

Answer

Given,

⇒ x2 + 2x = 24

⇒ x2 + 2x - 24 = 0

⇒ x2 + 6x - 4x - 24 = 0

⇒ x(x + 6) - 4(x + 6) = 0

⇒ (x - 4)(x + 6) = 0

⇒ x - 4 = 0 or x + 6 = 0      [Using Zero-product rule]

⇒ x = 4 or x = -6.

Hence, x = {-6, 4}.

Question 5

Solve the following equation by factorization:

x2 - x = 156

Answer

Given,

⇒ x2 - x = 156

⇒ x2 - x - 156 = 0

⇒ x2 - 13x + 12x - 156 = 0

⇒ x(x - 13) + 12(x - 13) = 0

⇒ (x + 12)(x - 13) = 0

⇒ x + 12 = 0 or x - 13 = 0      [Using Zero-product rule]

⇒ x = -12 or x = 13.

Hence, x = {13, -12}.

Question 6

Solve the following equation by factorization:

x2 - 11x = 42

Answer

Given,

⇒ x2 - 11x = 42

⇒ x2 - 11x - 42 = 0

⇒ x2 - 14x + 3x - 42 = 0

⇒ x(x - 14) + 3(x - 14) = 0

⇒ (x + 3)(x - 14) = 0

⇒ x + 3 = 0 or x - 14 = 0      [Using Zero-product rule]

⇒ x = -3 or x = 14.

Hence, x = {14, -3}.

Question 7

Solve the following equation by factorization:

x2 - 7x + 10 = 0

Answer

Given,

⇒ x2 - 7x + 10 = 0

⇒ x2 - 5x - 2x + 10 = 0

⇒ x(x - 5) - 2(x - 5) = 0

⇒ (x - 2)(x - 5) = 0

⇒ x - 2 = 0 or x - 5 = 0      [Using Zero-product rule]

⇒ x = 2 or x = 5

Hence, x = {2, 5}.

Question 8

Solve the following equation by factorization:

x2 + 18x = 40

Answer

Given,

⇒ x2 + 18x = 40

⇒ x2 + 18x - 40 = 0

⇒ x2 + 20x - 2x - 40 = 0

⇒ x(x + 20) - 2(x + 20) = 0

⇒ (x - 2)(x + 20) = 0

⇒ x - 2 = 0 or x + 20 = 0      [Using Zero-product rule]

⇒ x = 2 or x = -20.

Hence, x = {-20, 2}.

Question 9

Solve the following equation by factorization:

x2 + 17 = 18x

Answer

Given,

⇒ x2 + 17 = 18x

⇒ x2 - 18x + 17 = 0

⇒ x2 - 17x - x + 17 = 0

⇒ x(x - 17) - 1(x - 17) = 0

⇒ (x - 1)(x - 17) = 0

⇒ x - 1 = 0 or x - 17 = 0      [Using Zero-product rule]

⇒ x = 1 or x = 17.

Hence, x = {1, 17}.

Question 10

Solve the following equation by factorization:

3x2 = 5x

Answer

Given,

⇒ 3x2 = 5x

⇒ 3x2 - 5x = 0

⇒ x(3x - 5) = 0

⇒ x = 0 or (3x - 5) = 0      [Using Zero-product rule]

⇒ x = 0 or 3x = 5

⇒ x = 0 or x = 53\dfrac{5}{3}.

Hence, x = {0,53}\Big\lbrace0, \dfrac{5}{3}\Big\rbrace.

Question 11

Solve the following equation by factorization:

(x + 3)(x - 3) = 27

Answer

Given,

⇒ (x + 3)(x - 3) = 27

⇒ (x)2 - (3)2 = 27

⇒ x2 - 9 = 27

⇒ x2 = 27 + 9

⇒ x2 = 36

⇒ x = 36\sqrt{36}

⇒ x = ± 6

Hence, x = {6, -6}.

Question 12

Solve the following equation by factorization:

x2 - 30x + 216 = 0

Answer

Given,

⇒ x2 - 30x + 216 = 0

⇒ x2 - 18x - 12x + 216 = 0

⇒ x(x - 18) - 12(x - 18) = 0

⇒ (x - 18)(x - 12) = 0

⇒ (x - 18) = 0 or (x - 12) = 0      [Using Zero-product rule]

⇒ x = 18 or x = 12.

Hence, x = {18, 12}.

Question 13

Solve the following equation by factorization:

12x2 + 29x + 14 = 0

Answer

Given,

⇒ 12x2 + 29x + 14 = 0

⇒ 12x2 + 21x + 8x + 14 = 0

⇒ 3x(4x + 7) + 2(4x + 7) = 0

⇒ (4x + 7)(3x + 2) = 0

⇒ 4x + 7 = 0 or 3x + 2 = 0      [Using Zero-product rule]

⇒ 4x = -7 or 3x = -2

⇒ x = 74\dfrac{-7}{4} or x = 23\dfrac{-2}{3}.

Hence, x = {74,23}\Big\lbrace\dfrac{-7}{4}, \dfrac{-2}{3}\Big\rbrace.

Question 14

Solve the following equation by factorization:

2x2 - 7x = 39

Answer

Given,

⇒ 2x2 - 7x = 39

⇒ 2x2 - 7x - 39 = 0

⇒ 2x2 + 6x - 13x - 39 = 0

⇒ 2x(x + 3) - 13(x + 3) = 0

⇒ (x + 3)(2x - 13) = 0

⇒ x + 3 = 0 or 2x - 13 = 0      [Using Zero-product rule]

⇒ x = -3 or 2x = 13

⇒ x = -3 or x = 132\dfrac{13}{2}.

Hence, x = {132,3}\Big\lbrace\dfrac{13}{2}, -3\Big\rbrace.

Question 15

Solve the following equation by factorization:

10x2 = 9x + 7

Answer

Given,

⇒ 10x2 = 9x + 7

⇒ 10x2 - 9x - 7 = 0

⇒ 10x2 + 5x - 14x - 7 = 0

⇒ 5x(2x + 1) - 7(2x + 1) = 0

⇒ (2x + 1)(5x - 7) = 0

⇒ (2x + 1) = 0 or (5x - 7) = 0      [Using Zero-product rule]

⇒ 2x = -1 or 5x = 7

⇒ x = 12-\dfrac{1}{2} or x = 75\dfrac{7}{5}.

Hence, x = {12,75}\Big\lbrace-\dfrac{1}{2}, \dfrac{7}{5}\Big\rbrace.

Question 16

Solve the following equation by factorization:

15x2 - 28 = x

Answer

Given,

⇒ 15x2 - 28 = x

⇒ 15x2 - x - 28 = 0

⇒ 15x2 - 21x + 20x - 28 = 0

⇒ 3x(5x - 7) + 4(5x - 7) = 0

⇒ (5x - 7)(3x + 4) = 0

⇒ (5x - 7) = 0 or (3x + 4) = 0      [Using Zero-product rule]

⇒ 5x = 7 or 3x = - 4

⇒ x = 75\dfrac{7}{5} or x = 43\dfrac{-4}{3}

Hence, x = {43,75}\Big\lbrace\dfrac{-4}{3}, \dfrac{7}{5}\Big\rbrace.

Question 17

Solve the following equation by factorization:

8x2 + 15 = 26x

Answer

Given,

⇒ 8x2 + 15 = 26x

⇒ 8x2 - 26x + 15 = 0

⇒ 8x2 - 20x - 6x + 15 = 0

⇒ 4x(2x - 5) - 3(2x - 5) = 0

⇒ (2x - 5)(4x - 3) = 0

⇒ (2x - 5) = 0 or (4x - 3) = 0      [Using Zero-product rule]

⇒ 2x = 5 or 4x = 3

⇒ x = 52\dfrac{5}{2} or x = 34\dfrac{3}{4}

Hence, x = {52,34}\Big\lbrace\dfrac{5}{2}, \dfrac{3}{4}\Big\rbrace.

Question 18

Solve the following equation by factorization:

3x2 + 8 = 10x

Answer

Given,

⇒ 3x2 + 8 = 10x

⇒ 3x2 - 10x + 8 = 0

⇒ 3x2 - 6x - 4x + 8 = 0

⇒ 3x(x - 2) - 4(x - 2) = 0

⇒ (x - 2)(3x - 4) = 0

⇒ (x - 2) = 0 or (3x - 4) = 0      [Using Zero-product rule]

⇒ x = 2 or 3x = 4

⇒ x = 2 or x = 43\dfrac{4}{3}.

Hence, x = {2,43}\Big\lbrace2, \dfrac{4}{3}\Big\rbrace.

Question 19

Solve the following equation by factorization:

x(6x - 11) = 35

Answer

Given,

⇒ x(6x - 11) = 35

⇒ 6x2 - 11x - 35 = 0

⇒ 6x2 + 10x - 21x - 35 = 0

⇒ 2x(3x + 5) - 7(3x + 5) = 0

⇒ (3x + 5)(2x - 7) = 0

⇒ (3x + 5) = 0 or (2x - 7) = 0      [Using Zero-product rule]

⇒ 3x = -5 or 2x = 7

⇒ x = 53\dfrac{-5}{3} or x = 72\dfrac{7}{2}.

Hence, x = {53,72}\Big\lbrace\dfrac{-5}{3}, \dfrac{7}{2}\Big\rbrace.

Question 20

Solve the following equation by factorization:

6x(3x - 7) = 7(7 - 3x)

Answer

Given,

⇒ 6x(3x - 7) = 7(7 - 3x)

⇒ 18x2 - 42x = 49 - 21x

⇒ 18x2 - 42x + 21x - 49 = 0

⇒ 6x(3x - 7) + 7(3x - 7) = 0

⇒ (3x - 7)(6x + 7) = 0

⇒ (3x - 7) = 0 or (6x + 7) = 0      [Using Zero-product rule]

⇒ 3x = 7 or 6x = -7

⇒ x = 73\dfrac{7}{3} or x = 76\dfrac{-7}{6}.

Hence, x = {73,76}\Big\lbrace\dfrac{7}{3}, \dfrac{-7}{6}\Big\rbrace.

Question 21

Solve the following equation by factorization:

2x2 - 9x + 10 = 0, when (i) x ∈ N (ii) x ∈ Q.

Answer

Given,

⇒ 2x2 - 9x + 10 = 0

⇒ 2x2 - 4x - 5x + 10 = 0

⇒ 2x(x - 2) - 5(x - 2) = 0

⇒ (2x - 5)(x - 2) = 0

⇒ 2x - 5 = 0 or x - 2 = 0      [Using Zero-product rule]

⇒ 2x = 5 or x = 2

⇒ x = 52\dfrac{5}{2} or x = 2.

(i) Since, x ∈ N

Hence, value of x = {2}.

(ii) Since, x ∈ Q

Hence, x = {2,52}\Big\lbrace2, \dfrac{5}{2}\Big\rbrace.

Question 22

Solve the following equation by factorization:

4x2 - 9x - 100 = 0, when x ∈ Q

Answer

Given,

⇒ 4x2 - 9x - 100 = 0

⇒ 4x2 + 16x - 25x - 100 = 0

⇒ 4x(x + 4) - 25(x + 4) = 0

⇒ (4x - 25)(x + 4) = 0

⇒ 4x - 25 = 0 or x + 4 = 0      [Using Zero-product rule]

⇒ 4x = 25 or x = -4

⇒ x = 254\dfrac{25}{4} or x = -4

Since, x ∈ Q

Hence, x = {4,254}\Big\lbrace-4, \dfrac{25}{4}\Big\rbrace.

Question 23

Solve the following equation by factorization:

3x2 + 11x + 10 = 0, when x ∈ I

Answer

Given,

⇒ 3x2 + 11x + 10 = 0

⇒ 3x2 + 6x + 5x + 10 = 0

⇒ 3x(x + 2) + 5(x + 2) = 0

⇒ (3x + 5)(x + 2) = 0

⇒ 3x + 5 = 0 or x + 2 = 0      [Using Zero-product rule]

⇒ 3x = -5 or x = -2

⇒ x = 53\dfrac{-5}{3} or x = -2.

Since, x ∈ I

x = -2

Hence, x = {-2}.

Question 24

Solve the following equation by factorization:

x+1x=313x + \dfrac{1}{x} = 3\dfrac{1}{3}, x ≠ 0

Answer

Given,

x+1x=313x2+1x=9+13x2+1x=1033×(x2+1)=10x3x2+3=10x3x210x+3=03x29xx+3=03x(x3)1(x3)=0(x3)(3x1)=0.\Rightarrow x + \dfrac{1}{x} = 3\dfrac{1}{3} \\[1em] \Rightarrow \dfrac{x^2 + 1}{x} = \dfrac{9 + 1}{3} \\[1em] \Rightarrow \dfrac{x^2 + 1}{x} = \dfrac{10}{3} \\[1em] \Rightarrow 3 \times (x^2 + 1) = 10x \\[1em] \Rightarrow 3x^2 + 3 = 10x \\[1em] \Rightarrow 3x^2 -10x + 3 = 0 \\[1em] \Rightarrow 3x^2 -9x -x + 3 = 0 \\[1em] \Rightarrow 3x(x - 3) - 1(x - 3) = 0 \\[1em] \Rightarrow (x - 3)(3x - 1) = 0.

⇒ x - 3 = 0 or 3x - 1 = 0      [Using Zero-product rule]

⇒ x = 3 or 3x = 1

⇒ x = 3 or x = 13\dfrac{1}{3}

Hence, x = {3,13}\Big\lbrace3, \dfrac{1}{3}\Big\rbrace.

Question 25

Solve the following equation by factorization:

5x - 35x\dfrac{35}{x} = 18

Answer

Given,

5x35x=185x235x=185x235=18x5x218x35=05x225x+7x35=05x(x5)+7(x5)=0(5x+7)(x5)=0.\Rightarrow 5x - \dfrac{35}{x} = 18 \\[1em] \Rightarrow \dfrac{5x^2 - 35}{x} = 18 \\[1em] \Rightarrow 5x^2 - 35 = 18x \\[1em] \Rightarrow 5x^2 - 18x - 35 = 0 \\[1em] \Rightarrow 5x^2 - 25x + 7x - 35 = 0 \\[1em] \Rightarrow 5x(x - 5) + 7(x - 5) = 0 \\[1em] \Rightarrow (5x + 7)(x - 5) = 0.

⇒ 5x + 7 = 0 or (x - 5) = 0      [Using Zero-product rule]

⇒ 5x = -7 or x = 5

⇒ x = 75\dfrac{-7}{5} or x = 5.

Hence, x = {5,75}\Big\lbrace5, \dfrac{-7}{5}\Big\rbrace.

Question 26

Solve the following equation by factorization:

10x - 1x\dfrac{1}{x} = 3

Answer

Given,

10x1x=310x21x=310x21=3x10x23x1=010x25x+2x1=05x(2x1)+1(2x1)=0(5x+1)(2x1)=0.\Rightarrow 10x - \dfrac{1}{x} = 3 \\[1em] \Rightarrow \dfrac{10x^2 - 1}{x} = 3 \\[1em] \Rightarrow 10x^2 - 1 = 3x \\[1em] \Rightarrow 10x^2 - 3x - 1 = 0 \\[1em] \Rightarrow 10x^2 - 5x + 2x - 1 = 0 \\[1em] \Rightarrow 5x(2x - 1) + 1(2x - 1) = 0 \\[1em] \Rightarrow (5x + 1)(2x - 1) = 0.

⇒ (5x + 1) = 0 or (2x - 1) = 0      [Using Zero-product rule]

⇒ 5x = -1 or 2x = 1

⇒ x = 15-\dfrac{1}{5} or x = 12\dfrac{1}{2}.

Hence, x = {12,15}\Big\lbrace\dfrac{1}{2}, -\dfrac{1}{5}\Big\rbrace.

Question 27

Solve the following equation by factorization:

3a2x2 + 8abx + 4b2 = 0, a ≠ 0

Answer

Given,

⇒ 3a2x2 + 8abx + 4b2 = 0

⇒ 3a2x2 + 6abx + 2abx + 4b2 = 0

⇒ 3ax(ax + 2b) + 2b(ax + 2b) = 0

⇒ (3ax + 2b)(ax + 2b) = 0

⇒ (3ax + 2b) = 0 or (ax + 2b) = 0      [Using Zero-product rule]

⇒ 3ax = -2b or ax = -2b

⇒ x = 2b3a-\dfrac{2b}{3a} or x = 2ba-\dfrac{2b}{a}.

Hence, x = {2ba,2b3a}\Big\lbrace-\dfrac{2b}{a}, -\dfrac{2b}{3a}\Big\rbrace.

Question 28

Solve the following equation by factorization:

4x2 - 4ax + (a2 - b2) = 0, where a, b ∈ R.

Answer

Given,

⇒ 4x2 - 4ax + (a2 - b2) = 0

⇒ (4x2 - 4ax + a2) - b2 = 0

⇒ [(2x)2 - 2 × a × 2x + (a)2] - b2 = 0

⇒ (2x - a)2 - b2 = 0

⇒ (2x - a + b)(2x - a - b) = 0

⇒ (2x - a + b) = 0 or (2x - a - b) = 0      [Using Zero-product rule]

⇒ 2x = a - b or 2x = a + b

⇒ x = ab2\dfrac{a - b}{2} or x = a+b2\dfrac{a + b}{2}.

