KnowledgeBoat Logo
|
OPEN IN APP

Chapter 26

Chapterwise Revision Exercise

Class - 10 Concise Mathematics Selina



GST (GOODS/SERVICES TAX)

Question 1

Find the amount of bill for the following intra-state transaction of goods/services. The rate of GST being 12 % :

MRP (in ₹)Discount %
60040
45032
90020
75030

Answer

If for the value of any transaction, discount = x %.

It's discounted value = (100 - x)% of its original value.

MRP (in ₹)Discount %Discounted value (Selling price)
6004060% of 600 = ₹ 360
4503268% of 450 = ₹ 306
9002080% of 900 = ₹ 720
7503070% of 750 = ₹ 525
Total₹ 1911

CGST = 6% of ₹ 1911 = 6100×1938\dfrac{6}{100} \times 1938 = ₹ 114.66

SGST = CGST = ₹ 114.66

Amount of bill = ₹ 1911 + ₹ 114.66 + ₹ 114.66 = ₹ 2140.32

Hence, amount of bill = ₹ 2140.32

Question 2

Find the amount of bill for the following inter-state transaction of goods/services. The rate of GST being 5 % :

MRP (in ₹)Discount %
960020
600050
1080040
900030
720040

Answer

If for the value of any transaction, discount = x %.

It's discounted value = (100 - x)% of its original value.

MRP (in ₹)Discount %Discounted value (Selling price)
96002080% of 9600 = ₹ 7680
60005050% of 6000 = ₹ 3000
108004060% of 10800 = ₹ 6480
90003070% of 9000 = ₹ 6300
72004060% of 7200 = ₹ 4320
Total₹ 27780

IGST = 5% of ₹ 27780 = 5100×27780=138900100\dfrac{5}{100} \times 27780 = \dfrac{138900}{100} = ₹ 1389

Amount of bill = ₹ 27780 + ₹ 1389 = ₹ 29169

Hence, amount of bill = ₹ 29169.

Question 3

Find the amount of bill for the following transaction of goods/services from Patna (Bihar) to Ajmer (Rajasthan) :

GST %MRP (in ₹)Discount %
181200030
181500040
12520030
12800040

Answer

This is a interstate transaction.

∴ GST = IGST.

MRP (in ₹)Discount %Discounted value (Selling price)GST %IGSTAmount (in ₹)
120003070% of 12000 = ₹84001818% of ₹8400 = ₹15128400 + 1512 = 9912
150004060% of 15000 = ₹90001818% of ₹9000 = ₹16209000 + 1620 = 10620
52003070% of 5200 = ₹36401212% of ₹3640 = ₹436.803640 + 436.80 = 4076.80
80004060% of 8000 = ₹48001212% of ₹4800 = ₹5764800 + 576 = 5376
Total29984.80

Hence, the amount of bill = ₹ 29984.80

Question 4

Find the amount for the following transaction of goods/services within Gujarat :

MRP (in ₹)/ itemNumber of itemsGST%
3004012
6005012
4807018

Answer

This is an intra-state transaction.

GST = CGST + SGST

We know, SGST = CGST

MRP (in ₹)/ itemNumber of itemsTotal cost of whole quantity (in ₹)GST %CGST (in ₹)SGST (in ₹)Amount (MRP + CGST + SGST) (in ₹)
3004012000126% of 12000 = 72072012000 + 720 + 720 = 13440
6005030000126% of 30000 = 1800180030000 + 1800 + 1800 = 33600
4807033600189% of 33600 = 3024302433600 + 3024 + 3024 = 39648
Total₹ 86688

Hence, amount of bill = ₹ 86688.

Question 5

A dealer in Kanpur (U.P.) supplies goods worth ₹ 5000 to a dealer in Meerut (U.P.). The dealer in Meerut supplies the same goods/services to a dealer in Delhi at a profit of ₹ 2000. Find the cost of goods/services in Delhi as per GST system. The rate of GST is 18%.

Answer

When product is sold from Kanpur to Meerut (It is an intra-state transaction)

For dealer in Kanpur :

S.P. = ₹ 5000

CGST = 9% of ₹ 5000 = 9100×5000=450\dfrac{9}{100} \times 5000 = ₹ 450.

SGST = CGST = ₹ 450.

When product is sold from Meerut to Delhi (It is an inter-state transaction)

For dealer in Meerut :

Input-tax credit (ITC) = ₹ 450 + ₹ 450 = ₹ 900.

C.P. (excluding GST) = ₹ 5000

Profit = ₹ 2000

S.P. = ₹ 5000 + ₹ 2000 = ₹ 7000

IGST = 18% of ₹ 7000 = 18100×7000\dfrac{18}{100} \times 7000 = ₹ 1260

C.P. in Delhi = S.P. in Meerut + IGST = ₹ 7000 + ₹ 1260 = ₹ 8260.

Hence, cost of goods/services in Delhi = ₹ 8260.

BANKING

Question 6

Ashok deposits ₹ 3200 per month in a cumulative deposit account for 3 years at the rate of 9% per annum. Find the maturity value of this account.

Answer

Given,

P = ₹ 3200

r = 9%

Maturity value of recurring deposit = Total sum deposited + Interest on it

= P × n + P × n(n+1)2×12×r100\dfrac{n(n + 1)}{2 \times 12} \times \dfrac{r}{100}

where n is time in months.

Time (n) = 3 years = 3 × 12 = 36 months.

Substituting values we get :

=3200×36+3200×36×(36+1)2×12×9100=115200+3200×36×3724×9100=115200+115200×37×92400=115200+48×37×9=115200+15984=131184.= 3200 \times 36 + 3200 \times \dfrac{36 \times (36 + 1)}{2 \times 12} \times \dfrac{9}{100} \\[1em] = 115200 + 3200 \times \dfrac{36 \times 37}{24} \times \dfrac{9}{100} \\[1em] = 115200 + \dfrac{115200 \times 37 \times 9}{2400} \\[1em] = 115200 + 48 \times 37 \times 9 \\[1em] = 115200 + 15984 \\[1em] = 131184.

Hence, maturity value = ₹ 131184.

Question 7

Mrs. Karna has a recurring deposit account in Punjab National Bank for 3 years at 8% p.a. If she gets ₹ 9990 as interest at the time of maturity, find :

(i) the monthly instalment

(ii) the maturity value of the account.

Answer

(i) Given,

Time (n) = 3 years = 3 × 12 = 36 months.

Rate = 8%

Let monthly instalment be ₹ P.

By formula,

Interest = P × n(n+1)2×12×r100\dfrac{n(n + 1)}{2 \times 12} \times \dfrac{r}{100}

Substituting values we get

9990=P×36×372×12×81009990=P×3×372×81009990=P×3×3725P=9990×253×37P=249750111P=2250.\Rightarrow 9990 = P \times \dfrac{36 \times 37}{2 \times 12} \times \dfrac{8}{100} \\[1em] \Rightarrow 9990 = P \times \dfrac{3 \times 37}{2} \times \dfrac{8}{100} \\[1em] \Rightarrow 9990 = P \times \dfrac{3 \times 37}{25} \\[1em] \Rightarrow P = \dfrac{9990 \times 25}{3 \times 37} \\[1em] \Rightarrow P = \dfrac{249750}{111} \\[1em] \Rightarrow P = ₹ 2250.

Hence, monthly installment = ₹ 2250.

(ii) Maturity value of recurring deposit = Total sum deposited + Interest on it

= P × n + 9990

= 2250 × 36 + 9990

= 81000 + 9990

= ₹ 90990.

Hence, the maturity value of this account = ₹ 90990.

Question 8

A man has a 5 year recurring deposit account in a bank and deposits ₹ 240 per month. If he recieves ₹ 17,694 at the time of maturity, find the rate of interest.

Answer

Let rate of interest be r%.

Given,

P = ₹ 240

M.V. = ₹ 17694

Time (n) = 5 years = 5 × 12 = 60 months.

Maturity value = P × n + P × n(n+1)2×12×r100\dfrac{n(n + 1)}{2 \times 12} \times \dfrac{r}{100}

Substituting values we get :

⇒ 17694 = 240 × 60 + 240 × 60×612×12×r100\dfrac{60 \times 61}{2 \times 12} \times \dfrac{r}{100}

⇒ 17694 = 14400 + 6 × 305r5\dfrac{305r}{5}

⇒ 17694 - 14400 = 6 × 61r

⇒ 3294 = 366r

⇒ r = 3294366\dfrac{3294}{366} = 9%.

Hence, rate of interest = 9%.

Question 9

Sheela has a recurring deposit account in a bank of ₹ 2000 per month at the rate of 10% per annum. If she gets ₹ 83100 at the time of maturity, find the total time (in years) for which the account was held.

Answer

Let time = n months.

Given,

P = ₹ 2000

r = 10%

By formula,

M.V. = P × n + P × n(n+1)2×12×r100\dfrac{n(n + 1)}{2 \times 12} \times \dfrac{r}{100}

Substituting values we get :

83100=2000×n+2000×n(n+1)2×12×1010083100=2000n+100n(n+1)1283100=24000n+100n2+100n1283100×12=100(240n+n2+n)241n+n2=83100×12100241n+n2=9972n2+241n9972=0n2+277n36n9972=0n(n+277)36(n+277)=0(n36)(n+277)=0n36=0 or n+277=0n=36 or n=277.\Rightarrow 83100 = 2000 \times n + 2000 \times \dfrac{n(n + 1)}{2 \times 12} \times \dfrac{10}{100} \\[1em] \Rightarrow 83100 = 2000n + \dfrac{100n(n + 1)}{12} \\[1em] \Rightarrow 83100 = \dfrac{24000n + 100n^2 + 100n}{12} \\[1em] \Rightarrow 83100 \times 12 = 100(240n + n^2 + n) \\[1em] \Rightarrow 241n + n^2 = \dfrac{83100 \times 12}{100} \\[1em] \Rightarrow 241n + n^2 = 9972 \\[1em] \Rightarrow n^2 + 241n - 9972 = 0 \\[1em] \Rightarrow n^2 + 277n - 36n - 9972 = 0\\[1em] \Rightarrow n(n + 277) - 36(n + 277) = 0 \\[1em] \Rightarrow (n - 36)(n + 277) = 0 \\[1em] \Rightarrow n - 36 = 0 \text{ or } n + 277 = 0 \\[1em] \Rightarrow n = 36 \text{ or } n = -277.

Since, time cannot be negative.

∴ n = 36 months = 3 years.

Hence, time = 3 years.

Question 10

A man deposits ₹ 900 per month in a recurring account for 2 years. If he gets ₹ 1800 as interest at the time of maturity, find the rate of interest.

Answer

Let rate of interest be r%.

Given,

P = ₹ 900

Time (n) = 2 years = 24 months.

By formula,

Interest = P × n(n+1)2×12×r100\dfrac{n(n + 1)}{2 \times 12} \times \dfrac{r}{100}

Substituting values we get :

1800=900×24×2524×r1001800=225rr=1800225r=8\Rightarrow 1800 = 900 \times \dfrac{24 \times 25}{24} \times \dfrac{r}{100} \\[1em] \Rightarrow 1800 = 225r \\[1em] \Rightarrow r = \dfrac{1800}{225} \\[1em] \Rightarrow r = 8%.

Hence, the rate of interest = 8%.

SHARES AND DIVIDEND

Question 11

What is the market value of 4124\dfrac{1}{2} % (₹ 100) share, when an investment of ₹ 1800 produces an income of ₹ 72 ?

Answer

Given,

Nominal value (N.V.) = ₹ 100

Income (dividend) on one share = 4124\dfrac{1}{2} % of N.V. = 412100×100=412\dfrac{4\dfrac{1}{2}}{100} \times 100 = 4\dfrac{1}{2}.

