Without actual division, find which of the following fractions are terminating decimals :
(i) 9 25 \dfrac{9}{25} 25 9
(ii) 7 12 \dfrac{7}{12} 12 7
(iii) 13 16 \dfrac{13}{16} 16 13
(iv) 25 128 \dfrac{25}{128} 128 25
(v) 9 50 \dfrac{9}{50} 50 9
(vi) 121 125 \dfrac{121}{125} 125 121
(vii) 19 55 \dfrac{19}{55} 55 19
(viii) 37 78 \dfrac{37}{78} 78 37
(ix) 23 80 \dfrac{23}{80} 80 23
(x) 19 30 \dfrac{19}{30} 30 19
Answer
In rational numbers, if the denominator of the fraction can be expressed in the form of 2m. × 5n. , then it is a terminating decimal.
(i) So, 25 can be expressed as 20. × 52. , which is in the form of 2m. × 5n. .
Hence, 9 25 \dfrac{9}{25} 25 9 is a terminating decimal number.
(ii) So, 12 can be expressed as 3 × 22. × 50. , which is not in the form of 2m. × 5n. .
Hence, 7 12 \dfrac{7}{12} 12 7 is not a terminating decimal number.
(iii) So, 16 can be expressed as 24. × 50. , which is in the form of 2m. × 5n. .
Hence, 13 16 \dfrac{13}{16} 16 13 is a terminating decimal number.
(iv) So, 128 can be expressed as 27. × 50. , which is in the form of 2m. × 5n. .
Hence, 25 128 \dfrac{25}{128} 128 25 is a terminating decimal number.
(v) So, 50 can be expressed as 21. × 52. , which is in the form of 2m. × 5n. .
Hence, 9 50 \dfrac{9}{50} 50 9 is a terminating decimal number.
(vi) So, 125 can be expressed as 20. × 53. , which is in the form of 2m. × 5n. .
Hence, 121 125 \dfrac{121}{125} 125 121 is a terminating decimal number.
(vii) So, 55 can be expressed as 11 × 20. × 51. , which is not in the form of 2m. × 5n. .
Hence, 19 55 \dfrac{19}{55} 55 19 is not a terminating decimal number.
(viii) So, 78 can be expressed as 39 × 21. × 50. , which is not in the form of 2m. × 5n. .
Hence, it is not a terminating decimal number.
(ix) So, 80 can be expressed as 24. × 51. , which is in the form of 2m. × 5n. .
Hence, 23 80 \dfrac{23}{80} 80 23 is a terminating decimal number.
(x) So, 30 can be expressed as 3 × 21. × 51. , which is not in the form of 2m. × 5n. .
Hence, 19 30 \dfrac{19}{30} 30 19 is not a terminating decimal number.
Convert each of the following decimals into vulgar fraction in its lowest terms :
(i) 0.65
(ii) 1.08
(iii) 0.075
(iv) 2.016
(v) 1.732
Answer
(i) Given,
⇒ 0.65 = 65 100 \Rightarrow 0.65 = \dfrac{65}{100} ⇒ 0.65 = 100 65
The H.CF. of 65 and 100 is 5, dividing the numerator and denominator by 5,
⇒ 65 ÷ 5 100 ÷ 5 ⇒ 13 20 . \Rightarrow \dfrac{65 ÷ 5}{100 ÷ 5} \\[1em] \Rightarrow \dfrac{13}{20}. ⇒ 100 ÷ 5 65 ÷ 5 ⇒ 20 13 .
Hence, 0.65 = 13 20 \dfrac{13}{20} 20 13 .
(ii) Given,
⇒ 1.08 = 108 100 \Rightarrow 1.08 = \dfrac{108}{100} ⇒ 1.08 = 100 108
The H.CF. of 108 and 100 is 4, dividing the numerator and denominator by 4,
⇒ 108 ÷ 4 100 ÷ 4 ⇒ 27 25 \Rightarrow \dfrac{108 ÷ 4}{100 ÷ 4} \\[1em] \Rightarrow \dfrac{27}{25} ⇒ 100 ÷ 4 108 ÷ 4 ⇒ 25 27
Hence, 1.08 = 27 25 \dfrac{27}{25} 25 27 .
(iii) Given,
⇒ 0.075 = 75 1000 \Rightarrow 0.075 = \dfrac{75}{1000} ⇒ 0.075 = 1000 75
The H.CF. of 75 and 1000 is 25, dividing the numerator and denominator by 25,
⇒ 75 ÷ 25 1000 ÷ 25 ⇒ 3 40 \Rightarrow \dfrac{75 ÷ 25}{1000 ÷ 25} \\[1em] \Rightarrow \dfrac{3}{40} ⇒ 1000 ÷ 25 75 ÷ 25 ⇒ 40 3
Hence, 0.075 = 3 40 \dfrac{3}{40} 40 3 .
(iv) Given,
⇒ 2.016 = 2016 1000 \Rightarrow 2.016 = \dfrac{2016}{1000} ⇒ 2.016 = 1000 2016
The H.CF. of 2016 and 1000 is 8, dividing the numerator and denominator by 8,
⇒ 2016 ÷ 8 1000 ÷ 8 ⇒ 252 125 \Rightarrow \dfrac{2016 ÷ 8}{1000 ÷ 8} \\[1em] \Rightarrow \dfrac{252}{125} ⇒ 1000 ÷ 8 2016 ÷ 8 ⇒ 125 252
Hence, 2.016 = 252 125 \dfrac{252}{125} 125 252 .
(v) Given,
⇒ 1.732 = 1732 1000 \Rightarrow 1.732 = \dfrac{1732}{1000} ⇒ 1.732 = 1000 1732
The H.CF. of 1732 and 1000 is 4, dividing the numerator and denominator by 4
⇒ 1732 ÷ 4 1000 ÷ 4 ⇒ 433 250 \Rightarrow \dfrac{1732 ÷ 4}{1000 ÷ 4} \\[1em] \Rightarrow \dfrac{433}{250} ⇒ 1000 ÷ 4 1732 ÷ 4 ⇒ 250 433
Hence, 1.732 = 433 250 \dfrac{433}{250} 250 433 .
Convert each of the following fractions into a decimal :
(i) 1 8 \dfrac{1}{8} 8 1
(ii) 3 32 \dfrac{3}{32} 32 3
(iii) 44 9 \dfrac{44}{9} 9 44
(iv) 11 24 \dfrac{11}{24} 24 11
(v) 12 13 \dfrac{12}{13} 13 12
(vi) 27 44 \dfrac{27}{44} 44 27
(vii) 2 5 12 2\dfrac{5}{12} 2 12 5
(viii) 1 31 55 1\dfrac{31}{55} 1 55 31
Answer
(i) 1 8 \dfrac{1}{8} 8 1
On dividing,
1 8 = 0.125 \dfrac{1}{8} = 0.125 8 1 = 0.125
Hence, 1 8 = 0.125 \dfrac{1}{8} = 0.125 8 1 = 0.125 .
(ii) 3 32 \dfrac{3}{32} 32 3
On dividing,
3 32 = 0.09375 \dfrac{3}{32} = 0.09375 32 3 = 0.09375
Hence, 3 32 = 0.09375 \dfrac{3}{32} = 0.09375 32 3 = 0.09375 .
(iii) 44 9 \dfrac{44}{9} 9 44
On dividing,
44 9 = 4. 8 ‾ \dfrac{44}{9} = 4.\overline{8} 9 44 = 4. 8
Hence, 44 9 = 4. 8 ‾ \dfrac{44}{9} = 4.\overline{8} 9 44 = 4. 8 .
(iv) 11 24 \dfrac{11}{24} 24 11
On dividing,
11 24 = 0.458 3 ‾ \dfrac{11}{24} = 0.458\overline{3} 24 11 = 0.458 3
Hence, 11 24 = 0.458 3 ‾ \dfrac{11}{24} = 0.458\overline{3} 24 11 = 0.458 3 .
(v) 12 13 \dfrac{12}{13} 13 12
On dividing,
12 13 = 0. 923076 ‾ \dfrac{12}{13} = 0.\overline{923076} 13 12 = 0. 923076
Hence, 12 13 = 0. 923076 ‾ \dfrac{12}{13} = 0.\overline{923076} 13 12 = 0. 923076 .
(vi) 27 44 \dfrac{27}{44} 44 27
On dividing,
27 44 = 0.61 36 ‾ \dfrac{27}{44} = 0.61\overline{36} 44 27 = 0.61 36
Hence, 27 44 = 0.61 36 ‾ \dfrac{27}{44} = 0.61\overline{36} 44 27 = 0.61 36 .
(vii) 2 5 12 2\dfrac{5}{12} 2 12 5
On dividing,
2 5 12 = 29 12 = 2.41 6 ‾ 2\dfrac{5}{12} = \dfrac{29}{12} = 2.41\overline{6} 2 12 5 = 12 29 = 2.41 6
Hence, 29 12 = 2.41 6 ‾ \dfrac{29}{12} = 2.41\overline{6} 12 29 = 2.41 6 .
(viii) 1 31 55 1\dfrac{31}{55} 1 55 31
On dividing,
1 31 55 = 86 55 = 1.5 63 ‾ 1\dfrac{31}{55} = \dfrac{86}{55} = 1.5\overline{63} 1 55 31 = 55 86 = 1.5 63
Hence, 1 31 55 = 1.5 63 ‾ . 1\dfrac{31}{55} = 1.5\overline{63}. 1 55 31 = 1.5 63 . .
Express 15 56 \dfrac{15}{56} 56 15 as a decimal, correct to four decimal places.
Answer
On dividing,
15 56 = 0.26785 \dfrac{15}{56} = 0.26785 56 15 = 0.26785
Hence, 15 56 = 0.2679 \dfrac{15}{56} = 0.2679 56 15 = 0.2679 .
Express 13 34 \dfrac{13}{34} 34 13 as a decimal, correct to three decimal places.
Answer
On dividing,
13 34 = 0.3823 \dfrac{13}{34} = 0.3823 34 13 = 0.3823
Hence, 13 34 = 0.382 \dfrac{13}{34} = 0.382 34 13 = 0.382 .
By actual division show that :
(i) 11 9 = 1. 2 ‾ \dfrac{11}{9} = 1.\overline{2} 9 11 = 1. 2
(ii) 43 11 = 3. 90 ‾ \dfrac{43}{11} = 3.\overline{90} 11 43 = 3. 90
(iii) 107 45 = 2.3 7 ‾ \dfrac{107}{45} = 2.3\overline{7} 45 107 = 2.3 7
(iv) 21 55 = 0.3 81 ‾ \dfrac{21}{55} = 0.3\overline{81} 55 21 = 0.3 81
Answer
(i) On dividing,
11 9 = 1.222...... \dfrac{11}{9} = 1.222...... 9 11 = 1.222......
Hence, proved that 11 9 = 1. 2 ‾ \dfrac{11}{9} = 1.\overline{2} 9 11 = 1. 2 .
(ii) On dividing,
43 11 = 3.9090... \dfrac{43}{11} = 3.9090... 11 43 = 3.9090...
Hence, proved that 43 11 = 3. 90 ‾ \dfrac{43}{11} = 3.\overline{90} 11 43 = 3. 90 .
(iii) On dividing,
107 45 = 2.3777... \dfrac{107}{45} = 2.3777... 45 107 = 2.3777...
Hence, proved that 107 45 = 2.3 7 ‾ \dfrac{107}{45} = 2.3\overline{7} 45 107 = 2.3 7 .
(iv) On dividing,
21 55 = 0.38181... \dfrac{21}{55} = 0.38181... 55 21 = 0.38181...
Hence, proved that 21 55 = 0.3 81 ‾ \dfrac{21}{55} = 0.3\overline{81} 55 21 = 0.3 81 .
Express each of following as a vulgar fraction in simplest form :
(i) 0. 5 ‾ 0.\overline{5} 0. 5
(ii) 0. 43 ‾ 0.\overline{43} 0. 43
(iii) 0. 158 ‾ 0.\overline{158} 0. 158
(iv) 1. 3 ‾ 1.\overline{3} 1. 3
(v) 4. 17 ‾ 4.\overline{17} 4. 17
(vi) 0. 12 ‾ 0.\overline{12} 0. 12
(vii) 0.1 36 ‾ 0.1\overline{36} 0.1 36
(viii) 1.5 7 ‾ 1.5\overline{7} 1.5 7
Answer
(i) 0. 5 ‾ 0.\overline{5} 0. 5
Let x = 0. 5 ‾ 0.\overline{5} 0. 5 .
⇒ x = 0.555.. ...........(1)
⇒ 10x = 5.555.. ..........(2)
On subtracting (1) from (2), we get :
⇒ 10x - x = 5.555... - 0.555...
⇒ 9x = 5
⇒ x = 5 9 \dfrac{5}{9} 9 5
Hence, 0. 5 ‾ = 5 9 0.\overline{5} = \dfrac{5}{9} 0. 5 = 9 5 .
(ii) 0. 43 ‾ 0.\overline{43} 0. 43
Let x = 0. 43 ‾ 0.\overline{43} 0. 43 .
⇒ x = 0.434343.. .........(1)
⇒ 100x = 43.4343.. ........(2)
On subtracting (1) from (2), we get :
⇒ 100x - x = 43.4343.... - 0.4343......
⇒ 99x = 43
⇒ x = 43 99 \dfrac{43}{99} 99 43
Hence, 0. 43 ‾ = 43 99 0.\overline{43} = \dfrac{43}{99} 0. 43 = 99 43 .
(iii) 0. 158 ‾ 0.\overline{158} 0. 158
Let x = 0. 158 ‾ 0.\overline{158} 0. 158
⇒ x = 0.158158.. ......(1)
⇒ 1000x = 158.158158.. ......(2)
On subtracting (1) from (2), we get :
⇒ 1000x - x = 158.158158.... - 0.158158.....
⇒ 999x = 158
⇒ x = 158 999 \dfrac{158}{999} 999 158
Hence, 0. 158 ‾ = 158 999 0.\overline{158} = \dfrac{158}{999} 0. 158 = 999 158 .
(iv) 1. 3 ‾ 1.\overline{3} 1. 3
Let x = 1. 3 ‾ 1.\overline{3} 1. 3
⇒ x = 1.3333.. ......(1)
⇒ 10x = 13.333.. ......(2)
On subtracting (1) from (2), we get :
⇒ 10x - x = 13.333.. - 1.333..
⇒ 9x = 12
⇒ x = 12 9 \dfrac{12}{9} 9 12
⇒ x = 4 3 \dfrac{4}{3} 3 4
Hence, 1. 3 ‾ = 4 3 1.\overline{3} = \dfrac{4}{3} 1. 3 = 3 4 .
(v) 4. 17 ‾ 4.\overline{17} 4. 17
Let x = 4. 17 ‾ 4.\overline{17} 4. 17
⇒ x = 4.1717.. ........(1)
⇒ 100x = 417.1717.. .......(2)
On subtracting (1) from (2), we get :
⇒ 100x - x = 417.1717..... - 4.1717.....
⇒ 99x = 413
⇒ x = 413 99 \dfrac{413}{99} 99 413
Hence, 4. 17 ‾ = 413 99 4.\overline{17} = \dfrac{413}{99} 4. 17 = 99 413 .
(vi) 0. 12 ‾ 0.\overline{12} 0. 12
Let x = 0. 12 ‾ 0.\overline{12} 0. 12
⇒ x = 0.1222.. ...........(1)
⇒ 100x = 12.222...(ii)
On subtracting (i) from (ii), we get
⇒ 99x = 12
⇒ x = 12 99 \dfrac{12}{99} 99 12
⇒ x = 12 ÷ 3 99 ÷ 3 \dfrac{12÷3}{99÷3} 99 ÷ 3 12 ÷ 3
⇒ x = 4 33 \dfrac{4}{33} 33 4
Hence, 0.12... = 4 33 \dfrac{4}{33} 33 4 .
(vii) 0.1 36 ‾ 0.1\overline{36} 0.1 36
Let x = 0.1 36 ‾ 0.1\overline{36} 0.1 36
⇒ x = 0.13636.. ...........(1)
⇒ 10x = 1.3636.. ...........(2)
⇒ 1000x = 136.3636.. ...........(3)
On subtracting (2) from (3), we get
⇒ 1000x - 10x = 136.3636.. - 1.3636..
⇒ 990x = 135
⇒ x = 135 990 \dfrac{135}{990} 990 135
⇒ x = 135 ÷ 45 990 ÷ 45 \dfrac{135 ÷ 45}{990 ÷ 45} 990 ÷ 45 135 ÷ 45
⇒ x = 3 22 \dfrac{3}{22} 22 3
Hence, 0.1 36 ‾ 3 22 0.1\overline{36}\dfrac{3}{22} 0.1 36 22 3 .
(viii) 1.5 7 ‾ 1.5\overline{7} 1.5 7
Let x = 1.5 7 ‾ 1.5\overline{7} 1.5 7 .
⇒ x = 1.5777.. ...........(1)
⇒ 10x = 15.777.. ...........(2)
⇒ 100x = 157.7777.. ...........(3)
On subtracting (i) from (iii), we get
⇒ 100x - 10x = 157.7777.. - 15.777......
⇒ 90x = 142
⇒ x = 142 90 \dfrac{142}{90} 90 142
⇒ x = 142 ÷ 2 90 ÷ 2 \dfrac{142 ÷ 2}{90 ÷ 2} 90 ÷ 2 142 ÷ 2
⇒ x = 71 45 \dfrac{71}{45} 45 71
Hence, 1.5 7 ‾ = 71 45 1.5\overline{7} = \dfrac{71}{45} 1.5 7 = 45 71 .
Write the additive inverse of :
(i) 5
(ii) -7
(iii) 5 9 \dfrac{5}{9} 9 5
(iv) − 3 17 \dfrac{-3}{17} 17 − 3
(v) 0
(vi) 11 5 17 11\dfrac{5}{17} 11 17 5
(vii) − 5 3 8 -5\dfrac{3}{8} − 5 8 3
(viii) -37
(ix) 1
Answer
The additive inverse of a number is the number which, when added to the original number, results in zero.
(i) Let x be the additive inverse of 5, then :
⇒ 5 + x = 0
⇒ x = -5.
Hence, additive inverse of 5 = -5.
(ii) Let x be the additive inverse of -7, then :
⇒ -7 + x = 0
⇒ x = 7.
Hence, additive inverse of -7 = 7.
(iii) Let x be the additive inverse of 5 9 \dfrac{5}{9} 9 5 , then :
⇒ 5 9 \dfrac{5}{9} 9 5 + x = 0
⇒ x = − 5 9 -\dfrac{5}{9} − 9 5 .
Hence,additive inverse of 5 9 = − 5 9 \dfrac{5}{9} = -\dfrac{5}{9} 9 5 = − 9 5 .
(iv) Let x be the additive inverse of − 3 17 -\dfrac{3}{17} − 17 3 , then :
⇒ − 3 17 -\dfrac{3}{17} − 17 3 + x = 0
⇒ x = 3 17 \dfrac{3}{17} 17 3 .
Hence,additive inverse of − 3 17 = 3 17 -\dfrac{3}{17} = \dfrac{3}{17} − 17 3 = 17 3 .
(v) Let x be the additive inverse of 0, then :
⇒ 0 + x = 0
⇒ x = 0.
Hence, additive inverse of 0 is 0.
(vi) Let x be the additive inverse of 11 5 17 11\dfrac{5}{17} 11 17 5 , then :
⇒ 11 5 17 11\dfrac{5}{17} 11 17 5 + x = 0
⇒ 192 17 \dfrac{192}{17} 17 192 + x = 0
⇒ x = − 192 17 -\dfrac{192}{17} − 17 192 .
Hence, additive inverse of 11 5 17 = − 192 17 11\dfrac{5}{17} = -\dfrac{192}{17} 11 17 5 = − 17 192 .
(vii) Let x be the additive inverse of − 5 3 8 -5\dfrac{3}{8} − 5 8 3 , then :
⇒ − 5 3 8 -5\dfrac{3}{8} − 5 8 3 + x = 0
⇒ − 43 8 -\dfrac{43}{8} − 8 43 + x = 0
⇒ x = 43 8 \dfrac{43}{8} 8 43 .
Hence, additive inverse of − 5 3 8 = 43 8 -5\dfrac{3}{8} = \dfrac{43}{8} − 5 8 3 = 8 43 .
(viii) Let x be the additive inverse of -37, then :
⇒ -37 + x = 0
⇒ x = 37.
Hence, additive inverse of -37 = 37.
(ix) Let x be the additive inverse of 1, then :
⇒ 1 + x = 0
⇒ x = -1.
Hence, additive inverse of 1 = -1.
