KnowledgeBoat Logo
|

Mathematics

In the given figure, ABC is an equilateral triangle. Find the co-ordinates of A.

In the given figure, ABC is an equilateral triangle. Find the co-ordinates of A. Graphical Solution, Concise Mathematics Solutions ICSE Class 9.

Graphical Solution

4 Likes

Answer

Given:

The co-ordinates of B = (2, 0)

The co-ordinates of C = (6, 0)

So, the length of BC = 6 - 2 = 4 units

Since ABC is an equilateral triangle,

The height of the triangle = 32a\dfrac{\sqrt3}{2}a

= 32×4\dfrac{\sqrt3}{2} \times 4

= 2 3\sqrt3 units

The mid-point of BC = (2+62,0+02)\Big(\dfrac{2+6}{2}, \dfrac{0+0}{2}\Big)

= (4, 0)

Since Δ ABC is equilateral, and BC lies on the x-axis:

  • The abscissa (x-coordinate) of A is the same as the midpoint of BC, i.e., x=4.

  • The ordinate (y-coordinate) of A is the height of the triangle, 3\sqrt{3}.

Hence, the co-ordinates of A are (4, 2 3\sqrt{3}).

Answered By

3 Likes


Related Questions