Given,

Total income = ₹ 72

⇒ No. of shares × Income on one share = 72

⇒ No. of shares × 4.5 = 72

⇒ No. of shares = 724.5=16\dfrac{72}{4.5} = 16.

We know that,

⇒ Sum invested = M.V. of each share × No. of shares

⇒ 1800 = M.V. of each share × 16

⇒ M.V. of each share = 180016\dfrac{1800}{16} = ₹ 112.50

Hence, M.V. of each share = ₹ 112.50

Question 12

By investing ₹ 10,000 in the shares of a company, a man gets an income of ₹ 800; the dividend being 10%. If the face-value of each share is ₹ 100, find :

(i) the market value of each share.

(ii) the rate percent which the person earns on his investment.

Answer

(i) Given,

Nominal value (N.V.) = ₹ 100

Income (dividend) on one share = 10 % of N.V. = 10100×100=10\dfrac{10}{100} \times 100 = 10.

Given,

Total income = ₹ 800

⇒ No. of shares × Income on one share = 800

⇒ No. of shares × 10 = 800

⇒ No. of shares = 80010=80\dfrac{800}{10} = 80.

We know that,

⇒ Sum invested = M.V. of each share × No. of shares

⇒ 10000 = M.V. of each share × 80

⇒ M.V. of each share = 1000080\dfrac{10000}{80} = ₹ 125

Hence, M.V. of each share = ₹ 125

(ii) Given,

Man earns an income of ₹ 800 on investing ₹ 10000.

Rate percent = IncomeInvestment×100\dfrac{\text{Income}}{\text{Investment}} \times 100

=80010000×100=8000010000=8= \dfrac{800}{10000} \times 100 \\[1em] = \dfrac{80000}{10000} \\[1em] = 8%.

Hence, person earns 8% on his investment.

Question 13

A man holds 800 shares of ₹ 100 each of a company paying 7.5% dividend semi-annually.

(i) Calculate his annual dividend.

(ii) If he had bought these shares at 40% premium, what percentage return does he get on his investment ?

Answer

(i) Given,

A man holds 800 shares.

Nominal Value (N.V.) of each share = ₹ 100

Dividend paid semi-annually = 7.5%

Dividend paid annually = 7.5% × 2 = 15%

(i) Dividend on each share = 15% of N.V.

= 15100×100\dfrac{15}{100} \times 100 = ₹ 15.

Total dividend = Dividend on each share × No. of shares

= ₹ 15 × 800 = ₹ 12000.

Hence, annual dividend of person = ₹ 12000.

(ii) Given,

The person had bought the shares at 40% premium.

Market Value (MV) = N.V. + Premium = 100 + 40100×100\dfrac{40}{100} \times 100 = 100 + 40 = ₹ 140.

Total investment = M.V. × No. of shares

= 140 × 800 = ₹ 112000.

Rate of return = IncomeInvestment×100=12000112000×100=1200112\dfrac{\text{Income}}{\text{Investment}} \times 100 = \dfrac{12000}{112000} \times 100 = \dfrac{1200}{112} = 10.714 %.

Hence, there is a 10.714% percentage return on investment.

Question 14

A man invests ₹ 10560 in a company, paying 9% dividend, at the time when its ₹ 100 shares can be bought at a premium of ₹ 32. Find :

(i) the number of shares bought by him;

(ii) his annual income from these shares and

(iii) the rate of return on his investment.

Answer

Given,

N.V. of share = ₹ 100

M.V. = N.V. + Premium = ₹ 100 + ₹ 32 = ₹ 132.

(i) No. of shares bought = InvestmentM.V.=10560132\dfrac{\text{Investment}}{\text{M.V.}} = \dfrac{10560}{132} = 80.

Hence, no. of shares = 80.

(ii) Income on 1 share = 9% of N.V.

= 9100×100\dfrac{9}{100} \times 100 = ₹ 9.

Annual income = Income on 1 share × No. of shares

= ₹ 9 × 80 = ₹ 720.

Hence, annual income = ₹ 720.

(iii) Rate of return = IncomeInvestment×100\dfrac{\text{Income}}{\text{Investment}} \times 100

=72010560×100=7200010560=6911= \dfrac{720}{10560} \times 100 \\[1em] = \dfrac{72000}{10560} \\[1em] = 6\dfrac{9}{11}%.

Hence, rate of return = 69116\dfrac{9}{11} %.

Question 15

Find the market value of 12% ₹ 25 shares of a company which pays a dividend of ₹ 1875 on an investment of ₹ 20000.

Answer

Given,

Nominal value (N.V.) = ₹ 25

Income (dividend) on one share = 12 % of N.V. = 12100×25=3\dfrac{12}{100} \times 25 = 3.

Given,

Total income = ₹ 1875

⇒ No. of shares × Income on one share = 1875

⇒ No. of shares × 3 = 1875

⇒ No. of shares = 18753=625\dfrac{1875}{3} = 625.

We know that,

⇒ Sum invested = M.V. of each share × No. of shares

⇒ 20000 = M.V. of each share × 625

⇒ M.V. of each share = 20000625\dfrac{20000}{625} = ₹ 32

Hence, M.V. of each share = ₹ 32.

Question 16

A man invests ₹ 20,020 in buying shares of N.V. ₹ 26 at 10% premium. The dividend on the shares is 15% per annum. Calculate :

(i) the number of shares he buys.

(ii) the dividend he receives annually.

(iii) the rate of interest he gets on his money.

Answer

(i) M.V. = ₹ 26 + 10100×26\dfrac{10}{100} \times 26 = ₹ 26 + ₹ 2.6 = ₹ 28.6

Investment = ₹ 20,020

No. of shares bought = 2002028.6\dfrac{20020}{28.6} = 700.

Hence, no. of shares bought = 700.

(ii) Annual dividend = No. of shares × Rate of div. × N.V. of 1 share

= 700 × 15100×26\dfrac{15}{100} \times 26

= ₹ 2,730.

Hence, dividend = ₹ 2,730.

(iii) Rate of interest = 273020020×100=27300020020=13711\dfrac{2730}{20020} \times 100 = \dfrac{273000}{20020} = 13\dfrac{7}{11}%.

Hence, the rate of interest = 1371113\dfrac{7}{11}%.

Question 17

Rohit invested ₹ 9,600 on ₹ 100 shares at ₹ 20 premium paying 8% dividend. Rohit sold the shares when the price rose to ₹ 160. He invested the proceeds (excluding dividend) in 10% ₹ 50 shares at ₹ 40. Find the :

(i) original number of shares.

(ii) sale proceeds.

(iii) new number of shares.

(iv) change in the two dividends.

Answer

(i) M.V. of first type of share = ₹ 100 + ₹ 20 = ₹ 120.

Investment = ₹ 9,600

No. of shares = InvestmentM.V.=9600120\dfrac{\text{Investment}}{\text{M.V.}} = \dfrac{9600}{120} = 80.

Hence, no. of shares = 80.

(ii) S.P. of 1 share = ₹ 160,

S.P. of 80 shares = 80 × ₹ 160 = ₹ 12,800.

Hence, sale proceeds = ₹ 12,800.

(iii) M.V. of second type of share = ₹ 40.

Investment = ₹ 12,800

No. of shares = InvestmentM.V.=1280040\dfrac{\text{Investment}}{\text{M.V.}} = \dfrac{12800}{40} = 320.

Hence, no. of shares = 320.

(iv) Annual dividend = No. of shares × Rate of div. × N.V. of 1 share

In first case :

Annual dividend = 80 × 8100×100\dfrac{8}{100} \times 100 = ₹ 640.

In second case :

Annual dividend = 320 × 10100×50\dfrac{10}{100} \times 50 = ₹ 1600.

Difference = ₹ 1600 - ₹ 640 = ₹ 960

Hence, there is an increase of ₹ 960 in dividend amount.

LINEAR INEQUATIONS

Question 18

The given diagram represents two sets A and B on real number lines.

The given diagram represents two sets A and B on real number lines. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) Write down A and B in set-builder form.

(ii) Represent A ∪ B, A ∩ B, A' ∩ B, A - B and B - A on separate number lines.

Answer

(i) From graph,

A = {x ∈ R : -3 < x ≤ 2}, B = {x ∈ R : 0 ≤ x < 5}

(ii) From graph,

A ∪ B = {x ∈ R : -3 < x < 5}

The given diagram represents two sets A and B on real number lines. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

A ∩ B = {x ∈ R : 0 ≤ x ≤ 2}

The given diagram represents two sets A and B on real number lines. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

A' ∩ B = {x ∈ R : -2 < x < 5}

The given diagram represents two sets A and B on real number lines. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

A - B = {x ∈ R : -3 < x < 0}

The given diagram represents two sets A and B on real number lines. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

B - A = {x ∈ R : 2 < x < 5}

The given diagram represents two sets A and B on real number lines. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Question 19

Find the values of x, which satisfy the inequation :

2122x3<156-2 \le \dfrac{1}{2} - \dfrac{2x}{3} \lt 1\dfrac{5}{6}; x ∈ N

Graph the solution set on the real number line.

Find the values of x, which satisfy the inequation. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Solving L.H.S. of the above inequation :

2122x32x312+22x352x52×32x154x334 ...........(1)\Rightarrow -2 \le \dfrac{1}{2} - \dfrac{2x}{3} \\[1em] \Rightarrow \dfrac{2x}{3} \le \dfrac{1}{2} + 2 \\[1em] \Rightarrow \dfrac{2x}{3} \le \dfrac{5}{2} \\[1em] \Rightarrow x \le \dfrac{5}{2} \times \dfrac{3}{2} \\[1em] \Rightarrow x \le \dfrac{15}{4} \\[1em] \Rightarrow x \le 3\dfrac{3}{4}\text{ ...........(1)}

Solving R.H.S. of the inequation :

122x3<156122x3<11612116<2x32x3>31162x3>862x3>43x>43×32x>2 .........(2)\Rightarrow \dfrac{1}{2} - \dfrac{2x}{3} \lt 1\dfrac{5}{6} \\[1em] \Rightarrow \dfrac{1}{2} - \dfrac{2x}{3} \lt \dfrac{11}{6} \\[1em] \Rightarrow \dfrac{1}{2} - \dfrac{11}{6} \lt \dfrac{2x}{3} \\[1em] \Rightarrow \dfrac{2x}{3} \gt \dfrac{3 - 11}{6} \\[1em] \Rightarrow \dfrac{2x}{3} \gt -\dfrac{8}{6} \\[1em] \Rightarrow \dfrac{2x}{3} \gt -\dfrac{4}{3} \\[1em] \Rightarrow x \gt -\dfrac{4}{3} \times \dfrac{3}{2} \\[1em] \Rightarrow x \gt -2 \text{ .........(2)}

From (1) and (2),

-2 < x ≤ 3343\dfrac{3}{4}

Since, x ∈ N

∴ x = {1, 2, 3}.

Hence, x = {1, 2, 3}.

Question 20

State for each of the following statements whether it is true or false :

(a) If (x - a)(x - b) < 0, then x < a and x < b.

(b) If a < 0 and b < 0, then (a + b)2 > 0.

(c) If a and b are any two integers such that a > b, then a2 > b2.

(d) If p = q + 2, then p > q.

(e) If a and b are two negative integers such that a < b, then 1a<1b\dfrac{1}{a} \lt \dfrac{1}{b}

Answer

(a) False
Reason — If x < a and x < b, then (x - a)(x - b) will be greater than 0 as multiplication of two negative number generates a positive number.

(b) True
Reason — If a < 0 and b < 0, then (a + b) will be a negative number and square of any negative number is greater than 0, so (a + b)2 is greater than 0.

(c) False
Reason — If a > b, then a2 > b2 is true only if a and b are positive numbers.

(d) True
Reason — If a positive number is added to any number (suppose x), then resultant number is greater than x.