Write the multiplicative inverse of :
(i) 9
(ii) -1
(iii) 11 16 \dfrac{11}{16} 16 11
(iv) 5 1 4 5\dfrac{1}{4} 5 4 1
(v) − 2 3 \dfrac{-2}{3} 3 − 2
(vi) 17 3 20 17\dfrac{3}{20} 17 20 3
(vii) – 18 1 2 –18\dfrac{1}{2} –18 2 1
(viii) –5
(ix) − 20 41 \dfrac{-20}{41} 41 − 20
Answer
The multiplicative inverse of a number is defined as a number that when multiplied by the original number gives the product as 1.
(i) Let the multiplicative inverse of 9, be x.
⇒ 9 × x = 1
⇒ x = 1 9 \dfrac{1}{9} 9 1 .
Hence, multiplicative inverse of 9 = 1 9 \dfrac{1}{9} 9 1 .
(ii) Let the multiplicative inverse of -1, be x.
⇒ -1 × x = 1
⇒ x = − 1 1 -\dfrac{1}{1} − 1 1 = -1.
Hence, multiplicative inverse of -1 = -1.
(iii) Let the multiplicative inverse of 11 16 \dfrac{11}{16} 16 11 , be x.
⇒ 11 16 \dfrac{11}{16} 16 11 × x = 1
⇒ x = 16 11 \dfrac{16}{11} 11 16 .
Hence, multiplicative inverse of 11 16 = 16 11 \dfrac{11}{16} = \dfrac{16}{11} 16 11 = 11 16 .
(iv) Let the multiplicative inverse of 5 1 4 5\dfrac{1}{4} 5 4 1 , be x.
⇒ 5 1 4 5\dfrac{1}{4} 5 4 1 × x = 1
⇒ 21 4 \dfrac{21}{4} 4 21 × x = 1
⇒ x = 4 21 \dfrac{4}{21} 21 4 .
Hence, multiplicative inverse of 5 1 4 = 4 21 5\dfrac{1}{4} = \dfrac{4}{21} 5 4 1 = 21 4 .
(v) Let the multiplicative inverse of − 2 3 -\dfrac{2}{3} − 3 2 , be x.
⇒ − 2 3 -\dfrac{2}{3} − 3 2 × x = 1
⇒ x = − 3 2 -\dfrac{3}{2} − 2 3 .
Hence, multiplicative inverse of − 2 3 = − 3 2 -\dfrac{2}{3} = -\dfrac{3}{2} − 3 2 = − 2 3 .
(vi) Let the multiplicative inverse of 17 3 20 17\dfrac{3}{20} 17 20 3 , be x.
⇒ 17 3 20 17\dfrac{3}{20} 17 20 3 × x = 1
⇒ 343 20 \dfrac{343}{20} 20 343 × x = 1
⇒ x = 20 343 \dfrac{20}{343} 343 20 .
Hence, multiplicative inverse of 17 3 20 = 20 343 17\dfrac{3}{20} = \dfrac{20}{343} 17 20 3 = 343 20 .
(vii) Let the multiplicative inverse of – 18 1 2 –18\dfrac{1}{2} –18 2 1 , be x.
⇒ – 18 1 2 –18\dfrac{1}{2} –18 2 1 × x = 1
⇒ − 37 2 -\dfrac{37}{2} − 2 37 × x = 1
⇒ x = – 2 37 –\dfrac{2}{37} – 37 2 .
Hence, multiplicative inverse of − 18 1 2 = − 2 37 -18\dfrac{1}{2} = -\dfrac{2}{37} − 18 2 1 = − 37 2 .
(viii) Let the multiplicative inverse of –5, be x.
⇒ –5 × x = 1
⇒ x = − 1 5 -\dfrac{1}{5} − 5 1 .
Hence, multiplicative inverse of − 5 = − 1 5 -5 = -\dfrac{1}{5} − 5 = − 5 1 .
(ix) Let the multiplicative inverse of − 20 41 \dfrac{-20}{41} 41 − 20 , be x.
⇒ − 20 41 \dfrac{-20}{41} 41 − 20 × x = 1
⇒ x = − 41 20 -\dfrac{41}{20} − 20 41 .
Hence, multiplicative inverse of − 20 41 = − 41 20 -\dfrac{20}{41} = -\dfrac{41}{20} − 41 20 = − 20 41 .
Represent each of the following on the number line :
(i) 3 7 \dfrac{3}{7} 7 3
(ii) 16 5 \dfrac{16}{5} 5 16
(iii) − 4 9 -\dfrac{4}{9} − 9 4
(iv) − 18 11 -\dfrac{18}{11} − 11 18
(v) − 3 1 6 -3\dfrac{1}{6} − 3 6 1
Answer
(i) On dividing,
3 7 \dfrac{3}{7} 7 3 = 0.428
(ii) On dividing,
16 5 \dfrac{16}{5} 5 16 = 3.2
(iii) On dividing,
− 4 9 -\dfrac{4}{9} − 9 4 = -0.4444..
(iv) On dividing,
− 18 11 -\dfrac{18}{11} − 11 18 = -1.6363..
(v) On dividing,
− 3 1 6 = − 19 6 -3\dfrac{1}{6} = -\dfrac{19}{6} − 3 6 1 = − 6 19 = -3.166..
Find a rational number between 3 5 \dfrac{3}{5} 5 3 and 7 9 \dfrac{7}{9} 9 7 .
Answer
Let x be a rational number between 3 5 \dfrac{3}{5} 5 3 and 7 9 \dfrac{7}{9} 9 7 .
⇒ x = 1 2 ( 3 5 + 7 9 ) ⇒ x = 1 2 ( 27 + 35 45 ) ⇒ x = 1 2 ( 62 45 ) ⇒ x = 31 45 \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{3}{5} + \dfrac{7}{9}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{27 + 35}{45} \Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{62}{45} \Big) \\[1em] \Rightarrow x = \dfrac{31}{45} \\[1em] ⇒ x = 2 1 ( 5 3 + 9 7 ) ⇒ x = 2 1 ( 45 27 + 35 ) ⇒ x = 2 1 ( 45 62 ) ⇒ x = 45 31
Hence, a rational number between 3 5 and 7 9 is 31 45 \dfrac{3}{5} \text{ and } \dfrac{7}{9} \text{ is } \dfrac{31}{45} 5 3 and 9 7 is 45 31 .
Find two rational numbers between :
(i) 2 and 3
(ii) 1 3 and 2 5 \dfrac{1}{3} \text{ and } \dfrac{2}{5} 3 1 and 5 2
(iii) 3 4 and 1 1 5 \dfrac{3}{4} \text{ and } 1\dfrac{1}{5} 4 3 and 1 5 1
(iv) –2 and 1
Answer
(i) Let the first rational number between 2 and 3 be x.
⇒ x = 1 2 ( 2 + 3 ) ⇒ x = 1 2 × 5 ⇒ x = 5 2 \Rightarrow x = \dfrac{1}{2}\Big(2 + 3\Big) \\[1em] \Rightarrow x = \dfrac{1}{2} \times 5 \\[1em] \Rightarrow x = \dfrac{5}{2} \\[1em] ⇒ x = 2 1 ( 2 + 3 ) ⇒ x = 2 1 × 5 ⇒ x = 2 5
Let the second rational number be y.
⇒ y = 1 2 ( 5 2 + 3 ) ⇒ y = 1 2 ( 5 + 6 2 ) ⇒ y = 1 2 ( 11 2 ) ⇒ y = 11 4 \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{5}{2} + 3\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{5+6}{2}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{11}{2}\Big) \\[1em] \Rightarrow y = \dfrac{11}{4} \\[1em] ⇒ y = 2 1 ( 2 5 + 3 ) ⇒ y = 2 1 ( 2 5 + 6 ) ⇒ y = 2 1 ( 2 11 ) ⇒ y = 4 11
Hence, two rational numbers between 2 and 3 are 5 2 and 11 4 \dfrac{5}{2} \text{ and } \dfrac{11}{4} 2 5 and 4 11 .
(ii) Let the first rational number between 1 3 \dfrac{1}{3} 3 1 and 2 5 \dfrac{2}{5} 5 2 be x.
⇒ x = 1 2 ( 1 3 + 2 5 ) ⇒ x = 1 2 ( 5 + 6 15 ) ⇒ x = 1 2 ( 11 15 ) ⇒ x = 11 30 \Rightarrow x = \dfrac{1}{2} \Big(\dfrac{1}{3} + \dfrac{2}{5}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2} \Big(\dfrac{5 + 6}{15}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2} \Big(\dfrac{11}{15} \Big) \\[1em] \Rightarrow x = \dfrac{11}{30} ⇒ x = 2 1 ( 3 1 + 5 2 ) ⇒ x = 2 1 ( 15 5 + 6 ) ⇒ x = 2 1 ( 15 11 ) ⇒ x = 30 11
Let the second rational number be y.
⇒ y = 1 2 ( 11 30 + 2 5 ) ⇒ y = 1 2 ( 11 + 12 30 ) ⇒ y = 1 2 ( 23 30 ) ⇒ y = 23 60 \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{11}{30} + \dfrac{2}{5}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{11 + 12}{30}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{23}{30}\Big) \\[1em] \Rightarrow y = \dfrac{23}{60} \\[1em] ⇒ y = 2 1 ( 30 11 + 5 2 ) ⇒ y = 2 1 ( 30 11 + 12 ) ⇒ y = 2 1 ( 30 23 ) ⇒ y = 60 23
Hence, two rational numbers between 1 3 \dfrac{1}{3} 3 1 and 2 5 \dfrac{2}{5} 5 2 are 11 30 and 23 60 \dfrac{11}{30} \text{ and } \dfrac{23}{60} 30 11 and 60 23 .
(iii) Let the first rational number between 3 4 \dfrac{3}{4} 4 3 and 1 1 5 1\dfrac{1}{5} 1 5 1 be x.
⇒ x = 1 2 ( 3 4 + 1 1 5 ) ⇒ x = 1 2 ( 3 4 + 6 5 ) ⇒ x = 1 2 ( 15 + 24 20 ) ⇒ x = 1 2 ( 39 20 ) ⇒ x = 39 40 \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{3}{4} + 1\dfrac{1}{5}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{3}{4} + \dfrac{6}{5}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{15 + 24}{20}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{39}{20} \Big) \\[1em] \Rightarrow x = \dfrac{39}{40} ⇒ x = 2 1 ( 4 3 + 1 5 1 ) ⇒ x = 2 1 ( 4 3 + 5 6 ) ⇒ x = 2 1 ( 20 15 + 24 ) ⇒ x = 2 1 ( 20 39 ) ⇒ x = 40 39
Let the second rational number be y.
⇒ y = 1 2 ( 39 40 + 6 5 ) ⇒ y = 1 2 ( 39 + 48 40 ) ⇒ y = 1 2 ( 87 40 ) ⇒ y = 87 80 \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{39}{40} + \dfrac{6}{5}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{39 + 48}{40}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{87}{40}\Big) \\[1em] \Rightarrow y = \dfrac{87}{80} \\[1em] ⇒ y = 2 1 ( 40 39 + 5 6 ) ⇒ y = 2 1 ( 40 39 + 48 ) ⇒ y = 2 1 ( 40 87 ) ⇒ y = 80 87
Hence, two rational numbers between 3 4 \dfrac{3}{4} 4 3 and 1 1 5 1\dfrac{1}{5} 1 5 1 are 39 40 and 87 80 \dfrac{39}{40} \text{ and } \dfrac{87}{80} 40 39 and 80 87 .
(iv) Let the first rational number between -2 and 1 be x.
⇒ x = 1 2 ( − 2 + 1 ) ⇒ x = 1 2 × − 1 ⇒ x = − 1 2 \Rightarrow x = \dfrac{1}{2}(-2 + 1) \\[1em] \Rightarrow x = \dfrac{1}{2} \times -1 \\[1em] \Rightarrow x = -\dfrac{1}{2} \\[1em] ⇒ x = 2 1 ( − 2 + 1 ) ⇒ x = 2 1 × − 1 ⇒ x = − 2 1
Let the second rational number be y.
⇒ y = 1 2 [ − 1 2 + ( − 2 ) ] ⇒ y = 1 2 ( − 1 − 4 2 ) ⇒ y = 1 2 × − 5 2 ⇒ y = − 5 4 . \Rightarrow y = \dfrac{1}{2}\Big[-\dfrac{1}{2} + (-2)\Big] \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{-1-4}{2}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \times -\dfrac{5}{2} \\[1em] \Rightarrow y = -\dfrac{5}{4}. ⇒ y = 2 1 [ − 2 1 + ( − 2 ) ] ⇒ y = 2 1 ( 2 − 1 − 4 ) ⇒ y = 2 1 × − 2 5 ⇒ y = − 4 5 .
Hence, two rational numbers between -2 and 1 are − 1 2 and − 5 4 -\dfrac{1}{2} \text{ and } -\dfrac{5}{4} − 2 1 and − 4 5 .
Find three rational numbers between :
(i) 4 and 5
(ii) 1 2 and 3 5 \dfrac{1}{2} \text{ and }\dfrac{3}{5} 2 1 and 5 3
(iii) –1 and 1
(iv) 2 1 3 and 3 2 3 2\dfrac{1}{3} \text{ and }3\dfrac{2}{3} 2 3 1 and 3 3 2
(v) − 1 2 and 1 3 -\dfrac{1}{2} \text{ and }\dfrac{1}{3} − 2 1 and 3 1
(vi) − 1 3 and 1 4 -\dfrac{1}{3} \text{ and }\dfrac{1}{4} − 3 1 and 4 1
Answer
(i) Let the first rational number between 4 and 5 be x.
⇒ x = 1 2 ( 4 + 5 ) ⇒ x = 1 2 × 9 ⇒ x = 9 2 . \Rightarrow x = \dfrac{1}{2}(4 + 5) \\[1em] \Rightarrow x = \dfrac{1}{2} \times 9 \\[1em] \Rightarrow x = \dfrac{9}{2}. ⇒ x = 2 1 ( 4 + 5 ) ⇒ x = 2 1 × 9 ⇒ x = 2 9 .
Let the second rational number be y.
⇒ y = 1 2 ( 9 2 + 5 ) ⇒ y = 1 2 ( 9 + 10 2 ) ⇒ y = 1 2 ( 19 2 ) ⇒ y = 19 4 \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{9}{2} + 5\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{9 + 10}{2}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{19}{2}\Big) \\[1em] \Rightarrow y = \dfrac{19}{4} ⇒ y = 2 1 ( 2 9 + 5 ) ⇒ y = 2 1 ( 2 9 + 10 ) ⇒ y = 2 1 ( 2 19 ) ⇒ y = 4 19
Let the third rational number be z.
⇒ z = 1 2 ( 9 2 + 4 ) ⇒ z = 1 2 ( 9 + 8 2 ) ⇒ z = 1 2 ( 17 2 ) ⇒ z = 17 4 \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{9}{2} + 4\Big) \\[1em] \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{9 + 8}{2}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{17}{2}\Big) \\[1em] \Rightarrow z = \dfrac{17}{4} ⇒ z = 2 1 ( 2 9 + 4 ) ⇒ z = 2 1 ( 2 9 + 8 ) ⇒ z = 2 1 ( 2 17 ) ⇒ z = 4 17
Hence, three rational numbers between 4 and 5 are 17 4 , 9 2 and 19 4 \dfrac{17}{4}, \dfrac{9}{2} \text{ and }\dfrac{19}{4} 4 17 , 2 9 and 4 19 .
(ii) Let the first rational number between 1 2 \dfrac{1}{2} 2 1 and 3 5 \dfrac{3}{5} 5 3 be x.
⇒ x = 1 2 ( 1 2 + 3 5 ) ⇒ x = 1 2 ( 5 + 6 10 ) ⇒ x = 1 2 × 11 10 ⇒ x = 11 20 . \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{1}{2} + \dfrac{3}{5}\Big)\\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{5 + 6}{10}\Big)\\[1em] \Rightarrow x = \dfrac{1}{2} \times \dfrac{11}{10} \\[1em] \Rightarrow x = \dfrac{11}{20}. ⇒ x = 2 1 ( 2 1 + 5 3 ) ⇒ x = 2 1 ( 10 5 + 6 ) ⇒ x = 2 1 × 10 11 ⇒ x = 20 11 .
Let the second rational number be y.
⇒ y = 1 2 ( 11 20 + 3 5 ) ⇒ y = 1 2 ( 11 + 12 20 ) ⇒ y = 1 2 ( 23 20 ) ⇒ y = 23 40 . \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{11}{20} + \dfrac{3}{5}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{11 + 12}{20}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{23}{20}\Big) \\[1em] \Rightarrow y = \dfrac{23}{40}. ⇒ y = 2 1 ( 20 11 + 5 3 ) ⇒ y = 2 1 ( 20 11 + 12 ) ⇒ y = 2 1 ( 20 23 ) ⇒ y = 40 23 .
Let the third rational number be z.
⇒ z = 1 2 ( 11 20 + 1 2 ) ⇒ z = 1 2 ( 11 + 10 20 ) ⇒ z = 1 2 × 21 20 ⇒ z = 21 40 \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{11}{20} + \dfrac{1}{2}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{11 + 10}{20}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2} \times \dfrac{21}{20} \\[1em] \Rightarrow z = \dfrac{21}{40} \\[1em] ⇒ z = 2 1 ( 20 11 + 2 1 ) ⇒ z = 2 1 ( 20 11 + 10 ) ⇒ z = 2 1 × 20 21 ⇒ z = 40 21
Hence, three rational numbers between 1 2 \dfrac{1}{2} 2 1 and 3 5 \dfrac{3}{5} 5 3 are 21 40 , 11 20 and 23 40 \dfrac{21}{40}, \dfrac{11}{20} \text{ and } \dfrac{23}{40} 40 21 , 20 11 and 40 23 .
(iii) Let the first rational number between -1 and 1 be x.
⇒ x = 1 2 ( − 1 + 1 ) ⇒ x = 1 2 × 0 ⇒ x = 0. \Rightarrow x = \dfrac{1}{2}(-1 + 1) \\[1em] \Rightarrow x = \dfrac{1}{2} \times 0 \\[1em] \Rightarrow x = 0. ⇒ x = 2 1 ( − 1 + 1 ) ⇒ x = 2 1 × 0 ⇒ x = 0.
Let the second rational number be y.
⇒ y = 1 2 ( 0 + 1 ) ⇒ y = 1 2 × 1 ⇒ y = 1 2 . \Rightarrow y = \dfrac{1}{2}(0 + 1) \\[1em] \Rightarrow y = \dfrac{1}{2} \times 1 \\[1em] \Rightarrow y = \dfrac{1}{2}. ⇒ y = 2 1 ( 0 + 1 ) ⇒ y = 2 1 × 1 ⇒ y = 2 1 .
Let the third rational number be z.
⇒ z = 1 2 [ 0 + ( − 1 ) ] ⇒ z = 1 2 × − 1 ⇒ z = − 1 2 \Rightarrow z = \dfrac{1}{2}[0 + (-1)] \\[1em] \Rightarrow z = \dfrac{1}{2} \times -1 \\[1em] \Rightarrow z = -\dfrac{1}{2} ⇒ z = 2 1 [ 0 + ( − 1 )] ⇒ z = 2 1 × − 1 ⇒ z = − 2 1
Hence, three rational numbers between -1 and 1 are − 1 2 , 0 and 1 2 -\dfrac{1}{2}, 0 \text{ and } \dfrac{1}{2} − 2 1 , 0 and 2 1 .
(iv) Let the first rational number between 2 1 3 2\dfrac{1}{3} 2 3 1 and 3 2 3 3\dfrac{2}{3} 3 3 2 be x.
⇒ x = 1 2 ( 2 1 3 + 3 2 3 ) ⇒ x = 1 2 ( 7 3 + 11 3 ) ⇒ x = 1 2 × 18 3 ⇒ x = 1 2 × 6 ⇒ x = 3 \Rightarrow x = \dfrac{1}{2}\Big(2\dfrac{1}{3} + 3\dfrac{2}{3}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{7}{3} + \dfrac{11}{3}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2} \times \dfrac{18}{3} \\[1em] \Rightarrow x = \dfrac{1}{2} \times 6 \\[1em] \Rightarrow x = 3 ⇒ x = 2 1 ( 2 3 1 + 3 3 2 ) ⇒ x = 2 1 ( 3 7 + 3 11 ) ⇒ x = 2 1 × 3 18 ⇒ x = 2 1 × 6 ⇒ x = 3
Let the second rational number be y.
⇒ y = 1 2 ( 3 + 11 3 ) ⇒ y = 1 2 ( 9 + 11 3 ) ⇒ y = 1 2 × 20 3 ⇒ y = 10 3 . \Rightarrow y = \dfrac{1}{2}\Big(3 + \dfrac{11}{3}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{9 + 11}{3}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \times \dfrac{20}{3} \\[1em] \Rightarrow y = \dfrac{10}{3}. ⇒ y = 2 1 ( 3 + 3 11 ) ⇒ y = 2 1 ( 3 9 + 11 ) ⇒ y = 2 1 × 3 20 ⇒ y = 3 10 .
