The value of log 2 8 \text{log}_{\sqrt{2}} \space 8 log 2 8 is :
6
4
3
8
Answer
Let value of log 2 8 \text{log}_{\sqrt{2}} \space 8 log 2 8 be x.
∴ log 2 8 = x ⇒ ( 2 ) x = 8 ⇒ ( 2 ) x = ( 2 ) 6 ⇒ x = 6. \therefore \text{log}_{\sqrt{2}} \space 8 = x \\[1em] \Rightarrow (\sqrt{2})^x = 8 \\[1em] \Rightarrow (\sqrt{2})^x = (\sqrt{2})^6 \\[1em] \Rightarrow x = 6. ∴ log 2 8 = x ⇒ ( 2 ) x = 8 ⇒ ( 2 ) x = ( 2 ) 6 ⇒ x = 6.
Hence, Option 1 is the correct option.
If log4 x = 2.5, the value of x is :
12.5
32
10
20
Answer
Given,
⇒ log4 x = 2.5
⇒ x = 42.5
⇒ x = 42 + 0.5
⇒ x = 42 .40.5
⇒ x = 16. ( 4 ) 1 2 16.(4)^{\dfrac{1}{2}} 16. ( 4 ) 2 1
⇒ x = 16. ( 2 2 ) 1 2 16.(2^2)^{\dfrac{1}{2}} 16. ( 2 2 ) 2 1
⇒ x = 16 × 2 = 32.
Hence, Option 2 is the correct option.
If log 3 x = 4 \text{log}_{\sqrt{3}} \space x = 4 log 3 x = 4 , the value of x is :
12
6
9
24
Answer
Given,
⇒ log 3 x = 4 ⇒ x = ( 3 ) 4 ⇒ x = 9. \Rightarrow \text{log}_{\sqrt{3}} \space x = 4 \\[1em] \Rightarrow x = (\sqrt{3})^4 \\[1em] \Rightarrow x = 9. ⇒ log 3 x = 4 ⇒ x = ( 3 ) 4 ⇒ x = 9.
Hence, Option 3 is the correct option.
If logx 64 = 1.5, the value of x is :
48
32
64
16
Answer
Given,
⇒ logx 64 = 1.5
⇒ 64 = x1.5
⇒ 64 = (x)0.5 + 0.5 + 0.5
⇒ 64 = x0.5 .x0.5 .x0.5
⇒ 64 = x × x × x \sqrt{x} \times \sqrt{x} \times \sqrt{x} x × x × x
⇒ 4 3 = ( x ) 3 4^3 = (\sqrt{x})^3 4 3 = ( x ) 3
⇒ x = 4 \sqrt{x} = 4 x = 4
Squaring both sides, we get :
⇒ ( x ) 2 = 4 2 (\sqrt{x})^2 = 4^2 ( x ) 2 = 4 2
⇒ x = 16.
Hence, Option 4 is the correct option.
If log2 (x2 - 4) = 5, the value of x is :
±6
6
-6
±12
Answer
Given,
⇒ log2 (x2 - 4) = 5
⇒ x2 - 4 = 25
⇒ x2 - 4 = 32
⇒ x2 = 32 + 4
⇒ x2 = 36
⇒ x = 36 \sqrt{36} 36
⇒ x = ± 6 \pm 6 ± 6 .
Hence, Option 1 is the correct option.
If log10 x = a, the value of 10a - 1 in terms of x is :
10x
x 10 \dfrac{x}{10} 10 x
10 x \dfrac{10}{x} x 10
1 10 x \dfrac{1}{10x} 10 x 1
Answer
Given,
⇒ log10 x = a
⇒ x = 10a .......(1)
We need to find the value of:
⇒ 10a - 1
⇒ 10a .10-1
Substituting value of 10a from equation (1), in above equation, we get :
⇒ x.10-1
⇒ x 10 \dfrac{x}{10} 10 x .
Hence, Option 2 is the correct option.
Express each of the following in logarithmic form :
(i) 53 = 125
(ii) 3-2 = 1 9 \dfrac{1}{9} 9 1
(iii) 10-3 = 0.001
(iv) ( 81 ) 3 4 = 27 (81)^{\dfrac{3}{4}} = 27 ( 81 ) 4 3 = 27
Answer
(i) Given,
⇒ 53 = 125
⇒ log5 125 = 3.
Hence, required logarithmic form is log5 125 = 3.
(ii) Given,
⇒ 3 − 2 = 1 9 ⇒ log 3 1 9 = − 2. \Rightarrow 3^{-2} = \dfrac{1}{9} \\[1em] \Rightarrow \text{log}_{3} \space {\dfrac{1}{9}} = -2. ⇒ 3 − 2 = 9 1 ⇒ log 3 9 1 = − 2.
Hence, required logarithmic form is log 3 1 9 = − 2. \text{log}_{3} \space {\dfrac{1}{9}} = -2. log 3 9 1 = − 2.
(iii) Given,
⇒ 10-3 = 0.001
⇒ log10 0.001 = -3.
Hence, required logarithmic form is log10 0.001 = -3.
(iv) Given,
⇒ ( 81 ) 3 4 = 27 ⇒ log 81 27 = 3 4 . \Rightarrow (81)^{\dfrac{3}{4}} = 27 \\[1em] \Rightarrow \text{log}_{81} \space 27 = \dfrac{3}{4}. ⇒ ( 81 ) 4 3 = 27 ⇒ log 81 27 = 4 3 .
Hence, required logarithmic form is log 81 27 = 3 4 . \text{log}_{81} \space 27 = \dfrac{3}{4}. log 81 27 = 4 3 .
Express each of the following in exponential form :
(i) log8 0.125 = -1
(ii) log10 0.01 = -2
(iii) loga A = x
(iv) log10 1 = 0
Answer
(i) Given,
⇒ log8 0.125 = -1
⇒ 8-1 = 0.125
Hence, required exponential form is 8-1 = 0.125
(ii) Given,
⇒ log10 0.01 = -2
⇒ 10-2 = 0.01
Hence, required exponential form is 10-2 = 0.01
(iii) Given,
⇒ loga A = x
⇒ ax = A.
Hence, required exponential form is ax = A.
(iv) Given,
⇒ log10 1 = 0
⇒ 100 = 1.
Hence, required exponential form is 100 = 1.
Solve for x : log10 x = -2.
Answer
Given,
⇒ log10 x = -2
⇒ x = 10-2 = 1 100 \dfrac{1}{100} 100 1 = 0.01
Hence, x = 0.01
Find the logarithm of 100 to the base 10.
Answer
Let,
⇒ log10 100 = x
⇒ 100 = 10x
⇒ 102 = 10x
⇒ x = 2.
Hence, required value = 2.
Find the logarithm of 0.1 to the base 10.
Answer
Let,
⇒ log10 0.1 = x
⇒ (10)x = 0.1
⇒ 10x = 1 10 \dfrac{1}{10} 10 1
⇒ 10x = (10-1 )
⇒ x = -1.
Hence, required value = -1.
Find the logarithm of 0.001 to the base 10.
Answer
Let,
⇒ log10 (0.001) = x
⇒ (10)x = 0.001
⇒ 10 x = 1 1000 10^x = \dfrac{1}{1000} 1 0 x = 1000 1
⇒ 10x = 1 10 3 \dfrac{1}{10^3} 1 0 3 1
⇒ 10x = 10-3
⇒ x = -3.
Hence, required value = -3.
Find the logarithm of 32 to the base 4.
Answer
Let,
⇒ log4 32 = x
⇒ 32 = 4x
⇒ (2)5 = (22 )x
⇒ (2)5 = (2)2x
⇒ 2x = 5
⇒ x = 5 2 \dfrac{5}{2} 2 5 .
Hence, required value = 5 2 \dfrac{5}{2} 2 5 .
Find the logarithm of 0.125 to the base 2.
Answer
Let,
⇒ log2 (0.125) = x
⇒ 0.125 = 2x
⇒ 125 1000 = 2 x \dfrac{125}{1000} = 2^x 1000 125 = 2 x
⇒ 1 8 = 2 x \dfrac{1}{8} = 2^x 8 1 = 2 x
⇒ 1 2 3 = 2 x \dfrac{1}{2^3} = 2^x 2 3 1 = 2 x
⇒ 2-3 = 2x
⇒ x = -3.
Hence, required value = -3.
Find the logarithm of 1 16 \dfrac{1}{16} 16 1 to the base 4.
Answer
Let,
⇒ log ( 4 ) 1 16 = x ⇒ 1 16 = 4 x ⇒ 1 4 2 = 4 x ⇒ 4 x = 4 − 2 ⇒ x = − 2. \Rightarrow \text{log}_{(4)} \space \dfrac{1}{16} = x \\[1em] \Rightarrow \dfrac{1}{16} = 4^x\\[1em] \Rightarrow \dfrac{1}{4^2} = 4^x \\[1em] \Rightarrow 4^x = 4^{-2} \\[1em] \Rightarrow x = -2. ⇒ log ( 4 ) 16 1 = x ⇒ 16 1 = 4 x ⇒ 4 2 1 = 4 x ⇒ 4 x = 4 − 2 ⇒ x = − 2.
Hence, required value = -2.
Find the logarithm of 27 to the base 9.
Answer
Let,
⇒ log9 27 = x
⇒ 27 = 9x
⇒ 33 = (32 )x
⇒ 33 = 32x
⇒ 2x = 3
⇒ x = 3 2 \dfrac{3}{2} 2 3 .
Hence, required value = 3 2 \dfrac{3}{2} 2 3 .
Find the logarithm of 1 81 \dfrac{1}{81} 81 1 to the base 27.
Answer
Let,
⇒ log 27 ( 1 81 ) = x ⇒ 1 81 = 27 x ⇒ ( 1 3 4 ) = ( 3 3 ) x ⇒ 3 − 4 = 3 3 x ⇒ 3 x = − 4 ⇒ x = − 4 3 . \Rightarrow \text{log}_{27} \space \Big(\dfrac{1}{81}\Big) = x \\[1em] \Rightarrow \dfrac{1}{81} = 27^x \\[1em] \Rightarrow \Big(\dfrac{1}{3^4}\Big) = (3^3)^x \\[1em] \Rightarrow 3^{-4} = 3^{3x} \\[1em] \Rightarrow 3x = -4 \\[1em] \Rightarrow x = -\dfrac{4}{3}. ⇒ log 27 ( 81 1 ) = x ⇒ 81 1 = 2 7 x ⇒ ( 3 4 1 ) = ( 3 3 ) x ⇒ 3 − 4 = 3 3 x ⇒ 3 x = − 4 ⇒ x = − 3 4 .
Hence, required value = − 4 3 -\dfrac{4}{3} − 3 4 .
State, true or false :
If log10 x = a, then 10x = a
Answer
Given,
⇒ log10 x = a
⇒ 10a = x
Hence, the statement "If log10 x = a, then 10x = a" is false.
State, true or false :
If xy = z, then y = logz x
Answer
Given,
⇒ xy = z
⇒ logx z = y.
Hence, the statement "If xy = z, then y = logz x" is false.
State, true or false :
log2 8 = 3 and log8 2 = 1 3 \dfrac{1}{3} 3 1 .
Answer
Given,
⇒ log2 8 = 3
⇒ 23 = 8
⇒ 8 = 8, which is true.
Given,
⇒ log8 2 = 1 3 \dfrac{1}{3} 3 1
⇒ 8 1 3 8^{\dfrac{1}{3}} 8 3 1 = 2
⇒ ( 2 3 ) 1 3 (2^3)^{\dfrac{1}{3}} ( 2 3 ) 3 1 = 2
⇒ 2 = 2, which is true.
Hence, the statement "log2 8 = 3 and log8 2 = 1 3 \dfrac{1}{3} 3 1 " is True.
Find x, if log3 x = 0
Answer
Given,
⇒ log3 x = 0
⇒ x = 30
⇒ x = 1.
Hence, x = 1.
Find x, if logx 2 = -1
Answer
Given,
⇒ logx 2 = -1
⇒ (x)-1 = 2
⇒ 1 x = 2 \dfrac{1}{x} = 2 x 1 = 2
⇒ x = 1 2 \dfrac{1}{2} 2 1 .
Hence, x = 1 2 \dfrac{1}{2} 2 1 .
Find x, if log9 243 = x
Answer
Given,
⇒ log9 243 = x
⇒ 243 = 9x
⇒ 35 = (32 )x
⇒ 35 = 32x
⇒ 2x = 5
⇒ x = 5 2 = 2 1 2 \dfrac{5}{2} = 2\dfrac{1}{2} 2 5 = 2 2 1 .
Hence, x = 2 1 2 2\dfrac{1}{2} 2 2 1 .
Find x, if log5 (x - 7) = 1
Answer
Given,
⇒ log5 (x - 7) = 1
⇒ x - 7 = 51
⇒ x - 7 = 5
⇒ x = 5 + 7 = 12.
Hence, x = 12.
Find x, if log4 32 = x - 4
Answer
Given,
⇒ log4 32 = x - 4
⇒ 32 = 4x - 4
⇒ 25 = (22 )x - 4
⇒ 25 = 22(x - 4)
⇒ 25 = 22x - 8
⇒ 5 = 2x - 8
⇒ 2x = 8 + 5
⇒ 2x = 13
⇒ x = 13 2 = 6 1 2 \dfrac{13}{2} = 6\dfrac{1}{2} 2 13 = 6 2 1 .
Hence, x = 6 1 2 6\dfrac{1}{2} 6 2 1 .
Find x, if log7 (2x2 - 1) = 2
Answer
Given,
⇒ log7 (2x2 - 1) = 2
⇒ 2x2 - 1 = 72
⇒ 2x2 - 1 = 49
⇒ 2x2 = 49 + 1
⇒ 2x2 = 50
⇒ x2 = 50 2 \dfrac{50}{2} 2 50
⇒ x2 = 25
⇒ x = 25 = ± 5 \sqrt{25} = \pm 5 25 = ± 5 .
Hence, x = ± 5 \pm 5 ± 5 .
Evaluate log10 0.01
Answer
Let,
⇒ log 10 ( 0.01 ) = x ⇒ 0.01 = 10 x ⇒ 1 100 = 10 x ⇒ 1 10 2 = 10 x ⇒ 10 − 2 = 10 x ⇒ x = − 2. \Rightarrow \text{log}_{10} \space (0.01) = x \\[1em] \Rightarrow 0.01 = 10^x \\[1em] \Rightarrow \dfrac{1}{100} = 10^x \\[1em] \Rightarrow \dfrac{1}{10^2} = 10^x \\[1em] \Rightarrow 10^{-2} = 10^x \\[1em] \Rightarrow x = -2. ⇒ log 10 ( 0.01 ) = x ⇒ 0.01 = 1 0 x ⇒ 100 1 = 1 0 x ⇒ 1 0 2 1 = 1 0 x ⇒ 1 0 − 2 = 1 0 x ⇒ x = − 2.
Hence, log10 0.01 = -2.
Evaluate log2 (1 ÷ 8)
Answer
Let,
⇒ log 2 ( 1 ÷ 8 ) = x ⇒ 1 ÷ 8 = 2 x ⇒ 1 8 = 2 x ⇒ 1 2 3 = 2 x ⇒ 2 − 3 = 2 x ⇒ x = − 3. \Rightarrow \text{log}_{2} \space (1 ÷ 8) = x \\[1em] \Rightarrow 1 ÷ 8 = 2^x \\[1em] \Rightarrow \dfrac{1}{8} = 2^x \\[1em] \Rightarrow \dfrac{1}{2^3} = 2^x \\[1em] \Rightarrow 2^{-3} = 2^x \\[1em] \Rightarrow x = -3. ⇒ log 2 ( 1 ÷ 8 ) = x ⇒ 1 ÷ 8 = 2 x ⇒ 8 1 = 2 x ⇒ 2 3 1 = 2 x ⇒ 2 − 3 = 2 x ⇒ x = − 3.
Hence, log2 (1 ÷ 8) = -3.
Evaluate log5 1
Answer
Let,
⇒ log5 1 = x
⇒ 1 = 5x
⇒ 50 = 5x
⇒ x = 0.
Hence, log5 1 = 0.
Evaluate log5 125
Answer
Let,
⇒ log5 125 = x
⇒ 125 = 5x
⇒ 53 = 5x
⇒ x = 3.
Hence, log5 125 = 3.
Evaluate log16 8
Answer
Let,
⇒ log16 8 = x
⇒ 8 = 16x
⇒ 23 = (24 )x
⇒ 23 = 24x
⇒ 4x = 3
⇒ x = 3 4 \dfrac{3}{4} 4 3 .
Hence, log16 8 = 3 4 \dfrac{3}{4} 4 3 .
Evaluate log0.5 16
Answer
Let,
⇒ log 0.5 16 = x ⇒ 16 = ( 0.5 ) x ⇒ 16 = ( 5 10 ) x ⇒ 2 4 = ( 1 2 ) x ⇒ 2 4 = ( 2 − 1 ) x ⇒ 2 4 = 2 − x ⇒ − x = 4 ⇒ x = − 4. \Rightarrow \text{log}_{0.5} \space 16 = x \\[1em] \Rightarrow 16 = (0.5)^x \\[1em] \Rightarrow 16 = \Big(\dfrac{5}{10}\Big)^x \\[1em] \Rightarrow 2^4 = \Big(\dfrac{1}{2}\Big)^x \\[1em] \Rightarrow 2^4 = (2^{-1})^x \\[1em] \Rightarrow 2^4 = 2^{-x} \\[1em] \Rightarrow -x = 4 \\[1em] \Rightarrow x = -4. ⇒ log 0.5 16 = x ⇒ 16 = ( 0.5 ) x ⇒ 16 = ( 10 5 ) x ⇒ 2 4 = ( 2 1 ) x ⇒ 2 4 = ( 2 − 1 ) x ⇒ 2 4 = 2 − x ⇒ − x = 4 ⇒ x = − 4.