(e) False
Reason — If, a < b and both are two negative integers then on recripocating the numbers the sign will be reversed, so 1a>1b\dfrac{1}{a} \gt \dfrac{1}{b}.

Question 21

Given 20 - 5x < 5(x + 8), find the smallest value of x when :

(i) x ∈ I

(ii) x ∈ W

(iii) x ∈ N

Answer

Solving,

⇒ 20 - 5x < 5(x + 8)

⇒ 20 - 5x < 5x + 40

⇒ 5x + 5x > 20 - 40

⇒ 10x > -20

⇒ x > 2010-\dfrac{20}{10} = -2.

(i) As, x > -2 and x ∈ I.

∴ x = {-1, 0, 1 .......}

The smallest no. = -1.

Hence, smallest value of x = -1, when x is an integer.

(ii) As, x > -2 and x ∈ W.

∴ x = {0, 1, 2 .......}

The smallest no. = 0.

Hence, smallest value of x = 0, when x is a whole number.

(iii) As, x > -2 and x ∈ N.

∴ x = {1, 2 .......}

The smallest no. = 1.

Hence, smallest value of x = 1, when x is a natural number.

Question 22

If x ∈ Z, solve : 2 + 4x < 2x - 5 ≤ 3x. Also, represent its solution on the real number line.

If x ∈ Z, solve : 2 + 4x &lt; 2x - 5 &le; 3x. Also, represent its solution on the real number line. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Given,

⇒ 2 + 4x < 2x - 5 ≤ 3x

Solving L.H.S. of the above inequation :

⇒ 2 + 4x < 2x - 5

⇒ 4x - 2x < - 5 - 2

⇒ 2x < -7

⇒ x < 72-\dfrac{7}{2}

⇒ x < -3.5 ..........(1)

Solving R.H.S. of the above inequation :

⇒ 2x - 5 ≤ 3x

⇒ 3x - 2x ≥ -5

⇒ x ≥ -5 .............(2)

From (1) and (2), we get :

-5 ≤ x < -3.5; Since, x ∈ Z

Hence, x = {-5, -4}.

Question 23

If P = {x : 7x - 4 > 5x + 2, x ∈ R} and Q = {x : x - 19 ≥ 1 - 3x, x ∈ R}; find the range of set P ∩ Q and represent it on a number line.

Answer

Solving 7x - 4 > 5x + 2,

⇒ 7x - 5x > 2 + 4

⇒ 2x > 6

⇒ x > 3.

P = {x : x > 3, x ∈ R}

Solving x - 19 ≥ 1 - 3x

⇒ x + 3x ≥ 1 + 19

⇒ 4x ≥ 20

⇒ x ≥ 5.

Q = {x : x ≥ 5, x ∈ R}

P ∩ Q = Numbers common between P and Q

= {x : x ≥ 5, x ∈ R}

P ∩ Q on the number line is :

If P = {x : 7x - 4 > 5x + 2, x ∈ R} and Q = {x : x - 19 ≥ 1 - 3x, x ∈ R}; find the range of set P ∩ Q and represent it on a number line. Linear Inequations, Concise Mathematics Solutions ICSE Class 10.

Question 24

Find the values of x, which satisfy the inequation 256<122x32-2\dfrac{5}{6} \lt \dfrac{1}{2} - \dfrac{2x}{3} \le 2, x ∈ W. Graph the solution set on the number line.

Answer

Given,

256<122x32-2\dfrac{5}{6} \lt \dfrac{1}{2} - \dfrac{2x}{3} \le 2

Solving L.H.S. of the inequation,

256<122x3176<122x32x3<12+1762x3<3+1762x3<206x<206×32x<5.......(i)\Rightarrow -2\dfrac{5}{6} \lt \dfrac{1}{2} - \dfrac{2x}{3} \\[1em] \Rightarrow -\dfrac{17}{6} \lt \dfrac{1}{2} - \dfrac{2x}{3} \\[1em] \Rightarrow \dfrac{2x}{3} \lt \dfrac{1}{2} + \dfrac{17}{6} \\[1em] \Rightarrow \dfrac{2x}{3} \lt \dfrac{3 + 17}{6} \\[1em] \Rightarrow \dfrac{2x}{3} \lt \dfrac{20}{6} \\[1em] \Rightarrow x \lt \dfrac{20}{6} \times \dfrac{3}{2} \\[1em] \Rightarrow x \lt 5 .......(i)

Solving R.H.S. of the inequation,

122x322x31222x332x32×32x94x2.25........(ii)\Rightarrow \dfrac{1}{2} - \dfrac{2x}{3} \le 2 \\[1em] \Rightarrow \dfrac{2x}{3} \ge \dfrac{1}{2} - 2 \\[1em] \Rightarrow \dfrac{2x}{3} \ge -\dfrac{3}{2} \\[1em] \Rightarrow x \ge -\dfrac{3}{2} \times \dfrac{3}{2} \\[1em] \Rightarrow x \ge -\dfrac{9}{4} \\[1em] \Rightarrow x \ge -2.25 ........(ii)

From (i) and (ii) we get,

-2.25 ≤ x < 5

Since, x ∈ W,

∴ Solution set = {0, 1, 2, 3, 4}.

Solution on the number line is :

Find the values of x, which satisfy the inequation -2(5/6) < (1/2) - (2x/3) ≤ 2, x ∈ W. Graph the solution set on the number line. Linear Inequations, Concise Mathematics Solutions ICSE Class 10.

QUADRATIC EQUATION

Question 25

Solve :

8x+32=32x\dfrac{8}{x + 3} - 2 = \dfrac{3}{2 - x}

Answer

Solving :

8x+32=32x82(x+3)x+3=32x82x6x+3=32x22xx+3=32x(22x)(2x)=3(x+3)42x4x+2x2=3x+92x26x+4=3x+92x26x3x+49=02x29x5=02x210x+x5=02x(x5)+1(x5)=0(2x+1)(x5)=02x+1=0 or x5=0x=12 or x=5.\Rightarrow \dfrac{8}{x + 3} - 2 = \dfrac{3}{2 - x} \\[1em] \Rightarrow \dfrac{8 - 2(x + 3)}{x + 3} = \dfrac{3}{2 - x} \\[1em] \Rightarrow \dfrac{8 - 2x - 6}{x + 3} = \dfrac{3}{2 - x} \\[1em] \Rightarrow \dfrac{2 - 2x}{x + 3} = \dfrac{3}{2 - x} \\[1em] \Rightarrow (2 - 2x)(2 - x) = 3(x + 3) \\[1em] \Rightarrow 4 - 2x - 4x + 2x^2 = 3x + 9 \\[1em] \Rightarrow 2x^2 - 6x + 4 = 3x + 9 \\[1em] \Rightarrow 2x^2 - 6x - 3x + 4 - 9 = 0 \\[1em] \Rightarrow 2x^2 - 9x - 5 = 0 \\[1em] \Rightarrow 2x^2 - 10x + x - 5 = 0 \\[1em] \Rightarrow 2x(x - 5) + 1(x - 5) = 0 \\[1em] \Rightarrow (2x + 1)(x - 5) = 0 \\[1em] \Rightarrow 2x + 1 = 0 \text{ or } x - 5 = 0 \\[1em] \Rightarrow x = -\dfrac{1}{2} \text{ or } x = 5.

Hence, x = 12-\dfrac{1}{2} or 5.

Question 26

Solve :

x3+36x=2(6+x)15\dfrac{x}{3} + \dfrac{3}{6 - x} = \dfrac{2(6 + x)}{15}

Answer

Solving :

x(6x)+93(6x)=2(6+x)156xx2+9183x=12+2x1515(6xx2+9)=(12+2x)(183x)90x15x2+135=21636x+36x6x290x15x2+135=2166x215x26x2+21613590x=09x2+8190x=09(x2+910x)=0x210x+9=0x2x9x+9=0x(x1)9(x1)=0(x9)(x1)=0x9=0 or x1=0x=9 or x=1.\Rightarrow \dfrac{x(6 - x) + 9}{3(6 - x)} = \dfrac{2(6 + x)}{15} \\[1em] \Rightarrow \dfrac{6x - x^2 + 9}{18 - 3x} = \dfrac{12 + 2x}{15} \\[1em] \Rightarrow 15(6x - x^2 + 9) = (12 + 2x)(18 - 3x) \\[1em] \Rightarrow 90x - 15x^2 + 135 = 216 - 36x + 36x - 6x^2 \\[1em] \Rightarrow 90x - 15x^2 + 135 = 216 - 6x^2 \\[1em] \Rightarrow 15x^2 - 6x^2 + 216 - 135 - 90x = 0 \\[1em] \Rightarrow 9x^2 + 81 - 90x = 0 \\[1em] \Rightarrow 9(x^2 + 9 - 10x) = 0 \\[1em] \Rightarrow x^2 - 10x + 9 = 0 \\[1em] \Rightarrow x^2 - x - 9x + 9 = 0 \\[1em] \Rightarrow x(x - 1) - 9(x - 1) = 0 \\[1em] \Rightarrow (x - 9)(x - 1) = 0 \\[1em] \Rightarrow x - 9 = 0 \text{ or } x - 1 = 0 \\[1em] \Rightarrow x = 9 \text{ or } x = 1.

Hence, x = 1 or 9.

Question 27

Find the value of k for which the roots of the following equation are real and equal.

k2x2 - 2(2k - 1)x + 4 = 0

Answer

Given,

Equation : k2x2 - 2(2k - 1)x + 4 = 0

The roots of the equation are real and equal, when D = 0.

⇒ b2 - 4ac = 0

⇒ [-2(2k - 1)]2 - 4 × k2 × 4 = 0

⇒ [-4k + 2]2 - 16k2 = 0

⇒ 16k2 + 4 - 16k - 16k2 = 0

⇒ 16k = 4

⇒ k = 416=14\dfrac{4}{16} = \dfrac{1}{4}.

Hence, k = 14\dfrac{1}{4}.

Question 28

Solve :

xaa+bx=b(a+b)ax\dfrac{x}{a} - \dfrac{a + b}{x} = \dfrac{b(a + b)}{ax}, when x ≠ 0 and a ≠ 0.

Answer

Solving :

xaa+bx=b(a+b)axx2a(a+b)ax=ab+b2axx2a(a+b)ax×ax=ab+b2x2a2ab=ab+b2x2=a2+ab+ab+b2x2=a2+2ab+b2x2=(a+b)2x=(a+b)2x=(a+b),(a+b).\Rightarrow \dfrac{x}{a} - \dfrac{a + b}{x} = \dfrac{b(a + b)}{ax} \\[1em] \Rightarrow \dfrac{x^2 - a(a + b)}{ax} = \dfrac{ab + b^2}{ax} \\[1em] \Rightarrow \dfrac{x^2 - a(a + b)}{ax} \times ax = ab + b^2 \\[1em] \Rightarrow x^2 - a^2 - ab = ab + b^2 \\[1em] \Rightarrow x^2 = a^2 + ab + ab + b^2 \\[1em] \Rightarrow x^2 = a^2 + 2ab + b^2 \\[1em] \Rightarrow x^2 = (a + b)^2 \\[1em] \Rightarrow x = \sqrt{(a + b)^2} \\[1em] \Rightarrow x = (a + b), -(a + b).

Hence, x = (a + b), -(a + b).

Question 29

If -5 is a root of the quadratic equation 2x2 + px - 15 = 0 and the quadratic equation p(x2 + x) + k = 0 has equal roots, find the value of k.

Answer

As, -5 is the root of the quadratic equation 2x2 + px - 15 = 0, so it will satisfy the equation.

∴ 2(-5)2 + (-5)p - 15 = 0

⇒ 2 × 25 - 5p - 15 = 0

⇒ 50 - 5p - 15 = 0

⇒ 5p = 35

⇒ p = 355\dfrac{35}{5} = 7.