Hence, x = {a+b2,ab2}\Big\lbrace \dfrac{a + b}{2}, \dfrac{a - b}{2}\Big\rbrace.

Question 29

Solve the following equation by factorization:

5x2 - 12x - 9 = 0, when (i) x ∈ I (ii) x ∈ Q

Answer

Given,

⇒ 5x2 - 12x - 9 = 0

⇒ 5x2 - 15x + 3x - 9 = 0

⇒ 5x(x - 3) + 3(x - 3) = 0

⇒ (5x + 3)(x - 3) = 0

⇒ (5x + 3) = 0 or (x - 3) = 0      [Using Zero-product rule]

⇒ 5x = -3 or x = 3

⇒ x = 35\dfrac{-3}{5} or x = 3.

(i) Since, x ∈ I

Hence, x = {3}.

(ii) Since, x ∈ Q

Hence, x = {3,35}\Big\lbrace3, \dfrac{-3}{5}\Big\rbrace.

Question 30

Solve the following equation by factorization:

2x2 - 11x + 15 = 0, when (i) x ∈ N (ii) x ∈ I

Answer

Given,

⇒ 2x2 - 11x + 15 = 0

⇒ 2x2 - 6x - 5x + 15 = 0

⇒ 2x(x - 3) - 5(x - 3) = 0

⇒ (2x - 5)(x - 3) = 0

⇒ (2x - 5) = 0 or (x - 3) = 0      [Using Zero-product rule]

⇒ 2x = 5 or x = 3

⇒ x = 52\dfrac{5}{2} or x = 3.

(i) Since, x ∈ N

Hence, x = {3}.

(ii) Since, x ∈ I

Hence, x = {3}.

Question 31

Solve the following equation by factorization:

3x2+11x+63\sqrt{3}x^2 + 11x + 6\sqrt{3} = 0

Answer

Given,

3x2+11x+63=03x2+9x+2x+63=03x(x+33)+2(x+33)=0(3x+2)(x+33)=0(3x+2)=0 or (x+33)=0 [Using Zero-product rule] 3x=2 or x=33x=23 or x=33.\Rightarrow \sqrt{3}x^2 + 11x + 6\sqrt{3} = 0 \\[1em] \Rightarrow \sqrt{3}x^2 + 9x + 2x + 6\sqrt{3} = 0 \\[1em] \Rightarrow \sqrt{3}x(x + 3\sqrt{3}) + 2(x + 3\sqrt{3}) = 0 \\[1em] \Rightarrow (\sqrt{3}x + 2)(x + 3\sqrt{3}) = 0 \\[1em] \Rightarrow (\sqrt{3}x + 2) = 0 \text{ or } (x + 3\sqrt{3}) = 0 \text{ [Using Zero-product rule] } \\[1em] \Rightarrow \sqrt{3}x = -2 \text{ or } x = -3\sqrt{3} \\[1em] \Rightarrow x = \dfrac{-2}{\sqrt{3}} \text{ or } x = -3\sqrt{3}.

Hence, x={23,33}x = \Big\lbrace\dfrac{-2}{\sqrt{3}}, -3\sqrt{3}\Big\rbrace.

Question 32

Solve the following equation by factorization:

25x23x52\sqrt{5}x^2 - 3x - \sqrt{5} = 0

Answer

Given,

25x23x5=025x25x+2x5=05x(2x5)+1(2x5)=0(5x+1)(2x5)=0(5x+1)=0 or (2x5)=0 [Using Zero-product rule] (5x+1)=0 or (2x5)=05x=1 or 2x=5x=15 or x=52.\Rightarrow 2\sqrt{5}x^2 - 3x - \sqrt{5} = 0 \\[1em] \Rightarrow 2\sqrt{5}x^2 - 5x + 2x - \sqrt{5} = 0 \\[1em] \Rightarrow \sqrt{5}x(2x - \sqrt{5}) + 1(2x - \sqrt{5}) = 0 \\[1em] \Rightarrow (\sqrt{5}x + 1)(2x - \sqrt{5}) = 0 \\[1em] \Rightarrow (\sqrt{5}x + 1)= 0 \text{ or } (2x - \sqrt{5}) = 0 \text{ [Using Zero-product rule] } \\[1em] \Rightarrow (\sqrt{5}x + 1)= 0 \text{ or } (2x - \sqrt{5}) = 0 \\[1em] \Rightarrow \sqrt{5}x = -1 \text{ or } 2x = \sqrt{5} \\[1em] \Rightarrow x = \dfrac{-1}{\sqrt{5}} \text{ or } x = \dfrac{\sqrt{5}}{2}.

Hence, x={52,15}x = \Big\lbrace\dfrac{\sqrt{5}}{2}, \dfrac{-1}{\sqrt{5}}\Big\rbrace.

Question 33

Solve the following equation by factorization:

x2(1+2)x+2x^2 - (1 + \sqrt{2})x + \sqrt{2} = 0

Answer

Given,

x2(1+2)x+2=0x21x2x+2=0x(x1)2(x1)=0(x2)(x1)=0(x2)=0 or (x1)=0 [Using Zero-product rule] x=2 or x=1.\Rightarrow x^2 - (1 + \sqrt{2})x + \sqrt{2} = 0 \\[1em] \Rightarrow x^2 - 1x - \sqrt{2}x + \sqrt{2} = 0 \\[1em] \Rightarrow x(x - 1) - \sqrt{2}(x - 1) = 0 \\[1em] \Rightarrow (x - \sqrt{2})(x - 1) = 0 \\[1em] \Rightarrow (x - \sqrt{2}) = 0 \text{ or } (x - 1) = 0 \text{ [Using Zero-product rule] } \\[1em] \Rightarrow x = \sqrt{2} \text{ or } x = 1.

Hence, x=1,2x = {1, \sqrt{2}}.

Question 34

Solve the following equation by factorization:

x+1x1=3x72x5\dfrac{x + 1}{x - 1} = \dfrac{3x - 7}{2x - 5}

Answer

Given,

x+1x1=3x72x5\Rightarrow \dfrac{x + 1}{x - 1} = \dfrac{3x - 7}{2x - 5}

⇒ (x + 1)(2x - 5) = (3x - 7)(x - 1)

⇒ (2x2 - 5x + 2x - 5) = (3x2 - 3x - 7x + 7)

⇒ (2x2 - 3x - 5) = (3x2 - 10x + 7)

⇒ (3x2 - 10x + 7) - (2x2 - 3x - 5) = 0

⇒ 3x2 - 10x + 7 - 2x2 + 3x + 5 = 0

⇒ x2 - 7x + 12 = 0

⇒ x2 - 3x - 4x + 12 = 0

⇒ x(x - 3) - 4(x - 3) = 0

⇒ (x - 4)(x - 3) = 0

⇒ (x - 4) = 0 or (x - 3) = 0     [Using Zero-product rule]

⇒ x = 4 or x = 3.

Hence, x = {3, 4}.

Question 35

Solve the following equation by factorization:

3x+17x+1=5x+17x+5\dfrac{3x + 1}{7x + 1} = \dfrac{5x + 1}{7x + 5}

Answer

Given,

3x+17x+1=5x+17x+5\Rightarrow \dfrac{3x + 1}{7x + 1} = \dfrac{5x + 1}{7x + 5}

⇒ (3x + 1)(7x + 5) = (5x + 1)(7x + 1)

⇒ (21x2 + 15x + 7x + 5) = (35x2 + 5x + 7x + 1)

⇒ (21x2 + 22x + 5) = (35x2 + 12x + 1)

⇒ (35x2 + 12x + 1) - (21x2 + 22x + 5) = 0

⇒ 35x2 + 12x + 1 - 21x2 - 22x - 5 = 0

⇒ 14x2 - 10x - 4 = 0

⇒ 2(7x2 - 5x - 2) = 0

⇒ 7x2 - 5x - 2 = 0

⇒ 7x2 - 7x + 2x - 2 = 0

⇒ 7x(x - 1) + 2(x - 1) = 0

⇒ (7x + 2)(x - 1) = 0

⇒ (7x + 2) = 0 or (x - 1) = 0     [Using Zero-product rule]

⇒ 7x = -2 or x = 1

⇒ x = 27\dfrac{-2}{7} or x = 1.

Hence, x={1,27}x = \Big\lbrace1, \dfrac{-2}{7}\Big\rbrace.

Question 36

Solve the following equation by factorization:

5(2x+1)+6(x+1)=3\dfrac{5}{(2x + 1)} + \dfrac{6}{(x + 1)} = 3

Answer

Given,

5(2x+1)+6(x+1)=35(x+1)+6(2x+1)(2x+1)(x+1)=35x+5+12x+6(2x+1)(x+1)=317x+11(2x2+2x+x+1)=317x+11(2x2+3x+1)=317x+11=3(2x2+3x+1)17x+11=6x2+9x+36x2+9x17x+311=06x28x8=02(3x24x4)=03x24x4=03x26x+2x4=03x(x2)+2(x2)=0(3x+2)(x2)=0(3x+2) or (x2)=0 [Using Zero-product rule] 3x=2 or x=2x=23 or x=2.\Rightarrow \dfrac{5}{(2x + 1)} + \dfrac{6}{(x + 1)} = 3 \\[1em] \Rightarrow \dfrac{5(x + 1) + 6(2x + 1)}{(2x + 1)(x + 1)} = 3 \\[1em] \Rightarrow \dfrac{5x + 5 + 12x + 6}{(2x + 1)(x + 1)} = 3 \\[1em] \Rightarrow \dfrac{17x + 11}{(2x^2 + 2x + x + 1)} = 3 \\[1em] \Rightarrow \dfrac{17x + 11}{(2x^2 + 3x + 1)} = 3 \\[1em] \Rightarrow 17x + 11 = 3(2x^2 + 3x + 1) \\[1em] \Rightarrow 17x + 11 = 6x^2 + 9x + 3 \\[1em] \Rightarrow 6x^2 + 9x - 17x + 3 - 11 = 0 \\[1em] \Rightarrow 6x^2 - 8x - 8 = 0 \\[1em] \Rightarrow 2(3x^2 - 4x - 4) = 0 \\[1em] \Rightarrow 3x^2 - 4x - 4 = 0 \\[1em] \Rightarrow 3x^2 - 6x + 2x - 4 = 0 \\[1em] \Rightarrow 3x(x - 2) + 2(x - 2) = 0 \\[1em] \Rightarrow (3x + 2)(x - 2) = 0 \\[1em] \Rightarrow (3x + 2) \text{ or } (x - 2) = 0 \text{ [Using Zero-product rule] } \\[1em] \Rightarrow 3x = -2 \text{ or } x = 2 \\[1em] \Rightarrow x = \dfrac{-2}{3} \text{ or } x = 2.

Hence, x={2,23}x = \Big\lbrace2, \dfrac{-2}{3}\Big\rbrace.

Question 37

Solve the following equation by factorization:

2xx4+2x5x3=253\dfrac{2x}{x - 4} + \dfrac{2x - 5}{x - 3} = \dfrac{25}{3}

Answer

Given,

2xx4+2x5x3=2532x(x3)+(2x5)(x4)(x4)(x3)=2532x26x+2x28x5x+20x23x4x+12=2534x219x+20x27x+12=2533(4x219x+20)=25(x27x+12)12x257x+60=25x2175x+30025x2175x+300(12x257x+60)=025x2175x+30012x2+57x60=013x2118x+240=013x278x40x+240=013x(x6)40(x6)=0(13x40)(x6)=0(13x40) or (x6)=0 [Using Zero-product rule] 13x=40 or x=6x=4013 or x=6.\Rightarrow \dfrac{2x}{x - 4} + \dfrac{2x - 5}{x - 3} = \dfrac{25}{3} \\[1em] \Rightarrow \dfrac{2x(x - 3) + (2x - 5)(x - 4)}{(x - 4)(x - 3)} = \dfrac{25}{3} \\[1em] \Rightarrow \dfrac{2x^2 - 6x + 2x^2 - 8x - 5x + 20}{x^2 - 3x - 4x + 12} = \dfrac{25}{3} \\[1em] \Rightarrow \dfrac{4x^2 - 19x + 20}{x^2 - 7x + 12} = \dfrac{25}{3} \\[1em] \Rightarrow 3(4x^2 - 19x + 20) = 25(x^2 - 7x + 12) \\[1em] \Rightarrow 12x^2 - 57x + 60 = 25x^2 - 175x + 300 \\[1em] \Rightarrow 25x^2 - 175x + 300 - (12x^2 - 57x + 60) = 0 \\[1em] \Rightarrow 25x^2 - 175x + 300 - 12x^2 + 57x - 60 = 0 \\[1em] \Rightarrow 13x^2 - 118x + 240 = 0 \\[1em] \Rightarrow 13x^2 - 78x - 40x + 240 = 0 \\[1em] \Rightarrow 13x(x - 6) - 40(x - 6) = 0 \\[1em] \Rightarrow (13x - 40)(x - 6) = 0 \\[1em] \Rightarrow (13x - 40) \text{ or } (x - 6) = 0 \text{ [Using Zero-product rule] } \\[1em] \Rightarrow 13x = 40 \text{ or } x = 6 \\[1em] \Rightarrow x = \dfrac{40}{13} \text{ or } x = 6.

Hence, x={6,4013}x = \Big\lbrace6, \dfrac{40}{13}\Big\rbrace.

Question 38

Solve the following equation by factorization:

x+3x21xx=414\dfrac{x + 3}{x - 2} - \dfrac{1 - x}{x} = 4\dfrac{1}{4}

Answer

Given,

x+3x21xx=414x(x+3)(1x)(x2)x(x2)=174x2+3x(x2x2+2x)x22x=174x2+3x(3x2x2)x22x=174x2+3x3x+2+x2=174×(x22x)4(2x2+2)=17×(x22x)8x2+8=17x234x17x234x8x28=09x234x8=09x236x+2x8=09x(x4)+2(x4)=0(9x+2)(x4)=0(9x+2) or (x4)=0 [Using Zero-product rule] 9x=2 or x=4x=29 or x=4.\Rightarrow \dfrac{x + 3}{x - 2} - \dfrac{1 - x}{x} = 4\dfrac{1}{4} \\[1em] \Rightarrow \dfrac{x(x + 3) - (1 - x)(x - 2)}{x(x - 2)} = \dfrac{17}{4} \\[1em] \Rightarrow \dfrac{x^2 + 3x - (x - 2 - x^2 + 2x)}{x^2 - 2x} = \dfrac{17}{4} \\[1em] \Rightarrow \dfrac{x^2 + 3x - (3x - 2 - x^2)}{x^2 - 2x} = \dfrac{17}{4} \\[1em] \Rightarrow x^2 + 3x - 3x + 2 + x^2 = \dfrac{17}{4} \times (x^2 - 2x) \\[1em] \Rightarrow 4(2x^2 + 2) = 17 \times (x^2 - 2x) \\[1em] \Rightarrow 8x^2 + 8 = 17x^2 - 34x \\[1em] \Rightarrow 17x^2 - 34x - 8x^2 - 8 = 0 \\[1em] \Rightarrow 9x^2 - 34x - 8 = 0 \\[1em] \Rightarrow 9x^2 - 36x + 2x - 8 = 0 \\[1em] \Rightarrow 9x(x - 4) + 2(x - 4) = 0 \\[1em] \Rightarrow (9x + 2)(x - 4) = 0 \\[1em] \Rightarrow (9x + 2) \text{ or } (x - 4) = 0 \text{ [Using Zero-product rule] } \\[1em] \Rightarrow 9x = -2 \text{ or } x = 4 \\[1em] \Rightarrow x = \dfrac{-2}{9} \text{ or } x = 4.

Hence, x={4,29}x = \Big\lbrace4, \dfrac{-2}{9}\Big\rbrace.

Question 39

Solve the following equation by factorization:

1x2+2x1=6x\dfrac{1}{x - 2} + \dfrac{2}{x - 1} = \dfrac{6}{x}

Answer

Given,

1x2+2x1=6x(x1)+2(x2)(x2)(x1)=6xx1+2x4x2x2x+2=6xx1+(2x4)x23x+2=6x3x5x23x+2=6xx(3x5)=6(x23x+2)3x25x=6x218x+126x23x218x+5x+12=03x213x+12=03x29x4x+12=03x(x3)4(x3)=0(3x4)(x3)=0(3x4) or (x3)=0 [Using Zero-product rule] 3x=4 or x=3x=43 or x=3.\Rightarrow \dfrac{1}{x - 2} + \dfrac{2}{x - 1} = \dfrac{6}{x} \\[1em] \Rightarrow \dfrac{(x - 1) + 2(x - 2)}{(x - 2)(x - 1)} = \dfrac{6}{x} \\[1em] \Rightarrow \dfrac{x - 1 + 2x - 4}{x^2 - x - 2x + 2} = \dfrac{6}{x} \\[1em] \Rightarrow \dfrac{x - 1 + (2x - 4)}{x^2 - 3x + 2} = \dfrac{6}{x} \\[1em] \Rightarrow \dfrac{3x - 5}{x^2 - 3x + 2} = \dfrac{6}{x} \\[1em] \Rightarrow x(3x - 5) = 6(x^2 - 3x + 2) \\[1em] \Rightarrow 3x^2 - 5x = 6x^2 - 18x + 12 \\[1em] \Rightarrow 6x^2 - 3x^2 - 18x + 5x + 12 = 0 \\[1em] \Rightarrow 3x^2 - 13x + 12 = 0 \\[1em] \Rightarrow 3x^2 - 9x - 4x + 12 = 0 \\[1em] \Rightarrow 3x(x - 3) - 4(x - 3) = 0 \\[1em] \Rightarrow (3x - 4)(x - 3) = 0 \\[1em] \Rightarrow (3x - 4) \text{ or } (x - 3) = 0 \text{ [Using Zero-product rule] } \\[1em] \Rightarrow 3x = 4 \text{ or } x = 3 \\[1em] \Rightarrow x = \dfrac{4}{3} \text{ or } x = 3.