Let the third rational number be z.
⇒ z = 1 2 ( 3 + 7 3 ) ⇒ z = 1 2 ( 9 + 7 3 ) ⇒ z = 1 2 × 16 3 ⇒ z = 8 3 . \Rightarrow z = \dfrac{1}{2}\Big(3 + \dfrac{7}{3}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{9 + 7}{3}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2} \times \dfrac{16}{3} \\[1em] \Rightarrow z = \dfrac{8}{3}. ⇒ z = 2 1 ( 3 + 3 7 ) ⇒ z = 2 1 ( 3 9 + 7 ) ⇒ z = 2 1 × 3 16 ⇒ z = 3 8 .
Hence, three rational numbers between 7 3 \dfrac{7}{3} 3 7 and 11 3 \dfrac{11}{3} 3 11 are 8 3 , 3 and 10 3 \dfrac{8}{3}, 3 \text{ and } \dfrac{10}{3} 3 8 , 3 and 3 10 .
(v) Let the first rational number between − 1 2 -\dfrac{1}{2} − 2 1 and 1 3 \dfrac{1}{3} 3 1 be x.
⇒ x = 1 2 ( − 1 2 + 1 3 ) ⇒ x = 1 2 ( − 3 + 2 6 ) ⇒ x = 1 2 ( − 1 6 ) ⇒ x = − 1 12 \Rightarrow x = \dfrac{1}{2}\Big(-\dfrac{1}{2} + \dfrac{1}{3}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{-3 + 2}{6}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{-1}{6} \Big) \\[1em] \Rightarrow x = \dfrac{-1}{12} ⇒ x = 2 1 ( − 2 1 + 3 1 ) ⇒ x = 2 1 ( 6 − 3 + 2 ) ⇒ x = 2 1 ( 6 − 1 ) ⇒ x = 12 − 1
Let the second rational number be y.
⇒ y = 1 2 ( − 1 12 + − 1 2 ) ⇒ y = 1 2 ( − 1 − 6 12 ) ⇒ y = 1 2 ( − 7 12 ) ⇒ y = − 7 24 \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{-1}{12} + \dfrac{-1}{2}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{-1 - 6}{12}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{-7}{12}\Big) \\[1em] \Rightarrow y = -\dfrac{7}{24} \\[1em] ⇒ y = 2 1 ( 12 − 1 + 2 − 1 ) ⇒ y = 2 1 ( 12 − 1 − 6 ) ⇒ y = 2 1 ( 12 − 7 ) ⇒ y = − 24 7
Let the third rational number be z.
⇒ z = 1 2 ( − 1 12 + 1 3 ) ⇒ z = 1 2 ( − 1 + 4 12 ) ⇒ z = 1 2 ( 3 12 ) ⇒ z = 1 8 \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{-1}{12} + \dfrac{1}{3}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{-1 + 4}{12}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{3}{12}\Big) \\[1em] \Rightarrow z = \dfrac{1}{8} \\[1em] ⇒ z = 2 1 ( 12 − 1 + 3 1 ) ⇒ z = 2 1 ( 12 − 1 + 4 ) ⇒ z = 2 1 ( 12 3 ) ⇒ z = 8 1
Hence, three rational numbers between − 1 2 \dfrac{-1}{2} 2 − 1 and 1 3 \dfrac{1}{3} 3 1 are − 7 24 , − 1 12 and 1 8 \dfrac{-7}{24}, \dfrac{-1}{12} \text{ and } \dfrac{1}{8} 24 − 7 , 12 − 1 and 8 1 .
(vi) Let the first rational number between − 1 3 -\dfrac{1}{3} − 3 1 and 1 4 \dfrac{1}{4} 4 1 be x.
⇒ x = 1 2 ( − 1 3 + 1 4 ) ⇒ x = 1 2 ( − 4 + 3 12 ) ⇒ x = 1 2 ( − 1 12 ) ⇒ x = − 1 24 . \Rightarrow x = \dfrac{1}{2}\Big(-\dfrac{1}{3} + \dfrac{1}{4}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{-4 + 3}{12}\Big) \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(\dfrac{-1}{12} \Big) \\[1em] \Rightarrow x = -\dfrac{1}{24}. ⇒ x = 2 1 ( − 3 1 + 4 1 ) ⇒ x = 2 1 ( 12 − 4 + 3 ) ⇒ x = 2 1 ( 12 − 1 ) ⇒ x = − 24 1 .
Let the second rational number be y.
⇒ y = 1 2 ( − 1 24 + − 1 3 ) ⇒ y = 1 2 ( − 1 − 8 24 ) ⇒ y = 1 2 × − 9 24 ⇒ y = − 9 48 = − 3 16 . \Rightarrow y = \dfrac{1}{2} \Big(\dfrac{-1}{24} + \dfrac{-1}{3}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{-1 - 8}{24}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2} \times \dfrac{-9}{24} \\[1em] \Rightarrow y = -\dfrac{9}{48} = -\dfrac{3}{16}. ⇒ y = 2 1 ( 24 − 1 + 3 − 1 ) ⇒ y = 2 1 ( 24 − 1 − 8 ) ⇒ y = 2 1 × 24 − 9 ⇒ y = − 48 9 = − 16 3 .
Let the third rational number be z.
⇒ z = 1 2 ( − 1 24 + 1 4 ) ⇒ z = 1 2 ( − 1 + 6 24 ) ⇒ z = 1 2 × 5 24 ⇒ z = 5 48 \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{-1}{24} + \dfrac{1}{4}\Big) \\[1em] \Rightarrow z = \dfrac{1}{2}\Big(\dfrac{-1+6}{24} \Big) \\[1em] \Rightarrow z = \dfrac{1}{2} \times \dfrac{5}{24} \\[1em] \Rightarrow z = \dfrac{5}{48} ⇒ z = 2 1 ( 24 − 1 + 4 1 ) ⇒ z = 2 1 ( 24 − 1 + 6 ) ⇒ z = 2 1 × 24 5 ⇒ z = 48 5
Hence, three rational numbers between − 1 3 -\dfrac{1}{3} − 3 1 and 1 4 \dfrac{1}{4} 4 1 are − 3 16 , − 1 24 and 5 48 -\dfrac{3}{16}, -\dfrac{1}{24} \text{ and } \dfrac{5}{48} − 16 3 , − 24 1 and 48 5 .
Find four rational numbers between 4 and 4.5.
Answer
Let a = 4, b = 4.5 and n = 4
Difference between consecutive rational numbers =
b − a n + 1 = 4.5 − 4 4 + 1 = 0.5 5 = 0.1 \dfrac{b - a}{n + 1} = \dfrac{4.5 - 4}{4 + 1} = \dfrac{0.5}{5} = 0.1 n + 1 b − a = 4 + 1 4.5 − 4 = 5 0.5 = 0.1
Rational numbers between 4 and 4.5 are :
⇒ a + d, a + 2d, a + 3d, a + 4d
⇒ 4 + 0.1, 4 + 0.2, 4 + 0.3, 4 + 0.4
⇒ 4.1, 4.2, 4.3, 4.4
Hence, four rational numbers between 4 and 4.5 are 4.1, 4.2, 4.3 and 4.4.
Find six rational numbers between 3 and 4.
Answer
Let a = 3, b = 4 and n = 9
Difference between consecutive rational numbers =
b − a n + 1 = 4 − 3 9 + 1 = 1 10 = 0.1 \dfrac{b - a}{n + 1} = \dfrac{4 - 3}{9 + 1} = \dfrac{1}{10} = 0.1 n + 1 b − a = 9 + 1 4 − 3 = 10 1 = 0.1
Rational numbers between 3 and 4 are :
⇒ a + d, a + 2d, a + 3d, a + 4d, a + 5d, a + 6d
⇒ 3 + 0.1. 3 + 0.2, 3 + 0.3, 3 + 0.4, 3 + 0.5, 3 + 0.6
⇒ 3.1, 3.2, 3.3, 3.4, 3.5, 3.6
Hence, six rational numbers between 3 and 4 are 3.1, 3.2, 3.3, 3.4, 3.5, 3.6.
Classify the rational and irrational numbers from the following :
(i) 5
(ii) 9 14 \dfrac{9}{14} 14 9
(iii) 3 \sqrt{3} 3
(iv) π
(v) 3.1416
(vi) 4 \sqrt{4} 4
(vii) − 5 -\sqrt{5} − 5
(viii) 8 3 \sqrt[3]{8} 3 8
(ix) 3 3 \sqrt[3]{3} 3 3
(x) 2 6 2\sqrt{6} 2 6
(xi) 0. 36 ‾ 0.\overline{36} 0. 36
(xii) 0.202202220...
(xiii) 2 3 \dfrac{2}{\sqrt{3}} 3 2
(xiv) 22 7 \dfrac{22}{7} 7 22
Answer
(i) 5 can be expressed in the form p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, 5 is a rational number.
(ii) 9 14 \dfrac{9}{14} 14 9 can be expressed in the form p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, 9 14 \dfrac{9}{14} 14 9 is a rational number.
(iii) 3 \sqrt{3} 3 is square root of non-perfect square i.e. 3.
Hence, 3 \sqrt{3} 3 is an irrational number.
(iv) π is a non-terminating and non-repeating decimal.
Hence, π is a irrational number.
(v) 3.1416 is a terminating decimal, so it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, 3.1416 is a rational number.
(vi) 4 \sqrt{4} 4 is square root of perfect square i.e. 4.
4 = 2 = 2 1 \sqrt{4} = 2 = \dfrac{2}{1} 4 = 2 = 1 2 .
Hence, 4 \sqrt{4} 4 is a rational number.
(vii) − 5 -\sqrt{5} − 5 is square root of non-perfect square.
Hence, − 5 -\sqrt{5} − 5 is an irrational number.
(viii) Given,
8 3 = 2 = 2 1 \sqrt[3]{8} = 2 = \dfrac{2}{1} 3 8 = 2 = 1 2 .
∴ 8 3 \sqrt[3]{8} 3 8 can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, 8 3 \sqrt[3]{8} 3 8 is a rational number.
(ix) 3 3 \sqrt[3]{3} 3 3 is cube root of non-perfect cube.
Hence, 3 3 \sqrt[3]{3} 3 3 is an irrational number.
(x) 2 6 2\sqrt{6} 2 6
Here, 6 \sqrt{6} 6 is square root of a non-perfect square i.e. 6, thus it is an irrational number.
The product of a non-zero rational number and an irrational number is always an irrational number.
Hence, 2 6 2\sqrt{6} 2 6 is an irrational number.
(xi) 0. 36 ‾ 0.\overline{36} 0. 36 is a repeating decimal.
Thus, 0. 36 ‾ 0.\overline{36} 0. 36 can be expressed as a fraction with an integer numerator and a non-zero integer denominator.
Hence, 0. 36 ‾ 0.\overline{36} 0. 36 is a rational number.
(xii) 0.2022022220... is a non-terminating and non-repeating decimal.
Hence, 0.2022022220... is an irrational number.
(xiii) 2 3 \dfrac{2}{\sqrt{3}} 3 2 .
2 is rational number and 3 \sqrt{3} 3 is an irrational number.
Since, on dividing a rational number by irrational number the solution is always an irrational number.
Hence, 2 3 \dfrac{2}{\sqrt{3}} 3 2 is an irrational number.
(xiv) 22 7 \dfrac{22}{7} 7 22 can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, 22 7 \dfrac{22}{7} 7 22 is a rational number.
Separate the rationals and irrationals from among the following numbers :
(i) -8
(ii) 25 \sqrt{25} 25
(iii) − 3 5 \dfrac{-3}{5} 5 − 3
(iv) 8 \sqrt{8} 8
(v) 0
(vi) π
(vii) 5 3 \sqrt[3]{5} 3 5
(viii) 2. 4 ‾ 2.\overline{4} 2. 4
(ix) − 3 -\sqrt{3} − 3
Answer
(i) -8 can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, -8 is a rational number.
(ii) 25 = 5 = 5 1 \sqrt{25} = 5 = \dfrac{5}{1} 25 = 5 = 1 5
Thus, 25 \sqrt{25} 25 can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, 25 \sqrt{25} 25 is a rational number.
(iii) − 3 5 \dfrac{-3}{5} 5 − 3 can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, − 3 5 \dfrac{-3}{5} 5 − 3 is a rational number.
(iv) 8 \sqrt{8} 8 is square root of non-perfect square i.e. 8.
Hence, 8 \sqrt{8} 8 is an irrational number.
(v) 0 can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, 0 is a rational number.
(vi) π is a non-terminating and non-repeating decimal.
Hence, π is an irrational number.
(vii) 5 3 \sqrt[3]{5} 3 5 is cube root of non-perfect cube i.e. 5.
Hence, 5 3 \sqrt[3]{5} 3 5 is an irrational number.
(viii) 2. 4 ‾ 2.\overline{4} 2. 4 is a repeating decimal.
Hence, 2. 4 ‾ 2.\overline{4} 2. 4 is a rational number.
(ix) − 3 -\sqrt{3} − 3 is square root of non-perfect square i.e. 3.
Hence, − 3 -\sqrt{3} − 3 is an irrational number.
Represent each of the following on the real number line.
(i) 3 \sqrt{3} 3
(ii) 5 \sqrt{5} 5
(iii) 6 \sqrt{6} 6
(iv) 10 \sqrt{10} 10
Answer
(i) 3 \sqrt{3} 3 = 1.732..
(ii) 5 \sqrt{5} 5 = 2.236..
(iii) 6 \sqrt{6} 6 = 2.449..
(iv) 10 \sqrt{10} 10 = 3.162..
Write down the values of :
(i) ( 2 3 ) 2 (2\sqrt{3})^2 ( 2 3 ) 2
(ii) ( 3 2 2 ) 2 \Big(\dfrac{3}{2}\sqrt{2}\Big)^2 ( 2 3 2 ) 2
(iii) ( 5 + 3 ) 2 (5 + \sqrt{3})^2 ( 5 + 3 ) 2
(iv) ( 6 − 3 ) 2 (\sqrt{6} - 3)^2 ( 6 − 3 ) 2
(v) ( 3 + 2 5 ) 2 (3 + 2\sqrt{5})^2 ( 3 + 2 5 ) 2
(vi) ( 5 + 6 ) 2 (\sqrt{5} + \sqrt{6})^2 ( 5 + 6 ) 2
(vii) ( 3 2 2 ) 2 \Big(\dfrac{3}{2\sqrt{2}}\Big)^2 ( 2 2 3 ) 2
(viii) ( 5 − 6 3 ) 2 (5 - 6\sqrt{3})^2 ( 5 − 6 3 ) 2
Answer
(i) Solving,
⇒ ( 2 3 ) 2 \Rightarrow (2\sqrt{3})^2 ⇒ ( 2 3 ) 2
⇒ 2 3 × 2 3 \Rightarrow 2\sqrt{3} \times 2\sqrt{3} ⇒ 2 3 × 2 3
⇒ 4 × 3
⇒ 12.
Hence, ( 2 3 ) 2 (2\sqrt{3})^2 ( 2 3 ) 2 = 12.
(ii) Solving,
⇒ ( 3 2 2 ) 2 ⇒ 3 2 2 × 3 2 2 ⇒ 9 4 × 2 ⇒ 9 2 . \Rightarrow \Big(\dfrac{3}{2}\sqrt{2}\Big)^2 \\[1em] \Rightarrow \dfrac{3}{2}\sqrt{2} \times \dfrac{3}{2}\sqrt{2} \\[1em] \Rightarrow \dfrac{9}{4} \times 2 \\[1em] \Rightarrow \dfrac{9}{2}. ⇒ ( 2 3 2 ) 2 ⇒ 2 3 2 × 2 3 2 ⇒ 4 9 × 2 ⇒ 2 9 .
Hence, ( 3 2 2 ) 2 = 9 2 \Big(\dfrac{3}{2}\sqrt{2}\Big)^2 = \dfrac{9}{2} ( 2 3 2 ) 2 = 2 9 .
(iii) Solving,
⇒ ( 5 + 3 ) 2 ⇒ ( 5 ) 2 + ( 3 ) 2 + 2 × 5 × 3 ⇒ 25 + 3 + 10 3 ⇒ 28 + 10 3 \Rightarrow (5 + \sqrt{3})^2 \\[1em] \Rightarrow (5)^2 + (\sqrt{3})^2 + 2 \times 5 \times \sqrt{3} \\[1em] \Rightarrow 25 + 3 + 10\sqrt{3} \\[1em] \Rightarrow 28 + 10\sqrt{3} ⇒ ( 5 + 3 ) 2 ⇒ ( 5 ) 2 + ( 3 ) 2 + 2 × 5 × 3 ⇒ 25 + 3 + 10 3 ⇒ 28 + 10 3
Hence, ( 5 + 3 ) 2 = 28 + 10 3 (5 + \sqrt{3})^2 = 28 + 10\sqrt{3} ( 5 + 3 ) 2 = 28 + 10 3 .
(iv) Solving,
⇒ ( 6 − 3 ) 2 ⇒ ( 6 ) 2 + ( 3 ) 2 − 2 × 3 × 6 ⇒ 6 + 9 − 6 6 ⇒ 15 − 6 6 \Rightarrow (\sqrt{6} - 3)^2 \\[1em] \Rightarrow (\sqrt{6})^2 + (3)^2 - 2 \times 3 \times \sqrt{6} \\[1em] \Rightarrow 6 + 9 - 6\sqrt{6} \\[1em] \Rightarrow 15 - 6\sqrt{6} ⇒ ( 6 − 3 ) 2 ⇒ ( 6 ) 2 + ( 3 ) 2 − 2 × 3 × 6 ⇒ 6 + 9 − 6 6 ⇒ 15 − 6 6
Hence, ( 6 − 3 ) 2 = 15 − 6 6 (\sqrt{6} - 3)^2 = 15 - 6\sqrt{6} ( 6 − 3 ) 2 = 15 − 6 6 .
(v) Solving,
⇒ ( 3 + 2 5 ) 2 ⇒ ( 3 ) 2 + ( 2 5 ) 2 + 2 × 3 × 2 5 ⇒ 9 + 4 × 5 + 12 5 ⇒ 9 + 20 + 12 5 ⇒ 29 + 12 5 \Rightarrow (3 + 2\sqrt{5})^2 \\[1em] \Rightarrow (3)^2 + (2\sqrt{5})^2 + 2 \times 3 \times 2\sqrt{5} \\[1em] \Rightarrow 9 + 4 \times 5 + 12\sqrt{5} \\[1em] \Rightarrow 9 + 20 + 12\sqrt{5} \\[1em] \Rightarrow 29 + 12\sqrt{5} ⇒ ( 3 + 2 5 ) 2 ⇒ ( 3 ) 2 + ( 2 5 ) 2 + 2 × 3 × 2 5 ⇒ 9 + 4 × 5 + 12 5 ⇒ 9 + 20 + 12 5 ⇒ 29 + 12 5
Hence, ( 3 + 2 5 ) 2 = 29 + 12 5 (3 + 2\sqrt{5})^2 = 29 + 12\sqrt{5} ( 3 + 2 5 ) 2 = 29 + 12 5 .
(vi) Solving,
⇒ ( 5 + 6 ) 2 ⇒ ( 5 ) 2 + ( 6 ) 2 + 2 × 5 × 6 ⇒ 5 + 6 + 2 30 ⇒ 11 + 2 30 \Rightarrow (\sqrt{5} + \sqrt{6})^2 \\[1em] \Rightarrow (\sqrt{5})^2 + (\sqrt{6})^2 + 2 \times \sqrt{5} \times \sqrt{6} \\[1em] \Rightarrow 5 + 6 + 2\sqrt{30} \\[1em] \Rightarrow 11 + 2\sqrt{30} ⇒ ( 5 + 6 ) 2 ⇒ ( 5 ) 2 + ( 6 ) 2 + 2 × 5 × 6 ⇒ 5 + 6 + 2 30 ⇒ 11 + 2 30
Hence, ( 5 + 6 ) 2 = 11 + 2 30 (\sqrt{5} + \sqrt{6})^2 = 11 + 2\sqrt{30} ( 5 + 6 ) 2 = 11 + 2 30 .
(vii) Solving,
⇒ ( 3 2 2 ) 2 ⇒ 3 2 2 × 3 2 2 ⇒ 9 4 × 2 ⇒ 9 8 \Rightarrow \Big(\dfrac{3}{2\sqrt{2}}\Big)^2 \\[1em] \Rightarrow \dfrac{3}{2\sqrt{2}} \times \dfrac{3}{2\sqrt{2}} \\[1em] \Rightarrow \dfrac{9}{4 \times 2} \\[1em] \Rightarrow \dfrac{9}{8} ⇒ ( 2 2 3 ) 2 ⇒ 2 2 3 × 2 2 3 ⇒ 4 × 2 9 ⇒ 8 9
Hence, ( 3 2 2 ) 2 = 9 8 \Big(\dfrac{3}{2\sqrt{2}}\Big)^2 = \dfrac{9}{8} ( 2 2 3 ) 2 = 8 9 .
