( − 2 a 2 b 3 ) 4 \Big(-\dfrac{2a^2}{b^3}\Big)^4 ( − b 3 2 a 2 ) 4 is equal to :
− 16 a 8 b 12 -\dfrac{16a^8}{b^{12}} − b 12 16 a 8
16 a 8 b 12 \dfrac{16a^8}{b^{12}} b 12 16 a 8
2 a 8 b 12 \dfrac{2a^8}{b^{12}} b 12 2 a 8
− 2 a 8 b 12 -\dfrac{2a^8}{b^{12}} − b 12 2 a 8
Answer
Simplifying the expression :
⇒ ( − 2 a 2 b 3 ) 4 = ( − 2 × a 2 b 3 ) 4 = ( − 2 ) 4 × ( a 2 b 3 ) 4 = 16 × a 2 × 4 b 3 × 4 = 16 a 8 b 12 . \Rightarrow \Big(-\dfrac{2a^2}{b^3}\Big)^4 = \Big(-2 \times \dfrac{a^2}{b^3}\Big)^4 \\[1em] = (-2)^4 \times \Big(\dfrac{a^2}{b^3}\Big)^4 = 16 \times \dfrac{a^{2 \times 4}}{b^{3 \times 4}} \\[1em] = \dfrac{16a^8}{b^{12}}. ⇒ ( − b 3 2 a 2 ) 4 = ( − 2 × b 3 a 2 ) 4 = ( − 2 ) 4 × ( b 3 a 2 ) 4 = 16 × b 3 × 4 a 2 × 4 = b 12 16 a 8 .
Hence, Option 2 is the correct option.
28 4 ÷ 7 4 \sqrt[4]{28} ÷ \sqrt[4]{7} 4 28 ÷ 4 7 is equal to :
2 \sqrt{2} 2
4 \sqrt{4} 4
2 4 \sqrt[4]{2} 4 2
2 3 \sqrt[3]{2} 3 2
Answer
Simplifying the expression :
⇒ 28 4 ÷ 7 4 = 28 4 7 4 = ( 28 7 ) 1 4 = ( 4 ) 1 4 = ( 2 ) 2 × 1 4 = ( 2 ) 1 2 = 2 . \Rightarrow \sqrt[4]{28} ÷ \sqrt[4]{7} = \dfrac{\sqrt[4]{28}}{\sqrt[4]{7}} \\[1em] = \Big(\dfrac{28}{7}\Big)^{\dfrac{1}{4}} = (4)^{\dfrac{1}{4}} \\[1em] = (2)^{2 \times \dfrac{1}{4}} = (2)^{\dfrac{1}{2}} \\[1em] = \sqrt{2}. ⇒ 4 28 ÷ 4 7 = 4 7 4 28 = ( 7 28 ) 4 1 = ( 4 ) 4 1 = ( 2 ) 2 × 4 1 = ( 2 ) 2 1 = 2 .
Hence, Option 1 is the correct option.
( 25 9 ) − 3 2 \Big(\dfrac{25}{9}\Big)^{-\dfrac{3}{2}} ( 9 25 ) − 2 3 is equal to :
( 5 3 ) 3 \Big(\dfrac{5}{3}\Big)^3 ( 3 5 ) 3
( 5 3 ) 2 \Big(\dfrac{5}{3}\Big)^2 ( 3 5 ) 2
27 125 \dfrac{27}{125} 125 27
( 3 5 ) − 2 \Big(\dfrac{3}{5}\Big)^{-2} ( 5 3 ) − 2
Answer
Simplifying the expression :
⇒ ( 25 9 ) − 3 2 = [ ( 5 3 ) 2 ] − 3 2 = ( 5 3 ) − 3 = ( 3 5 ) 3 = 27 125 . \Rightarrow \Big(\dfrac{25}{9}\Big)^{-\dfrac{3}{2}} = \Big[\Big(\dfrac{5}{3}\Big)^2\Big]^{-\dfrac{3}{2}} \\[1em] = \Big(\dfrac{5}{3}\Big)^{-3} = \Big(\dfrac{3}{5}\Big)^3 \\[1em] = \dfrac{27}{125}. ⇒ ( 9 25 ) − 2 3 = [ ( 3 5 ) 2 ] − 2 3 = ( 3 5 ) − 3 = ( 5 3 ) 3 = 125 27 .
Hence, Option 3 is the correct option.
2 ÷ ( 243 ) − 1 5 2 ÷ (243)^{-\dfrac{1}{5}} 2 ÷ ( 243 ) − 5 1 is equal to :
2 ÷ 3
1 6 \dfrac{1}{6} 6 1
12
6
Answer
Simplifying the expression :
⇒ 2 ÷ ( 243 ) − 1 5 = 2 ÷ ( 3 5 ) − 1 5 = 2 ÷ 3 − 1 = 2 ÷ 1 3 = 2 × 3 = 6. \Rightarrow 2 ÷ (243)^{-\dfrac{1}{5}} = 2 ÷ (3^5)^{-\dfrac{1}{5}} \\[1em] = 2 ÷ 3^{-1} = 2 ÷ \dfrac{1}{3} \\[1em] = 2 \times 3 \\[1em] = 6. ⇒ 2 ÷ ( 243 ) − 5 1 = 2 ÷ ( 3 5 ) − 5 1 = 2 ÷ 3 − 1 = 2 ÷ 3 1 = 2 × 3 = 6.
Hence, Option 4 is the correct option.
( 0.01 ) − 1 2 (0.01)^{-\dfrac{1}{2}} ( 0.01 ) − 2 1 :
10
0.1
( 0.1 ) 1 2 (0.1)^{\frac{1}{2}} ( 0.1 ) 2 1
0.0001
Answer
Simplifying the expression :
⇒ ( 0.01 ) − 1 2 = ( 1 100 ) − 1 2 = ( 1 10 2 ) − 1 2 = ( 10 − 2 ) − 1 2 = 10 1 = 10. \Rightarrow (0.01)^{-\dfrac{1}{2}} = \Big(\dfrac{1}{100}\Big)^{-\dfrac{1}{2}} \\[1em] = \Big(\dfrac{1}{10^2}\Big)^{-\dfrac{1}{2}} = (10^{-2})^{-\dfrac{1}{2}} \\[1em] = 10^1 = 10. ⇒ ( 0.01 ) − 2 1 = ( 100 1 ) − 2 1 = ( 1 0 2 1 ) − 2 1 = ( 1 0 − 2 ) − 2 1 = 1 0 1 = 10.
Hence, Option 1 is the correct option.
3 × ( 32 ) 2 5 × 7 0 3 \times (32)^{\dfrac{2}{5}} \times 7^0 3 × ( 32 ) 5 2 × 7 0 is equal to :
0
12
1
9
Answer
Simplifying the expression :
⇒ 3 × ( 32 ) 2 5 × 7 0 = 3 × ( 2 5 ) 2 5 × 7 0 = 3 × 2 2 × 1 = 3 × 4 = 12. \Rightarrow 3 \times (32)^{\dfrac{2}{5}} \times 7^0 = 3 \times (2^5)^{\dfrac{2}{5}} \times 7^0 \\[1em] = 3 \times 2^2 \times 1 \\[1em] = 3 \times 4 \\[1em] = 12. ⇒ 3 × ( 32 ) 5 2 × 7 0 = 3 × ( 2 5 ) 5 2 × 7 0 = 3 × 2 2 × 1 = 3 × 4 = 12.
Hence, Option 2 is the correct option.
Evaluate :
3 3 × ( 243 ) − 2 3 × ( 9 ) − 1 3 3^3 \times (243)^{-\dfrac{2}{3}} \times (9)^{-\dfrac{1}{3}} 3 3 × ( 243 ) − 3 2 × ( 9 ) − 3 1
Answer
Simplifying the expression :
⇒ 3 3 × ( 3 5 ) − 2 3 × ( 3 2 ) − 1 3 = 3 3 × ( 3 ) − 10 3 × ( 3 ) − 2 3 = ( 3 ) 3 + ( − 10 3 ) + ( − 2 3 ) = ( 3 ) 9 − 10 − 2 3 = ( 3 ) − 3 3 = 3 − 1 = 1 3 . \Rightarrow 3^3 \times (3^5)^{-\dfrac{2}{3}} \times (3^2)^{-\dfrac{1}{3}} \\[1em] = 3^3 \times (3)^{-\dfrac{10}{3}} \times (3)^{-\dfrac{2}{3}} \\[1em] = (3)^{3 + \Big(-\dfrac{10}{3}\Big) + \Big(-\dfrac{2}{3}\Big)} \\[1em] = (3)^{\dfrac{9 - 10 - 2}{3}} = (3)^{\dfrac{-3}{3}} \\[1em] = 3^{-1} = \dfrac{1}{3}. ⇒ 3 3 × ( 3 5 ) − 3 2 × ( 3 2 ) − 3 1 = 3 3 × ( 3 ) − 3 10 × ( 3 ) − 3 2 = ( 3 ) 3 + ( − 3 10 ) + ( − 3 2 ) = ( 3 ) 3 9 − 10 − 2 = ( 3 ) 3 − 3 = 3 − 1 = 3 1 .
Hence, 3 3 × ( 243 ) − 2 3 × ( 9 ) − 1 3 = 1 3 3^3 \times (243)^{-\dfrac{2}{3}} \times (9)^{-\dfrac{1}{3}} = \dfrac{1}{3} 3 3 × ( 243 ) − 3 2 × ( 9 ) − 3 1 = 3 1 .
Evaluate :
5 − 4 × ( 125 ) 5 3 ÷ ( 25 ) − 1 2 5^{-4} \times (125)^{\dfrac{5}{3}} ÷ (25)^{-\dfrac{1}{2}} 5 − 4 × ( 125 ) 3 5 ÷ ( 25 ) − 2 1
Answer
Simplifying the expression :
⇒ 5 − 4 × ( 125 ) 5 3 ÷ ( 25 ) − 1 2 = 5 − 4 × ( 5 3 ) 5 3 ÷ ( 5 2 ) − 1 2 = 5 − 4 × 5 5 ÷ 5 − 1 = 5 − 4 × 5 5 ÷ 1 5 = 5 − 4 × 5 5 × 5 1 = 5 − 4 + 5 + 1 = 5 2 = 25. \Rightarrow 5^{-4} \times (125)^{\dfrac{5}{3}} ÷ (25)^{-\dfrac{1}{2}} = 5^{-4} \times (5^3)^{\dfrac{5}{3}} ÷ (5^2)^{-\dfrac{1}{2}} \\[1em] = 5^{-4} \times 5^5 ÷ 5^{-1} = 5^{-4} \times 5^5 ÷ \dfrac{1}{5} \\[1em] = 5^{-4} \times 5^5 \times 5^1 \\[1em] = 5^{-4 + 5 + 1} = 5^2 \\[1em] = 25. ⇒ 5 − 4 × ( 125 ) 3 5 ÷ ( 25 ) − 2 1 = 5 − 4 × ( 5 3 ) 3 5 ÷ ( 5 2 ) − 2 1 = 5 − 4 × 5 5 ÷ 5 − 1 = 5 − 4 × 5 5 ÷ 5 1 = 5 − 4 × 5 5 × 5 1 = 5 − 4 + 5 + 1 = 5 2 = 25.
Hence, 5 − 4 × ( 125 ) 5 3 ÷ ( 25 ) − 1 2 = 25. 5^{-4} \times (125)^{\dfrac{5}{3}} ÷ (25)^{-\dfrac{1}{2}} = 25. 5 − 4 × ( 125 ) 3 5 ÷ ( 25 ) − 2 1 = 25.
Evaluate :
( 27 125 ) 2 3 × ( 9 25 ) − 3 2 \Big(\dfrac{27}{125}\Big)^{\dfrac{2}{3}} \times \Big(\dfrac{9}{25}\Big)^{-\dfrac{3}{2}} ( 125 27 ) 3 2 × ( 25 9 ) − 2 3
Answer
Simplifying the expression :
⇒ ( 27 125 ) 2 3 × ( 9 25 ) − 3 2 = [ ( 3 5 ) 3 ] 2 3 × [ ( 3 5 ) 2 ] − 3 2 = ( 3 5 ) 2 × ( 3 5 ) − 3 = ( 3 5 ) 2 + ( − 3 ) = ( 3 5 ) − 1 = 5 3 = 1 2 3 . \Rightarrow \Big(\dfrac{27}{125}\Big)^{\dfrac{2}{3}} \times \Big(\dfrac{9}{25}\Big)^{-\dfrac{3}{2}} = \Big[\Big(\dfrac{3}{5}\Big)^3\Big]^{\dfrac{2}{3}} \times \Big[\Big(\dfrac{3}{5}\Big)^2\Big]^{-\dfrac{3}{2}} \\[1em] = \Big(\dfrac{3}{5}\Big)^2 \times \Big(\dfrac{3}{5}\Big)^{-3} = \Big(\dfrac{3}{5}\Big)^{2 + (-3)} \\[1em] = \Big(\dfrac{3}{5}\Big)^{-1} = \dfrac{5}{3} = 1\dfrac{2}{3}. ⇒ ( 125 27 ) 3 2 × ( 25 9 ) − 2 3 = [ ( 5 3 ) 3 ] 3 2 × [ ( 5 3 ) 2 ] − 2 3 = ( 5 3 ) 2 × ( 5 3 ) − 3 = ( 5 3 ) 2 + ( − 3 ) = ( 5 3 ) − 1 = 3 5 = 1 3 2 .
Hence, ( 27 125 ) 2 3 × ( 9 25 ) − 3 2 = 1 2 3 \Big(\dfrac{27}{125}\Big)^{\dfrac{2}{3}} \times \Big(\dfrac{9}{25}\Big)^{-\dfrac{3}{2}} = 1\dfrac{2}{3} ( 125 27 ) 3 2 × ( 25 9 ) − 2 3 = 1 3 2 .
Evaluate :
7 0 × ( 25 ) − 3 2 − 5 − 3 7^0 \times (25)^{-\dfrac{3}{2}} - 5^{-3} 7 0 × ( 25 ) − 2 3 − 5 − 3
Answer
Simplifying the expression :
⇒ 7 0 × ( 25 ) − 3 2 − 5 − 3 = 1 × ( 5 2 ) − 3 2 − 5 − 3 = 1 × 5 − 3 − 5 − 3 = 5 − 3 − 5 − 3 = 0. \Rightarrow 7^0 \times (25)^{-\dfrac{3}{2}} - 5^{-3} = 1 \times (5^2)^{-\dfrac{3}{2}} - 5^{-3} \\[1em] = 1 \times 5^{-3} - 5^{-3} \\[1em] = 5^{-3} - 5^{-3} \\[1em] = 0. ⇒ 7 0 × ( 25 ) − 2 3 − 5 − 3 = 1 × ( 5 2 ) − 2 3 − 5 − 3 = 1 × 5 − 3 − 5 − 3 = 5 − 3 − 5 − 3 = 0.
Hence, 7 0 × ( 25 ) − 3 2 − 5 − 3 = 0. 7^0 \times (25)^{-\dfrac{3}{2}} - 5^{-3} = 0. 7 0 × ( 25 ) − 2 3 − 5 − 3 = 0.
Evaluate :
( 16 81 ) − 3 4 × ( 49 9 ) 3 2 ÷ ( 343 216 ) 2 3 \Big(\dfrac{16}{81}\Big)^{-\dfrac{3}{4}} \times \Big(\dfrac{49}{9}\Big)^{\dfrac{3}{2}} ÷ \Big(\dfrac{343}{216}\Big)^{\dfrac{2}{3}} ( 81 16 ) − 4 3 × ( 9 49 ) 2 3 ÷ ( 216 343 ) 3 2
Answer
Simplifying the expression :
⇒ ( 16 81 ) − 3 4 × ( 49 9 ) 3 2 ÷ ( 343 216 ) 2 3 = [ ( 2 3 ) 4 ] − 3 4 × [ ( 7 3 ) 2 ] 3 2 ÷ [ ( 7 6 ) 3 ] 2 3 = ( 2 3 ) 4 × − 3 4 × ( 7 3 ) 2 × 3 2 ÷ ( 7 6 ) 3 × 2 3 = ( 2 3 ) − 3 × ( 7 3 ) 3 ÷ ( 7 6 ) 2 = ( 3 2 ) 3 × ( 7 3 ) 3 × ( 6 7 ) 2 = 3 3 × 7 3 × 6 2 2 3 × 3 3 × 7 2 = 7 × 6 2 2 3 = 252 8 = 31.5 \Rightarrow \Big(\dfrac{16}{81}\Big)^{-\dfrac{3}{4}} \times \Big(\dfrac{49}{9}\Big)^{\dfrac{3}{2}} ÷ \Big(\dfrac{343}{216}\Big)^{\dfrac{2}{3}} = \Big[\Big(\dfrac{2}{3}\Big)^4\Big]^{-\dfrac{3}{4}} \times \Big[\Big(\dfrac{7}{3}\Big)^2\Big]^{\dfrac{3}{2}} ÷ \Big[\Big(\dfrac{7}{6}\Big)^3\Big]^{\dfrac{2}{3}} \\[1em] = \Big(\dfrac{2}{3}\Big)^{4 \times -\dfrac{3}{4}} \times \Big(\dfrac{7}{3}\Big)^{2 \times \dfrac{3}{2}} ÷ \Big(\dfrac{7}{6}\Big)^{3 \times \dfrac{2}{3}} \\[1em] = \Big(\dfrac{2}{3}\Big)^{-3} \times \Big(\dfrac{7}{3}\Big)^3 ÷ \Big(\dfrac{7}{6}\Big)^2 \\[1em] = \Big(\dfrac{3}{2}\Big)^3 \times \Big(\dfrac{7}{3}\Big)^3 \times \Big(\dfrac{6}{7}\Big)^2 \\[1em] = \dfrac{3^3 \times 7^3 \times 6^2}{2^3 \times 3^3 \times 7^2} \\[1em] = \dfrac{7 \times 6^2}{2^3} \\[1em] = \dfrac{252}{8} \\[1em] = 31.5 ⇒ ( 81 16 ) − 4 3 × ( 9 49 ) 2 3 ÷ ( 216 343 ) 3 2 = [ ( 3 2 ) 4 ] − 4 3 × [ ( 3 7 ) 2 ] 2 3 ÷ [ ( 6 7 ) 3 ] 3 2 = ( 3 2 ) 4 ×− 4 3 × ( 3 7 ) 2 × 2 3 ÷ ( 6 7 ) 3 × 3 2 = ( 3 2 ) − 3 × ( 3 7 ) 3 ÷ ( 6 7 ) 2 = ( 2 3 ) 3 × ( 3 7 ) 3 × ( 7 6 ) 2 = 2 3 × 3 3 × 7 2 3 3 × 7 3 × 6 2 = 2 3 7 × 6 2 = 8 252 = 31.5
Hence, ( 16 81 ) − 3 4 × ( 49 9 ) 3 2 ÷ ( 343 216 ) 2 3 = 31.5 \Big(\dfrac{16}{81}\Big)^{-\dfrac{3}{4}} \times \Big(\dfrac{49}{9}\Big)^{\dfrac{3}{2}} ÷ \Big(\dfrac{343}{216}\Big)^{\dfrac{2}{3}} = 31.5 ( 81 16 ) − 4 3 × ( 9 49 ) 2 3 ÷ ( 216 343 ) 3 2 = 31.5
Simplify :
( 8 x 3 ÷ 125 y 3 ) 2 3 (8x^3 ÷ 125y^3)^{\dfrac{2}{3}} ( 8 x 3 ÷ 125 y 3 ) 3 2
Answer
Simplifying the expression :
⇒ ( 8 x 3 125 y 3 ) 2 3 = [ ( 2 x ) 3 ( 5 y ) 3 ] 2 3 = [ ( 2 x 5 y ) 3 ] 2 3 = ( 2 x 5 y ) 2 = 4 x 2 25 y 2 . \Rightarrow \Big(\dfrac{8x^3}{125y^3}\Big)^{\dfrac{2}{3}} =\Big[\dfrac{(2x)^3}{(5y)^3}\Big]^{\dfrac{2}{3}} \\[1em] = \Big[\Big(\dfrac{2x}{5y}\Big)^3\Big]^{\dfrac{2}{3}} = \Big(\dfrac{2x}{5y}\Big)^2 \\[1em] = \dfrac{4x^2}{25y^2}. ⇒ ( 125 y 3 8 x 3 ) 3 2 = [ ( 5 y ) 3 ( 2 x ) 3 ] 3 2 = [ ( 5 y 2 x ) 3 ] 3 2 = ( 5 y 2 x ) 2 = 25 y 2 4 x 2 .
Hence, ( 8 x 3 ÷ 125 y 3 ) 2 3 = 4 x 2 25 y 2 . (8x^3 ÷ 125y^3)^{\dfrac{2}{3}} = \dfrac{4x^2}{25y^2}. ( 8 x 3 ÷ 125 y 3 ) 3 2 = 25 y 2 4 x 2 .
