Mathematics
The mean of numbers 45, 52, 60, x, 69, 70, 26, 81 and 94 is 68. Find the value of x. Hence, estimate the median for the resulting data.
Statistics
12 Likes
Answer
Sum of observations = 45 + 52 + 60 + x + 69 + 70 + 26 + 81 + 94 = 497 + x
No. of observations (n) = 9
Mean =
68 =
612 = 497 + x
x = 612 - 497 = 115.
Here, n = 9, which is odd.
Median = th term
=
= 5th term
= 69.
Hence, mean = 115 and median = 69.
Answered By
7 Likes
Related Questions
The distribution given below, shows the marks obtained by 25 students in an aptitude test. Find the mean, median and mode of the distribution.
Marks obtained No. of students 5 3 6 9 7 6 8 4 9 2 10 1 The monthly income of a group of 320 employees in a company is given below :
Monthly income No. of employees 6 - 7 20 7 - 8 45 8 - 9 65 9 - 10 95 10 - 11 60 11 - 12 30 12 - 13 5 Draw an ogive of the given distribution on a graph sheet taking 2 cm = ₹ 1000 on one axis and 2 cm = 50 employees on the other axis. From the graph determine :
(i) the median wage.
(ii) the number of employees whose income is below ₹ 8500.
The marks of 10 students of a class in an examination arranged in ascending order is as follows :
13, 35, 43, 46, x, x + 4, 55, 61, 71, 80.
If the median marks is 48, find the value of x. Hence, find the mode of the given data.
The histogram below represents the scores obtained by 25 students in a Mathematics mental test. Use the data to :
(i) Frame a frequency distribution table.
(ii) To calculate mean.
(iii) To determine the modal class.