Substituting value of p in p(x2 + x) + k = 0, we get :

⇒ 7(x2 + x) + k = 0

⇒ 7x2 + 7x + k = 0

Since, above equation has real and equal roots.

∴ D = 0

⇒ b2 - 4ac = 0

⇒ (7)2 - 4 × 7 × k = 0

⇒ 49 - 28k = 0

⇒ 28k = 49

⇒ k = 4928=74=134\dfrac{49}{28} = \dfrac{7}{4} = 1\dfrac{3}{4}.

Hence, k = 1341\dfrac{3}{4}.

PROBLEMS ON QUADRATIC EQUATIONS

Question 30

x articles are bought at ₹ (x - 8) each and (x - 2) some other articles are bought at ₹ (x - 3) each. If the total cost of all these articles is ₹ 76, how many articles of first kind were bought ?

Answer

Since,

x articles are bought at ₹ (x - 8) each and (x - 2) some other articles are bought at ₹ (x - 3) each.

Total cost = x(x - 8) + (x - 2)(x - 3).

Given,

Total cost = ₹ 76.

∴ x(x - 8) + (x - 2)(x - 3) = 76

⇒ x2 - 8x + x2 - 3x - 2x + 6 = 76

⇒ 2x2 - 13x + 6 - 76 = 0

⇒ 2x2 - 13x - 70 = 0

⇒ 2x2 - 20x + 7x - 70 = 0

⇒ 2x(x - 10) + 7(x - 10) = 0

⇒ (2x + 7)(x - 10) = 0

⇒ 2x + 7 = 0 or x - 10 = 0

⇒ 2x = -7 or x = 10

⇒ x = -72\dfrac{7}{2} or x = 10.

Since, no. of articles cannot be negative.

∴ x = 10.

Hence, there are 10 articles of first kind.

Question 31

In a two digit number, the unit's digit exceeds its ten's digit by 2. The product of the given number and the sum of its digits is equal to 144. Find the number.

Answer

Let ten's digit be x.

Unit's digit = x + 2

Number = 10x + x + 2 = 11x + 2

Sum of digits = x + x + 2 = 2x + 2

According to question,

Number × Sum of digits = 144

⇒ (11x + 2)(2x + 2) = 144

⇒ 22x2 + 22x + 4x + 4 = 144

⇒ 22x2 + 26x + 4 = 144

⇒ 22x2 + 26x = 140

⇒ 2(11x2 + 13x) = 140

⇒ 11x2 + 13x = 70

⇒ 11x2 + 13x - 70 = 0

⇒ 11x2 + 35x - 22x - 70 = 0

⇒ x(11x + 35) - 2(11x + 35) = 0

⇒ (x - 2)(11x + 35) = 0

⇒ x - 2 = 0 or 11x + 35 = 0

⇒ x = 2 or x = -3511\dfrac{35}{11}

Since, digit cannot be negative.

∴ x = 2.

Number = 11x + 2 = 11(2) + 2

= 22 + 2 = 24.

Hence, number = 24.

Question 32

The time taken by a person to cover 150 km was 2.5 hours more than the time taken in return journey. If he returned at a speed of 10 km/hour more than the speed of going, what was the speed per hour in each direction ?

Answer

Let speed while going be x km/hour and speed while returning will be (x + 10) km/hour.

Time taken while going = DistanceTime=150x\dfrac{\text{Distance}}{\text{Time}} = \dfrac{150}{x} hours.

Time taken while returning = DistanceTime=150x+10\dfrac{\text{Distance}}{\text{Time}} = \dfrac{150}{x + 10} hours.

Given,

Time taken by a person to cover 150 km was 2.5 hours more than the time taken in return journey.

150x150x+10=2.5150(x+10)150xx(x+10)=2510150x+1500150xx(x+10)=521500x2+10x=523000=5(x2+10x)x2+10x=30005x2+10x=600x2+10x600=0x2+30x20x600=0x(x+30)20(x+30)=0(x20)(x+30)=0x20=0 or x+30=0x=20 or x=30.\therefore \dfrac{150}{x} - \dfrac{150}{x + 10} = 2.5 \\[1em] \Rightarrow \dfrac{150(x + 10) - 150x}{x(x + 10)} = \dfrac{25}{10} \\[1em] \Rightarrow \dfrac{150x + 1500 - 150x}{x(x + 10)} = \dfrac{5}{2} \\[1em] \Rightarrow \dfrac{1500}{x^2 + 10x} = \dfrac{5}{2} \\[1em] \Rightarrow 3000 = 5(x^2 + 10x) \\[1em] \Rightarrow x^2 + 10x = \dfrac{3000}{5} \\[1em] \Rightarrow x^2 + 10x = 600 \\[1em] \Rightarrow x^2 + 10x - 600 = 0 \\[1em] \Rightarrow x^2 + 30x - 20x - 600 = 0 \\[1em] \Rightarrow x(x + 30) - 20(x + 30) = 0 \\[1em] \Rightarrow (x - 20)(x + 30) = 0 \\[1em] \Rightarrow x - 20 = 0 \text{ or } x + 30 = 0 \\[1em] \Rightarrow x = 20 \text{ or } x = -30.

Since, speed cannot be negative.

∴ x = 20 km/hour and (x + 10) = 30 km/hour.

Hence, speed while going = 20 km/hour and speed while returning = 30 km/hour.

Question 33

A takes 9 days more than B to do a certain piece of work. Together they can do the work in 6 days. How many days will A alone take to do the work ?

Answer

Let A alone takes x days and B alone takes y days.

Given,

A takes 9 days more than B to do a certain piece of work

∴ x = y + 9 .........(1)

As, A takes x days to do a work

So, one day work of A = 1x\dfrac{1}{x}

As, B takes y days to do a work

So, one day work of B = 1y\dfrac{1}{y}

As, together they can do work in 6 days.

∴ In one day both of them do 16\dfrac{1}{6} th part of work.

1x+1y=161y+9+1y=16 [From (1)]y+y+9y(y+9)=162y+9y2+9y=166(2y+9)=y2+9y12y+54=y2+9yy2+9y12y54=0y23y54=0y29y+6y54=0y(y9)+6(y9)=0(y+6)(y9)=0y+6=0 or y9=0y=6 or y=9.\therefore \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{6} \\[1em] \Rightarrow \dfrac{1}{y + 9} + \dfrac{1}{y} = \dfrac{1}{6} \space [\text{From (1)}] \\[1em] \Rightarrow \dfrac{y + y + 9}{y(y + 9)} = \dfrac{1}{6} \\[1em] \Rightarrow \dfrac{2y + 9}{y^2 + 9y} = \dfrac{1}{6} \\[1em] \Rightarrow 6(2y + 9) = y^2 + 9y \\[1em] \Rightarrow 12y + 54 = y^2 + 9y \\[1em] \Rightarrow y^2 + 9y - 12y - 54 = 0 \\[1em] \Rightarrow y^2 - 3y - 54 = 0\\[1em] \Rightarrow y^2 - 9y + 6y - 54 = 0 \\[1em] \Rightarrow y(y - 9) + 6(y - 9) = 0 \\[1em] \Rightarrow (y + 6)(y - 9) = 0 \\[1em] \Rightarrow y + 6 = 0 \text{ or } y - 9 = 0 \\[1em] \Rightarrow y = -6 \text{ or } y = 9.

Since, days cannot be negative so, y ≠ -6.

x = y + 9 = 18.

Hence, A alone will take 18 days to complete the work.

Question 34

A man bought a certain number of chairs for ₹ 10000. He kept one for his own use and sold the rest at the rate ₹ 50 more than he gave for one chair. Besides getting his own chair for nothing, he made a profit of ₹ 450. How many chairs did he buy ?

Answer

Given,

Man bought a certain number of chairs for ₹ 10000.

Let no. of chairs bought be x.

∴ Cost of one chair = ₹ 10000x\dfrac{10000}{x}

S.P. of each chair = ₹ 10000x+50\dfrac{10000}{x} + 50

Since, he kept one chair for himself so he sold (x - 1) chairs.

Given,

⇒ Profit = ₹ 450

⇒ S.P. - C.P. = ₹ 450

(x1)×(10000x+50)10000=45010000+50x10000x5010000=45050x10000x=450+5050x210000x=50050x210000=500x50(x2200)=500xx2200=10xx210x200=0x220x+10x200=0x(x20)+10(x20)=0(x+10)(x20)=0x+10=0 or x20=0x=10 or x=20.\Rightarrow (x - 1) \times \Big(\dfrac{10000}{x} + 50\Big) - 10000 = 450 \\[1em] \Rightarrow 10000 + 50x - \dfrac{10000}{x} - 50 - 10000 = 450 \\[1em] \Rightarrow 50x - \dfrac{10000}{x} = 450 + 50 \\[1em] \Rightarrow \dfrac{50x^2 - 10000}{x} = 500 \\[1em] \Rightarrow 50x^2 - 10000 = 500x \\[1em] \Rightarrow 50(x^2 - 200) = 500x \\[1em] \Rightarrow x^2 - 200 = 10x \\[1em] \Rightarrow x^2 - 10x - 200 = 0 \\[1em] \Rightarrow x^2 - 20x + 10x - 200 = 0 \\[1em] \Rightarrow x(x - 20) + 10(x - 20) = 0 \\[1em] \Rightarrow (x + 10)(x - 20) = 0 \\[1em] \Rightarrow x + 10 = 0 \text{ or } x - 20 = 0 \\[1em] \Rightarrow x = -10 \text{ or } x = 20.

Since no. of chairs cannot be negative.

∴ x = 20.

Hence, no. of chairs bought = 20.

Question 35

In the given figure; the area of unshaded portion is 75% of the area of the shaded portion. Find the value of x.

In the given figure; the area of unshaded portion is 75% of the area of the shaded portion. Find the value of x. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

From figure,

Length of larger portion (L) = (80 + x) meters

Breadth of larger portion (B) = (50 + x) meters

Area of larger portion = L × B = (80 + x)(50 + x)

= 4000 + 80x + 50x + x2

= (x2 + 130x + 4000) m2.

Length of smaller portion (l) = 80 meters

Breadth of smaller portion (b) = 50 meters

Area of smaller portion = l × b = 80 × 50 = 4000 m2

Area of unshaded portion = Area of larger portion - Area of smaller portion

= x2 + 130x + 4000 - 4000

= (x2 + 130x) m2.

Given,

Area of unshaded portion is 75% of the area of the shaded portion.

7575100×4000=x2+130x3000=x2+130xx2+130x3000=0x2+150x20x3000=0x(x+150)20(x+150)=0(x20)(x+150)=0x20=0 or x+150=0x=20 or x=150.\therefore 75% \text{Area of Shaded portion = Area of unshaded portion} \\[1em] \Rightarrow \dfrac{75}{100} \times 4000 = x^2 + 130x \\[1em] \Rightarrow 3000 = x^2 + 130x \\[1em] \Rightarrow x^2 + 130x - 3000 = 0 \\[1em] \Rightarrow x^2 + 150x - 20x - 3000 = 0 \\[1em] \Rightarrow x(x + 150) - 20(x + 150) = 0 \\[1em] \Rightarrow (x - 20)(x + 150) = 0 \\[1em] \Rightarrow x - 20 = 0 \text{ or } x + 150 = 0 \\[1em] \Rightarrow x = 20 \text{ or } x = -150.

Since, length cannot be negative.

∴ x = 20 meters.

Hence, x = 20 meters.

RATION AND PROPORTION

Question 36

Solve for x : a+x+axa+xax=b\dfrac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} - \sqrt{a - x}} = b.

