Mathematics
In the given figure ABCD is a parallelogram, angles DAB and ABC are in the ratio 5 : 7, the value of x is:

105°
85°
75°
none of these
Quadrilaterals
20 Likes
Answer
As we know that the consecutive angles of a parallelogram are supplementary.
Let ∠DAB = 5a and ∠ABC = 7a.
Since consecutive angles are supplementary:
⇒ ∠DAB + ∠ABC = 180°
⇒ 5a + 7a = 180°
⇒ 12a = 180°
⇒ a =
⇒ a = 15°
Then,
∠ABC = 7a = 7 15° = 105°
The other angle x,
x + ∠ABC = 180°
⇒ x + 105° = 180°
⇒ x = 180° - 105°
⇒ x = 75°
Hence, option 3 is the correct option.
Answered By
17 Likes
Related Questions
ABCD is a rectangle. To make it a square which of the following condition(s) must be satisfied:
AC = BD
AC ⊥ BD
Diagonals bisect each other
AB = CD
In quadrilateral ABCD, AB//DC, then:
∠A + ∠B = 180°
∠A + ∠C = 180°
∠C + ∠D = 180°
∠A + ∠D = 180°
The diagonals of a quadrilateral are equal and bisect each other. The quadrilateral is a :
square
rhombus
parallelogram
rectangle
A quadrilateral will be a square, if its:
each angle is 90°
each angle is 90° and the diagonals are equal
all the sides are equal
all the sides are equal and each angle is 90°