Simplify :
(a + b)-1 .(a-1 + b-1 )
Answer
Simplifying the expression :
⇒ ( a + b ) − 1 ( a − 1 + b − 1 ) = 1 ( a + b ) × ( 1 a + 1 b ) = 1 ( a + b ) × ( b + a a b ) = 1 a b . \Rightarrow (a + b)^{-1}(a^{-1} + b^{-1}) = \dfrac{1}{(a + b)} \times \Big(\dfrac{1}{a} + \dfrac{1}{b}\Big) \\[1em] = \dfrac{1}{(a + b)} \times \Big(\dfrac{b + a}{ab}\Big) \\[1em] = \dfrac{1}{ab}. ⇒ ( a + b ) − 1 ( a − 1 + b − 1 ) = ( a + b ) 1 × ( a 1 + b 1 ) = ( a + b ) 1 × ( ab b + a ) = ab 1 .
Hence, ( a + b ) − 1 ( a − 1 + b − 1 ) = 1 a b (a + b)^{-1}(a^{-1} + b^{-1}) = \dfrac{1}{ab} ( a + b ) − 1 ( a − 1 + b − 1 ) = ab 1 .
Simplify :
5 n + 3 − 6 × 5 n + 1 9 × 5 n − 5 n × 2 2 \dfrac{5^{n + 3} - 6 \times 5^{n + 1}}{9 \times 5^n - 5^n \times 2^2} 9 × 5 n − 5 n × 2 2 5 n + 3 − 6 × 5 n + 1
Answer
Simplifying the expression :
⇒ 5 n + 3 − 6 × 5 n + 1 9 × 5 n − 5 n × 2 2 = 5 n .5 3 − 6 × 5 n × 5 1 5 n ( 9 − 2 2 ) = 5 n ( 5 3 − 6 × 5 ) 5 n ( 9 − 4 ) = 125 − 30 5 = 95 5 = 19. \Rightarrow \dfrac{5^{n + 3} - 6 \times 5^{n + 1}}{9 \times 5^n - 5^n \times 2^2} = \dfrac{5^n.5^3 - 6 \times 5^n \times 5^1}{5^n(9 - 2^2)} \\[1em] = \dfrac{5^n(5^3 - 6 \times 5)}{5^n(9 - 4)} = \dfrac{125 - 30}{5} = \dfrac{95}{5} \\[1em] = 19. ⇒ 9 × 5 n − 5 n × 2 2 5 n + 3 − 6 × 5 n + 1 = 5 n ( 9 − 2 2 ) 5 n . 5 3 − 6 × 5 n × 5 1 = 5 n ( 9 − 4 ) 5 n ( 5 3 − 6 × 5 ) = 5 125 − 30 = 5 95 = 19.
Hence, 5 n + 3 − 6 × 5 n + 1 9 × 5 n − 5 n × 2 2 = 19. \dfrac{5^{n + 3} - 6 \times 5^{n + 1}}{9 \times 5^n - 5^n \times 2^2} = 19. 9 × 5 n − 5 n × 2 2 5 n + 3 − 6 × 5 n + 1 = 19.
Simplify :
( 3 x 2 ) − 3 × ( x 9 ) 2 3 (3x^2)^{-3} \times (x^9)^{\dfrac{2}{3}} ( 3 x 2 ) − 3 × ( x 9 ) 3 2
Answer
Simplifying the expression :
⇒ ( 3 x 2 ) − 3 × ( x 9 ) 2 3 = ( 1 3 x 2 ) 3 × x 9 × 2 3 = 1 27 x 6 × x 6 = 1 27 . \Rightarrow (3x^2)^{-3} \times (x^9)^{\dfrac{2}{3}} = \Big(\dfrac{1}{3x^2}\Big)^3 \times x^{9 \times \dfrac{2}{3}} \\[1em] = \dfrac{1}{27x^6} \times x^6 \\[1em] = \dfrac{1}{27}. ⇒ ( 3 x 2 ) − 3 × ( x 9 ) 3 2 = ( 3 x 2 1 ) 3 × x 9 × 3 2 = 27 x 6 1 × x 6 = 27 1 .
Hence, ( 3 x 2 ) − 3 × ( x 9 ) 2 3 = 1 27 (3x^2)^{-3} \times (x^9)^{\dfrac{2}{3}} = \dfrac{1}{27} ( 3 x 2 ) − 3 × ( x 9 ) 3 2 = 27 1 .
Evaluate :
1 4 + ( 0.01 ) − 1 2 − ( 27 ) 2 3 \sqrt{\dfrac{1}{4}} + (0.01)^{-\dfrac{1}{2}} - (27)^{\dfrac{2}{3}} 4 1 + ( 0.01 ) − 2 1 − ( 27 ) 3 2
Answer
Simplifying the expression :
⇒ 1 4 + ( 0.01 ) − 1 2 − ( 27 ) 2 3 = 1 2 + ( 1 100 ) − 1 2 − ( 3 3 ) 2 3 = 1 2 + ( 1 10 2 ) − 1 2 − 3 2 = 1 2 + ( 10 − 2 ) − 1 2 − 3 3 × 2 3 = 1 2 + 10 − 2 × − 1 2 − 3 2 = 1 2 + 10 − 9 = 1 2 + 1 = 1 + 2 2 = 3 2 = 1 1 2 . \Rightarrow \sqrt{\dfrac{1}{4}} + (0.01)^{-\dfrac{1}{2}} - (27)^{\dfrac{2}{3}} = \dfrac{1}{2} + \Big(\dfrac{1}{100}\Big)^{-\dfrac{1}{2}} - (3^3)^{\dfrac{2}{3}} \\[1em] = \dfrac{1}{2} + \Big(\dfrac{1}{10^2}\Big)^{-\dfrac{1}{2}} - 3^2 = \dfrac{1}{2} + (10^{-2})^{-\dfrac{1}{2}} - 3^{3 \times \dfrac{2}{3}} \\[1em] = \dfrac{1}{2} + 10^{-2 \times -\dfrac{1}{2}} - 3^2 \\[1em] = \dfrac{1}{2} + 10 - 9 \\[1em] = \dfrac{1}{2} + 1 \\[1em] = \dfrac{1 + 2}{2} \\[1em] = \dfrac{3}{2} \\[1em] = 1\dfrac{1}{2}. ⇒ 4 1 + ( 0.01 ) − 2 1 − ( 27 ) 3 2 = 2 1 + ( 100 1 ) − 2 1 − ( 3 3 ) 3 2 = 2 1 + ( 1 0 2 1 ) − 2 1 − 3 2 = 2 1 + ( 1 0 − 2 ) − 2 1 − 3 3 × 3 2 = 2 1 + 1 0 − 2 ×− 2 1 − 3 2 = 2 1 + 10 − 9 = 2 1 + 1 = 2 1 + 2 = 2 3 = 1 2 1 .
Hence, 1 4 + ( 0.01 ) − 1 2 − ( 27 ) 2 3 = 1 1 2 . \sqrt{\dfrac{1}{4}} + (0.01)^{-\dfrac{1}{2}} - (27)^{\dfrac{2}{3}} = 1\dfrac{1}{2}. 4 1 + ( 0.01 ) − 2 1 − ( 27 ) 3 2 = 1 2 1 .
Evaluate :
( 27 8 ) 2 3 − ( 1 4 ) − 2 + 5 0 \Big(\dfrac{27}{8}\Big)^{\dfrac{2}{3}} - \Big(\dfrac{1}{4}\Big)^{-2} + 5^0 ( 8 27 ) 3 2 − ( 4 1 ) − 2 + 5 0
Answer
Simplifying the expression :
⇒ ( 27 8 ) 2 3 − ( 1 4 ) − 2 + 5 0 = [ ( 3 2 ) 3 ] 2 3 − ( 1 2 2 ) − 2 + 5 0 = ( 3 2 ) 3 × 2 3 − ( 2 2 ) 2 + 1 = ( 3 2 ) 2 − 2 4 + 1 = 9 4 − 16 + 1 = 9 − 64 + 4 4 = − 51 4 . \Rightarrow \Big(\dfrac{27}{8}\Big)^{\dfrac{2}{3}} - \Big(\dfrac{1}{4}\Big)^{-2} + 5^0 = \Big[\Big(\dfrac{3}{2}\Big)^3\Big]^{\dfrac{2}{3}} - \Big(\dfrac{1}{2^2}\Big)^{-2} + 5^0\\[1em] = \Big(\dfrac{3}{2}\Big)^{3 \times \dfrac{2}{3}} - (2^2)^2 + 1 \\[1em] = \Big(\dfrac{3}{2}\Big)^2 - 2^4 + 1 \\[1em] = \dfrac{9}{4} - 16 + 1 \\[1em] = \dfrac{9 - 64 + 4}{4} \\[1em] = -\dfrac{51}{4}. ⇒ ( 8 27 ) 3 2 − ( 4 1 ) − 2 + 5 0 = [ ( 2 3 ) 3 ] 3 2 − ( 2 2 1 ) − 2 + 5 0 = ( 2 3 ) 3 × 3 2 − ( 2 2 ) 2 + 1 = ( 2 3 ) 2 − 2 4 + 1 = 4 9 − 16 + 1 = 4 9 − 64 + 4 = − 4 51 .
Hence, ( 27 8 ) 2 3 − ( 1 4 ) − 2 + 5 0 = − 51 4 \Big(\dfrac{27}{8}\Big)^{\dfrac{2}{3}} - \Big(\dfrac{1}{4}\Big)^{-2} + 5^0 = -\dfrac{51}{4} ( 8 27 ) 3 2 − ( 4 1 ) − 2 + 5 0 = − 4 51 .
Simplify the following and express with positive index :
( 3 − 4 2 − 8 ) 1 4 \Big(\dfrac{3^{-4}}{2^{-8}}\Big)^{\dfrac{1}{4}} ( 2 − 8 3 − 4 ) 4 1
Answer
Simplifying the expression :
⇒ ( 3 − 4 2 − 8 ) 1 4 = 3 − 4 × 1 4 2 − 8 × 1 4 = 3 − 1 2 − 2 = 1 3 1 2 2 = 2 2 3 = 4 3 . \Rightarrow \Big(\dfrac{3^{-4}}{2^{-8}}\Big)^{\dfrac{1}{4}} = \dfrac{3^{-4\times \dfrac{1}{4}}}{2^{-8 \times \dfrac{1}{4}}} \\[1em] = \dfrac{3^{-1}}{2^{-2}} = \dfrac{\dfrac{1}{3}}{\dfrac{1}{2^2}} \\[1em] = \dfrac{2^2}{3} = \dfrac{4}{3}. ⇒ ( 2 − 8 3 − 4 ) 4 1 = 2 − 8 × 4 1 3 − 4 × 4 1 = 2 − 2 3 − 1 = 2 2 1 3 1 = 3 2 2 = 3 4 .
Hence, ( 3 − 4 2 − 8 ) 1 4 = 4 3 \Big(\dfrac{3^{-4}}{2^{-8}}\Big)^{\dfrac{1}{4}} = \dfrac{4}{3} ( 2 − 8 3 − 4 ) 4 1 = 3 4 .
Simplify the following and express with positive index :
( 27 − 3 9 − 3 ) 1 5 \Big(\dfrac{27^{-3}}{9^{-3}}\Big)^{\dfrac{1}{5}} ( 9 − 3 2 7 − 3 ) 5 1
Answer
Simplifying the expression :
⇒ ( 27 − 3 9 − 3 ) 1 5 = [ ( 3 3 ) − 3 ( 3 2 ) − 3 ] 1 5 = ( 3 3 × − 3 3 2 × − 3 ) 1 5 = ( 3 − 9 3 − 6 ) 1 5 = ( 3 − 9 − ( − 6 ) ) 1 5 = ( 3 − 9 + 6 ) 1 5 = ( 3 − 3 ) 1 5 = ( 3 ) − 3 5 = ( 1 3 3 ) 1 5 = 1 3 3 5 . \Rightarrow \Big(\dfrac{27^{-3}}{9^{-3}}\Big)^{\dfrac{1}{5}} = \Big[\dfrac{(3^3)^{-3}}{(3^2)^{-3}}\Big]^{\dfrac{1}{5}}\\[1em] = \Big(\dfrac{3^{3 \times -3}}{3^{2 \times -3}}\Big)^{\dfrac{1}{5}} = \Big(\dfrac{3^{-9}}{3^{-6}}\Big)^{\dfrac{1}{5}} \\[1em] = (3^{-9 - (-6)})^{\dfrac{1}{5}} = (3^{-9 + 6})^{\dfrac{1}{5}} \\[1em] = (3^{-3})^{\dfrac{1}{5}} = (3)^{-\dfrac{3}{5}} \\[1em] = \Big(\dfrac{1}{3^3}\Big)^{\dfrac{1}{5}} = \dfrac{1}{3^{\dfrac{3}{5}}}. ⇒ ( 9 − 3 2 7 − 3 ) 5 1 = [ ( 3 2 ) − 3 ( 3 3 ) − 3 ] 5 1 = ( 3 2 ×− 3 3 3 ×− 3 ) 5 1 = ( 3 − 6 3 − 9 ) 5 1 = ( 3 − 9 − ( − 6 ) ) 5 1 = ( 3 − 9 + 6 ) 5 1 = ( 3 − 3 ) 5 1 = ( 3 ) − 5 3 = ( 3 3 1 ) 5 1 = 3 5 3 1 .
Hence, ( 27 − 3 9 − 3 ) 1 5 = 1 3 3 5 \Big(\dfrac{27^{-3}}{9^{-3}}\Big)^{\dfrac{1}{5}} = \dfrac{1}{3^{\dfrac{3}{5}}} ( 9 − 3 2 7 − 3 ) 5 1 = 3 5 3 1 .
Simplify the following and express with positive index :
( 32 ) − 2 5 ÷ ( 125 ) − 2 3 (32)^{-\dfrac{2}{5}} ÷ (125)^{-\dfrac{2}{3}} ( 32 ) − 5 2 ÷ ( 125 ) − 3 2
Answer
Simplifying the expression :
⇒ ( 32 ) − 2 5 ÷ ( 125 ) − 2 3 = ( 2 5 ) − 2 5 ÷ ( 5 3 ) − 2 3 = ( 2 ) 5 × − 2 5 ÷ ( 5 ) 3 × − 2 3 = ( 2 ) − 2 ÷ 5 − 2 = 1 2 2 ÷ 1 5 2 = 1 2 2 × 5 2 = 1 4 × 25 = 25 4 = 6 1 4 . \Rightarrow (32)^{-\dfrac{2}{5}} ÷ (125)^{-\dfrac{2}{3}} = (2^5)^{-\dfrac{2}{5}} ÷ (5^3)^{-\dfrac{2}{3}} \\[1em] = (2)^{5 \times -\dfrac{2}{5}} ÷ (5)^{3 \times -\dfrac{2}{3}} \\[1em] = (2)^{-2} ÷ 5^{-2} \\[1em] = \dfrac{1}{2^2} ÷ \dfrac{1}{5^2} \\[1em] = \dfrac{1}{2^2} \times 5^2 \\[1em] = \dfrac{1}{4} \times 25 \\[1em] = \dfrac{25}{4} = 6\dfrac{1}{4}. ⇒ ( 32 ) − 5 2 ÷ ( 125 ) − 3 2 = ( 2 5 ) − 5 2 ÷ ( 5 3 ) − 3 2 = ( 2 ) 5 ×− 5 2 ÷ ( 5 ) 3 ×− 3 2 = ( 2 ) − 2 ÷ 5 − 2 = 2 2 1 ÷ 5 2 1 = 2 2 1 × 5 2 = 4 1 × 25 = 4 25 = 6 4 1 .
Hence, ( 32 ) − 2 5 ÷ ( 125 ) − 2 3 = 6 1 4 (32)^{-\dfrac{2}{5}} ÷ (125)^{-\dfrac{2}{3}} = 6\dfrac{1}{4} ( 32 ) − 5 2 ÷ ( 125 ) − 3 2 = 6 4 1 .
Simplify the following and express with positive index :
[1 - {1 - (1 - n)-1 }-1 ]-1
Answer
Simplifying the expression :
⇒ [ 1 − 1 − ( 1 − n ) − 1 − 1 ] − 1 = [ 1 − { 1 − 1 1 − n } − 1 ] − 1 = [ 1 − { 1 − n − 1 1 − n } − 1 ] − 1 = [ 1 − { − n 1 − n } − 1 ] − 1 = [ 1 − { − 1 − n n } ] − 1 = [ 1 + 1 − n n ] − 1 = [ n + 1 − n n ] − 1 = [ 1 n ] − 1 = n . \Rightarrow [1 - {1 - (1 - n)^{-1}}^{-1}]^{-1} = \Big[1 - \text{\textbraceleft}1 - \dfrac{1}{1 - n}\text{\textbraceright}^{-1}\Big]^{-1} \\[1em] = \Big[1 - \text{\textbraceleft}\dfrac{1 - n - 1}{1 - n}\text{\textbraceright}^{-1}\Big]^{-1} \\[1em] = \Big[1 - \text{\textbraceleft}\dfrac{-n}{1 - n}\text{\textbraceright}^{-1}\Big]^{-1} \\[1em] = \Big[1 - \text{\textbraceleft}-\dfrac{1 - n}{n}\text{\textbraceright}\Big]^{-1} \\[1em] = \Big[1 + \dfrac{1 - n}{n}\Big]^{-1} \\[1em] = \Big[\dfrac{n + 1 - n}{n}\Big]^{-1} \\[1em] = \Big[\dfrac{1}{n}\Big]^{-1} \\[1em] = n. ⇒ [ 1 − 1 − ( 1 − n ) − 1 − 1 ] − 1 = [ 1 − { 1 − 1 − n 1 } − 1 ] − 1 = [ 1 − { 1 − n 1 − n − 1 } − 1 ] − 1 = [ 1 − { 1 − n − n } − 1 ] − 1 = [ 1 − { − n 1 − n } ] − 1 = [ 1 + n 1 − n ] − 1 = [ n n + 1 − n ] − 1 = [ n 1 ] − 1 = n .
Hence, [ 1 − 1 − ( 1 − n ) − 1 − 1 ] − 1 = n [1 - {1 - (1 - n)^{-1}}^{-1}]^{-1} = n [ 1 − 1 − ( 1 − n ) − 1 − 1 ] − 1 = n .
If 2160 = 2a .3b .5c , find a, b and c. Hence, calculate the value of 3a × 2-b × 5-c .
Answer
Factorizing 2160, we get :
⇒ 2160 = 24 × 33 × 51
⇒ 2a .3b .5c = 24 × 33 × 51
⇒ a = 4, b = 3 and c = 1.
Substituting values of a, b and c in 3a × 2-b × 5-c , we get :
⇒ 3 4 × 2 − 3 × 5 − 1 = 81 × 1 2 3 × 1 5 = 81 × 1 8 × 1 5 = 81 40 = 2 1 40 . \Rightarrow 3^4 \times 2^{-3} \times 5^{-1} = 81 \times \dfrac{1}{2^3} \times \dfrac{1}{5} \\[1em] = 81 \times \dfrac{1}{8} \times \dfrac{1}{5} \\[1em] = \dfrac{81}{40} = 2\dfrac{1}{40}. ⇒ 3 4 × 2 − 3 × 5 − 1 = 81 × 2 3 1 × 5 1 = 81 × 8 1 × 5 1 = 40 81 = 2 40 1 .
Hence, a = 4, b = 3 and c = 1 and 3a × 2-b × 5-c = 2 1 40 2\dfrac{1}{40} 2 40 1 .
If 1960 = 2a .5b .7c , calculate the value of 2-a .7b .5-c .
Answer
Factorizing 1960, we get :
⇒ 1960 = 23 .51 .72
⇒ 2a .5b .7c = 23 .51 .72
⇒ a = 3, b = 1 and c = 2.
Substituting values of a, b and c in 2-a .7b .5-c , we get :
⇒ 2 − 3 × 7 1 × 5 − 2 = 1 2 3 × 7 × 1 5 2 = 1 8 × 7 × 1 25 = 7 200 . \Rightarrow 2^{-3} \times 7^1 \times 5^{-2} = \dfrac{1}{2^3} \times 7 \times \dfrac{1}{5^2} \\[1em] = \dfrac{1}{8} \times 7 \times \dfrac{1}{25} \\[1em] = \dfrac{7}{200}. ⇒ 2 − 3 × 7 1 × 5 − 2 = 2 3 1 × 7 × 5 2 1 = 8 1 × 7 × 25 1 = 200 7 .
Hence, 2-a .7b .5-c = 7 200 \dfrac{7}{200} 200 7 .