Hence, x={3,43}x = \Big\lbrace3, \dfrac{4}{3}\Big\rbrace.

Question 40

Solve the following equation by factorization:

2(xx+1)25(xx+1)+2=02\Big(\dfrac{x}{x + 1}\Big)^2 - 5\Big(\dfrac{x}{x + 1}\Big) + 2 = 0, x ≠ -1

Answer

Let us consider y = xx+1\dfrac{x}{x + 1}.

Substituting y = xx+1\dfrac{x}{x + 1} in equation 2(xx+1)25(xx+1)+2=02\Big(\dfrac{x}{x + 1}\Big)^2 - 5\Big(\dfrac{x}{x + 1}\Big) + 2 = 0, we get :

⇒ 2y2 - 5y + 2 = 0

⇒ 2y2 - 4y - y + 2 = 0

⇒ 2y(y - 2) - 1(y - 2) = 0

⇒ (2y - 1)(y - 2) = 0

⇒ (2y - 1) = 0 or (y - 2) = 0      [Using Zero-product rule]

⇒ 2y = 1 or y = 2

⇒ y = 12\dfrac{1}{2} or y = 2.

Now we have,

Case 1 : y = 12\dfrac{1}{2}

y=xx+112=xx+1x+1=2x2xx=1x=1.\Rightarrow y = \dfrac{x}{x + 1} \\[1em] \Rightarrow \dfrac{1}{2} = \dfrac{x}{x + 1} \\[1em] \Rightarrow x + 1 = 2x \\[1em] \Rightarrow 2x - x = 1 \\[1em] \Rightarrow x = 1.

Case 2 : y = 2

⇒ y = xx+1\dfrac{x}{x + 1}

⇒ 2 = xx+1\dfrac{x}{x + 1}

⇒ 2(x + 1) = x

⇒ 2x + 2 = x

⇒ 2x - x = -2

⇒ x = -2.

Hence, x = {-2, 1}.

Question 41

Solve the following equation by factorization:

5(3x + 1)2 + 6(3x + 1) - 8 = 0

Answer

Let us consider y = 3x + 1.

Substituting y = 3x + 1 in equation 5(3x + 1)2 + 6(3x + 1) - 8 = 0, we get :

⇒ 5y2 + 6y - 8 = 0

⇒ 5y2 + 10y - 4y - 8 = 0

⇒ 5y(y + 2) - 4(y + 2) = 0

⇒ (5y - 4)(y + 2) = 0

⇒ (5y - 4) = 0 or (y + 2) = 0      [Using Zero-product rule]

⇒ 5y = 4 or y = -2

⇒ y = 45\dfrac{4}{5} or y = -2.

Now we have,

Case 1 : y = 45\dfrac{4}{5}

y=453x+1=455(3x+1)=415x+5=415x=4515x=1x=115.\Rightarrow y = \dfrac{4}{5} \\[1em] \Rightarrow 3x + 1 = \dfrac{4}{5} \\[1em] \Rightarrow 5(3x + 1) = 4 \\[1em] \Rightarrow 15x + 5 = 4 \\[1em] \Rightarrow 15x = 4 - 5 \\[1em] \Rightarrow 15x = -1 \\[1em] \Rightarrow x = \dfrac{-1}{15}.

Case 2 : y = -2

⇒ y = -2

⇒ 3x + 1 = -2

⇒ 3x = -2 - 1

⇒ 3x = -3

⇒ x = 33\dfrac{-3}{3}

⇒ x = -1.

Hence, x = {1,115}\Big\lbrace-1, \dfrac{-1}{15}\Big\rbrace.

Question 42

Solve the following equation by factorization:

x+15\sqrt{x + 15} = (x + 3)

Answer

Given,

x+15\sqrt{x + 15} = (x + 3)

Squaring both sides, we get :

⇒ (x + 15) = (x + 3)2

⇒ x + 15 = (x)2 + (3)2 + 2 × x × 3

⇒ x + 15 = x2 + 9 + 6x

⇒ x2 + 9 + 6x - x - 15 = 0

⇒ x2 + 5x - 6 = 0

⇒ x2 + 6x - x - 6 = 0

⇒ x(x + 6) - 1(x + 6) = 0

⇒ (x + 6)(x - 1) = 0

⇒ (x + 6) = 0 or (x - 1) = 0      [Using Zero-product rule]

⇒ x = -6 or x = 1.

Substituting x = -6 in the L.H.S. of this equation x+15\sqrt{x + 15} = (x + 3)

6+1593\Rightarrow \sqrt{-6 + 15} \\[1em] \Rightarrow \sqrt{9} \\[1em] \Rightarrow 3

Substituting x = -6 in the R.H.S. of this equation x+15\sqrt{x + 15} = (x + 3)

⇒ x + 3

⇒ -6 + 3

⇒ -3.

L.H.S ≠ R.H.S .

∴ x = -6 is not valid.

Hence, x = {1}.

Question 43

Solve the following equation by factorization:

2x+9\sqrt{2x + 9} = (13 - x)

Answer

Given,

2x+9\sqrt{2x + 9} = (13 - x)

Squaring both sides we get :

⇒ (2x + 9) = (13 - x)2

⇒ 2x + 9 = (132) + (x)2 - 2 × 13 × x

⇒ 2x + 9 = 169 + x2 - 26x

⇒ x2 - 26x + 169 - 2x - 9 = 0

⇒ x2 - 28x + 160 = 0

⇒ x2 - 20x - 8x + 160 = 0

⇒ x(x - 20) - 8(x - 20) = 0

⇒ (x - 20)(x - 8) = 0

⇒ (x - 20) = 0 or (x - 8) = 0      [Using Zero-product rule]

⇒ x = 20 or x = 8

⇒ x = 8.

Substituting x = 20 in the L.H.S. of this equation 2x+9\sqrt{2x + 9} = (13 - x)

2(20)+940+9497.\Rightarrow \sqrt{2(20) + 9} \\[1em] \Rightarrow \sqrt{40 + 9} \\[1em] \Rightarrow \sqrt{49} \\[1em] \Rightarrow 7.

Substituting x = 20 in the R.H.S. of this equation 2x+9\sqrt{2x + 9} = (13 - x)

⇒ 13 - x

⇒ 13 - 20

⇒ -7.

L.H.S ≠ R.H.S .

∴ x = 20 is not valid.

Hence, x = {8}.

Question 44

Solve the following equation by factorization:

3x22\sqrt{3x^2 - 2} = (2x - 1)

Answer

Given,

3x22\sqrt{3x^2 - 2} = (2x - 1)

Squaring both sides we get :

⇒ (3x2 - 2) = (2x - 1)2

⇒ 3x2 - 2 = (2x)2 + (1)2 - 2 × 2x × 1

⇒ 3x2 - 2 = 4x2 + 1 - 4x

⇒ 4x2 + 1 - 4x - 3x2 + 2 = 0

⇒ x2 - 4x + 3 = 0

⇒ x2 - x - 3x + 3 = 0

⇒ x(x - 1) - 3(x - 1) = 0

⇒ (x - 1)(x - 3) = 0

⇒ (x - 1) = 0 or (x - 3) = 0      [Using Zero-product rule]

⇒ x = 1 or x = 3.

Hence, x = {1, 3}.

Question 45

Solve the following equation by factorization:

3x2+x+5\sqrt{3x^2 + x + 5} = (x - 3)

Answer

Given,

3x2+x+5\sqrt{3x^2 + x + 5} = (x - 3)

Squaring both sides we get :

⇒ (3x2 + x + 5) = (x - 3)2

⇒ 3x2 + x + 5 = (x2) + (32) - 2 × x × 3

⇒ 3x2 + x + 5 = x2 + 9 - 6x

⇒ 3x2 + x + 5 - x2 - 9 + 6x = 0

⇒ 2x2 + 7x - 4 = 0

⇒ 2x2 - x + 8x - 4 = 0

⇒ x(2x - 1) + 4(2x - 1) = 0

⇒ (2x - 1)(x + 4) = 0

⇒ (2x - 1) = 0 or (x + 4) = 0      [Using Zero-product rule]

⇒ 2x = 1 or x = -4

⇒ x = 12\dfrac{1}{2} or x = -4.

Hence, x = {4,12}\Big\lbrace-4, \dfrac{1}{2}\Big\rbrace.

Question 46

Find the quadratic equation whose solution set is:

(i) {2, -3}

(ii) {3,25}\Big\lbrace-3, \dfrac{2}{5}\Big\rbrace

(iii) {25,12}\Big\lbrace\dfrac{2}{5}, -\dfrac{1}{2}\Big\rbrace

Answer

(i) Since, {2, -3} is solution set.

It means 2 and -3 are roots of the equation,

∴ x = 2 or x = -3

⇒ x - 2 = 0 or x + 3 = 0

⇒ (x - 2)(x + 3) = 0

⇒ (x2 + 3x - 2x - 6) = 0

⇒ x2 + x - 6 = 0.

Hence, quadratic equation with solution set {2, -3} is x2 + x - 6 = 0.

(ii) Since, {3,25}\Big\lbrace-3, \dfrac{2}{5}\Big\rbrace is solution set.

It means -3 and 25\dfrac{2}{5} are roots of the equation,

∴ x = -3 or x = 25\dfrac{2}{5}

⇒ x = -3 or 5x = 2

⇒ x + 3 = 0 or 5x - 2 = 0

⇒ (x + 3)(5x - 2) = 0

⇒ (5x2 - 2x + 15x - 6) = 0

⇒ 5x2 + 13x - 6 = 0.

Hence, quadratic equation with solution set {3,25}\Big\lbrace-3, \dfrac{2}{5}\Big\rbrace is 5x2 + 13x - 6 = 0.

(iii) Since, {25,12}\Big\lbrace\dfrac{2}{5}, -\dfrac{1}{2}\Big\rbrace is solution set.

It means 25\dfrac{2}{5} and 12-\dfrac{1}{2} are roots of the equation,

∴ x = 25\dfrac{2}{5} or x = 12-\dfrac{1}{2}

⇒ 5x = 2 or 2x = -1

⇒ 5x - 2 = 0 or 2x + 1 = 0

⇒ (5x - 2)(2x + 1) = 0

⇒ (10x2 + 5x - 4x - 2) = 0

⇒ 10x2 + x - 2 = 0.

Hence, quadratic equation with solution set {25,12}\Big\lbrace\dfrac{2}{5}, -\dfrac{1}{2}\Big\rbrace is 10x2 + x - 2 = 0.

Question 47

Find the value of k for which x = 3 is a solution of the quadratic equation (k + 2)x2 - kx + 6 = 0.

Thus, find the other root of the equation.

Answer

Substituting, x = 3 in (k + 2)x2 - kx + 6 = 0 we get,

⇒ (k + 2)(3)2 - 3k + 6 = 0

⇒ (k + 2)(9) - 3k + 6 = 0

⇒ 9k + 18 - 3k + 6 = 0

⇒ 6k + 24 = 0

⇒ 6k = -24

⇒ k = 246\dfrac{-24}{6}

⇒ k = -4.

Substitute the value of k = -4 in (k + 2)x2 - kx + 6 = 0 we get,

⇒ (-4 + 2)(x)2 - (-4)x + 6 = 0

⇒ (-2)(x)2 - (-4)x + 6 = 0

⇒ -2x2 + 4x + 6 = 0

⇒ -2x2 - 2x + 6x + 6 = 0

⇒ -2x(x + 1) + 6(x + 1) = 0

⇒ (x + 1)(-2x + 6) = 0

⇒ (x + 1) = 0 or (-2x + 6) = 0      [Using Zero-product rule]

⇒ x = -1 or -2x = -6

⇒ x = -1 or x = 62\dfrac{-6}{-2}

⇒ x = -1 or x = 3.

Hence, the value of k = -4 and the other root is -1.

Exercise 5B

Question 1

Solve the following equation using quadratic formula:

x2 - 4x + 1 = 0

Answer

Comparing equation x2 - 4x + 1 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = -4 and c = 1.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(4)±(4)24×1×12×1=4±1642=4±122=4±4×32=4±232=2(2±3)2=2±3=2+3 or 23.\Rightarrow x = \dfrac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 1 \times 1}}{2 \times 1} \\[1em] = \dfrac{4 \pm \sqrt{16 - 4}}{2} \\[1em] = \dfrac{4 \pm \sqrt{12}}{2} \\[1em] = \dfrac{4 \pm \sqrt{4 \times 3}}{2} \\[1em] = \dfrac{4 \pm 2\sqrt{3}}{2} \\[1em] = \dfrac{2(2 \pm \sqrt{3})}{2} \\[1em] = 2 \pm \sqrt{3} \\[1em] = 2 + \sqrt{3} \text{ or } 2 - \sqrt{3}.

Hence, x=2+3,23x = {2 + \sqrt{3}, 2 - \sqrt{3}}.

Question 2

Solve the following equation using quadratic formula:

9x2 + 7x - 2 = 0

Answer

Comparing equation 9x2 + 7x - 2 = 0 with ax2 + bx + c = 0, we get :

a = 9, b = 7 and c = -2.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(7)±(7)24×9×(2)2(9)=7±49+7218x=7±12118=7±1118=7+1118 or 71118=418 or 1818=29 or 1.\Rightarrow x = \dfrac{-(7) \pm \sqrt{(7)^2 - 4 \times 9 \times (-2)}}{2(9)} \\[1em] = \dfrac{-7 \pm \sqrt{49 + 72}}{18} \\[1em] \Rightarrow x = \dfrac{-7 \pm \sqrt{121}}{18} \\[1em] = \dfrac{-7 \pm 11}{18} \\[1em] = \dfrac{-7 + 11}{18} \text{ or } \dfrac{-7 - 11}{18}\\[1em] = \dfrac{4}{18} \text{ or } \dfrac{-18}{18}\\[1em] = \dfrac{2}{9} \text{ or } -1.

Hence, x={29,1}x = \Big\lbrace\dfrac{2}{9}, -1\Big\rbrace.

Question 3

Solve the following equation using quadratic formula:

34\dfrac{3}{4}x2 - x - 1 = 0

Answer

Comparing equation 34\dfrac{3}{4}x2 - x - 1 = 0 with ax2 + bx + c = 0, we get :

a = 34\dfrac{3}{4}, b = -1 and c = -1.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(1)±(1)24(34)(1)2(34)=1±1+3(32)=1±4(32)=1±2(32)=2(1±2)3=2±43=2+43 or 243=63 or 23=2 or 23.\Rightarrow x = \dfrac{-(-1) \pm \sqrt{(-1)^2 - 4\Big(\dfrac{3}{4}\Big)(-1)}}{2\Big(\dfrac{3}{4}\Big)} \\[1em] = \dfrac{1 \pm \sqrt{1 + 3}}{\Big(\dfrac{3}{2}\Big)} \\[1em] = \dfrac{1 \pm \sqrt{4}}{\Big(\dfrac{3}{2}\Big)} \\[1em] = \dfrac{1 \pm 2}{\Big(\dfrac{3}{2}\Big)} \\[1em] = \dfrac{2(1 \pm 2)}{3} \\[1em] = \dfrac{2 \pm 4}{3} \\[1em] = \dfrac{2 + 4}{3} \text{ or } \dfrac{2 - 4}{3} \\[1em] = \dfrac{6}{3} \text{ or } \dfrac{-2}{3} \\[1em] = 2 \text{ or } \dfrac{-2}{3}.

Hence, x={2,23}x = \Big\lbrace2, \dfrac{-2}{3}\Big\rbrace.

Question 4

Solve the following equation using quadratic formula:

4 - 11x = 3x2

Answer

⇒ 3x2 + 11x - 4 = 0

Comparing equation 3x2 + 11x - 4 = 0 with ax2 + bx + c = 0, we get :

a = 3, b = 11 and c = -4.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(11)±(11)24×(3)×(4)2(3)=11±121+486=11±1696=11±136=11+136 or 11136=26 or 246=13 or 4.\Rightarrow x = \dfrac{-(11) \pm \sqrt{(11)^2 - 4 \times (3) \times (-4)}}{2(3)} \\[1em] = \dfrac{-11 \pm \sqrt{121 + 48}}{6} \\[1em] = \dfrac{-11 \pm \sqrt{169}}{6} \\[1em] = \dfrac{-11 \pm 13}{6} \\[1em] = \dfrac{-11 + 13}{6} \text{ or } \dfrac{-11 - 13}{6} \\[1em] = \dfrac{2}{6} \text{ or } \dfrac{-24}{6} \\[1em] = \dfrac{1}{3} \text{ or } -4.

Hence, x={13,4}x = \Big\lbrace\dfrac{1}{3}, -4\Big\rbrace.