Hence, log0.5 16 = -4.
If loga m = n, express an - 1 in terms of a and m.
Answer
Given,
⇒ loga m = n
⇒ m = an
We need to find the value of:
an - 1
⇒ an .a-1
⇒ m.a-1
⇒ m a \dfrac{m}{a} a m .
Hence, an - 1 = m a \dfrac{m}{a} a m .
Given log2 x = m and log5 y = n.
(i) Express 2m - 3 in terms of x.
(ii) Express 53n + 2 in terms of y.
Answer
Given,
⇒ log2 x = m and log5 y = n
⇒ x = 2m ......(1)
and,
⇒ y = 5n .......(2)
(i) Given,
⇒ 2m - 3
⇒ 2m .2-3
⇒ 2 m 2 3 \dfrac{2^m}{2^3} 2 3 2 m
Substituting value of x from equation (1) in above equation, we get :
⇒ x 8 \dfrac{x}{8} 8 x .
Hence, 2m - 3 = x 8 \dfrac{x}{8} 8 x .
(ii) Given,
⇒ 53n + 2
⇒ (5n )3 .52
Substituting value of 5n from equation (2) in above equation, we get :
⇒ 25y3
Hence, 53n + 2 = 25y3 .
The value of 3 + log5 5-2
1
5
3 - 1 5 \dfrac{1}{5} 5 1
3 + 1 5 \dfrac{1}{5} 5 1
Answer
Given,
⇒ 3 + log5 5-2
⇒ 3 + (-2log5 5)
⇒ 3 + (-2 × 1)
⇒ 3 - 2
⇒ 1.
Hence, Option 1 is the correct option.
The value of log5 75 - log5 3 is :
72
2
25
5
Answer
Given,
⇒ log 5 75 − log 5 3 ⇒ log 5 75 3 ⇒ log 5 25 ⇒ log 5 5 2 ⇒ 2 × log 5 5 ⇒ 2 × 1 ⇒ 2. \Rightarrow \text{log}_{5} \space 75 - \text{log}_{5} \space 3 \\[1em] \Rightarrow \text{log}_{5} \space {\dfrac{75}{3}} \\[1em] \Rightarrow \text{log}_{5} \space 25 \\[1em] \Rightarrow \text{log}_{5} \space 5^2 \\[1em] \Rightarrow 2 \times \text{log}_{5} \space 5 \\[1em] \Rightarrow 2 \times 1 \\[1em] \Rightarrow 2. ⇒ log 5 75 − log 5 3 ⇒ log 5 3 75 ⇒ log 5 25 ⇒ log 5 5 2 ⇒ 2 × log 5 5 ⇒ 2 × 1 ⇒ 2.
Hence, Option 2 is the correct option.
The value of log5 125 ÷ log5 5 \sqrt{5} 5 is :
5
120
6
60
Answer
Given,
⇒ log 5 125 ÷ log 5 5 ⇒ log 5 5 3 ÷ log 5 ( 5 ) 1 2 ⇒ 3 × log 5 5 ÷ 1 2 × log 5 5 ⇒ 3 × 1 ÷ 1 2 × 1 ⇒ 3 ÷ 1 2 ⇒ 3 × 2 ⇒ 6. \Rightarrow \text{log}_{5} \space 125 ÷ \text{log}_{5} \space \sqrt{5} \\[1em] \Rightarrow \text{log}_{5} \space 5^3 ÷ \text{log}_{5} \space (5)^{\dfrac{1}{2}} \\[1em] \Rightarrow 3 \times \text{log}_{5} \space 5 ÷ \dfrac{1}{2} \times \text{log}_{5} \space 5 \\[1em] \Rightarrow 3 \times 1 ÷ \dfrac{1}{2} \times 1 \\[1em] \Rightarrow 3 ÷ \dfrac{1}{2} \\[1em] \Rightarrow 3 \times 2 \\[1em] \Rightarrow 6. ⇒ log 5 125 ÷ log 5 5 ⇒ log 5 5 3 ÷ log 5 ( 5 ) 2 1 ⇒ 3 × log 5 5 ÷ 2 1 × log 5 5 ⇒ 3 × 1 ÷ 2 1 × 1 ⇒ 3 ÷ 2 1 ⇒ 3 × 2 ⇒ 6.
Hence, Option 3 is the correct option.
The value of ( x ) 4log x a (\sqrt{x})^{\text{4log}_{x} \space a} ( x ) 4log x a is :
a
ax
1 2 a x \dfrac{1}{2}ax 2 1 a x
a2
Answer
Given,
⇒ ( x ) 4log x a ⇒ ( x 1 2 ) 4log x a ⇒ ( x ) 1 2 × 4log x a ⇒ ( x ) 2log x a ⇒ ( x ) log x a 2 ⇒ a 2 . \Rightarrow (\sqrt{x})^{\text{4log}_{x} \space a} \\[1em] \Rightarrow (x^{\dfrac{1}{2}})^{\text{4log}_{x} \space a} \\[1em] \Rightarrow (x)^{\dfrac{1}{2} \times \text{4log}_{x} \space a} \\[1em] \Rightarrow (x)^{\text{2log}_{x} \space a} \\[1em] \Rightarrow (x)^{\text{log}_{x} \space a^2} \\[1em] \Rightarrow a^2. ⇒ ( x ) 4log x a ⇒ ( x 2 1 ) 4log x a ⇒ ( x ) 2 1 × 4log x a ⇒ ( x ) 2log x a ⇒ ( x ) log x a 2 ⇒ a 2 .
Hence, Option 4 is the correct option.
If log 125 log 1 5 \dfrac{\text{log }125}{\text{log } \dfrac{1}{5}} log 5 1 log 125 = log x, the value of x is :
0.001
0.01
25
5
Answer
Given,
⇒ log 125 log 1 5 = log x ⇒ log 5 3 log 5 − 1 = log x ⇒ 3 log 5 − 1 log 5 = log x ⇒ − 3 = log x ⇒ x = 10 − 3 ⇒ x = 1 10 3 ⇒ x = 1 1000 ⇒ x = 0.001 \Rightarrow \dfrac{\text{log }125}{\text{log } \dfrac{1}{5}} = \text{log x} \\[1em] \Rightarrow \dfrac{\text{log }5^3}{\text{log } 5^{-1}} = \text{log x} \\[1em] \Rightarrow \dfrac{3\text{log }5}{-1\text{log } 5} = \text{log x} \\[1em] \Rightarrow -3 = \text{log x} \\[1em] \Rightarrow x = 10^{-3} \\[1em] \Rightarrow x = \dfrac{1}{10^3} \\[1em] \Rightarrow x = \dfrac{1}{1000} \\[1em] \Rightarrow x = 0.001 ⇒ log 5 1 log 125 = log x ⇒ log 5 − 1 log 5 3 = log x ⇒ − 1 log 5 3 log 5 = log x ⇒ − 3 = log x ⇒ x = 1 0 − 3 ⇒ x = 1 0 3 1 ⇒ x = 1000 1 ⇒ x = 0.001
Hence, Option 1 is the correct option.
If log (x - 5) + log (x + 5) = 2 log 12, the positive value of x is :
5
13
4.8
12
Answer
Given,
⇒ log (x - 5) + log (x + 5) = 2 log 12
⇒ log (x - 5)(x + 5) = log 122
⇒ log (x2 + 5x - 5x - 25) = log 144
⇒ log (x2 - 25) = log 144
⇒ x2 - 25 = 144
⇒ x2 = 144 + 25
⇒ x2 = 169
⇒ x = 169 \sqrt{169} 169
⇒ x = ± 13 \pm 13 ± 13 .
So, positive value of x = 13.
Hence, Option 2 is the correct option.
Express in terms of log 2 and log 3 :
log 36
Answer
Simplifying the expression,
⇒ log 36
⇒ log (22 × 32 )
⇒ log 22 + log 32
⇒ 2 log 2 + 2 log 3.
Hence, log 36 = 2 log 2 + 2 log 3.
Express in terms of log 2 and log 3 :
log 144
Answer
Simplifying the expression,
⇒ log 144
⇒ log (24 × 32 )
⇒ log 24 + log 32
⇒ 4 log 2 + 2 log 3.
Hence, log 144 = 4 log 2 + 2 log 3.
Express in terms of log 2 and log 3 :
log 4.5
Answer
Simplifying the expression,
⇒ log 4.5
⇒ log 45 10 \dfrac{45}{10} 10 45
⇒ log 9 2 \dfrac{9}{2} 2 9
⇒ log 9 - log 2
⇒ log 32 - log 2
⇒ 2 log 3 - log 2.
Hence, log 4.5 = 2 log 3 - log 2.
Express in terms of log 2 and log 3 :
log 26 51 − log 91 119 \text{log } \dfrac{26}{51} - \text{log } \dfrac{91}{119} log 51 26 − log 119 91
Answer
Simplifying the expression,
⇒ log 26 51 − log 91 119 ⇒ log ( 26 51 ÷ 91 119 ) ⇒ log ( 26 51 × 119 91 ) ⇒ log 3094 4641 ⇒ log 2 3 ⇒ log 2 − log 3 . \Rightarrow \text{log } \dfrac{26}{51} - \text{log } \dfrac{91}{119} \\[1em] \Rightarrow \text{log } \Big(\dfrac{26}{51} ÷ \dfrac{91}{119}\Big) \\[1em] \Rightarrow \text{log } \Big(\dfrac{26}{51} \times \dfrac{119}{91}\Big) \\[1em] \Rightarrow \text{log } \dfrac{3094}{4641} \\[1em] \Rightarrow \text{log } \dfrac{2}{3} \\[1em] \Rightarrow \text{log } 2 - \text{log 3}. ⇒ log 51 26 − log 119 91 ⇒ log ( 51 26 ÷ 119 91 ) ⇒ log ( 51 26 × 91 119 ) ⇒ log 4641 3094 ⇒ log 3 2 ⇒ log 2 − log 3 .
Hence, log 26 51 − log 91 119 = log 2 - log 3 \text{log } \dfrac{26}{51} - \text{log } \dfrac{91}{119} = \text{log 2 - log 3} log 51 26 − log 119 91 = log 2 - log 3 .
Express in terms of log 2 and log 3 :
log 75 16 − 2 log 5 9 + log 32 243 \text{log } \dfrac{75}{16} - \text{2 log } \dfrac{5}{9} + \text{log } \dfrac{32}{243} log 16 75 − 2 log 9 5 + log 243 32
Answer
Simplifying the expression,
⇒ log 75 16 − 2 log 5 9 + log 32 243 \Rightarrow \text{log } \dfrac{75}{16} - \text{2 log } \dfrac{5}{9} + \text{log } \dfrac{32}{243} \\[1em] ⇒ log 16 75 − 2 log 9 5 + log 243 32
⇒ (log 75 - log 16) - 2 (log 5 - log 9) + (log 32 - log 243)
⇒ log 75 - log 16 - 2 log 5 + 2 log 9 + log 32 - log 243
⇒ log 75 - log 16 - log 52 + log 92 + log 32 - log 243
⇒ log 75 - log 16 - log 25 + log 81 + log 32 - log 243
⇒ log 75 + log 81 + log 32 - log 16 - log 25 - log 243
⇒ log 75 + log 81 + log 32 - (log 16 + log 25 + log 243)
⇒ log (75 × 81 × 32) - log (16 × 25 × 243)
⇒ log 75 × 81 × 32 16 × 25 × 243 \dfrac{75 \times 81 \times 32}{16 \times 25 \times 243} 16 × 25 × 243 75 × 81 × 32
⇒ log 2.
Hence, log 75 16 − 2 log 5 9 + log 32 243 \text{log } \dfrac{75}{16} - \text{2 log } \dfrac{5}{9} + \text{log } \dfrac{32}{243} log 16 75 − 2 log 9 5 + log 243 32 = log 2.
Express the following in a form free from logarithm :
2 log x - log y = 1
Answer
Given,
⇒ 2 log x - log y = 1
⇒ log x2 - log y = 1
⇒ log x 2 y \dfrac{x^2}{y} y x 2 = 1
⇒ x 2 y \dfrac{x^2}{y} y x 2 = 101
⇒ x2 = 10y.
Hence, required equation is x2 = 10y.
Express the following in a form free from logarithm :
2 log x + 3 log y = log a
Answer
Given,
⇒ 2 log x + 3 log y = log a
⇒ log x2 + log y3 = log a
⇒ log (x2 .y3 ) = log a
⇒ x2 .y3 = a
Hence, required equation is x2 y3 = a.
Express the following in a form free from logarithm :
a log x - b log y = 2 log 3
Answer
Given,
⇒ a log x - b log y = 2 log 3
⇒ log xa - log yb = log 32
⇒ log ( x a y b ) \Big(\dfrac{x^a}{y^b}\Big) ( y b x a ) = log 32
⇒ log ( x a y b ) \Big(\dfrac{x^a}{y^b}\Big) ( y b x a ) = log 9
⇒ ( x a y b ) = 9 \Big(\dfrac{x^a}{y^b}\Big) = 9 ( y b x a ) = 9
⇒ xa = 9yb .
Hence, required equation is xa = 9yb .
Evaluate :
log 5 + log 8 - 2 log 2
Answer
Evaluating the expression,
⇒ log 5 + log 8 - 2 log 2
⇒ log 5 + log 8 - log 22
⇒ log 5 × 8 2 2 \dfrac{5 \times 8}{2^2} 2 2 5 × 8
⇒ log 40 4 \dfrac{40}{4} 4 40
⇒ log 10
⇒ 1.
Hence, log 5 + log 8 - 2 log 2 = 1.
Evaluate :
log10 8 + log10 25 + 2 log10 3 - log10 18
Answer
Evaluating the expression,
⇒ log10 8 + log10 25 + 2 log10 3 - log10 18
⇒ log10 8 + log10 25 + log10 32 - log10 18
⇒ log10 8 × 25 × 3 2 18 \dfrac{8 \times 25 \times 3^2}{18} 18 8 × 25 × 3 2
⇒ log10 1800 18 \dfrac{1800}{18} 18 1800
⇒ log10 100
⇒ log10 102
⇒ 2 × log10 10
⇒ 2 × 1
⇒ 2.
Hence, log10 8 + log10 25 + 2 log10 3 - log10 18 = 2.
Evaluate :
log 4 + 1 3 log 125 − 1 5 log 32 \text{log 4} + \dfrac{1}{3}\text{ log 125} - \dfrac{1}{5}\text{ log 32} log 4 + 3 1 log 125 − 5 1 log 32
Answer
Evaluating the expression,
⇒ log 4 + 1 3 log 125 − 1 5 log 32 ⇒ log 4 + 1 3 log 5 3 − 1 5 log 2 5 ⇒ log 4 + log (5) ( 3 × 1 3 ) − log (2) ( 5 × 1 5 ) ⇒ log 4 + log 5 - log 2 ⇒ log 4 × 5 2 ⇒ log 20 2 ⇒ log 10 ⇒ 1. \Rightarrow \text{log 4} + \dfrac{1}{3}\text{ log 125} - \dfrac{1}{5}\text{ log 32} \\[1em] \Rightarrow \text{log 4} + \dfrac{1}{3}\text{ log 5}^3 - \dfrac{1}{5}\text{ log 2}^5 \\[1em] \Rightarrow \text{log 4 + log (5)}^{\Big(3 \times \dfrac{1}{3}\Big)} - \text{log (2)}^{\Big(5 \times \dfrac{1}{5}\Big)} \\[1em] \Rightarrow \text{log 4 + log 5 - log 2} \\[1em] \Rightarrow \text{log } \dfrac{4 \times 5}{2} \\[1em] \Rightarrow \text{log } \dfrac{20}{2} \\[1em] \Rightarrow \text{log } 10 \\[1em] \Rightarrow 1. ⇒ log 4 + 3 1 log 125 − 5 1 log 32 ⇒ log 4 + 3 1 log 5 3 − 5 1 log 2 5 ⇒ log 4 + log (5) ( 3 × 3 1 ) − log (2) ( 5 × 5 1 ) ⇒ log 4 + log 5 - log 2 ⇒ log 2 4 × 5 ⇒ log 2 20 ⇒ log 10 ⇒ 1.
Hence, log 4 + 1 3 log 125 − 1 5 log 32 \text{log 4} + \dfrac{1}{3}\text{ log 125} - \dfrac{1}{5}\text{ log 32} log 4 + 3 1 log 125 − 5 1 log 32 = 1.
Prove that :
2 log 15 18 − log 25 162 + log 4 9 = log 2 \text{2 log }\dfrac{15}{18} - \text{log } \dfrac{25}{162} + \text{log } \dfrac{4}{9} = \text{log 2} 2 log 18 15 − log 162 25 + log 9 4 = log 2
Answer
To prove:
2 log 15 18 − log 25 162 + log 4 9 = log 2 \text{2 log }\dfrac{15}{18} - \text{log } \dfrac{25}{162} + \text{log } \dfrac{4}{9} = \text{log 2} 2 log 18 15 − log 162 25 + log 9 4 = log 2
Solving L.H.S. of the equation, we get :
⇒ 2 log 15 18 − log 25 162 + log 4 9 ⇒ log ( 15 18 ) 2 + log 4 9 − log 25 162 ⇒ log 225 324 + log 4 9 − log 25 162 ⇒ log 225 324 × 4 9 25 162 ⇒ log 900 2916 25 162 ⇒ log 900 × 162 25 × 2916 ⇒ log 145800 72900 ⇒ log 2. \Rightarrow \text{2 log }\dfrac{15}{18} - \text{log } \dfrac{25}{162} + \text{log } \dfrac{4}{9} \\[1em] \Rightarrow \text{log } \Big(\dfrac{15}{18}\Big)^2 + \text{log } \dfrac{4}{9} - \text{log } \dfrac{25}{162} \\[1em] \Rightarrow \text{log } \dfrac{225}{324} + \text{log } \dfrac{4}{9} - \text{log } \dfrac{25}{162} \\[1em] \Rightarrow \text{log } \dfrac{\dfrac{225}{324} \times \dfrac{4}{9}}{\dfrac{25}{162}} \\[1em] \Rightarrow \text{log } \dfrac{\dfrac{900}{2916}}{\dfrac{25}{162}} \\[1em] \Rightarrow \text{log } \dfrac{900 \times 162}{25 \times 2916} \\[1em] \Rightarrow \text{log } \dfrac{145800}{72900} \\[1em] \Rightarrow \text{log } 2. ⇒ 2 log 18 15 − log 162 25 + log 9 4 ⇒ log ( 18 15 ) 2 + log 9 4 − log 162 25 ⇒ log 324 225 + log 9 4 − log 162 25 ⇒ log 162 25 324 225 × 9 4 ⇒ log 162 25 2916 900 ⇒ log 25 × 2916 900 × 162 ⇒ log 72900 145800 ⇒ log 2.