Simplify :
8 3 a × 2 5 × 2 2 a 4 × 2 11 a × 2 − 2 a \dfrac{8^{3a} \times 2^5 \times 2^{2a}}{4 \times 2^{11a} \times 2^{-2a}} 4 × 2 11 a × 2 − 2 a 8 3 a × 2 5 × 2 2 a
Answer
Simplifying the expression :
⇒ 8 3 a × 2 5 × 2 2 a 4 × 2 11 a × 2 − 2 a = ( 2 3 ) 3 a × 2 5 × 2 2 a 2 2 × 2 11 a × 2 − 2 a = 2 9 a × 2 5 × 2 2 a 2 2 × 2 11 a × 2 − 2 a = 2 9 a + 5 + 2 a 2 2 + 11 a + ( − 2 a ) = 2 11 a + 5 2 9 a + 2 = 2 ( 11 a + 5 ) − ( 9 a + 2 ) = 2 11 a − 9 a + 5 − 2 = 2 2 a + 3 . \Rightarrow \dfrac{8^{3a} \times 2^5 \times 2^{2a}}{4 \times 2^{11a} \times 2^{-2a}} = \dfrac{(2^3)^{3a} \times 2^5 \times 2^{2a}}{2^2 \times 2^{11a} \times 2^{-2a}} \\[1em] = \dfrac{2^{9a} \times 2^5 \times 2^{2a}}{2^2 \times 2^{11a} \times 2^{-2a}} \\[1em] = \dfrac{2^{9a + 5 + 2a}}{2^{2 + 11a + (-2a)}} \\[1em] = \dfrac{2^{11a + 5}}{2^{9a + 2}} \\[1em] = 2^{(11a + 5) - (9a + 2)} \\[1em] = 2^{11a - 9a + 5 - 2} \\[1em] = 2^{2a + 3}. ⇒ 4 × 2 11 a × 2 − 2 a 8 3 a × 2 5 × 2 2 a = 2 2 × 2 11 a × 2 − 2 a ( 2 3 ) 3 a × 2 5 × 2 2 a = 2 2 × 2 11 a × 2 − 2 a 2 9 a × 2 5 × 2 2 a = 2 2 + 11 a + ( − 2 a ) 2 9 a + 5 + 2 a = 2 9 a + 2 2 11 a + 5 = 2 ( 11 a + 5 ) − ( 9 a + 2 ) = 2 11 a − 9 a + 5 − 2 = 2 2 a + 3 .
Hence, 8 3 a × 2 5 × 2 2 a 4 × 2 11 a × 2 − 2 a = 2 2 a + 3 \dfrac{8^{3a} \times 2^5 \times 2^{2a}}{4 \times 2^{11a} \times 2^{-2a}} = 2^{2a + 3} 4 × 2 11 a × 2 − 2 a 8 3 a × 2 5 × 2 2 a = 2 2 a + 3 .
Simplify :
3 × 27 n + 1 + 9 × 3 3 n − 1 8 × 3 3 n − 5 × 27 n \dfrac{3 \times 27^{n + 1} + 9 \times 3^{3n - 1}}{8 \times 3^{3n} - 5 \times 27^n} 8 × 3 3 n − 5 × 2 7 n 3 × 2 7 n + 1 + 9 × 3 3 n − 1
Answer
Simplifying the expression
⇒ 3 × 27 n + 1 + 9 × 3 3 n − 1 8 × 3 3 n − 5 × 27 n = 3 × ( 3 3 ) n + 1 + ( 3 2 ) × 3 3 n − 1 8 × 3 3 n − 5 × ( 3 3 ) n = 3 × 3 3 ( n + 1 ) + 3 2 + 3 n − 1 8 × 3 3 n − 5 × 3 3 n = 3 1 + 3 ( n + 1 ) + 3 3 n + 1 3 3 n ( 8 − 5 ) = 3 1 + 3 n + 3 + 3 3 n + 1 3 × 3 3 n = 3 3 n + 1 .3 3 + 3 3 n + 1 3 3 n + 1 = 3 3 n + 1 ( 3 3 + 1 ) 3 3 n + 1 = 3 3 + 1 = 27 + 1 = 28. \Rightarrow \dfrac{3 \times 27^{n + 1} + 9 \times 3^{3n - 1}}{8 \times 3^{3n} - 5 \times 27^n} = \dfrac{3 \times (3^3)^{n + 1} + (3^2) \times 3^{3n - 1}}{8 \times 3^{3n} - 5 \times (3^3)^n}\\[1em] = \dfrac{3 \times 3^{3(n + 1)} + 3^{2 + 3n - 1}}{8 \times 3^{3n} - 5 \times 3^{3n}} \\[1em] = \dfrac{3^{1 + 3(n + 1)} + 3^{3n + 1}}{3^{3n}(8 - 5)} \\[1em] = \dfrac{3^{1 + 3n + 3} + 3^{3n + 1}}{3 \times 3^{3n}} \\[1em] = \dfrac{3^{3n + 1}.3^3 + 3^{3n + 1}}{3^{3n + 1}} \\[1em] = \dfrac{3^{3n + 1}(3^3 + 1)}{3^{3n + 1}} \\[1em] = 3^3 + 1 \\[1em] = 27 + 1 \\[1em] = 28. ⇒ 8 × 3 3 n − 5 × 2 7 n 3 × 2 7 n + 1 + 9 × 3 3 n − 1 = 8 × 3 3 n − 5 × ( 3 3 ) n 3 × ( 3 3 ) n + 1 + ( 3 2 ) × 3 3 n − 1 = 8 × 3 3 n − 5 × 3 3 n 3 × 3 3 ( n + 1 ) + 3 2 + 3 n − 1 = 3 3 n ( 8 − 5 ) 3 1 + 3 ( n + 1 ) + 3 3 n + 1 = 3 × 3 3 n 3 1 + 3 n + 3 + 3 3 n + 1 = 3 3 n + 1 3 3 n + 1 . 3 3 + 3 3 n + 1 = 3 3 n + 1 3 3 n + 1 ( 3 3 + 1 ) = 3 3 + 1 = 27 + 1 = 28.
Hence, 3 × 27 n + 1 + 9 × 3 3 n − 1 8 × 3 3 n − 5 × 27 n = 28 \dfrac{3 \times 27^{n + 1} + 9 \times 3^{3n - 1}}{8 \times 3^{3n} - 5 \times 27^n} = 28 8 × 3 3 n − 5 × 2 7 n 3 × 2 7 n + 1 + 9 × 3 3 n − 1 = 28 .
Show that :
( a m a − n ) m − n × ( a n a − l ) n − l × ( a l a − m ) l − m \Big(\dfrac{a^m}{a^{-n}}\Big)^{m - n} \times \Big(\dfrac{a^n}{a^{-l}}\Big)^{n - l} \times (\dfrac{a^l}{a^{-m}}\Big)^{l - m} ( a − n a m ) m − n × ( a − l a n ) n − l × ( a − m a l ) l − m = 1
Answer
Solving L.H.S. of the above equation :
⇒ ( a m a − n ) m − n × ( a n a − l ) n − l × ( a l a − m ) l − m ⇒ ( a m − ( − n ) ) m − n × ( a n − ( − l ) ) n − l × ( a l − ( − m ) ) l − m ⇒ ( a ( m + n ) ) m − n × ( a ( n + l ) ) n − l × ( a ( l + m ) ) l − m ⇒ a ( m + n ) ( m − n ) × a ( n + l ) ( n − l ) × a ( l + m ) ( l − m ) ⇒ a m 2 − n 2 × a n 2 − l 2 × a l 2 − m 2 ⇒ a m 2 − n 2 + n 2 − l 2 + l 2 − m 2 ⇒ a m 2 − m 2 − n 2 + n 2 − l 2 + l 2 ⇒ a 0 ⇒ 1. \Rightarrow \Big(\dfrac{a^m}{a^{-n}}\Big)^{m - n} \times \Big(\dfrac{a^n}{a^{-l}}\Big)^{n - l} \times (\dfrac{a^l}{a^{-m}}\Big)^{l - m} \\[1em] \Rightarrow (a^{m - (-n)})^{m - n} \times (a^{n - (-l)})^{n - l} \times (a^{l - (-m)})^{l - m} \\[1em] \Rightarrow (a^{(m + n)})^{m - n} \times (a^{(n + l)})^{n - l} \times (a^{(l + m)})^{l - m} \\[1em] \Rightarrow a^{(m + n)(m - n)} \times a^{(n + l)(n - l)} \times a^{(l + m)(l - m)} \\[1em] \Rightarrow a^{m^2 - n^2} \times a^{n^2 - l^2} \times a^{l^2 - m^2} \\[1em] \Rightarrow a^{m^2 - n^2 + n^2 - l^2 +l^2 - m^2} \\[1em] \Rightarrow a^{m^2 - m^2 - n^2 + n^2 - l^2 + l^2} \\[1em] \Rightarrow a^0 \\[1em] \Rightarrow 1. ⇒ ( a − n a m ) m − n × ( a − l a n ) n − l × ( a − m a l ) l − m ⇒ ( a m − ( − n ) ) m − n × ( a n − ( − l ) ) n − l × ( a l − ( − m ) ) l − m ⇒ ( a ( m + n ) ) m − n × ( a ( n + l ) ) n − l × ( a ( l + m ) ) l − m ⇒ a ( m + n ) ( m − n ) × a ( n + l ) ( n − l ) × a ( l + m ) ( l − m ) ⇒ a m 2 − n 2 × a n 2 − l 2 × a l 2 − m 2 ⇒ a m 2 − n 2 + n 2 − l 2 + l 2 − m 2 ⇒ a m 2 − m 2 − n 2 + n 2 − l 2 + l 2 ⇒ a 0 ⇒ 1.
Since, L.H.S. = R.H.S. = 1.
Hence, proved that ( a m a − n ) m − n × ( a n a − l ) n − l × ( a l a − m ) l − m \Big(\dfrac{a^m}{a^{-n}}\Big)^{m - n} \times \Big(\dfrac{a^n}{a^{-l}}\Big)^{n - l} \times (\dfrac{a^l}{a^{-m}}\Big)^{l - m} ( a − n a m ) m − n × ( a − l a n ) n − l × ( a − m a l ) l − m = 1.
If a = xm + n .yl ; b = xn + l .ym and c = xl + m .yn ,
prove that : am - n .bn - l .cl - m = 1
Answer
Substituting values of a, b and c in L.H.S. of equation am - n .bn - l .cl - m = 1, we get :
⇒ am - n .bn - l .cl - m = (xm + n .yl )m - n .(xn + l .ym )n - l .(xl + m .yn )l- m
= (x(m + n)(m - n) .yl(m - n) ).(x(n + l)(n - l) .ym(n - l) ).(x(l + m)(l - m) .yn(l - m) )
= (xm2 - n2 ).(xn2 - l2 ).(xl2 - m2 ).(ylm - ln ).(ymn - ml ).(ynl - nm )
= xm2 - n2 + n2 - l2 + l2 - m2 .ylm - ln + mn - ml + nl - nm
= x0 .y0
= 1.1
= 1.
Since, L.H.S. = R.H.S. = 1.
Hence, proved that am - n .bn - l .cl- m = 1.
Simplify :
( x a x b ) a 2 + a b + b 2 × ( x b x c ) b 2 + b c + c 2 × ( x c x a ) c 2 + c a + a 2 \Big(\dfrac{x^a}{x^b}\Big)^{a^2 + ab + b^2} \times \Big(\dfrac{x^b}{x^c}\Big)^{b^2 + bc + c^2} \times \Big(\dfrac{x^c}{x^a}\Big)^{c^2 + ca + a^2} ( x b x a ) a 2 + ab + b 2 × ( x c x b ) b 2 + b c + c 2 × ( x a x c ) c 2 + c a + a 2
Answer
Simplifying the expression :
⇒ ( x a x b ) a 2 + a b + b 2 × ( x b x c ) b 2 + b c + c 2 × ( x c x a ) c 2 + c a + a 2 = ( x a − b ) a 2 + a b + b 2 × ( x b − c ) b 2 + b c + c 2 × ( x c − a ) c 2 + c a + a 2 = x ( a − b ) ( a 2 + a b + b 2 ) × x ( b − c ) ( b 2 + b c + c 2 ) × x ( c − a ) ( c 2 + c a + a 2 ) = x a 3 − b 3 × x b 3 − c 3 × x c 3 − a 3 = x a 3 − b 3 + b 3 − c 3 + c 3 − a 3 = x 0 = 1. \Rightarrow \Big(\dfrac{x^a}{x^b}\Big)^{a^2 + ab + b^2} \times \Big(\dfrac{x^b}{x^c}\Big)^{b^2 + bc + c^2} \times \Big(\dfrac{x^c}{x^a}\Big)^{c^2 + ca + a^2} \\[1em] = (x^{a - b})^{a^2 + ab + b^2} \times (x^{b - c})^{b^2 + bc + c^2} \times (x^{c - a})^{c^2 + ca + a^2} \\[1em] = x^{(a - b)(a^2 + ab + b^2)} \times x^{(b - c)(b^2 + bc + c^2)} \times x^{(c - a)(c^2 + ca + a^2)} \\[1em] = x^{a^3 - b^3} \times x^{b^3 - c^3} \times x^{c^3 - a^3} \\[1em] = x^{a^3 - b^3 + b^3 - c^3 + c^3 - a^3} \\[1em] = x^0 \\[1em] = 1. ⇒ ( x b x a ) a 2 + ab + b 2 × ( x c x b ) b 2 + b c + c 2 × ( x a x c ) c 2 + c a + a 2 = ( x a − b ) a 2 + ab + b 2 × ( x b − c ) b 2 + b c + c 2 × ( x c − a ) c 2 + c a + a 2 = x ( a − b ) ( a 2 + ab + b 2 ) × x ( b − c ) ( b 2 + b c + c 2 ) × x ( c − a ) ( c 2 + c a + a 2 ) = x a 3 − b 3 × x b 3 − c 3 × x c 3 − a 3 = x a 3 − b 3 + b 3 − c 3 + c 3 − a 3 = x 0 = 1.
Hence, ( x a x b ) a 2 + a b + b 2 × ( x b x c ) b 2 + b c + c 2 × ( x c x a ) c 2 + c a + a 2 \Big(\dfrac{x^a}{x^b}\Big)^{a^2 + ab + b^2} \times \Big(\dfrac{x^b}{x^c}\Big)^{b^2 + bc + c^2} \times \Big(\dfrac{x^c}{x^a}\Big)^{c^2 + ca + a^2} ( x b x a ) a 2 + ab + b 2 × ( x c x b ) b 2 + b c + c 2 × ( x a x c ) c 2 + c a + a 2 = 1.
Simplify :
( x a x − b ) a 2 − a b + b 2 × ( x b x − c ) b 2 − b c + c 2 × ( x c x − a ) c 2 − c a + a 2 \Big(\dfrac{x^a}{x^{-b}}\Big)^{a^2 - ab + b^2} \times \Big(\dfrac{x^b}{x^{-c}}\Big)^{b^2 - bc + c^2} \times \Big(\dfrac{x^c}{x^{-a}}\Big)^{c^2 - ca + a^2} ( x − b x a ) a 2 − ab + b 2 × ( x − c x b ) b 2 − b c + c 2 × ( x − a x c ) c 2 − c a + a 2
Answer
Simplifying the expression :
⇒ ( x a x − b ) a 2 − a b + b 2 × ( x b x − c ) b 2 − b c + c 2 × ( x c x − a ) c 2 − c a + a 2 = ( x a − ( − b ) ) a 2 − a b + b 2 × ( x b − ( − c ) ) b 2 − b c + c 2 × ( x c − ( − a ) ) c 2 − c a + a 2 = x ( a + b ) ( a 2 − a b + b 2 ) × x ( b + c ) ( b 2 − b c + c 2 ) × x ( c + a ) ( c 2 − c a + a 2 ) = x a 3 + b 3 × x b 3 + c 3 × x c 3 + a 3 = x a 3 + b 3 + b 3 + c 3 + c 3 + a 3 = x 2 a 3 + 2 b 3 + 2 c 3 = x 2 ( a 3 + b 3 + c 3 ) . \Rightarrow \Big(\dfrac{x^a}{x^{-b}}\Big)^{a^2 - ab + b^2} \times \Big(\dfrac{x^b}{x^{-c}}\Big)^{b^2 - bc + c^2} \times \Big(\dfrac{x^c}{x^{-a}}\Big)^{c^2 - ca + a^2} \\[1em] = (x^{a - (-b)})^{a^2 - ab + b^2} \times (x^{b - (-c)})^{b^2 - bc + c^2} \times (x^{c - (-a)})^{c^2 - ca + a^2} \\[1em] = x^{(a + b)(a^2 - ab + b^2)} \times x^{(b + c)(b^2 - bc + c^2)} \times x^{(c + a)(c^2 - ca + a^2)} \\[1em] = x^{a^3 + b^3} \times x^{b^3 + c^3} \times x^{c^3 + a^3} \\[1em] = x^{a^3 + b^3 + b^3 + c^3 + c^3 + a^3} \\[1em] = x^{2a^3 + 2b^3 + 2c^3} \\[1em] = x^{2(a^3 + b^3 + c^3)}. ⇒ ( x − b x a ) a 2 − ab + b 2 × ( x − c x b ) b 2 − b c + c 2 × ( x − a x c ) c 2 − c a + a 2 = ( x a − ( − b ) ) a 2 − ab + b 2 × ( x b − ( − c ) ) b 2 − b c + c 2 × ( x c − ( − a ) ) c 2 − c a + a 2 = x ( a + b ) ( a 2 − ab + b 2 ) × x ( b + c ) ( b 2 − b c + c 2 ) × x ( c + a ) ( c 2 − c a + a 2 ) = x a 3 + b 3 × x b 3 + c 3 × x c 3 + a 3 = x a 3 + b 3 + b 3 + c 3 + c 3 + a 3 = x 2 a 3 + 2 b 3 + 2 c 3 = x 2 ( a 3 + b 3 + c 3 ) .
Hence, ( x a x − b ) a 2 − a b + b 2 × ( x b x − c ) b 2 − b c + c 2 × ( x c x − a ) c 2 − c a + a 2 = x 2 ( a 3 + b 3 + c 3 ) . \Big(\dfrac{x^a}{x^{-b}}\Big)^{a^2 - ab + b^2} \times \Big(\dfrac{x^b}{x^{-c}}\Big)^{b^2 - bc + c^2} \times \Big(\dfrac{x^c}{x^{-a}}\Big)^{c^2 - ca + a^2} = x^{2(a^3 + b^3 + c^3)}. ( x − b x a ) a 2 − ab + b 2 × ( x − c x b ) b 2 − b c + c 2 × ( x − a x c ) c 2 − c a + a 2 = x 2 ( a 3 + b 3 + c 3 ) .
a − 1 a − 1 + b − 1 \dfrac{a^{-1}}{a^{-1} + b^{-1}} a − 1 + b − 1 a − 1 is equal to :
b a + b \dfrac{b}{a + b} a + b b
a + b a \dfrac{a + b}{a} a a + b
a a + b \dfrac{a}{a + b} a + b a
a(a + b)
Answer
Simplifying the expression :
⇒ a − 1 a − 1 + b − 1 = 1 a 1 a + 1 b = 1 a b + a a b = a b a ( b + a ) = b a + b . \Rightarrow \dfrac{a^{-1}}{a^{-1} + b^{-1}} = \dfrac{\dfrac{1}{a}}{\dfrac{1}{a} + \dfrac{1}{b}} \\[1em] = \dfrac{\dfrac{1}{a}}{\dfrac{b + a}{ab}} \\[1em] = \dfrac{ab}{a(b + a)} \\[1em] = \dfrac{b}{a + b}. ⇒ a − 1 + b − 1 a − 1 = a 1 + b 1 a 1 = ab b + a a 1 = a ( b + a ) ab = a + b b .
Hence, Option 1 is the correct option.
If 4 2 x = 1 32 4^{2x} = \dfrac{1}{32} 4 2 x = 32 1 , the value of x is :
1.25
-1.25
1
-1
Answer
Solving, the given expression :
⇒ 4 2 x = 1 32 ⇒ ( 2 2 ) 2 x = 1 2 5 ⇒ 2 4 x = 2 − 5 ⇒ 4 x = − 5 ⇒ x = − 5 4 = − 1.25 \Rightarrow 4^{2x} = \dfrac{1}{32} \\[1em] \Rightarrow (2^2)^{2x} = \dfrac{1}{2^5} \\[1em] \Rightarrow 2^{4x} = 2^{-5} \\[1em] \Rightarrow 4x = -5 \\[1em] \Rightarrow x = -\dfrac{5}{4} = -1.25 ⇒ 4 2 x = 32 1 ⇒ ( 2 2 ) 2 x = 2 5 1 ⇒ 2 4 x = 2 − 5 ⇒ 4 x = − 5 ⇒ x = − 4 5 = − 1.25
Hence, Option 2 is the correct option.
3 x y − 1 + 2 y x − 1 \dfrac{3x}{y^{-1}} + \dfrac{2y}{x^{-1}} y − 1 3 x + x − 1 2 y is equal to :
6xy
3x2 + 2y2
5xy
6 x y \dfrac{6}{xy} x y 6
Answer
Simplifying the expression :
⇒ 3 x y − 1 + 2 y x − 1 = 3 x 1 y + 2 y 1 x = 3 x y + 2 x y = 5 x y . \Rightarrow \dfrac{3x}{y^{-1}} + \dfrac{2y}{x^{-1}} = \dfrac{3x}{\dfrac{1}{y}} + \dfrac{2y}{\dfrac{1}{x}} \\[1em] = 3xy + 2xy \\[1em] = 5xy. ⇒ y − 1 3 x + x − 1 2 y = y 1 3 x + x 1 2 y = 3 x y + 2 x y = 5 x y .
Hence, Option 3 is the correct option.