(viii) Solving,
⇒ ( 5 − 6 3 ) 2 ⇒ ( 5 ) 2 + ( 6 3 ) 2 − 2 × 5 × 6 3 ⇒ 25 + 108 − 60 3 ⇒ 133 − 60 3 \Rightarrow (5 - 6\sqrt{3})^2 \\[1em] \Rightarrow (5)^2 + (6\sqrt{3})^2 - 2 \times 5 \times 6\sqrt{3} \\[1em] \Rightarrow 25 + 108 - 60\sqrt{3} \\[1em] \Rightarrow 133 - 60\sqrt{3} ⇒ ( 5 − 6 3 ) 2 ⇒ ( 5 ) 2 + ( 6 3 ) 2 − 2 × 5 × 6 3 ⇒ 25 + 108 − 60 3 ⇒ 133 − 60 3
Hence, ( 5 − 6 3 ) 2 = 133 + 60 3 (5 - 6\sqrt{3})^2 = 133 + 60\sqrt{3} ( 5 − 6 3 ) 2 = 133 + 60 3 .
State, giving reason, wether the given number is rational or irrational:
(i) ( 3 + 5 ) (3 + \sqrt{5}) ( 3 + 5 )
(ii) ( − 1 + 3 ) (-1 + \sqrt{3}) ( − 1 + 3 )
(iii) 5 6 5\sqrt{6} 5 6
(iv) − 7 -\sqrt{7} − 7
(v) 6 4 \dfrac{\sqrt{6}}{4} 4 6
(vi) 3 2 \dfrac{3}{\sqrt{2}} 2 3
(vii) ( 3 + 3 ) ( 3 − 3 ) (3 + \sqrt{3}) (3 - \sqrt{3}) ( 3 + 3 ) ( 3 − 3 )
Answer
(i) Given,
( 3 + 5 ) (3 + \sqrt{5}) ( 3 + 5 )
3 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
5 \sqrt{5} 5 is an irrational number as it is a square root of a non-perfect square i.e. 5.
The sum of a rational number and an irrational number is always irrational.
Hence, ( 3 + 5 ) (3 + \sqrt{5}) ( 3 + 5 ) is a irrational number.
(ii) Given,
( − 1 + 3 ) (-1 + \sqrt{3}) ( − 1 + 3 )
-1 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
3 \sqrt{3} 3 is an irrational number as it is a square root of a non-perfect square i.e. 3.
The sum of a rational number and an irrational number is always irrational.
Hence, ( − 1 + 3 ) (-1 + \sqrt{3}) ( − 1 + 3 ) is a irrational number.
(iii) Given,
5 6 5\sqrt{6} 5 6
5 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
6 \sqrt{6} 6 is an irrational number as it is a square root of a non-perfect square i.e. 6.
The product of a rational number and an irrational number is always irrational.
Hence, 5 6 5\sqrt{6} 5 6 is an irrational number.
(iv) Given,
7 \sqrt{7} 7 , is an irrational number as it is a square root of a non-perfect square i.e. 7.
∴ − 7 -\sqrt{7} − 7 is an irrational number.
Hence, − 7 -\sqrt{7} − 7 is an irrational number.
(v) Given,
6 4 \dfrac{\sqrt{6}}{4} 4 6
4 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
6 \sqrt{6} 6 is an irrational number as it is a square root of a non-perfect square i.e. 6.
The division of a rational number and an irrational number is always irrational.
Hence, 6 4 \dfrac{\sqrt{6}}{4} 4 6 is an irrational number.
(vi) Given,
3 2 \dfrac{3}{\sqrt{2}} 2 3
3 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
2 \sqrt{2} 2 is an irrational number as it is a square root of a non-perfect square i.e. 2.
The division of a rational number and an irrational number is always irrational.
Hence, 3 2 \dfrac{3}{\sqrt{2}} 2 3 is an irrational number.
(vii) Given,
⇒ ( 3 + 3 ) ( 3 − 3 ) ⇒ ( 3 ) 2 − ( 3 ) 2 ⇒ 9 − 3 ⇒ 3 \Rightarrow (3 + \sqrt{3}) (3 - \sqrt{3}) \\[1em] \Rightarrow (3)^2- (\sqrt{3})^2 \\[1em] \Rightarrow 9 - 3 \\[1em] \Rightarrow 3 ⇒ ( 3 + 3 ) ( 3 − 3 ) ⇒ ( 3 ) 2 − ( 3 ) 2 ⇒ 9 − 3 ⇒ 3
3 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
Hence, ( 3 + 3 ) ( 3 − 3 ) (3 + \sqrt{3})(3 - \sqrt{3}) ( 3 + 3 ) ( 3 − 3 ) is a rational number.
Show that each of the following is irrational :
(i) ( 2 + 5 ) 2 \Big(2 + \sqrt{5}\Big)^2 ( 2 + 5 ) 2
(ii) ( 3 − 3 ) 2 \Big(3 - \sqrt{3}\Big)^2 ( 3 − 3 ) 2
(iii) ( 5 + 3 ) 2 \Big(\sqrt{5} + \sqrt{3}\Big)^2 ( 5 + 3 ) 2
(iv) 6 3 \dfrac{6}{\sqrt{3}} 3 6
Answer
(i) Given,
⇒ ( 2 + 5 ) 2 ⇒ ( 2 ) 2 + ( 5 ) 2 + 2 × 2 × 5 ⇒ 4 + 5 + 4 5 ⇒ 9 + 4 5 . \Rightarrow \Big(2 + \sqrt{5}\Big)^2 \\[1em] \Rightarrow (2)^2 + (\sqrt{5})^2 + 2 \times 2 \times \sqrt{5} \\[1em] \Rightarrow 4 + 5 + 4\sqrt{5} \\[1em] \Rightarrow 9 + 4\sqrt{5}. ⇒ ( 2 + 5 ) 2 ⇒ ( 2 ) 2 + ( 5 ) 2 + 2 × 2 × 5 ⇒ 4 + 5 + 4 5 ⇒ 9 + 4 5 .
9 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
4 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
5 \sqrt{5} 5 is an irrational number as it is a square root of a non-perfect square i.e. 5.
The product of a rational number and an irrational number is always irrational. i.e. 4 5 4\sqrt{5} 4 5
The sum of a rational number and an irrational number is always irrational. i.e. 9 + 4 5 9 + 4\sqrt{5} 9 + 4 5
Hence, ( 2 + 5 ) 2 \Big(2 + \sqrt{5}\Big)^2 ( 2 + 5 ) 2 is an irrational number.
(ii) Given,
⇒ ( 3 − 3 ) 2 ⇒ ( 3 ) 2 + ( 3 ) 2 − 2 × 3 × 3 ⇒ 9 + 3 − 6 3 ⇒ 12 − 6 3 \Rightarrow \Big(3 - \sqrt{3}\Big)^2 \\[1em] \Rightarrow (3)^2 + (\sqrt{3})^2 - 2 \times 3 \times \sqrt{3} \\[1em] \Rightarrow 9 + 3 - 6 \sqrt{3} \\[1em] \Rightarrow 12 - 6\sqrt{3} \\[1em] ⇒ ( 3 − 3 ) 2 ⇒ ( 3 ) 2 + ( 3 ) 2 − 2 × 3 × 3 ⇒ 9 + 3 − 6 3 ⇒ 12 − 6 3
12 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
6 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
3 \sqrt{3} 3 is an irrational number as it is a square root of a non-perfect square i.e. 3.
The product of a rational number and an irrational number is always irrational. i.e. 6 3 6\sqrt{3} 6 3
The difference between a rational number and an irrational number is always irrational. i.e. 12 − 6 3 12 - 6\sqrt{3} 12 − 6 3 .
Hence, ( 3 − 3 ) 2 \Big(3 - \sqrt{3}\Big)^2 ( 3 − 3 ) 2 is an irrational number.
(iii) Given,
⇒ ( 5 + 3 ) 2 ⇒ ( 5 ) 2 + ( 3 ) 2 + 2 × 5 × 3 ⇒ 5 + 3 + 2 15 ⇒ 8 + 2 15 \Rightarrow \Big(\sqrt{5} + \sqrt{3}\Big)^2 \\[1em] \Rightarrow (\sqrt{5})^2 + (\sqrt{3})^2 + 2 \times \sqrt{5} \times \sqrt{3} \\[1em] \Rightarrow 5 + 3 + 2\sqrt{15} \\[1em] \Rightarrow 8 + 2\sqrt{15} \\[1em] ⇒ ( 5 + 3 ) 2 ⇒ ( 5 ) 2 + ( 3 ) 2 + 2 × 5 × 3 ⇒ 5 + 3 + 2 15 ⇒ 8 + 2 15
8 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
2 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
15 \sqrt{15} 15 is an irrational number as it is a square root of a non-perfect square i.e. 15.
The product of a rational number and an irrational number is always irrational. i.e. 2 15 2\sqrt{15} 2 15
The sum of a rational number and an irrational number is always irrational. i.e. 8 + 2 15 8 + 2\sqrt{15} 8 + 2 15
Hence, ( 5 + 3 ) 2 \Big(\sqrt{5} + \sqrt{3}\Big)^2 ( 5 + 3 ) 2 is an irrational number.
(iv) Given,
6 3 \dfrac{6}{\sqrt{3}} 3 6
6 is a rational number as it can be expressed in the form of p q \dfrac{p}{q} q p , where p and q are integers and q ≠ 0.
3 \sqrt{3} 3 is an irrational number as it is a square root of a non-perfect square i.e. 3.
The division of a rational number and an irrational number is always irrational. i.e. 6 3 \dfrac{6}{\sqrt{3}} 3 6
Hence, 6 3 \dfrac{6}{\sqrt{3}} 3 6 is an irrational number.
Prove that 5 \sqrt{5} 5 is irrational number.
Answer
Let 5 \sqrt{5} 5 be rational.
Thus, 5 \sqrt{5} 5 can be expressed in the form of p q \dfrac{p}{q} q p .
⇒ 5 = p q ⇒ 5 q = p Squaring both sides, we get : ⇒ ( 5 q ) 2 = p 2 ⇒ 5 q 2 = p 2 .......(1) \Rightarrow \sqrt{5} = \dfrac{p}{q} \\[1em] \Rightarrow \sqrt{5}q = p \\[1em] \text{Squaring both sides, we get : } \\[1em] \Rightarrow (\sqrt{5}q)^2 = p^2 \\[1em] \Rightarrow 5q^2 = p^2 \text{ .......(1)} ⇒ 5 = q p ⇒ 5 q = p Squaring both sides, we get : ⇒ ( 5 q ) 2 = p 2 ⇒ 5 q 2 = p 2 .......(1)
As 5 divides 5q2 , so 5 divides p2 but 5 is prime,
Thus, 5 divides p.
Let p = 5m for some positive integer m.
Then, p = 5m
Substituting this value of p in (1), we get :
⇒ 5 q 2 = ( 5 m ) 2 ⇒ 5 q 2 = 25 m 2 ⇒ q 2 = 5 m 2 \Rightarrow 5q^2 = (5m)^2 \\[1em] \Rightarrow 5q^2 = 25m^2 \\[1em] \Rightarrow q^2 = 5m^2 ⇒ 5 q 2 = ( 5 m ) 2 ⇒ 5 q 2 = 25 m 2 ⇒ q 2 = 5 m 2
As 5 divides 5m2 , so 5 divides q2 but 5 is prime.
Thus, 5 divides q.
This shows that 5 is a common factor of p and q. This contradicts the hypothesis that p and q have no common factor, other than 1.
∴ 5 \therefore \sqrt{5} ∴ 5 is not a rational number.
Hence, proved that 5 \sqrt{5} 5 is a irrational number.
Write down the examples of 4 distinct irrational numbers.
Answer
We know that,
Square root of non-perfect squares are irrational numbers.
Since, 2, 3, 5 and 6 are non-perfect squares.
∴ 2 , 3 , 5 , 6 \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6} 2 , 3 , 5 , 6 are irrational numbers.
Hence, 2 , 3 , 5 , 6 \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6} 2 , 3 , 5 , 6 are 4 distinct irrational numbers.
Prove that ( 3 + 7 ) \Big(\sqrt{3} + \sqrt{7}\Big) ( 3 + 7 ) is irrational.
Answer
Let us assume 3 + 7 \sqrt{3} + \sqrt{7} 3 + 7 is a rational number.
Let, 3 + 7 = x \sqrt{3} + \sqrt{7} = x 3 + 7 = x
Squaring both sides, we get :
⇒ ( 3 + 7 ) 2 = x 2 ⇒ ( 3 ) 2 + ( 7 ) 2 + 2 × 3 × 7 = x 2 ⇒ 3 + 7 + 2 21 = x 2 ⇒ 10 + 2 21 = x 2 ⇒ 21 = x 2 − 10 2 . \Rightarrow (\sqrt{3} + \sqrt{7})^2 = x^2 \\[1em] \Rightarrow (\sqrt{3})^2 + (\sqrt{7})^2 + 2 \times \sqrt{3} \times \sqrt{7} = x^2 \\[1em] \Rightarrow 3 + 7 + 2\sqrt{21} = x^2 \\[1em] \Rightarrow 10 + 2\sqrt{21} = x^2 \\[1em] \Rightarrow \sqrt{21} = \dfrac{x^2 -10}{2}. ⇒ ( 3 + 7 ) 2 = x 2 ⇒ ( 3 ) 2 + ( 7 ) 2 + 2 × 3 × 7 = x 2 ⇒ 3 + 7 + 2 21 = x 2 ⇒ 10 + 2 21 = x 2 ⇒ 21 = 2 x 2 − 10 .
Here, x is rational,
∴ x2 is rational .........(1)
⇒ x2 - 10 is rational (As difference between two rational numbers is always rational)
⇒ x 2 − 10 2 \dfrac{x^2 - 10}{2} 2 x 2 − 10 is rational (Dividing two rational numbers results in a rational number)
But, 21 \sqrt{21} 21 is irrational.
∴ x 2 − 10 2 \therefore \dfrac{x^2 - 10}{2} ∴ 2 x 2 − 10 is irrational.
Thus, x2 - 10 is irrational and so x2 is irrational ........(2)
(1) and (2) do not match with each other.
∴ We arrive at a contradiction.
So, our assumption that 3 + 7 \sqrt{3} + \sqrt{7} 3 + 7 is a rational number is wrong.
∴ 3 + 7 \sqrt{3} + \sqrt{7} 3 + 7 is irrational.
Hence, proved that 3 + 7 \sqrt{3} + \sqrt{7} 3 + 7 is an irrational number.
Prove that ( 2 + 3 ) (\sqrt{2} + \sqrt{3}) ( 2 + 3 ) is irrational.
Answer
Let us assume 2 + 3 \sqrt{2} + \sqrt{3} 2 + 3 is a rational number.
Let, ( 2 + 3 ) = x (\sqrt{2} + \sqrt{3}) = x ( 2 + 3 ) = x
Squaring on both sides, we get :
⇒ ( 2 + 3 ) 2 = x 2 ⇒ ( 2 ) 2 + ( 3 ) 2 + 2 × 2 × 3 = x 2 ⇒ 2 + 3 + 2 6 = x 2 ⇒ 5 + 2 6 = x 2 ⇒ 2 6 = x 2 − 5 ⇒ 6 = x 2 − 5 2 . \Rightarrow (\sqrt{2}+\sqrt{3})^2 = x^2 \\[1em] \Rightarrow (\sqrt{2})^2 + (\sqrt{3})^2 + 2 \times \sqrt{2} \times \sqrt{3} = x^2 \\[1em] \Rightarrow 2 + 3 + 2\sqrt{6} = x^2 \\[1em] \Rightarrow 5 + 2\sqrt{6} = x^2 \\[1em] \Rightarrow 2\sqrt{6} = x^2 - 5 \\[1em] \Rightarrow \sqrt{6} = \dfrac{x^2 - 5}{2}. ⇒ ( 2 + 3 ) 2 = x 2 ⇒ ( 2 ) 2 + ( 3 ) 2 + 2 × 2 × 3 = x 2 ⇒ 2 + 3 + 2 6 = x 2 ⇒ 5 + 2 6 = x 2 ⇒ 2 6 = x 2 − 5 ⇒ 6 = 2 x 2 − 5 .
Here, x is rational,
∴ x2 is rational .........(1)
⇒ x2 - 5 is rational (Difference between two rational numbers is always rational)
So, x 2 − 5 2 \dfrac{x^2 - 5}{2} 2 x 2 − 5 is rational (Dividing two rational numbers results in a rational number)
But 6 \sqrt{6} 6 is irrational,
∴ x 2 − 5 2 \therefore \dfrac{x^2 - 5}{2} ∴ 2 x 2 − 5 is irrational
Thus, x2 - 5 is irrational and so x2 is irrational ........(2)
(1) and (2) do not match with each other.
∴ We arrive at a contradiction.
So, our assumption that 2 + 3 \sqrt{2} + \sqrt{3} 2 + 3 is a rational number is wrong.
∴ 2 + 3 \sqrt{2} + \sqrt{3} 2 + 3 is irrational.
Hence, proved that 2 + 3 \sqrt{2} + \sqrt{3} 2 + 3 is an irrational number.
Write two irrational numbers between 14 and 19 \sqrt{14} \text{ and } \sqrt{19} 14 and 19
Answer
We want two irrational numbers between 14 and 19 \sqrt{14} \text{ and } \sqrt{19} 14 and 19 .
Consider any two numbers between 14 and 19 such that they are not perfect squares.
Let us take 15 and 17 as they are not perfect squares.
We know that square root of a non-perfect square is an irrational number.
∴ 15 and 17 \sqrt{15} \text{ and } \sqrt{17} 15 and 17 are irrational numbers.
Thus, we have :
⇒ 14 < 15 < 17 < 19 \Rightarrow \sqrt{14} \lt \sqrt{15} \lt \sqrt{17} \lt \sqrt{19} ⇒ 14 < 15 < 17 < 19
Hence, two irrational numbers between
14 and 19 are 15 and 17 \sqrt{14} \text{ and } \sqrt{19} \text{ are } \sqrt{15} \text{ and } \sqrt{17} 14 and 19 are 15 and 17 .
Write three irrational numbers between 2 and 7 \sqrt{2} \text{ and } \sqrt{7} 2 and 7
Answer
We want three irrational numbers between 2 and 7 \sqrt{2} \text{ and } \sqrt{7} 2 and 7 .
Consider any three numbers between 2 and 7 such that they are not perfect squares.
Let us take 3, 5 and 6 as they are not perfect squares.
We know that square root of a non-perfect square is an irrational number.
∴ 3 , 5 and 6 \sqrt{3}, \sqrt{5} \text{ and } \sqrt{6} 3 , 5 and 6 are irrational numbers.
Thus, we have :
⇒ 2 < 3 < 5 < 6 < 7 \Rightarrow \sqrt{2} \lt \sqrt{3} \lt \sqrt{5} \lt \sqrt{6} \lt\sqrt{7} ⇒ 2 < 3 < 5 < 6 < 7
Hence, three irrational numbers between
2 and 7 are 3 , 5 and 6 \sqrt{2} \text{ and } \sqrt{7} \text{ are } \sqrt{3}, \sqrt{5} \text{ and } \sqrt{6} 2 and 7 are 3 , 5 and 6 .
State in each case, whether true or false :
(i) The sum of two rationals is a rational.
(ii) The sum of two irrationals is an irrational.
(iii) The product of two rationals is a rational.
(iv) The product of two irrationals is an irrational.
(v) The sum of a rational and an irrational is an irrational.
(vi) The product of a rational and an irrational is a rational.
Answer
(i) Adding two rational numbers will always result in rational number.
Hence, above statement is true.
(ii) Adding two irrational numbers can be rational as well as irrational.
Hence, above statement is false.
(iii) Multiplying two rational numbers will always result in rational number.
Hence, above statement is true.
(iv) Multiplying two irrational numbers can be rational as well as irrational.
Hence, above statement is false.
(v) Adding a rational and an irrational will always result irrational number.
Hence, above statement is true.
(iv) Multiplying a rational and an irrational can be rational as well as irrational.
Hence, above statement is false.
What are rational numbers? Give ten examples.
Answer
The numbers of the form p q \dfrac{p}{q} q p , where p and q are integers and q is not equal to zero, are called rational numbers.
Examples:
(i) 2 3 \dfrac{2}{3} 3 2
(ii) − 5 8 -\dfrac{5}{8} − 8 5
(iii) 7
(iv) 0
(v) -9
(vi) 11 2 \dfrac{11}{2} 2 11
(vii) -1.25
(viii) 3.75
(ix) 10000
(x) − 16 7 \dfrac{-16}{7} 7 − 16
What are irrational numbers? Give ten examples.