Since, L.H.S. = R.H.S.
Hence, proved that 2 log 15 18 − log 25 162 + log 4 9 = log 2 \text{2 log }\dfrac{15}{18} - \text{log } \dfrac{25}{162} + \text{log } \dfrac{4}{9} = \text{log 2} 2 log 18 15 − log 162 25 + log 9 4 = log 2 .
Find x, if :
x - log 48 + 3 log 2 = 1 3 \dfrac{1}{3} 3 1 log 125 - log 3
Answer
Given,
⇒ x - log 48 + 3 log 2 = 1 3 \dfrac{1}{3} 3 1 log 125 - log 3
⇒ x - log 48 + log 23 = log ( 125 ) 1 3 (125)^{\dfrac{1}{3}} ( 125 ) 3 1 - log 3
⇒ x - log 48 + log 8 = log ( 5 3 ) 1 3 (5^3)^{\dfrac{1}{3}} ( 5 3 ) 3 1 - log 3
⇒ x - log 48 + log 8 = log 5 - log 3
⇒ x = log 5 + log 48 - log 3 - log 8
⇒ x = (log 5 + log 48) - (log 3 + log 8)
⇒ x = log (5 × 48) - log (3 × 8)
⇒ x = log 240 - log 24
⇒ x = log 240 24 \dfrac{240}{24} 24 240
⇒ x = log 10
⇒ x = 1.
Hence, x = 1.
Express log10 2 + 1 in the form of log10 x.
Answer
Given,
⇒ log10 2 + 1
⇒ log10 2 + log10 10
⇒ log10 (2 × 10)
⇒ log10 20.
Hence, log10 2 + 1 = log10 20.
Solve for x :
log10 (x - 10) = 1
Answer
Given,
⇒ log10 (x - 10) = 1
⇒ x - 10 = 101
⇒ x - 10 = 10
⇒ x = 10 + 10 = 20.
Hence, x = 20.
Solve for x :
log (x2 - 21) = 2
Answer
Given,
⇒ log (x2 - 21) = 2
⇒ x2 - 21 = 102
⇒ x2 - 21 = 100
⇒ x2 = 100 + 21
⇒ x2 = 121
⇒ x = 121 \sqrt{121} 121
⇒ x = ± 11 \pm 11 ± 11 .
Hence, x = ± 11 \pm 11 ± 11 .
Solve for x :
log (x - 2) + log (x + 2) = log 5
Answer
Given,
⇒ log (x - 2) + log (x + 2) = log 5
⇒ log (x - 2)(x + 2) = log 5
⇒ log (x2 + 2x - 2x - 4) = log 5
⇒ log (x2 - 4) = log 5
⇒ x2 - 4 = 5
⇒ x2 = 5 + 4
⇒ x2 = 9
⇒ x = 9 = ± 3 \sqrt{9} = \pm 3 9 = ± 3 .
Since, x cannot be negative as that will make (x - 2) and (x + 2) negative.
Hence, x = 3.
Solve for x :
log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
Answer
Given,
⇒ log (x + 5) + log (x - 5) = 4 log 2 + 2 log 3
⇒ log (x + 5)(x - 5) = log 24 + log 32
⇒ log (x2 - 5x + 5x - 25) = log (24 × 32 )
⇒ log (x2 - 25) = log (16 × 9)
⇒ log (x2 - 25) = log 144
⇒ x2 - 25 = 144
⇒ x2 = 144 + 25
⇒ x2 = 169
⇒ x = 169 = ± 13 \sqrt{169} = \pm 13 169 = ± 13 .
Since, x cannot be negative as that will make (x + 5) and (x - 5) negative.
Hence, x = 13.
Solve for x :
log 81 log 27 \dfrac{\text{log 81}}{\text{log 27}} log 27 log 81 = x
Answer
Given,
⇒ log 81 log 27 = x ⇒ log 3 4 log 3 3 = x ⇒ 4 log 3 3 log 3 = x ⇒ x = 4 3 = 1 1 3 . \Rightarrow \dfrac{\text{log 81}}{\text{log 27}} = x \\[1em] \Rightarrow \dfrac{\text{log 3}^4}{\text{log 3}^3} = x \\[1em] \Rightarrow \dfrac{\text{4 log 3}}{\text{3 log 3}} = x \\[1em] \Rightarrow x = \dfrac{4}{3} = 1\dfrac{1}{3}. ⇒ log 27 log 81 = x ⇒ log 3 3 log 3 4 = x ⇒ 3 log 3 4 log 3 = x ⇒ x = 3 4 = 1 3 1 .
Hence, x = 1 1 3 1\dfrac{1}{3} 1 3 1 .
Solve for x :
log 128 log 32 \dfrac{\text{log 128}}{\text{log 32}} log 32 log 128 = x
Answer
Given,
⇒ log 128 log 32 = x ⇒ log 2 7 log 2 5 = x ⇒ 7 log 2 5 log 2 = x ⇒ x = 7 5 = 1.4 \Rightarrow \dfrac{\text{log 128}}{\text{log 32}} = x \\[1em] \Rightarrow \dfrac{\text{log 2}^7}{\text{log 2}^5} = x \\[1em] \Rightarrow \dfrac{\text{7 log 2}}{\text{5 log 2}} = x \\[1em] \Rightarrow x = \dfrac{7}{5} = 1.4 ⇒ log 32 log 128 = x ⇒ log 2 5 log 2 7 = x ⇒ 5 log 2 7 log 2 = x ⇒ x = 5 7 = 1.4
Hence, x = 1.4
Solve for x :
log 64 log 8 \dfrac{\text{log 64}}{\text{log 8}} log 8 log 64 = log x
Answer
Given,
⇒ log 64 log 8 = log x ⇒ log 2 6 log 2 3 = log x ⇒ 6 log 2 3 log 2 = log x ⇒ log x = 2 ⇒ x = 10 2 = 100. \Rightarrow \dfrac{\text{log 64}}{\text{log 8}} = \text{log x} \\[1em] \Rightarrow \dfrac{\text{log 2}^6}{\text{log 2}^3} = \text{log x} \\[1em] \Rightarrow \dfrac{\text{6 log 2}}{\text{3 log 2}} = \text{log x} \\[1em] \Rightarrow \text{log x} = 2 \\[1em] \Rightarrow x = 10^2 = 100. ⇒ log 8 log 64 = log x ⇒ log 2 3 log 2 6 = log x ⇒ 3 log 2 6 log 2 = log x ⇒ log x = 2 ⇒ x = 1 0 2 = 100.
Hence, x = 100.
Solve for x :
log 225 log 15 \dfrac{\text{log 225}}{\text{log 15}} log 15 log 225 = log x
Answer
Given,
⇒ log 225 log 15 = log x ⇒ log 15 2 log 15 = log x ⇒ 2 log 15 log 15 = log x ⇒ log x = 2 ⇒ x = 10 2 = 100. \Rightarrow \dfrac{\text{log 225}}{\text{log 15}} = \text{log x} \\[1em] \Rightarrow \dfrac{\text{log 15}^2}{\text{log 15}} = \text{log x} \\[1em] \Rightarrow \dfrac{\text{2 log 15}}{\text{log 15}} = \text{log x} \\[1em] \Rightarrow \text{log x} = 2 \\[1em] \Rightarrow x = 10^2 = 100. ⇒ log 15 log 225 = log x ⇒ log 15 log 15 2 = log x ⇒ log 15 2 log 15 = log x ⇒ log x = 2 ⇒ x = 1 0 2 = 100.
Hence, x = 100.
Given log x = m + n and log y = m - n, express the value of log 10 x y 2 \dfrac{10x}{y^2} y 2 10 x in terms of m and n.
Answer
Given,
⇒ log x = m + n
⇒ x = 10m + n ........(1)
Given,
⇒ log y = m - n
⇒ y = 10m - n ........(2)
Substituting value of x and y from equation (1) and equation (2) in log 10 x y 2 \dfrac{10x}{y^2} y 2 10 x , we get :
⇒ log 10 x y 2 = log 10 × 10 m + n ( 10 m − n ) 2 = log 10 m + n + 1 10 2 ( m − n ) = log 10 m + n + 1 − 2 ( m − n ) = log 10 m + n + 1 − 2 m + 2 n = log 10 3 n − m + 1 = ( 3 n − m + 1 ) log 10 = ( 3 n − m + 1 ) × 1 = 3 n − m + 1 = 1 − m + 3 n \Rightarrow \text{log} \dfrac{10x}{y^2} = \text{log } \dfrac{10 \times 10^{m + n}}{(10^{m - n})^2} \\[1em] = \text{log } \dfrac{10^{m + n + 1}}{10^{2(m - n)}} \\[1em] = \text{log } 10^{m + n + 1 - 2(m - n)} \\[1em] = \text{log } 10^{m + n + 1 - 2m + 2n} \\[1em] = \text{log } 10^{3n - m + 1} \\[1em] = (3n - m + 1) \text{ log} 10 \\[1em] = (3n - m + 1) \times 1 \\[1em] = 3n - m + 1 \\[1em] = 1 - m + 3n ⇒ log y 2 10 x = log ( 1 0 m − n ) 2 10 × 1 0 m + n = log 1 0 2 ( m − n ) 1 0 m + n + 1 = log 1 0 m + n + 1 − 2 ( m − n ) = log 1 0 m + n + 1 − 2 m + 2 n = log 1 0 3 n − m + 1 = ( 3 n − m + 1 ) log 10 = ( 3 n − m + 1 ) × 1 = 3 n − m + 1 = 1 − m + 3 n
Hence, log 10 x y 2 \dfrac{10x}{y^2} y 2 10 x = 1 - m + 3n.
State, true or false :
log 1 × log 1000 = 0
Answer
Given,
log 1 × log 1000 = 0
Solving L.H.S. of the above equation, we get :
⇒ log 1 × log 1000
⇒ 0 × log 1000
⇒ 0.
Since, L.H.S. = R.H.S.
Hence, the statement "log 1 × log 1000 = 0" is true.
State, true or false :
log x log y \dfrac{\text{log x}}{\text{log y}} log y log x = log x - log y
Answer
Given,
log x log y \dfrac{\text{log x}}{\text{log y}} log y log x = log x - log y
Solving R.H.S. of the above equation, we get :
⇒ log x - log y
⇒ log x y \dfrac{x}{y} y x .
Since, L.H.S. ≠ R.H.S.
Hence, the statement log x log y = log x − log y \dfrac{\text{log x}}{\text{log y}} = \text{log x} - \text{log y} log y log x = log x − log y is false.
State, true or false :
If log 25 log 5 \dfrac{\text{log 25}}{\text{log 5}} log 5 log 25 = log x, then x = 2
Answer
Given,
log 25 log 5 \dfrac{\text{log 25}}{\text{log 5}} log 5 log 25 = log x
Solving the equation, we get :
⇒ log 25 log 5 = log x ⇒ log 5 2 log 5 = log x ⇒ 2 log 5 log 5 = log x ⇒ log x = 2 ⇒ x = 10 2 = 100. \Rightarrow \dfrac{\text{log 25}}{\text{log 5}} = \text{log x} \\[1em] \Rightarrow \dfrac{\text{log 5}^2}{\text{log 5}} = \text{log x} \\[1em] \Rightarrow \dfrac{\text{2 log 5}}{\text{log 5}} = \text{log x} \\[1em] \Rightarrow \text{log x} = 2 \\[1em] \Rightarrow x = 10^2 = 100. ⇒ log 5 log 25 = log x ⇒ log 5 log 5 2 = log x ⇒ log 5 2 log 5 = log x ⇒ log x = 2 ⇒ x = 1 0 2 = 100.
Since, x is not equal to 2.
Hence, the statement log 25 log 5 \dfrac{\text{log 25}}{\text{log 5}} log 5 log 25 = log x, then x = 2 is false.
State, true or false :
log x × log y = log x + log y
Answer
Given,
log x × log y = log x + log y
Solving the R.H.S. of the above equation, we get :
⇒ log x + log y
⇒ log xy
Since, L.H.S. ≠ R.H.S.
Hence, the statement log x × log y = log x + log y is false.
If log10 2 = a and log10 3 = b; express log 12 in terms of 'a' and 'b'.
Answer
Given,
log10 2 = a and log10 3 = b
Simplifying the expression :
⇒ log 12
⇒ log (22 × 3)
⇒ log 22 + log 3
⇒ 2 log 2 + log 3
⇒ 2a + b.
Hence, log 12 = 2a + b.
If log10 2 = a and log10 3 = b; express log 2.25 in terms of 'a' and 'b'.
Answer
Given,
log10 2 = a and log10 3 = b
Simplifying the expression :
⇒ log 2.25
⇒ log 225 100 \dfrac{225}{100} 100 225
⇒ log 9 4 \dfrac{9}{4} 4 9
⇒ log 9 - log 4
⇒ log 32 - log 22
⇒ 2 log 3 - 2 log 2
⇒ 2b - 2a.
Hence, log 2.25 = 2b - 2a.
If log10 2 = a and log10 3 = b; express log 2 1 4 2\dfrac{1}{4} 2 4 1 in terms of 'a' and 'b'.
Answer
Given,
log10 2 = a and log10 3 = b
Simplifying the expression :
⇒ log 2 1 4 ⇒ log 9 4 ⇒ log 9 - log 4 ⇒ log 3 2 − log 2 2 ⇒ 2 log 3 - 2 log 2 ⇒ 2b - 2a . \Rightarrow \text{log } 2\dfrac{1}{4} \\[1em] \Rightarrow \text{log } \dfrac{9}{4} \\[1em] \Rightarrow \text{log 9 - log 4} \\[1em] \Rightarrow \text{log 3}^2 - \text{log 2}^2 \\[1em] \Rightarrow \text{2 log 3 - 2 log 2} \\[1em] \Rightarrow \text{2b - 2a}. ⇒ log 2 4 1 ⇒ log 4 9 ⇒ log 9 - log 4 ⇒ log 3 2 − log 2 2 ⇒ 2 log 3 - 2 log 2 ⇒ 2b - 2a .
Hence, log 2 1 4 \text{log } 2\dfrac{1}{4} log 2 4 1 = 2b - 2a.
If log10 2 = a and log10 3 = b; express log 5.4 in terms of 'a' and 'b'.
Answer
Given,
log10 2 = a and log10 3 = b
Simplifying the expression :
⇒ log 5.4 ⇒ log 54 10 ⇒ log 54 - log 10 ⇒ log ( 2 × 3 3 ) − 1 ⇒ log 2 + log 3 3 − 1 ⇒ log 2 + 3 log 3 − 1 ⇒ a + 3 b − 1. \Rightarrow \text{log } 5.4 \\[1em] \Rightarrow \text{log } \dfrac{54}{10} \\[1em] \Rightarrow \text{log 54 - log 10} \\[1em] \Rightarrow \text{log }(2 \times 3^3) - 1 \\[1em] \Rightarrow \text{log 2} + \text{log }3^3 - 1 \\[1em] \Rightarrow \text{log 2 + 3 log 3} - 1 \\[1em] \Rightarrow a + 3b - 1. ⇒ log 5.4 ⇒ log 10 54 ⇒ log 54 - log 10 ⇒ log ( 2 × 3 3 ) − 1 ⇒ log 2 + log 3 3 − 1 ⇒ log 2 + 3 log 3 − 1 ⇒ a + 3 b − 1.
Hence, log 5.4 = a + 3b - 1.
If log10 2 = a and log10 3 = b; express log 60 in terms of 'a' and 'b'.
Answer
Given,
log10 2 = a and log10 3 = b
Simplifying the expression :
⇒ log 60
⇒ log (2 × 3 × 10)
⇒ log 2 + log 3 + log 10
⇒ a + b + 1.
Hence, log 60 = a + b + 1.
If log10 2 = a and log10 3 = b; express log 3 1 8 3\dfrac{1}{8} 3 8 1 in terms of 'a' and 'b'.
Answer
Given,
log10 2 = a and log10 3 = b
Simplifying the expression :
⇒ log 3 1 8 ⇒ log 25 8 ⇒ log 25 - log 8 ⇒ log 5 2 − log 2 3 ⇒ 2 log 5 - 3 log 2 ⇒ 2 log 10 2 − 3 log 2 ⇒ 2 (log 10 - log 2) − 3 log 2 ⇒ 2 log 10 - 2 log 2 - 3 log 2 ⇒ 2 × 1 − 5 log 2 ⇒ 2 − 5 a . \Rightarrow \text{log } 3\dfrac{1}{8} \\[1em] \Rightarrow \text{log } \dfrac{25}{8} \\[1em] \Rightarrow \text{log 25 - log 8} \\[1em] \Rightarrow \text{log 5}^2 - \text{log 2}^3 \\[1em] \Rightarrow \text{2 log 5 - 3 log 2} \\[1em] \Rightarrow \text{2 log } \dfrac{10}{2} - \text{3 log 2} \\[1em] \Rightarrow \text{2 (log 10 - log 2)} - \text{3 log 2} \\[1em] \Rightarrow \text{2 log 10 - 2 log 2 - 3 log 2} \\[1em] \Rightarrow 2 \times 1 - \text{5 log 2} \\[1em] \Rightarrow 2 - 5a. ⇒ log 3 8 1 ⇒ log 8 25 ⇒ log 25 - log 8 ⇒ log 5 2 − log 2 3 ⇒ 2 log 5 - 3 log 2 ⇒ 2 log 2 10 − 3 log 2 ⇒ 2 (log 10 - log 2) − 3 log 2 ⇒ 2 log 10 - 2 log 2 - 3 log 2 ⇒ 2 × 1 − 5 log 2 ⇒ 2 − 5 a .