( 8 − 4 3 ÷ 2 − 2 ) \Big(8^{-\dfrac{4}{3}} ÷ 2^{-2}\Big) ( 8 − 3 4 ÷ 2 − 2 ) is equal to :
1 4 \dfrac{1}{4} 4 1
− 1 4 -\dfrac{1}{4} − 4 1
− 1 2 -\dfrac{1}{2} − 2 1
1 2 \dfrac{1}{2} 2 1
Answer
Simplifying the expression :
⇒ ( 8 − 4 3 ÷ 2 − 2 ) = [ ( 2 3 ) − 4 3 ÷ 1 2 2 ] = [ 2 − 4 ÷ 1 2 2 ] = 1 2 4 ÷ 1 2 2 = 1 2 4 × 2 2 = 1 2 2 = 1 4 . \Rightarrow \Big(8^{-\dfrac{4}{3}} ÷ 2^{-2}\Big) = \Big[(2^3)^{-\dfrac{4}{3}} ÷ \dfrac{1}{2^2}\Big] \\[1em] = \Big[2^{-4} ÷ \dfrac{1}{2^2}\Big] \\[1em] = \dfrac{1}{2^4} ÷ \dfrac{1}{2^2} \\[1em] = \dfrac{1}{2^4} \times 2^2 \\[1em] = \dfrac{1}{2^2} \\[1em] = \dfrac{1}{4}. ⇒ ( 8 − 3 4 ÷ 2 − 2 ) = [ ( 2 3 ) − 3 4 ÷ 2 2 1 ] = [ 2 − 4 ÷ 2 2 1 ] = 2 4 1 ÷ 2 2 1 = 2 4 1 × 2 2 = 2 2 1 = 4 1 .
Hence, Option 1 is the correct option.
If 82x + 5 = 1, value of x is :
− 5 2 -\dfrac{5}{2} − 2 5
5 2 \dfrac{5}{2} 2 5
2
2 5 \dfrac{2}{5} 5 2
Answer
Given,
⇒ 82x + 5 = 1
⇒ 82x + 5 = 80
⇒ 2x + 5 = 0
⇒ 2x = -5
⇒ x = − 5 2 -\dfrac{5}{2} − 2 5 .
Hence, Option 1 is the correct option.
If 3x + 1 = 9x - 2 , the value of x is :
-5
5
0
3
Answer
Given,
⇒ 3x + 1 = 9x - 2
⇒ 3x + 1 = (32 )x - 2
⇒ 3x + 1 = 32x - 4
⇒ x + 1 = 2x - 4
⇒ 2x - x = 1 + 4
⇒ x = 5.
Hence, Option 2 is the correct option.
If a b = ( b a ) 1 − 2 x \sqrt{\dfrac{a}{b}} = \Big(\dfrac{b}{a}\Big)^{1 - 2x} b a = ( a b ) 1 − 2 x , the value of x is :
3 4 \dfrac{3}{4} 4 3
3 5 \dfrac{3}{5} 5 3
− 3 4 -\dfrac{3}{4} − 4 3
− 3 5 -\dfrac{3}{5} − 5 3
Answer
Given,
⇒ a b = ( b a ) 1 − 2 x ⇒ ( a b ) 1 2 = ( b a ) 1 − 2 x ⇒ ( a b ) 1 2 = ( a b ) − ( 1 − 2 x ) ⇒ ( a b ) 1 2 = ( a b ) ( 2 x − 1 ) ⇒ 1 2 = 2 x − 1 ⇒ 2 x = 1 + 1 2 ⇒ 2 x = 2 + 1 2 ⇒ x = 3 2 × 2 ⇒ x = 3 4 . \Rightarrow \sqrt{\dfrac{a}{b}} = \Big(\dfrac{b}{a}\Big)^{1 - 2x} \\[1em] \Rightarrow \Big(\dfrac{a}{b}\Big)^{\dfrac{1}{2}} = \Big(\dfrac{b}{a}\Big)^{1 - 2x} \\[1em] \Rightarrow \Big(\dfrac{a}{b}\Big)^{\dfrac{1}{2}} = \Big(\dfrac{a}{b}\Big)^{-(1 - 2x)} \\[1em] \Rightarrow \Big(\dfrac{a}{b}\Big)^{\dfrac{1}{2}} = \Big(\dfrac{a}{b}\Big)^{(2x - 1)} \\[1em] \Rightarrow \dfrac{1}{2} = 2x - 1 \\[1em] \Rightarrow 2x = 1 + \dfrac{1}{2} \\[1em] \Rightarrow 2x = \dfrac{2 + 1}{2} \\[1em] \Rightarrow x = \dfrac{3}{2 \times 2} \\[1em] \Rightarrow x = \dfrac{3}{4}. ⇒ b a = ( a b ) 1 − 2 x ⇒ ( b a ) 2 1 = ( a b ) 1 − 2 x ⇒ ( b a ) 2 1 = ( b a ) − ( 1 − 2 x ) ⇒ ( b a ) 2 1 = ( b a ) ( 2 x − 1 ) ⇒ 2 1 = 2 x − 1 ⇒ 2 x = 1 + 2 1 ⇒ 2 x = 2 2 + 1 ⇒ x = 2 × 2 3 ⇒ x = 4 3 .
Hence, Option 1 is the correct option.
Solve for x :
22x + 1 = 8
Answer
Given,
⇒ 22x + 1 = 8
⇒ 22x + 1 = 23
⇒ 2x + 1 = 3
⇒ 2x = 3 - 1
⇒ 2x = 2
⇒ x = 2 2 \dfrac{2}{2} 2 2 = 1.
Hence, x = 1.
Solve for x :
25x - 1 = 4 × 23x + 1
Answer
Given,
⇒ 25x - 1 = 4 × 23x + 1
⇒ 25x - 1 = 22 × 23x + 1
⇒ 25x - 1 = 22 + 3x + 1
⇒ 25x - 1 = 23x + 3
⇒ 5x - 1 = 3x + 3
⇒ 5x - 3x = 3 + 1
⇒ 2x = 4
⇒ x = 4 2 \dfrac{4}{2} 2 4 = 2.
Hence, x = 2.
Solve for x :
34x + 1 = (27)x + 1
Answer
Given,
⇒ 34x + 1 = (27)x + 1
⇒ 34x + 1 = (33 )x + 1
⇒ 34x + 1 = 33(x + 1)
⇒ 34x + 1 = 33x + 3
⇒ 4x + 1 = 3x + 3
⇒ 4x - 3x = 3 - 1
⇒ x = 2.
Hence, x = 2.
Solve for x :
(49)x + 4 = 72 × (343)x + 1
Answer
Given,
⇒ (49)x + 4 = 72 × (343)x + 1
⇒ (72 )x + 4 = 72 × (73 )x + 1
⇒ 72(x + 4) = 72 × 73(x + 1)
⇒ 72x + 8 = 72 × 73x + 3
⇒ 72x + 8 = 72 + 3x + 3
⇒ 2x + 8 = 3x + 5
⇒ 3x - 2x = 8 - 5
⇒ x = 3.
Hence, x = 3.
Find x, if :
42x = 1 32 \dfrac{1}{32} 32 1
Answer
Given,
⇒ 4 2 x = 1 32 ⇒ ( 2 2 ) 2 x = 1 2 5 ⇒ 2 4 x = 2 − 5 ⇒ 4 x = − 5 ⇒ x = − 5 4 . \Rightarrow 4^{2x} = \dfrac{1}{32} \\[1em] \Rightarrow (2^2)^{2x} = \dfrac{1}{2^5} \\[1em] \Rightarrow 2^{4x} = 2^{-5} \\[1em] \Rightarrow 4x = -5 \\[1em] \Rightarrow x = -\dfrac{5}{4}. ⇒ 4 2 x = 32 1 ⇒ ( 2 2 ) 2 x = 2 5 1 ⇒ 2 4 x = 2 − 5 ⇒ 4 x = − 5 ⇒ x = − 4 5 .
Hence, x = − 5 4 -\dfrac{5}{4} − 4 5 .
Find x, if :
2 x + 3 = 16 \sqrt{2^{x + 3}} = 16 2 x + 3 = 16
Answer
Given,
⇒ 2 x + 3 = 16 \sqrt{2^{x + 3}} = 16 2 x + 3 = 16
Squaring both sides, we get :
⇒ 2x + 3 = 162
⇒ 2x + 3 = (24 )2
⇒ 2x + 3 = 28
⇒ x + 3 = 8
⇒ x = 8 - 3 = 5.
Hence, x = 5.
Find x, if :
( 3 5 ) x + 1 = 125 27 \Big(\sqrt{\dfrac{3}{5}}\Big)^{x + 1} = \dfrac{125}{27} ( 5 3 ) x + 1 = 27 125
Answer
Given,
⇒ ( 3 5 ) x + 1 = 125 27 ⇒ ( 3 5 1 2 ) x + 1 = ( 5 3 ) 3 ⇒ ( 3 5 ) x + 1 2 = ( 3 5 ) − 3 ⇒ x + 1 2 = − 3 ⇒ x + 1 = − 6 ⇒ x = − 6 − 1 = − 7. \Rightarrow \Big(\sqrt{\dfrac{3}{5}}\Big)^{x + 1} = \dfrac{125}{27} \\[1em] \Rightarrow \Big(\dfrac{3}{5}^{\dfrac{1}{2}}\Big)^{x + 1} = \Big(\dfrac{5}{3}\Big)^3 \\[1em] \Rightarrow \Big(\dfrac{3}{5}\Big)^{\dfrac{x + 1}{2}} = \Big(\dfrac{3}{5}\Big)^{-3} \\[1em] \Rightarrow \dfrac{x + 1}{2} = -3 \\[1em] \Rightarrow x + 1 = -6 \\[1em] \Rightarrow x = -6 - 1 = -7. ⇒ ( 5 3 ) x + 1 = 27 125 ⇒ ( 5 3 2 1 ) x + 1 = ( 3 5 ) 3 ⇒ ( 5 3 ) 2 x + 1 = ( 5 3 ) − 3 ⇒ 2 x + 1 = − 3 ⇒ x + 1 = − 6 ⇒ x = − 6 − 1 = − 7.
Hence, x = -7.
Find x, if :
( 2 3 3 ) x − 1 = 27 8 \Big(\sqrt[3]{\dfrac{2}{3}}\Big)^{x - 1} = \dfrac{27}{8} ( 3 3 2 ) x − 1 = 8 27
Answer
Given,
⇒ ( 2 3 3 ) x − 1 = 27 8 ⇒ ( 2 3 1 3 ) x − 1 = ( 3 2 ) 3 ⇒ ( 2 3 ) x − 1 3 = ( 2 3 ) − 3 ⇒ x − 1 3 = − 3 ⇒ x − 1 = 3 × − 3 ⇒ x − 1 = − 9 ⇒ x = − 9 + 1 = − 8. \Rightarrow \Big(\sqrt[3]{\dfrac{2}{3}}\Big)^{x - 1} = \dfrac{27}{8} \\[1em] \Rightarrow \Big(\dfrac{2}{3}^{\dfrac{1}{3}}\Big)^{x - 1} = \Big(\dfrac{3}{2}\Big)^3 \\[1em] \Rightarrow \Big(\dfrac{2}{3}\Big)^{\dfrac{x - 1}{3}} = \Big(\dfrac{2}{3}\Big)^{-3} \\[1em] \Rightarrow \dfrac{x - 1}{3} = -3 \\[1em] \Rightarrow x - 1 = 3 \times -3 \\[1em] \Rightarrow x - 1 = -9 \\[1em] \Rightarrow x = -9 + 1 = -8. ⇒ ( 3 3 2 ) x − 1 = 8 27 ⇒ ( 3 2 3 1 ) x − 1 = ( 2 3 ) 3 ⇒ ( 3 2 ) 3 x − 1 = ( 3 2 ) − 3 ⇒ 3 x − 1 = − 3 ⇒ x − 1 = 3 × − 3 ⇒ x − 1 = − 9 ⇒ x = − 9 + 1 = − 8.
Hence, x = -8.
Solve :
4x - 2 - 2x + 1 = 0
Answer
Given,
⇒ 4x - 2 - 2x + 1 = 0
⇒ (22 )x - 2 - 2x + 1 = 0
⇒ 22(x - 2) = 2x + 1
⇒ 22x - 4 = 2x + 1
⇒ 2x - 4 = x + 1
⇒ 2x - x = 1 + 4
⇒ x = 5.
Hence, x = 5.
Solve :
3x2 : 3x = 9 : 1
Answer
Given,
⇒ 3x2 : 3x = 9 : 1
⇒ 3 x 2 3 x = 9 1 ⇒ 3 x 2 3 x = 3 2 3 0 ⇒ 3 x 2 − x = 3 2 − 0 ⇒ x 2 − x = 2 − 0 ⇒ x 2 − x = 2 ⇒ x 2 − x − 2 = 0 ⇒ x 2 − 2 x + x − 2 = 0 ⇒ x ( x − 2 ) + 1 ( x − 2 ) = 0 ⇒ ( x + 1 ) ( x − 2 ) = 0 ⇒ x + 1 = 0 or x − 2 = 0 ⇒ x = − 1 or x = 2. \Rightarrow \dfrac{3^{x^2}}{3^x} = \dfrac{9}{1} \\[1em] \Rightarrow \dfrac{3^{x^2}}{3^x} = \dfrac{3^2}{3^0} \\[1em] \Rightarrow 3^{x^2 - x} = 3^{2- 0} \\[1em] \Rightarrow x^2 - x = 2 - 0 \\[1em] \Rightarrow x^2 - x = 2 \\[1em] \Rightarrow x^2 - x - 2 = 0 \\[1em] \Rightarrow x^2 - 2x + x - 2 = 0 \\[1em] \Rightarrow x(x - 2) + 1(x - 2) = 0 \\[1em] \Rightarrow (x + 1)(x - 2) = 0 \\[1em] \Rightarrow x + 1 = 0 \text{ or } x - 2 = 0 \\[1em] \Rightarrow x = -1 \text{ or } x = 2. ⇒ 3 x 3 x 2 = 1 9 ⇒ 3 x 3 x 2 = 3 0 3 2 ⇒ 3 x 2 − x = 3 2 − 0 ⇒ x 2 − x = 2 − 0 ⇒ x 2 − x = 2 ⇒ x 2 − x − 2 = 0 ⇒ x 2 − 2 x + x − 2 = 0 ⇒ x ( x − 2 ) + 1 ( x − 2 ) = 0 ⇒ ( x + 1 ) ( x − 2 ) = 0 ⇒ x + 1 = 0 or x − 2 = 0 ⇒ x = − 1 or x = 2.
Hence, x = -1 or x = 2.
Solve :
8 × 22x + 4 × 2x + 1 = 1 + 2x
Answer
Given,
⇒ 8 × 22x + 4 × 2x + 1 = 1 + 2x
⇒ 8 × 2(x)(2) + 4 × 2x .21 = 1 + 2x
Substituting 2x = a, in above equation, we get :
⇒ 8 × a2 + 4a × 2 = 1 + a
⇒ 8a2 + 8a = 1 + a
⇒ 8a2 + 8a - a - 1 = 0
⇒ 8a(a + 1) - 1(a + 1) = 0
⇒ (8a - 1)(a + 1) = 0
⇒ 8a - 1 = 0 or a + 1 = 0
⇒ 8a = 1 or a = -1
a cannot be negative as 2x , for any value of x is greater than 0.
⇒ 8(2x ) = 1
⇒ 2x = 1 8 \dfrac{1}{8} 8 1
⇒ 2 x = 1 2 3 2^x = \dfrac{1}{2^3} 2 x = 2 3 1
⇒ 2x = 2-3
⇒ x = -3.
Hence, x = -3.
Solve :
22x + 2x + 2 - 4 × 23 = 0
Answer
Given,
⇒ 22x + 2x + 2 - 4 × 23 = 0
⇒ 2(x)(2) + 2x .22 - 4 × 8 = 0
Substituting 2x = a, we get :
⇒ a2 + 4a - 32 = 0
⇒ a2 + 8a - 4a - 32 = 0
⇒ a(a + 8) - 4(a + 8) = 0
⇒ (a - 4)(a + 8) = 0
⇒ a - 4 = 0 or a + 8 = 0
⇒ a = 4 or a = -8
a cannot be negative as 2x , for any value of x is greater than 0.
⇒ a = 4
⇒ 2x = 4
⇒ 2x = 22
⇒ x = 2.
Hence, x = 2.
Solve :
( 3 ) x − 3 = ( 3 4 ) x + 1 (\sqrt{3})^{x - 3} = (\sqrt[4]{3})^{x + 1} ( 3 ) x − 3 = ( 4 3 ) x + 1
Answer
Given,
⇒ ( 3 ) x − 3 = ( 3 4 ) x + 1 ⇒ ( 3 1 2 ) x − 3 = ( 3 1 4 ) x + 1 ⇒ 3 x − 3 2 = 3 x + 1 4 ⇒ x − 3 2 = x + 1 4 ⇒ 4 ( x − 3 ) = 2 ( x + 1 ) ⇒ 4 x − 12 = 2 x + 2 ⇒ 4 x − 2 x = 2 + 12 ⇒ 2 x = 14 ⇒ x = 14 2 = 7. \Rightarrow (\sqrt{3})^{x - 3} = (\sqrt[4]{3})^{x + 1} \\[1em] \Rightarrow (3^{\dfrac{1}{2}})^{x - 3} = (3^{\dfrac{1}{4}})^{x + 1} \\[1em] \Rightarrow 3^{\dfrac{x - 3}{2}} = 3^{\dfrac{x + 1}{4}} \\[1em] \Rightarrow \dfrac{x - 3}{2} = \dfrac{x + 1}{4}\\[1em] \Rightarrow 4(x - 3) = 2(x + 1) \\[1em] \Rightarrow 4x - 12 = 2x + 2 \\[1em] \Rightarrow 4x - 2x = 2 + 12 \\[1em] \Rightarrow 2x = 14 \\[1em] \Rightarrow x = \dfrac{14}{2} = 7. ⇒ ( 3 ) x − 3 = ( 4 3 ) x + 1 ⇒ ( 3 2 1 ) x − 3 = ( 3 4 1 ) x + 1 ⇒ 3 2 x − 3 = 3 4 x + 1 ⇒ 2 x − 3 = 4 x + 1 ⇒ 4 ( x − 3 ) = 2 ( x + 1 ) ⇒ 4 x − 12 = 2 x + 2 ⇒ 4 x − 2 x = 2 + 12 ⇒ 2 x = 14 ⇒ x = 2 14 = 7.
Hence, x = 7.
Find the values of m and n if :
42m = ( 16 3 ) − 6 n = ( 8 ) 2 (\sqrt[3]{16})^{-\dfrac{6}{n}} = (\sqrt{8})^2 ( 3 16 ) − n 6 = ( 8 ) 2
Answer
Given,
42m = ( 16 3 ) − 6 n = ( 8 ) 2 (\sqrt[3]{16})^{-\dfrac{6}{n}} = (\sqrt{8})^2 ( 3 16 ) − n 6 = ( 8 ) 2
Considering,
⇒ 4 2 m = ( 8 ) 2 ⇒ ( 2 2 ) 2 m = ( 8 ) 2 ⇒ 2 4 m = 8 ⇒ 2 4 m = 2 3 ⇒ 4 m = 3 ⇒ m = 3 4 . \Rightarrow 4^{2m} = (\sqrt{8})^2 \\[1em] \Rightarrow (2^2)^{2m} = (\sqrt{8})^2 \\[1em] \Rightarrow 2^{4m} = 8 \\[1em] \Rightarrow 2^{4m} = 2^3 \\[1em] \Rightarrow 4m = 3 \\[1em] \Rightarrow m = \dfrac{3}{4}. ⇒ 4 2 m = ( 8 ) 2 ⇒ ( 2 2 ) 2 m = ( 8 ) 2 ⇒ 2 4 m = 8 ⇒ 2 4 m = 2 3 ⇒ 4 m = 3 ⇒ m = 4 3 .
Considering,
⇒ ( 16 3 ) − 6 n = ( 8 ) 2 ⇒ ( 16 ) 1 3 × ( − 6 n ) = 8 ⇒ ( 16 ) − 2 n = 8 ⇒ ( 2 4 ) − 2 n = 2 3 ⇒ ( 2 ) 4 × − 2 n = 2 3 ⇒ ( 2 ) − 8 n = 2 3 ⇒ − 8 n = 3 ⇒ n = − 8 3 . \Rightarrow (\sqrt[3]{16})^{-\dfrac{6}{n}} = (\sqrt{8})^2 \\[1em] \Rightarrow (16)^{\dfrac{1}{3} \times \Big(-\dfrac{6}{n}\Big)} = 8 \\[1em] \Rightarrow (16)^{-\dfrac{2}{n}} = 8 \\[1em] \Rightarrow (2^4)^{-\dfrac{2}{n}} = 2^3 \\[1em] \Rightarrow (2)^{4 \times -\dfrac{2}{n}} = 2^3 \\[1em] \Rightarrow (2)^{-\dfrac{8}{n}} = 2^3 \\[1em] \Rightarrow -\dfrac{8}{n} = 3 \\[1em] \Rightarrow n = -\dfrac{8}{3}. ⇒ ( 3 16 ) − n 6 = ( 8 ) 2 ⇒ ( 16 ) 3 1 × ( − n 6 ) = 8 ⇒ ( 16 ) − n 2 = 8 ⇒ ( 2 4 ) − n 2 = 2 3 ⇒ ( 2 ) 4 ×− n 2 = 2 3 ⇒ ( 2 ) − n 8 = 2 3 ⇒ − n 8 = 3 ⇒ n = − 3 8 .
Hence, m = 3 4 and n = − 8 3 m = \dfrac{3}{4} \text{ and } n = -\dfrac{8}{3} m = 4 3 and n = − 3 8 .