Question 5

Solve the following equation using quadratic formula:

25x2 + 30x + 7 = 0

Answer

Comparing equation 25x2 + 30x + 7 = 0 with ax2 + bx + c = 0, we get :

a = 25, b = 30 and c = 7.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(30)±(30)24×25×72(25)=30±90070050=30±20050=30±2×10050=30±10250=10(3±2)50=(3±2)5=(3+2)5 or (32)5.\Rightarrow x = \dfrac{-(30) \pm \sqrt{(30)^2 - 4 \times 25 \times 7}}{2(25)} \\[1em] = \dfrac{-30 \pm \sqrt{900 - 700}}{50} \\[1em] = \dfrac{-30 \pm \sqrt{200}}{50} \\[1em] = \dfrac{-30 \pm \sqrt{2 \times 100}}{50} \\[1em] = \dfrac{-30 \pm 10\sqrt{2}}{50} \\[1em] = \dfrac{10(-3 \pm \sqrt{2})}{50} \\[1em] = \dfrac{(-3 \pm \sqrt{2})}{5} \\[1em] = \dfrac{(-3 + \sqrt{2})}{5} \text{ or } \dfrac{(-3 - \sqrt{2})}{5}.

Hence, x={3+25,325}x = \Big\lbrace\dfrac{-3 + \sqrt{2}}{5}, \dfrac{-3 - \sqrt{2}}{5}\Big\rbrace.

Question 6

Solve the following equation using quadratic formula:

5x2 - 19x + 17 = 0

Answer

Comparing equation 5x2 - 19x + 17 = 0 with ax2 + bx + c = 0, we get :

a = 5, b = -19 and c = 17.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(19)±(19)24×5×172×5=19±36134010=19±2110=19+2110 or 192110.\Rightarrow x = \dfrac{-(-19) \pm \sqrt{(-19)^2 - 4 \times 5 \times 17}}{2 \times 5} \\[1em] = \dfrac{19 \pm \sqrt{361 - 340}}{10} \\[1em] = \dfrac{19 \pm \sqrt{21}}{10} \\[1em] = \dfrac{19 + \sqrt{21}}{10} \text{ or } \dfrac{19 - \sqrt{21}}{10}.

Hence, x={19+2110,192110}x = \Big\lbrace\dfrac{19 + \sqrt{21}}{10}, \dfrac{19 - \sqrt{21}}{10}\Big\rbrace.

Question 7

Solve the following equation using quadratic formula:

3x2 - 8x + 2 = 0

Answer

Comparing equation 3x2 - 8x + 2 = 0 with ax2 + bx + c = 0, we get :

a = 3, b = -8 and c = 2.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(8)±(8)24×3×22×3=8±64246=8±406=8±4×106=8±2106=2(4±10)6=(4±10)3=4+103 or4103.\Rightarrow x = \dfrac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 3 \times 2}}{2\times 3} \\[1em] = \dfrac{8 \pm \sqrt{64 - 24}}{6} \\[1em] = \dfrac{8 \pm \sqrt{40}}{6} \\[1em] = \dfrac{8 \pm \sqrt{4 \times 10}}{6} \\[1em] = \dfrac{8 \pm 2\sqrt{10}}{6} \\[1em] = \dfrac{2(4 \pm \sqrt{10})}{6} \\[1em] = \dfrac{(4 \pm \sqrt{10})}{3} \\[1em] = \dfrac{4 + \sqrt{10}}{3} \text{ or} \dfrac{4 - \sqrt{10}}{3}.

Hence, x={4+103,4103}x = \Big\lbrace\dfrac{4 + \sqrt{10}}{3}, \dfrac{4 - \sqrt{10}}{3}\Big\rbrace.

Question 8

Solve the following equation using quadratic formula:

3x2+10x83\sqrt{3}x^2 + 10x - 8\sqrt{3} = 0

Answer

Comparing equation 3x2+10x83\sqrt{3}x^2 + 10x - 8\sqrt{3} = 0 with ax2 + bx + c = 0, we get :

a = 3\sqrt{3}, b = 10 and c = 83-8\sqrt{3}.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(10)±(10)24×3×(83)2×(3)=10±100+9623=10±19623=10±1423=2(5±7)23=5±73=5+73 or 573=23 or 123=23 or 4×33=23 or 43.\Rightarrow x = \dfrac{-(10) \pm \sqrt{(10)^2 - 4 \times \sqrt{3} \times (-8\sqrt{3})}}{2\times(\sqrt{3})} \\[1em] = \dfrac{-10 \pm \sqrt{100 + 96}}{2\sqrt{3}} \\[1em] = \dfrac{-10 \pm \sqrt{196}}{2\sqrt{3}} \\[1em] = \dfrac{-10 \pm 14}{2\sqrt{3}} \\[1em] = \dfrac{2(-5 \pm 7)}{2\sqrt{3}} \\[1em] = \dfrac{-5 \pm 7}{\sqrt{3}} \\[1em] = \dfrac{-5 + 7}{\sqrt{3}} \text{ or } \dfrac{-5 - 7}{\sqrt{3}} \\[1em] = \dfrac{2}{\sqrt{3}} \text{ or } \dfrac{-12}{\sqrt{3}} \\[1em] = \dfrac{2}{\sqrt{3}} \text{ or } \dfrac{-4 \times 3}{\sqrt{3}} \\[1em] = \dfrac{2}{\sqrt{3}} \text{ or } -4\sqrt{3}.

Hence, x={23,43}x = \Big\lbrace\dfrac{2}{\sqrt{3}}, -4\sqrt{3}\Big\rbrace.

Question 9

Solve the following equation using quadratic formula:

2x2 + 7x\sqrt{7}x - 7 = 0

Answer

Comparing equation 2x2 + 7x\sqrt{7}x - 7 = 0 with ax2 + bx + c = 0, we get :

a = 2, b = 7\sqrt{7} and c = -7.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(7)±(7)24×2×(7)2×2=7±7+564=7±634=7±7×94=7±374=7+374 or 7374=274 or 474=72 or 7.\Rightarrow x = \dfrac{-(\sqrt{7}) \pm \sqrt{(\sqrt{7})^2 - 4 \times 2 \times (-7)}}{2 \times 2} \\[1em] = \dfrac{-\sqrt{7} \pm \sqrt{7 + 56}}{4} \\[1em] = \dfrac{-\sqrt{7} \pm \sqrt{63}}{4} \\[1em] = \dfrac{-\sqrt{7} \pm \sqrt{7 \times 9}}{4} \\[1em] = \dfrac{-\sqrt{7} \pm 3\sqrt{7}}{4} \\[1em] = \dfrac{-\sqrt{7} + 3\sqrt{7}}{4} \text{ or } \dfrac{-\sqrt{7} - 3\sqrt{7}}{4} \\[1em] = \dfrac{2\sqrt{7}}{4} \text{ or } \dfrac{-4\sqrt{7}}{4} \\[1em] = \dfrac{\sqrt{7}}{2} \text{ or } -\sqrt{7}.

Hence, x={7,72}x = \Big\lbrace-\sqrt{7}, \dfrac{\sqrt{7}}{2}\Big\rbrace.

Question 10

Solve the following equation using quadratic formula:

6x2 - 31x = 105

Answer

⇒ 6x2 - 31x - 105 = 0

Comparing equation 6x2 - 31x - 105 = 0 with ax2 + bx + c = 0, we get :

a = 6, b = -31 and c = -105.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(31)±(31)24×6×(105)2×(6)=31±961+252012=31±348112=31±5912=31+5912 or 315912=9012 or 2812=152 or 73.\Rightarrow x = \dfrac{-(-31) \pm \sqrt{(-31)^2 - 4 \times 6 \times(-105)}}{2\times(6)} \\[1em] = \dfrac{31 \pm \sqrt{961 + 2520}}{12} \\[1em] = \dfrac{31 \pm \sqrt{3481}}{12} \\[1em] = \dfrac{31 \pm 59}{12} \\[1em] = \dfrac{31 + 59}{12} \text{ or } \dfrac{31 - 59}{12} \\[1em] = \dfrac{90}{12} \text{ or } \dfrac{-28}{12} \\[1em] = \dfrac{15}{2} \text{ or } \dfrac{-7}{3}.

Hence, x={152,73}x = \Big\lbrace\dfrac{15}{2}, \dfrac{-7}{3}\Big\rbrace.

Question 11

Solve the following equation using quadratic formula:

x+32x+3=x+13x+2\dfrac{x + 3}{2x + 3} = \dfrac{x + 1}{3x + 2}

Answer

x+32x+3=x+13x+2(x+3)(3x+2)=(x+1)(2x+3)(3x2+2x+9x+6)=(2x2+3x+2x+3)3x2+11x+6=2x2+5x+33x22x2+11x5x+63=0x2+6x+3=0.\Rightarrow \dfrac{x + 3}{2x + 3} = \dfrac{x + 1}{3x + 2} \\[1em] \Rightarrow (x + 3)(3x + 2) = (x + 1)(2x + 3) \\[1em] \Rightarrow (3x^2 + 2x + 9x + 6) = (2x^2 + 3x + 2x + 3) \\[1em] \Rightarrow 3x^2 + 11x + 6 = 2x^2 + 5x + 3 \\[1em] \Rightarrow 3x^2 - 2x^2 + 11x - 5x + 6 - 3 = 0 \\[1em] \Rightarrow x^2 + 6x + 3 = 0.

Comparing equation x2 + 6x + 3 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = 6 and c = 3.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(6)±(6)24×(1)×(3)2×1=6±36122=6±242=6±6×42=6±262=2(3±6)2=3±6=3+6 or 36.\Rightarrow x = \dfrac{-(6) \pm \sqrt{(6)^2 - 4 \times (1) \times (3)}}{2 \times 1} \\[1em] = \dfrac{-6 \pm \sqrt{36 - 12}}{2} \\[1em] = \dfrac{-6 \pm \sqrt{24}}{2} \\[1em] = \dfrac{-6 \pm \sqrt{6 \times 4}}{2} \\[1em] = \dfrac{-6 \pm 2\sqrt{6}}{2} \\[1em] = \dfrac{2(-3 \pm \sqrt{6})}{2} \\[1em] = -3 \pm \sqrt{6} \\[1em] = -3 + \sqrt{6} \text{ or } -3 - \sqrt{6}.

Hence, x={(3+6),(36)}x = \Big\lbrace(-3 + \sqrt{6}), (-3 - \sqrt{6})\Big\rbrace.

Question 12

Solve the following equation using quadratic formula:

x1x2+x3x4=313\dfrac{x - 1}{x - 2} + \dfrac{x - 3}{x - 4} = 3\dfrac{1}{3}

Answer

x1x2+x3x4=313(x1)(x4)+(x3)(x2)(x2)(x4)=103x24xx+4+(x22x3x+6)x24x2x+8=103x25x+4+(x25x+6)x26x+8=1032x210x+10x26x+8=1033(2x210x+10)=10(x26x+8)6x230x+30=10x260x+8010x260x+80(6x230x+30)=010x260x+806x2+30x30=04x230x+50=02(2x215x+25)=02x215x+25=0.\Rightarrow \dfrac{x - 1}{x - 2} + \dfrac{x - 3}{x - 4} = 3\dfrac{1}{3} \\[1em] \Rightarrow \dfrac{(x - 1)(x - 4) + (x - 3)(x - 2)}{(x - 2)(x - 4)} = \dfrac{10}{3} \\[1em] \Rightarrow \dfrac{x^2 - 4x - x + 4 + (x^2 - 2x - 3x + 6)}{x^2 - 4x - 2x + 8} = \dfrac{10}{3} \\[1em] \Rightarrow \dfrac{x^2 - 5x + 4 + (x^2 - 5x + 6)}{x^2 - 6x + 8} = \dfrac{10}{3} \\[1em] \Rightarrow \dfrac{2x^2 - 10x + 10 }{x^2 - 6x + 8} = \dfrac{10}{3} \\[1em] \Rightarrow 3(2x^2 - 10x + 10) = 10(x^2 - 6x + 8) \\[1em] \Rightarrow 6x^2 - 30x + 30 = 10x^2 - 60x + 80 \\[1em] \Rightarrow 10x^2 - 60x + 80 - (6x^2 - 30x + 30 ) = 0 \\[1em] \Rightarrow 10x^2 - 60x + 80 - 6x^2 + 30x - 30 = 0 \\[1em] \Rightarrow 4x^2 - 30x + 50 = 0 \\[1em] \Rightarrow 2(2x^2 - 15x + 25) = 0 \\[1em] \Rightarrow 2x^2 - 15x + 25 = 0.

Comparing equation 2x2 - 15x + 25 = 0 with ax2 + bx + c = 0, we get :

a = 2, b = -15 and c = 25.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(15)±(15)24(2)(25)2(2)=15±2252004=15±254=15±54=15+54 or 1554=204 or 104=5 or 52.\Rightarrow x = \dfrac{-(-15) \pm \sqrt{(-15)^2 - 4(2)(25)}}{2(2)} \\[1em] = \dfrac{15 \pm \sqrt{225 - 200}}{4} \\[1em] = \dfrac{15 \pm \sqrt{25}}{4} \\[1em] = \dfrac{15 \pm 5}{4} \\[1em] = \dfrac{15 + 5}{4} \text{ or } \dfrac{15 - 5}{4} \\[1em] = \dfrac{20}{4} \text{ or } \dfrac{10}{4} \\[1em] = 5 \text{ or } \dfrac{5}{2}.

Hence, x = {5,52}\Big\lbrace5, \dfrac{5}{2}\Big\rbrace.

Question 13

Solve the following equation using quadratic formula:

x2 - 10x + 6 = 0

Answer

Given,

⇒ x2 - 10x + 6 = 0

Comparing equation x2 - 10x + 6 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = -10 and c = 6.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(10)±(10)24×1×(6)2×(1)=10±100242=10±762=10±19×42=10±2192=10+2192 or 102192=2(5+19)2 or 2(519)2=5+19 or 519=5+4.36 or 54.36=9.36 or 0.64\Rightarrow x = \dfrac{-(-10) \pm \sqrt{(-10)^2 - 4 \times 1 \times (6)}}{2 \times (1)} \\[1em] = \dfrac{10 \pm \sqrt{100 - 24}}{2} \\[1em] = \dfrac{10 \pm \sqrt{76}}{2} \\[1em] = \dfrac{10 \pm \sqrt{19 \times 4}}{2} \\[1em] = \dfrac{10 \pm 2\sqrt{19}}{2} \\[1em] = \dfrac{10 + 2\sqrt{19}}{2} \text{ or } \dfrac{10 - 2\sqrt{19}}{2} \\[1em] = \dfrac{2(5 + \sqrt{19})}{2} \text{ or } \dfrac{2(5 - \sqrt{19})}{2} \\[1em] = 5 + \sqrt{19} \text{ or } 5 - \sqrt{19} \\[1em] = 5 + 4.36 \text{ or } 5 - 4.36 \\[1em] = 9.36 \text{ or } 0.64

Hence, x = {9.36, 0.64}.

Question 14

Solve the following equation using quadratic formula:

2x2 - 6x + 3 = 0

Answer

Given,

⇒ 2x2 - 6x + 3 = 0

Comparing equation 2x2 - 6x + 3 = 0 with ax2 + bx + c = 0, we get :

a = 2, b = -6 and c = 3.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(6)±(6)24×2×(3)2×(2)=6±36244=6±124=6±3×44=6±234=6+234 or 6234=2(3+3)4 or 2(33)4=3+32 or 332=3+1.732 or 31.732=4.732 or 1.272=2.365 or 0.6352.37 or 0.64\Rightarrow x = \dfrac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 2 \times (3)}}{2 \times (2)} \\[1em] = \dfrac{6 \pm \sqrt{36 - 24}}{4} \\[1em] = \dfrac{6 \pm \sqrt{12}}{4} \\[1em] = \dfrac{6 \pm \sqrt{3 \times 4}}{4} \\[1em] = \dfrac{6 \pm 2\sqrt{3}}{4} \\[1em] = \dfrac{6 + 2\sqrt{3}}{4} \text{ or } \dfrac{6 - 2\sqrt{3}}{4} \\[1em] = \dfrac{2(3 + \sqrt{3})}{4} \text{ or } \dfrac{2(3 - \sqrt{3})}{4} \\[1em] = \dfrac{3 + \sqrt{3}}{2} \text{ or } \dfrac{3 - \sqrt{3}}{2} \\[1em] = \dfrac{3 + 1.73}{2} \text{ or } \dfrac{3 - 1.73}{2} \\[1em] = \dfrac{4.73}{2} \text{ or } \dfrac{1.27}{2} \\[1em] = 2.365 \text{ or } 0.635 \\[1em] \approx 2.37 \text{ or } 0.64

Hence, x = {2.37, 0.64}.