Hence, log 3 1 8 \text{log } 3\dfrac{1}{8} log 3 8 1 = 2 - 5a.
If log 2 = 0.3010 and log 3 = 0.4771; find the value of log 12.
Answer
Simplifying the expression,
⇒ log 12
⇒ log (22 × 3)
⇒ log 22 + log 3
⇒ 2 log 2 + log 3
⇒ 2 × 0.3010 + 0.4771
⇒ 0.6020 + 0.4771
⇒ 1.0791
Hence, log 12 = 1.0791
If log 2 = 0.3010 and log 3 = 0.4771; find the value of log 1.2.
Answer
Simplifying the expression,
⇒ log 1.2
⇒ log 12 10 \dfrac{12}{10} 10 12
⇒ log 12 - log 10
⇒ log (22 × 3) - log 10
⇒ log 22 + log 3 - log 10
⇒ 2 log 2 + log 3 - 1
⇒ 2 × 0.3010 + 0.4771 - 1
⇒ 0.6020 + 0.4771 - 1
⇒ 1.0791 - 1
⇒ 0.0791
Hence, log 1.2 = 0.0791
If log 2 = 0.3010 and log 3 = 0.4771; find the value of log 3.6.
Answer
Simplifying the expression,
⇒ log 3.6
⇒ log 36 10 \dfrac{36}{10} 10 36
⇒ log 36 - log 10
⇒ log (12 × 3) - log 10
⇒ log 12 + log 3 - log 10
⇒ log (22 × 3) + log 3 - log 10
⇒ log 22 + log 3 + log 3 - log 10
⇒ 2 log 2 + 2 log 3 - 1
⇒ 2 × 0.3010 + 2 × 0.4771 - 1
⇒ 0.6020 + 0.9542 - 1
⇒ 1.5562 - 1
⇒ 0.5562
Hence, log 3.6 = 0.5562
If log 2 = 0.3010 and log 3 = 0.4771; find the value of log 15.
Answer
Simplifying the expression,
⇒ log 15
⇒ log (3 × 5)
⇒ log 3 + log 5
⇒ log 3 + log 10 2 \dfrac{10}{2} 2 10
⇒ log 3 + log 10 - log 2
⇒ 0.4771 + 1 - 0.3010
⇒ 1.1761
Hence, log 15 = 1.1761
If log 2 = 0.3010 and log 3 = 0.4771; find the value of log 25.
Answer
Simplifying the expression,
⇒ log 25
⇒ log 52
⇒ 2 log 5
⇒ 2 log 10 2 \dfrac{10}{2} 2 10
⇒ 2(log 10 - log 2)
⇒ 2(1 - 0.3010)
⇒ 2 × 0.699
⇒ 1.398
Hence, log 25 = 1.398
If log 2 = 0.3010 and log 3 = 0.4771; find the value of 2 3 \dfrac{2}{3} 3 2 log 8.
Answer
Simplifying the expression,
⇒ 2 3 log 8 ⇒ 2 3 log 2 3 ⇒ 2 3 × 3 log 2 ⇒ 2 log 2 ⇒ 2 × 0.3010 ⇒ 0.6020 \Rightarrow \dfrac{2}{3} \text{ log 8} \\[1em] \Rightarrow \dfrac{2}{3} \text{ log 2}^3 \\[1em] \Rightarrow \dfrac{2}{3} \times 3 \text{ log 2} \\[1em] \Rightarrow 2 \text{log 2} \\[1em] \Rightarrow 2 \times 0.3010 \\[1em] \Rightarrow 0.6020 ⇒ 3 2 log 8 ⇒ 3 2 log 2 3 ⇒ 3 2 × 3 log 2 ⇒ 2 log 2 ⇒ 2 × 0.3010 ⇒ 0.6020
Hence, 2 3 \dfrac{2}{3} 3 2 log 8 = 0.6020
Given 2 log10 x + 1 = log10 250, find :
(i) x
(ii) log10 2x
Answer
(i) Given,
⇒ 2 log10 x + 1 = log10 250
⇒ log10 x2 + log10 10 = log10 250
⇒ log10 (x2 × 10) = log10 250
⇒ log10 (10x2 ) = log10 250
⇒ 10x2 = 250
⇒ x2 = 250 10 \dfrac{250}{10} 10 250
⇒ x2 = 25
⇒ x = 25 \sqrt{25} 25 = 5.
Hence, x = 5.
(ii) Substituting value of x in log10 2x, we get :
⇒ log10 2x
⇒ log10 2(5)
⇒ log10 10
⇒ 1.
Hence, log10 2x = 1.
Given 3 log x + 1 2 \dfrac{1}{2} 2 1 log y = 2, express y in terms of x.
Answer
Given,
⇒ 3 log x + 1 2 log y = 2 ⇒ log x 3 + log y 1 2 = 2 ⇒ log x 3 y = 2 ⇒ x 3 y = 10 2 \Rightarrow \text{3 log x} + \dfrac{1}{2} \text{log y} = 2 \\[1em] \Rightarrow \text{log } x^3 + \text{log } y^{\dfrac{1}{2}} = 2 \\[1em] \Rightarrow \text{log } x^3\sqrt{y} = 2 \\[1em] \Rightarrow x^3\sqrt{y} = 10^2 ⇒ 3 log x + 2 1 log y = 2 ⇒ log x 3 + log y 2 1 = 2 ⇒ log x 3 y = 2 ⇒ x 3 y = 1 0 2
Squaring both sides, we get :
⇒ ( x 3 y ) 2 = ( 10 2 ) 2 ⇒ x 6 y = 10 4 ⇒ y = 10 4 x 6 = 10000 x − 6 . \Rightarrow (x^3\sqrt{y})^2 = (10^2)^2 \\[1em] \Rightarrow x^6y = 10^4 \\[1em] \Rightarrow y = \dfrac{10^4}{x^6} = 10000x^{-6}. ⇒ ( x 3 y ) 2 = ( 1 0 2 ) 2 ⇒ x 6 y = 1 0 4 ⇒ y = x 6 1 0 4 = 10000 x − 6 .
Hence, y = 10000x-6 .
If log2 (log3 x) = 4, the value of x is :
316
163
3 × 16
16 ÷ 3
Answer
Given,
⇒ log2 (log3 x) = 4
⇒ log3 x = 24
⇒ log3 x = 16
⇒ x = 316 .
Hence, Option 1 is the correct option.
If log (5x - 4) - log (x + 1) = log 4, the value of x is :
6
8
4
12
Answer
Given,
⇒ log (5x - 4) - log (x + 1) = log 4
⇒ log 5 x − 4 x + 1 \dfrac{5x - 4}{x + 1} x + 1 5 x − 4 = log 4
⇒ 5 x − 4 x + 1 = 4 \dfrac{5x - 4}{x + 1} = 4 x + 1 5 x − 4 = 4
⇒ 5x - 4 = 4(x + 1)
⇒ 5x - 4 = 4x + 4
⇒ 5x - 4x = 4 + 4
⇒ x = 8.
Hence, Option 2 is the correct option.
If log x - log (2x - 1) = 1, the value of x is :
19 10 \dfrac{19}{10} 10 19
19 × 10
10 19 \dfrac{10}{19} 19 10
1 19 × 10 \dfrac{1}{19 \times 10} 19 × 10 1
Answer
Given,
⇒ log x − log ( 2 x − 1 ) = 1 ⇒ log x 2 x − 1 = log 10 ⇒ x 2 x − 1 = 10 ⇒ x = 10 ( 2 x − 1 ) ⇒ x = 20 x − 10 ⇒ 20 x − x = 10 ⇒ 19 x = 10 ⇒ x = 10 19 . \Rightarrow \text{log } x - \text{log } (2x - 1) = 1 \\[1em] \Rightarrow \text{log } \dfrac{x}{2x - 1} = \text{log } 10 \\[1em] \Rightarrow \dfrac{x}{2x - 1} = 10 \\[1em] \Rightarrow x = 10(2x - 1) \\[1em] \Rightarrow x = 20x - 10 \\[1em] \Rightarrow 20x - x = 10 \\[1em] \Rightarrow 19x = 10 \\[1em] \Rightarrow x = \dfrac{10}{19}. ⇒ log x − log ( 2 x − 1 ) = 1 ⇒ log 2 x − 1 x = log 10 ⇒ 2 x − 1 x = 10 ⇒ x = 10 ( 2 x − 1 ) ⇒ x = 20 x − 10 ⇒ 20 x − x = 10 ⇒ 19 x = 10 ⇒ x = 19 10 .
Hence, Option 3 is the correct option.
If x = log 3 5 , y = log 5 4 and z = 2 log 3 2 \dfrac{3}{5}, \text{ y = log } \dfrac{5}{4}\text{ and z = 2 log } \dfrac{\sqrt{3}}{2} 5 3 , y = log 4 5 and z = 2 log 2 3 , the value of x + y - z is :
1
-1
2
0
Answer
Solving,
⇒ x + y − z = log 3 5 + log 5 4 − 2 log 3 2 = log 3 5 + log 5 4 − log ( 3 2 ) 2 = log 3 5 + log 5 4 − log 3 4 = log 3 5 × 5 4 3 4 = log 3 4 3 4 = log 1 = 0. \Rightarrow x + y - z = \text{log } \dfrac{3}{5} + \text{log } \dfrac{5}{4} - \text{ 2 log } \dfrac{\sqrt{3}}{2} \\[1em] = \text{log } \dfrac{3}{5} + \text{log } \dfrac{5}{4} - \text{log } \Big(\dfrac{\sqrt{3}}{2}\Big)^2 \\[1em] = \text{log } \dfrac{3}{5} + \text{log } \dfrac{5}{4} - \text{log } \dfrac{3}{4} \\[1em] = \text{log } \dfrac{\dfrac{3}{5} \times \dfrac{5}{4}}{\dfrac{3}{4}} \\[1em] = \text{log } \dfrac{\dfrac{3}{4}}{\dfrac{3}{4}} \\[1em] = \text{log } 1 \\[1em] = 0. ⇒ x + y − z = log 5 3 + log 4 5 − 2 log 2 3 = log 5 3 + log 4 5 − log ( 2 3 ) 2 = log 5 3 + log 4 5 − log 4 3 = log 4 3 5 3 × 4 5 = log 4 3 4 3 = log 1 = 0.
Hence, Option 4 is the correct option.
If log v + log 3 = log π + log 4 + 3 log r, the value of v in terms of r and other constants is :
4 3 π r 3 \dfrac{4}{3}πr^3 3 4 π r 3
4πr2
πr3
4 3 π r 2 \dfrac{4}{3}πr^2 3 4 π r 2
Answer
Given,
⇒ log v + log 3 = log π + log 4 + 3 log r
⇒ log 3v = log π + log 4 + log r3
⇒ log 3v = log 4πr3
⇒ 3v = 4πr3
⇒ v = 4 3 π r 3 \dfrac{4}{3}πr^3 3 4 π r 3
Hence, Option 1 is the correct option.
If log y + 2 log x = 2, the value of y in terms of x is :
x2 ÷ 100
100 ÷ x2
x ÷ 10
10 ÷ x
Answer
Given,
⇒ log y + 2 log x = 2
⇒ log y + log x2 = 2
⇒ log yx2 = 2
⇒ yx2 = 102
⇒ yx2 = 100
⇒ y = 100 ÷ x2 .
Hence, Option 2 is the correct option.
If log10 8 = 0.90; find the value of :
(i) log10 4
(ii) log 32 \sqrt{32} 32
(iii) log 0.125
Answer
Given,
⇒ log10 8 = 0.90
⇒ log10 23 = 0.90
⇒ 3log10 2 = 0.90
⇒ log10 2 = 0.90 3 \dfrac{0.90}{3} 3 0.90
⇒ log10 2 = 0.30 .........(1)
(i) Given,
⇒ log10 4
⇒ log10 22
⇒ 2 log10 2
Substituting value of log10 2 from equation (1) in above equation, we get :
⇒ 2 × 0.30
⇒ 0.60
Hence, log10 4 = 0.60
(ii) Given,
⇒ log 32 ⇒ log 4 2 ⇒ log 4 + log 2 ⇒ log 2 2 + log 2 1 2 ⇒ 2 × log 2 + 1 2 × log 2 \Rightarrow \text{log } \sqrt{32} \\[1em] \Rightarrow \text{log } 4\sqrt{2} \\[1em] \Rightarrow \text{log } 4 + \text{log } \sqrt{2} \\[1em] \Rightarrow \text{log } 2^2 + \text{log } 2^{\dfrac{1}{2}} \\[1em] \Rightarrow 2 \times \text{log 2} + \dfrac{1}{2} \times \text{log 2} ⇒ log 32 ⇒ log 4 2 ⇒ log 4 + log 2 ⇒ log 2 2 + log 2 2 1 ⇒ 2 × log 2 + 2 1 × log 2
Substituting value of log 2 from equation (1), in above equation, we get :
⇒ 2 × 0.30 + 1 2 × 0.30 ⇒ 0.60 + 0.15 ⇒ 0.75 \Rightarrow 2 \times 0.30 + \dfrac{1}{2} \times 0.30 \\[1em] \Rightarrow 0.60 + 0.15 \\[1em] \Rightarrow 0.75 ⇒ 2 × 0.30 + 2 1 × 0.30 ⇒ 0.60 + 0.15 ⇒ 0.75
Hence, log 32 \sqrt{32} 32 = 0.75
(iii) Given,
⇒ log 0.125 ⇒ log 125 1000 ⇒ log 1 8 ⇒ log 1 2 3 ⇒ log 2 − 3 ⇒ − 3 × log 2 ⇒ − 3 × 0.30 ⇒ − 0.90 \Rightarrow \text{log } 0.125 \\[1em] \Rightarrow \text{log } \dfrac{125}{1000} \\[1em] \Rightarrow \text{log } \dfrac{1}{8} \\[1em] \Rightarrow \text{log } \dfrac{1}{2^3} \\[1em] \Rightarrow \text{log } 2^{-3} \\[1em] \Rightarrow -3 \times \text{log 2} \\[1em] \Rightarrow -3 \times 0.30 \\[1em] \Rightarrow -0.90 ⇒ log 0.125 ⇒ log 1000 125 ⇒ log 8 1 ⇒ log 2 3 1 ⇒ log 2 − 3 ⇒ − 3 × log 2 ⇒ − 3 × 0.30 ⇒ − 0.90
Hence, log 0.125 = -0.90
If log 27 = 1.431, find the value of :
(i) log 9
(ii) log 300
Answer
Given,
⇒ log 27 = 1.431
⇒ log 33 = 1.431
⇒ 3 log 3 = 1.431
⇒ log 3 = 1.431 3 \dfrac{1.431}{3} 3 1.431 = 0.477 .......(1)
(i) Solving,
⇒ log 9
⇒ log 32
⇒ 2 log 3
Substituting value of log 3 from equation (1) in above equation, we get :
⇒ 2 × 0.477
⇒ 0.954
Hence, log 9 = 0.954
(ii) Solving,
⇒ log 300
⇒ log 3 × 100
⇒ log 3 + log 100
⇒ 0.477 + log 102
⇒ 0.477 + 2 log 10
⇒ 0.477 + 2 × 1
⇒ 0.477 + 2
⇒ 2.477
Hence, log 300 = 2.477
If log10 a = b, find 103b - 2 in terms of a.
Answer
Given,
⇒ log10 a = b
⇒ 10b = a
Cubing both sides, we get :
⇒ (10b )3 = a3
⇒ 103b = a3
Dividing both sides by 102 , we get :
⇒ 10 3 b 10 2 = a 3 10 2 ⇒ 10 3 b − 2 = a 3 100 . \Rightarrow \dfrac{10^{3b}}{10^2} = \dfrac{a^3}{10^2} \\[1em] \Rightarrow 10^{3b - 2} = \dfrac{a^3}{100}. ⇒ 1 0 2 1 0 3 b = 1 0 2 a 3 ⇒ 1 0 3 b − 2 = 100 a 3 .
Hence, 103b - 2 = a 3 100 . \dfrac{a^3}{100}. 100 a 3 .
If log5 x = y, find 52y + 3 in terms of x.
Answer
Given,
⇒ log5 x = y
⇒ x = 5y ......(1)
Solving, equation 52y + 3 , we get :
⇒ 52y .53
⇒ (5y )2 × 125
Substituting value of 5y from equation (1) in above equation, we get :
⇒ 125x2 .
Hence, 52y + 3 = 125x2 .
Given :
log3 m = x and log3 n = y
(i) Express 32x - 3 in terms of m.
(ii) Write down 31 - 2y + 3x in terms of m and n.
(iii) If 2 log3 A = 5x - 3y; find A in terms of m and n.
Answer
Given,
1st equation :
⇒ log3 m = x
⇒ m = 3x ......(1)
2nd equation :
⇒ log3 n = y
⇒ n = 3y ......(2)
(i) Given,
32x - 3
⇒ 32x .3-3
⇒ (3x )2 .3-3
Substituting value of 3x from equation (1) in above equation, we get :
⇒ m2 .3-3
⇒ m 2 3 3 \dfrac{m^2}{3^3} 3 3 m 2
⇒ m 2 27 \dfrac{m^2}{27} 27 m 2 .