Solve for x and y, if :
( 32 ) x ÷ 2 y + 1 = 1 and 8 y − 16 4 − x 2 = 0 (\sqrt{32})^x ÷ 2^{y + 1} = 1 \text{ and } 8^y - 16^{4 - \dfrac{x}{2}} = 0 ( 32 ) x ÷ 2 y + 1 = 1 and 8 y − 1 6 4 − 2 x = 0
Answer
Given,
⇒ ( 32 ) x ÷ 2 y + 1 = 1 ⇒ ( 32 ) x 2 y + 1 = 1 ⇒ ( 2 5 ) x 2 y + 1 = 1 ⇒ [ ( 2 5 ) 1 2 ] x = 2 y + 1 ⇒ 2 5 × 1 2 × x = 2 y + 1 ⇒ 5 x 2 = y + 1 ⇒ 5 x = 2 y + 2 ⇒ x = 2 y + 2 5 ......(1) \Rightarrow (\sqrt{32})^x ÷ 2^{y + 1} = 1 \\[1em] \Rightarrow \dfrac{(\sqrt{32})^x}{2^{y + 1}} = 1 \\[1em] \Rightarrow \dfrac{(\sqrt{2^5})^x}{2^{y + 1}} = 1 \\[1em] \Rightarrow [(2^5)^{\dfrac{1}{2}}]^x = 2^{y + 1} \\[1em] \Rightarrow 2^{5 \times \dfrac{1}{2} \times x} = 2^{y + 1} \\[1em] \Rightarrow \dfrac{5x}{2} = y + 1 \\[1em] \Rightarrow 5x = 2y + 2 \\[1em] \Rightarrow x = \dfrac{2y + 2}{5} \text{ ......(1)} ⇒ ( 32 ) x ÷ 2 y + 1 = 1 ⇒ 2 y + 1 ( 32 ) x = 1 ⇒ 2 y + 1 ( 2 5 ) x = 1 ⇒ [( 2 5 ) 2 1 ] x = 2 y + 1 ⇒ 2 5 × 2 1 × x = 2 y + 1 ⇒ 2 5 x = y + 1 ⇒ 5 x = 2 y + 2 ⇒ x = 5 2 y + 2 ......(1)
Given,
⇒ 8 y − 16 4 − x 2 = 0 ⇒ 8 y = 16 4 − x 2 ⇒ ( 2 3 ) y = ( 2 4 ) 4 − x 2 ⇒ 2 3 y = ( 2 ) 4 ( 4 − x 2 ) ⇒ 2 3 y = 2 16 − 2 x ⇒ 3 y = 16 − 2 x ⇒ 2 x = 16 − 3 y ........(2) \Rightarrow 8^y - 16^{4 - \dfrac{x}{2}} = 0 \\[1em] \Rightarrow 8^y = 16^{4 - \dfrac{x}{2}} \\[1em] \Rightarrow (2^3)^y = (2^4)^{4 - \dfrac{x}{2}} \\[1em] \Rightarrow 2^{3y} = (2)^{4\Big(4 - \dfrac{x}{2}\Big)} \\[1em] \Rightarrow 2^{3y} = 2^{16 - 2x} \\[1em] \Rightarrow 3y = 16 - 2x \\[1em] \Rightarrow 2x = 16 - 3y \text{ ........(2)} ⇒ 8 y − 1 6 4 − 2 x = 0 ⇒ 8 y = 1 6 4 − 2 x ⇒ ( 2 3 ) y = ( 2 4 ) 4 − 2 x ⇒ 2 3 y = ( 2 ) 4 ( 4 − 2 x ) ⇒ 2 3 y = 2 16 − 2 x ⇒ 3 y = 16 − 2 x ⇒ 2 x = 16 − 3 y ........(2)
Substituting value of x from equation (1) in equation (2), we get :
⇒ 2 ( 2 y + 2 5 ) = 16 − 3 y ⇒ 4 y + 4 5 = 16 − 3 y ⇒ 4 y + 4 = 5 ( 16 − 3 y ) ⇒ 4 y + 4 = 80 − 15 y ⇒ 4 y + 15 y = 80 − 4 ⇒ 19 y = 76 ⇒ y = 76 19 = 4. \Rightarrow 2\Big(\dfrac{2y + 2}{5}\Big) = 16 - 3y \\[1em] \Rightarrow \dfrac{4y + 4}{5} = 16 - 3y \\[1em] \Rightarrow 4y + 4 = 5(16 - 3y) \\[1em] \Rightarrow 4y + 4 = 80 - 15y \\[1em] \Rightarrow 4y + 15y = 80 - 4 \\[1em] \Rightarrow 19y = 76 \\[1em] \Rightarrow y = \dfrac{76}{19} = 4. ⇒ 2 ( 5 2 y + 2 ) = 16 − 3 y ⇒ 5 4 y + 4 = 16 − 3 y ⇒ 4 y + 4 = 5 ( 16 − 3 y ) ⇒ 4 y + 4 = 80 − 15 y ⇒ 4 y + 15 y = 80 − 4 ⇒ 19 y = 76 ⇒ y = 19 76 = 4.
Substituting value of y in equation (1), we get :
⇒ x = 2 y + 2 5 = 2 × 4 + 2 5 = 8 + 2 5 = 10 5 = 2. \Rightarrow x = \dfrac{2y + 2}{5} = \dfrac{2 \times 4 + 2}{5} \\[1em] = \dfrac{8 + 2}{5} \\[1em] = \dfrac{10}{5} = 2. ⇒ x = 5 2 y + 2 = 5 2 × 4 + 2 = 5 8 + 2 = 5 10 = 2.
Hence, x = 2 and y = 4.
Prove that :
( x a x b ) a + b − c ( x b x c ) b + c − a ( x c x a ) c + a − b \Big(\dfrac{x^a}{x^b}\Big)^{a + b - c} \Big(\dfrac{x^b}{x^c}\Big)^{b + c - a} \Big(\dfrac{x^c}{x^a}\Big)^{c + a - b} ( x b x a ) a + b − c ( x c x b ) b + c − a ( x a x c ) c + a − b = 1
Answer
Solving L.H.S. of the given equation :
⇒ ( x a x b ) a + b − c ( x b x c ) b + c − a ( x c x a ) c + a − b = ( x a − b ) a + b − c . ( x b − c ) b + c − a . ( x c − a ) c + a − b = x ( a − b ) ( a + b − c ) . x ( b − c ) ( b + c − a ) . x ( c − a ) ( c + a − b ) = x a 2 + a b − a c − a b − b 2 + b c . x b 2 + b c − a b − b c − c 2 + a c . x c 2 + a c − b c − a c − a 2 + a b = x a 2 − b 2 − a c + b c . x b 2 − c 2 − a b + a c . x c 2 − a 2 − b c + a b = x a 2 − b 2 − a c + b c + b 2 − c 2 − a b + a c + c 2 − a 2 − b c + a b = x a 2 − a 2 − b 2 + b 2 − c 2 + c 2 − a c + a c + b c − b c − a b + a b = x 0 = 1. \Rightarrow \Big(\dfrac{x^a}{x^b}\Big)^{a + b - c} \Big(\dfrac{x^b}{x^c}\Big)^{b + c - a} \Big(\dfrac{x^c}{x^a}\Big)^{c + a - b} \\[1em] = (x^{a - b})^{a + b - c}.(x^{b - c})^{b + c - a}.(x^{c - a})^{c + a - b} \\[1em] = x^{(a - b)(a + b - c)}.x^{(b - c)(b + c - a)}.x^{(c - a)(c + a - b)} \\[1em] = x^{a^2 + ab - ac - ab - b^2 + bc}.x^{b^2 + bc - ab - bc - c^2 + ac}.x^{c^2 + ac - bc - ac - a^2 + ab} \\[1em] = x^{a^2 - b^2 - ac + bc}.x^{b^2 - c^2 - ab + ac}.x^{c^2 - a^2 - bc + ab} \\[1em] = x^{a^2 - b^2 - ac + bc + b^2 - c^2 - ab + ac + c^2 - a^2 - bc + ab} \\[1em] = x^{a^2 - a^2 - b^2 + b^2 - c^2 + c^2 - ac + ac + bc - bc - ab + ab} \\[1em] = x^0 \\[1em] = 1. ⇒ ( x b x a ) a + b − c ( x c x b ) b + c − a ( x a x c ) c + a − b = ( x a − b ) a + b − c . ( x b − c ) b + c − a . ( x c − a ) c + a − b = x ( a − b ) ( a + b − c ) . x ( b − c ) ( b + c − a ) . x ( c − a ) ( c + a − b ) = x a 2 + ab − a c − ab − b 2 + b c . x b 2 + b c − ab − b c − c 2 + a c . x c 2 + a c − b c − a c − a 2 + ab = x a 2 − b 2 − a c + b c . x b 2 − c 2 − ab + a c . x c 2 − a 2 − b c + ab = x a 2 − b 2 − a c + b c + b 2 − c 2 − ab + a c + c 2 − a 2 − b c + ab = x a 2 − a 2 − b 2 + b 2 − c 2 + c 2 − a c + a c + b c − b c − ab + ab = x 0 = 1.
Since, L.H.S. = R.H.S. = 1.
Hence, proved that ( x a x b ) a + b − c ( x b x c ) b + c − a ( x c x a ) c + a − b \Big(\dfrac{x^a}{x^b}\Big)^{a + b - c} \Big(\dfrac{x^b}{x^c}\Big)^{b + c - a} \Big(\dfrac{x^c}{x^a}\Big)^{c + a - b} ( x b x a ) a + b − c ( x c x b ) b + c − a ( x a x c ) c + a − b = 1.
Prove that :
x a ( b − c ) x b ( a − c ) ÷ ( x b x a ) c \dfrac{x^{a(b - c)}}{x^{b(a - c)}} ÷ \Big(\dfrac{x^b}{x^a}\Big)^c x b ( a − c ) x a ( b − c ) ÷ ( x a x b ) c = 1
Answer
Solving L.H.S. of the given equation :
⇒ x a ( b − c ) x b ( a − c ) ÷ ( x b x a ) c = x a b − a c x a b − b c ÷ x b c x a c = x a b − a c − ( a b − b c ) ÷ x b c − a c = x a b − a b − a c + b c ÷ x b c − a c = x b c − a c ÷ x b c − a c = x b c − a c x b c − a c = 1. \Rightarrow \dfrac{x^{a(b - c)}}{x^{b(a - c)}} ÷ \Big(\dfrac{x^b}{x^a}\Big)^c = \dfrac{x^{ab - ac}}{x^{ab - bc}} ÷ \dfrac{x^{bc}}{x^{ac}} \\[1em] = x^{ab - ac - (ab - bc)} ÷ x^{bc - ac} \\[1em] = x^{ab - ab - ac + bc} ÷ x^{bc - ac} \\[1em] = x^{bc - ac} ÷ x^{bc - ac} \\[1em] = \dfrac{x^{bc - ac}}{x^{bc - ac}} \\[1em] = 1. ⇒ x b ( a − c ) x a ( b − c ) ÷ ( x a x b ) c = x ab − b c x ab − a c ÷ x a c x b c = x ab − a c − ( ab − b c ) ÷ x b c − a c = x ab − ab − a c + b c ÷ x b c − a c = x b c − a c ÷ x b c − a c = x b c − a c x b c − a c = 1.
Since, L.H.S. = R.H.S. = 1.
Hence, proved that x a ( b − c ) x b ( a − c ) ÷ ( x b x a ) c = 1 \dfrac{x^{a(b - c)}}{x^{b(a - c)}} ÷ \Big(\dfrac{x^b}{x^a}\Big)^c = 1 x b ( a − c ) x a ( b − c ) ÷ ( x a x b ) c = 1 .
If ax = b, by = c and cz = a, prove that :
xyz = 1.
Answer
Given,
⇒ a = cz .......(1)
⇒ c = by .......(2)
⇒ b = ax ........(3)
Substituting value of c from equation (2) in (1), we get :
⇒ a = (by )z
⇒ a = byz
Substituting value of b from equation (3) in above equation, we get :
⇒ a = (ax )yz
⇒ a = axyz
⇒ xyz = 1.
Hence, proved that xyz = 1.
If ax = by = cz and b2 = ac, prove that :
y = 2 x z x + z \dfrac{2xz}{x + z} x + z 2 x z .
Answer
Given,
⇒ ax = by = cz = k (let)
⇒ ax = k
⇒ a = k 1 x k^{\dfrac{1}{x}} k x 1 ........(1)
⇒ by = k
⇒ b = k 1 y k^{\dfrac{1}{y}} k y 1 ........(2)
⇒ cz = k
⇒ c = k 1 z k^{\dfrac{1}{z}} k z 1 ........(3)
Given,
⇒ b2 = ac
Substituting values of a, b and c in above equation, we get :
⇒ ( k 1 y ) 2 = k 1 x × k 1 z ⇒ k 2 y = k 1 x + 1 z ⇒ 2 y = 1 x + 1 z ⇒ 2 y = z + x x z ⇒ y = 2 x z x + z . \Rightarrow (k^{\dfrac{1}{y}})^2 = k^{\dfrac{1}{x}} \times k^{\dfrac{1}{z}} \\[1em] \Rightarrow k^{\dfrac{2}{y}} = k^{\dfrac{1}{x} + \dfrac{1}{z}} \\[1em] \Rightarrow \dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z} \\[1em] \Rightarrow \dfrac{2}{y} = \dfrac{z + x}{xz} \\[1em] \Rightarrow y = \dfrac{2xz}{x + z}. ⇒ ( k y 1 ) 2 = k x 1 × k z 1 ⇒ k y 2 = k x 1 + z 1 ⇒ y 2 = x 1 + z 1 ⇒ y 2 = x z z + x ⇒ y = x + z 2 x z .
Hence, proved that y = 2 x z x + z . y = \dfrac{2xz}{x + z}. y = x + z 2 x z .
If 5-p = 4-q = 20r , show that :
1 p + 1 q + 1 r = 0 \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{r} = 0 p 1 + q 1 + r 1 = 0 .
Answer
Given,
⇒ 5-p = 4-q = 20r = k (let)
⇒ 5-p = k
⇒ 5 = k − 1 p k^{-\dfrac{1}{p}} k − p 1 .......(1)
⇒ 4-q = k
⇒ 4 = k − 1 q k^{-\dfrac{1}{q}} k − q 1 ......(2)
⇒ 20r = k
⇒ 20 = k 1 r k^{\dfrac{1}{r}} k r 1 ............(3)
We know that,
⇒ 5 × 4 = 20
From equations (1), (2) and (3), we get :
⇒ k − 1 p × k − 1 q = k 1 r ⇒ k − 1 p + ( − 1 q ) = k 1 r ⇒ k − 1 p − 1 q = k 1 r ⇒ − 1 p − 1 q = 1 r ⇒ 1 p + 1 q + 1 r = 0. \Rightarrow k^{-\dfrac{1}{p}} \times k^{-\dfrac{1}{q}} = k^{\dfrac{1}{r}} \\[1em] \Rightarrow k^{-\dfrac{1}{p} + \Big(-\dfrac{1}{q}\Big)} = k^{\dfrac{1}{r}} \\[1em] \Rightarrow k^{-\dfrac{1}{p} - \dfrac{1}{q}} = k^{\dfrac{1}{r}} \\[1em] \Rightarrow -\dfrac{1}{p} - \dfrac{1}{q} = \dfrac{1}{r} \\[1em] \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{r} = 0. ⇒ k − p 1 × k − q 1 = k r 1 ⇒ k − p 1 + ( − q 1 ) = k r 1 ⇒ k − p 1 − q 1 = k r 1 ⇒ − p 1 − q 1 = r 1 ⇒ p 1 + q 1 + r 1 = 0.
Hence, proved that 1 p + 1 q + 1 r = 0. \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{r} = 0. p 1 + q 1 + r 1 = 0. .
If m ≠ n and (m + n)-1 (m-1 + n-1 ) = mx ny ;
show that : x + y + 2 = 0
Answer
Given,
⇒ ( m + n ) − 1 ( m − 1 + n − 1 ) = m x n y ⇒ 1 ( m + n ) × ( 1 m + 1 n ) = m x n y ⇒ 1 ( m + n ) × ( n + m m n ) = m x n y ⇒ 1 m n = m x n y ⇒ m − 1 n − 1 = m x n y ⇒ x = − 1 and y = − 1. \Rightarrow (m + n)^{-1}(m^{-1} + n^{-1}) = m^xn^y \\[1em] \Rightarrow \dfrac{1}{(m + n)} \times \Big(\dfrac{1}{m} + \dfrac{1}{n}\Big) = m^xn^y \\[1em] \Rightarrow \dfrac{1}{(m + n)} \times \Big(\dfrac{n + m}{mn}\Big) = m^xn^y \\[1em] \Rightarrow \dfrac{1}{mn} = m^xn^y \\[1em] \Rightarrow m^{-1}n^{-1} = m^xn^y \\[1em] \Rightarrow x = -1 \text{ and } y = -1. ⇒ ( m + n ) − 1 ( m − 1 + n − 1 ) = m x n y ⇒ ( m + n ) 1 × ( m 1 + n 1 ) = m x n y ⇒ ( m + n ) 1 × ( mn n + m ) = m x n y ⇒ mn 1 = m x n y ⇒ m − 1 n − 1 = m x n y ⇒ x = − 1 and y = − 1.
Substituting value in L.H.S. of equation x + y + 2 = 0, we get :
⇒ x + y + 2 = (-1) + (-1) + 2 = -2 + 2 = 0.
Since, L.H.S. = R.H.S. = 0.
Hence, proved that x + y + 2 = 0.
If 5x + 1 = 25x - 2 ; find the value of :
3x - 3 × 23 - x .
Answer
Given,
⇒ 5x + 1 = 25x - 2
⇒ 5x + 1 = (52 )x - 2
⇒ 5x + 1 = 52(x - 2)
⇒ x + 1 = 2(x - 2)
⇒ x + 1 = 2x - 4
⇒ 2x - x = 1 + 4
⇒ x = 5.
Substituting value of x in 3x - 3 × 23 - x , we get :
⇒ 3x - 3 × 23 - x = 35 - 3 × 23 - 5
= 32 × 2(-2)
= 9 × 1 2 2 = 9 4 = 2 1 4 9 \times \dfrac{1}{2^2} = \dfrac{9}{4} = 2\dfrac{1}{4} 9 × 2 2 1 = 4 9 = 2 4 1 .
Hence, 3x - 3 × 23 - x = 2 1 4 2\dfrac{1}{4} 2 4 1 .
If 4x + 3 = 112 + 8 × 4x ; find (18x)3x .
Answer
Given,
⇒ 4x + 3 = 112 + 8 × 4x
⇒ 4x .43 = 8(14 + 4x )
⇒ 64.4x = 8(14 + 4x )
⇒ 64.4 x 8 \dfrac{64.4^x}{8} 8 64. 4 x = 14 + 4x
⇒ 8.4x = 14 + 4x
⇒ 8.4x - 4x = 14
⇒ 4x (8 - 1) = 14
⇒ 7.4x = 14
⇒ 4x = 14 7 \dfrac{14}{7} 7 14
⇒ (22 )x = 2
⇒ 22x = 21
⇒ 2x = 1
⇒ x = 1 2 \dfrac{1}{2} 2 1 .
Substituting value of x in (18x)3x , we get :
⇒ ( 18 x ) 3 x = ( 18 × 1 2 ) 3 × 1 2 = 9 3 2 = ( 3 2 ) 3 2 = 3 2 × 3 2 = 3 3 = 27. \Rightarrow (18x)^{3x} = \Big(18 \times \dfrac{1}{2}\Big)^{3 \times \dfrac{1}{2}} \\[1em] = 9^{\dfrac{3}{2}} \\[1em] = (3^2)^{\dfrac{3}{2}} \\[1em] = 3^{2 \times \dfrac{3}{2}} \\[1em] = 3^3 \\[1em] = 27. ⇒ ( 18 x ) 3 x = ( 18 × 2 1 ) 3 × 2 1 = 9 2 3 = ( 3 2 ) 2 3 = 3 2 × 2 3 = 3 3 = 27.
Hence, (18x)3x = 27.