Answer
A number which when expressed in decimal form is expressible as a non-terminating and non-repeating decimal, is called an irrational number.
Examples:
π
2 \sqrt{2} 2
3 \sqrt{3} 3
5 \sqrt{5} 5
6 \sqrt{6} 6
7 \sqrt{7} 7
8 \sqrt{8} 8
10 \sqrt{10} 10
11 \sqrt{11} 11
12 \sqrt{12} 12
Rationalize the denominator:
2 6 \dfrac{2}{\sqrt{6}} 6 2
Answer
(i) Rationalizing the denominator,
⇒ 2 6 × 6 6 ⇒ 2 ( 6 ) ( 6 ) 2 ⇒ 2 6 6 ⇒ 6 3 \Rightarrow \dfrac{2}{\sqrt{6}} \times \dfrac{ \sqrt{6}}{\sqrt{6}} \\[1em] \Rightarrow \dfrac{2(\sqrt{6})}{(\sqrt{6})^2} \\[1em] \Rightarrow \dfrac{2\sqrt{6}}{6} \\[1em] \Rightarrow \dfrac{\sqrt{6}}{3} ⇒ 6 2 × 6 6 ⇒ ( 6 ) 2 2 ( 6 ) ⇒ 6 2 6 ⇒ 3 6
Hence, on rationalizing 2 6 = 6 3 \dfrac{2}{\sqrt{6}} = \dfrac{\sqrt{6}}{3} 6 2 = 3 6 .
Rationalize the denominator:
2 2 3 \dfrac{\sqrt{2}}{2\sqrt{3}} 2 3 2
Answer
Rationalizing the denominator, ⇒ 2 2 3 × 2 3 2 3 ⇒ 2 ( 6 ) ( 2 3 ) 2 ⇒ 2 6 ( 4 × 3 ) ⇒ 2 6 12 ⇒ 6 6 . \Rightarrow \dfrac{\sqrt{2}}{2\sqrt{3}} \times \dfrac{2\sqrt{3}}{2\sqrt{3}} \\[1em] \Rightarrow \dfrac{2(\sqrt{6})}{(2\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{2\sqrt{6}}{(4 \times 3)} \\[1em] \Rightarrow \dfrac{2\sqrt{6}}{12} \\[1em] \Rightarrow \dfrac{\sqrt{6}}{6}. ⇒ 2 3 2 × 2 3 2 3 ⇒ ( 2 3 ) 2 2 ( 6 ) ⇒ ( 4 × 3 ) 2 6 ⇒ 12 2 6 ⇒ 6 6 .
Hence, on rationalizing = 2 2 3 = 6 6 \dfrac{\sqrt{2}}{2\sqrt{3}} = \dfrac{\sqrt{6}}{6} 2 3 2 = 6 6 .
Rationalize the denominator:
1 ( 3 + 5 ) \dfrac{1}{(3 + \sqrt{5})} ( 3 + 5 ) 1 .
Answer
Rationalizing the denominator,
⇒ 1 ( 3 + 5 ) × ( 3 − 5 ) ( 3 − 5 ) ⇒ ( 3 − 5 ) ( 3 ) 2 − ( 5 ) 2 ⇒ ( 3 − 5 ) 9 − 5 ⇒ ( 3 − 5 ) 4 \Rightarrow \dfrac{1}{(3 + \sqrt{5})} \times \dfrac{(3 - \sqrt{5})} {(3 - \sqrt{5})} \\[1em] \Rightarrow \dfrac{(3 - \sqrt{5})} {(3)^2 - (\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{(3 - \sqrt{5})} {9 - 5} \\[1em] \Rightarrow \dfrac{(3 - \sqrt{5})} {4} \\[1em] ⇒ ( 3 + 5 ) 1 × ( 3 − 5 ) ( 3 − 5 ) ⇒ ( 3 ) 2 − ( 5 ) 2 ( 3 − 5 ) ⇒ 9 − 5 ( 3 − 5 ) ⇒ 4 ( 3 − 5 )
Hence, on rationalizing 1 ( 3 + 5 ) = ( 3 − 5 ) 4 \dfrac{1}{(3 + \sqrt{5})} = \dfrac{(3 - \sqrt{5})} {4} ( 3 + 5 ) 1 = 4 ( 3 − 5 ) .
Rationalize the denominator:
1 ( 3 − 1 ) \dfrac{1}{(\sqrt{3} - 1)} ( 3 − 1 ) 1
Answer
Rationalizing on denominator,
⇒ 1 ( 3 − 1 ) × ( 3 + 1 ) ( 3 + 1 ) ⇒ ( 3 + 1 ) ( 3 ) 2 − ( 1 ) 2 ⇒ ( 3 + 1 ) 3 − 1 ⇒ ( 3 + 1 ) 2 \Rightarrow \dfrac{1}{(\sqrt{3} - 1)} \times \dfrac{(\sqrt{3} + 1)}{(\sqrt{3} + 1)} \\[1em] \Rightarrow \dfrac{(\sqrt{3} + 1)}{(\sqrt{3})^2 - (1)^2} \\[1em] \Rightarrow \dfrac{(\sqrt{3} + 1)}{3 - 1} \\[1em] \Rightarrow \dfrac{(\sqrt{3} + 1)}{2} \\[1em] ⇒ ( 3 − 1 ) 1 × ( 3 + 1 ) ( 3 + 1 ) ⇒ ( 3 ) 2 − ( 1 ) 2 ( 3 + 1 ) ⇒ 3 − 1 ( 3 + 1 ) ⇒ 2 ( 3 + 1 )
Hence, on rationalizing 1 ( 3 − 1 ) = ( 3 + 1 ) 2 \dfrac{1}{(\sqrt{3} - 1)} = \dfrac{(\sqrt{3} + 1)}{2} ( 3 − 1 ) 1 = 2 ( 3 + 1 ) .
Rationalize the denominator:
1 ( 4 + 2 3 ) \dfrac{1}{(4 + 2\sqrt{3})} ( 4 + 2 3 ) 1
Answer
Rationalizing the denominator,
⇒ 1 ( 4 + 2 3 ) × ( 4 − 2 3 ) ( 4 − 2 3 ) ⇒ ( 4 − 2 3 ) ( 4 ) 2 − ( 2 3 ) 2 ⇒ ( 4 − 2 3 ) 16 − 12 ⇒ 2 ( 2 − 3 ) 4 ⇒ ( 2 − 3 ) 2 \Rightarrow \dfrac{1}{(4 + 2\sqrt{3})} \times \dfrac{(4 - 2\sqrt{3})} {(4 - 2\sqrt{3})} \\[1em] \Rightarrow \dfrac{(4 - 2\sqrt{3})} {(4)^2 - (2\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{(4 - 2\sqrt{3})} {16 - 12} \\[1em] \Rightarrow \dfrac{2(2 - \sqrt{3})} {4} \\[1em] \Rightarrow \dfrac{(2 - \sqrt{3})} {2} \\[1em] ⇒ ( 4 + 2 3 ) 1 × ( 4 − 2 3 ) ( 4 − 2 3 ) ⇒ ( 4 ) 2 − ( 2 3 ) 2 ( 4 − 2 3 ) ⇒ 16 − 12 ( 4 − 2 3 ) ⇒ 4 2 ( 2 − 3 ) ⇒ 2 ( 2 − 3 )
Hence, on rationalizing 1 ( 4 + 2 3 ) = ( 2 − 3 ) 2 \dfrac{1}{(4 + 2\sqrt{3})} = \dfrac{(2 - \sqrt{3})} {2} ( 4 + 2 3 ) 1 = 2 ( 2 − 3 ) .
Rationalize the denominator:
1 ( 6 − 3 ) \dfrac{1}{(\sqrt{6} - \sqrt{3})} ( 6 − 3 ) 1
Answer
Rationalizing the denominator,
⇒ 1 ( 6 − 3 ) × ( 6 + 3 ) ( 6 + 3 ) ⇒ ( 6 + 3 ) ( 6 ) 2 − ( 3 ) 2 ⇒ ( 6 + 3 ) 6 − 3 ⇒ ( 6 + 3 ) 3 \Rightarrow \dfrac{1}{(\sqrt{6} - \sqrt{3})} \times \dfrac{(\sqrt{6} + \sqrt{3})}{(\sqrt{6} + \sqrt{3})} \\[1em] \Rightarrow \dfrac{(\sqrt{6} + \sqrt{3})}{(\sqrt{6})^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{(\sqrt{6} + \sqrt{3})}{6 - 3} \\[1em] \Rightarrow \dfrac{(\sqrt{6} + \sqrt{3})}{3} \\[1em] ⇒ ( 6 − 3 ) 1 × ( 6 + 3 ) ( 6 + 3 ) ⇒ ( 6 ) 2 − ( 3 ) 2 ( 6 + 3 ) ⇒ 6 − 3 ( 6 + 3 ) ⇒ 3 ( 6 + 3 )
Hence, on rationalizing 1 ( 6 − 3 ) = ( 6 + 3 ) 3 \dfrac{1}{(\sqrt{6} - \sqrt{3})} = \dfrac{(\sqrt{6} + \sqrt{3})}{3} ( 6 − 3 ) 1 = 3 ( 6 + 3 ) .
Rationalize the denominator:
3 − 1 3 + 1 \dfrac{\sqrt{3} - 1}{\sqrt{3} + 1} 3 + 1 3 − 1 .
Answer
Rationalizing the denominator,
⇒ 3 − 1 3 + 1 × 3 − 1 3 − 1 ⇒ ( 3 − 1 ) 2 ( 3 ) 2 − ( 1 ) 2 ⇒ ( 3 ) 2 + ( 1 ) 2 − 2 × 3 × 1 3 − 1 ⇒ 3 + 1 − 2 3 2 ⇒ ( 4 − 2 3 ) 2 ⇒ 2 ( 2 − 3 ) 2 ⇒ ( 2 − 3 ) \Rightarrow \dfrac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \dfrac{\sqrt{3} - 1}{\sqrt{3} - 1} \\[1em] \Rightarrow \dfrac{(\sqrt{3} - 1)^2}{(\sqrt{3})^2 - (1)^2} \\[1em] \Rightarrow \dfrac{(\sqrt{3})^2 + (1)^2 - 2 \times \sqrt{3} \times 1 }{3 - 1} \\[1em] \Rightarrow \dfrac{3 + 1 - 2\sqrt{3}}{2} \\[1em] \Rightarrow \dfrac{(4 - 2\sqrt{3})}{2} \\[1em] \Rightarrow \dfrac{2(2 - \sqrt{3})}{2} \\[1em] \Rightarrow (2 - \sqrt{3}) ⇒ 3 + 1 3 − 1 × 3 − 1 3 − 1 ⇒ ( 3 ) 2 − ( 1 ) 2 ( 3 − 1 ) 2 ⇒ 3 − 1 ( 3 ) 2 + ( 1 ) 2 − 2 × 3 × 1 ⇒ 2 3 + 1 − 2 3 ⇒ 2 ( 4 − 2 3 ) ⇒ 2 2 ( 2 − 3 ) ⇒ ( 2 − 3 )
Hence, on rationalizing = 3 − 1 3 + 1 = ( 2 − 3 ) \dfrac{\sqrt{3} - 1}{\sqrt{3} + 1} = (2 - \sqrt{3}) 3 + 1 3 − 1 = ( 2 − 3 ) .
Rationalize the denominator:
3 − 2 2 3 + 2 2 \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}} 3 + 2 2 3 − 2 2
Answer
Rationalizing the denominator,
⇒ 3 − 2 2 3 + 2 2 × 3 − 2 2 3 − 2 2 ⇒ ( 3 − 2 2 ) 2 ( 3 ) 2 − ( 2 2 ) 2 ⇒ ( 3 ) 2 + ( 2 2 ) 2 − 2 × 3 × 2 2 9 − 8 ⇒ ( 9 + 8 − 12 2 ) 1 ⇒ ( 17 − 12 2 ) \Rightarrow \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}} \times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\[1em] \Rightarrow \dfrac{(3 - 2\sqrt{2})^2} {(3)^2 - ( 2\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{(3)^2 + ( 2\sqrt{2})^2 -2 \times 3 \times 2\sqrt{2} } {9-8} \\[1em] \Rightarrow \dfrac{(9 + 8 - 12\sqrt{2})} {1} \\[1em] \Rightarrow (17 - 12\sqrt{2}) \\[1em] ⇒ 3 + 2 2 3 − 2 2 × 3 − 2 2 3 − 2 2 ⇒ ( 3 ) 2 − ( 2 2 ) 2 ( 3 − 2 2 ) 2 ⇒ 9 − 8 ( 3 ) 2 + ( 2 2 ) 2 − 2 × 3 × 2 2 ⇒ 1 ( 9 + 8 − 12 2 ) ⇒ ( 17 − 12 2 )
Hence, on rationalizing 3 − 2 2 3 + 2 2 = ( 17 − 12 2 ) \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}} = (17 - 12\sqrt{2}) 3 + 2 2 3 − 2 2 = ( 17 − 12 2 ) .
Rationalize the denominator:
1 ( 2 5 − 3 ) \dfrac{1}{(2\sqrt{5} - \sqrt{3})} ( 2 5 − 3 ) 1 .
Answer
Rationalizing the denominator,
⇒ 1 ( 2 5 − 3 ) × ( 2 5 + 3 ) ( 2 5 + 3 ) ⇒ ( 2 5 + 3 ) ( 2 5 ) 2 − ( 3 ) 2 ⇒ ( 2 5 + 3 ) 20 − 3 ⇒ ( 2 5 + 3 ) 17 \Rightarrow \dfrac{1}{(2\sqrt{5} - \sqrt{3})} \times \dfrac{(2\sqrt{5} + \sqrt{3})} {(2\sqrt{5} + \sqrt{3})} \\[1em] \Rightarrow \dfrac{(2\sqrt{5} + \sqrt{3})} {(2\sqrt{5})^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{(2\sqrt{5} + \sqrt{3})} {20 - 3} \\[1em] \Rightarrow \dfrac{(2\sqrt{5} + \sqrt{3})} {17} \\[1em] ⇒ ( 2 5 − 3 ) 1 × ( 2 5 + 3 ) ( 2 5 + 3 ) ⇒ ( 2 5 ) 2 − ( 3 ) 2 ( 2 5 + 3 ) ⇒ 20 − 3 ( 2 5 + 3 ) ⇒ 17 ( 2 5 + 3 )
Hence, on rationalizing 1 ( 2 5 − 3 ) = ( 2 5 + 3 ) 17 \dfrac{1}{(2\sqrt{5} - \sqrt{3})} = \dfrac{(2\sqrt{5} + \sqrt{3})}{17} ( 2 5 − 3 ) 1 = 17 ( 2 5 + 3 ) .
Rationalize the denominator:
1 ( 1 + 5 + 3 ) \dfrac{1}{(1 + \sqrt{5} + \sqrt{3})} ( 1 + 5 + 3 ) 1 .
Answer
Rationalizing the denominator,
⇒ 1 ( 1 + 5 + 3 ) × ( 1 + 5 − 3 ) ( 1 + 5 − 3 ) ⇒ ( 1 + 5 − 3 ) ( 1 + 5 + 3 ) × ( 1 + 5 − 3 ) ⇒ ( 1 + 5 − 3 ) ( 1 + 5 ) 2 − ( 3 ) 2 ⇒ ( 1 + 5 − 3 ) 1 + 5 + 2 5 − 3 ⇒ ( 1 + 5 − 3 ) ( 3 + 2 5 ) \Rightarrow \dfrac{1}{(1 + \sqrt{5} + \sqrt{3})} \times \dfrac{(1 + \sqrt{5} - \sqrt{3})} {(1 + \sqrt{5} - \sqrt{3})} \\[1em] \Rightarrow \dfrac{(1 + \sqrt{5} - \sqrt{3})}{(1 + \sqrt{5} + \sqrt{3}) \times (1 + \sqrt{5} - \sqrt{3})} \\[1em] \Rightarrow \dfrac{(1 + \sqrt{5} - \sqrt{3})}{(1 + \sqrt{5})^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{(1 + \sqrt{5} - \sqrt{3})}{1 + 5 + 2\sqrt{5} - 3} \\[1em] \Rightarrow \dfrac{(1 + \sqrt{5} - \sqrt{3})}{(3 + 2\sqrt{5})} ⇒ ( 1 + 5 + 3 ) 1 × ( 1 + 5 − 3 ) ( 1 + 5 − 3 ) ⇒ ( 1 + 5 + 3 ) × ( 1 + 5 − 3 ) ( 1 + 5 − 3 ) ⇒ ( 1 + 5 ) 2 − ( 3 ) 2 ( 1 + 5 − 3 ) ⇒ 1 + 5 + 2 5 − 3 ( 1 + 5 − 3 ) ⇒ ( 3 + 2 5 ) ( 1 + 5 − 3 )
Rationalizing the denominator again,
⇒ ( 1 + 5 − 3 ) ( 3 + 2 5 ) × ( 3 − 2 5 ) ( 3 − 2 5 ) ⇒ 3 − 2 5 + 3 5 − 10 − 3 3 + 2 15 ( 3 ) 2 − ( 2 5 ) 2 ⇒ − 7 + 5 − 3 3 + 2 15 9 − 20 ⇒ − ( 7 − 5 + 3 3 − 2 15 ) − 11 ⇒ ( 7 − 5 + 3 3 − 2 15 ) 11 \Rightarrow \dfrac{(1 + \sqrt{5} - \sqrt{3})}{(3 + 2\sqrt{5})} \times \dfrac {(3 - 2\sqrt{5})}{(3 - 2\sqrt{5})} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{5} + 3\sqrt{5} - 10 - 3\sqrt{3} + 2\sqrt{15}}{(3)^2 - (2\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{-7 + \sqrt{5} - 3\sqrt{3} + 2\sqrt{15}}{9 - 20} \\[1em] \Rightarrow \dfrac{-(7 - \sqrt{5} + 3\sqrt{3} - 2\sqrt{15})}{-11} \\[1em] \Rightarrow \dfrac{(7 - \sqrt{5} + 3\sqrt{3} - 2\sqrt{15})}{11} ⇒ ( 3 + 2 5 ) ( 1 + 5 − 3 ) × ( 3 − 2 5 ) ( 3 − 2 5 ) ⇒ ( 3 ) 2 − ( 2 5 ) 2 3 − 2 5 + 3 5 − 10 − 3 3 + 2 15 ⇒ 9 − 20 − 7 + 5 − 3 3 + 2 15 ⇒ − 11 − ( 7 − 5 + 3 3 − 2 15 ) ⇒ 11 ( 7 − 5 + 3 3 − 2 15 )
Hence, on rationalizing 1 ( 1 + 5 + 3 ) = ( 7 − 5 + 3 3 − 2 15 ) 11 \dfrac{1}{(1 + \sqrt{5} + \sqrt{3})} = \dfrac{(7 - \sqrt{5} + 3\sqrt{3} - 2\sqrt{15})} {11} ( 1 + 5 + 3 ) 1 = 11 ( 7 − 5 + 3 3 − 2 15 ) .
Rationalize the denominator:
2 ( 2 + 3 − 5 ) \dfrac{\sqrt{2}}{(\sqrt{2} + \sqrt{3} - \sqrt{5})} ( 2 + 3 − 5 ) 2 .