Answer

Applying componendo and dividendo, we get :

a+x+ax+a+xax(a+x+ax)(a+xax)=b+1b12a+x2ax=b+1b1a+xax=b+1b1\Rightarrow \dfrac{\sqrt{a + x} + \sqrt{a - x} + \sqrt{a + x} - \sqrt{a - x}}{(\sqrt{a + x} + \sqrt{a - x}) - (\sqrt{a + x} - \sqrt{a - x})} = \dfrac{b + 1}{b - 1} \\[1em] \Rightarrow \dfrac{2\sqrt{a + x}}{2\sqrt{a - x}} = \dfrac{b + 1}{b - 1} \\[1em] \Rightarrow \dfrac{\sqrt{a + x}}{\sqrt{a - x}} = \dfrac{b + 1}{b - 1} \\[1em]

Squaring both sides we get :

a+xax=(b+1)2(b1)2\Rightarrow \dfrac{a + x}{a - x} = \dfrac{(b + 1)^2}{(b - 1)^2}

Again applying componendo and dividendo, we get :

a+x+axa+x(ax)=(b+1)2+(b1)2(b+1)2(b1)2a+a+xxaa+x(x)=b2+1+2b+b2+12bb2+1+2b(b2+12b)2a2x=2(b2+1)4bax=b2+12bx=2abb2+1.\Rightarrow \dfrac{a + x + a - x}{a + x - (a - x)} = \dfrac{(b + 1)^2 + (b - 1)^2}{(b + 1)^2 - (b - 1)^2} \\[1em] \Rightarrow \dfrac{a + a + x - x}{a - a + x - (-x)} = \dfrac{b^2 + 1 + 2b + b^2 + 1 - 2b}{b^2 + 1 + 2b - (b^2 + 1 - 2b)} \\[1em] \Rightarrow \dfrac{2a}{2x} = \dfrac{2(b^2 + 1)}{4b} \\[1em] \Rightarrow \dfrac{a}{x} = \dfrac{b^2 + 1}{2b} \\[1em] \Rightarrow x = \dfrac{2ab}{b^2 + 1}.

Hence, x = 2abb2+1\dfrac{2ab}{b^2 + 1}.

Question 37

If a : b = 2 : 3, b : c = 4 : 5 and c : d = 6 : 7, find a : b : c : d.

Answer

Given,

a : b = 2 : 3

ab=23ab=2×83×8ab=1624...........(1)\Rightarrow \dfrac{a}{b} = \dfrac{2}{3} \\[1em] \Rightarrow \dfrac{a}{b} = \dfrac{2 \times 8}{3 \times 8} \\[1em] \Rightarrow \dfrac{a}{b} = \dfrac{16}{24} ...........(1)

b : c = 4 : 5

bc=45bc=4×65×6bc=2430...........(2)\Rightarrow \dfrac{b}{c} = \dfrac{4}{5} \\[1em] \Rightarrow \dfrac{b}{c} = \dfrac{4 \times 6}{5 \times 6} \\[1em] \Rightarrow \dfrac{b}{c} = \dfrac{24}{30} ...........(2)

c : d = 6 : 7

cd=67cd=6×57×5cd=3035...........(3)\Rightarrow \dfrac{c}{d} = \dfrac{6}{7} \\[1em] \Rightarrow \dfrac{c}{d} = \dfrac{6 \times 5}{7 \times 5} \\[1em] \Rightarrow \dfrac{c}{d} = \dfrac{30}{35} ...........(3)

From (1), (2) and (3), we get :

a : b : c : d = 16 : 24 : 30 : 35

Hence, a : b : c : d = 16 : 24 : 30 : 35.

Question 38

If 2a+1+2a12a+12a1\dfrac{\sqrt{2a + 1} + \sqrt{2a - 1}}{\sqrt{2a + 1} - \sqrt{2a - 1}} = x, prove that x2 - 4ax + 1 = 0.

Answer

Given,

2a+1+2a12a+12a1\dfrac{\sqrt{2a + 1} + \sqrt{2a - 1}}{\sqrt{2a + 1} - \sqrt{2a - 1}} = x.

Applying componendo and dividendo, we get :

2a+1+2a1+2a+12a12a+1+2a1(2a+12a1)=x+1x122a+122a1=x+1x12a+12a1=x+1x1\Rightarrow \dfrac{\sqrt{2a + 1} + \sqrt{2a - 1} + \sqrt{2a + 1} - \sqrt{2a - 1}}{\sqrt{2a + 1} + \sqrt{2a - 1} - (\sqrt{2a+ 1} - \sqrt{2a - 1})} = \dfrac{x + 1}{x - 1} \\[1em] \Rightarrow \dfrac{2\sqrt{2a + 1}}{2\sqrt{2a - 1}} = \dfrac{x + 1}{x - 1} \\[1em] \Rightarrow \dfrac{\sqrt{2a + 1}}{\sqrt{2a - 1}} = \dfrac{x + 1}{x - 1}

Squaring both sides we get,

2a+12a1=(x+1)2(x1)2\Rightarrow \dfrac{2a + 1}{2a - 1} = \dfrac{(x + 1)^2}{(x - 1)^2}

Applying componendo and dividendo we get :

2a+1+2a12a+1(2a1)=(x+1)2+(x1)2(x+1)2(x1)24a2=x2+1+2x+x2+12xx2+1+2x(x2+12x)2a=2(x2+1)4x8ax=2(x2+1)4ax=x2+1x24ax+1=0.\Rightarrow \dfrac{2a + 1 + 2a - 1}{2a + 1 - (2a - 1)} = \dfrac{(x + 1)^2 + (x - 1)^2}{(x + 1)^2 - (x - 1)^2} \\[1em] \Rightarrow \dfrac{4a}{2} = \dfrac{x^2 + 1 + 2x + x^2 + 1 - 2x}{x^2 + 1 + 2x - (x^2 + 1 - 2x)} \\[1em] \Rightarrow 2a = \dfrac{2(x^2 + 1)}{4x} \\[1em] \Rightarrow 8ax = 2(x^2 + 1) \\[1em] \Rightarrow 4ax = x^2 + 1 \\[1em] \Rightarrow x^2 - 4ax + 1 = 0.

Hence, proved that x2 - 4ax + 1 = 0.

Question 39

Find the compounded ratio of :

(i) (a - b) : (a + b) and (b2 + ab) : (a2 - ab)

(ii) (x + y) : (x - y), (x2 + y2) : (x + y)2 and (x2 - y2)2 : (x4 - y4)

(iii) (x2 - 25) : (x2 + 3x - 10); (x2 - 4) : (x2 + 3x + 2) and (x + 1) : (x2 + 2x).

Answer

(i) Calculating the compounded ratio :

aba+b×b2+aba2ababa+b×b(a+b)a(ab)bab:a.\Rightarrow \dfrac{a - b}{a + b} \times \dfrac{b^2 + ab}{a^2 - ab} \\[1em] \Rightarrow \dfrac{a - b}{a + b} \times \dfrac{b(a + b)}{a(a - b)} \\[1em] \Rightarrow \dfrac{b}{a} \\[1em] \Rightarrow b : a.

Hence, compounded ratio of (a - b) : (a + b) and (b2 + ab) : (a2 - ab) = b : a.

(ii) Calculating the compounded ratio :

x+yxy×x2+y2(x+y)2×(x2y2)2(x4y4)1xy×x2+y2(x+y)×(x2y2)2(x2y2)(x2+y2)1xy×x2+y2(x+y)×(x2y2)2(x2y2)(x2+y2)(x2y2)(xy)(x+y)(x2y2)(x2y2)1:1.\Rightarrow \dfrac{x + y}{x - y} \times \dfrac{x^2 + y^2}{(x + y)^2} \times \dfrac{(x^2 - y^2)^2}{(x^4 - y^4)} \\[1em] \Rightarrow \dfrac{1}{x - y} \times \dfrac{x^2 + y^2}{(x + y)} \times \dfrac{(x^2 - y^2)^2}{(x^2 - y^2)(x^2 + y^2)} \\[1em] \Rightarrow \dfrac{1}{x - y} \times \dfrac{\cancel{x^2 + y^2}}{(x + y)} \times \dfrac{(x^2 - y^2)^{\cancel{2}}}{\cancel{(x^2 - y^2)}\cancel{(x^2 + y^2)}} \\[1em] \Rightarrow \dfrac{(x^2 - y^2)}{(x - y)(x + y)} \\[1em] \Rightarrow \dfrac{(x^2 - y^2)}{(x^2 - y^2)} \\[1em] \Rightarrow 1 : 1.

Hence, the compounded ratio = 1 : 1.

(iii) Calculating the compounded ratio :

x225x2+3x10×x24x2+3x+2×x+1x2+2xx225x2+5x2x10×(x2)(x+2)x2+x+2x+2×x+1x(x+2)(x5)(x+5)x(x+5)2(x+5)×(x2)(x+2)x(x+1)+2(x+1)×x+1x(x+2)(x5)(x+5)(x2)(x+5)×(x2)(x+2)(x+1)(x+2)×x+1x(x+2)(x5)(x+5)(x2)(x+5)×(x2)(x+2)(x+1)(x+2)×x+1x(x+2)(x5)x(x+2)(x5):x(x+2).\Rightarrow \dfrac{x^2 - 25}{x^2 + 3x - 10} \times \dfrac{x^2 - 4}{x^2 + 3x + 2} \times \dfrac{x + 1}{x^2 + 2x} \\[1em] \Rightarrow \dfrac{x^2 - 25}{x^2 + 5x - 2x - 10} \times \dfrac{(x - 2)(x + 2)}{x^2 + x + 2x + 2} \times \dfrac{x + 1}{x(x + 2)} \\[1em] \Rightarrow \dfrac{(x - 5)(x + 5)}{x(x + 5) - 2(x + 5)} \times \dfrac{(x - 2)(x + 2)}{x(x + 1) + 2(x + 1)} \times \dfrac{x + 1}{x(x + 2)} \\[1em] \Rightarrow \dfrac{(x - 5)(x + 5)}{(x - 2)(x + 5)} \times \dfrac{(x - 2)(x + 2)}{(x + 1)(x + 2)} \times \dfrac{x + 1}{x(x + 2)} \\[1em] \Rightarrow \dfrac{(x - 5)\cancel{(x + 5)}}{\cancel{(x - 2)}\cancel{(x + 5)}} \times \dfrac{\cancel{(x - 2)}\cancel{(x + 2)}}{\cancel{(x + 1)}\cancel{(x + 2)}} \times \dfrac{\cancel{x + 1}}{x(x + 2)} \\[1em] \Rightarrow \dfrac{(x - 5)}{x(x + 2)} \\[1em] \Rightarrow (x - 5) : x(x + 2).

Hence, the compounded ratio = (x - 5) : x(x + 2).

Question 40

The ratio of the prices of first two fans was 16 : 23. Two years later, when the price of the first fan had risen by 10% and that of the second by ₹ 477, the ratio of their prices became 11 : 20. Find the original prices of the two fans.

Answer

Let price of first fan be f1 and second fan be f2.

Given,

Ratio of the prices of first two fans was 16 : 23.

f1f2=1623f1=16f223..........(1)\Rightarrow \dfrac{f_1}{f_2} = \dfrac{16}{23} \\[1em] \Rightarrow f_1 = \dfrac{16f_2}{23} ..........(1)

First fan price after 2 years = f1+10100f1=f1+f110=11f110f_1 + \dfrac{10}{100}f_1 = f_1 + \dfrac{f_1}{10} = \dfrac{11f_1}{10}.

Second fan price after two years = f2+477f_2 + 477.

Given,

Ratio of fan's prices becomes 11 : 20 after 2 years.