Solve for x :
4 x − 1 × ( 0.5 ) 3 − 2 x = ( 1 8 ) − x 4^{x - 1} \times (0.5)^{3 - 2x} = \Big(\dfrac{1}{8}\Big)^{-x} 4 x − 1 × ( 0.5 ) 3 − 2 x = ( 8 1 ) − x
Answer
Given,
⇒ 4 x − 1 × ( 0.5 ) 3 − 2 x = ( 1 8 ) − x ⇒ ( 2 2 ) x − 1 × ( 5 10 ) 3 − 2 x = ( 1 2 3 ) − x ⇒ 2 2 ( x − 1 ) × ( 1 2 ) 3 − 2 x = ( 2 − 3 ) − x ⇒ 2 2 x − 2 × ( 2 − 1 ) 3 − 2 x = 2 3 x ⇒ 2 2 x − 2 × 2 − 1 ( 3 − 2 x ) = 2 3 x ⇒ 2 ( 2 x − 2 ) + [ − 1 ( 3 − 2 x ) ] = 2 3 x ⇒ 2 2 x − 2 − 3 + 2 x = 2 3 x ⇒ 2 4 x − 5 = 2 3 x ⇒ 4 x − 5 = 3 x ⇒ 4 x − 3 x = 5 ⇒ x = 5. \Rightarrow 4^{x - 1} \times (0.5)^{3 - 2x} = \Big(\dfrac{1}{8}\Big)^{-x} \\[1em] \Rightarrow (2^2)^{x - 1} \times \Big(\dfrac{5}{10}\Big)^{3 - 2x} = \Big(\dfrac{1}{2^3}\Big)^{-x} \\[1em] \Rightarrow 2^{2(x - 1)} \times \Big(\dfrac{1}{2}\Big)^{3 - 2x} = (2^{-3})^{-x} \\[1em] \Rightarrow 2^{2x - 2} \times (2^{-1})^{3 - 2x} = 2^{3x} \\[1em] \Rightarrow 2^{2x - 2} \times 2^{-1(3 - 2x)} = 2^{3x} \\[1em] \Rightarrow 2^{(2x - 2) + [-1(3 - 2x)]} = 2^{3x} \\[1em] \Rightarrow 2^{2x - 2 - 3 + 2x} = 2^{3x} \\[1em] \Rightarrow 2^{4x - 5} = 2^{3x} \\[1em] \Rightarrow 4x - 5 = 3x \\[1em] \Rightarrow 4x - 3x = 5 \\[1em] \Rightarrow x = 5. ⇒ 4 x − 1 × ( 0.5 ) 3 − 2 x = ( 8 1 ) − x ⇒ ( 2 2 ) x − 1 × ( 10 5 ) 3 − 2 x = ( 2 3 1 ) − x ⇒ 2 2 ( x − 1 ) × ( 2 1 ) 3 − 2 x = ( 2 − 3 ) − x ⇒ 2 2 x − 2 × ( 2 − 1 ) 3 − 2 x = 2 3 x ⇒ 2 2 x − 2 × 2 − 1 ( 3 − 2 x ) = 2 3 x ⇒ 2 ( 2 x − 2 ) + [ − 1 ( 3 − 2 x )] = 2 3 x ⇒ 2 2 x − 2 − 3 + 2 x = 2 3 x ⇒ 2 4 x − 5 = 2 3 x ⇒ 4 x − 5 = 3 x ⇒ 4 x − 3 x = 5 ⇒ x = 5.
Hence, x = 5.
Solve for x :
(a3x + 5 )2 .(ax )4 = a8x + 12
Answer
Given,
⇒ (a3x + 5 )2 .(ax )4 = a8x + 12
⇒ a2(3x + 5) .a4x = a8x + 12
⇒ a6x + 10 .a4x = a8x + 12
⇒ a6x + 10 + 4x = a8x + 12
⇒ a10x + 10 = a8x + 12
⇒ 10x + 10 = 8x + 12
⇒ 10x - 8x = 12 - 10
⇒ 2x = 2
⇒ x = 2 2 \dfrac{2}{2} 2 2 = 1.
Hence, x = 1.
Solve for x :
( 81 ) 3 4 − ( 1 32 ) − 2 5 + x ( 1 2 ) − 1 .2 0 = 27 (81)^{\dfrac{3}{4}} - \Big(\dfrac{1}{32}\Big)^{-\dfrac{2}{5}} + x\Big(\dfrac{1}{2}\Big)^{-1}.2^0 = 27 ( 81 ) 4 3 − ( 32 1 ) − 5 2 + x ( 2 1 ) − 1 . 2 0 = 27
Answer
Given,
⇒ ( 81 ) 3 4 − ( 1 32 ) − 2 5 + x ( 1 2 ) − 1 .2 0 = 27 ⇒ ( 3 4 ) 3 4 − ( 1 2 5 ) − 2 5 + ( 2 − 1 ) − 1 x .1 = 27 ⇒ 3 4 × 3 4 − ( 2 − 5 ) − 2 5 + 2 − 1 × − 1 . x = 27 ⇒ 3 3 − 2 − 5 × − 2 5 + 2 x = 27 ⇒ 27 − 2 2 + 2 x = 27 ⇒ 27 − 4 + 2 x = 27 ⇒ 23 + 2 x = 27 ⇒ 2 x = 27 − 23 ⇒ 2 x = 4 ⇒ x = 4 2 = 2. \Rightarrow (81)^{\dfrac{3}{4}} - \Big(\dfrac{1}{32}\Big)^{-\dfrac{2}{5}} + x\Big(\dfrac{1}{2}\Big)^{-1}.2^0 = 27 \\[1em] \Rightarrow (3^4)^{\dfrac{3}{4}} - \Big(\dfrac{1}{2^5}\Big)^{-\dfrac{2}{5}} + (2^{-1})^{-1}x.1 = 27 \\[1em] \Rightarrow 3^{4 \times \dfrac{3}{4}} - (2^{-5})^{-\dfrac{2}{5}} + 2^{-1\times -1}.x = 27 \\[1em] \Rightarrow 3^3 - 2^{-5 \times -\dfrac{2}{5}} + 2x = 27 \\[1em] \Rightarrow 27 - 2^2 + 2x = 27 \\[1em] \Rightarrow 27 - 4 + 2x = 27 \\[1em] \Rightarrow 23 + 2x = 27 \\[1em] \Rightarrow 2x = 27 - 23 \\[1em] \Rightarrow 2x = 4 \\[1em] \Rightarrow x = \dfrac{4}{2} = 2. ⇒ ( 81 ) 4 3 − ( 32 1 ) − 5 2 + x ( 2 1 ) − 1 . 2 0 = 27 ⇒ ( 3 4 ) 4 3 − ( 2 5 1 ) − 5 2 + ( 2 − 1 ) − 1 x .1 = 27 ⇒ 3 4 × 4 3 − ( 2 − 5 ) − 5 2 + 2 − 1 ×− 1 . x = 27 ⇒ 3 3 − 2 − 5 ×− 5 2 + 2 x = 27 ⇒ 27 − 2 2 + 2 x = 27 ⇒ 27 − 4 + 2 x = 27 ⇒ 23 + 2 x = 27 ⇒ 2 x = 27 − 23 ⇒ 2 x = 4 ⇒ x = 2 4 = 2.
Hence, x = 2.
Solve for x :
23x + 3 = 23x + 1 + 48
Answer
Given,
⇒ 23x + 3 = 23x + 1 + 48
⇒ 23x .23 = 23x .21 + 48
⇒ 8.23x = 2.23x + 48
⇒ 8.23x - 2.23x = 48
⇒ 6.23x = 48
⇒ 23x = 48 6 \dfrac{48}{6} 6 48
⇒ 23x = 8
⇒ 23x = 23
⇒ 3x = 3
⇒ x = 3 3 \dfrac{3}{3} 3 3 = 1.
Hence, x = 1.
Solve for x :
3(2x + 1) - 2x + 2 + 5 = 0
Answer
Given,
⇒ 3(2x + 1) - 2x + 2 + 5 = 0
⇒ 3.2x + 3 - 2x .22 + 5 = 0
⇒ 3.2x + 3 - 4.2x + 5 = 0
⇒ -2x + 8 = 0
⇒ 2x = 8
⇒ 2x = 23
⇒ x = 3.
Hence, x = 3.
Solve for x :
9x + 2 = 720 + 9x
Answer
Given,
⇒ 9x + 2 = 720 + 9x
⇒ 9x .92 = 720 + 9x
⇒ 81.9x - 9x = 720
⇒ 9x (81 - 1) = 720
⇒ 9x .80 = 720
⇒ 9x = 720 80 \dfrac{720}{80} 80 720
⇒ 9x = 9
⇒ x = 1.
Hence, x = 1.
(200 - 180 ) x 70 is equal to:
0
1
14
none of these
Answer
Given, (200 - 180 ) x 70
As we know that a0 = 1
⇒ (1 - 1) x 1
⇒ 0 x 1
⇒ 0
Hence, option 1 is the correct option.
(-2)-1 ÷ (-2)-4 is equal to:
8
1 8 \dfrac{1}{8} 8 1
-8
-1 8 \dfrac{1}{8} 8 1
Answer
Given,
⇒ (-2)-1 ÷ (-2)-4
⇒ (-2)-1 ÷ 1 ( − 2 ) 4 \dfrac{1}{(-2)^4} ( − 2 ) 4 1
⇒ 1 ( − 2 ) ÷ 1 ( − 2 ) 4 \dfrac{1}{(-2)} ÷ \dfrac{1}{(-2)^4} ( − 2 ) 1 ÷ ( − 2 ) 4 1
⇒ 1 ( − 2 ) × ( − 2 ) 4 \dfrac{1}{(-2)} \times (-2)^4 ( − 2 ) 1 × ( − 2 ) 4
⇒ (-2)3
⇒ -8.
Hence, option 3 is the correct option.
If a b = 2 3 ÷ ( − 2 3 ) 0 ; then ( a b ) − 2 \dfrac{a}{b} = \dfrac{2}{3} ÷ \Big(-\dfrac{2}{3}\Big)^0; \text{then} \Big(\dfrac{a}{b}\Big)^{-2} b a = 3 2 ÷ ( − 3 2 ) 0 ; then ( b a ) − 2 is equal to:
4 9 \dfrac{4}{9} 9 4
− 4 9 -\dfrac{4}{9} − 9 4
9 4 \dfrac{9}{4} 4 9
− 9 4 -\dfrac{9}{4} − 4 9
Answer
Given, a b = 2 3 ÷ ( − 2 3 ) 0 \dfrac{a}{b} = \dfrac{2}{3} ÷ \Big(-\dfrac{2}{3}\Big)^0 b a = 3 2 ÷ ( − 3 2 ) 0
As we know that a0 = 1
⇒ a b = 2 3 ÷ 1 ⇒ a b = 2 3 ⇒ ( a b ) − 2 = ( 2 3 ) − 2 ⇒ ( a b ) − 2 = ( 3 2 ) 2 ⇒ ( a b ) − 2 = 9 4 . \Rightarrow \dfrac{a}{b} = \dfrac{2}{3} ÷ 1 \\[1em] \Rightarrow \dfrac{a}{b} = \dfrac{2}{3}\\[1em] \Rightarrow \Big(\dfrac{a}{b}\Big)^{-2} = \Big(\dfrac{2}{3}\Big)^{-2}\\[1em] \Rightarrow \Big(\dfrac{a}{b}\Big)^{-2} = \Big(\dfrac{3}{2}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{a}{b}\Big)^{-2} = \dfrac{9}{4}. ⇒ b a = 3 2 ÷ 1 ⇒ b a = 3 2 ⇒ ( b a ) − 2 = ( 3 2 ) − 2 ⇒ ( b a ) − 2 = ( 2 3 ) 2 ⇒ ( b a ) − 2 = 4 9 .
Hence, option 3 is the correct option.
If 52x + 3 = 1, the value of x is:
3 2 \dfrac{3}{2} 2 3
− 3 2 -\dfrac{3}{2} − 2 3
2 3 \dfrac{2}{3} 3 2
− 2 3 -\dfrac{2}{3} − 3 2
Answer
Given, 52x + 3 = 1
As we know that a0 = 1,
⇒ 52x + 3 = 50
⇒ 2x + 3 = 0
⇒ 2x = -3
⇒ x = − 3 2 -\dfrac{3}{2} − 2 3
Hence, option 2 is the correct option.
(2 + 3)-1 x (2-1 + 3-1 ) is equal to :
6
-6
1 6 \dfrac{1}{6} 6 1
− 1 6 -\dfrac{1}{6} − 6 1
Answer
Given,
⇒ (2 + 3)-1 x (2-1 + 3-1 )
⇒ ( 2 + 3 ) − 1 × ( 2 − 1 + 3 − 1 ) ⇒ ( 1 5 ) × [ ( 1 2 ) + ( 1 3 ) ] ⇒ 1 5 × [ 3 + 2 6 ] ⇒ 1 5 × 5 6 ⇒ 1 6 . \Rightarrow (2 + 3)^{-1} \times (2^{-1} + 3^{-1}) \\[1em] \Rightarrow \Big(\dfrac{1}{5}\Big) \times \Big[\Big(\dfrac{1}{2}\Big) + \Big(\dfrac{1}{3}\Big)\Big]\\[1em] \Rightarrow \dfrac{1}{5} \times \Big[\dfrac{3 + 2}{6}\Big]\\[1em] \Rightarrow \dfrac{1}{5} \times \dfrac{5}{6}\\[1em] \Rightarrow \dfrac{1}{6}. ⇒ ( 2 + 3 ) − 1 × ( 2 − 1 + 3 − 1 ) ⇒ ( 5 1 ) × [ ( 2 1 ) + ( 3 1 ) ] ⇒ 5 1 × [ 6 3 + 2 ] ⇒ 5 1 × 6 5 ⇒ 6 1 .
Hence, option 3 is the correct option.
Statement 1: ( 3 4 ) − 4 × ( 3 4 ) − 5 = ( 3 4 ) 3 x \Big(\dfrac{3}{4}\Big)^{-4} \times \Big(\dfrac{3}{4}\Big)^{-5} = \Big(\dfrac{3}{4}\Big)^{3x} ( 4 3 ) − 4 × ( 4 3 ) − 5 = ( 4 3 ) 3 x
⇒ x = -1
Statement 2: ( 3 4 ) − 4 − 5 = ( 3 4 ) 3 x \Big(\dfrac{3}{4}\Big)^{-4 - 5} = \Big(\dfrac{3}{4}\Big)^{3x} ( 4 3 ) − 4 − 5 = ( 4 3 ) 3 x
⇒ 3x = -9
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given,
⇒ ( 3 4 ) − 4 × ( 3 4 ) − 5 = ( 3 4 ) 3 x ⇒ ( 3 4 ) − 4 + ( − 5 ) = ( 3 4 ) 3 x ⇒ ( 3 4 ) − 4 − 5 = ( 3 4 ) 3 x ⇒ ( 3 4 ) − 9 = ( 3 4 ) 3 x ⇒ 3 x = − 9 ⇒ x = − 9 3 ⇒ x = − 3. \Rightarrow \Big(\dfrac{3}{4}\Big)^{-4} \times \Big(\dfrac{3}{4}\Big)^{-5} = \Big(\dfrac{3}{4}\Big)^{3x}\\[1em] \Rightarrow \Big(\dfrac{3}{4}\Big)^{-4 + (-5)} = \Big(\dfrac{3}{4}\Big)^{3x}\\[1em] \Rightarrow \Big(\dfrac{3}{4}\Big)^{-4 - 5} = \Big(\dfrac{3}{4}\Big)^{3x}\\[1em] \Rightarrow \Big(\dfrac{3}{4}\Big)^{-9} = \Big(\dfrac{3}{4}\Big)^{3x}\\[1em] \Rightarrow 3x = -9\\[1em] \Rightarrow x = -\dfrac{9}{3}\\[1em] \Rightarrow x = -3. ⇒ ( 4 3 ) − 4 × ( 4 3 ) − 5 = ( 4 3 ) 3 x ⇒ ( 4 3 ) − 4 + ( − 5 ) = ( 4 3 ) 3 x ⇒ ( 4 3 ) − 4 − 5 = ( 4 3 ) 3 x ⇒ ( 4 3 ) − 9 = ( 4 3 ) 3 x ⇒ 3 x = − 9 ⇒ x = − 3 9 ⇒ x = − 3.
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is the correct option.
Statement 1: ( 5 8 ) − 7 × ( 8 5 ) − 4 = x \Big(\dfrac{5}{8}\Big)^{-7} \times \Big(\dfrac{8}{5}\Big)^{-4} = x ( 8 5 ) − 7 × ( 5 8 ) − 4 = x
⇒ x = ( 5 8 ) 3 \Big(\dfrac{5}{8}\Big)^{3} ( 8 5 ) 3
Statement 2: ( 5 8 ) − 7 × ( 5 8 ) 4 = x \Big(\dfrac{5}{8}\Big)^{-7} \times \Big(\dfrac{5}{8}\Big)^{4} = x ( 8 5 ) − 7 × ( 8 5 ) 4 = x
⇒ x = ( 8 5 ) 3 \Big(\dfrac{8}{5}\Big)^{3} ( 5 8 ) 3
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given,
⇒ ( 5 8 ) − 7 × ( 8 5 ) − 4 = x ⇒ ( 5 8 ) − 7 × ( 5 8 ) 4 = x ⇒ ( 5 8 ) − 7 + 4 = x ⇒ ( 5 8 ) − 3 = x ⇒ x = ( 8 5 ) 3 \Rightarrow \Big(\dfrac{5}{8}\Big)^{-7} \times \Big(\dfrac{8}{5}\Big)^{-4} = x\\[1em] \Rightarrow \Big(\dfrac{5}{8}\Big)^{-7} \times \Big(\dfrac{5}{8}\Big)^{4} = x\\[1em] \Rightarrow \Big(\dfrac{5}{8}\Big)^{-7 + 4} = x\\[1em] \Rightarrow \Big(\dfrac{5}{8}\Big)^{-3} = x\\[1em] \Rightarrow x = \Big(\dfrac{8}{5}\Big)^{3} ⇒ ( 8 5 ) − 7 × ( 5 8 ) − 4 = x ⇒ ( 8 5 ) − 7 × ( 8 5 ) 4 = x ⇒ ( 8 5 ) − 7 + 4 = x ⇒ ( 8 5 ) − 3 = x ⇒ x = ( 5 8 ) 3
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is the correct option.
Assertion (A): (3-7 ÷ 3-10 ) x 3-5 = 1 9 \dfrac{1}{9} 9 1 .
Reason (R): 1 3 7 × 3 10 × 1 3 5 \dfrac{1}{3^7} \times 3^{10} \times \dfrac{1}{3^5} 3 7 1 × 3 10 × 3 5 1 .
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Given,
(3-7 ÷ 3-10 ) x 3-5
⇒ [ ( 1 3 ) 7 ÷ ( 1 3 ) 10 ] × ( 1 3 ) 5 ⇒ [ ( 1 3 ) 7 × 3 10 ] × 1 3 5 ⇒ 3 10 3 7 × 3 5 ⇒ 3 10 3 12 ⇒ 1 3 2 ⇒ 1 9 . \Rightarrow \Big[\Big(\dfrac{1}{3}\Big)^7 ÷ \Big(\dfrac{1}{3}\Big)^{10}\Big] \times \Big(\dfrac{1}{3}\Big)^5 \\[1em] \Rightarrow \Big[\Big(\dfrac{1}{3}\Big)^7 \times 3^{10}\Big] \times \dfrac{1}{3^5} \\[1em] \Rightarrow \dfrac{3^{10}}{3^7 \times 3^5} \\[1em] \Rightarrow \dfrac{3^{10}}{3^{12}} \\[1em] \Rightarrow \dfrac{1}{3^2} \\[1em] \Rightarrow \dfrac{1}{9}. ⇒ [ ( 3 1 ) 7 ÷ ( 3 1 ) 10 ] × ( 3 1 ) 5 ⇒ [ ( 3 1 ) 7 × 3 10 ] × 3 5 1 ⇒ 3 7 × 3 5 3 10 ⇒ 3 12 3 10 ⇒ 3 2 1 ⇒ 9 1 .
∴ Both A and R are true, and R is the correct reason for A.
Hence, option 3 is the correct option.
Assertion (A): (13 + 23 + 33 )1 2 ^\frac{1}{2} 2 1 = x, then x = 1 + 8 + 27 \sqrt{1} + \sqrt{8} + \sqrt{27} 1 + 8 + 27 .
Reason (R): x = (1 + 8 + 27)1 2 = 36 1 2 = 6 ^\frac{1}{2} = 36^\frac{1}{2} = 6 2 1 = 3 6 2 1 = 6
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Given, x = (13 + 23 + 33 )1 2 ^\frac{1}{2} 2 1
⇒ ( 1 + 8 + 27 ) 1 2 ⇒ ( 36 ) 1 2 ⇒ 36 ⇒ 6. \Rightarrow (1 + 8 + 27)^\frac{1}{2}\\[1em] \Rightarrow (36)^\frac{1}{2}\\[1em] \Rightarrow \sqrt{36}\\[1em] \Rightarrow 6. ⇒ ( 1 + 8 + 27 ) 2 1 ⇒ ( 36 ) 2 1 ⇒ 36 ⇒ 6.
∴ A is false, but R is true.
Hence, option 2 is the correct option.
Evaluate :
9 5 2 − 3 × 8 0 − ( 1 81 ) − 1 2 9^{\dfrac{5}{2}} - 3 \times 8^0 - \Big(\dfrac{1}{81}\Big)^{-\dfrac{1}{2}} 9 2 5 − 3 × 8 0 − ( 81 1 ) − 2 1
Answer
Simplifying the expression :
⇒ 9 5 2 − 3 × 8 0 − ( 1 81 ) − 1 2 = ( 3 2 ) 5 2 − 3 × 1 − ( 1 3 4 ) − 1 2 = ( 3 ) 2 × 5 2 − 3 − ( 3 − 4 ) − 1 2 = 3 5 − 3 − 3 − 4 × − 1 2 = 243 − 3 − 3 2 = 243 − 3 − 9 = 231. \Rightarrow 9^{\dfrac{5}{2}} - 3 \times 8^0 - \Big(\dfrac{1}{81}\Big)^{-\dfrac{1}{2}} = (3^2)^{\dfrac{5}{2}} - 3 \times 1 - \Big(\dfrac{1}{3^4}\Big)^{-\dfrac{1}{2}} \\[1em] = (3)^{2 \times \dfrac{5}{2}} - 3 - (3^{-4})^{-\dfrac{1}{2}} \\[1em] = 3^5 - 3 - 3^{-4 \times -\dfrac{1}{2}} \\[1em] = 243 - 3 - 3^2 \\[1em] = 243 - 3 - 9 \\[1em] = 231. ⇒ 9 2 5 − 3 × 8 0 − ( 81 1 ) − 2 1 = ( 3 2 ) 2 5 − 3 × 1 − ( 3 4 1 ) − 2 1 = ( 3 ) 2 × 2 5 − 3 − ( 3 − 4 ) − 2 1 = 3 5 − 3 − 3 − 4 ×− 2 1 = 243 − 3 − 3 2 = 243 − 3 − 9 = 231.