Answer
Rationalizing the denomaintor,
⇒ 2 ( 2 + 3 − 5 ) × ( 2 + 3 + 5 ) ( 2 + 3 + 5 ) ⇒ 2 × ( 2 + 3 + 5 ) ( 2 + 3 − 5 ) × ( 2 + 3 + 5 ) ⇒ ( 2 + 6 + 10 ) ( 2 + 6 + 10 + 6 + 3 + 15 − 10 − 15 − 5 ) ⇒ ( 2 + 6 + 10 ) ( 2 6 ) \Rightarrow \dfrac{\sqrt{2}}{(\sqrt{2} + \sqrt{3} - \sqrt{5})} \times \dfrac{(\sqrt{2} + \sqrt{3} + \sqrt{5})}{(\sqrt{2} + \sqrt{3} + \sqrt{5})} \\[1em] \Rightarrow \dfrac{ \sqrt{2} \times (\sqrt{2}+ \sqrt{3} + \sqrt{5})} {(\sqrt{2}+ \sqrt{3} - \sqrt{5}) \times (\sqrt{2} + \sqrt{3} + \sqrt{5})} \\[1em] \Rightarrow \dfrac{(2 + \sqrt{6} + \sqrt{10})} {(2 + \sqrt{6} + \sqrt{10} + \sqrt{6} + 3 + \sqrt{15} - \sqrt{10} - \sqrt{15} - 5)} \\[1em] \Rightarrow \dfrac{(2 + \sqrt{6} + \sqrt{10})} {(2\sqrt{6})} ⇒ ( 2 + 3 − 5 ) 2 × ( 2 + 3 + 5 ) ( 2 + 3 + 5 ) ⇒ ( 2 + 3 − 5 ) × ( 2 + 3 + 5 ) 2 × ( 2 + 3 + 5 ) ⇒ ( 2 + 6 + 10 + 6 + 3 + 15 − 10 − 15 − 5 ) ( 2 + 6 + 10 ) ⇒ ( 2 6 ) ( 2 + 6 + 10 )
Rationalizing again,
⇒ ( 2 + 6 + 10 ) ( 2 6 ) × 6 6 ⇒ ( 2 + 6 + 10 ) × 6 ( 2 6 ) × 6 ⇒ ( 2 6 + 6 + 60 ) 12 ⇒ ( 2 6 + 6 + 15 × 4 ) 12 ⇒ 2 6 + 6 + 2 15 12 ⇒ 2 ( 6 + 3 + 15 ) 12 ⇒ ( 6 + 3 + 15 ) 6 . \Rightarrow \dfrac{(2 + \sqrt{6} + \sqrt{10})} {(2\sqrt{6})} \times \dfrac{\sqrt{6}}{\sqrt{6}} \\[1em] \Rightarrow \dfrac{(2 + \sqrt{6} + \sqrt{10}) \times \sqrt{6}} {(2\sqrt{6})\times \sqrt{6}} \\[1em] \Rightarrow \dfrac{(2\sqrt{6} + 6 + \sqrt{60})} {12} \\[1em] \Rightarrow \dfrac{(2\sqrt{6} + 6 + \sqrt{15 \times 4})}{12} \\[1em] \Rightarrow \dfrac{2\sqrt{6} + 6 + 2\sqrt{15}}{12} \\[1em] \Rightarrow \dfrac{2(\sqrt{6} + 3 + \sqrt{15})}{12} \\[1em] \Rightarrow \dfrac{(\sqrt{6} + 3 + \sqrt{15})}{6}. ⇒ ( 2 6 ) ( 2 + 6 + 10 ) × 6 6 ⇒ ( 2 6 ) × 6 ( 2 + 6 + 10 ) × 6 ⇒ 12 ( 2 6 + 6 + 60 ) ⇒ 12 ( 2 6 + 6 + 15 × 4 ) ⇒ 12 2 6 + 6 + 2 15 ⇒ 12 2 ( 6 + 3 + 15 ) ⇒ 6 ( 6 + 3 + 15 ) .
Hence, on rationalizing ( 6 + 3 + 15 ) 6 = ( 6 + 3 + 15 ) 6 \dfrac{(\sqrt{6} + 3 + \sqrt{15})}{6} = \dfrac{(\sqrt{6} + 3 + \sqrt{15})}{6} 6 ( 6 + 3 + 15 ) = 6 ( 6 + 3 + 15 ) .
If 3 + 1 3 − 1 = a + b 3 \dfrac{\sqrt{3} + 1}{\sqrt{3} - 1} = a + b\sqrt{3} 3 − 1 3 + 1 = a + b 3 ,find the values of 'a' and 'b'.
Answer
Given,
Equation : 3 + 1 3 − 1 = a + b 3 \dfrac{\sqrt{3} + 1}{\sqrt{3} - 1} = a + b\sqrt{3} 3 − 1 3 + 1 = a + b 3
Rationalizing the denominator of L.H.S. of the above equation :
⇒ 3 + 1 3 − 1 × 3 + 1 3 + 1 ⇒ ( 3 + 1 ) 2 ( 3 ) 2 − 1 2 ⇒ ( 3 ) 2 + 1 2 + 2 × 3 × 1 3 − 1 ⇒ 3 + 1 + 2 3 2 ⇒ 4 + 2 3 2 ⇒ 2 ( 2 + 3 ) 2 ⇒ 2 + 3 . \Rightarrow \dfrac{\sqrt{3} + 1}{\sqrt{3} - 1} \times \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1} \\[1em] \Rightarrow \dfrac{(\sqrt{3} + 1)^2}{(\sqrt{3})^2 - 1^2} \\[1em] \Rightarrow \dfrac{(\sqrt{3})^2 + 1^2 + 2 \times \sqrt{3} \times 1}{3 - 1} \\[1em] \Rightarrow \dfrac{3 + 1 + 2\sqrt{3}}{2} \\[1em] \Rightarrow \dfrac{4 + 2\sqrt{3}}{2} \\[1em] \Rightarrow \dfrac{2(2 + \sqrt{3})}{2} \\[1em] \Rightarrow 2 + \sqrt{3}. ⇒ 3 − 1 3 + 1 × 3 + 1 3 + 1 ⇒ ( 3 ) 2 − 1 2 ( 3 + 1 ) 2 ⇒ 3 − 1 ( 3 ) 2 + 1 2 + 2 × 3 × 1 ⇒ 2 3 + 1 + 2 3 ⇒ 2 4 + 2 3 ⇒ 2 2 ( 2 + 3 ) ⇒ 2 + 3 .
Comparing 2 + 3 with a + b 3 2 + \sqrt{3} \text{ with } a + b\sqrt{3} 2 + 3 with a + b 3 , we get :
a = 2 and b = 1.
Hence, a = 2 and b = 1.
If 3 + 2 3 − 2 = a + b 2 \dfrac{3 + \sqrt{2}}{3 - \sqrt{2}} = a + b\sqrt{2} 3 − 2 3 + 2 = a + b 2 , find the values of 'a' and 'b'.
Answer
Given,
Equation : 3 + 2 3 − 2 = a + b 2 \dfrac{3 + \sqrt{2}}{3 - \sqrt{2}} = a + b\sqrt{2} 3 − 2 3 + 2 = a + b 2
Rationalizing L.H.S. of the above equation :
⇒ 3 + 2 3 − 2 × 3 + 2 3 + 2 ⇒ ( 3 + 2 ) 2 ( 3 ) 2 − ( 2 ) 2 ⇒ ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 9 − 2 ⇒ 9 + 2 + 6 2 7 ⇒ 11 + 6 2 7 ⇒ 11 7 + 6 2 7 \Rightarrow \dfrac{3 + \sqrt{2}}{3 - \sqrt{2}} \times \dfrac{3 + \sqrt{2}}{3 + \sqrt{2}} \\[1em] \Rightarrow \dfrac{(3 + \sqrt{2})^2}{(3)^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{(3)^2 + (\sqrt{2})^2 + 2 \times 3 \times \sqrt{2}}{9 - 2} \\[1em] \Rightarrow \dfrac{9 + 2 + 6\sqrt{2}}{7} \\[1em] \Rightarrow \dfrac{11 + 6\sqrt{2}}{7} \\[1em] \Rightarrow \dfrac{11}{7} + \dfrac{6\sqrt{2}}{7} ⇒ 3 − 2 3 + 2 × 3 + 2 3 + 2 ⇒ ( 3 ) 2 − ( 2 ) 2 ( 3 + 2 ) 2 ⇒ 9 − 2 ( 3 ) 2 + ( 2 ) 2 + 2 × 3 × 2 ⇒ 7 9 + 2 + 6 2 ⇒ 7 11 + 6 2 ⇒ 7 11 + 7 6 2
Comparing 11 7 + 6 7 2 with a + b 2 \dfrac{11}{7} + \dfrac{6}{7}\sqrt{2} \text{ with } a + b\sqrt{2} 7 11 + 7 6 2 with a + b 2 , we get :
a = 11 7 and b = 6 7 . a = \dfrac{11}{7} \text{ and } b = \dfrac{6}{7}. a = 7 11 and b = 7 6 .
Hence, a = 11 7 and b = 6 7 a = \dfrac{11}{7} \text{ and } b = \dfrac{6}{7} a = 7 11 and b = 7 6 .
If 5 − 6 5 + 6 = a − b 6 \dfrac{5 - \sqrt{6}}{5 + \sqrt{6}} = a - b\sqrt{6} 5 + 6 5 − 6 = a − b 6 , find the values of 'a' and 'b'.
Answer
Given,
Equation : 5 − 6 5 + 6 = a − b 6 \dfrac{5 - \sqrt{6}}{5 + \sqrt{6}} = a - b\sqrt{6} 5 + 6 5 − 6 = a − b 6
Rationalizing the denomiantor of L.H.S. of the above equation :
⇒ 5 − 6 5 + 6 × 5 − 6 5 − 6 ⇒ ( 5 − 6 ) 2 ( 5 ) 2 − ( 6 ) 2 ⇒ ( 5 ) 2 + ( 6 ) 2 − 2 × 5 × 6 25 − 6 ⇒ 25 + 6 − 10 6 19 ⇒ 31 − 10 6 19 ⇒ 31 19 − 10 6 19 \Rightarrow \dfrac{5 - \sqrt{6}}{5 + \sqrt{6}} \times \dfrac{5 - \sqrt{6}}{5 - \sqrt{6}} \\[1em] \Rightarrow \dfrac{(5 - \sqrt{6})^2}{(5)^2 - (\sqrt{6})^2} \\[1em] \Rightarrow \dfrac{(5)^2 + (\sqrt{6})^2 - 2 \times 5 \times \sqrt{6}}{25 - 6} \\[1em] \Rightarrow \dfrac{25 + 6 - 10\sqrt{6}}{19} \\[1em] \Rightarrow \dfrac{31 - 10\sqrt{6}}{19} \\[1em] \Rightarrow \dfrac{31}{19} - \dfrac{10\sqrt{6}}{19} ⇒ 5 + 6 5 − 6 × 5 − 6 5 − 6 ⇒ ( 5 ) 2 − ( 6 ) 2 ( 5 − 6 ) 2 ⇒ 25 − 6 ( 5 ) 2 + ( 6 ) 2 − 2 × 5 × 6 ⇒ 19 25 + 6 − 10 6 ⇒ 19 31 − 10 6 ⇒ 19 31 − 19 10 6
Comparing 31 19 − 10 19 6 with a − b 6 \dfrac{31}{19} - \dfrac{10}{19}\sqrt{6} \text{ with } a - b\sqrt{6} 19 31 − 19 10 6 with a − b 6 , we get :
a = 31 19 and b = 10 19 . a = \dfrac{31}{19} \text{ and } b = \dfrac{10}{19}. a = 19 31 and b = 19 10 .
Hence, a = 31 19 and b = 10 19 a = \dfrac{31}{19} \text{ and } b = \dfrac{10}{19} a = 19 31 and b = 19 10 .
If 5 + 2 3 7 + 4 3 = a − b 3 \dfrac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} = a - b\sqrt{3} 7 + 4 3 5 + 2 3 = a − b 3 , find the values of 'a' and 'b'.
Answer
Given,
Equation : 5 + 2 3 7 + 4 3 = a − b 3 \dfrac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} = a - b\sqrt{3} 7 + 4 3 5 + 2 3 = a − b 3
Rationalizing the denominator of L.H.S. of the above equation :
⇒ 5 + 2 3 7 + 4 3 × 7 − 4 3 7 − 4 3 ⇒ ( 5 + 2 3 ) × ( 7 − 4 3 ) ( 7 ) 2 − ( 4 3 ) 2 ⇒ 35 − 20 3 + 14 3 − 8 × 3 49 − 48 ⇒ 35 − 6 3 − 24 1 ⇒ 11 − 6 3 \Rightarrow \dfrac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} \times \dfrac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} \\[1em] \Rightarrow \dfrac{(5 + 2\sqrt{3}) \times (7 - 4\sqrt{3})}{(7)^2 - (4\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{35 - 20\sqrt{3} + 14\sqrt{3} - 8 \times 3}{49 - 48} \\[1em] \Rightarrow \dfrac{35 - 6\sqrt{3} - 24}{1} \\[1em] \Rightarrow 11 - 6\sqrt{3} \\[1em] ⇒ 7 + 4 3 5 + 2 3 × 7 − 4 3 7 − 4 3 ⇒ ( 7 ) 2 − ( 4 3 ) 2 ( 5 + 2 3 ) × ( 7 − 4 3 ) ⇒ 49 − 48 35 − 20 3 + 14 3 − 8 × 3 ⇒ 1 35 − 6 3 − 24 ⇒ 11 − 6 3
Comparing, 11 − 6 3 with a − b 3 11 - 6\sqrt{3} \text{ with } a - b\sqrt{3} 11 − 6 3 with a − b 3 , we get :
a = 11 and b = 6.
Hence, a = 11 and b = 6.
Simplify : 5 + 3 5 − 3 + 5 − 3 5 + 3 \dfrac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} + \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} 5 − 3 5 + 3 + 5 + 3 5 − 3
Answer
Given,
Equation : 5 + 3 5 − 3 + 5 − 3 5 + 3 \dfrac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} + \dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} 5 − 3 5 + 3 + 5 + 3 5 − 3
Simplifying the above equation :
⇒ ( 5 + 3 ) 2 + ( 5 − 3 ) 2 ( 5 − 3 ) ( 5 + 3 ) ⇒ ( 5 ) 2 + ( 3 ) 2 + 2 × 5 × 3 + ( 5 ) 2 + ( 3 ) 2 − 2 × 5 × 3 ( 5 ) 2 − ( 3 ) 2 ⇒ 5 + 3 + 2 15 + 5 + 3 − 2 15 5 − 3 ⇒ 16 2 ⇒ 8 \Rightarrow \dfrac{(\sqrt{5} + \sqrt{3})^2 + (\sqrt{5} - \sqrt{3})^2}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} \\[1em] \Rightarrow \dfrac{(\sqrt{5})^2 + (\sqrt{3})^2 + 2 \times \sqrt{5} \times \sqrt{3} + (\sqrt{5})^2 + (\sqrt{3})^2 - 2 \times \sqrt{5} \times \sqrt{3}}{(\sqrt{5})^2 - (\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{5 + 3 + 2\sqrt{15} + 5 + 3 - 2\sqrt{15}}{5 - 3} \\[1em] \Rightarrow \dfrac{16}{2} \\[1em] \Rightarrow 8 ⇒ ( 5 − 3 ) ( 5 + 3 ) ( 5 + 3 ) 2 + ( 5 − 3 ) 2 ⇒ ( 5 ) 2 − ( 3 ) 2 ( 5 ) 2 + ( 3 ) 2 + 2 × 5 × 3 + ( 5 ) 2 + ( 3 ) 2 − 2 × 5 × 3 ⇒ 5 − 3 5 + 3 + 2 15 + 5 + 3 − 2 15 ⇒ 2 16 ⇒ 8
Hence, 5 + 3 5 − 3 + 5 − 3 5 + 3 \dfrac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}+\dfrac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} 5 − 3 5 + 3 + 5 + 3 5 − 3 = 8.
Simplify : 7 + 3 5 3 + 5 − 7 − 3 5 3 − 5 \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} 3 + 5 7 + 3 5 − 3 − 5 7 − 3 5
Answer
Given,
Equation : 7 + 3 5 3 + 5 − 7 − 3 5 3 − 5 \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} 3 + 5 7 + 3 5 − 3 − 5 7 − 3 5
Simplifying the above equation :
⇒ ( 7 + 3 5 ) × ( 3 − 5 ) − ( 7 − 3 5 ) × ( 3 + 5 ) ( 3 + 5 ) × ( 3 − 5 ) ⇒ ( 21 − 7 5 + 9 5 − 15 ) − ( 21 + 7 5 − 9 5 − 15 ) 3 2 − ( 5 ) 2 ⇒ 21 − 7 5 + 9 5 − 15 − 21 − 7 5 + 9 5 + 15 9 − 5 ⇒ 4 5 4 ⇒ 5 \Rightarrow \dfrac{(7 + 3\sqrt{5}) \times (3 - \sqrt{5}) - (7 - 3\sqrt{5}) \times (3 + \sqrt{5})}{(3 + \sqrt{5}) \times (3 - \sqrt{5})} \\[1em] \Rightarrow \dfrac{(21 - 7\sqrt{5} + 9\sqrt{5} - 15)-(21 + 7\sqrt{5} - 9\sqrt{5} - 15)}{3^2 - (\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{21 - 7\sqrt{5} + 9\sqrt{5} - 15 - 21 - 7\sqrt{5} + 9\sqrt{5} + 15}{9 - 5} \\[1em] \Rightarrow \dfrac{4\sqrt{5}}{4} \\[1em] \Rightarrow \sqrt{5} ⇒ ( 3 + 5 ) × ( 3 − 5 ) ( 7 + 3 5 ) × ( 3 − 5 ) − ( 7 − 3 5 ) × ( 3 + 5 ) ⇒ 3 2 − ( 5 ) 2 ( 21 − 7 5 + 9 5 − 15 ) − ( 21 + 7 5 − 9 5 − 15 ) ⇒ 9 − 5 21 − 7 5 + 9 5 − 15 − 21 − 7 5 + 9 5 + 15 ⇒ 4 4 5 ⇒ 5
Hence, 7 + 3 5 3 + 5 − 7 − 3 5 3 − 5 = 5 \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}}- \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} = \sqrt{5} 3 + 5 7 + 3 5 − 3 − 5 7 − 3 5 = 5 .
Show that : 1 ( 3 − 8 ) + 1 ( 7 − 6 ) + 1 ( 5 − 2 ) − 1 ( 8 − 7 ) − 1 ( 6 − 5 ) = 5 \dfrac{1}{(3 - \sqrt{8})} + \dfrac{1}{(\sqrt{7} - \sqrt{6})}+ \dfrac{1}{(\sqrt{5} - 2)} - \dfrac{1}{(\sqrt{8} - \sqrt{7})} - \dfrac{1}{(\sqrt{6} - \sqrt{5})} = 5 ( 3 − 8 ) 1 + ( 7 − 6 ) 1 + ( 5 − 2 ) 1 − ( 8 − 7 ) 1 − ( 6 − 5 ) 1 = 5
Answer
Given,
Equation : 1 ( 3 − 8 ) + 1 ( 7 − 6 ) + 1 ( 5 − 2 ) − 1 ( 8 − 7 ) − 1 ( 6 − 5 ) \dfrac{1}{(3 - \sqrt{8})} + \dfrac{1}{(\sqrt{7} - \sqrt{6})}+ \dfrac{1}{(\sqrt{5} - 2)} - \dfrac{1}{(\sqrt{8} - \sqrt{7})} - \dfrac{1}{(\sqrt{6} - \sqrt{5})} ( 3 − 8 ) 1 + ( 7 − 6 ) 1 + ( 5 − 2 ) 1 − ( 8 − 7 ) 1 − ( 6 − 5 ) 1
Simplifying L.H.S. of the above equation :
⇒ 1 ( 3 − 8 ) × ( 3 + 8 ) ( 3 + 8 ) + 1 ( 7 − 6 ) × ( 7 + 6 ) ( 7 + 6 ) + 1 ( 5 − 2 ) × ( 5 + 2 ) ( 5 + 2 ) − 1 ( 8 − 7 ) × ( 8 + 7 ) ( 8 + 7 ) − 1 ( 6 − 5 ) × ( 6 + 5 ) ( 6 + 5 ) ⇒ 3 + 8 3 2 − ( 8 ) 2 + 7 + 6 ( 7 ) 2 − ( 6 ) 2 + 5 + 2 ( 5 ) 2 − ( 2 ) 2 − 8 + 7 ( 8 ) 2 − ( 7 ) 2 − 6 + 5 ( 6 ) 2 − ( 5 ) 2 ⇒ 3 + 8 9 − 8 + 7 + 6 7 − 6 + 5 + 2 5 − 4 − 8 + 7 8 − 7 − 6 + 5 6 − 5 ⇒ 3 + 8 + 7 + 6 + 5 + 2 − ( 8 + 7 ) − ( 6 + 5 ) ⇒ 3 + 2 + 8 − 8 + 7 − 7 + 6 − 6 + 5 − 5 ⇒ 5 \Rightarrow \dfrac{1}{(3 - \sqrt{8})} \times \dfrac{(3 + \sqrt{8})}{(3 + \sqrt{8})} + \dfrac{1}{(\sqrt{7} - \sqrt{6})} \times \dfrac{(\sqrt{7} + \sqrt{6})}{(\sqrt{7} + \sqrt{6})}+ \dfrac{1}{(\sqrt{5} - 2)} \times \dfrac{(\sqrt{5} + 2)}{(\sqrt{5} + 2)} - \dfrac{1}{(\sqrt{8} - \sqrt{7})} \times \dfrac{(\sqrt{8} + \sqrt{7})}{(\sqrt{8} + \sqrt{7})} - \dfrac{1}{(\sqrt{6} - \sqrt{5})} \times \dfrac{(\sqrt{6} + \sqrt{5})}{(\sqrt{6} + \sqrt{5})} \\[1em] \Rightarrow \dfrac{3 + \sqrt{8}}{3^2 - (\sqrt{8})^2} + \dfrac{\sqrt{7} + \sqrt{6}}{(\sqrt{7})^2 - (\sqrt{6})^2} + \dfrac{\sqrt{5} + 2}{(\sqrt{5})^2 - (2)^2} - \dfrac{\sqrt{8} + \sqrt{7}}{(\sqrt{8})^2 - (\sqrt{7})^2} - \dfrac{\sqrt{6} + \sqrt{5}}{(\sqrt{6})^2 - (\sqrt{5})^2} \\[1em] \Rightarrow \dfrac{3 + \sqrt{8}}{9 - 8} + \dfrac{\sqrt{7} + \sqrt{6}}{7 - 6} + \dfrac{\sqrt{5} + 2}{5 - 4} - \dfrac{\sqrt{8} + \sqrt{7}}{8 - 7} - \dfrac{\sqrt{6} + \sqrt{5}}{6 - 5} \\[1em] \Rightarrow 3 + \sqrt{8} + \sqrt{7} + \sqrt{6} + \sqrt{5} + 2 - (\sqrt{8} + \sqrt{7}) - (\sqrt{6} + \sqrt{5}) \\[1em] \Rightarrow 3 + 2 + \sqrt{8} - \sqrt{8} + \sqrt{7} - \sqrt{7} + \sqrt{6} - \sqrt{6} + \sqrt{5} - \sqrt{5} \\[1em] \Rightarrow 5 ⇒ ( 3 − 8 ) 1 × ( 3 + 8 ) ( 3 + 8 ) + ( 7 − 6 ) 1 × ( 7 + 6 ) ( 7 + 6 ) + ( 5 − 2 ) 1 × ( 5 + 2 ) ( 5 + 2 ) − ( 8 − 7 ) 1 × ( 8 + 7 ) ( 8 + 7 ) − ( 6 − 5 ) 1 × ( 6 + 5 ) ( 6 + 5 ) ⇒ 3 2 − ( 8 ) 2 3 + 8 + ( 7 ) 2 − ( 6 ) 2 7 + 6 + ( 5 ) 2 − ( 2 ) 2 5 + 2 − ( 8 ) 2 − ( 7 ) 2 8 + 7 − ( 6 ) 2 − ( 5 ) 2 6 + 5 ⇒ 9 − 8 3 + 8 + 7 − 6 7 + 6 + 5 − 4 5 + 2 − 8 − 7 8 + 7 − 6 − 5 6 + 5 ⇒ 3 + 8 + 7 + 6 + 5 + 2 − ( 8 + 7 ) − ( 6 + 5 ) ⇒ 3 + 2 + 8 − 8 + 7 − 7 + 6 − 6 + 5 − 5 ⇒ 5
Hence, proved that
1 ( 3 − 8 ) + 1 ( 7 − 6 ) + 1 ( 5 − 2 ) − 1 ( 8 − 7 ) − 1 ( 6 − 5 ) = 5 \dfrac{1}{(3 - \sqrt{8})} + \dfrac{1}{(\sqrt{7} - \sqrt{6})}+ \dfrac{1}{(\sqrt{5} - 2)} - \dfrac{1}{(\sqrt{8} - \sqrt{7})} - \dfrac{1}{(\sqrt{6} - \sqrt{5})} = 5 ( 3 − 8 ) 1 + ( 7 − 6 ) 1 + ( 5 − 2 ) 1 − ( 8 − 7 ) 1 − ( 6 − 5 ) 1 = 5 .