Hence, 32x - 3 = m 2 27 \dfrac{m^2}{27} 27 m 2 .
(ii) Simplifying the expression,
⇒ 31 - 2y + 3x
⇒ 31 .3-2y .33x
⇒ 3.(3y )-2 .(3x )3
Substituting value of 3x and 3y from equation (1) and (2) in above equation, we get :
⇒ 3.n-2 .m3
⇒ 3 m 3 n 2 \dfrac{3m^3}{n^2} n 2 3 m 3 .
Hence, 31 - 2y + 3x = 3 m 3 n 2 \dfrac{3m^3}{n^2} n 2 3 m 3 .
(iii) Given,
⇒ 2log3 A = 5x - 3y
⇒ log3 A2 = 5x - 3y
⇒ A2 = 35x - 3y
⇒ A2 = 35x .3-3y
⇒ A2 = (3x )5 .(3y )-3
Substituting value of 3x and 3y from equation (1) and (2) in above equation, we get :
⇒ A2 = m5 .n-3
⇒ A2 = m 5 n 3 \dfrac{m^5}{n^3} n 3 m 5
⇒ A = m 5 n 3 \sqrt{\dfrac{m^5}{n^3}} n 3 m 5 .
Hence, A = m 5 n 3 \sqrt{\dfrac{m^5}{n^3}} n 3 m 5 .
Simplify :
log (a)3 - log a
Answer
Simplifying the expression,
⇒ log (a)3 - log a
⇒ 3log a - log a
⇒ 2log a
⇒ log a2
⇒ 2 log a.
Hence, log (a)3 - log a = 2 log a.
Simplify :
log (a)3 ÷ log a
Answer
Simplifying the expression,
⇒ log (a)3 ÷ log a
⇒ 3log a ÷ log a
⇒ 3 log a log a \dfrac{\text{3 log a}}{\text{log a}} log a 3 log a
⇒ 3.
Hence, log (a)3 ÷ log a = 3.
If log (a + b) = log a + log b, find a in terms of b.
Answer
Given,
⇒ log (a + b) = log a + log b
⇒ log (a + b) = log ab
⇒ a + b = ab
⇒ ab - a = b
⇒ a(b - 1) = b
⇒ a = b b − 1 \dfrac{b}{b - 1} b − 1 b .
Hence, a = b b − 1 \dfrac{b}{b - 1} b − 1 b .
Prove that :
(log a)2 - (log b)2 = log ( a b ) \Big(\dfrac{a}{b}\Big) ( b a ) . log (ab)
Answer
To prove:
(log a)2 - (log b)2 = log ( a b ) \Big(\dfrac{a}{b}\Big) ( b a ) . log (ab)
Solving L.H.S. of the above equation, we get :
⇒ (log a)2 - (log b)2
⇒ (log a + log b)(log a - log b)
⇒ log ab. log ( a b ) \Big(\dfrac{a}{b}\Big) ( b a )
Hence, proved that (log a)2 - (log b)2 = log ( a b ) \Big(\dfrac{a}{b}\Big) ( b a ) . log (ab)
Prove that :
If a log b + b log a - 1 = 0, then ba .ab = 10
Answer
Given,
⇒ a log b + b log a - 1 = 0
⇒ log ba + log ab = 1
⇒ log ba + log ab = log 10
⇒ log ba .ab = log 10
⇒ ba .ab = 10.
Hence, proved that ba .ab = 10.
If log (a + 1) = log (4a - 3) - log 3; find a.
Answer
Given,
⇒ log (a + 1) = log (4a - 3) - log 3
⇒ log (a + 1) = log 4 a − 3 3 \dfrac{4a - 3}{3} 3 4 a − 3
⇒ (a + 1) = 4 a − 3 3 \dfrac{4a - 3}{3} 3 4 a − 3
⇒ 4a - 3 = 3(a + 1)
⇒ 4a - 3 = 3a + 3
⇒ 4a - 3a = 3 + 3
⇒ a = 6.
Hence, a = 6.
If 2 log y - log x - 3 = 0, express x in terms of y.
Answer
Given,
⇒ 2 log y - log x - 3 = 0
⇒ 2 log y - log x = 3
⇒ log y2 - log x = 3
⇒ log y 2 x \dfrac{y^2}{x} x y 2 = 3
⇒ y 2 x = 10 3 \dfrac{y^2}{x} = 10^3 x y 2 = 1 0 3
⇒ y2 = x.103
⇒ x = y 2 10 3 = y 2 1000 \dfrac{y^2}{10^3} = \dfrac{y^2}{1000} 1 0 3 y 2 = 1000 y 2 .
Hence, y = y 2 1000 \dfrac{y^2}{1000} 1000 y 2 .
Prove that :
log10 125 = 3(1 - log10 2)
Answer
To prove:
log10 125 = 3(1 - log10 2)
Solving R.H.S. of the equation, we get :
⇒ 3(1 - log10 2)
⇒ 3(log10 10 - log10 2)
⇒ 3(log10 10 2 \dfrac{10}{2} 2 10 )
⇒ 3 log10 5
⇒ log10 53
⇒ log10 125
Since, L.H.S. = R.H.S.
Hence, proved that log10 125 = 3(1 - log10 2).
The value of (log 8 - log 2) ÷ log 32 is :
2 5 \dfrac{2}{5} 5 2
5 2 \dfrac{5}{2} 2 5
2
4
Answer
Simplifying the expression :
⇒ (log 8 - log 2) ÷ log 32 ⇒ log 8 - log 2 log 32 ⇒ log 2 3 − log 2 log 2 5 ⇒ 3 log 2 - log 2 5 log 2 ⇒ 2 log 2 5 log 2 ⇒ 2 5 . \Rightarrow \text{(log 8 - log 2) ÷ log 32} \\[1em] \Rightarrow \dfrac{\text{log 8 - log 2}}{\text{log 32}} \\[1em] \Rightarrow \dfrac{\text{log 2}^3 - \text{log 2}}{\text{log 2}^5} \\[1em] \Rightarrow \dfrac{\text{3 log 2 - log 2}}{\text{5 log 2}} \\[1em] \Rightarrow \dfrac{\text{2 log 2}}{\text{5 log 2}} \\[1em] \Rightarrow \dfrac{2}{5}. ⇒ (log 8 - log 2) ÷ log 32 ⇒ log 32 log 8 - log 2 ⇒ log 2 5 log 2 3 − log 2 ⇒ 5 log 2 3 log 2 - log 2 ⇒ 5 log 2 2 log 2 ⇒ 5 2 .
Hence, Option 1 is the correct option.
If log3 (x + 1) = 2, the value of x is :
9
8
3
1 3 \dfrac{1}{3} 3 1
Answer
Given,
⇒ log3 (x + 1) = 2
⇒ x + 1 = 32
⇒ x + 1 = 9
⇒ x = 9 - 1 = 8.
Hence, Option 2 is the correct option.
If 2 log x = log 250 - 1, the value of x is :
17
-5
5
10
Answer
Given,
⇒ 2 log x = log 250 - 1
⇒ 2 log x = log 250 - log 10
⇒ log x2 = log 250 10 \dfrac{250}{10} 10 250
⇒ x2 = 25
⇒ x = 25 \sqrt{25} 25 = 5.
Hence, Option 3 is the correct option.
If log3 x - log3 2 - 1 = 0; the value of x is :
3
-3
-6
6
Answer
Given,
⇒ log3 x - log3 2 - 1 = 0
⇒ log3 x = log3 2 + 1
⇒ log3 x = log3 2 + log3 3
⇒ log3 x = log3 (2 × 3)
⇒ log3 x = log3 6
⇒ x = 6.
Hence, Option 4 is the correct option.
The value of 2 log 3 - 1 3 \dfrac{1}{3} 3 1 log 64 + log 12 is :
log 27
27
-27
-log 27
Answer
Given,
⇒ 2 log 3 − 1 3 log 64 + log 12 ⇒ log 3 2 − log 64 1 3 + log 12 ⇒ log 3 2 − ( log 4 3 ) 1 3 + log 12 ⇒ log 9 − ( log 4 ) 3 × 1 3 + log 12 ⇒ log 9 - log 4 + log 12 ⇒ log 9 + log 12 - log 4 ⇒ log 9 × 12 4 ⇒ log 108 4 ⇒ log 27. \Rightarrow \text{2 log 3} - \dfrac{1}{3} \text{log 64 + log 12} \\[1em] \Rightarrow \text{log 3}^2 - \text{log 64}^{\dfrac{1}{3}} + \text{log 12} \\[1em] \Rightarrow \text{log 3}^2 - (\text{log 4}^3)^{\dfrac{1}{3}} + \text{log 12} \\[1em] \Rightarrow \text{log 9} - (\text{log 4})^{3 \times \dfrac{1}{3}} + \text{log 12} \\[1em] \Rightarrow \text{log 9 - log 4 + log 12} \\[1em] \Rightarrow \text{log 9 + log 12 - log 4} \\[1em] \Rightarrow \text{log } \dfrac{9 \times 12}{4} \\[1em] \Rightarrow \text{log } \dfrac{108}{4} \\[1em] \Rightarrow \text{log } 27. ⇒ 2 log 3 − 3 1 log 64 + log 12 ⇒ log 3 2 − log 64 3 1 + log 12 ⇒ log 3 2 − ( log 4 3 ) 3 1 + log 12 ⇒ log 9 − ( log 4 ) 3 × 3 1 + log 12 ⇒ log 9 - log 4 + log 12 ⇒ log 9 + log 12 - log 4 ⇒ log 4 9 × 12 ⇒ log 4 108 ⇒ log 27.
Hence, Option 1 is the correct option.
If 3 2 log a + 2 3 log b − 1 = 0 \dfrac{3}{2} \text{ log a} + \dfrac{2}{3} \text{ log b } - 1 = 0 2 3 log a + 3 2 log b − 1 = 0 , find the value of a9 .b4
Answer
Given,
⇒ 3 2 log a + 2 3 log b − 1 = 0 ⇒ log a 3 2 + log b 2 3 = 1 ⇒ log a 3 2 + log b 2 3 = log 10 ⇒ log ( a 3 2 × b 2 3 ) = log 10 ⇒ ( a 3 2 × b 2 3 ) = 10 \Rightarrow \dfrac{3}{2} \text{ log a} + \dfrac{2}{3} \text{ log b } - 1 = 0 \\[1em] \Rightarrow \text{log a}^{\dfrac{3}{2}} + \text{log b}^{\dfrac{2}{3}} = 1 \\[1em] \Rightarrow \text{log a}^{\dfrac{3}{2}} + \text{log b}^{\dfrac{2}{3}} = \text{log 10} \\[1em] \Rightarrow \text{log } (a^{\dfrac{3}{2}} \times b^{\dfrac{2}{3}}) = \text{log 10} \\[1em] \Rightarrow (a^{\dfrac{3}{2}} \times b^{\dfrac{2}{3}}) = 10 ⇒ 2 3 log a + 3 2 log b − 1 = 0 ⇒ log a 2 3 + log b 3 2 = 1 ⇒ log a 2 3 + log b 3 2 = log 10 ⇒ log ( a 2 3 × b 3 2 ) = log 10 ⇒ ( a 2 3 × b 3 2 ) = 10
Cubing and then squaring both sides, we get :
⇒ [ ( a 3 2 × b 2 3 ) 3 ] 2 = [ ( 10 ) 3 ] 2 ⇒ ( a 3 2 × b 2 3 ) 6 = 10 6 ⇒ a 3 2 × 6 . b 2 3 × 6 = 10 6 ⇒ a 18 2 . b 12 3 = 10 6 ⇒ a 9 . b 4 = 10 6 . \Rightarrow [(a^{\dfrac{3}{2}} \times b^{\dfrac{2}{3}})^3]^2 = [(10)^3]^2 \\[1em] \Rightarrow (a^{\dfrac{3}{2}} \times b^{\dfrac{2}{3}})^6 = 10^6 \\[1em] \Rightarrow a^{\dfrac{3}{2} \times 6}.b^{\dfrac{2}{3} \times 6} = 10^6 \\[1em] \Rightarrow a^{\dfrac{18}{2}}.b^{\dfrac{12}{3}} = 10^6 \\[1em] \Rightarrow a^9.b^4 = 10^6. ⇒ [( a 2 3 × b 3 2 ) 3 ] 2 = [( 10 ) 3 ] 2 ⇒ ( a 2 3 × b 3 2 ) 6 = 1 0 6 ⇒ a 2 3 × 6 . b 3 2 × 6 = 1 0 6 ⇒ a 2 18 . b 3 12 = 1 0 6 ⇒ a 9 . b 4 = 1 0 6 .
Hence, a9 .b4 = 106 .
If x = 1 + log 2 - log 5, y = 2 log 3 and z = log a - log 5; find the value of a, if x + y = 2z.
Answer
Given,
⇒ x + y = 2z
⇒ 1 + log 2 - log 5 + 2 log 3 = 2 (log a - log 5)
⇒ log 10 + log 2 - log 5 + log 32 = 2 log a 5 \dfrac{a}{5} 5 a
⇒ log 10 + log 2 + log 9 - log 5 = log ( a 5 ) 2 \Big(\dfrac{a}{5}\Big)^2 ( 5 a ) 2
⇒ log 10 × 2 × 9 5 \dfrac{10 \times 2 \times 9}{5} 5 10 × 2 × 9 = log ( a 5 ) 2 \Big(\dfrac{a}{5}\Big)^2 ( 5 a ) 2
⇒ 2 × 2 × 9 = ( a 5 ) 2 \Big(\dfrac{a}{5}\Big)^2 ( 5 a ) 2
⇒ a2 = 52 × 2 × 2 × 9
⇒ a2 = 900
⇒ a = 900 \sqrt{900} 900 = 30.
Hence, a = 30.
If x = log 0.6; y = log 1.25 and z = log 3 - 2 log 2, find the values of :
(i) x + y - z
(ii) 5x + y - z
Answer
(i) Substituting values of x, y and z in equation x + y - z, we get :
⇒ log 0.6 + log 1.25 - (log 3 - 2 log 2)
⇒ log 0.6 + log 1.25 - log 3 + 2 log 2
⇒ log 0.6 + log 1.25 + log 22 - log 3
⇒ log 0.6 × 1.25 × 2 2 3 \dfrac{0.6 \times 1.25 \times 2^2}{3} 3 0.6 × 1.25 × 2 2
⇒ log 0.2 × 1.25 × 4 0.2 \times 1.25 \times 4 0.2 × 1.25 × 4
⇒ log 1
⇒ 0.
Hence, x + y - z = 0.
(ii) Substituting value of x + y - z from part (i) in 5x + y - z , we get :
⇒ 50
⇒ 1.
Hence, 5x + y - z = 1.
If a2 = log x, b3 = log y and 3a2 - 2b3 = 6 log z, express y in terms of x and z.
Answer
⇒ 3a2 - 2b3 = 6 log z
⇒ 3log x - 2log y = 6 log z
⇒ log x3 - log y2 = log z6
⇒ log x 3 y 2 \dfrac{x^3}{y^2} y 2 x 3 = log z6
⇒ x 3 y 2 = z 6 \dfrac{x^3}{y^2} = z^6 y 2 x 3 = z 6
⇒ y 2 = x 3 z 6 y^2 = \dfrac{x^3}{z^6} y 2 = z 6 x 3
⇒ y = x 3 z 6 y = \dfrac{\sqrt{x^3}}{\sqrt{z^6}} y = z 6 x 3
⇒ y = x 3 2 ÷ z 3 x^{\dfrac{3}{2}} ÷ z^3 x 2 3 ÷ z 3 .
Hence, y = x 3 2 ÷ z 3 y = x^{\dfrac{3}{2}} ÷ z^3 y = x 2 3 ÷ z 3 .
If log a − b 2 = 1 2 \dfrac{a - b}{2} = \dfrac{1}{2} 2 a − b = 2 1 (log a + log b), show that :
a2 + b2 = 6ab
Answer
Given,
⇒ log a − b 2 = 1 2 (log a + log b) ⇒ log a − b 2 = 1 2 ( log ab ) ⇒ log a − b 2 = log (ab) 1 2 ⇒ a − b 2 = ( a b ) 1 2 \Rightarrow \text{log } \dfrac{a - b}{2} = \dfrac{1}{2} \text{(log a + log b)} \\[1em] \Rightarrow \text{log } \dfrac{a - b}{2} = \dfrac{1}{2} (\text{log ab}) \\[1em] \Rightarrow \text{log } \dfrac{a - b}{2} = \text{log (ab)} ^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{a - b}{2} = (ab)^{\dfrac{1}{2}} ⇒ log 2 a − b = 2 1 (log a + log b) ⇒ log 2 a − b = 2 1 ( log ab ) ⇒ log 2 a − b = log (ab) 2 1 ⇒ 2 a − b = ( ab ) 2 1
Squaring both sides, we get :
⇒ ( a − b 2 ) 2 = ( a b ) 1 2 × 2 ⇒ a 2 + b 2 − 2 a b 4 = a b ⇒ a 2 + b 2 − 2 a b = 4 a b ⇒ a 2 + b 2 = 4 a b + 2 a b ⇒ a 2 + b 2 = 6 a b . \Rightarrow \Big(\dfrac{a - b}{2}\Big)^2 = (ab)^{\dfrac{1}{2} \times 2} \\[1em] \Rightarrow \dfrac{a^2 + b^2 - 2ab}{4} = ab \\[1em] \Rightarrow a^2 + b^2 - 2ab = 4ab \\[1em] \Rightarrow a^2 + b^2 = 4ab + 2ab \\[1em] \Rightarrow a^2 + b^2 = 6ab. ⇒ ( 2 a − b ) 2 = ( ab ) 2 1 × 2 ⇒ 4 a 2 + b 2 − 2 ab = ab ⇒ a 2 + b 2 − 2 ab = 4 ab ⇒ a 2 + b 2 = 4 ab + 2 ab ⇒ a 2 + b 2 = 6 ab .