Hence, 9 5 2 − 3 × 8 0 − ( 1 81 ) − 1 2 9^{\dfrac{5}{2}} - 3 \times 8^0 - \Big(\dfrac{1}{81}\Big)^{-\dfrac{1}{2}} 9 2 5 − 3 × 8 0 − ( 81 1 ) − 2 1 = 231.
Evaluate :
( 64 ) 2 3 − 125 3 − 1 2 − 5 + ( 27 ) − 2 3 × ( 25 9 ) − 1 2 (64)^{\dfrac{2}{3}} - \sqrt[3]{125} - \dfrac{1}{2^{-5}} + (27)^{-\dfrac{2}{3}} \times \Big(\dfrac{25}{9}\Big)^{-\dfrac{1}{2}} ( 64 ) 3 2 − 3 125 − 2 − 5 1 + ( 27 ) − 3 2 × ( 9 25 ) − 2 1
Answer
Simplifying the expression :
⇒ ( 64 ) 2 3 − 125 3 − 1 2 − 5 + ( 27 ) − 2 3 × ( 25 9 ) − 1 2 = ( 2 6 ) 2 3 − ( 5 3 ) 1 3 − 2 5 + ( 3 3 ) − 2 3 × [ ( 5 3 ) 2 ] − 1 2 = ( 2 ) 6 × 2 3 − ( 5 ) 3 × 1 3 − 32 + ( 3 ) 3 × − 2 3 × ( 5 3 ) 2 × − 1 2 = 2 4 − 5 1 − 32 + 3 − 2 × ( 5 3 ) − 1 = 16 − 5 − 32 + 1 3 2 × 3 5 = − 21 + 1 9 × 3 5 = − 21 + 3 45 = − 21 + 1 15 = − 315 + 1 15 = − 314 15 = − 20 14 15 . \Rightarrow (64)^{\dfrac{2}{3}} - \sqrt[3]{125} - \dfrac{1}{2^{-5}} + (27)^{-\dfrac{2}{3}} \times \Big(\dfrac{25}{9}\Big)^{-\dfrac{1}{2}} \\[1em] = (2^6)^{\dfrac{2}{3}} - (5^3)^{\dfrac{1}{3}} - 2^5 + (3^3)^{-\dfrac{2}{3}} \times \Big[\Big(\dfrac{5}{3}\Big)^2\Big]^{-\dfrac{1}{2}}\\[1em] = (2)^{6 \times \dfrac{2}{3}} - (5)^{3 \times \dfrac{1}{3}} - 32 + (3)^{3 \times -\dfrac{2}{3}} \times \Big(\dfrac{5}{3}\Big)^{2 \times -\dfrac{1}{2}} \\[1em] = 2^4 - 5^1 - 32 + 3^{-2} \times \Big(\dfrac{5}{3}\Big)^{-1} \\[1em] = 16 - 5 - 32 + \dfrac{1}{3^2} \times \dfrac{3}{5} \\[1em] = -21 + \dfrac{1}{9} \times \dfrac{3}{5} \\[1em] = -21 + \dfrac{3}{45} \\[1em] = -21 + \dfrac{1}{15} \\[1em] = \dfrac{-315 + 1}{15} \\[1em] = \dfrac{-314}{15} \\[1em] = -20\dfrac{14}{15}. ⇒ ( 64 ) 3 2 − 3 125 − 2 − 5 1 + ( 27 ) − 3 2 × ( 9 25 ) − 2 1 = ( 2 6 ) 3 2 − ( 5 3 ) 3 1 − 2 5 + ( 3 3 ) − 3 2 × [ ( 3 5 ) 2 ] − 2 1 = ( 2 ) 6 × 3 2 − ( 5 ) 3 × 3 1 − 32 + ( 3 ) 3 ×− 3 2 × ( 3 5 ) 2 ×− 2 1 = 2 4 − 5 1 − 32 + 3 − 2 × ( 3 5 ) − 1 = 16 − 5 − 32 + 3 2 1 × 5 3 = − 21 + 9 1 × 5 3 = − 21 + 45 3 = − 21 + 15 1 = 15 − 315 + 1 = 15 − 314 = − 20 15 14 .
Hence, ( 64 ) 2 3 − 125 3 − 1 2 − 5 + ( 27 ) − 2 3 × ( 25 9 ) − 1 2 = − 20 14 15 . (64)^{\dfrac{2}{3}} - \sqrt[3]{125} - \dfrac{1}{2^{-5}} + (27)^{-\dfrac{2}{3}} \times \Big(\dfrac{25}{9}\Big)^{-\dfrac{1}{2}} = -20\dfrac{14}{15}. ( 64 ) 3 2 − 3 125 − 2 − 5 1 + ( 27 ) − 3 2 × ( 9 25 ) − 2 1 = − 20 15 14 .
Evaluate :
[ ( − 2 3 ) − 2 ] 3 × ( 1 3 ) − 4 × 3 − 1 × 1 6 \Big[\Big(-\dfrac{2}{3}\Big)^{-2}\Big]^3 \times \Big(\dfrac{1}{3}\Big)^{-4} \times 3^{-1} \times \dfrac{1}{6} [ ( − 3 2 ) − 2 ] 3 × ( 3 1 ) − 4 × 3 − 1 × 6 1
Answer
Simplify the expression :
⇒ [ ( − 2 3 ) − 2 ] 3 × ( 1 3 ) − 4 × 3 − 1 × 1 6 = ( − 2 3 ) − 6 × ( 3 − 1 ) − 4 × 1 3 × 1 6 = ( 3 2 ) 6 × 3 4 × 1 18 = 3 6 × 3 4 2 6 × 18 = 3 6 + 4 2 6 × ( 2 × 3 × 3 ) = 3 10 2 6 + 1 × 3 2 = 3 10 − 2 2 7 = 3 8 2 7 = 3 8 ÷ 2 7 . \Rightarrow \Big[\Big(-\dfrac{2}{3}\Big)^{-2}\Big]^3 \times \Big(\dfrac{1}{3}\Big)^{-4} \times 3^{-1} \times \dfrac{1}{6} \\[1em] = \Big(-\dfrac{2}{3}\Big)^{-6} \times (3^{-1})^{-4} \times \dfrac{1}{3} \times \dfrac{1}{6} \\[1em] = \Big(\dfrac{3}{2}\Big)^6 \times 3^4 \times \dfrac{1}{18} \\[1em] = \dfrac{3^6 \times 3^4}{2^6 \times 18} \\[1em] = \dfrac{3^{6 + 4}}{2^6 \times (2 \times 3 \times 3)} \\[1em] = \dfrac{3^{10}}{2^{6 + 1} \times 3^2} \\[1em] = \dfrac{3^{10 - 2}}{2^7} \\[1em] = \dfrac{3^8}{2^7} \\[1em] = 3^8 ÷ 2^7. ⇒ [ ( − 3 2 ) − 2 ] 3 × ( 3 1 ) − 4 × 3 − 1 × 6 1 = ( − 3 2 ) − 6 × ( 3 − 1 ) − 4 × 3 1 × 6 1 = ( 2 3 ) 6 × 3 4 × 18 1 = 2 6 × 18 3 6 × 3 4 = 2 6 × ( 2 × 3 × 3 ) 3 6 + 4 = 2 6 + 1 × 3 2 3 10 = 2 7 3 10 − 2 = 2 7 3 8 = 3 8 ÷ 2 7 .
Hence, [ ( − 2 3 ) − 2 ] 3 × ( 1 3 ) − 4 × 3 − 1 × 1 6 = 3 8 ÷ 2 7 . \Big[\Big(-\dfrac{2}{3}\Big)^{-2}\Big]^3 \times \Big(\dfrac{1}{3}\Big)^{-4} \times 3^{-1} \times \dfrac{1}{6} = 3^8 ÷ 2^7. [ ( − 3 2 ) − 2 ] 3 × ( 3 1 ) − 4 × 3 − 1 × 6 1 = 3 8 ÷ 2 7 .
Simplify :
3 × 9 n + 1 − 9 × 3 2 n 3 × 3 2 n + 3 − 9 n + 1 \dfrac{3 \times 9^{n + 1} - 9 \times 3^{2n}}{3 \times 3^{2n + 3} - 9^{n + 1}} 3 × 3 2 n + 3 − 9 n + 1 3 × 9 n + 1 − 9 × 3 2 n
Answer
Simplify the expression :
⇒ 3 × 9 n + 1 − 9 × 3 2 n 3 × 3 2 n + 3 − 9 n + 1 = 3 × ( 3 2 ) n + 1 − 9 × 3 2 n 3 × 3 2 n .3 3 − ( 3 2 ) n + 1 = 3 × 3 2 ( n + 1 ) − 9 × 3 2 n 81.3 2 n − 3 2 ( n + 1 ) = 3 × 3 2 n + 2 − 9 × 3 2 n 81.3 2 n − 3 2 n + 2 = 3 × 3 2 n × 3 2 − 9 × 3 2 n 81.3 2 n − 3 2 n .3 2 = 3 2 n ( 3 × 3 2 − 9 ) 3 2 n ( 81 − 3 2 ) = 27 − 9 81 − 9 = 18 72 = 1 4 . \Rightarrow \dfrac{3 \times 9^{n + 1} - 9 \times 3^{2n}}{3 \times 3^{2n + 3} - 9^{n + 1}} = \dfrac{3 \times (3^2)^{n + 1} - 9 \times 3^{2n}}{3 \times 3^{2n}.3^3 - (3^2)^{n + 1}} \\[1em] = \dfrac{3 \times 3^{2(n + 1)} - 9 \times 3^{2n}}{81.3^{2n} - 3^{2(n + 1)}} \\[1em] = \dfrac{3 \times 3^{2n + 2} - 9 \times 3^{2n}}{81.3^{2n} - 3^{2n + 2}} \\[1em] = \dfrac{3 \times 3^{2n} \times 3^2 - 9 \times 3^{2n}}{81.3^{2n} - 3^{2n}.3^2} \\[1em] = \dfrac{3^{2n}(3 \times 3^2 - 9)}{3^{2n}(81 - 3^2)} \\[1em] = \dfrac{27 - 9}{81 - 9} \\[1em] = \dfrac{18}{72} \\[1em] = \dfrac{1}{4}. ⇒ 3 × 3 2 n + 3 − 9 n + 1 3 × 9 n + 1 − 9 × 3 2 n = 3 × 3 2 n . 3 3 − ( 3 2 ) n + 1 3 × ( 3 2 ) n + 1 − 9 × 3 2 n = 81. 3 2 n − 3 2 ( n + 1 ) 3 × 3 2 ( n + 1 ) − 9 × 3 2 n = 81. 3 2 n − 3 2 n + 2 3 × 3 2 n + 2 − 9 × 3 2 n = 81. 3 2 n − 3 2 n . 3 2 3 × 3 2 n × 3 2 − 9 × 3 2 n = 3 2 n ( 81 − 3 2 ) 3 2 n ( 3 × 3 2 − 9 ) = 81 − 9 27 − 9 = 72 18 = 4 1 .
Hence, 3 × 9 n + 1 − 3 × 3 2 n 3 × 3 2 n + 3 − 9 n + 1 = 1 4 \dfrac{3 \times 9^{n + 1} - 3 \times 3^{2n}}{3 \times 3^{2n + 3} - 9^{n + 1}} = \dfrac{1}{4} 3 × 3 2 n + 3 − 9 n + 1 3 × 9 n + 1 − 3 × 3 2 n = 4 1 .
Solve :
3x - 1 × 52y - 3 = 225
Answer
Solving the expression :
⇒ 3 x − 1 × 5 2 y − 3 = 225 ⇒ 3 x .3 − 1 × 5 2 y .5 − 3 = 3 2 × 5 2 ⇒ 3 x 3 1 × 5 2 y 5 3 = 3 2 × 5 2 ⇒ 3 x × 5 2 y = 3 2 × 5 2 × 3 1 × 5 3 ⇒ 3 x × 5 2 y = 3 2 + 1 × 5 2 + 3 ⇒ 3 x × 5 2 y = 3 3 × 5 5 ⇒ x = 3 and 2 y = 5 ⇒ x = 3 and y = 5 2 = 2 1 2 . \Rightarrow 3^{x - 1} \times 5^{2y - 3} = 225 \\[1em] \Rightarrow 3^x.3^{-1} \times 5^{2y}.5^{-3} = 3^2 \times 5^2 \\[1em] \Rightarrow \dfrac{3^x}{3^1} \times \dfrac{5^{2y}}{5^3} = 3^2 \times 5^2 \\[1em] \Rightarrow 3^x \times 5^{2y} = 3^2 \times 5^2 \times 3^1 \times 5^3 \\[1em] \Rightarrow 3^x \times 5^{2y} = 3^{2 + 1} \times 5^{2 + 3} \\[1em] \Rightarrow 3^x \times 5^{2y} = 3^3 \times 5^5 \\[1em] \Rightarrow x = 3 \text{ and } 2y = 5 \\[1em] \Rightarrow x = 3 \text{ and } y = \dfrac{5}{2} = 2\dfrac{1}{2}. ⇒ 3 x − 1 × 5 2 y − 3 = 225 ⇒ 3 x . 3 − 1 × 5 2 y . 5 − 3 = 3 2 × 5 2 ⇒ 3 1 3 x × 5 3 5 2 y = 3 2 × 5 2 ⇒ 3 x × 5 2 y = 3 2 × 5 2 × 3 1 × 5 3 ⇒ 3 x × 5 2 y = 3 2 + 1 × 5 2 + 3 ⇒ 3 x × 5 2 y = 3 3 × 5 5 ⇒ x = 3 and 2 y = 5 ⇒ x = 3 and y = 2 5 = 2 2 1 .
Hence, x = 3 and y = 2 1 2 2\dfrac{1}{2} 2 2 1 .
If ( a − 1 b 2 a 2 b − 4 ) 7 ÷ ( a 3 b − 5 a − 2 b 3 ) − 5 = a x . b y \Big(\dfrac{a^{-1}b^2}{a^2b^{-4}}\Big)^7 ÷ \Big(\dfrac{a^3b^{-5}}{a^{-2}b^3}\Big)^{-5} = a^x.b^y ( a 2 b − 4 a − 1 b 2 ) 7 ÷ ( a − 2 b 3 a 3 b − 5 ) − 5 = a x . b y , find x + y.
Answer
Given,
⇒ ( a − 1 b 2 a 2 b − 4 ) 7 ÷ ( a 3 b − 5 a − 2 b 3 ) − 5 = a x . b y ⇒ ( a − 1 − 2 b 2 − ( − 4 ) ) 7 ÷ ( a 3 − ( − 2 ) b − 5 − 3 ) − 5 = a x . b y ⇒ ( a − 3 b 6 ) 7 ÷ ( a 5 b − 8 ) − 5 = a x . b y ⇒ ( a − 3 × 7 . b 6 × 7 ) ÷ ( a 5 × − 5 . b − 8 × − 5 ) = a x . b y ⇒ ( a − 21 . b 42 ) ÷ ( a − 25 . b 40 ) = a x . b y ⇒ a − 21 . b 42 a − 25 . b 40 = a x b y ⇒ a − 21 − ( − 25 ) . b 42 − 40 = a x b y ⇒ a − 21 + 25 . b 2 = a x . b y ⇒ a 4 . b 2 = a x . b y ⇒ x = 4 and y = 2. \Rightarrow \Big(\dfrac{a^{-1}b^2}{a^2b^{-4}}\Big)^7 ÷ \Big(\dfrac{a^3b^{-5}}{a^{-2}b^3}\Big)^{-5} = a^x.b^y \\[1em] \Rightarrow (a^{-1 - 2}b^{2 - (-4)})^7 ÷ (a^{3 - (-2)}b^{-5 - 3})^{-5} = a^x.b^y \\[1em] \Rightarrow (a^{-3}b^6)^7 ÷ (a^5b^{-8})^{-5} = a^x.b^y \\[1em] \Rightarrow (a^{-3 \times 7}.b^{6 \times 7}) ÷ (a^{5 \times -5}.b^{-8 \times -5}) = a^x.b^y \\[1em] \Rightarrow (a^{-21}.b^{42}) ÷ (a^{-25}.b^{40}) = a^x.b^y \\[1em] \Rightarrow \dfrac{a^{-21}.b^{42}}{a^{-25}.b^{40}} = a^xb^y \\[1em] \Rightarrow a^{-21 - (-25)}.b^{42 - 40} = a^xb^y \\[1em] \Rightarrow a^{-21 + 25}.b^{2} = a^x.b^y \\[1em] \Rightarrow a^4.b^2 = a^x.b^y \\[1em] \Rightarrow x = 4 \text{ and } y = 2. ⇒ ( a 2 b − 4 a − 1 b 2 ) 7 ÷ ( a − 2 b 3 a 3 b − 5 ) − 5 = a x . b y ⇒ ( a − 1 − 2 b 2 − ( − 4 ) ) 7 ÷ ( a 3 − ( − 2 ) b − 5 − 3 ) − 5 = a x . b y ⇒ ( a − 3 b 6 ) 7 ÷ ( a 5 b − 8 ) − 5 = a x . b y ⇒ ( a − 3 × 7 . b 6 × 7 ) ÷ ( a 5 ×− 5 . b − 8 ×− 5 ) = a x . b y ⇒ ( a − 21 . b 42 ) ÷ ( a − 25 . b 40 ) = a x . b y ⇒ a − 25 . b 40 a − 21 . b 42 = a x b y ⇒ a − 21 − ( − 25 ) . b 42 − 40 = a x b y ⇒ a − 21 + 25 . b 2 = a x . b y ⇒ a 4 . b 2 = a x . b y ⇒ x = 4 and y = 2.
x + y = 4 + 2 = 6.
Hence, x + y = 6.
If 3x + 1 = 9x - 3 , find the value of 21 + x .
Answer
Given,
⇒ 3x + 1 = 9x - 3
⇒ 3x + 1 = (32 )x - 3
⇒ 3x + 1 = 32(x - 3)
⇒ 3x + 1 = 32x - 6
⇒ x + 1 = 2x - 6
⇒ 2x - x = 1 + 6
⇒ x = 7.
Substituting value of x in 21 + x , we get :
⇒ 21 + 7 = 28 = 256.
Hence, 21 + x = 256.
If 2x = 4y = 8z and 1 2 x + 1 4 y + 1 8 z \dfrac{1}{2x} + \dfrac{1}{4y} + \dfrac{1}{8z} 2 x 1 + 4 y 1 + 8 z 1 = 4, find the value of x.
Answer
Given,
⇒ 2x = 4y = 8z
⇒ 2x = (22 )y = (23 )z
⇒ 2x = 22y = 23z
⇒ x = 2y = 3z
⇒ x = 2y and x = 3z
⇒ y = x 2 and z = x 3 \Rightarrow y = \dfrac{x}{2} \text{ and } z = \dfrac{x}{3} ⇒ y = 2 x and z = 3 x .
Substituting value of y and z in 1 2 x + 1 4 y + 1 8 z = 4 \dfrac{1}{2x} + \dfrac{1}{4y} + \dfrac{1}{8z} = 4 2 x 1 + 4 y 1 + 8 z 1 = 4 , we get :
⇒ 1 2 x + 1 4 × x 2 + 1 8 × x 3 = 4 ⇒ 1 2 x + 1 2 x + 3 8 x = 4 ⇒ 2 2 x + 3 8 x = 4 ⇒ 8 + 3 8 x = 4 ⇒ 11 8 x = 4 ⇒ x = 11 8 × 4 = 11 32 . \Rightarrow \dfrac{1}{2x} + \dfrac{1}{4 \times \dfrac{x}{2}} + \dfrac{1}{8 \times \dfrac{x}{3}} = 4 \\[1em] \Rightarrow \dfrac{1}{2x} + \dfrac{1}{2x} + \dfrac{3}{8x} = 4 \\[1em] \Rightarrow \dfrac{2}{2x} + \dfrac{3}{8x} = 4 \\[1em] \Rightarrow \dfrac{8 + 3}{8x} = 4 \\[1em] \Rightarrow \dfrac{11}{8x} = 4 \\[1em] \Rightarrow x = \dfrac{11}{8 \times 4} = \dfrac{11}{32}. ⇒ 2 x 1 + 4 × 2 x 1 + 8 × 3 x 1 = 4 ⇒ 2 x 1 + 2 x 1 + 8 x 3 = 4 ⇒ 2 x 2 + 8 x 3 = 4 ⇒ 8 x 8 + 3 = 4 ⇒ 8 x 11 = 4 ⇒ x = 8 × 4 11 = 32 11 .