Question 15

Solve the following equation using quadratic formula:

3x2 - 32x + 12 = 0

Answer

Given,

⇒ 3x2 - 32x + 12 = 0

Comparing equation 3x2 - 32x + 12 = 0 with ax2 + bx + c = 0, we get :

a = 3, b = -32 and c = 12.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(32)±(32)24×3×(12)2×(3)=32±10241446=32±8806=32±4×2206=32±22206=32+22206 or 3222206=2(16+220)6 or 2(16220)6=16+2203 or 162203=16+14.833 or 1614.833=30.833 or 1.173=10.28 or 0.39\Rightarrow x = \dfrac{-(-32) \pm \sqrt{(-32)^2 - 4 \times 3 \times (12)}}{2 \times (3)} \\[1em] = \dfrac{32 \pm \sqrt{1024 - 144}}{6} \\[1em] = \dfrac{32 \pm \sqrt{880}}{6} \\[1em] = \dfrac{32 \pm \sqrt{4 \times 220}}{6} \\[1em] = \dfrac{32 \pm 2\sqrt{220}}{6} \\[1em] = \dfrac{32 + 2\sqrt{220}}{6} \text{ or } \dfrac{32 - 2\sqrt{220}}{6} \\[1em] = \dfrac{2(16 + \sqrt{220})}{6} \text{ or } \dfrac{2(16 - \sqrt{220})}{6} \\[1em] = \dfrac{16 + \sqrt{220}}{3} \text{ or } \dfrac{16 - \sqrt{220}}{3} \\[1em] = \dfrac{16 + 14.83}{3} \text{ or } \dfrac{16 - 14.83}{3} \\[1em] = \dfrac{30.83}{3} \text{ or } \dfrac{1.17}{3} \\[1em] = 10.28 \text{ or } 0.39

Hence, x = {10.28, 0.39}.

Question 16

Solve the following equation using quadratic formula:

x2 + 7x = 7

Answer

Given,

⇒ x2 + 7x - 7 = 0

Comparing equation x2 + 7x - 7 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = 7 and c = -7.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(7)±(7)24×(1)×(7)2×(1)=7±49+282=7±772=7+772 or 7772=7+8.772 or 78.772=1.772 or 15.772=0.89 or 7.89.\Rightarrow x = \dfrac{-(7) \pm \sqrt{(7)^2 - 4 \times (1) \times (-7)}}{2 \times (1)} \\[1em] = \dfrac{-7 \pm \sqrt{49 + 28}}{2} \\[1em] = \dfrac{-7 \pm \sqrt{77}}{2} \\[1em] = \dfrac{-7 + \sqrt{77}}{2} \text{ or } \dfrac{-7 - \sqrt{77}}{2} \\[1em] = \dfrac{-7 + 8.77}{2} \text{ or } \dfrac{-7 - 8.77}{2} \\[1em] = \dfrac{1.77}{2} \text{ or } \dfrac{-15.77}{2} \\[1em] = 0.89 \text{ or } -7.89.

Hence, x = {0.89, -7.89}.

Question 17

Solve the following equation using quadratic formula:

3x2 - x - 7 = 0

Answer

Given,

⇒ 3x2 - x - 7 = 0

Comparing equation 3x2 - x - 7 = 0 with ax2 + bx + c = 0, we get :

a = 3, b = -1 and c = -7.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(1)±(1)24×(3)×(7)2×(3)=1±1+846=1±856=1+856 or 1856=1+9.21956 or 19.21956=10.21956 or 8.21956=1.7031.70 or 1.3691.37.\Rightarrow x = \dfrac{-(-1) \pm \sqrt{(-1)^2 - 4 \times (3) \times (-7)}}{2 \times (3)} \\[1em] = \dfrac{1 \pm \sqrt{1 + 84}}{6} \\[1em] = \dfrac{1 \pm \sqrt{85}}{6} \\[1em] = \dfrac{1 + \sqrt{85}}{6} \text{ or } \dfrac{1 - \sqrt{85}}{6} \\[1em] = \dfrac{1 + 9.2195}{6} \text{ or } \dfrac{1 - 9.2195}{6} \\[1em] = \dfrac{10.2195}{6} \text{ or } \dfrac{-8.2195}{6} \\[1em] = 1.703 \approx 1.70 \text{ or } -1.369 \approx -1.37.

Hence, x = {1.70, -1.37}.

Question 18

Solve the following equation using quadratic formula:

4x2 - 7x + 2 = 0

Answer

Given,

⇒ 4x2 - 7x + 2 = 0

Comparing equation 4x2 - 7x + 2 = 0 with ax2 + bx + c = 0, we get :

a = 4, b = -7 and c = 2.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(7)±(7)24×(4)×(2)2×(4)=7±49328=7±178=7+178 or 7178=7+4.128 or 74.128=11.128 or 2.888=1.39 or 0.36\Rightarrow x = \dfrac{-(-7) \pm \sqrt{(-7)^2 - 4 \times (4) \times (2)}}{2 \times (4)} \\[1em] = \dfrac{7 \pm \sqrt{49 - 32}}{8} \\[1em] = \dfrac{7 \pm \sqrt{17}}{8} \\[1em] = \dfrac{7 + \sqrt{17}}{8} \text{ or } \dfrac{7 - \sqrt{17}}{8} \\[1em] = \dfrac{7 + 4.12}{8} \text{ or } \dfrac{7 - 4.12}{8} \\[1em] = \dfrac{11.12}{8} \text{ or } \dfrac{2.88}{8} \\[1em] = 1.39 \text{ or } 0.36

Hence, x = {1.39, 0.36}.

Question 19

Solve the following equation using quadratic formula:

x2 - 7x + 3 = 0

Answer

Given,

⇒ x2 - 7x + 3 = 0

Comparing equation x2 - 7x + 3 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = -7 and c = 3.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(7)±(7)24×(1)×(3)2×(1)=7±49122=7±372=7+372 or 7372=7+6.082 or 76.082=13.082 or 0.922=6.54 or 0.46\Rightarrow x = \dfrac{-(-7) \pm \sqrt{(-7)^2 - 4 \times (1) \times (3)}}{2 \times (1)} \\[1em] = \dfrac{7 \pm \sqrt{49 - 12}}{2} \\[1em] = \dfrac{7 \pm \sqrt{37}}{2} \\[1em] = \dfrac{7 + \sqrt{37}}{2} \text{ or } \dfrac{7 - \sqrt{37}}{2} \\[1em] = \dfrac{7 + 6.08}{2} \text{ or } \dfrac{7 - 6.08}{2} \\[1em] = \dfrac{13.08}{2} \text{ or } \dfrac{0.92}{2} \\[1em] = 6.54 \text{ or } 0.46

Hence, x = {6.54, 0.46}.

Question 20

Solve for x the quadratic equation x2 - 4x - 8 = 0. Give your answer correct to three significant figures.

Answer

Given,

⇒ x2 - 4x - 8 = 0

Comparing equation x2 - 4x - 8 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = -4 and c = -8.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(4)±(4)24×(1)×(8)2×(1)=4±16+322=4±482=4+482 or 4482=4+6.9282 or 46.9282=10.9282 or 2.9282=5.464 or 1.464\Rightarrow x = \dfrac{-(-4) \pm \sqrt{(-4)^2 - 4 \times (1) \times (-8)}}{2 \times (1)} \\[1em] = \dfrac{4 \pm \sqrt{16 + 32}}{2} \\[1em] = \dfrac{4 \pm \sqrt{48}}{2} \\[1em] = \dfrac{4 + \sqrt{48}}{2} \text{ or } \dfrac{4 - \sqrt{48}}{2} \\[1em] = \dfrac{4 + 6.928}{2} \text{ or } \dfrac{4 - 6.928}{2} \\[1em] = \dfrac{10.928}{2} \text{ or } \dfrac{-2.928}{2} \\[1em] = 5.464 \text{ or } -1.464

Correcting the value of x to three significant figures.

Hence, x = {5.46, -1.46}.

Question 21

Solve the following quadratic equation : x2 + 4x - 8 = 0. Give your answer correct to one decimal place.

Answer

Given,

⇒ x2 + 4x - 8 = 0

Comparing equation x2 + 4x - 8 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = 4 and c = -8.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(4)±(4)24×(1)×(8)2×(1)=4±16+322=4±482=4+482 or 4482=4+6.92 or 46.92=2.92 or 10.92=1.45 or 5.45\Rightarrow x = \dfrac{-(4) \pm \sqrt{(4)^2 - 4 \times (1) \times (-8)}}{2 \times (1)} \\[1em] = \dfrac{-4 \pm \sqrt{16 + 32}}{2} \\[1em] = \dfrac{-4 \pm \sqrt{48}}{2} \\[1em] = \dfrac{-4 + \sqrt{48}}{2} \text{ or } \dfrac{-4 - \sqrt{48}}{2} \\[1em] = \dfrac{-4 + 6.9}{2} \text{ or } \dfrac{-4 - 6.9}{2} \\[1em] = \dfrac{2.9}{2} \text{ or } \dfrac{-10.9}{2} \\[1em] = 1.45 \text{ or } -5.45

Correcting the value of x to one decimal place.

Hence, x = {1.5, -5.5}.

Exercise 5C

Question 1

Discuss the nature of the roots of the following equation without actually solving it:

x2 - 8x + 7 = 0

Answer

Comparing x2 - 8x + 7 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = -8 and c = 7.

We know that,

Discriminant (D) = b2 - 4ac = (-8)2 - 4 × (1) × (7)

= 64 - 28 = 36; which is positive, and a perfect square.

Hence, the roots are rational and unequal.

Question 2

Discuss the nature of the roots of the following equation without actually solving it:

6x2 + 7x - 10 = 0

Answer

Comparing 6x2 + 7x - 10 = 0 with ax2 + bx + c = 0 we get,

a = 6, b = 7 and c = -10.

We know that,

Discriminant (D) = b2 - 4ac = (7)2 - 4 × (6) × (-10)

= 49 -(-240)

= 49 + 240 = 289; which is positive, and a perfect square.

Hence, the roots are rational and unequal.

Question 3

Discuss the nature of the roots of the following equation without actually solving it:

25x2 + 30x + 7 = 0

Answer

Comparing 25x2 + 30x + 7 = 0 with ax2 + bx + c = 0 we get,

a = 25, b = 30 and c = 7.

We know that,

Discriminant (D) = b2 - 4ac = (30)2 - 4 × 25 × 7

= 900 - 700 = 200; which is positive, but not a perfect square.

Hence, the roots are irrational and unequal.

Question 4

Discuss the nature of the roots of the following equation without actually solving it:

15x2 - 28 = x

Answer

⇒ 15x2 - 28 = x

⇒ 15x2 - x - 28 = 0

Comparing 15x2 - x - 28 = 0 with ax2 + bx + c = 0 we get,

a = 15, b = -1 and c = -28.

We know that,

Discriminant (D) = b2 - 4ac = (1)2 - 4 × 15 × -28

= 1 - (-1680) = 1 + 1680 = 1681; which is positive and is a perfect square.

Hence, the roots are rational and unequal.

Question 5

Discuss the nature of the roots of the following equation without actually solving it:

16x2 = 24x + 1

Answer

⇒ 16x2 = 24x + 1

⇒ 16x2 - 24x - 1 = 0

Comparing 16x2 - 24x - 1 = 0 with ax2 + bx + c = 0 we get,

a = 16, b = -24 and c = -1.

We know that,

Discriminant (D) = b2 - 4ac

= (-24)2 - 4 × 16 × -1

= 576 - (-64) = 576 + 64 = 640; which is positive and is not a perfect square.

Hence, the roots are irrational and unequal.

Question 6

Discuss the nature of the roots of the following equation without actually solving it:

2x2 - 26x2\sqrt{6}x + 3 = 0

Answer

Comparing 2x2 - 26x2\sqrt{6}x + 3 = 0 with ax2 + bx + c = 0 we get,

a = 2, b = 26-2\sqrt{6} and c = 3.

We know that,

Discriminant (D) = b2 - 4ac = (26)2(-2\sqrt{6})^2 - 4 × 2 × 3

= (4 × 6) - 24 = 24 - 24 = 0;

Since, b is irrational and discriminant equals to zero.

Hence, the roots are irrational and equal.

Question 7

Discuss the nature of the roots of the following equation without actually solving it:

2x2 + 2x + 3 = 0

Answer

Comparing 2x2 + 2x + 3 = 0 with ax2 + bx + c = 0 we get,

a = 2, b = 2 and c = 3.

We know that,

Discriminant (D) = b2 - 4ac = (2)2 - 4 × 2 × 3

= 4 - 24 = -20; which is negative.

Hence, the roots are imaginary and unequal.

Question 8

Discuss the nature of the roots of the following equation without actually solving it:

2x2 - 5x - 4 = 0

Answer

Comparing 2x2 - 5x - 4 = 0 with ax2 + bx + c = 0 we get,

a = 2, b = -5 and c = -4.

We know that,

Discriminant (D) = b2 - 4ac = (-5)2 - 4 × 2 × -4

= 25 - (-32) = 25 + 32 = 57 ; which is positive and is not a perfect square.

Hence, the roots are irrational and unequal.

Question 9

Discuss the nature of the roots of the following equation without actually solving it:

5x2 - 13x - 6 = 0

Answer

Comparing 5x2 - 13x - 6 = 0 with ax2 + bx + c = 0 we get,

a = 5, b = -13 and c = -6.

We know that,

Discriminant (D) = b2 - 4ac = (-13)2 - 4 × 5 × -6

= 169 - (-120) = 169 + 120 = 289 ; which is positive and is a perfect square.

Hence, the roots are rational and unequal.

Question 10

Discuss the nature of the roots of the following equation without actually solving it:

9x2 - 6x + 1 = 0

Answer

Comparing 9x2 - 6x + 1 = 0 with ax2 + bx + c = 0 we get,

a = 9, b = -6 and c = 1.

We know that,

Discriminant (D) = b2 - 4ac = (-6)2 - 4 × 9 × 1

= 36 - 36 = 0.

Hence, the roots are rational and equal.

Question 11

Discuss the nature of the roots of the following equation without actually solving it:

3x2 - 2x + 5 = 0

Answer

Comparing 3x2 - 2x + 5 = 0 with ax2 + bx + c = 0 we get,

a = 3, b = -2 and c = 5.

We know that,

Discriminant (D)= b2 - 4ac = (-2)2 - 4 × 3 × 5

= 4 - 60 = -56; which is negative.

Hence, the roots are imaginary and unequal.

Question 12

Discuss the nature of the roots of the following equation without actually solving it:

x2 + 23x2\sqrt{3}x - 1 = 0

Answer

Comparing x2 + 23x2\sqrt{3}x - 1 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = 232\sqrt{3} and c = -1.

We know that,

Discriminant = D = b2 - 4ac = (23)2(2\sqrt{3})^2 - 4 × 1 × -1

= (2 × 3) + 4 = 10 ; which is positive and is not a perfect square.

Since, b is irrational and discriminant is greater than zero.

Hence, the roots are irrational and unequal.

Question 13

Find the values of k for which the following equation has equal roots:

9x2 + kx + 1 = 0

Answer

Comparing 9x2 + kx + 1 = 0 with ax2 + bx + c = 0 we get,

a = 9, b = k and c = 1.

Since equations has equal roots,

∴ D = 0

⇒ (k)2 - 4 × 9 × 1 = 0

⇒ k2 - 36 = 0

⇒ k2 = 36

⇒ k = 36\sqrt{36}

⇒ k = ± 6

Hence, k = {6, -6}.

Question 14

Find the values of k for which the following equation has equal roots:

x2 - 2kx + 7k - 12 = 0

Answer

Comparing x2 - 2kx + 7k - 12 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = -2k and c = (7k - 12).

Since equations has equal roots,

∴ D = 0

⇒ (-2k)2 - 4 × 1 × (7k - 12) = 0

⇒ 4k2 - (28k - 48) = 0

⇒ 4k2 - 28k + 48 = 0

⇒ 4k2 - 16k - 12k + 48 = 0

⇒ 4k(k - 4) - 12(k - 4) = 0

⇒ (k - 4)(4k - 12) = 0

⇒ (k - 4) = 0 or (4k - 12) = 0      [Using Zero-product rule]

⇒ k = 4 or 4k = 12

⇒ k = 4 or k = 124\dfrac{12}{4}

⇒ k = 4 or k = 3.

Hence, k = {4, 3}.

Question 15

Find the values of k for which the following equation has equal roots:

(3k + 1)x2 + 2(k + 1)x + k = 0

Answer

Comparing (3k + 1)x2 + 2(k + 1)x + k = 0 with ax2 + bx + c = 0 we get,

a = (3k + 1), b = 2(k + 1) and c = k.

Since equations has equal roots,

∴ D = 0

⇒ [2(k + 1)]2 - 4 × (3k + 1) × (k) = 0

⇒ 4(k + 1)2 - (12k + 4) × (k) = 0

⇒ 4[(k)2 + (1)2 + 2 × k × 1] - (12k2 + 4k) = 0

⇒ 4(k2 + 1 + 2k) - 12k2 - 4k = 0

⇒ 4k2 + 4 + 8k - 12k2 - 4k = 0

⇒ -8k2 + 4k + 4 = 0

⇒ -8k2 + 8k - 4k + 4 = 0

⇒ -8k(k - 1) - 4(k - 1) = 0

⇒ (k - 1)(-8k - 4) = 0

⇒ (k - 1) = 0 or (-8k - 4) = 0      [Using Zero-product rule]

⇒ k = 1 or -8k = 4

⇒ k = 1 or k = 48\dfrac{4}{-8}

⇒ k = 1 or k = 12-\dfrac{1}{2}

Hence, k = {12,1}\Big\lbrace-\dfrac{1}{2}, 1\Big\rbrace.

Question 16

Find the values of k for which the following equation has equal roots:

x2 - 2(5 + 2k)x + 3(7 + 10k) = 0

Answer

Comparing x2 - 2(5 + 2k)x + 3(7 + 10k) = 0 with ax2 + bx + c = 0 we get,

a = 1, b = -2(5 + 2k) and c = 3(7 + 10k).