If x = ( 3 + 8 ) (3 + \sqrt{8}) ( 3 + 8 ) , find the values of ( x 2 + 1 x 2 ) \Big(x^2 + \dfrac{1}{x^2}\Big) ( x 2 + x 2 1 ) .
Answer
Given,
x = ( 3 + 8 ) (3 + \sqrt{8}) ( 3 + 8 )
∴ 1 x = 1 ( 3 + 8 ) \therefore \dfrac{1}{x} = \dfrac{1}{(3 + \sqrt{8})} ∴ x 1 = ( 3 + 8 ) 1
Rationalizing,
⇒ 1 x = 1 ( 3 + 8 ) × ( 3 − 8 ) ( 3 − 8 ) = 3 − 8 3 2 − ( 8 ) 2 = 3 − 8 9 − 8 = 3 − 8 1 = 3 − 8 . \Rightarrow \dfrac{1}{x} = \dfrac{1}{(3 + \sqrt{8})} \times \dfrac{(3 - \sqrt{8})}{(3 - \sqrt{8})} \\[1em] = \dfrac{3 - \sqrt{8}}{3^2 - (\sqrt{8})^2} \\[1em] = \dfrac{3 - \sqrt{8}}{9 - 8} \\[1em] = \dfrac{3 - \sqrt{8}}{1} \\[1em] = 3 - \sqrt{8}. ⇒ x 1 = ( 3 + 8 ) 1 × ( 3 − 8 ) ( 3 − 8 ) = 3 2 − ( 8 ) 2 3 − 8 = 9 − 8 3 − 8 = 1 3 − 8 = 3 − 8 .
By formula,
x 2 + 1 x 2 = ( x + 1 x ) 2 − 2 x^2 + \dfrac{1}{x^2} = \Big(x + \dfrac{1}{x}\Big)^2 - 2 x 2 + x 2 1 = ( x + x 1 ) 2 − 2
Substituting values we get :
⇒ x 2 + 1 x 2 = ( 3 + 8 + 3 − 8 ) 2 − 2 = 6 2 − 2 = 36 − 2 = 34. \Rightarrow x^2 + \dfrac{1}{x^2} = (3 + \sqrt{8} + 3 - \sqrt{8})^2 - 2 \\[1em] = 6^2 - 2 \\[1em] = 36 - 2 \\[1em] = 34. ⇒ x 2 + x 2 1 = ( 3 + 8 + 3 − 8 ) 2 − 2 = 6 2 − 2 = 36 − 2 = 34.
Hence, x 2 + 1 x 2 x^2 + \dfrac{1}{x^2} x 2 + x 2 1 = 34.
If x = ( 4 − 15 ) (4 - \sqrt{15}) ( 4 − 15 ) , find the values of ( x 2 + 1 x 2 ) \Big(x^2 + \dfrac{1}{x^2}\Big) ( x 2 + x 2 1 ) .
Answer
Given,
x = ( 4 − 15 ) (4 - \sqrt{15}) ( 4 − 15 )
∴ 1 x = 1 ( 4 − 15 ) \therefore \dfrac{1}{x} = \dfrac{1}{(4 - \sqrt{15})} ∴ x 1 = ( 4 − 15 ) 1
Rationalizing,
⇒ 1 x = 1 ( 4 − 15 ) × ( 4 + 15 ) ( 4 + 15 ) = 4 + 15 4 2 − ( 15 ) 2 = 4 + 15 16 − 15 = 4 + 15 1 = 4 + 15 . \Rightarrow \dfrac{1}{x} = \dfrac{1}{(4 - \sqrt{15})} \times \dfrac{(4 + \sqrt{15})}{(4 + \sqrt{15})} \\[1em] = \dfrac{4 + \sqrt{15}}{4^2 - (\sqrt{15})^2} \\[1em] = \dfrac{4 + \sqrt{15}}{16 - 15} \\[1em] = \dfrac{4 + \sqrt{15}}{1} \\[1em] = 4 + \sqrt{15}. ⇒ x 1 = ( 4 − 15 ) 1 × ( 4 + 15 ) ( 4 + 15 ) = 4 2 − ( 15 ) 2 4 + 15 = 16 − 15 4 + 15 = 1 4 + 15 = 4 + 15 .
By formula,
x 2 + 1 x 2 = ( x + 1 x ) 2 − 2 x^2 + \dfrac{1}{x^2} = \Big(x + \dfrac{1}{x}\Big)^2 - 2 x 2 + x 2 1 = ( x + x 1 ) 2 − 2
Substituting values we get :
⇒ x 2 + 1 x 2 = ( 4 − 15 + 4 + 15 ) 2 − 2 = 8 2 − 2 = 64 − 2 = 62. \Rightarrow x^2 + \dfrac{1}{x^2} = (4 - \sqrt{15} + 4 + \sqrt{15})^2 - 2 \\[1em] = 8^2 - 2 \\[1em] = 64 - 2 \\[1em] = 62. ⇒ x 2 + x 2 1 = ( 4 − 15 + 4 + 15 ) 2 − 2 = 8 2 − 2 = 64 − 2 = 62.
Hence, x 2 + 1 x 2 x^2 + \dfrac{1}{x^2} x 2 + x 2 1 = 62.
Multiple Choice Questions
Which of the following is a rational number?
π
2 \sqrt{2} 2
3.4
1.010010001..
Answer
3.4 is a terminating decimal, thus it is a rational number.
Hence, Option 3 is the correct option.
Which of the following is an irrational number?
2.7
2.7 2 ‾ 2.7\overline{2} 2.7 2
11 \sqrt{11} 11
2 7 \dfrac{2}{7} 7 2
Answer
11 \sqrt{11} 11 is square root of non-perfect square i.e 11, thus it is an irrational number.
Hence, Option 3 is the correct option.
Which of the following is a prime number?
51
57
71
81
Answer
71 has only two factors i.e is 1 and 71 itself, thus it is a prime number.
Hence, Option 3 is the correct option.
When 8. 32 ‾ 8.\overline{32} 8. 32 is expressed as a vulgar fraction, then it becomes :
208 824 \dfrac{208}{824} 824 208
824 99 \dfrac{824}{99} 99 824
800 99 \dfrac{800}{99} 99 800
416 45 \dfrac{416}{45} 45 416
Answer
Let x = 8. 32 ‾ 8.\overline{32} 8. 32
⇒ x = 8.32323232.. ..........(1)
Multiplying both sides by 100 (since there are two recurring digits)
⇒ 100x = 832.3232.. ..........(2)
Subtracting equation (1) from (2), we get :
⇒ 100x - x = 832.3232.. - 8.3232..
⇒ 99x = 824
⇒ x = 824 99 \dfrac{824}{99} 99 824
Hence, Option 2 is the correct option.
0.3 when expressed as a ratio of two integers, becomes :
103 330 \dfrac{103}{330} 330 103
52 165 \dfrac{52}{165} 165 52
103 111 \dfrac{103}{111} 111 103
104 333 \dfrac{104}{333} 333 104
Answer
103 330 = 0.3 12 ‾ \dfrac{103}{330} = 0.3\overline{12} 330 103 = 0.3 12
52 165 = 0.3 15 ‾ \dfrac{52}{165} = 0.3\overline{15} 165 52 = 0.3 15
103 111 = 0. 927 ‾ \dfrac{103}{111} = 0.\overline{927} 111 103 = 0. 927
104 333 = 0. 312 ‾ \dfrac{104}{333} = 0.\overline{312} 333 104 = 0. 312
Since, 0.3 12 ‾ 0.3\overline{12} 0.3 12 is nearest to 0.3
Hence, Option 1 is the correct option.
Only by inspecting the prime factors of the denominator, state which of the following fractions will be a terminating decimal?
7 12 \dfrac{7}{12} 12 7
2 15 \dfrac{2}{15} 15 2
3 16 \dfrac{3}{16} 16 3
4 21 \dfrac{4}{21} 21 4
Answer
A rational number will have a terminating decimal expansion if and only if the prime factorization of its denominator contains only powers of 2 and/or 5.
The prime factor of 16 is only 2.
∴ 3 16 \dfrac{3}{16} 16 3 will have a terminating decimal.
Hence, Option 3 is the correct option.
Only by inspecting the prime factors of the denominators, state which of the following fractions will be a recurring decimal?
7 16 \dfrac{7}{16} 16 7
8 51 \dfrac{8}{51} 51 8
3 25 \dfrac{3}{25} 25 3
11 20 \dfrac{11}{20} 20 11
Answer
A rational number will have a recurring decimal expansion if and only if the prime factorization of its denominator contains any prime factor other than 2 or 5.
The prime factors of 51 are 17 and 3.
Hence, Option 2 is the correct option.
The number which is to be subtracted from 72 \sqrt{72} 72 to get 32 \sqrt{32} 32 is:
2 10 2\sqrt{10} 2 10
4 2 4\sqrt{2} 4 2
3 2 3\sqrt{2} 3 2
2 2 2\sqrt{2} 2 2
Answer
Let the number to be subtarcted be x.
⇒ 72 − x = 32 ⇒ x = 72 − 32 ⇒ x = 36 × 2 − 16 × 2 ⇒ x = 6 2 − 4 2 ⇒ x = 2 2 . \Rightarrow \sqrt{72} - x = \sqrt{32} \\[1em] \Rightarrow x = \sqrt{72} - \sqrt{32} \\[1em] \Rightarrow x = \sqrt{36 \times 2} - \sqrt{16 \times 2} \\[1em] \Rightarrow x = 6\sqrt{2} - 4\sqrt{2} \\[1em] \Rightarrow x = 2\sqrt{2}. ⇒ 72 − x = 32 ⇒ x = 72 − 32 ⇒ x = 36 × 2 − 16 × 2 ⇒ x = 6 2 − 4 2 ⇒ x = 2 2 .
Hence, Option 4 is the correct option.
If x = 3 + 2 2 2\sqrt{2} 2 2 , then x + 1 x x + \dfrac{1}{x} x + x 1 equals to :
4 2 4\sqrt{2} 4 2
6 2 6\sqrt{2} 6 2
6
4
Answer
Given,
⇒ x = 3 + 2 2 2\sqrt{2} 2 2
⇒ 1 x = 1 ( 3 + 2 2 ) \Rightarrow \dfrac{1}{x} = \dfrac{1}{(3 + 2\sqrt{2})} ⇒ x 1 = ( 3 + 2 2 ) 1
Rationalizing,
⇒ 1 ( 3 + 2 2 ) × ( 3 − 2 2 ) ( 3 − 2 2 ) ⇒ 3 − 2 2 3 2 − ( 2 2 ) 2 ⇒ 3 − 2 2 9 − 8 ⇒ 3 − 2 2 \Rightarrow \dfrac{1}{(3 + 2\sqrt{2})} \times \dfrac{(3 - 2\sqrt{2})}{(3 - 2\sqrt{2})} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{3 - 2\sqrt{2}}{9 - 8} \\[1em] \Rightarrow 3 - 2\sqrt{2} ⇒ ( 3 + 2 2 ) 1 × ( 3 − 2 2 ) ( 3 − 2 2 ) ⇒ 3 2 − ( 2 2 ) 2 3 − 2 2 ⇒ 9 − 8 3 − 2 2 ⇒ 3 − 2 2
Adding x and 1 x \dfrac{1}{x} x 1 we get
⇒ x + 1 x = 3 + 2 2 + 3 − 2 2 ⇒ 6 \Rightarrow x + \dfrac{1}{x} = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} \\[1em] \Rightarrow 6 ⇒ x + x 1 = 3 + 2 2 + 3 − 2 2 ⇒ 6
Hence, Option 3 is the correct option.
If x = 2 - 2 \sqrt{2} 2 , then x − 1 x x - \dfrac{1}{x} x − x 1 =
4
-4
2 − 3 2 2 \dfrac{2 - 3\sqrt{2}}{2} 2 2 − 3 2
2 + 3 2 2 \dfrac{2 + 3\sqrt{2}}{2} 2 2 + 3 2
Answer
Given,
⇒ x = 2 - 2 \sqrt{2} 2
⇒ 1 x = 1 ( 2 − 2 ) \Rightarrow \dfrac{1}{x} = \dfrac{1}{(2 - \sqrt{2})} ⇒ x 1 = ( 2 − 2 ) 1
Rationalizing the denominator, we get :
⇒ 1 ( 2 − 2 ) × ( 2 + 2 ) ( 2 + 2 ) ⇒ 2 + 2 2 2 − ( 2 ) 2 ⇒ 2 + 2 4 − 2 ⇒ 2 + 2 2 \Rightarrow \dfrac{1}{(2 - \sqrt{2})} \times \dfrac{(2 + \sqrt{2})}{(2 + \sqrt{2})} \\[1em] \Rightarrow \dfrac{2 + \sqrt{2}}{2^2 - (\sqrt{2})^2} \\[1em] \Rightarrow \dfrac{2 + \sqrt{2}}{4 - 2} \\[1em] \Rightarrow \dfrac{2 + \sqrt{2}}{2} ⇒ ( 2 − 2 ) 1 × ( 2 + 2 ) ( 2 + 2 ) ⇒ 2 2 − ( 2 ) 2 2 + 2 ⇒ 4 − 2 2 + 2 ⇒ 2 2 + 2
Substituting values in x − 1 x x - \dfrac{1}{x} x − x 1 , we get :
⇒ 2 − 2 − 2 + 2 2 ⇒ 2 ( 2 − 2 ) − ( 2 + 2 ) 2 ⇒ 4 − 2 2 − 2 − 2 2 ⇒ 2 − 3 2 2 \Rightarrow 2 - \sqrt{2} - \dfrac{2 + \sqrt{2}}{2} \\[1em] \Rightarrow \dfrac{2(2 - \sqrt{2})-(2 + \sqrt{2})}{2} \\[1em] \Rightarrow \dfrac{4 - 2\sqrt{2} - 2 - \sqrt{2}}{2} \\[1em] \Rightarrow \dfrac{2 - 3\sqrt{2}}{2} \\[1em] ⇒ 2 − 2 − 2 2 + 2 ⇒ 2 2 ( 2 − 2 ) − ( 2 + 2 ) ⇒ 2 4 − 2 2 − 2 − 2 ⇒ 2 2 − 3 2
x − 1 x = 2 − 3 2 2 x - \dfrac{1}{x} = \dfrac{2 - 3\sqrt{2}}{2} x − x 1 = 2 2 − 3 2
Hence, Option 3 is the correct option.
If x = 5 + 2 6 2\sqrt{6} 2 6 , then x 2 + 1 x 2 x^2 + \dfrac{1}{x^2} x 2 + x 2 1 =
98
142
49
138
Answer
Given,
x = ( 5 + 2 6 ) (5 + 2\sqrt{6}) ( 5 + 2 6 )
∴ 1 x = 1 ( 5 + 2 6 ) \therefore \dfrac{1}{x} = \dfrac{1}{(5 + 2\sqrt{6})} ∴ x 1 = ( 5 + 2 6 ) 1
Rationalizing,
⇒ 1 x = 1 5 + 2 6 × ( 5 − 2 6 ) ( 5 − 2 6 ) = 5 − 2 6 5 2 − ( 2 6 ) 2 = 5 − 2 6 25 − 24 = 5 − 2 6 1 = 5 − 2 6 . \Rightarrow \dfrac{1}{x} = \dfrac{1}{5 + 2\sqrt{6}} \times \dfrac{(5 - 2\sqrt{6})}{(5 - 2\sqrt{6})} \\[1em] = \dfrac{5 - 2\sqrt{6}}{5^2 - (2\sqrt{6})^2} \\[1em] = \dfrac{5 - 2\sqrt{6}}{25 - 24} \\[1em] = \dfrac{5 - 2\sqrt{6}}{1} \\[1em] = 5 - 2\sqrt{6}. ⇒ x 1 = 5 + 2 6 1 × ( 5 − 2 6 ) ( 5 − 2 6 ) = 5 2 − ( 2 6 ) 2 5 − 2 6 = 25 − 24 5 − 2 6 = 1 5 − 2 6 = 5 − 2 6 .
By formula,
x 2 + 1 x 2 = ( x + 1 x ) 2 − 2 x^2 + \dfrac{1}{x^2} = \Big(x + \dfrac{1}{x}\Big)^2 - 2 x 2 + x 2 1 = ( x + x 1 ) 2 − 2
Substituting values we get :
⇒ x 2 + 1 x 2 = ( 5 + 2 6 + 5 − 2 6 ) 2 − 2 = 10 2 − 2 = 100 − 2 = 98. \Rightarrow x^2 + \dfrac{1}{x^2} = (5 + 2\sqrt{6} + 5 - 2\sqrt{6})^2 - 2 \\[1em] = 10^2 - 2 \\[1em] = 100 - 2 \\[1em] = 98. ⇒ x 2 + x 2 1 = ( 5 + 2 6 + 5 − 2 6 ) 2 − 2 = 1 0 2 − 2 = 100 − 2 = 98.
Hence, Option 1 is the correct option.
Two rational numbers between − 3 7 and − 1 7 -\dfrac{3}{7} \text{ and } -\dfrac{1}{7} − 7 3 and − 7 1 is :
4 14 , 3 14 \dfrac{4}{14}, \dfrac{3}{14} 14 4 , 14 3
− 4 14 , 3 14 -\dfrac{4}{14}, \dfrac{3}{14} − 14 4 , 14 3
4 14 , − 3 14 \dfrac{4}{14}, -\dfrac{3}{14} 14 4 , − 14 3
− 4 14 , − 3 14 -\dfrac{4}{14}, -\dfrac{3}{14} − 14 4 , − 14 3
Answer
Let the first rational number between − 3 7 and − 1 7 -\dfrac{3}{7} \text{ and } -\dfrac{1}{7} − 7 3 and − 7 1 be x.