1110f1f2+477=112011f110(f2+477)=1120f1f2+477=1120×1011f1f2+477=12f1=f2+4772\therefore \dfrac{\dfrac{11}{10}f_1}{f_2 + 477} = \dfrac{11}{20} \\[1em] \Rightarrow \dfrac{11f_1}{10(f_2 + 477)} = \dfrac{11}{20} \\[1em] \Rightarrow \dfrac{f_1}{f_2 + 477} = \dfrac{11}{20} \times \dfrac{10}{11} \\[1em] \Rightarrow \dfrac{f_1}{f_2 + 477} = \dfrac{1}{2} \\[1em] \Rightarrow f_1 = \dfrac{f_2 + 477}{2}

Substituting value of f1 from (1) in above equation we get :

16f223=f2+477216f2×2=23(f2+477)32f2=23f2+1097132f223f2=109719f2=10971f2=109719f2=1219.\Rightarrow \dfrac{16f_2}{23} = \dfrac{f_2 + 477}{2} \\[1em] \Rightarrow 16f_2 \times 2 = 23(f_2 + 477) \\[1em] \Rightarrow 32f_2 = 23f_2 + 10971 \\[1em] \Rightarrow 32f_2 - 23f_2 = 10971 \\[1em] \Rightarrow 9f_2 = 10971 \\[1em] \Rightarrow f_2 = \dfrac{10971}{9} \\[1em] \Rightarrow f_2 = 1219.

Substituting value of f2 in equation (1), we get :

f1=16f223=16×121923=16×53=848.\Rightarrow f_1 = \dfrac{16f_2}{23} \\[1em] = \dfrac{16 \times 1219}{23} \\[1em] = 16 \times 53 \\[1em] = 848.

Hence, original price of fans are ₹ 848 and ₹ 1219.

Question 41

If y is the mean proportional between x and z; show that xy + yz is the mean proportional between x2 + y2 and y2 + z2.

Answer

Given,

y is the mean proportional between x and z

xy=yzy2=xz.\therefore \dfrac{x}{y} = \dfrac{y}{z} \Rightarrow y^2 = xz.

To prove,

xy + yz is the mean proportional between x2 + y2 and y2 + z2

x2+y2xy+yz=xy+yzy2+z2(xy+yz)(xy+yz)=(x2+y2)(y2+z2)x2y2+xy2z+xy2z+y2z2=x2y2+x2z2+y4+y2z2....[i]\therefore \dfrac{x^2 + y^2}{xy + yz} = \dfrac{xy + yz}{y^2 + z^2} \\[1em] \Rightarrow (xy + yz)(xy + yz) = (x^2 + y^2)(y^2 + z^2) \\[1em] \Rightarrow x^2y^2 + xy^2z + xy^2z + y^2z^2 = x^2y^2 + x^2z^2 + y^4 + y^2z^2 ....[\text{i}]

Substituting y2 = xz in L.H.S. of (i)

⇒ x2(xz) + x(xz)z + x(xz)z + (xz)z2

⇒ x3z + x2z2 + x2z2 + xz3

⇒ x3z + 2x2z2 + xz3 .........(ii)

Substituting y2 = xz in R.H.S. of (i)

⇒ x2(xz) + x2z2 + (xz)2 + (xz)z2

⇒ x3z + x2z2 + x2z2 + xz3

⇒ x3z + 2x2z2 + xz3 .........(iii)

Since, (ii) = (iii)

Hence, proved that xy + yz is the mean proportional between x2 + y2 and y2 + z2.

Question 42

Using componendo and dividendo, find value of x :

3x+4+3x53x+43x5=9.\dfrac{\sqrt{3x + 4} + \sqrt{3x - 5}}{\sqrt{3x + 4} - \sqrt{3x - 5}} = 9.

Answer

Applying componendo and dividendo we get,

3x+4+3x5+3x+43x53x+4+3x5(3x+43x5)=9+19123x+423x5=1083x+43x5=1083x+43x5=10064\Rightarrow \dfrac{\sqrt{3x + 4} + \sqrt{3x - 5} + \sqrt{3x + 4} - \sqrt{3x - 5}}{\sqrt{3x + 4} + \sqrt{3x - 5} - (\sqrt{3x + 4} - \sqrt{3x - 5})} = \dfrac{9 + 1}{9 - 1} \\[1em] \Rightarrow \dfrac{2\sqrt{3x + 4}}{2\sqrt{3x - 5}} = \dfrac{10}{8} \\[1em] \Rightarrow \dfrac{\sqrt{3x + 4}}{\sqrt{3x - 5}} = \dfrac{10}{8} \\[1em] \Rightarrow \dfrac{3x + 4}{3x - 5} = \dfrac{100}{64} \\[1em]

Again applying componendo and dividendo we get,

3x+4+3x53x+4(3x5)=100+64100646x19=1643636(6x1)=1476216x36=1476216x=1512x=1512216x=7.\Rightarrow \dfrac{3x + 4 + 3x - 5}{3x + 4 - (3x - 5)} = \dfrac{100 + 64}{100 - 64} \\[1em] \Rightarrow \dfrac{6x - 1}{9} = \dfrac{164}{36} \\[1em] \Rightarrow 36(6x - 1) = 1476 \\[1em] \Rightarrow 216x - 36 = 1476 \\[1em] \Rightarrow 216x = 1512 \\[1em] \Rightarrow x = \dfrac{1512}{216} \\[1em] \Rightarrow x = 7.

Hence, x = 7.

REMAINDER AND FACTOR THEOREMS

Question 43

Given that x + 2 and x - 3 are factors of x3 + ax + b. Calculate the values of a and b. Also, find the remaining factor.

Answer

By factor theorem,

If (x - a) is a factor of polynomial f(x), then remainder f(a) = 0.

⇒ x + 2 = 0

⇒ x = -2.

Since, x + 2 is a factor of x3 + ax + b

∴ Remainder = 0.

⇒ (-2)3 + (-2)a + b = 0

⇒ -8 - 2a + b = 0

⇒ b = 2a + 8 ................(1)

x - 3 = 0

⇒ x = 3.

Since, x - 3 is a factor of x3 + ax + b

∴ Remainder = 0.

⇒ (3)3 + (3)a + b = 0

⇒ 27 + 3a + b = 0

⇒ b = -27 - 3a ................(2)

From (1) and (2), we get:

⇒ 2a + 8 = -27 - 3a

⇒ 2a + 3a = -27 - 8

⇒ 5a = -35

⇒ a = 355\dfrac{-35}{5}

⇒ a = -7.

Substituting value of a in equation (1), we get :

⇒ b = 2a + 8 = 2 × -7 + 8 = -14 + 8 = -6.

f(x) = x3 + ax + b = x3 - 7x - 6.

Substituting x = -1 in f(x), we get :

⇒ (-1)3 - 7(-1) - 6

⇒ -1 + 7 - 6

⇒ -1 + 1

⇒ 0.

∴ (x + 1) is a factor of x3 - 7x - 6.

Hence, a = -7, b = -6 and (x + 1) is the remaining factor.

Question 44

Use the remainder theorem to factorise the expression 2x3 + 9x2 + 7x - 6. Hence, solve the equation 2x3 + 9x2 + 7x - 6.

Answer

For x = -2, the value of the given expression

= 2(-2)3 + 9(-2)2 + 7(-2) - 6

= 2 × -8 + 9 × 4 - 14 - 6

= -16 + 36 - 14 - 6

= -36 + 36

= 0.

⇒ x + 2 is a factor of 2x3 + 9x2 + 7x - 6.

Now dividing 2x3 + 9x2 + 7x - 6 by (x + 2),

x+2)2x2+5x3x+2)2x3+9x2+7x6x+22x3+4x2x+22x3+25x2+7x6x+2x3+25x2+10xx+2x3+25x23x6x+2x3+25x23+3x+6x+2x3+25x233×\begin{array}{l} \phantom{x + 2)}{2x^2 + 5x - 3} \\ x + 2\overline{\smash{\big)}2x^3 + 9x^2 + 7x - 6} \\ \phantom{x + 2}\underline{\underset{-}{}2x^3 \underset{-}{+}4x^2} \\ \phantom{{x + 2}2x^3+2}5x^2 + 7x - 6 \\ \phantom{{x + 2}x^3+2}\underline{\underset{-}{}5x^2 \underset{-}{+} 10x} \\ \phantom{{x + 2}x^3+2-5x^2}-3x - 6 \\ \phantom{{x + 2}x^3+2-5x^23}\underline{\underset{+}{-}3x \underset{+}{-} 6} \\ \phantom{{x + 2}x^3+2-5x^23-3}\times \end{array}

we get quotient = 2x2 + 5x - 3

∴ 2x3 + 9x2 + 7x - 6 = (x + 2)(2x2 + 5x - 3)

= (x + 2)(2x2 + 6x - x - 3)

= (x + 2)[2x(x + 3) - 1(x + 3)]

= (x + 2)(2x - 1)(x + 3).

∴ (x + 2), (2x - 1) and (x + 3) are the factors of 2x3 + 9x2 + 7x - 6.

⇒ x + 2 = 0

⇒ x = -2

⇒ 2x - 1 = 0

⇒ x = 12\dfrac{1}{2}

⇒ x + 3 = 0

⇒ x = -3.

Hence, 2x3 + 9x2 + 7x - 6 = (x + 2)(2x - 1)(x + 3) and x = -2, -3, 12\dfrac{1}{2}.

Question 45

When 2x3 + 5x2 - 2x + 8 is divided by (x - a) the remainder is 2a3 + 5a2. Find the value of a.

Answer

By remainder theorem,

If f(x), a polynomial in x, is divided by (x - a), the remainder = f(a).

∴ On dividing 2x3 + 5x2 - 2x + 8 by (x - a)

Remainder = 2a3 + 5a2 - 2a + 8

Given, remainder = 2a3 + 5a2.

∴ 2a3 + 5a2 - 2a + 8 = 2a3 + 5a2

⇒ -2a + 8 = 0

⇒ 2a = 8

⇒ a = 4.

Hence, a = 4.

Question 46

What number should be added to x3 - 9x2 - 2x + 3 so that the remainder may be 5 when divided by (x - 2) ?

Answer

Let a be added to x3 - 9x2 - 2x + 3 so that the remainder may be 5 when divided by (x - 2).

By remainder theorem,

If f(x), a polynomial in x, is divided by (x - a), the remainder = f(a).

∴ On dividing x3 - 9x2 - 2x + 3 + a by (x - 2)

Remainder = (2)3 - 9(2)2 - 2(2) + 3 + a

Since, remainder = 5.

∴ 8 - 9(4) - 4 + 3 + a = 5

⇒ 8 - 36 - 1 + a = 5

⇒ a - 29 = 5

⇒ a = 5 + 29 = 34.

Hence, 34 must be added to x3 - 9x2 - 2x + 3 so that the remainder may be 5 when divided by (x - 2).

Question 47

Let R1 and R2 are remainders when the polynomial x3 + 2x2 - 5ax - 7 and x3 + ax2 - 12x + 6 are divided by (x + 1) and (x - 2) respectively. If 2R1 + R2 = 6; find the value of a.

Answer

On dividing x3 + 2x2 - 5ax - 7 by (x + 1), we get remainder R1 :

∴ R1 = (-1)3 + 2(-1)2 - 5a(-1) - 7

⇒ R1 = -1 + 2 + 5a - 7

⇒ R1 = 5a - 6.

On dividing x3 + ax2 - 12x + 6 by (x - 2), we get remainder R2

∴ R2 = (2)3 + a(2)2 - 12(2) + 6

⇒ R2 = 8 + 4a - 24 + 6

⇒ R2 = 4a - 10.

Given,

⇒ 2R1 + R2 = 6

⇒ 2(5a - 6) + 4a - 10 = 6

⇒ 10a - 12 + 4a - 10 = 6

⇒ 14a - 22 = 6

⇒ 14a = 28

⇒ a = 2814\dfrac{28}{14} = 2.

Hence, a = 2.

MATRICES

Question 48

Find matrix B, if matrix A = [1512]\begin{bmatrix*}[r] 1 & 5 \\ 1 & 2 \end{bmatrix*}, matrix C = [21]\begin{bmatrix*}[r] 2 \\ 1 \end{bmatrix*} and AB = 3C.