Since equations has equal roots,

∴ D = 0

⇒ [-2(5 + 2k)]2 - 4 × 1 × 3(7 + 10k) = 0

⇒ 4(5 + 2k)2 - 12(7 + 10k) = 0

⇒ 4[(5)2 + (2k)2 + 2 × 5 × 2k] - (84 + 120k) = 0

⇒ 4(25 + 4k2 + 20k) - 84 - 120k = 0

⇒ 100 + 16k2 + 80k - 84 - 120k = 0

⇒ 16k2 - 40k + 16 = 0

⇒ 16k2 - 8k - 32k + 16 = 0

⇒ 8k(2k - 1) - 16(2k - 1) = 0

⇒ (2k - 1)(8k - 16)= 0

⇒ (2k - 1) = 0 or (8k - 16)= 0      [Using Zero-product rule]

⇒ 2k = 1 or 8k = 16

⇒ k = 12\dfrac{1}{2} or k = 168\dfrac{16}{8}

⇒ k = 12\dfrac{1}{2} or k = 2

Hence, k = {2,12}\Big\lbrace2 , \dfrac{1}{2}\Big\rbrace.

Question 17

Find the values of k for which the following equation has equal roots:

(k + 1)x2 + 2(k + 3)x + (k + 8) = 0

Answer

Comparing (k + 1)x2 + 2(k + 3)x + (k + 8) = 0 with ax2 + bx + c = 0 we get,

a = (k + 1), b = 2(k + 3) and c = (k + 8).

Since equations has equal roots,

∴ D = 0

⇒ [2(k + 3)]2 - 4 × (k + 1) × (k + 8) = 0

⇒ 4(k + 3)2 - (4k + 4) × (k + 8) = 0

⇒ 4[(k)2 + (3)2 + 2 × k × 3] - (4k2 + 32k + 4k + 32) = 0

⇒ 4(k2 + 9 + 6k) - (4k2 + 36k + 32) = 0

⇒ 4k2 + 36 + 24k - 4k2 - 36k - 32 = 0

⇒ -12k + 4 = 0

⇒ -12k = -4

⇒ k = 412\dfrac{-4}{-12}

⇒ k = 13\dfrac{1}{3}.

Hence, k = {13}\Big\lbrace\dfrac{1}{3}\Big\rbrace.

Question 18

Find the values of k for which the following equation has equal roots:

kx2 + kx + 1 = -4x2 - x

Answer

⇒ kx2 + kx + 1 = -4x2 - x

⇒ kx2 + kx + 1 + 4x2 + x = 0

⇒ kx2 + 4x2 + kx + x + 1 = 0

⇒ x2 (k + 4) + x(k + 1) + 1 = 0

Comparing x2 (k + 4) + x(k + 1) + 1 = 0 with ax2 + bx + c = 0 we get,

a = (k + 4), b = (k + 1) and c = 1.

Since equations has equal roots,

∴ D = 0

⇒ (k + 1)2 - 4.(k + 4).1 = 0

⇒ [(k)2 + (1)2 + 2 × k × 1] - (4k + 16) = 0

⇒ k2 + 1 + 2k - 4k - 16 = 0

⇒ k2 - 2k - 15 = 0

⇒ k2 - 5k + 3k - 15 = 0

⇒ k(k - 5) + 3(k - 5) = 0

⇒ (k - 5)(k + 3) = 0

⇒ (k - 5) = 0 or (k + 3) = 0      [Using Zero-product rule]

⇒ k = 5 or k = -3

Hence, k = {5 , -3}.

Question 19

Find the values of k for which the following equation has equal roots:

3kx2 = 4(kx - 1)

Answer

⇒ 3kx2 = 4(kx - 1)

⇒ 3kx2 = 4kx - 4

⇒ 3kx2 - 4kx + 4 = 0

Comparing 3kx2 - 4kx + 4 = 0 with ax2 + bx + c = 0 we get,

a = 3k, b = -4k and c = 4.

Since equations has equal roots,

∴ D = 0

⇒ (-4k)2 - 4 × (3k) × 4 = 0

⇒ 16k2 - 48k = 0

⇒ 16k(k - 3) = 0

⇒ 16k = 0 or (k - 3) = 0      [Using Zero-product rule]

⇒ k = 0 or k = 3

Hence, k = {0, 3}.

Question 20

Find the values of k for which the following equation has equal roots:

x2 + 4kx + (k2 - k + 2) = 0

Answer

Comparing x2 + 4kx + (k2 - k + 2) = 0 with ax2 + bx + c = 0 we get,

a = 1, b = 4k and c = (k2 - k + 2).

Since equations has equal roots,

∴ D = 0

⇒ (4k)2 - 4.1.(k2 - k + 2) = 0

⇒ 16k2 - (4k2 - 4k + 8) = 0

⇒ 16k2 - 4k2 + 4k - 8 = 0

⇒ 12k2 + 4k - 8 = 0

⇒ 12k2 + 12k - 8k - 8 = 0

⇒ 12k(k + 1) - 8(k + 1) = 0

⇒ (k + 1)(12k - 8) = 0

⇒ (k + 1) = 0 or (12k - 8) = 0      [Using Zero-product rule]

⇒ k = -1 or 12k = 8

⇒ k = -1 or k = 812\dfrac{8}{12}

⇒ k = -1 or k = 23\dfrac{2}{3}.

Hence, k = {1,23}\Big\lbrace-1,\dfrac{2}{3}\Big\rbrace.

Question 21

Show that the equation x2 + ax - 1 = 0 has real and distinct roots for all real values of a.

Answer

Comparing x2 + ax - 1 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = a and c = -1.

We know that,

Discriminant (D) = b2 - 4ac = (a)2 - 4.(1).(-1) = a2 + 4

Since a2 ≥ 0 for all real values of a, we have D = a2 + 4 > 0

The equation has real and distinct roots for all real values of a.

Hence, equation x2 + ax - 1 = 0 has real and distinct roots for all real values of a.

Question 22

Show that the equation 3x2 + 7x + 8 = 0 is not true for any real value of x.

Answer

Comparing 3x2 + 7x + 8 = 0 with ax2 + bx + c = 0 we get,

a = 3, b = 7 and c = 8.

We know that,

Discriminant (D) = b2 - 4ac = (7)2 - 4.(3).(8) = 49 - 96 = - 47; which is negative.

The equation has imaginary and unequal roots for all real values of x.

Hence, the equation 3x2 + 7x + 8 = 0 is not true for any real value of x.

Question 23

If the roots of the equation (c2 - ab)x2 - 2(a2 - bc)x + (b2 - ac) = 0 are real and equal, show that either a = 0 or a3 + b3 + c3 = 3abc.

Answer

Comparing (c2 - ab)x2 - 2(a2 - bc)x + (b2 - ac) = 0 with ax2 + bx + c = 0 we get,

a = (c2 - ab), b = -2(a2 - bc) and c = (b2 - ac).

Since equations has equal roots,

∴ D = 0

⇒ [-2(a2 - bc)]2 - 4 × (c2 - ab) ×(b2 - ac) = 0

⇒ 4(a2 - bc)2 - 4 × (c2b2 - ac3 - ab3 + a2bc ) = 0

⇒ 4[(a2)2 + (bc)2 - 2 × a2 × bc] - (4c2b2 - 4ac3 - 4ab3 + 4a2bc) = 0

⇒ 4(a4 + b2c2 - 2a2bc) - 4c2b2 + 4ac3 + 4ab3 - 4a2bc = 0

⇒ 4a4 + 4b2c2 - 8a2bc - 4c2b2 + 4ac3 + 4ab3 - 4a2bc = 0

⇒ 4a4 + 4b2c2 - 4c2b2 - 8a2bc - 4a2bc + 4ac3 + 4ab3 = 0

⇒ 4a4 - 12a2bc + 4ac3 + 4ab3 = 0

⇒ 4a(a3 - 3abc + c3 + b3) = 0

⇒ 4a = 0 or (a3 + c3 + b3 - 3abc) = 0      [Using Zero-product rule]

⇒ a = 0 or a3 + c3 + b3 = 3abc

Hence, proved a = 0 or a3 + b3 + c3 = 3abc.

Question 24

If a, b, c ∈ R, show that the roots of the equation (a - b)x2 + (b + c - a)x - c = 0 are rational.

Answer

(a - b)x2 + (b + c - a)x - c = 0, a ≠ b

Comparing (a - b)x2 + (b + c - a)x - c = 0 with ax2 + bx + c = 0 we get,

a = (a - b), b = (b + c - a) and c = -c.

We know that,

Discriminant (D) = b2 - 4ac

= (b + c - a)2 - 4 × (a - b) × (-c)

= [(b + c) - a]2 - 4 × (-ac + bc)

= [(b + c)2 + (a)2 - 2 × (b + c) × (a)] - (-4ac + 4bc)

= [(b)2 + (c)2 + 2 × b × c + a2 - 2 × (ab + ac)] + 4ac - 4bc

= (b2 + c2 + 2bc + a2 - 2ab - 2ac) + 4ac - 4bc

= a2 + b2 + c2 + 2bc - 2ab - 2ac + 4ac - 4bc

= a2 + b2 + c2 + 2bc - 4bc - 2ab - 2ac + 4ac

= a2 + b2 + c2 - 2bc - 2ab + 2ac

= a2 + c2 + 2ac + b2 - 2ab - 2bc

= a2 + c2 + 2ac + b2 - 2.(a + c).b

= (a + c - b)2

Thus D = (a + c - b)2, which is a perfect square.

The equation has rational roots. The roots are unequal if b ≠ a + c and equal if b = a + c (as then discriminant equals to zero).

Hence, (a - b)x2 + (b + c - a)x - c = 0 has rational roots. The roots are unequal if b ≠ a + c and equal if b = a + c.

Question 25

If a, b, c are rational, prove that the roots of the equation (b - c)x2 + (c - a)x + (a - b) = 0 are also rational.

Answer

Comparing (b - c)x2 + (c - a)x + (a - b) = 0 with ax2 + bx + c = 0 we get,

a = (b - c), b = (c - a) and c = (a - b).

We know that,

Discriminant (D) = b2 - 4ac

= (c - a)2 - 4 × (b - c) × (a - b)

= [(c)2 + (a)2 - 2 × c × a] - 4 × (ba - b2 - ac + bc)

= (c2 + a2 - 2ac) -(4ba - 4b2 - 4ac + 4bc)

= c2 + a2 - 2ac - 4ba + 4b2 + 4ac - 4bc

= c2 + a2 - 2ac + 4ac - 4ba + 4b2 - 4bc

= c2 + a2 + 2ac - 4ba + 4b2 - 4bc

= c2 + a2 + 2ac + (2b)2 - 2.(c + a).2b

= (a + c - 2b)2

Thus, D = (a + c - 2b)2, which is a perfect square.

The equation has rational roots.

Hence, proved that (b - c)x2 + (c - a)x + (a - b) = 0 has rational roots.

Multiple Choice Questions

Question 1

The degree of a quadratic equation is :

  1. 1

  2. 2

  3. 3

  4. none of these

Answer

The degree of a quadratic equation is the highest power of the variable in it.

A quadratic equation has the general form:

⇒ ax2 + bx + c = 0

Here, the highest power of x is 2.

Hence, option 2 is the correct option.

Question 2

The roots of the equation px2 + qx + r = 0, where p ≠ 0, are given by:

  1. x=p±q24pr2px = \dfrac{-p \pm \sqrt{q^{2} - 4pr}}{2p}

  2. x=q±q22pr4px = \dfrac{-q \pm \sqrt{q^{2} - 2pr}}{4p}

  3. x=q±q24pr2px = \dfrac{-q \pm \sqrt{q^{2} - 4pr}}{2p}

  4. x=q±q24pr2qx = \dfrac{-q \pm \sqrt{q^{2} - 4pr}}{2q}

Answer

Given,

⇒ px2 + qx + r = 0

Comparing equation px2 + qx + r = 0 with ax2 + bx + c = 0, we get :

a = p, b = q and c = r.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x = q±q24pr2p\dfrac{-q \pm \sqrt{q^2 - 4pr}}{2p}.

Hence, option 3 is the correct option.

Question 3

The discriminant of the quadratic equation ax2 + bx + c = 0, a ≠ 0 is given by:

  1. b2 - 2ac

  2. b2 - ac

  3. b2 - 4ac

  4. none of these

Answer

We know that,

Discriminant (D) = b2 - 4ac.

Hence, option 3 is the correct option.

Question 4

For real roots of a quadratic equation, the discriminant must be:

  1. greater than or equal to zero

  2. greater than zero

  3. less than or equal to zero

  4. less than zero

Answer

If the Discriminant is greater than 0, then the roots are real and distinct.

If the Discriminant is equal to 0, then the roots are real and equal.

Thus, for real roots of a quadratic equation, the discriminant must be greater than or equal to zero.

Hence, option 1 is the correct option.

Question 5

If the roots of the quadratic equation, ax2 + bx + c = 0, a ≠ 0 are real and equal, then each root is equal to:

  1. a2b\dfrac{-a}{2b}

  2. b2a\dfrac{-b}{2a}

  3. 2ab\dfrac{-2a}{b}

  4. c2a\dfrac{-c}{2a}

Answer

Let us consider the quadratic equation ax2 + bx + c = 0, a ≠ 0 and a, b, c are real numbers.

Let r1 and r2 be the roots of this equation.

r1 = b+D2a\dfrac{-b + \sqrt{D}}{2a}

r2 = bD2a\dfrac{-b - \sqrt{D}}{2a}

if the roots are real and equal then D = 0,

r1 = b+02a\dfrac{-b + \sqrt{0}}{2a}

r1 = b2a\dfrac{-b}{2a}

r2 = b02a\dfrac{-b - \sqrt{0}}{2a}

r2 = b2a\dfrac{-b}{2a}

r1 = r2 = b2a\dfrac{-b}{2a}

Hence, each root can be given by b2a\dfrac{-b}{2a}.

Hence, option 2 is the correct option.

Question 6

If the discriminant of the quadratic equation, ax2 + bx + c = 0, a ≠ 0 is greater than zero and a perfect square and a, b, c are rational, then the roots are:

  1. rational and equal

  2. irrational and unequal

  3. irrational and equal

  4. rational and unequal

Answer

We know that,

If the Discriminant is greater than 0 and a perfect square and a, b, c are rational, then the roots are rational and unequal.

Hence, option 4 is the correct option.

Question 7

If the discriminant of a quadratic equation, ax2 + bx + c = 0, is greater than zero and a perfect square and b is irrational, then the roots are:

  1. irrational and unequal

  2. irrational and equal

  3. rational and unequal

  4. rational and equal

Answer

We know that,

If the Discriminant is greater than 0 and a perfect square and b is irrational, then the roots are irrational and unequal.

Hence, option 1 is the correct option.

Question 8

Which of the following is a quadratic equation?

  1. x2 - 2x2\sqrt{x} + 7 = 0

  2. 2x2 - 5x = (x - 1)2

  3. x1x=2x2x - \dfrac{1}{x} = 2x^{2}

  4. x2 + 1x2\dfrac{1}{x^{2}} = 2

Answer

Solving,

⇒ 2x2 - 5x = (x - 1)2

⇒ 2x2 - 5x = [(x)2 + (1)2 - 2 × x × 1]

⇒ 2x2 - 5x = x2 + 1 - 2x

⇒ 2x2 - 5x - x2 - 1 + 2x = 0

⇒ 2x2 - x2 - 5x + 2x - 1 = 0

⇒ x2 - 3x - 1 = 0

The highest power of equation is 2 and it's equivalent to ax2 + bx + c = 0 . Hence the equation is a quadratic equation.

Hence, option 2 is the correct option.

Question 9

Which of the following is a quadratic equation?

  1. x2 + 1 = (2 - x)2 + 3

  2. 2x2 + 3 = (5 + x)(2x - 3)

  3. x3 - x2 = (x - 1)3

  4. none of these

Answer

Solving,

⇒ x3 - x2 = (x - 1)3

⇒ x3 - x2 = [(x)3 - (1)3 - 3x × 1 × (x - 1)]

⇒ x3 - x2 = x3 - 1 - 3x(x - 1)

⇒ x3 - x2 = x3 - 1 - 3x2 + 3x

⇒ x3 - x2 - x3 + 1 + 3x2 - 3x = 0

⇒ x3 - x3 - x2 + 3x2 - 3x + 1 = 0

⇒ 2x2 - 3x + 1 = 0

The highest power of equation is 2 and it's equivalent to ax2 + bx + c = 0 . Hence the equation is a quadratic equation.

Hence, option 3 is the correct option.

Question 10

Which of the following is not a quadratic equation?

  1. 3x - x2 = x2 + 5

  2. (x + 2)2 = 2(x2 - 5)

  3. (2x+3)2=2x2+6(\sqrt{2}x + 3)^{2} = 2x^{2} + 6

  4. (x - 1)2 = 3x2 + x - 2

Answer

Solving,

(2x+3)2=2x2+62x2+62x+9=2x2+62x22x2+62x+96=062x+3=0\Rightarrow (\sqrt{2}x + 3)^{2} = 2x^{2} + 6 \\[1em] \Rightarrow 2x^2 + 6\sqrt{2}x + 9 = 2x^{2} + 6 \\[1em] \Rightarrow 2x^2 - 2x^2 + 6\sqrt{2}x + 9 - 6 = 0 \\[1em] \Rightarrow 6\sqrt{2}x + 3 = 0 \\[1em]

The highest power of equation is 1 and it's not equivalent to ax2 + bx + c = 0 . Thus it is a linear equation.