⇒ x = 1 2 [ − 3 7 + ( − 1 7 ) ] ⇒ x = 1 2 ( − 4 7 ) ⇒ x = − 4 14 \Rightarrow x = \dfrac{1}{2}\Big[-\dfrac{3}{7} + \Big(-\dfrac{1}{7}\Big)\Big] \\[1em] \Rightarrow x = \dfrac{1}{2}\Big(-\dfrac{4}{7}\Big)\\[1em] \Rightarrow x = -\dfrac{4}{14} ⇒ x = 2 1 [ − 7 3 + ( − 7 1 ) ] ⇒ x = 2 1 ( − 7 4 ) ⇒ x = − 14 4
Let the second rational number be y.
⇒ y = 1 2 [ − 4 14 + ( − 1 7 ) ] ⇒ y = 1 2 ( − 4 − 2 14 ) ⇒ y = 1 2 ( − 6 14 ) ⇒ y = − 6 28 = − 3 14 \Rightarrow y = \dfrac{1}{2}\Big[-\dfrac{4}{14} + \Big(-\dfrac{1}{7}\Big)\Big] \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(\dfrac{-4 - 2}{14}\Big) \\[1em] \Rightarrow y = \dfrac{1}{2}\Big(-\dfrac{6}{14}\Big)\\[1em] \Rightarrow y = -\dfrac{6}{28} = -\dfrac{3}{14} ⇒ y = 2 1 [ − 14 4 + ( − 7 1 ) ] ⇒ y = 2 1 ( 14 − 4 − 2 ) ⇒ y = 2 1 ( − 14 6 ) ⇒ y = − 28 6 = − 14 3
Hence, Option 4 is the correct option.
The correct ascending order of 3 , 6 3 , 7 4 \sqrt{3} , \sqrt[3]{6}, \sqrt[4]{7} 3 , 3 6 , 4 7 is :
6 3 , 7 4 , 3 \sqrt[3]{6}, \sqrt[4]{7}, \sqrt{3} 3 6 , 4 7 , 3
7 4 , 3 , 6 3 \sqrt[4]{7}, \sqrt{3}, \sqrt[3]{6} 4 7 , 3 , 3 6
3 , 7 4 , 6 3 \sqrt{3}, \sqrt[4]{7}, \sqrt[3]{6} 3 , 4 7 , 3 6
6 3 , 3 , 7 4 \sqrt[3]{6}, \sqrt{3}, \sqrt[4]{7} 3 6 , 3 , 4 7
Answer
On solving,
⇒ 3 \sqrt{3} 3 = 1.732
⇒ 6 3 \sqrt[3]{6} 3 6 = 1.817
⇒ 7 4 \sqrt[4]{7} 4 7 = 1.626
∴ 7 4 < 3 < 6 3 \sqrt[4]{7} \lt \sqrt{3} \lt \sqrt[3]{6} 4 7 < 3 < 3 6
Hence, Option 2 is the correct option.
The mixed surd for 432 3 \sqrt[3]{432} 3 432 is :
2 6 3 2\sqrt[3]{6} 2 3 6
6 2 3 6\sqrt[3]{2} 6 3 2
3 6 3 3\sqrt[3]{6} 3 3 6
6 3 3 6\sqrt[3]{3} 6 3 3
Answer
Given,
⇒ 432 3 ⇒ 216 × 2 3 ⇒ 216 3 × 2 3 ⇒ 6 2 3 \Rightarrow \sqrt[3]{432} \\[1em] \Rightarrow \sqrt[3]{216 \times 2} \\[1em] \Rightarrow \sqrt[3]{216} \times \sqrt[3]{2} \\[1em] \Rightarrow 6\sqrt[3]{2} ⇒ 3 432 ⇒ 3 216 × 2 ⇒ 3 216 × 3 2 ⇒ 6 3 2
Hence, Option 2 is the correct option.
What is the pure surd for 5 2 3 5\sqrt[3]{2} 5 3 2 ?
125 3 \sqrt[3]{125} 3 125
150 3 \sqrt[3]{150} 3 150
250 3 \sqrt[3]{250} 3 250
1000 3 \sqrt[3]{1000} 3 1000
Answer
Given,
⇒ 5 2 3 ⇒ 5 3 × 2 3 ⇒ 125 × 2 3 ⇒ 250 3 \Rightarrow 5\sqrt[3]{2} \\[1em] \Rightarrow \sqrt[3]{5^3 \times 2} \\[1em] \Rightarrow \sqrt[3]{125 \times 2} \\[1em] \Rightarrow \sqrt[3]{250} ⇒ 5 3 2 ⇒ 3 5 3 × 2 ⇒ 3 125 × 2 ⇒ 3 250
Hence, Option 3 is the correct option.
Case Study Based Questions
Case Study
The union of the set of rational numbers (Q) and irrational numbers (P) form the set of real numbers (R). Rational numbers are the set of numbers which can be written in the form of a b \dfrac{a}{b} b a , where a and b are integers and b is not equal to zero. The decimal expansion of a rational number is either terminating or non-terminating repeating. The number which cannot be expressed in the form a b \dfrac{a}{b} b a are called irrational numbers. The decimal expansion of irrational numbers is non-terminating non-repeating.
Based on this information, answer the following questions:
Every rational number is: (a) a natural number (b) a whole number (c) an integer (d) a real number
Every real number is: (a) an integer (b) a rational number (c) an irrational number (d) either a rational number or an irrational number.
The sum of two irrationals is: (a) irrational (b) rational (c) either rational or irrational (d) neither rational or irrational.
The product of a rational and irrational number is: (a) an irrational number (b) a rational number (c) either a rational number or an irrational number (d) neither a rational number nor an irrational number.
The number of irrational number is: (a) finite (b) infinite (c) neither finite or infinite (d) none of these.
Answer
1. Real numbers include all rational and irrational numbers.
Rational numbers are a subset of real numbers.
Hence, Option (d) is the correct option.
2. Real numbers include all rational and irrational numbers.
Hence, Option (d) is the correct option.
3. The sum of two irrational numbers can be either rational or irrational.
Hence, Option (c) is the correct option.
4. If the rational number is zero, the product is rational.
If the rational number is non-zero, the product is irrational.
Hence, Option (c) is the correct option.
5. The number of irrational number is infinite as the number of real numbers is also infinite.
Hence, Option (b) is the correct option.
Case Study
Ms Mehta teaches maths in a school. One day after teaching the lesson of number system, she wanted to check the understanding of the students of her class. So, she wrote two numbers, 3 11 and 0. 52 ‾ \dfrac{3}{11}\text{ and } 0.\overline{52} 11 3 and 0. 52 on the blackboard and asked few questions based on them. You please try to answer the following questions asked by Ms Mehta.
The decimal expansion of 3 11 \dfrac{3}{11} 11 3 is: (a) terminating (b) non-terminating (c) non-terminating non-repeating (d) non-terminating repeating
0. 52 ‾ 0.\overline{52} 0. 52 is: (a) non-terminating non-repeating (b) non-terminating repeating (c) non-terminating (d) terminating
The decimal form of 3 11 \dfrac{3}{11} 11 3 : (a) 0.27 (b) 0.2727 (c) 0. 27 ‾ 0.\overline{27} 0. 27 (d) 0.3
0. 52 ‾ 0.\overline{52} 0. 52 as vulgar fraction becomes: (a) 52 99 \dfrac{52}{99} 99 52 (b) 52 100 \dfrac{52}{100} 100 52 (c) 26 25 \dfrac{26}{25} 25 26 (d) 13 25 \dfrac{13}{25} 25 13
The sum of 0. 52 ‾ and 3 11 0.\overline{52} \text{ and } \dfrac{3}{11} 0. 52 and 11 3 is : (a) 79 99 \dfrac{79}{99} 99 79 (b) 70 99 \dfrac{70}{99} 99 70 (c) 52 99 \dfrac{52}{99} 99 52 (d) 40 99 \dfrac{40}{99} 99 40
Answer
1. On dividing,
3 11 = 0. 27 ‾ \dfrac{3}{11} = 0.\overline{27} 11 3 = 0. 27
Hence, Option (d) is the correct option.
2. 0. 52 ‾ 0.\overline{52} 0. 52 = 0.525252...
Hence, Option (b) is the correct option.
3. 3 11 \dfrac{3}{11} 11 3 = 0.272727.... = 0. 27 ‾ 0.\overline{27} 0. 27
Hence, Option (c) is the correct option.
4. Given,
Let x = 0.525252.. .........(1)
Multiply both side by 100(as two digits are recurring)
⇒ 100x = 52.5252.. .........(2)
Subtracting eqn (1) from eqn (2), we get :
⇒ 100x - x = 52.5252.. - 0.525252
⇒ 99x = 52
⇒ x = 52 99 \dfrac{52}{99} 99 52 .
Hence, Option (a) is the correct option.
5. From part 4,
0. 52 ‾ = 52 99 0.\overline{52} = \dfrac{52}{99} 0. 52 = 99 52
Adding 52 99 \dfrac{52}{99} 99 52 and 3 11 \dfrac{3}{11} 11 3
⇒ 52 99 + 3 11 ⇒ 52 + 27 99 ⇒ 79 99 . \Rightarrow \dfrac{52}{99} + \dfrac{3}{11} \\[1em] \Rightarrow \dfrac{52 + 27}{99} \\[1em] \Rightarrow \dfrac{79}{99}. ⇒ 99 52 + 11 3 ⇒ 99 52 + 27 ⇒ 99 79 .
Hence, Option (a) is the correct option.
Assertion Reasoning Questions
Assertion (A): The number obtained on rationalizing the denominator of 1 5 − 2 \dfrac{1}{\sqrt{5} - 2} 5 − 2 1 is 2 + 5 2 + \sqrt{5} 2 + 5 .
Reason (R): If the product of two irrational numbers is rational, then each one is called the rationalizing factor of the other.
A is true, R is false
A is false, R is true
Both A and R are true
Both A and R are false.
Answer
Given,
1 5 − 2 \dfrac{1}{\sqrt{5} - 2} 5 − 2 1
Rationalizing the denominator of 1 5 − 2 \dfrac{1}{\sqrt{5} - 2} 5 − 2 1 ,
⇒ 1 5 − 2 × 5 + 2 5 + 2 ⇒ 5 + 2 ( 5 ) 2 − ( 2 ) 2 ⇒ 5 + 2 5 − 4 ⇒ 5 + 2 1 ⇒ 2 + 5 \Rightarrow \dfrac{1}{\sqrt{5} - 2} \times \dfrac{\sqrt{5} + 2}{\sqrt{5} + 2} \\[1em] \Rightarrow \dfrac{\sqrt{5} + 2}{(\sqrt{5})^2 - (2)^2}\\[1em] \Rightarrow \dfrac{\sqrt{5} + 2}{5 - 4} \\[1em] \Rightarrow \dfrac{\sqrt{5} + 2}{1} \\[1em] \Rightarrow 2 + \sqrt{5} ⇒ 5 − 2 1 × 5 + 2 5 + 2 ⇒ ( 5 ) 2 − ( 2 ) 2 5 + 2 ⇒ 5 − 4 5 + 2 ⇒ 1 5 + 2 ⇒ 2 + 5
∴ Assertion (A) is true.
We know that,
If the product of two irrational numbers is rational, then each one is called the rationalizing factor of the other.
∴ Reason (R) is true.
Hence, Option 3 is the correct option.
Assertion (A): Each of the numbers 2 3 , 3 3 , 4 3 , 5 3 , 6 3 , 7 3 \sqrt[3]{2}, \sqrt[3]{3}, \sqrt[3]{4}, \sqrt[3]{5}, \sqrt[3]{6}, \sqrt[3]{7} 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7 is irrational.
Reason (R): The cube roots of all natural numbers is irrational.
A is true, R is false
Both A and R are true
A is false, R is true
Both A and R are false.
Answer
2 3 , 3 3 , 4 3 , 5 3 , 6 3 , 7 3 \sqrt[3]{2}, \sqrt[3]{3}, \sqrt[3]{4}, \sqrt[3]{5}, \sqrt[3]{6}, \sqrt[3]{7} 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7 are irrational, because these are cube roots of not perfect cubes.
∴ Assertion (A) is true.
The cube roots of all perfect cubes are rational. Thus, we cannot say that the cube roots of all natural numbers is irrational.
∴ Reason (R) is false.
Hence, Option 1 is the correct option.
Competency Focused Questions
The sum of all rational numbers between 0 and 0.1 is :
finite
infinite
can't say anything
none of these
Answer
Between any two real numbers like 0 and 0.1, there are infinitely many rational numbers. So the sum is infinite.
Hence, Option 2 is the correct option.
Four rational numbers p, q, r and s are such that q is the reciprocal of p and s is the reciprocal of r. The value of the expression ( [ p + 1 q ] ÷ [ r + 1 s ] ) ÷ ( [ s + 1 r ] ÷ [ q + 1 p ] ) \Big([p + \dfrac{1}{q}] ÷ [r + \dfrac{1}{s}]\Big) ÷ \Big([s + \dfrac{1}{r}] ÷ [q + \dfrac{1}{p}]\Big) ( [ p + q 1 ] ÷ [ r + s 1 ] ) ÷ ( [ s + r 1 ] ÷ [ q + p 1 ] ) is equal to:
1
0
pr
s q \dfrac{s}{q} q s
Answer
Given,
⇒ q = 1 p ⇒ 1 q = p ⇒ s = 1 r ⇒ 1 s = r . \Rightarrow q = \dfrac{1}{p} \\[1em] \Rightarrow \dfrac{1}{q} = p \\[1em] \Rightarrow s = \dfrac{1}{r} \\[1em] \Rightarrow \dfrac{1}{s} = r. ⇒ q = p 1 ⇒ q 1 = p ⇒ s = r 1 ⇒ s 1 = r .
Substituting value from above in given equation,
⇒ ( [ p + p ] ÷ [ r + r ] ) ÷ ( [ s + s ] ÷ [ q + q ] ) ⇒ ( 2 p 2 r ) ÷ ( 2 s 2 q ) ⇒ p r ÷ s q ⇒ ( p r ) × ( q s ) ⇒ p r × q × 1 s ⇒ p r × 1 p × r ⇒ 1. \Rightarrow \Big([p + p] ÷ [r + r]\Big)÷ \Big([s + s] ÷ [q + q]\Big) \\[1em] \Rightarrow \Big(\dfrac{2p}{2r}\Big) ÷ \Big(\dfrac{2s}{2q}\Big) \\[1em] \Rightarrow \dfrac{p}{r} ÷ \dfrac{s}{q} \\[1em] \Rightarrow \Big(\dfrac{p}{r}\Big) \times \Big(\dfrac{q}{s}\Big) \\[1em] \Rightarrow \dfrac{p}{r} \times q \times \dfrac{1}{s} \\[1em] \Rightarrow \dfrac{p}{r} \times \dfrac{1}{p} \times r \\[1em] \Rightarrow 1. ⇒ ( [ p + p ] ÷ [ r + r ] ) ÷ ( [ s + s ] ÷ [ q + q ] ) ⇒ ( 2 r 2 p ) ÷ ( 2 q 2 s ) ⇒ r p ÷ q s ⇒ ( r p ) × ( s q ) ⇒ r p × q × s 1 ⇒ r p × p 1 × r ⇒ 1.
Hence, Option 1 is the correct option.
0.6 + 0. 7 ‾ + 0.4 7 ‾ 0.6 + 0.\overline{7} + 0.4\overline{7} 0.6 + 0. 7 + 0.4 7 is equal to s:
155 90 \dfrac{155}{90} 90 155
147 90 \dfrac{147}{90} 90 147
167 90 \dfrac{167}{90} 90 167
none of these
Answer
Convert repeating decimals to fraction,
Let, x = 0. 7 ‾ 0.\overline{7} 0. 7
⇒ x = 0.7777.... .......(1)
⇒ 10x = 7.777... .......(2)
Subtracting equation (1) from (2), we get :
⇒ 10x - x = 7.777..... - 0.777.....
⇒ 9x = 7
⇒ x = 7 9 \dfrac{7}{9} 9 7
Let, y = 0.4 7 ‾ 0.4\overline{7} 0.4 7
⇒ 10y = 4.7777.... .......(3)
⇒ 100y = 47.777... .......(4)
Subtracting equation (3) from (4), we get :
⇒ 100y - 10y = 47.777..... - 4.777.....
⇒ 90y = 43
⇒ y = 43 90 \dfrac{43}{90} 90 43
⇒ 0.6 + 0. 7 ‾ + 0.4 7 ‾ = 0.6 + 7 9 + 43 90 = 6 10 + 7 9 + 43 90 = 54 + 70 + 43 90 = 167 90 . \Rightarrow 0.6 + 0.\overline{7} + 0.4\overline{7} = 0.6 + \dfrac{7}{9} + \dfrac{43}{90} \\[1em] = \dfrac{6}{10} + \dfrac{7}{9} + \dfrac{43}{90} \\[1em] = \dfrac{54 + 70 + 43}{90} \\[1em] = \dfrac{167}{90}. ⇒ 0.6 + 0. 7 + 0.4 7 = 0.6 + 9 7 + 90 43 = 10 6 + 9 7 + 90 43 = 90 54 + 70 + 43 = 90 167 .
Hence, Option 3 is the correct option.
3 2 3 4 \sqrt[4]{\sqrt[3]{3^2}} 4 3 3 2 can be expressed as :
3 6 3^6 3 6
6 1 / 3 6^{1/3} 6 1/3
3 1 / 12 3^{1/12} 3 1/12
3 1 / 6 3^{1/6} 3 1/6
Answer
We know that,
⇒ x n = x 1 n \Rightarrow \sqrt[n]{x} = x^\dfrac{1}{n} ⇒ n x = x n 1
Solving,
⇒ 3 2 3 4 ⇒ 3 2 3 4 ⇒ 3 2 3 × 4 ⇒ 3 2 12 = 3 1 6 \Rightarrow \sqrt[4]{\sqrt[3]{3^2}} \\[1em] \Rightarrow \sqrt[4]{3^\dfrac{2}{3}} \\[1em] \Rightarrow 3^\dfrac{2}{3 \times 4} \\[1em] \Rightarrow 3^\dfrac{2}{12} \\[1em] = {3^\dfrac{1}{6}} ⇒ 4 3 3 2 ⇒ 4 3 3 2 ⇒ 3 3 × 4 2 ⇒ 3 12 2 = 3 6 1
Hence, Option 4 is the correct option.
1. 9 ‾ − 1.9 1.\overline{9} - 1.9 1. 9 − 1.9 is equal to :
0
1
0.09
0.1
Answer
Let x = 1. 9 ‾ 1.\overline{9} 1. 9
⇒ x = 1.999... .......(1)
⇒ 10x = 19.999... .......(2)
Subtracting equation (1) from (2), we get :
⇒ 10x - x = 19.999..... - 1.999....
⇒ 9x = 18
⇒ x = 18 9 \dfrac{18}{9} 9 18 = 2.
⇒ 1. 9 ‾ − 1.9 1.\overline{9} - 1.9 1. 9 − 1.9
⇒ 2 - 1.9
⇒ 0.1
Hence, Option 4 is the correct option.
When written in decimal form, which of the following will be a non-terminating and non-repeating number?
1 1 / 9 1^{1/9} 1 1/9
2 1 / 9 2^{1/9} 2 1/9
2 − 9 2^{-9} 2 − 9
9 1 / 2 9^{1/2} 9 1/2
Answer
A non-terminating and non-repeating decimal is the definition of an irrational number.
Since 2 is not a perfect 9th power of any rational number, its 9th root will be an irrational number.
Hence, Option 2 is the correct option.
Observe the values of a, b, c given in the table. If we choose numbers a, b and c from rows a, b and c respectively, what is the maximum possible value of c − b a \dfrac{c - b}{a} a c − b ?
Answer
We get the maximum possible value of c − b a \dfrac{c - b}{a} a c − b , if c is the largest and a, b are the smallest values.
⇒ c − b a ⇒ 25 − 3 2 ⇒ 22 2 ⇒ 11. \Rightarrow \dfrac{c - b}{a} \\[1em] \Rightarrow \dfrac{25 - 3}{2} \\[1em] \Rightarrow \dfrac{22}{2} \\[1em] \Rightarrow 11. ⇒ a c − b ⇒ 2 25 − 3 ⇒ 2 22 ⇒ 11.
Hence, the maximum possible value of c − b a \dfrac{c - b}{a} a c − b = 11.
The portion of a number line between 0 and 4 has been divided into 16 equal parts. Highlight the portion of the number line in which the reciprocal of any rational number is greater than the number itself.
Answer
As, the complete line is divided in into 16 equal parts. Thus, A = 1, B = 2, C = 3.
Rational number less than 1 and greater than 0, will be the interval in which reciprocal of any rational number is greater than the number itself.