Answer

Let order of matrix B = m × n

Given,

AB = 3C

[1512]2×2Bm×n=3[21]2×1\begin{bmatrix*}[r] 1 & 5 \\ 1 & 2 \end{bmatrix*}_{2 \times 2}B_{m \times n} = 3\begin{bmatrix*}[r] 2 \\ 1 \end{bmatrix*}_{2 \times 1}

Since, the product of matrices is possible, only when the number of columns in the first matrix is equal to the number of rows in the second.

∴ m = 2

Also, the no. of columns of product (resulting) matrix is equal to no. of columns of second matrix.

∴ n = 1

Order of matrix B = m × n = 2 × 1.

Let matrix B = [ab]\begin{bmatrix*}[r] a \\ b \end{bmatrix*}

Substituting matrix in AB = 3C we get,

[1512][ab]=3[21][1×a+5×b1×a+2×b]=[63][a+5ba+2b]=[63].\Rightarrow \begin{bmatrix*}[r] 1 & 5 \\ 1 & 2 \end{bmatrix*}\begin{bmatrix*}[r] a \\ b \end{bmatrix*} = 3\begin{bmatrix*}[r] 2 \\ 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 1 \times a + 5 \times b \\ 1 \times a + 2 \times b \end{bmatrix*} = \begin{bmatrix*}[r] 6 \\ 3 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a + 5b \\ a + 2b \end{bmatrix*} = \begin{bmatrix*}[r] 6 \\ 3 \end{bmatrix*}.

∴ a + 5b = 6 ........(1)

a + 2b = 3 ........(2)

Subtracting equation (2) from (1), we get :

⇒ a + 5b - (a + 2b) = 6 - 3

⇒ a - a + 5b - 2b = 3

⇒ 3b = 3

⇒ b = 1.

Substituting value of b in (1), we get :

⇒ a + 5(1) = 6

⇒ a + 5 = 6

⇒ a = 1.

B = [ab]=[11]\begin{bmatrix*}[r] a \\ b \end{bmatrix*} = \begin{bmatrix*}[r] 1 \\ 1 \end{bmatrix*}

Hence, B = [11]\begin{bmatrix*}[r] 1 \\ 1 \end{bmatrix*}.

Question 49

Find the matrices A and B, if 2A + B = [3427]\begin{bmatrix*}[r] 3 & -4 \\ 2 & 7 \end{bmatrix*} and A - 2B = [4311]\begin{bmatrix*}[r] 4 & 3 \\ 1 & 1 \end{bmatrix*}

Answer

Given,

⇒ 2A + B = [3427]\begin{bmatrix*}[r] 3 & -4 \\ 2 & 7 \end{bmatrix*} .........(1)

⇒ A - 2B = [4311]\begin{bmatrix*}[r] 4 & 3 \\ 1 & 1 \end{bmatrix*} .........(2)

Multiplying equation (1) by 2 and adding in equation (2), we get :

2(2A+B)+A2B=2[3427]+[4311]4A+2B+A2B=[68414]+[4311]5A=[6+48+34+114+1]5A=[105515]A=15[105515]A=[2113].\Rightarrow 2(2A + B) + A - 2B = 2\begin{bmatrix*}[r] 3 & -4 \\ 2 & 7 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & 3 \\ 1 & 1 \end{bmatrix*} \\[1em] \Rightarrow 4A + 2B + A - 2B = \begin{bmatrix*}[r] 6 & -8 \\ 4 & 14 \end{bmatrix*} + \begin{bmatrix*}[r] 4 & 3 \\ 1 & 1 \end{bmatrix*} \\[1em] \Rightarrow 5A = \begin{bmatrix*}[r] 6 + 4 & -8 + 3 \\ 4 + 1 & 14 + 1 \end{bmatrix*} \\[1em] \Rightarrow 5A = \begin{bmatrix*}[r] 10 & -5 \\ 5 & 15 \end{bmatrix*} \\[1em] \Rightarrow A = \dfrac{1}{5}\begin{bmatrix*}[r] 10 & -5 \\ 5 & 15 \end{bmatrix*} \\[1em] \Rightarrow A = \begin{bmatrix*}[r] 2 & -1 \\ 1 & 3 \end{bmatrix*}.

Substituting value of A in equation (1), we get :

2[2113]+B=[3427][4226]+B=[3427]B=[3427][4226]B=[344(2)2276]B=[1201].\Rightarrow 2\begin{bmatrix*}[r] 2 & -1 \\ 1 & 3 \end{bmatrix*} + B = \begin{bmatrix*}[r] 3 & -4 \\ 2 & 7 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & -2 \\ 2 & 6 \end{bmatrix*} + B = \begin{bmatrix*}[r] 3 & -4 \\ 2 & 7 \end{bmatrix*} \\[1em] \Rightarrow B = \begin{bmatrix*}[r] 3 & -4 \\ 2 & 7 \end{bmatrix*} - \begin{bmatrix*}[r] 4 & -2 \\ 2 & 6 \end{bmatrix*} \\[1em] \Rightarrow B = \begin{bmatrix*}[r] 3 - 4 & -4 - (-2) \\ 2 - 2 & 7 - 6 \end{bmatrix*} \\[1em] \Rightarrow B = \begin{bmatrix*}[r] -1 & -2 \\ 0 & 1 \end{bmatrix*}.

Hence, A=[2113],B=[1201].A = \begin{bmatrix*}[r] 2 & -1 \\ 1 & 3 \end{bmatrix*}, B = \begin{bmatrix*}[r] -1 & -2 \\ 0 & 1 \end{bmatrix*}.

Question 50

If A = [3140],B=[1223] and 3A - 5B + 2X=[4301]\begin{bmatrix*}[r] 3 & 1 \\ 4 & 0 \end{bmatrix*}, B = \begin{bmatrix*}[r] 1 & -2 \\ 2 & 3 \end{bmatrix*} \text{ and 3A - 5B + 2X} = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*}; find the matrix X.

Answer

Given,

3A - 5B + 2X=[4301]\text{3A - 5B + 2X} = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*}

Substituting value of A and B in above equation we get,

3[3140]5[1223]+2X=[4301][93120][5101015]+2X=[4301][953(10)1210015]+2X=[4301][413215]+2X=[4301]2X=[4301][413215]2X=[44313021(15)]2X=[010216]X=12[010216]X=[0518].\Rightarrow 3\begin{bmatrix*}[r] 3 & 1 \\ 4 & 0 \end{bmatrix*} - 5\begin{bmatrix*}[r] 1 & -2 \\ 2 & 3 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 & 3 \\ 12 & 0 \end{bmatrix*} - \begin{bmatrix*}[r] 5 & -10 \\ 10 & 15 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 9 - 5 & 3 - (-10) \\ 12 - 10 & 0 - 15 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 4 & 13 \\ 2 & -15 \end{bmatrix*} + 2X = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] 4 & 3 \\ 0 & 1 \end{bmatrix*} - \begin{bmatrix*}[r] 4 & 13 \\ 2 & -15 \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] 4 - 4 & 3 - 13 \\ 0 - 2 & 1 - (-15) \end{bmatrix*} \\[1em] \Rightarrow 2X = \begin{bmatrix*}[r] 0 & -10 \\ -2 & 16 \end{bmatrix*} \\[1em] \Rightarrow X = \dfrac{1}{2}\begin{bmatrix*}[r] 0 & -10 \\ -2 & 16 \end{bmatrix*} \\[1em] \Rightarrow X = \begin{bmatrix*}[r] 0 & -5 \\ -1 & 8 \end{bmatrix*}.

Hence, X = [0518].\begin{bmatrix*}[r] 0 & -5 \\ -1 & 8 \end{bmatrix*}.

Question 51(a)

Given, A=[3443] and B=[247]A = \begin{bmatrix*}[r] 3 & 4 \\ 4 & -3 \end{bmatrix*} \text{ and B} = \begin{bmatrix*}[r] 24 \\ 7 \end{bmatrix*}; find the matrix X such that AX = B.

Answer

Let order of matrix X = m × n

Given,

AX = B

[3443]2×2Xm×n=[247]2×1\begin{bmatrix*}[r] 3 & 4 \\ 4 & -3 \end{bmatrix*}_{2 \times 2}X_{m \times n} = \begin{bmatrix*}[r] 24 \\ 7 \end{bmatrix*}_{2 \times 1}

Since, the product of matrices is possible, only when the number of columns in the first matrix is equal to the number of rows in the second.

∴ m = 2

Also, the no. of columns of product (resulting) matrix is equal to no. of columns of second matrix.

∴ n = 1

Order of matrix X = m × n = 2 × 1.

Let matrix X = [ab]\begin{bmatrix*}[r] a \\ b \end{bmatrix*}

Substituting matrix in AX = B we get,

[3443][ab]=[247][3×a+4×b4×a+(3)×b]=[247][3a+4b4a3b]=[247].\Rightarrow \begin{bmatrix*}[r] 3 & 4 \\ 4 & -3 \end{bmatrix*}\begin{bmatrix*}[r] a \\ b \end{bmatrix*} = \begin{bmatrix*}[r] 24 \\ 7 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3 \times a + 4 \times b \\ 4 \times a + (-3) \times b \end{bmatrix*} = \begin{bmatrix*}[r] 24 \\ 7 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3a + 4b \\ 4a - 3b \end{bmatrix*} = \begin{bmatrix*}[r] 24 \\ 7 \end{bmatrix*}.

∴ 3a + 4b = 24 ........(1)

4a - 3b = 7 ........(2)

⇒ 3a + 4b = 24

⇒ 3a = 24 - 4b

⇒ a = 244b3\dfrac{24 - 4b}{3} ........(3)

Substituting value of a from equation (3) in equation (2), we get :

4×244b33b=79616b33b=79616b9b3=79625b=2125b=962125b=75b=7525=3.\Rightarrow 4 \times \dfrac{24 - 4b}{3} - 3b = 7 \\[1em] \Rightarrow \dfrac{96 - 16b}{3} - 3b = 7 \\[1em] \Rightarrow \dfrac{96 - 16b - 9b}{3} = 7 \\[1em] \Rightarrow 96 - 25b = 21 \\[1em] \Rightarrow 25b = 96 - 21 \\[1em] \Rightarrow 25b = 75 \\[1em] \Rightarrow b = \dfrac{75}{25} = 3.

Substituting value of b in equation (3), we get :

a = 244b3=244×33=123\dfrac{24 - 4b}{3} = \dfrac{24 - 4 \times 3}{3} = \dfrac{12}{3} = 4.

Hence, X = [43]\begin{bmatrix*}[r] 4 \\ 3 \end{bmatrix*}

Question 51(b)

Given A = [3628]and B=[216]\begin{bmatrix*}[r] 3 & 6 \\ -2 & -8 \end{bmatrix*} \text{and B} = \begin{bmatrix*}[r] -2 & 16 \end{bmatrix*}; find the matrix X such that XA = B.

Answer

Let order of matrix X = m × n

Given,

XA = B

Xm×n[3628]2×2=[216]1×2X_{m \times n}\begin{bmatrix*}[r] 3 & 6 \\ -2 & -8 \end{bmatrix*}_{2 \times 2} = \begin{bmatrix*}[r] -2 & 16 \end{bmatrix*}_{1 \times 2}

Since, the product of matrices is possible only when the number of columns in the first matrix is equal to the number of rows in the second.

∴ n = 2

Also, the no. of rows of product (resulting) matrix is equal to no. of rows of first matrix.

∴ m = 1

Order of matrix X = m × n = 1 × 2.