Hence, option 3 is the correct option.

Question 11

The roots of the quadratic equation 2x2 - x - 6 = 0 are:

  1. -2, 32\dfrac{3}{2}

  2. 2, 32\dfrac{-3}{2}

  3. -2, 32\dfrac{-3}{2}

  4. 2, 32\dfrac{3}{2}

Answer

Given,

⇒ 2x2 - x - 6 = 0

⇒ 2x2 - 4x + 3x - 6 = 0

⇒ 2x(x - 2) + 3(x - 2) = 0

⇒ (2x + 3)(x - 2) = 0

⇒ 2x + 3 = 0 or x - 2 = 0      [Using Zero-product rule]

⇒ 2x = -3 or x = 2

⇒ x = 32-\dfrac{3}{2} or x = 2

Hence, option 2 is the correct option.

Question 12

Which of the following quadratic equations has 2 and 3 as its roots?

  1. x2 - 5x + 6 = 0

  2. x2 + 5x + 6 = 0

  3. x2 - 5x - 6 = 0

  4. x2 + 5x - 6 = 0

Answer

Since, {2, 3} is solution set.

It means 2 and 3 are roots of the equation,

∴ x = 2 or x = 3

⇒ x - 2 = 0 or x - 3 = 0

⇒ (x - 2)(x - 3) = 0

⇒ (x2 - 3x - 2x + 6) = 0

⇒ x2 - 5x + 6 = 0.

Hence, option 1 is the correct option.

Question 13

Which of the following is a root of the quadratic equation, 3x2 + 13x + 14 = 0 ?

  1. 13-\dfrac{1}{3}

  2. 32-\dfrac{3}{2}

  3. 53-\dfrac{5}{3}

  4. 73-\dfrac{7}{3}

Answer

Given,

⇒ 3x2 + 13x + 14 = 0

⇒ 3x2 + 6x + 7x + 14 = 0

⇒ 3x(x + 2) + 7(x + 2) = 0

⇒ (3x + 7)(x + 2) = 0

⇒ 3x + 7 = 0 or x + 2 = 0      [Using Zero-product rule]

⇒ 3x = -7 or x = -2

⇒ x = 73-\dfrac{7}{3} or x = -2

Hence, option 4 is the correct option.

Question 14

If x = 12\dfrac{-1}{2} is a solution of the quadratic equation 3x2 + 2kx - 3 = 0, then the value of k is:

  1. 34-\dfrac{3}{4}

  2. 54-\dfrac{5}{4}

  3. 94-\dfrac{9}{4}

  4. 45-\dfrac{4}{5}

Answer

Given,

x = 12\dfrac{-1}{2}

Equation : 3x2 + 2kx - 3 = 0

Substituting value of x in equation:

3x2+2kx3=03(12)2+2k(12)3=03(14)k3=0(34)k=3k=343k=3124k=94.\Rightarrow 3x^2 + 2kx - 3 = 0 \\[1em] \Rightarrow 3\Big(\dfrac{-1}{2}\Big)^2 + 2k\Big(\dfrac{-1}{2}\Big) - 3 = 0 \\[1em] \Rightarrow 3\Big(\dfrac{1}{4}\Big) - k - 3 = 0 \\[1em] \Rightarrow \Big(\dfrac{3}{4}\Big) - k = 3 \\[1em] \Rightarrow k = \dfrac{3}{4} - 3 \\[1em] \Rightarrow k = \dfrac{3 - 12}{4} \\[1em] \Rightarrow k = -\dfrac{9}{4}.

Hence, option 3 is the correct option.

Question 15

If ax2 + bx + c = 0 has equal roots, then c = ?

  1. b2a\dfrac{b}{2a}

  2. b24a\dfrac{b^{2}}{4a}

  3. b2a-\dfrac{b}{2a}

  4. b24a-\dfrac{b^{2}}{4a}

Answer

Given,

ax2 + bx + c = 0 has equal roots

Since equations has equal roots,

Discriminant (D) = 0

⇒ b2 - 4ac = 0

⇒ b2 = 4ac

⇒ c = b24a\dfrac{b^2}{4a}.

Hence, option 2 is the correct option.

Question 16

If the equation, x2 - ax + 1 = 0 has two distinct and real roots, then:

  1. |a| ≥ 2

  2. |a| ≤ 2

  3. |a| > 2

  4. |a| < 2

Answer

Comparing x2 - ax + 1 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = -a and c = 1.

We know that,

Discriminant (D) = b2 - 4ac

= (-a)2 - 4 × 1 × 1

= a2 - 4

Since equations has distinct real roots,

⇒ D > 0

⇒ a2 - 4 > 0

⇒ a2 > 4

⇒ |a| > 4\sqrt{4}

⇒ |a| > 2.

Hence, option 3 is the correct option.

Question 17

The positive value of k for which the equations x2 + kx + 64 = 0 and x2 - 8x + k = 0 will both have real roots, is

  1. 16

  2. 8

  3. 12

  4. 4

Answer

Given,

x2 + kx + 64 = 0     ....(1)

x2 - 8x + k = 0     ....(2)

Comparing x2 + kx + 64 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = k and c = 64.

We know that,

Discriminant (D) = b2 - 4ac

= (k)2 - 4 × (1) × (64)

= k2 - 256

Since equations has real roots,

⇒ D ≥ 0

⇒ k2 - 256 ≥ 0

⇒ k2 ≥ 256

⇒ |k| ≥ 256\sqrt{256}

⇒ |k| ≥ 16

⇒ 16 ≤ k ≤ -16

Taking only positive value,

⇒ k ≥ 16 .........(3)

Comparing x2 - 8x + k = 0 with ax2 + bx + c = 0 we get,

a = 1, b = -8 and c = k.

We know that,

Discriminant (D) = b2 - 4ac

= (-8)2 - 4 × (1) × (k)

= (64) - 4k

Since equations has real roots,

⇒ D ≥ 0

⇒ 64 - 4k ≥ 0

⇒ 4k ≤ 64

⇒ k ≤ 644\dfrac{64}{4}

⇒ k ≤ 16 .........(4)

From (3) and (4), we get :

⇒ k = 16.

Hence, option 1 is the correct option.

Question 18

If 3 is a root of the quadratic equation x2 - px + 3 = 0, then p is equal to:

  1. 4

  2. 3

  3. 5

  4. 2

Answer

Given,

3 is a root of the quadratic equation x2 - px + 3 = 0.

Substituting value of x = 3 in equation, we get :

⇒ (3)2 - p(3) + 3 = 0

⇒ 9 - 3p + 3 = 0

⇒ 12 - 3p = 0

⇒ 12 = 3p

⇒ p = 123\dfrac{12}{3}

⇒ p = 4.

Hence, option 1 is the correct option.

Question 19

If the roots of the quadratic equation 2x2 + 8x + k = 0 are equal, then the value of k is:

  1. 2

  2. 8

  3. 4

  4. none of these

Answer

Comparing 2x2 + 8x + k = 0 with ax2 + bx + c = 0 we get,

a = 2, b = 8 and c = k.

We know that,

Since equations has equal roots,

⇒ Discriminant = 0

⇒ b2 - 4ac = 0

⇒ (8)2 - 4(2)(k) = 0

⇒ 64 - 8k = 0

⇒ 8k = 64

⇒ k = 648\dfrac{64}{8}

⇒ k = 8.

Hence, option 2 is the correct option.

Question 20

The solution set for the quadratic equation 2x2 - x + 18\dfrac{1}{8} = 0 is:

  1. {14,14}\Big\lbrace\dfrac{1}{4}, \dfrac{1}{4}\Big\rbrace

  2. {14,14}\Big\lbrace-\dfrac{1}{4}, \dfrac{1}{4}\Big\rbrace

  3. {12,14}\Big\lbrace-\dfrac{1}{2}, \dfrac{1}{4}\Big\rbrace

  4. {4, 4}

Answer

Given,

⇒ 2x2 - x + 18\dfrac{1}{8} = 0

Multiply the equation with 16, we get:

⇒ 16(2x2 - x + 18\dfrac{1}{8} = 0)

⇒ 32x2 - 16x + 168\dfrac{16}{8} = 0

⇒ 32x2 - 16x + 2 = 0

⇒ 2(16x2 - 8x + 1) = 0

⇒ 16x2 - 8x + 1 = 0

⇒ 16x2 - 4x - 4x + 1 = 0

⇒ 4x(4x - 1) - 1(4x - 1) = 0

⇒ (4x - 1)(4x - 1) = 0

⇒ (4x - 1) = 0 or (4x - 1) = 0      [Using Zero-product rule]

⇒ 4x = 1 or 4x = 1

⇒ x = 14\dfrac{1}{4} or x = 14\dfrac{1}{4}

Hence, option 1 is the correct option.

Question 21

The solution set for the quadratic equation 2x2 = 288, is:

  1. {12, 12}

  2. {-12, -12}

  3. {-12, 18}

  4. {-12, 12}

Answer

Given,

2x2 = 288

2x2=288x2=2882x2=144x=144x=±12x=12 or x=12.\Rightarrow 2x^2 = 288 \\[1em] \Rightarrow x^2 = \dfrac{288}{2} \\[1em] \Rightarrow x^2 = 144 \\[1em] \Rightarrow x = \sqrt{144} \\[1em] \Rightarrow x = \pm 12 \\[1em] \Rightarrow x = 12 \text{ or } x = -12.

The solution set = {-12, 12}

Hence, option 4 is the correct option.

Question 22

The solution set for the quadratic equation 3x2 - 18x = 0 is:

  1. {6, 6}

  2. {0, -6}

  3. {0, 6}

  4. none of these

Answer

Given,

⇒ 3x2 - 18x = 0

⇒ 3x(x - 6) = 0

⇒ 3x = 0 or (x - 6) = 0      [Using Zero-product rule]

⇒ x = 0 or x = 6.

Hence, option 3 is the correct option.

Question 23

The values of k for which the quadratic equation 9x2 - 3kx + k = 0, has equal roots, are:

  1. 0, 1

  2. 0, 2

  3. 2, 4

  4. 0, 4

Answer

Comparing 9x2 - 3kx + k = 0 with ax2 + bx + c = 0 we get,

a = 9, b = -3k and c = k.

We know that,

Since equations has equal roots,

⇒ D = 0

⇒ b2 - 4ac = 0

⇒ (-3k)2 - 4(9)(k) = 0

⇒ 9k2 - 36k = 0

⇒ 9k(k - 4) = 0

⇒ 9k = 0 or (k - 4) = 0      [Using Zero-product rule]

⇒ k = 0 or k = 4.

Hence, option 4 is the correct option.

Question 24

If the roots of the quadratic equation, px(x - 2) + 6 = 0 are equal, then the value of p is:

  1. 0

  2. 4

  3. 6

  4. none of these

Answer

Given,

⇒ px(x - 2) + 6 = 0

⇒ px2 - 2px + 6 = 0

Comparing px2 - 2px + 6 = 0 with ax2 + bx + c = 0 we get,

a = p, b = -2p and c = 6.

We know that,

Since equations has equal roots,

⇒ D = 0

⇒ b2 - 4ac = 0

⇒ (-2p)2 - 4(p)(6) = 0

⇒ 4p2 - 24p = 0

⇒ 4p(p - 6) = 0

⇒ 4p = 0 or p - 6 = 0      [Using Zero-product rule]

⇒ p = 0 or p = 6.

Since p = 0 would make the equation no longer quadratic, we take:

p = 6

Hence, option 3 is the correct option.

Question 25

If the quadratic equation, px2 - 252\sqrt{5} px + 15 = 0 has two equal roots, then the value of p is:

  1. 0

  2. 3

  3. 6

  4. both 0 and 3

Answer

Comparing px2 - 252\sqrt{5} px + 15 = 0 with ax2 + bx + c = 0 we get,

a = p, b = 25-2\sqrt{5} p and c = 15.

We know that,

Since equations has equal roots,

⇒ D = 0

⇒ b2 - 4ac = 0

⇒ (25-2\sqrt{5} p)2 - 4(p)(15) = 0

⇒ 20p2 - 60p = 0

⇒ 20p(p - 3) = 0

⇒ 20p = 0 or (p - 3) = 0      [Using Zero-product rule]

⇒ p = 0 or p = 3.

Since p = 0 would make the equation no longer quadratic, we take:

p = 3

Hence, option 2 is the correct option.

Question 26

If 1 is a root of the quadratic equation, ky2 + ky + 3 = 0, then the value of k is:

  1. 23-\dfrac{2}{3}

  2. 13-\dfrac{1}{3}

  3. 12-\dfrac{1}{2}

  4. 32-\dfrac{3}{2}

Answer

Given,

1 is a root of the quadratic equation, ky2 + ky + 3 = 0.

Substituting value of y = 1 in equation :

⇒ k(1)2 + k(1) + 3 = 0

⇒ k + k + 3 = 0

⇒ 2k + 3 = 0

⇒ 2k = -3

⇒ k = 32-\dfrac{3}{2}.

Hence, option 4 is the correct option.

Question 27

If the equation x2 + 5kx + 16 = 0 has no real roots, then :

  1. k > 85\dfrac{8}{5}

  2. k < 85-\dfrac{8}{5}

  3. 85<k<85-\dfrac{8}{5} \lt k \lt \dfrac{8}{5}

  4. none of these

Answer

Comparing x2 + 5kx + 16 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = 5k and c = 16.

We know that,

Since equations has no real roots,

⇒ D < 0

⇒ b2 - 4ac < 0

⇒ (5k)2 - 4(1)(16) < 0

⇒ 25k2 - 64 < 0

⇒ 25k2 < 64

k2<6425k<6425k<8585<k<85.\Rightarrow k^2 \lt \dfrac{64}{25} \\[1em] \Rightarrow |k| \lt \sqrt{\dfrac{64}{25}} \\[1em] \Rightarrow |k| \lt \dfrac{8}{5} \\[1em] \Rightarrow -\dfrac{8}{5} \lt k \lt \dfrac{8}{5}.

Hence, option 3 is the correct option.

Question 28

The discriminant of the equation, 3x2 - 2x + 13\dfrac{1}{3} = 0 is :

  1. 0

  2. 1

  3. 2

  4. 4

Answer

Comparing 3x2 - 2x + 13\dfrac{1}{3} = 0 with ax2 + bx + c = 0 we get,

a = 3, b = -2 and c = 13\dfrac{1}{3}.

We know that,

⇒ D = b2 - 4ac

⇒ D = (-2)2 - 4(3) (13)\Big(\dfrac{1}{3}\Big)

⇒ D = 4 - 4

⇒ D = 0.

Hence, option 1 is the correct option.

Question 29

What is the nature of the roots of the equation, 2x2 - 6x + 3 = 0?

  1. rational and unequal

  2. irrational and unequal

  3. real and equal

  4. imaginary and unequal

Answer

Comparing 2x2 - 6x + 3 = 0 with ax2 + bx + c = 0 we get,

a = 2, b = -6 and c = 3.

We know that,

⇒ D = b2 - 4ac

⇒ D = (-6)2 - 4(2)(3)

⇒ D = 36 - 24

⇒ D = 12

⇒ D > 0 roots are real and unequal.

⇒ D = 12 is not a perfect square, roots are irrational.

Thus, roots are irrational and unequal.

Hence, option 2 is the correct option.

Question 30

The nature of the roots of the equation, 3x2 - 43x4\sqrt{3}x + 4 = 0 is:

  1. real and equal

  2. irrational and unequal

  3. rational and unequal

  4. imaginary and unequal

Answer

Comparing 3x2 - 43x4\sqrt{3}x + 4 = 0 with ax2 + bx + c = 0 we get,

a = 3, b = -434\sqrt{3} and c = 4.

We know that,

⇒ D = b2 - 4ac

⇒ D = (-434\sqrt{3})2 - 4(3)(4)

⇒ D = 16(3) - 48

⇒ D = 48 - 48

⇒ D = 0.

Thus, roots are real and equal.

Hence, option 1 is the correct option.

Question 31

The value of the discriminant of the equation 2x2 - 3x + 5 = 0, is:

  1. 31

  2. 31\sqrt{-31}

  3. 31\sqrt{31}

  4. -31

Answer

Comparing 2x2 - 3x + 5 = 0 with ax2 + bx + c = 0 we get,

a = 2, b = -3 and c = 5.

We know that,

⇒ D = b2 - 4ac

⇒ D = (-3)2 - 4(2)(5)

⇒ D = 9 - 40

⇒ D = -31.

Hence, option 4 is the correct option.

Question 32

If the equation, ax2 + 2x + a = 0 has two real and equal roots, then:

  1. a = 0, 1

  2. a = 1, 1

  3. a = 0, -1

  4. a = -1, 1

Answer

Comparing ax2 + 2x + a = 0 with ax2 + bx + c = 0 we get,

a = a, b = 2 and c = a.

We know that,

Since equations has real and equal roots,

⇒ D = 0

⇒ b2 - 4ac = 0

⇒ (2)2 - 4(a)(a) = 0

⇒ 4 - 4a2 = 0

⇒ 4 = 4a2

⇒ a2 = 44\dfrac{4}{4}

⇒ a2 = 1

⇒ a = 1\sqrt{1}

⇒ a = ± 1

⇒ a = -1, 1.