Hence, proved that a2 + b2 = 6ab.
If a2 + b2 = 23ab, show that :
log a + b 5 = 1 2 \dfrac{a + b}{5} = \dfrac{1}{2} 5 a + b = 2 1 (log a + log b).
Answer
Given,
⇒ a2 + b2 = 23ab
⇒ a2 + b2 + 2ab = 23ab + 2ab
⇒ (a + b)2 = 25ab
⇒ ( a + b ) 2 25 \dfrac{(a + b)^2}{25} 25 ( a + b ) 2 = ab
⇒ ( a + b 5 ) 2 \Big(\dfrac{a + b}{5}\Big)^2 ( 5 a + b ) 2 = ab
Taking log on both sides, we get :
⇒ log ( a + b 5 ) 2 \Big(\dfrac{a + b}{5}\Big)^2 ( 5 a + b ) 2 = log ab
⇒ 2 log a + b 5 \dfrac{a + b}{5} 5 a + b = log a + log b
⇒ log a + b 5 \dfrac{a + b}{5} 5 a + b = 1 2 \dfrac{1}{2} 2 1 (log a + log b).
Hence, proved that log a + b 5 \dfrac{a + b}{5} 5 a + b = 1 2 \dfrac{1}{2} 2 1 (log a + log b).
If m = log 20 and n = log 25, find the value of x, so that : 2 log (x - 4) = 2m - n
Answer
Given,
⇒ 2 log (x - 4) = 2m - n
Substituting value of m and n in above equation, we get :
⇒ 2 log (x - 4) = 2 log 20 - log 25
⇒ log (x - 4)2 = log 202 - log 25
⇒ log (x - 4)2 = log 400 - log 25
⇒ log (x - 4)2 = log 400 25 \dfrac{400}{25} 25 400
⇒ log (x - 4)2 = log 16
⇒ (x - 4)2 = 16
⇒ x2 + 16 - 8x = 16
⇒ x2 - 8x + 16 - 16 = 0
⇒ x2 - 8x = 0
⇒ x(x - 8) = 0
⇒ x = 0 or x - 8 = 0
⇒ x = 0 or x = 8.
x cannot be zero as then (x - 4) will be negative.
Hence, x = 8.
Solve for x and y; if x > 0 and y > 0 :
log xy = log x y \dfrac{x}{y} y x + 2 log 2 = 2.
Answer
Given,
⇒ log xy = log x y \dfrac{x}{y} y x + 2 log 2 = 2 ........(1)
Solving L.H.S. of the equation :
⇒ log xy = log x y + 2 log 2 ⇒ log xy = log x y + log 2 2 ⇒ log xy = log x y + log 4 ⇒ log xy = log ( x y × 4 ) ⇒ x y = 4 x y ⇒ y 2 = 4 x x ⇒ y 2 = 4 ⇒ y = 4 = 2. \Rightarrow \text{log xy} = \text{log }\dfrac{x}{y} + \text{2 log 2} \\[1em] \Rightarrow \text{log xy} = \text{log }\dfrac{x}{y} + \text{log 2}^2 \\[1em] \Rightarrow \text{log xy} = \text{log }\dfrac{x}{y} + \text{log 4} \\[1em] \Rightarrow \text{log xy} = \text{log} \Big(\dfrac{x}{y} \times 4\Big) \\[1em] \Rightarrow xy = \dfrac{4x}{y} \\[1em] \Rightarrow y^2 = \dfrac{4x}{x} \\[1em] \Rightarrow y^2 = 4 \\[1em] \Rightarrow y = \sqrt{4} = 2. ⇒ log xy = log y x + 2 log 2 ⇒ log xy = log y x + log 2 2 ⇒ log xy = log y x + log 4 ⇒ log xy = log ( y x × 4 ) ⇒ x y = y 4 x ⇒ y 2 = x 4 x ⇒ y 2 = 4 ⇒ y = 4 = 2.
From equation (1), we get :
⇒ log xy = 2
⇒ log x(2) = 2
⇒ log 2x = 2
⇒ log 2x = 2log 10
⇒ log 2x = log 102
⇒ 2x = 102
⇒ 2x = 100
⇒ x = 100 2 \dfrac{100}{2} 2 100 = 50.
Hence, x = 50 and y = 2.
Find x, if :
logx 625 = -4
Answer
Given,
⇒ logx 625 = -4
⇒ x-4 = 625
⇒ 1 x 4 \dfrac{1}{x^4} x 4 1 = 625
⇒ x 4 = 1 625 x^4 = \dfrac{1}{625} x 4 = 625 1
⇒ x 4 = ( 1 5 ) 4 x^4 = \Big(\dfrac{1}{5}\Big)^4 x 4 = ( 5 1 ) 4
⇒ x = 1 5 \dfrac{1}{5} 5 1 = 0.2
Hence, x = 0.2
Find x, if :
logx (5x - 6) = 2
Answer
Given,
⇒ logx (5x - 6) = 2
⇒ (5x - 6) = x2
⇒ x2 - 5x + 6 = 0
⇒ x2 - 3x - 2x + 6 = 0
⇒ x(x - 3) - 2(x - 3) = 0
⇒ (x - 2)(x - 3) = 0
⇒ x - 2 = 0 or x - 3 = 0
⇒ x = 2 or x = 3.
Hence, x = 2 or 3.
If p = log 20 and q = log 25, find the value of x, if 2 log (x + 1) = 2p - q.
Answer
Given,
⇒ 2 log (x + 1) = 2p - q
Substituting value of p and q in above equation, we get :
⇒ 2 log (x + 1) = 2 log 20 - log 25
⇒ log (x + 1)2 = log 202 - log 25
⇒ log (x + 1)2 = log 400 - log 25
⇒ log (x + 1)2 = log 400 25 \dfrac{400}{25} 25 400
⇒ log (x + 1)2 = log 16
⇒ (x + 1)2 = 16
⇒ x2 + 1 + 2x = 16
⇒ x2 + 2x + 1 - 16 = 0
⇒ x2 + 2x - 15 = 0
⇒ x2 + 5x - 3x - 15 = 0
⇒ x(x + 5) - 3(x + 5) = 0
⇒ (x - 3)(x + 5) = 0
⇒ x - 3 = 0 or x + 5 = 0
⇒ x = 3 or x = -5.
But x cannot be negative, then x + 1 will be negative which is not possible.
Hence, x = 3.
If log2 (x + y) = log3 (x - y) = log 25 log 0.2 \dfrac{\text{log 25}}{\text{log 0.2}} log 0.2 log 25 , find the values of x and y.
Answer
Given,
log2 (x + y) = log3 (x - y) = log 25 log 0.2 \dfrac{\text{log 25}}{\text{log 0.2}} log 0.2 log 25
Solving, equation :
⇒ log 2 ( x + y ) = log 25 log 0.2 ⇒ log 2 ( x + y ) = log 0.2 25 ⇒ log 2 ( x + y ) = log 2 10 25 ⇒ log 2 ( x + y ) = log 1 5 5 2 ⇒ log 2 ( x + y ) = log 5 − 1 5 2 ⇒ log 2 ( x + y ) = 2 − 1 log 5 5 ⇒ log 2 ( x + y ) = − 2 × 1 ⇒ log 2 ( x + y ) = − 2 ⇒ x + y = 2 − 2 ⇒ x + y = 1 2 2 ⇒ x + y = 1 4 ......(1) \Rightarrow \text{log}_2 \space (x + y) = \dfrac{\text{log 25}}{\text{log 0.2}} \\[1em] \Rightarrow \text{log}_2 \space (x + y) = \text{log}_{0.2} \space 25 \\[1em] \Rightarrow \text{log}_2 \space (x + y) = \text{log}_{\dfrac{2}{10}} \space 25 \\[1em] \Rightarrow \text{log}_2 \space (x + y) = \text{log}_{\dfrac{1}{5}} \space 5^2 \\[1em] \Rightarrow \text{log}_2 \space (x + y) = \text{log}_{5^{-1}} \space 5^2 \\[1em] \Rightarrow \text{log}_2 \space (x + y) = \dfrac{2}{-1}\text{log}_{5} \space 5 \\[1em] \Rightarrow \text{log}_2 \space (x + y) = -2 \times 1 \\[1em] \Rightarrow \text{log}_2 \space (x + y) = -2 \\[1em] \Rightarrow x + y = 2^{-2} \\[1em] \Rightarrow x + y = \dfrac{1}{2^2} \\[1em] \Rightarrow x + y = \dfrac{1}{4}\text{ ......(1)} ⇒ log 2 ( x + y ) = log 0.2 log 25 ⇒ log 2 ( x + y ) = log 0.2 25 ⇒ log 2 ( x + y ) = log 10 2 25 ⇒ log 2 ( x + y ) = log 5 1 5 2 ⇒ log 2 ( x + y ) = log 5 − 1 5 2 ⇒ log 2 ( x + y ) = − 1 2 log 5 5 ⇒ log 2 ( x + y ) = − 2 × 1 ⇒ log 2 ( x + y ) = − 2 ⇒ x + y = 2 − 2 ⇒ x + y = 2 2 1 ⇒ x + y = 4 1 ......(1)
Solving, equation :
⇒ log 3 ( x − y ) = log 25 log 0.2 ⇒ log 3 ( x − y ) = log 0.2 25 ⇒ log 3 ( x − y ) = log 2 10 25 ⇒ log 3 ( x − y ) = log 1 5 5 2 ⇒ log 3 ( x − y ) = log 5 − 1 5 2 ⇒ log 3 ( x − y ) = 2 − 1 log 5 5 ⇒ log 3 ( x − y ) = − 2 × 1 ⇒ log 3 ( x − y ) = − 2 ⇒ x − y = 3 − 2 ⇒ x − y = 1 3 2 ⇒ x − y = 1 9 ......(2) \Rightarrow \text{log}_3 \space (x - y) = \dfrac{\text{log 25}}{\text{log 0.2}} \\[1em] \Rightarrow \text{log}_3 \space (x - y) = \text{log}_{0.2} \space 25 \\[1em] \Rightarrow \text{log}_3 \space (x - y) = \text{log}_{\dfrac{2}{10}} \space 25 \\[1em] \Rightarrow \text{log}_3 \space (x - y) = \text{log}_{\dfrac{1}{5}} \space 5^2 \\[1em] \Rightarrow \text{log}_3 \space (x - y) = \text{log}_{5^{-1}} \space 5^2 \\[1em] \Rightarrow \text{log}_3 \space (x - y) = \dfrac{2}{-1}\text{log}_{5}5 \\[1em] \Rightarrow \text{log}_3 \space (x - y) = -2 \times 1 \\[1em] \Rightarrow \text{log}_3 \space (x - y) = -2 \\[1em] \Rightarrow x - y = 3^{-2} \\[1em] \Rightarrow x - y = \dfrac{1}{3^2} \\[1em] \Rightarrow x - y = \dfrac{1}{9}\text{ ......(2)} ⇒ log 3 ( x − y ) = log 0.2 log 25 ⇒ log 3 ( x − y ) = log 0.2 25 ⇒ log 3 ( x − y ) = log 10 2 25 ⇒ log 3 ( x − y ) = log 5 1 5 2 ⇒ log 3 ( x − y ) = log 5 − 1 5 2 ⇒ log 3 ( x − y ) = − 1 2 log 5 5 ⇒ log 3 ( x − y ) = − 2 × 1 ⇒ log 3 ( x − y ) = − 2 ⇒ x − y = 3 − 2 ⇒ x − y = 3 2 1 ⇒ x − y = 9 1 ......(2)
Adding equation (1) and (2), we get :
⇒ ( x + y ) + ( x − y ) = 1 4 + 1 9 ⇒ x + x + y − y = 9 + 4 36 ⇒ 2 x = 13 36 ⇒ x = 13 36 × 2 = 13 72 . \Rightarrow (x + y) + (x - y) = \dfrac{1}{4} + \dfrac{1}{9} \\[1em] \Rightarrow x + x + y - y = \dfrac{9 + 4}{36} \\[1em] \Rightarrow 2x = \dfrac{13}{36} \\[1em] \Rightarrow x = \dfrac{13}{36 \times 2} = \dfrac{13}{72}. ⇒ ( x + y ) + ( x − y ) = 4 1 + 9 1 ⇒ x + x + y − y = 36 9 + 4 ⇒ 2 x = 36 13 ⇒ x = 36 × 2 13 = 72 13 .
Substituting value of x in equation (1), we get :
⇒ x + y = 1 4 ⇒ 13 72 + y = 1 4 ⇒ y = 1 4 − 13 72 ⇒ y = 18 − 13 72 ⇒ y = 5 72 . \Rightarrow x + y = \dfrac{1}{4} \\[1em] \Rightarrow \dfrac{13}{72} + y = \dfrac{1}{4} \\[1em] \Rightarrow y = \dfrac{1}{4} - \dfrac{13}{72} \\[1em] \Rightarrow y = \dfrac{18 - 13}{72} \\[1em] \Rightarrow y = \dfrac{5}{72}. ⇒ x + y = 4 1 ⇒ 72 13 + y = 4 1 ⇒ y = 4 1 − 72 13 ⇒ y = 72 18 − 13 ⇒ y = 72 5 .
Hence, x = 13 72 and y = 5 72 \dfrac{13}{72}\text{ and y} = \dfrac{5}{72} 72 13 and y = 72 5 .
Given :
log x log y = 3 2 \dfrac{\text{log x}}{\text{log y}} = \dfrac{3}{2} log y log x = 2 3 and log (xy) = 5; find the values of x and y.
Answer
Solving, equation :
⇒ log x log y = 3 2 ⇒ 2 log x = 3 log y ⇒ log x 2 = log y 3 ⇒ x 2 = y 3 ⇒ x = y 3 ........(1) \Rightarrow \dfrac{\text{log x}}{\text{log y}} = \dfrac{3}{2} \\[1em] \Rightarrow \text{2 log x = 3 log y} \\[1em] \Rightarrow \text{log } x^2 = \text{log } y^3 \\[1em] \Rightarrow x^2 = y^3 \\[1em] \Rightarrow x = \sqrt{y^3}\text{ ........(1)} ⇒ log y log x = 2 3 ⇒ 2 log x = 3 log y ⇒ log x 2 = log y 3 ⇒ x 2 = y 3 ⇒ x = y 3 ........(1)
Substituting value of x from equation (1) in log (xy) = 5, we get :
⇒ log ( y 3 × y ) = 5 ⇒ log ( y 3 2 × y ) = 5 ⇒ log y 3 2 + 1 = 5 ⇒ y 5 2 = 10 5 ⇒ ( y 1 2 ) 5 = 10 5 ⇒ ( y ) 5 = 10 5 ⇒ y = 10 \Rightarrow \text{log } (\sqrt{y^3} \times y) = 5 \\[1em] \Rightarrow \text{log } (y^{\dfrac{3}{2}}\times y) = 5 \\[1em] \Rightarrow \text{log } y^{\dfrac{3}{2} + 1} = 5 \\[1em] \Rightarrow y^{\dfrac{5}{2}} = 10^5 \\[1em] \Rightarrow (y^{\dfrac{1}{2}})^5 =10^5 \\[1em] \Rightarrow (\sqrt{y})^5 = 10^5 \\[1em] \Rightarrow \sqrt{y} = 10 ⇒ log ( y 3 × y ) = 5 ⇒ log ( y 2 3 × y ) = 5 ⇒ log y 2 3 + 1 = 5 ⇒ y 2 5 = 1 0 5 ⇒ ( y 2 1 ) 5 = 1 0 5 ⇒ ( y ) 5 = 1 0 5 ⇒ y = 10
Squaring both sides, we get :
⇒ y = 10 2 \Rightarrow y = 10^2 ⇒ y = 1 0 2 = 100.
Substituting value of y in equation (1), we get :
⇒ x = ( 10 2 ) 3 = 10 6 = 10 3 = 1000. \Rightarrow x = \sqrt{(10^2)^3} \\[1em] = \sqrt{10^6} \\[1em] = 10^3 \\[1em] = 1000. ⇒ x = ( 1 0 2 ) 3 = 1 0 6 = 1 0 3 = 1000.
Hence, x = 1000 and y = 100.
Given log10 x = 2a and log10 y = b 2 \dfrac{b}{2} 2 b .
(i) Write 10a in terms of x.
(ii) Write 102b + 1 in terms of y.
(iii) If log10 P = 3a - 2b, express P in terms of x and y.
Answer
(i) Given,
⇒ log10 x = 2a
⇒ x = 102a
⇒ x = (10a )2
Taking square root on both sides, we get :
⇒ x = 10 a \Rightarrow \sqrt{x} = 10^a ⇒ x = 1 0 a
Hence, 10a = x \sqrt{x} x .
(ii) Given,
⇒ 102b + 1
⇒ 102b .101 .........(1)
Given,
⇒ log 10 y = b 2 ⇒ y = 10 b 2 ⇒ y 4 = ( 10 b 2 ) 4 ⇒ y 4 = 10 2 b ......(2) \Rightarrow \text{log}_{10}y = \dfrac{b}{2} \\[1em] \Rightarrow y = 10^{\dfrac{b}{2}} \\[1em] \Rightarrow y^4 = (10^{\dfrac{b}{2}})^{4} \\[1em] \Rightarrow y^4 = 10^{2b} \text{ ......(2)} ⇒ log 10 y = 2 b ⇒ y = 1 0 2 b ⇒ y 4 = ( 1 0 2 b ) 4 ⇒ y 4 = 1 0 2 b ......(2)
Substituting value of 102b from equation (2) in equation (1), we get :
⇒ y4 .101
⇒ 10y4 .
Hence, 102b + 1 = 10y4 .