Hence, x = 11 32 \dfrac{11}{32} 32 11 .
If 9 n .3 2 .3 n − ( 27 ) n ( 3 m .2 ) 3 = 3 − 3 \dfrac{9^n.3^2.3^n - (27)^n}{(3^m.2)^3} = 3^{-3} ( 3 m .2 ) 3 9 n . 3 2 . 3 n − ( 27 ) n = 3 − 3 .
Show that : m - n = 1.
Answer
Given,
⇒ 9 n .3 2 .3 n − ( 27 ) n ( 3 m .2 ) 3 = 3 − 3 ⇒ ( 3 2 ) n .3 2 .3 n − ( 3 3 ) n ( 3 m ) 3 . ( 2 ) 3 = 3 − 3 ⇒ 3 2 n .3 2 .3 n − 3 3 n = 3 − 3 . ( 3 m ) 3 . ( 2 ) 3 ⇒ 9.3 2 n + n − 3 3 n = 3 − 3 .3 3 m .8 ⇒ 9.3 3 n − 3 3 n = 8.3 3 m − 3 ⇒ 3 3 n ( 9 − 1 ) = 8.3 3 m − 3 ⇒ 8.3 3 n = 8.3 3 ( m − 1 ) ⇒ 3 3 n = 3 3 ( m − 1 ) ⇒ 3 n = 3 ( m − 1 ) ⇒ n = m − 1 ⇒ m − n = 1. \Rightarrow \dfrac{9^n.3^2.3^n - (27)^n}{(3^m.2)^3} = 3^{-3} \\[1em] \Rightarrow \dfrac{(3^2)^n.3^2.3^n - (3^3)^n}{(3^m)^3.(2)^3} = 3^{-3} \\[1em] \Rightarrow 3^{2n}.3^2.3^n - 3^{3n} = 3^{-3}.(3^m)^3.(2)^3 \\[1em] \Rightarrow 9.3^{2n + n} - 3^{3n} = 3^{-3}.3^{3m}.8 \\[1em] \Rightarrow 9.3^{3n} - 3^{3n} = 8.3^{3m - 3} \\[1em] \Rightarrow 3^{3n}(9 - 1) = 8.3^{3m - 3} \\[1em] \Rightarrow 8.3^{3n} = 8.3^{3(m - 1)} \\[1em] \Rightarrow 3^{3n} = 3^{3(m - 1)} \\[1em] \Rightarrow 3n = 3(m - 1) \\[1em] \Rightarrow n = m - 1 \\[1em] \Rightarrow m - n = 1. ⇒ ( 3 m .2 ) 3 9 n . 3 2 . 3 n − ( 27 ) n = 3 − 3 ⇒ ( 3 m ) 3 . ( 2 ) 3 ( 3 2 ) n . 3 2 . 3 n − ( 3 3 ) n = 3 − 3 ⇒ 3 2 n . 3 2 . 3 n − 3 3 n = 3 − 3 . ( 3 m ) 3 . ( 2 ) 3 ⇒ 9. 3 2 n + n − 3 3 n = 3 − 3 . 3 3 m .8 ⇒ 9. 3 3 n − 3 3 n = 8. 3 3 m − 3 ⇒ 3 3 n ( 9 − 1 ) = 8. 3 3 m − 3 ⇒ 8. 3 3 n = 8. 3 3 ( m − 1 ) ⇒ 3 3 n = 3 3 ( m − 1 ) ⇒ 3 n = 3 ( m − 1 ) ⇒ n = m − 1 ⇒ m − n = 1.
Hence, proved that m - n = 1.
Solve for x : ( 13 ) x = 4 4 − 3 4 − 6. (13)^{\sqrt{x}} = 4^4 - 3^4 - 6. ( 13 ) x = 4 4 − 3 4 − 6.
Answer
Given,
⇒ ( 13 ) x = 4 4 − 3 4 − 6 ⇒ ( 13 ) x = 256 − 81 − 6 ⇒ ( 13 ) x = 169 ⇒ ( 13 ) x = 13 2 ⇒ x = 2 \Rightarrow (13)^{\sqrt{x}} = 4^4 - 3^4 - 6 \\[1em] \Rightarrow (13)^{\sqrt{x}} = 256 - 81 - 6 \\[1em] \Rightarrow (13)^{\sqrt{x}} = 169 \\[1em] \Rightarrow (13)^{\sqrt{x}} = 13^2 \\[1em] \Rightarrow \sqrt{x} = 2 ⇒ ( 13 ) x = 4 4 − 3 4 − 6 ⇒ ( 13 ) x = 256 − 81 − 6 ⇒ ( 13 ) x = 169 ⇒ ( 13 ) x = 1 3 2 ⇒ x = 2
Squaring both sides of the above equation, we get :
⇒ ( x ) 2 = 2 2 ⇒ x = 4. \Rightarrow (\sqrt{x})^2 = 2^2 \\[1em] \Rightarrow x = 4. ⇒ ( x ) 2 = 2 2 ⇒ x = 4.
Hence, x = 4.
If 34x = (81)-1 and ( 10 ) 1 y = 0.0001 (10)^{\dfrac{1}{y}} = 0.0001 ( 10 ) y 1 = 0.0001 , find the value of 2-x × 16y .
Answer
Given,
⇒ 3 4 x = ( 3 4 ) − 1 ⇒ 3 4 x = 3 − 4 ⇒ 4 x = − 4 ⇒ x = − 4 4 ⇒ x = − 1. \Rightarrow 3^{4x} = (3^4)^{-1} \\[1em] \Rightarrow 3^{4x} = 3^{-4} \\[1em] \Rightarrow 4x = -4 \\[1em] \Rightarrow x = -\dfrac{4}{4} \\[1em] \Rightarrow x = -1. ⇒ 3 4 x = ( 3 4 ) − 1 ⇒ 3 4 x = 3 − 4 ⇒ 4 x = − 4 ⇒ x = − 4 4 ⇒ x = − 1.
Given,
⇒ ( 10 ) 1 y = 0.0001 ⇒ ( 10 ) 1 y = 1 10 4 ⇒ ( 10 ) 1 y = 10 − 4 ⇒ 1 y = − 4 ⇒ y = − 1 4 . \Rightarrow (10)^{\dfrac{1}{y}} = 0.0001 \\[1em] \Rightarrow (10)^{\dfrac{1}{y}} = \dfrac{1}{10^4} \\[1em] \Rightarrow (10)^{\dfrac{1}{y}} = 10^{-4} \\[1em] \Rightarrow \dfrac{1}{y} = -4 \\[1em] \Rightarrow y = -\dfrac{1}{4}. ⇒ ( 10 ) y 1 = 0.0001 ⇒ ( 10 ) y 1 = 1 0 4 1 ⇒ ( 10 ) y 1 = 1 0 − 4 ⇒ y 1 = − 4 ⇒ y = − 4 1 .
Substituting value of x and y in 2-x × 16y , we get :
⇒ 2 − x × 16 y = 2 − ( − 1 ) × 16 − 1 4 = 2 1 × ( 2 4 ) − 1 4 = 2 × 2 4 × − 1 4 = 2 × 2 − 1 = 2 × 1 2 = 1. \Rightarrow 2^{-x} \times 16^y = 2^{-(-1)} \times 16^{-\dfrac{1}{4}} \\[1em] = 2^1 \times (2^4)^{-\dfrac{1}{4}} \\[1em] = 2 \times 2^{4 \times -\dfrac{1}{4}} \\[1em] = 2 \times 2^{-1} \\[1em] = 2 \times \dfrac{1}{2} \\[1em] = 1. ⇒ 2 − x × 1 6 y = 2 − ( − 1 ) × 1 6 − 4 1 = 2 1 × ( 2 4 ) − 4 1 = 2 × 2 4 ×− 4 1 = 2 × 2 − 1 = 2 × 2 1 = 1.
Hence, 2-x × 16y = 1.
If (am )n = am .an , find the value of :
m(n - 1) - (n - 1)
Answer
Given,
⇒ (am )n = am .an
⇒ amn = am + n
⇒ mn = m + n
⇒ mn - m = n
⇒ m(n - 1) = n
⇒ m = n n − 1 \dfrac{n}{n - 1} n − 1 n .......(1)
Substituting value of m from equation (1) in m(n - 1) - (n - 1), we get :
⇒ m ( n − 1 ) − ( n − 1 ) = n n − 1 × ( n − 1 ) − ( n − 1 ) = n − ( n − 1 ) = n − n + 1 = 1. \Rightarrow m(n - 1) - (n - 1) = \dfrac{n}{n - 1} \times (n - 1) - (n - 1) \\[1em] = n - (n - 1) \\[1em] = n - n + 1 \\[1em] = 1. ⇒ m ( n − 1 ) − ( n − 1 ) = n − 1 n × ( n − 1 ) − ( n − 1 ) = n − ( n − 1 ) = n − n + 1 = 1.
Hence, m(n - 1) - (n - 1) = 1.
If m = 15 3 and n = 14 3 \sqrt[3]{15} \text{ and } n = \sqrt[3]{14} 3 15 and n = 3 14 , find the value of m - n - 1 m 2 + m n + n 2 \dfrac{1}{m^2 + mn + n^2} m 2 + mn + n 2 1 .
Answer
Given,
⇒ m = 15 3 and n = 14 3 ⇒ m = ( 15 ) 1 3 and n = ( 14 ) 1 3 \Rightarrow m = \sqrt[3]{15} \text{ and } n = \sqrt[3]{14} \\[1em] \Rightarrow m = (15)^{\dfrac{1}{3}} \text{ and } n = (14)^{\dfrac{1}{3}} ⇒ m = 3 15 and n = 3 14 ⇒ m = ( 15 ) 3 1 and n = ( 14 ) 3 1
Cubing both sides, we get :
⇒ m 3 = [ ( 15 ) 1 3 ] 3 and n 3 = [ ( 14 ) 1 3 ] 3 ⇒ m 3 = ( 15 ) 1 3 × 3 and n 3 = ( 14 ) 1 3 × 3 ⇒ m 3 = 15 and n 3 = 14. \Rightarrow m^3 = [(15)^{\dfrac{1}{3}}]^3 \text{ and } n^3 = [(14)^{\dfrac{1}{3}}]^3 \\[1em] \Rightarrow m^3 = (15)^{\dfrac{1}{3} \times 3} \text{ and } n^3 = (14)^{\dfrac{1}{3} \times 3} \\[1em] \Rightarrow m^3 = 15 \text{ and } n^3 = 14. ⇒ m 3 = [( 15 ) 3 1 ] 3 and n 3 = [( 14 ) 3 1 ] 3 ⇒ m 3 = ( 15 ) 3 1 × 3 and n 3 = ( 14 ) 3 1 × 3 ⇒ m 3 = 15 and n 3 = 14.
Simplifying the expression m − n − 1 m 2 + m n + n 2 m - n - \dfrac{1}{m^2 + mn + n^2} m − n − m 2 + mn + n 2 1 , we get :
⇒ m ( m 2 + m n + n 2 ) − n ( m 2 + m n + n 2 ) − 1 m 2 + m n + n 2 ⇒ m 3 + m 2 n + m n 2 − n m 2 − m n 2 − n 3 − 1 m 2 + m n + n 2 ⇒ m 3 − n 3 − 1 m 2 + m n + n 2 \Rightarrow \dfrac{m(m^2 + mn + n^2) - n(m^2 + mn + n^2) - 1}{m^2 + mn + n^2} \\[1em] \Rightarrow \dfrac{m^3 + m^2n + mn^2 - nm^2 - mn^2 - n^3 - 1}{m^2 + mn + n^2} \\[1em] \Rightarrow \dfrac{m^3 - n^3 - 1}{m^2 + mn + n^2} \\[1em] ⇒ m 2 + mn + n 2 m ( m 2 + mn + n 2 ) − n ( m 2 + mn + n 2 ) − 1 ⇒ m 2 + mn + n 2 m 3 + m 2 n + m n 2 − n m 2 − m n 2 − n 3 − 1 ⇒ m 2 + mn + n 2 m 3 − n 3 − 1
Substituting value of m3 and n3 in above equation, we get :
⇒ 15 − 14 − 1 m 2 + m n + n 2 ⇒ 1 − 1 m 2 + m n + n 2 ⇒ 0 m 2 + m n + n 2 ⇒ 0. \Rightarrow \dfrac{15 - 14 - 1}{m^2 + mn + n^2} \\[1em] \Rightarrow \dfrac{1 - 1}{m^2 + mn + n^2} \\[1em] \Rightarrow \dfrac{0}{m^2 + mn + n^2} \\[1em] \Rightarrow 0. ⇒ m 2 + mn + n 2 15 − 14 − 1 ⇒ m 2 + mn + n 2 1 − 1 ⇒ m 2 + mn + n 2 0 ⇒ 0.
Hence, m − n − 1 m 2 + m n + n 2 = 0 m - n - \dfrac{1}{m^2 + mn + n^2} = 0 m − n − m 2 + mn + n 2 1 = 0
Evaluate :
( x q x r ) 1 q r × ( x r x p ) 1 r p × ( x p x q ) 1 p q \Big(\dfrac{x^q}{x^r}\Big)^{\dfrac{1}{qr}} \times \Big(\dfrac{x^r}{x^p}\Big)^{\dfrac{1}{rp}} \times \Big(\dfrac{x^p}{x^q}\Big)^{\dfrac{1}{pq}} ( x r x q ) q r 1 × ( x p x r ) r p 1 × ( x q x p ) pq 1
Answer
Simplifying the expression :
⇒ ( x q x r ) 1 q r × ( x r x p ) 1 r p × ( x p x q ) 1 p q = ( x q − r ) 1 q r × ( x r − p ) 1 r p × ( x p − q ) 1 p q = ( x ) q − r q r × ( x ) r − p r p × ( x ) p − q p q = x ( q − r q r + r − p r p + p − q p q ) = x ( p ( q − r ) + q ( r − p ) + r ( p − q ) p q r ) = x ( p q − p r + q r − q p + r p − r q p q r ) = x ( 0 p q r ) = x 0 = 1. \Rightarrow \Big(\dfrac{x^q}{x^r}\Big)^{\dfrac{1}{qr}} \times \Big(\dfrac{x^r}{x^p}\Big)^{\dfrac{1}{rp}} \times \Big(\dfrac{x^p}{x^q}\Big)^{\dfrac{1}{pq}} \\[1em] = (x^{q - r})^{\dfrac{1}{qr}} \times (x^{r - p})^{\dfrac{1}{rp}} \times (x^{p - q})^{\dfrac{1}{pq}} \\[1em] = (x)^{\dfrac{q - r}{qr}} \times (x)^{\dfrac{r - p}{rp}} \times (x)^{\dfrac{p - q}{pq}} \\[1em] = x^{\Big(\dfrac{q - r}{qr} + \dfrac{r - p}{rp} + \dfrac{p - q}{pq}\Big)} \\[1em] = x^{\Big(\dfrac{p(q - r) + q(r - p) + r(p - q)}{pqr}\Big)} \\[1em] = x^{\Big(\dfrac{pq - pr + qr - qp + rp - rq}{pqr}\Big)} \\[1em] = x^{\Big(\dfrac{0}{pqr}\Big)} \\[1em] = x^0 \\[1em] = 1. ⇒ ( x r x q ) q r 1 × ( x p x r ) r p 1 × ( x q x p ) pq 1 = ( x q − r ) q r 1 × ( x r − p ) r p 1 × ( x p − q ) pq 1 = ( x ) q r q − r × ( x ) r p r − p × ( x ) pq p − q = x ( q r q − r + r p r − p + pq p − q ) = x ( pq r p ( q − r ) + q ( r − p ) + r ( p − q ) ) = x ( pq r pq − p r + q r − qp + r p − r q ) = x ( pq r 0 ) = x 0 = 1.
Hence, ( x q x r ) 1 q r × ( x r x p ) 1 r p × ( x p x q ) 1 p q = 1 \Big(\dfrac{x^q}{x^r}\Big)^{\dfrac{1}{qr}} \times \Big(\dfrac{x^r}{x^p}\Big)^{\dfrac{1}{rp}} \times \Big(\dfrac{x^p}{x^q}\Big)^{\dfrac{1}{pq}} = 1 ( x r x q ) q r 1 × ( x p x r ) r p 1 × ( x q x p ) pq 1 = 1 .
Prove that :
a − 1 a − 1 + b − 1 + a − 1 a − 1 − b − 1 = 2 b 2 b 2 − a 2 \dfrac{a^{-1}}{a^{-1} + b^{-1}} + \dfrac{a^{-1}}{a^{-1} - b^{-1}} = \dfrac{2b^2}{b^2 - a^2} a − 1 + b − 1 a − 1 + a − 1 − b − 1 a − 1 = b 2 − a 2 2 b 2
Answer
To prove:
a − 1 a − 1 + b − 1 + a − 1 a − 1 − b − 1 = 2 b 2 b 2 − a 2 \dfrac{a^{-1}}{a^{-1} + b^{-1}} + \dfrac{a^{-1}}{a^{-1} - b^{-1}} = \dfrac{2b^2}{b^2 - a^2} a − 1 + b − 1 a − 1 + a − 1 − b − 1 a − 1 = b 2 − a 2 2 b 2
Solving L.H.S. of the above equation, we get :
⇒ a − 1 a − 1 + b − 1 + a − 1 a − 1 − b − 1 = 1 a 1 a + 1 b + 1 a 1 a − 1 b = 1 a b + a a b + 1 a b − a a b = a b a ( b + a ) + a b a ( b − a ) = b b + a + b b − a = b ( b − a ) + b ( b + a ) ( b + a ) ( b − a ) = b 2 − b a + b 2 + a b b 2 − a 2 = 2 b 2 b 2 − a 2 . \Rightarrow \dfrac{a^{-1}}{a^{-1} + b^{-1}} + \dfrac{a^{-1}}{a^{-1} - b^{-1}} = \dfrac{\dfrac{1}{a}}{\dfrac{1}{a} + \dfrac{1}{b}} + \dfrac{\dfrac{1}{a}}{\dfrac{1}{a} - \dfrac{1}{b}} \\[1em] = \dfrac{\dfrac{1}{a}}{\dfrac{b + a}{ab}} + \dfrac{\dfrac{1}{a}}{\dfrac{b - a}{ab}} \\[1em] = \dfrac{ab}{a(b + a)} + \dfrac{ab}{a(b - a)} \\[1em] = \dfrac{b}{b + a} + \dfrac{b}{b - a} \\[1em] = \dfrac{b(b - a) + b(b + a)}{(b + a)(b - a)} \\[1em] = \dfrac{b^2 - ba + b^2 + ab}{b^2 - a^2} \\[1em] = \dfrac{2b^2}{b^2 - a^2}. ⇒ a − 1 + b − 1 a − 1 + a − 1 − b − 1 a − 1 = a 1 + b 1 a 1 + a 1 − b 1 a 1 = ab b + a a 1 + ab b − a a 1 = a ( b + a ) ab + a ( b − a ) ab = b + a b + b − a b = ( b + a ) ( b − a ) b ( b − a ) + b ( b + a ) = b 2 − a 2 b 2 − ba + b 2 + ab = b 2 − a 2 2 b 2 .
Since, L.H.S. = R.H.S. = 2 b 2 b 2 − a 2 \dfrac{2b^2}{b^2 - a^2} b 2 − a 2 2 b 2
Hence, proved that a − 1 a − 1 + b − 1 + a − 1 a − 1 − b − 1 = 2 b 2 b 2 − a 2 \dfrac{a^{-1}}{a^{-1} + b^{-1}} + \dfrac{a^{-1}}{a^{-1} - b^{-1}} = \dfrac{2b^2}{b^2 - a^2} a − 1 + b − 1 a − 1 + a − 1 − b − 1 a − 1 = b 2 − a 2 2 b 2 .
Prove that :
a + b + c a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 = a b c \dfrac{a + b + c}{a^{-1} b^{-1} + b^{-1}c^{-1} + c^{-1}a^{-1}} = abc a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 a + b + c = ab c
Answer
To prove:
a + b + c a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 = a b c \dfrac{a + b + c}{a^{-1} b^{-1} + b^{-1}c^{-1} + c^{-1}a^{-1}} = abc a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 a + b + c = ab c
Solving L.H.S. of the above equation, we get :
⇒ a + b + c a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 = a + b + c 1 a b + 1 b c + 1 c a = a + b + c c + a + b a b c = a b c ( a + b + c ) a + b + c = a b c . \Rightarrow \dfrac{a + b + c}{a^{-1} b^{-1} + b^{-1}c^{-1} + c^{-1}a^{-1}} = \dfrac{a + b + c}{\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ca}} \\[1em] = \dfrac{a + b + c}{\dfrac{c + a + b}{abc}} \\[1em] = \dfrac{abc(a + b + c)}{a + b + c} \\[1em] = abc. ⇒ a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 a + b + c = ab 1 + b c 1 + c a 1 a + b + c = ab c c + a + b a + b + c = a + b + c ab c ( a + b + c ) = ab c .
Since, L.H.S. = R.H.S. = abc.
Hence, proved that a + b + c a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 = a b c \dfrac{a + b + c}{a^{-1} b^{-1} + b^{-1}c^{-1} + c^{-1}a^{-1}} = abc a − 1 b − 1 + b − 1 c − 1 + c − 1 a − 1 a + b + c = ab c .