Hence, option 4 is the correct option.

Question 33

The value of the discriminant of the equation, 3x2+10x+73\sqrt{3}x^2 + 10x + 7\sqrt{3} = 0 is:

  1. 4

  2. 16

  3. -16

  4. -12

Answer

Comparing 3x2+10x+73\sqrt{3}x^2 + 10x + 7\sqrt{3} = 0 with ax2 + bx + c = 0 we get,

a = 3\sqrt{3}, b = 10 and c = 737\sqrt{3}.

We know that,

⇒ D = b2 - 4ac

⇒ D = (10)2 - 4×(3)×(73)4 \times (\sqrt{3}) \times (7\sqrt{3})

⇒ D = 100 - 84

⇒ D = 16.

Hence, option 2 is the correct option.

Question 34

The value of the discriminant of the equation, x2 - (2\sqrt{2} + 1)x + 2\sqrt{2} = 0 is:

  1. 3 + 222\sqrt{2}

  2. 1 - 222\sqrt{2}

  3. 3 - 222\sqrt{2}

  4. 2 - 2\sqrt{2}

Answer

Comparing x2 - (2\sqrt{2} + 1)x + 2\sqrt{2} = 0 with ax2 + bx + c = 0 we get,

a = 1, b = -(2\sqrt{2} + 1) and c = 2\sqrt{2}.

We know that,

D=b24ac=[(2+1)]24×1×(2)=(2)2+2×2×1+124(2)=2+22+142=322.\Rightarrow D = b^2 - 4ac \\[1em] = [-(\sqrt{2} + 1)]^2 - 4 \times 1 \times (\sqrt{2}) \\[1em] = (\sqrt2)^2 + 2 \times \sqrt2 \times 1 + 1^2 - 4(\sqrt{2}) \\[1em] = 2 + 2\sqrt2 + 1 - 4\sqrt{2} \\[1em] = 3 - 2\sqrt2.

Hence, option 3 is the correct option.

Question 35

The roots of the equation x+1xx + \dfrac{1}{x} = 3 are:

  1. 2±52\dfrac{2 \pm \sqrt{5}}{2}

  2. 3±52\dfrac{3 \pm \sqrt{5}}{2}

  3. 1±32\dfrac{1 \pm \sqrt{3}}{2}

  4. none of these

Answer

Given,

x+1xx + \dfrac{1}{x} = 3

Multiplying whole equation by x, we get:

x2+1x=3\Rightarrow \dfrac{x^2 + 1}{x} = 3

⇒ x2 + 1 = 3x

⇒ x2 - 3x + 1 = 0

Comparing equation x2 - 3x + 1 = 0 with ax2 + bx + c = 0, we get :

a = 1, b = -3 and c = 1.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(3)±(3)24×1×12×1=3±942=3±52.\Rightarrow x = \dfrac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times 1}}{2 \times 1} \\[1em] = \dfrac{3 \pm \sqrt{9 - 4}}{2} \\[1em] = \dfrac{3 \pm \sqrt{5}}{2}.

Hence, option 2 is the correct option.

Question 36

The solution set for the quadratic equation 2x2 + kx - k2 = 0 is:

  1. {k, k}

  2. {-k, k}

  3. {k,k2}\Big\lbrace-k, \dfrac{k}{2}\Big\rbrace

  4. {k2,k}\Big\lbrace\dfrac{-k}{2}, k\Big\rbrace

Answer

⇒ 2x2 + kx - k2 = 0

⇒ 2x2 + 2kx - kx - k2 = 0

⇒ 2x(x + k) - k(x + k) = 0

⇒ (2x - k)(x + k) = 0

⇒ 2x - k = 0 or x + k = 0      [Using Zero-product rule]

⇒ 2x = k or x = -k

⇒ x = k2\dfrac{k}{2} or x = -k

The solution set: {k,k2}\Big\lbrace-k, \dfrac{k}{2}\Big\rbrace.

Hence, option 3 is the correct option.

Question 37

The solution set for the equation, 25x(x + 1) = -4, is:

  1. {15,45}\Big\lbrace\dfrac{1}{5}, \dfrac{4}{5}\Big\rbrace

  2. {15,45}\Big\lbrace-\dfrac{1}{5}, \dfrac{4}{5}\Big\rbrace

  3. {45,15}\Big\lbrace-\dfrac{4}{5}, -\dfrac{1}{5}\Big\rbrace

  4. {45,15}\Big\lbrace-\dfrac{4}{5}, \dfrac{1}{5}\Big\rbrace

Answer

⇒ 25x(x + 1) = -4

⇒ 25x2 + 25x + 4 = 0

⇒ 25x2 + 5x + 20x + 4 = 0

⇒ 5x(5x + 1) + 4(5x + 1) = 0

⇒ (5x + 4)(5x + 1) = 0

⇒ (5x + 4) = 0 or (5x + 1) = 0      [Using Zero-product rule]

⇒ 5x = -4 or 5x = -1

⇒ x = 45\dfrac{-4}{5} or x = 15\dfrac{-1}{5}.

The solution set: {45,15}\Big\lbrace-\dfrac{4}{5}, -\dfrac{1}{5}\Big\rbrace.

Hence, option 3 is the correct option.

Question 38

The value of the discriminant of the equation, 3x2 = - 11x - 10, is:

  1. 1

  2. 0

  3. 4

  4. 9

Answer

Given,

⇒ 3x2 = - 11x - 10

⇒ 3x2 + 11x + 10 = 0

Comparing 3x2 + 11x + 10 = 0 with ax2 + bx + c = 0 we get,

a = 3, b = 11 and c = 10.

We know that,

⇒ D = b2 - 4ac

⇒ D = (11)2 - 4 × 3 × 10

⇒ D = 121 - 120

⇒ D = 1.

Hence, option 1 is the correct option.

Question 39

If -5 is a root of the quadratic equation 2x2 + px - 15 = 0 and the quadratic equation p(x2 + x) + k = 0 has equal roots, then the value of k is:

  1. 74\dfrac{7}{4}

  2. 54\dfrac{5}{4}

  3. 34\dfrac{3}{4}

  4. 14\dfrac{1}{4}

Answer

Given,

-5 is a root of the quadratic equation 2x2 + px - 15 = 0.

Substituting value of x = -5 in 2x2 + px - 15 = 0, we get:

⇒ 2(-5)2 + p(-5) - 15 = 0

⇒ 2 × 25 - 5p - 15 = 0

⇒ 50 - 5p - 15 = 0

⇒ 35 - 5p = 0

⇒ 5p = 35

⇒ p = 355\dfrac{35}{5}

⇒ p = 7.

Substituting value of p in p(x2 + x) + k = 0, we get:

⇒ 7(x2 + x) + k = 0

⇒ 7x2 + 7x + k = 0

Comparing 7x2 + 7x + k = 0 with ax2 + bx + c = 0 we get,

a = 7, b = 7 and c = k.

Since equation has equal roots,

⇒ Discriminant = 0

⇒ b2 - 4ac = 0

⇒ (7)2 - 4(7)(k) = 0

⇒ 49 - 28k = 0

⇒ 28k = 49

⇒ k = 4928\dfrac{49}{28}

⇒ k = 74\dfrac{7}{4}.

Hence, option 1 is the correct option.

Case Study Based Questions

Question 1

Case Study I

Shridharacharya was an Indian mathematician, Sanskrit Pandit and philosopher from Bengal. He is known for his treatises – Trisatika and Patiganita. He was the first to give an algorithm for solving quadratic equations. His other major works were on algebra, particularly fractions and he gave an exposition on zero. He separated Algebra from Arithmetic. The quadratic formula which is used to find the roots of a quadratic equation is known as Shridharacharya’s rule.

1. A quadratic equation of the form ax2 + bx + c = 0, a ≠ 0, has two roots given by:

  1. x=b±b24abc2ax = \dfrac{b \pm \sqrt{b^{2} - 4abc}}{2a}

  2. x=b±b22ac4ax = \dfrac{-b \pm \sqrt{b^{2} - 2ac}}{4a}

  3. x=b±b24ac2acx = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2ac}

  4. x=b±b24ac2ax = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a}

2. A quadratic equation of the form ax2 + bx + c = 0, a ≠ 0, has rational roots, if the value of (b2 - 4ac) is:

  1. less than 0
  2. greater than 0
  3. equal to 0
  4. equal to 0 or a perfect square

3. The maximum number of roots that a quadratic equation can have is:

  1. 1
  2. 2
  3. 3
  4. 4

4. A quadratic equation ax2 + bx + c = 0, a ≠ 0, having real coefficients, cannot have real roots if:

  1. b2 - 4ac < 0
  2. b2 - 4ac = 0
  3. b2 - 4ac > 0
  4. b2 - 4ac ≥ 0

5. The quadratic equation, x2 + 26x + 169 = 0, has:

  1. non real roots
  2. rational and unequal roots
  3. equal roots
  4. irrational roots

Answer

1. By formula,

x=b±b24ac2ax = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a}

Hence, option (d) is the correct option.

2. Given,

ax2 + bx + c = 0, a ≠ 0

We know that,

For the roots to be rational, the discriminant must be a perfect square or zero.

Hence, option (d) is the correct option.

3. A polynomial of degree n has at most n roots.

Given, equation :

ax2 + bx + c = 0

Here, the highest power of x is 2. Therefore, maximum number of roots for quadratic equation is 2.

Hence, option (b) is the correct option.

4. Given,

A quadratic equation cannot have real roots if discriminant is less than zero.

Thus, b2 − 4ac < 0.

Hence, option (a) is the correct option.

5. Given,

x2 + 26x + 169 = 0

Comparing x2 + 26x + 169 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = 26 and c = 169.

We know that,

⇒ D = b2 - 4ac

⇒ D = (26)2 - 4(1)(169)

⇒ D = 676 - 676

⇒ D = 0, the roots are real and equal.

Hence, option (c) is the correct option.

Question 2

Case Study II

Raman Lal runs a stationery shop in Pune. The analysis of his sales, expenditures and profits showed that for x number of notebooks sold, the weekly profit (in ₹) was P(x) = - 2x2 + 88x - 680. Raman Lal found that:

  • He has a loss if he does not sell any notebook in a week.
  • There is no profit no loss for a certain value x0 of x.
  • The profit goes on increasing with an increase in x i.e. the number of notebooks sold. But he gets a maximum profit at a sale of 22 notebooks in a week.

Now answer the following questions :

1. What will be Raman Lal’s profit if he sold 20 notebooks in a week?

  1. ₹ 144
  2. ₹ 280
  3. ₹ 340
  4. ₹ 560

2. What is the maximum profit that Raman Lal can earn in a week?

  1. ₹ 144
  2. ₹ 288
  3. ₹ 340
  4. ₹ 680

3. What is Raman Lal’s loss if he does not sell any notebooks in a particular week?

  1. ₹ 0
  2. ₹ 340
  3. ₹ 680
  4. ₹ 960

4. Write a quadratic equation for the condition when Raman Lal does not have any profit or loss during a week.

  1. 2x2 - 44x + 340 = 0
  2. x2 + 44x - 340 = 0
  3. x2 - 88x + 340 = 0
  4. x2 - 44x + 340 = 0

5. What is the minimum number of notebooks x0 that Raman Lal should sell in a week so that he does not incur any loss?

  1. 0
  2. 10
  3. 11
  4. 12

Answer

1. Given,

⇒ P(x) = -2x2 + 88x - 680

Books sold by Raman lal is 20.Therefore x = 20

⇒ P(20) = −2(20)2 + 88(20) − 680

⇒ P(20) = −2(400) + 1760 − 680

⇒ P(20) = −800 + 1080

⇒ P(20) = 280.

Hence, option (b) is the correct option.

2. Given,

⇒ P(x) = - 2x2 + 88x - 680

Maximum profit occurs when 22 books are sold, thus x = 22.

⇒ P(22) = −2(22)2 + 88(22) − 680

= −2(484) + 1936 − 680

= −968 + 1256

= ₹ 288.

Hence, option (b) is the correct option.

3. Given,

⇒ Number of notebooks sold in a particular week = 0

Thus, x = 0

The weekly profit P(x) = -2x2 + 88x - 680.

Raman Lal’s loss if no notebooks sold in a week,

⇒ P(0) = -2(0)2 + 88(0) - 680

= −680

= loss of ₹ 680.

Hence, option (c) is the correct option.

4. Given,

⇒ P(x) = -2x2 + 88x - 680

If there is no profit/loss, then profit = ₹ 0.

⇒ P(x) = 0

⇒ −2x2 + 88x − 680 = 0

⇒ −2(x2 - 44x + 340) = 0

⇒ x2 − 44x + 340 = 0.

Hence, option (d) is the correct option.

5. When Raman lal has no profit/loss we get the equation x2 − 44x + 340 = 0.

⇒ x2 − 44x + 340 = 0

⇒ x2 − 10x - 34x + 340 = 0

⇒ x(x − 10) - 34(x - 10) = 0

⇒ (x − 10)(x - 34) = 0

⇒ (x − 10) = 0 or (x - 34) = 0      [Using Zero-product rule]

⇒ x = 10 or x = 34.

The minimum value of x with no loss is x = 10. Raman lal has to sell 10 books so that he does not incur any loss.

Hence, option (b) is the correct option.

Assertion Reason Questions

Question 1

Assertion (A): The discriminant of the quadratic equation x2+22x+1=0x^2 + 2\sqrt{2}x + 1 = 0 is less than zero.

Reason (R): The discriminant of the quadratic equation ax2 + bx + c = 0 is b24ac\sqrt{b^{2} - 4ac}.

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

x2+22x+1=0x^2 + 2\sqrt{2}x + 1 = 0

Comparing x2+22x+1=0x^2 + 2\sqrt{2}x + 1 = 0 with ax2 + bx + c = 0 we get,

a = 1, b = 222\sqrt{2} and c = 1.

We know that,

Discriminant (D) = b2 - 4ac = (22)2(2\sqrt{2})^2 - 4 × (1) × (1)

= 8 - 4 = 4; which is positive.

So, Assertion (A) is false.

The discriminant of the quadratic equation ax2 + bx + c = 0 is b2 - 4ac.

So, Reason (R) is false.

Thus, Both A and R are false.

Hence, option 4 is the correct option.

Question 2

Assertion (A): The quadratic equation 3kx2 - 4kx + 4 = 0 has equal roots, if k = 3.

Reason (R): For equal roots of a quadratic equation, we must have D = 0.

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

⇒ 3kx2 - 4kx + 4 = 0

when k = 3

⇒ 3 × (3) × x2 - 4 × (3) × x + 4 = 0

⇒ 9x2 - 12x + 4 = 0

Comparing 9x2 - 12x + 4 = 0 with ax2 + bx + c = 0 we get,

a = 9, b = -12 and c = 4.

We know that,

Discriminant (D) = b2 - 4ac

= (-12)2 - 4 × (9) × (4)

= 144 - 144 = 0.

Therefore, the equation has rational and equal roots.

So, Assertion (A) is true.

The Discriminant is given by b2 - 4ac, if the discriminant of any quadratic equation is zero. Then it is said have equal and real roots.

So, Reason (R) is true.

Thus, both A and R are true.

Hence, option 3 is the correct option.

Question 3

Assertion (A): The roots of the quadratic equation 3x2 + 7x + 8 = 0 are imaginary.

Reason (R): The discriminant of a quadratic equation is always positive.

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

⇒ 3x2 + 7x + 8 = 0

Comparing 3x2 + 7x + 8 = 0 with ax2 + bx + c = 0 we get,

a = 3, b = 7 and c = 8.

We know that,

Discriminant (D) = b2 - 4ac

= (7)2 - 4 × (3) × (8)

= 49 - 96 = -47; which is negative.

Therefore, the equation has imaginary and unequal roots.

So, Assertion (A) is true.

The Discriminant of quadratic equation can be positive, negative or equal to zero.

So, Reason (R) is false.

A is true, R is false.

Hence, option 1 is the correct option.

Question 4

Assertion (A): The roots of the quadratic equation 8x2 + 2x - 3 = 0 are -12\dfrac{1}{2} and 34\dfrac{3}{4}.

Reason (R): The roots of the quadratic equation ax2 + bx + c = 0 are given by x=b±b24ac2ax = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a}.

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

⇒ 8x2 + 2x - 3 = 0

Comparing equation 8x2 + 2x - 3 = 0 with ax2 + bx + c = 0, we get :

a = 8, b = 2 and c = -3.

By formula,

x = b±b24ac2a\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting values we get :

x=(2)±(2)24×(8)×(3)2×(8)=2±4+9616=2±10016=2±1016=2+1016 or 21016=816 or 1216=12 or 34.\Rightarrow x = \dfrac{-(2) \pm \sqrt{(2)^2 - 4 \times (8) \times (-3)}}{2 \times (8)} \\[1em] = \dfrac{-2 \pm \sqrt{4 + 96}}{16} \\[1em] = \dfrac{-2 \pm \sqrt{100}}{16} \\[1em] = \dfrac{-2 \pm 10}{16} \\[1em] = \dfrac{-2 + 10}{16} \text{ or } \dfrac{-2 - 10}{16} \\[1em] = \dfrac{8}{16} \text{ or } \dfrac{-12}{16} \\[1em] = \dfrac{1}{2} \text{ or } \dfrac{-3}{4}.

Thus, A is false, R is true.

Hence, option 2 is the correct option.

PrevNext