(iii) Given,
⇒ log10 P = 3a - 2b
⇒ P = 103a - 2b
⇒ P = 103a .10-2b
⇒ P = 10 3 a 10 2 b \dfrac{10^{3a}}{10^{2b}} 1 0 2 b 1 0 3 a
We know that: (shown above)
y4 = 102b
and
x \sqrt{x} x = 10a
∴ P = 10 3 a 10 2 b \dfrac{10^{3a}}{10^{2b}} 1 0 2 b 1 0 3 a = ( 10 a ) 3 y 4 = ( x ) 3 y 4 = x 3 2 y 4 \dfrac{(10^{a})^3}{y^4} = \dfrac{(\sqrt{x})^3}{y^4} = \dfrac{x^{\dfrac{3}{2}}}{y^4} y 4 ( 1 0 a ) 3 = y 4 ( x ) 3 = y 4 x 2 3 .
Hence, P = x 3 2 y 4 \dfrac{x^{\dfrac{3}{2}}}{y^4} y 4 x 2 3
Solve :
log5 (x + 1) - 1 = 1 + log5 (x - 1).
Answer
Given,
⇒ log5 (x + 1) - 1 = 1 + log5 (x - 1)
⇒ log5 (x + 1) - log5 (x - 1) = 1 + 1
⇒ log5 x + 1 x − 1 \dfrac{x + 1}{x - 1} x − 1 x + 1 = 2
⇒ x + 1 x − 1 = 5 2 \dfrac{x + 1}{x - 1} = 5^2 x − 1 x + 1 = 5 2
⇒ x + 1 = 25(x - 1)
⇒ x + 1 = 25x - 25
⇒ 25x - x = 1 + 25
⇒ 24x = 26
⇒ x = 26 24 = 13 12 = 1 1 12 \dfrac{26}{24} = \dfrac{13}{12} = 1\dfrac{1}{12} 24 26 = 12 13 = 1 12 1 .
Hence, x = 1 1 12 1\dfrac{1}{12} 1 12 1 .
The value of log3 81 is:
4
-4
1 4 \dfrac{1}{4} 4 1
-1 4 \dfrac{1}{4} 4 1
Answer
Given,
⇒ log3 81
⇒ log3 (3)4
⇒ 4.log3 3
⇒ 4 x 1
⇒ 4.
Hence, option 1 is the correct option.
The value of log16 2 is:
4
-4
1 4 \dfrac{1}{4} 4 1
-1 4 \dfrac{1}{4} 4 1
Answer
Let, log16 2 = x
⇒ 16x = 2
⇒ (24 )x = 2
⇒ 24x = 21
⇒ 4x = 1
⇒ x = 1 4 \dfrac{1}{4} 4 1 .
Hence, option 3 is the correct option.
If log(3x - 2) = 2, then the value of x is:
34
30
17
none of these
Answer
Given, log(3x - 2) = 2
⇒ log10 (3x - 2) = 2
⇒ 3x - 2 = 102
⇒ 3x - 2 = 100
⇒ 3x = 100 + 2
⇒ 3x = 102
⇒ x = 102 3 \dfrac{102}{3} 3 102
⇒ x = 34.
Hence, option 1 is the correct option.
2 + 1 2 \dfrac{1}{2} 2 1 log 9 - 2 log 5 is equal to:
-log 12
log 24
log 12
log 18 25 \dfrac{18}{25} 25 18
Answer
Given,
⇒ 2 + 1 2 \dfrac{1}{2} 2 1 log 9 - 2 log 5
⇒ 2log 10 + log 9 1 2 \text{log 9}^\dfrac{1}{2} log 9 2 1 - log 52
⇒ log 102 + log 9 \sqrt{9} 9 - log 52
⇒ log 100 + log 3 - log 25
⇒ log (100 x 3) - log 25
⇒ log 300 - log 25
⇒ log 300 25 \dfrac{300}{25} 25 300
⇒ log 12.
Hence, option 3 is the correct option.
3 + log 10-2 is equal to:
5
1
-5
-1
Answer
Given,
⇒ 3 + log 10-2
⇒ 3 + (-2) log 10
⇒ 3 + (-2) × 1
⇒ 3 - 2
⇒ 1.
Hence, option 2 is the correct option.
Statement 1: log2 (x2 - 4) = 5 ⇒ x = 6
Statement 2: x2 - 4 = 25
⇒ x2 = 36 and x = ± \pm ± 6
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given,
⇒ log2 (x2 - 4) = 5
⇒ x2 - 4 = 25
⇒ x2 - 4 = 32
⇒ x2 = 32 + 4
⇒ x2 = 36
⇒ x = 36 \sqrt{36} 36
⇒ x = ± 6 \pm 6 ± 6
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is the correct option.
Statement 1: log3 x = a, then 9a = 1 x 2 \dfrac{1}{x^2} x 2 1
Statement 2: log3 x = a ⇒ 3a = x
∴ 9a = (32 )a = (3a )2 = x2
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Let, log3 x = a
⇒ 3a = x
⇒ (3a )2 = x2
⇒ (32 )a = x2
⇒ 9a = x2
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is the correct option.
Assertion (A): log 3 x = 4 \text{log}_{\sqrt{3}}x = 4 log 3 x = 4
⇒ x = 9
Reason (R): x = ( 3 ) 4 (\sqrt{3})^4 ( 3 ) 4 = 32 = 9
A is true, but R is false.
A is false, but R is true.
Both A and R are true and R is the correct reason for A.
Both A and R are true and R is the incorrect reason for A.
Answer
Given,
⇒ log 3 x = 4 ⇒ ( 3 ) 4 = x ⇒ x = 9. \Rightarrow \text{log}_{\sqrt{3}}x = 4 \\[1em] \Rightarrow (\sqrt{3})^4 = x \\[1em] \Rightarrow x = 9. ⇒ log 3 x = 4 ⇒ ( 3 ) 4 = x ⇒ x = 9.
∴ Both A and R are true and R is the correct reason for A.
Hence, option 3 is the correct option.
Assertion (A): log 2 = a and log 3 = b
⇒ 1 + log 12 = 2a + b
Reason (R): 1 + log 12
= 1 + log 2 x 2 x 3
= 1 + 2log 2 + log 3
= 1 + 2a + b
A is true, but R is false.
A is false, but R is true.
Both A and R are true and R is the correct reason for A.
Both A and R are true and R is the incorrect reason for A.
Answer
Given, log 2 = a and log 3 = b
⇒ 1 + log 12
⇒ 1 + log (4 x 3)
⇒ 1 + log (2 x 2 x 3)
⇒ 1 + log 4 + log 3
⇒ 1 + log 22 + log 3
= 1 + 2log 2 + log 3
= 1 + 2a + b.
∴ A is false, but R is true.
Hence, option 2 is the correct option.
If log2 x = a and log3 y = a, write 72a in terms of x and y.
Answer
Given,
⇒ log2 x = a
⇒ x = 2a ........(1)
⇒ log3 y = a
⇒ y = 3a ........(2)
Simplifying (72)a , we get :
⇒ 72a
⇒ (23 × 32 )a
⇒ (23 )a × (32 )a
⇒ (2a )3 × (3a )2
Substituting value of 2a and 3a from equation (1) and (2), in above equation, we get :
⇒ x3 .y2
Hence, 72a = x3 .y2
Solve for x :
log (x - 1) + log (x + 1) = log2 1
Answer
Given,
⇒ log (x - 1) + log (x + 1) = log2 1
⇒ log (x - 1)(x + 1) = 0
⇒ log (x2 + x - x - 1) = 0
⇒ log (x2 - 1) = 0
⇒ x2 - 1 = 100
⇒ x2 - 1 = 1
⇒ x2 = 1 + 1
⇒ x2 = 2
⇒ x = 2 \sqrt{2} 2 .
Hence, x = 2 \sqrt{2} 2 .
If log (x2 - 21) = 2, show that x = ± 11 \pm 11 ± 11 .
Answer
Given,
⇒ log (x2 - 21) = 2
⇒ x2 - 21 = 102
⇒ x2 - 21 = 100
⇒ x2 = 100 + 21
⇒ x2 = 121
⇒ x = 121 \sqrt{121} 121
⇒ x = ± 11 \pm 11 ± 11 .
Hence, proved that x = ± 11 \pm 11 ± 11 .
If x = (100)a , y = (10000)b and z = (10)c , find log 10 y x 2 z 3 \dfrac{10\sqrt{y}}{x^2z^3} x 2 z 3 10 y in terms of a, b and c.
Answer
Given,
⇒ x = (100)a
⇒ x = (102 )a
⇒ x = 102a ..........(1)
Given,
⇒ y = (10000)b
⇒ y = (104 )b
⇒ y = 104b ..........(2)
Given,
⇒ z = 10c ..........(3)
Substituting value of x, y and z from equations (1), (2) and (3) respectively in log 10 y x 2 z 3 \dfrac{10\sqrt{y}}{x^2z^3} x 2 z 3 10 y , we get :
⇒ log 10 y x 2 z 3 ⇒ log 10 × 10 4 b ( 10 2 a ) 2 × ( 10 c ) 3 ⇒ log 10 × ( 10 b ) 4 ( 10 4 a ) × ( 10 3 c ) ⇒ log 10 × 10 2 b 10 4 a + 3 c ⇒ log 10 2 b + 1 10 4 a + 3 c ⇒ log 10 2 b + 1 − log 10 4 a + 3 c ⇒ ( 2 b + 1 ) × log 10 − ( 4 a + 3 c ) × log 10 ⇒ ( 2 b + 1 ) × 1 − ( 4 a + 3 c ) × 1 ⇒ ( 2 b + 1 ) − ( 4 a + 3 c ) ⇒ 2 b + 1 − 4 a − 3 c . \Rightarrow \text{log } \dfrac{10\sqrt{y}}{x^2z^3} \\[1em] \Rightarrow \text{log } \dfrac{10 \times \sqrt{10^{4b}}}{(10^{2a})^2 \times (10^c)^3} \\[1em] \Rightarrow \text{log } \dfrac{10 \times \sqrt{(10^{b})^4}}{(10^{4a}) \times (10^{3c})} \\[1em] \Rightarrow \text{log } \dfrac{10 \times 10^{2b}}{10^{4a + 3c}} \\[1em] \Rightarrow \text{log } \dfrac{10^{2b + 1}}{10^{4a + 3c}} \\[1em] \Rightarrow \text{log } 10^{2b + 1} - \text{log } 10^{4a + 3c} \\[1em] \Rightarrow (2b + 1) \times \text{log 10} - (4a + 3c) \times \text{log 10} \\[1em] \Rightarrow (2b + 1) \times 1 - (4a + 3c) \times 1 \\[1em] \Rightarrow (2b + 1) - (4a + 3c) \\[1em] \Rightarrow 2b + 1 - 4a - 3c. ⇒ log x 2 z 3 10 y ⇒ log ( 1 0 2 a ) 2 × ( 1 0 c ) 3 10 × 1 0 4 b ⇒ log ( 1 0 4 a ) × ( 1 0 3 c ) 10 × ( 1 0 b ) 4 ⇒ log 1 0 4 a + 3 c 10 × 1 0 2 b ⇒ log 1 0 4 a + 3 c 1 0 2 b + 1 ⇒ log 1 0 2 b + 1 − log 1 0 4 a + 3 c ⇒ ( 2 b + 1 ) × log 10 − ( 4 a + 3 c ) × log 10 ⇒ ( 2 b + 1 ) × 1 − ( 4 a + 3 c ) × 1 ⇒ ( 2 b + 1 ) − ( 4 a + 3 c ) ⇒ 2 b + 1 − 4 a − 3 c .
Hence, log 10 y x 2 z 3 \dfrac{10\sqrt{y}}{x^2z^3} x 2 z 3 10 y = 2b + 1 - 4a - 3c.
If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.
Answer
Given,
⇒ 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x
⇒ 3log 5 - 3log 3 - log 5 + 2 log 6 = 2 - log x
⇒ 2log 5 - 3log 3 + 2log 6 = 2 - log x
⇒ 2log 5 - log 33 + log 62 = 2 - log x
⇒ log 52 - log 27 + log 36 + log x = 2
⇒ log 25 + log 36 + log x - log 27 = 2
⇒ log 25 × 36 × x 27 \dfrac{25 \times 36 \times x}{27} 27 25 × 36 × x = 2
⇒ 100 x 3 = 10 2 \dfrac{100x}{3} = 10^2 3 100 x = 1 0 2
⇒ 100x = 3 × 102
⇒ 100x = 300
⇒ x = 300 100 \dfrac{300}{100} 100 300 = 3.
Hence, x = 3.
Given log x = 2m - n, log y = n - 2m and log z = 3m - 2n, find in terms of m and n, the value of log x 2 y 3 z 4 \dfrac{x^2y^3}{z^4} z 4 x 2 y 3 .
Answer
Given,
1st equation :
⇒ log x = 2m - n
⇒ x = 102m - n .......(1)
2nd equation :
⇒ log y = n - 2m
⇒ y = 10n - 2m .......(2)
3rd equation :
⇒ log z = 3m - 2n
⇒ z = 103m - 2n .......(3)
Substituting value of x, y and z in log x 2 y 3 z 4 \dfrac{x^2y^3}{z^4} z 4 x 2 y 3 , we get :
⇒ log ( 10 2 m − n ) 2 ( 10 n − 2 m ) 3 ( 10 3 m − 2 n ) 4 ⇒ log 10 2 ( 2 m − n ) .10 3 ( n − 2 m ) 10 4 ( 3 m − 2 n ) ⇒ log 10 4 m − 2 n .10 3 n − 6 m 10 12 m − 8 n ⇒ log 10 4 m − 2 n + 3 n − 6 m − ( 12 m − 8 n ) ⇒ log 10 n − 2 m − 12 m + 8 n ⇒ log 10 9 n − 14 m ⇒ ( 9 n − 14 m ) log 10 ⇒ ( 9 n − 14 m ) × 1 ⇒ 9 n − 14 m . \Rightarrow \text{log } \dfrac{(10^{2m - n})^2(10^{n - 2m})^3}{(10^{3m - 2n})^4} \\[1em] \Rightarrow \text{log } \dfrac{10^{2(2m - n)}.10^{3(n - 2m)}}{10^{4(3m - 2n)}} \\[1em] \Rightarrow \text{log } \dfrac{10^{4m - 2n}.10^{3n - 6m}}{10^{12m - 8n}} \\[1em] \Rightarrow \text{log } 10^{4m - 2n + 3n - 6m - (12m - 8n)} \\[1em] \Rightarrow \text{log } 10^{n - 2m - 12m + 8n} \\[1em] \Rightarrow \text{log } 10^{9n - 14m} \\[1em] \Rightarrow (9n - 14m) \text{ log 10} \\[1em] \Rightarrow (9n - 14m) \times 1 \\[1em] \Rightarrow 9n - 14m. ⇒ log ( 1 0 3 m − 2 n ) 4 ( 1 0 2 m − n ) 2 ( 1 0 n − 2 m ) 3 ⇒ log 1 0 4 ( 3 m − 2 n ) 1 0 2 ( 2 m − n ) .1 0 3 ( n − 2 m ) ⇒ log 1 0 12 m − 8 n 1 0 4 m − 2 n .1 0 3 n − 6 m ⇒ log 1 0 4 m − 2 n + 3 n − 6 m − ( 12 m − 8 n ) ⇒ log 1 0 n − 2 m − 12 m + 8 n ⇒ log 1 0 9 n − 14 m ⇒ ( 9 n − 14 m ) log 10 ⇒ ( 9 n − 14 m ) × 1 ⇒ 9 n − 14 m .
Hence, log x 2 y 3 z 4 \dfrac{x^2y^3}{z^4} z 4 x 2 y 3 = 9n - 14m.
Given logx 25 - logx 5 = 2 - logx 1 125 \dfrac{1}{125} 125 1 ; find x.
Answer
Given,
⇒ logx 25 - logx 5 = 2 - logx 1 125 \dfrac{1}{125} 125 1
⇒ logx 25 - logx 5 + logx 1 125 \dfrac{1}{125} 125 1 = 2
⇒ logx 25 × 1 125 5 \dfrac{25 \times \dfrac{1}{125}}{5} 5 25 × 125 1 = 2
⇒ logx 25 625 \dfrac{25}{625} 625 25 = 2
⇒ x2 = 25 625 \dfrac{25}{625} 625 25
⇒ x 2 = 1 25 x^2 = \dfrac{1}{25} x 2 = 25 1
⇒ x = 1 25 = 1 5 \sqrt{\dfrac{1}{25}} = \dfrac{1}{5} 25 1 = 5 1 .
Hence, x = 1 5 \dfrac{1}{5} 5 1 .
Solve for x, if :
logx 49 - logx 7 + logx 1 343 \dfrac{1}{343} 343 1 + 2 = 0
Answer
Given,
⇒ log x 49 + log x 1 343 − log x 7 = − 2 ⇒ log x 49 × 1 343 7 = − 2 ⇒ log x 49 7 × 343 = − 2 ⇒ log x 1 49 = − 2 ⇒ x − 2 = 1 49 ⇒ x − 2 = 1 7 2 ⇒ x − 2 = 7 − 2 ⇒ x = 7. \Rightarrow \text{log}_x \space {49} + \text{log}_x \space {\dfrac{1}{343}} - \text{log}_x7 = -2 \\[1em] \Rightarrow \text{log}_x \space {\dfrac{49 \times \dfrac{1}{343}}{7}} = -2 \\[1em] \Rightarrow \text{log}_x \space {\dfrac{49}{7 \times 343}} = -2 \\[1em] \Rightarrow \text{log}_x \space {\dfrac{1}{49}} = -2 \\[1em] \Rightarrow x^{-2} = \dfrac{1}{49} \\[1em] \Rightarrow x^{-2} = \dfrac{1}{7^2} \\[1em] \Rightarrow x^{-2} = 7^{-2} \\[1em] \Rightarrow x = 7. ⇒ log x 49 + log x 343 1 − log x 7 = − 2 ⇒ log x 7 49 × 343 1 = − 2 ⇒ log x 7 × 343 49 = − 2 ⇒ log x 49 1 = − 2 ⇒ x − 2 = 49 1 ⇒ x − 2 = 7 2 1 ⇒ x − 2 = 7 − 2 ⇒ x = 7.
Hence, x = 7.
If a2 = log x, b3 = log y and a 2 2 − b 3 3 \dfrac{a^2}{2} - \dfrac{b^3}{3} 2 a 2 − 3 b 3 = log c, find c in terms of x and y.
Answer
Given,
a2 = log x and b3 = log y
Substituting value of a2 and b3 in a 2 2 − b 3 3 \dfrac{a^2}{2} - \dfrac{b^3}{3} 2 a 2 − 3 b 3 = log c, we get :
⇒ a 2 2 − b 3 3 = log c ⇒ log x 2 − log y 3 = log c ⇒ 3 log x - 2 log y 6 = log c ⇒ log x 3 − log y 2 = 6 log c ⇒ log x 3 − log y 2 = log c 6 ⇒ log c 6 = l o g x 3 y 2 ⇒ c 6 = x 3 y 2 ⇒ c = x 3 y 2 6 . \Rightarrow \dfrac{a^2}{2} - \dfrac{b^3}{3} = \text{log c} \\[1em] \Rightarrow \dfrac{\text{log x}}{2} - \dfrac{\text{log y}}{3} = \text{log c} \\[1em] \Rightarrow \dfrac{\text{3 log x - 2 log y}}{6} = \text{log c} \\[1em] \Rightarrow \text{log x}^3 - \text{log y}^2 = \text{6 log c} \\[1em] \Rightarrow \text{log x}^3 - \text{log y}^2 = \text{log c}^6 \\[1em] \Rightarrow \text{log c}^6 = log \dfrac{x^3}{y^2} \\[1em] \Rightarrow c^6 = \dfrac{x^3}{y^2} \\[1em] \Rightarrow c = \sqrt[6]{\dfrac{x^3}{y^2}}. ⇒ 2 a 2 − 3 b 3 = log c ⇒ 2 log x − 3 log y = log c ⇒ 6 3 log x - 2 log y = log c ⇒ log x 3 − log y 2 = 6 log c ⇒ log x 3 − log y 2 = log c 6 ⇒ log c 6 = l o g y 2 x 3 ⇒ c 6 = y 2 x 3 ⇒ c = 6 y 2 x 3 .
Hence, c = x 3 y 2 6 . \sqrt[6]{\dfrac{x^3}{y^2}}. 6 y 2 x 3 .
Given x = log10 12, y = log4 2 × log10 9 and z = log10 0.4, find :
(i) x - y - z
(ii) 13x - y - z
Answer
Given,
x = log10 12, y = log4 2 × log10 9 and z = log10 0.4
(i) Substituting value of x, y and z in equation x - y - z, we get :
⇒ x - y - z = log10 12 - log4 2 × log10 9 - log10 0.4
= log10 12 - log(22 ) 2 × log10 9 - log10 0.4
= log10 12 - 1 2 \dfrac{1}{2} 2 1 log 2 2 × log10 9 - log10 0.4
= log10 12 - 1 2 \dfrac{1}{2} 2 1 × 1 × log10 9 - log10 0.4
= log10 12 - 1 2 \dfrac{1}{2} 2 1 × log10 9 - log10 0.4
= log10 12 - log10 9 1 2 9^{\dfrac{1}{2}} 9 2 1 - log10 0.4
= log10 12 - log10 3 - log10 0.4
= log10 12 - (log10 3 + log10 0.4)
= log10 12 3 × 0.4 \dfrac{12}{3 \times 0.4} 3 × 0.4 12
= log10 12 1.2 \dfrac{12}{1.2} 1.2 12
= log10 10
= 1.
Hence, x - y - z = 1.
(ii) Substituting value of x - y - z in 13x - y - z , we get :
⇒ 131 = 13.
Hence, 13x - y - z = 13.
Solve for x, logx 15 5 = 2 − log x 3 5 15\sqrt{5} = 2 - \text{log}_x \space 3\sqrt{5} 15 5 = 2 − log x 3 5
Answer
Given,
⇒ log x 15 5 = 2 − log x 3 5 ⇒ log x 15 5 + log x 3 5 = 2 ⇒ log x ( 15 5 × 3 5 ) = 2 ⇒ log x 225 = 2 ⇒ x 2 = 225 ⇒ x = 225 = 15. \Rightarrow \text{log}_x \space 15\sqrt{5} = 2 - \text{log}_x \space 3\sqrt{5} \\[1em] \Rightarrow \text{log}_x \space 15\sqrt{5} + \text{log}_x \space 3\sqrt{5} = 2 \\[1em] \Rightarrow \text{log}_x \space (15\sqrt{5} \times 3\sqrt{5}) = 2 \\[1em] \Rightarrow \text{log}_x \space 225 = 2 \\[1em] \Rightarrow x^2 = 225 \\[1em] \Rightarrow x = \sqrt{225} = 15. ⇒ log x 15 5 = 2 − log x 3 5 ⇒ log x 15 5 + log x 3 5 = 2 ⇒ log x ( 15 5 × 3 5 ) = 2 ⇒ log x 225 = 2 ⇒ x 2 = 225 ⇒ x = 225 = 15.
Hence, x = 15.
Evaluate :
logb a × logc b × loga c
Answer
Simplifying the expression,
⇒ log b a × log c b × log a c ⇒ log a log b × log b log c × log c log a ⇒ log a.log b.log c log b.log c.log a ⇒ 1. \Rightarrow \text{log}_b a \times \text{log}_c b \times \text{log}_a c \\[1em] \Rightarrow \dfrac{\text{log a}}{\text{log b}} \times \dfrac{\text{log b}}{\text{log c}} \times \dfrac{\text{log c}}{\text{log a}} \\[1em] \Rightarrow \dfrac{\text{log a.log b.log c}}{\text{log b.log c.log a}} \\[1em] \Rightarrow 1. ⇒ log b a × log c b × log a c ⇒ log b log a × log c log b × log a log c ⇒ log b.log c.log a log a.log b.log c ⇒ 1.
Hence, logb a × logc b × loga c = 1.
Evaluate :
log3 8 ÷ log9 16
Answer
Simplifying the expression,
⇒ log 3 8 ÷ log 9 16 ⇒ log 8 log 3 ÷ log 16 log 9 ⇒ log 8 log 3 × log 9 log 16 ⇒ log 2 3 log 3 × log 3 2 log 2 4 ⇒ 3 log 2 log 3 × 2 log 3 4 log 2 ⇒ 6 log 2.log 3 4 log 2.log 3 ⇒ 6 4 ⇒ 3 2 ⇒ 1 1 2 . \Rightarrow \text{log}_3 \space 8 ÷ \text{log}_9 \space 16 \\[1em] \Rightarrow \dfrac{\text{log 8}}{\text{log 3}} ÷ \dfrac{\text{log 16}}{\text{log 9}} \\[1em] \Rightarrow \dfrac{\text{log 8}}{\text{log 3}} \times \dfrac{\text{log 9}}{\text{log 16}} \\[1em] \Rightarrow \dfrac{\text{log 2}^3}{\text{log 3}} \times \dfrac{\text{log 3}^2}{\text{log 2}^4} \\[1em] \Rightarrow \dfrac{\text{3 log 2}}{\text{log 3}} \times \dfrac{\text{2 log 3}}{\text{4 log 2}} \\[1em] \Rightarrow \dfrac{\text{6 log 2.log 3}}{\text{4 log 2.log 3}} \\[1em] \Rightarrow \dfrac{6}{4} \\[1em] \Rightarrow \dfrac{3}{2} \\[1em] \Rightarrow 1\dfrac{1}{2}. ⇒ log 3 8 ÷ log 9 16 ⇒ log 3 log 8 ÷ log 9 log 16 ⇒ log 3 log 8 × log 16 log 9 ⇒ log 3 log 2 3 × log 2 4 log 3 2 ⇒ log 3 3 log 2 × 4 log 2 2 log 3 ⇒ 4 log 2.log 3 6 log 2.log 3 ⇒ 4 6 ⇒ 2 3 ⇒ 1 2 1 .
Hence, log3 8 ÷ log9 16 = 1 1 2 1\dfrac{1}{2} 1 2 1 .
Evaluate :
log 5 8 log 25 16 × log 100 10 \dfrac{\text{log}_5 \space 8}{\text{log }_{25} \space 16 \times \text{log }_{100} \space 10} log 25 16 × log 100 10 log 5 8
Answer
Simplifying the expression,⇒ log 5 8 log 25 16 × log 100 10 ⇒ log 5 8 log 5 2 16 × log 10 2 10 ⇒ log 5 8 1 2 × log 5 16 × 1 2 × log 10 10 ⇒ log 5 8 1 4 × log 5 16 ⇒ 4 log 5 8 log 5 16 ⇒ 4 × log 8 log 5 log 16 log 5 ⇒ 4 log 8. log 5 log 16. log 5 ⇒ 4 log 8 log 16 ⇒ 4 log 2 3 log 2 4 ⇒ 4 × 3 × log 2 4 × log 2 ⇒ 12 4 ⇒ 3. \Rightarrow \dfrac{\text{log}_5 \space 8}{\text{log }_{25} \space 16 \times \text{log }_{100} \space 10} \\[1em] \Rightarrow \dfrac{\text{log}_5 \space 8}{\text{log }_{5^2} \space 16 \times \text{log}_{10^2} \space 10} \\[1em] \Rightarrow \dfrac{\text{log}_5 \space 8}{\dfrac{1}{2} \times \text{log }_{5} \space 16 \times \dfrac{1}{2} \times \text{log}_{10} \space 10} \\[1em] \Rightarrow \dfrac{\text{log}_5 \space 8}{\dfrac{1}{4} \times \text{log}_{5} \space 16} \\[1em] \Rightarrow \dfrac{4\text{log}_5 \space 8}{\text{log}_{5} \space 16} \\[1em] \Rightarrow \dfrac{4 \times \dfrac{\text{log 8}}{\text{log 5}}}{\dfrac{\text{log 16}}{\text{log 5}}} \\[1em] \Rightarrow \dfrac{\text{4 log 8. log 5}}{\text{log 16. log 5}} \\[1em] \Rightarrow \dfrac{\text{4 log 8}}{\text{log 16}} \\[1em] \Rightarrow \dfrac{\text{4 log 2}^3}{\text{log 2}^4} \\[1em] \Rightarrow \dfrac{4 \times 3 \times \text{log 2}}{4 \times \text{log 2}} \\[1em] \Rightarrow \dfrac{12}{4} \\[1em] \Rightarrow 3. ⇒ log 25 16 × log 100 10 log 5 8 ⇒ log 5 2 16 × log 1 0 2 10 log 5 8 ⇒ 2 1 × log 5 16 × 2 1 × log 10 10 log 5 8 ⇒ 4 1 × log 5 16 log 5 8 ⇒ log 5 16 4 log 5 8 ⇒ log 5 log 16 4 × log 5 log 8 ⇒ log 16. log 5 4 log 8. log 5 ⇒ log 16 4 log 8 ⇒ log 2 4 4 log 2 3 ⇒ 4 × log 2 4 × 3 × log 2 ⇒ 4 12 ⇒ 3.
Hence, log 5 8 log 25 16 × log 100 10 \dfrac{\text{log}_5 \space 8}{\text{log }_{25} \space 16 \times \text{log }_{100} \space 10} log 25 16 × log 100 10 log 5 8 = 3.
Show that :
loga m ÷ logab m = 1 + loga b
Answer
Simplifying L.H.S. of the given equation, we get :
⇒ log a m ÷ log a b m ⇒ log m log a ÷ log m log ab ⇒ log m log a × log ab log m ⇒ log ab log a ⇒ log a a b ⇒ log a a + log a b ⇒ 1 + log a b . \Rightarrow \text{log}_a \space m ÷ \text{log}_{ab} \space m \\[1em] \Rightarrow \dfrac{\text{log m}}{\text{log a}} ÷ \dfrac{\text{log m}}{\text{log ab}}\\[1em] \Rightarrow \dfrac{\text{log m}}{\text{log a}} \times \dfrac{\text{log ab}}{\text{log m}}\\[1em] \Rightarrow \dfrac{\text{log ab}}{\text{log a}} \\[1em] \Rightarrow \text{log}_{a} \space ab \\[1em] \Rightarrow \text{log}_{a} \space a + \text{log}_{a} \space b \\[1em] \Rightarrow 1 + \text{log}_{a} \space b. ⇒ log a m ÷ log ab m ⇒ log a log m ÷ log ab log m ⇒ log a log m × log m log ab ⇒ log a log ab ⇒ log a ab ⇒ log a a + log a b ⇒ 1 + log a b .
Hence, proved that loga m ÷ logab m = 1 + loga b.
If log 27 x = 2 2 3 \text{log}_{\sqrt{27}} \space x = 2\dfrac{2}{3} log 27 x = 2 3 2 , find x.
Answer
Given,
⇒ log 27 x = 2 2 3 ⇒ log 27 x = 8 3 ⇒ log 3 3 x = 8 3 ⇒ log 3 3 2 x = 8 3 ⇒ 1 3 2 log 3 x = 8 3 ⇒ 2 3 log 3 x = 8 3 ⇒ log 3 x = 8 3 × 3 2 ⇒ log 3 x = 4 ⇒ x = 3 4 = 81. \Rightarrow \text{log}_{\sqrt{27}} \space x = 2\dfrac{2}{3} \\[1em] \Rightarrow \text{log}_{\sqrt{27}} \space x = \dfrac{8}{3} \\[1em] \Rightarrow \text{log}_{\sqrt{3^3}} \space x = \dfrac{8}{3} \\[1em] \Rightarrow \text{log}_{3^{\frac{3}{2}}} \space x = \dfrac{8}{3} \\[1em] \Rightarrow \dfrac{1}{\dfrac{3}{2}} \text{ log}_{3} \space x = \dfrac{8}{3} \\[1em] \Rightarrow \dfrac{2}{3}\text{ log}_{3} \space x = \dfrac{8}{3} \\[1em] \Rightarrow \text{ log}_{3} \space x = \dfrac{8}{3} \times \dfrac{3}{2} \\[1em] \Rightarrow \text{ log}_{3} \space x = 4 \\[1em] \Rightarrow x = 3^4 = 81. ⇒ log 27 x = 2 3 2 ⇒ log 27 x = 3 8 ⇒ log 3 3 x = 3 8 ⇒ log 3 2 3 x = 3 8 ⇒ 2 3 1 log 3 x = 3 8 ⇒ 3 2 log 3 x = 3 8 ⇒ log 3 x = 3 8 × 2 3 ⇒ log 3 x = 4 ⇒ x = 3 4 = 81.
Hence, x = 81.
1 log a b c + 1 + 1 log b c a + 1 + 1 log c a b + 1 \dfrac{1}{\text{log}_{a} \space bc + 1} + \dfrac{1}{\text{log}_{b} \space ca + 1} + \dfrac{1}{\text{log}_{c} \space ab + 1} log a b c + 1 1 + log b c a + 1 1 + log c ab + 1 1
Answer
Evaluating,
⇒ 1 log a b c + 1 + 1 log b c a + 1 + 1 log c a b + 1 ⇒ 1 log bc log a + 1 + 1 log ca log b + 1 + 1 log ab log c + 1 ⇒ 1 log bc + log a log a + 1 log ca + log b log b + 1 log ab + log c log c ⇒ log a log bc + log a + log b log ca + log b + log c log ab + log c ⇒ log a log b + log c + log a + log b log c + log a + log b + log c log a + log b + log c ⇒ log a + log b + log c log a + log b + log c ⇒ 1. \Rightarrow \dfrac{1}{\text{log}_{a} \space bc + 1} + \dfrac{1}{\text{log}_{b} \space ca + 1} + \dfrac{1}{\text{log}_{c} \space ab + 1} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{log bc}}{\text{log a}} + 1} + \dfrac{1}{\dfrac{\text{log ca}}{\text{log b}} + 1} + \dfrac{1}{\dfrac{\text{log ab}}{\text{log c}} + 1} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{log bc + log a}}{\text{log a}}} + \dfrac{1}{\dfrac{\text{log ca + log b}}{\text{log b}}} + \dfrac{1}{\dfrac{\text{log ab + log c}}{\text{log c}}} \\[1em] \Rightarrow \dfrac{\text{log a}}{\text{log bc + log a}} + \dfrac{\text{log b}}{\text{log ca + log b}} + \dfrac{\text{log c}}{\text{log ab + log c}} \\[1em] \Rightarrow \dfrac{\text{log a}}{\text{log b + log c + log a}} + \dfrac{\text{log b}}{\text{log c + log a + log b}} + \dfrac{\text{log c}}{\text{log a + log b + log c}} \\[1em] \Rightarrow \dfrac{\text{log a + log b + log c}}{\text{log a + log b + log c}} \\[1em] \Rightarrow 1. ⇒ log a b c + 1 1 + log b c a + 1 1 + log c ab + 1 1 ⇒ log a log bc + 1 1 + log b log ca + 1 1 + log c log ab + 1 1 ⇒ log a log bc + log a 1 + log b log ca + log b 1 + log c log ab + log c 1 ⇒ log bc + log a log a + log ca + log b log b + log ab + log c log c ⇒ log b + log c + log a log a + log c + log a + log b log b + log a + log b + log c log c ⇒ log a + log b + log c log a + log b + log c ⇒ 1.
Hence, 1 log a b c + 1 + 1 log b c a + 1 + 1 log c a b + 1 \dfrac{1}{\text{log}_{a} \space bc + 1} + \dfrac{1}{\text{log}_{b} \space ca + 1} + \dfrac{1}{\text{log}_{c} \space ab + 1} log a b c + 1 1 + log b c a + 1 1 + log c ab + 1 1 = 1.