Let matrix X = [ab]\begin{bmatrix*}[r] a & b \end{bmatrix*}

Substituting matrix in XA = B we get,

[ab][3628]=[216][a×3+b×2a×6+b×8]=[216][3a2b6a8b]=[216]\Rightarrow \begin{bmatrix*}[r] a & b \end{bmatrix*}\begin{bmatrix*}[r] 3 & 6 \\ -2 & -8 \end{bmatrix*} = \begin{bmatrix*}[r] -2 & 16 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] a \times 3 + b \times -2 & a \times 6 + b \times -8 \end{bmatrix*} = \begin{bmatrix*}[r] -2 & 16 \end{bmatrix*} \\[1em] \Rightarrow \begin{bmatrix*}[r] 3a - 2b & 6a - 8b \end{bmatrix*} = \begin{bmatrix*}[r] -2 & 16 \end{bmatrix*}

∴ 3a - 2b = -2 .........(1)

6a - 8b = 16 .........(2)

⇒ 3a - 2b = -2

⇒ 2(3a - 2b) = 2(-2)

⇒ 6a - 4b = -4 .........(3)

Subtracting equation (2) from (3), we get :

⇒ 6a - 4b - (6a - 8b) = -4 - 16

⇒ 6a - 6a - 4b + 8b = -20

⇒ 4b = -20

⇒ b = 204\dfrac{-20}{4}

⇒ b = -5.

Substituting value of b in equation (1), we get :

⇒ 3a - 2(-5) = -2

⇒ 3a + 10 = -2

⇒ 3a = -2 - 10

⇒ 3a = -12

⇒ a = 123\dfrac{-12}{3}

⇒ a = -4.

Hence, X = [45]\begin{bmatrix*}[r] -4 & -5 \end{bmatrix*}.

ARITHMETIC PROGRESSION

Question 52

Find the 15th term of the A.P. with second term 11 and common difference 9.

Answer

We know that,

⇒ an = a + (n - 1)d

⇒ a2 = a + (2 - 1)d

⇒ 11 = a + d

⇒ 11 = a + 9

⇒ a = 11 - 9 = 2.

a15 = a + (15 - 1)d

= 2 + 14 × 9

= 2 + 126

= 128.

Hence, 15th term = 128.

Question 53

How many three digit numbers are divisible by 7 ?

Answer

Three digit numbers which are divisible by 7 are 105, 112, ......., 994.

Let there be n terms.

In above series,

an = 994, a = 105 and d = 7.

By formula,

⇒ an = a + (n - 1)d

⇒ 994 = 105 + (n - 1) × 7

⇒ 994 = 105 + 7(n - 1)

⇒ 994 - 105 = 7(n - 1)

⇒ 889 = 7(n - 1)

⇒ n - 1 = 8897\dfrac{889}{7}

⇒ n - 1 = 127

⇒ n = 128.

Hence, there are 128 three digit numbers, which are divisible by 7.

Question 54

Find the sum of terms of the A.P. : 4, 9, 14, ......, 89.

Answer

Let there be n terms in the above series.

From above series,

an = 89, a = 4 and d = 5.

By formula,

⇒ an = a + (n - 1)d

⇒ 89 = 4 + 5(n - 1)

⇒ 85 = 5(n - 1)

⇒ 17 = n - 1

⇒ n = 18.

By formula,

Sum of A.P. = n2(a+an)\dfrac{n}{2}(a + a_n)

Substituting values we get,

=182(4+89)=9×93=837.= \dfrac{18}{2}(4 + 89) \\[1em] = 9 \times 93 \\[1em] = 837.

Hence, sum of A.P. = 837.

Question 55

Daya gets pocket money from his father every day. Out of the pocket money, he saves ₹ 2.75 on first day, ₹ 3.00 on second day, ₹ 3.25 on third day and so on. Find :

(i) the amount saved by Daya on 14th day

(ii) the amount saved by Daya on 30th day

(iii) the total amount saved by him in 30 days.

Answer

2.75, 3.00, 3.25, ..............

The above A.P. has first term (a) = 2.75 and common difference (d) = 3.00 - 2.75 = 0.25

By formula,

nth term = an = a + (n - 1)d.

(i) The amount saved by Daya on 14th day = 14th term of A.P.

a14 = a + (14 - 1)d

= a + 13d

= 2.75 + 13 × 0.25

= 2.75 + 3.25

= ₹ 6.

Hence, the amount saved by Daya on 14th day = ₹ 6.

(ii) The amount saved by Daya on 30th day = 30th term of A.P.

a30 = a + (30 - 1)d

= a + 29d

= 2.75 + 29 × 0.25

= 2.75 + 7.25

= ₹ 10.

Hence, the amount saved by Daya on 30th day = ₹ 10.

(iii) Sum of A.P. = n2[2a+(n1)d]\dfrac{n}{2}[2a + (n - 1)d]

Total amount saved by Daya in 30 days = Sum of A.P. upto 30 terms.

=302[2×2.75+(301)×0.25]=15×[5.5+29×0.25]=15×[5.5+7.25]=15×12.75=191.25= \dfrac{30}{2}[2 \times 2.75 + (30 - 1) \times 0.25] \\[1em] = 15 \times [5.5 + 29 \times 0.25] \\[1em] = 15 \times [5.5 + 7.25] \\[1em] = 15 \times 12.75 \\[1em] = ₹ 191.25

Hence, total amount saved by Daya in 30 days = ₹ 191.25

Question 56

If the sum of first m terms of an A.P. is n and sum of first n terms of the same A.P. is m, show that sum of first (m + n) terms of it is -(m + n).

Answer

Let a be the first term and d be common difference of the A.P.

Given,

Sum of first m terms of an A.P. is n.

⇒ Sm = n

m2[2a+(m1)d]=n\dfrac{m}{2}[2a + (m - 1)d] = n

⇒ m[2a + (m - 1)d] = 2n

⇒ 2am + m(m - 1)d = 2n ..........(1)

Sum of first n terms of an A.P. is m.

⇒ Sn = m

n2[2a+(n1)d]=m\dfrac{n}{2}[2a + (n - 1)d] = m

⇒ n[2a + (n - 1)d] = 2m

⇒ 2an + n(n - 1)d = 2m ..........(2)

Subtracting eq. (2) from (1), we get

2n2m=2am+m(m1)d[2an+n(n1)d]2m+2n=2am2an+m(m1)dn(n1)d2(mn)=2a(mn)+m2dmdn2d+nd2(mn)=2a(mn)+d(m2n2)d(mn)2(mn)=2a(mn)+d(mn)(m+n)d(mn)2=2a+d(m+n)d2a+d(m+n1)=2.........(3)\Rightarrow 2n - 2m = 2am + m(m - 1)d - [2an + n(n - 1)d] \\[1em] \Rightarrow -2m + 2n = 2am - 2an + m(m - 1)d - n(n - 1)d \\[1em] \Rightarrow -2(m - n) = 2a(m - n) + m^2d - md - n^2d + nd \\[1em] \Rightarrow -2(m - n) = 2a(m - n) + d(m^2 - n^2) - d(m - n) \\[1em] \Rightarrow -2(m - n) = 2a(m - n) + d(m - n)(m + n) - d(m - n) \\[1em] \Rightarrow -2 = 2a + d(m + n) - d \\[1em] \Rightarrow 2a + d(m + n - 1) = -2 .........(3)

Sm + n = m+n2[a+a+(m+n1)d]\dfrac{m + n}{2}[a + a + (m + n - 1)d]

= m+n2[2a+(m+n1)d]\dfrac{m + n}{2}[2a + (m + n - 1)d]

= m+n2×2\dfrac{m + n}{2} \times -2 [From (3)]

= -(m + n).

Hence, proved that sum of first (m + n) terms of it is -(m + n).

GEOMETRIC PROGRESSION

Question 57

3rd term of a G.P. is 27 and its 6th term is 729; find the product of its first and 7th terms.

Answer

Let first term of G.P. be a and common ratio be r.

We know that,

nth term of G.P. = arn - 1

Given,

3rd term of a G.P. = 27

∴ ar2 = 27 ..........(1)

Given,

6th term of a G.P. = 729

∴ ar5 = 729 ..........(2)

Dividing equation (2) by (1), we get :

ar5ar2=72927r3=27r3=33r=3.\Rightarrow \dfrac{ar^5}{ar^2} = \dfrac{729}{27} \\[1em] \Rightarrow r^3 = 27 \\[1em] \Rightarrow r^3 = 3^3 \\[1em] \Rightarrow r = 3.

Substituting value of r in equation (1), we get :

⇒ a(3)2 = 27

⇒ 9a = 27

⇒ a = 279\dfrac{27}{9}

⇒ a = 3.

7th term = ar6

= 3(3)6

= 3 × 729

= 2187.

Product of first and seventh term = 3 x 2187

= 6561.

Hence, product of first and seventh term = 6561.

Question 58

Find 5 geometric means between 1 and 27.

Answer

Let a, b, c and d be the 5 geometric means 1 and 27.

∴ 1, a, b, c, d, e and 27 are in G.P.

So, first term (a) = 1 and seventh term = 27.

Let common ratio be r.

∴ ar6 = 27

⇒ (1)r6 = 27

⇒ r6 = 33

⇒ r6 = (3)6(\sqrt{3})^6

⇒ r = 3\sqrt{3}.

Second term = ar = 1×3=31 \times \sqrt{3} = \sqrt{3},

Third term = ar2 = 1×(3)2=31 \times (\sqrt{3})^2 = 3,

Fourth term = ar3 = 1×(3)3=331 \times (\sqrt{3})^3 = 3\sqrt{3},

Fifth term = ar4 = 1×(3)4=91 \times (\sqrt{3})^4 = 9,

Sixth term = ar5 = 1×(3)5=931 \times (\sqrt{3})^5 = 9\sqrt{3}.

Hence, 5 geometric means between 1 and 27 = 3,3,33,9,93\sqrt{3}, 3, 3\sqrt{3}, 9, 9\sqrt{3}.

Question 59

Find the sum of the sequence 96 - 48 + 24 ......... upto 10 terms.

Answer

The above sequence is a G.P. with first term (a) = 96 and common ratio (r) = 4896=12\dfrac{-48}{96} = -\dfrac{1}{2}.

By formula,

Sum of G.P. = a(1rn)1r\dfrac{a(1 - r^n)}{1 - r}

Sum upto 10 terms=96×[1(12)10]1(12)=96×[111024]1+12=96×1023102432=12×102312832=12×1023×2128×3=204632=631516.\text{Sum upto 10 terms} = \dfrac{96 \times \Big[1 - \Big(-\dfrac{1}{2}\Big)^{10}\Big]}{1 - \Big(-\dfrac{1}{2}\Big)} \\[1em] = \dfrac{96 \times \Big[1 - \dfrac{1}{1024}\Big]}{1 + \dfrac{1}{2}} \\[1em] = \dfrac{96 \times \dfrac{1023}{1024}}{\dfrac{3}{2}} \\[1em] = \dfrac{12 \times \dfrac{1023}{128}}{\dfrac{3}{2}} \\[1em] = \dfrac{12 \times 1023 \times 2}{128 \times 3} \\[1em] = \dfrac{2046}{32} \\[1em] = 63\dfrac{15}{16}.

Hence, sum of sequence = 631516.63\dfrac{15}{16}.

Question 60

Find the sum of first n terms of :

(i) 4 + 44 + 444 + ......

(ii) 0.7 + 0.77 + 0.777 + .......

Answer

(i) Given,

⇒ 4 + 44 + 444 + ...... upto n terms

⇒ 4(1 + 11 + 111 + ....... upto n terms)

49(9+99+999+......\dfrac{4}{9}(9 + 99 + 999 + ...... upto n terms)

49[(101)+(1021)+......\dfrac{4}{9}[(10 - 1) + (10^2 - 1) + ...... upto n terms]

49[(10+102.......+10n)(1+1+........n times)]\dfrac{4}{9}\Big[(10 + 10^2 ....... + 10^n) - (1 + 1 + ........ \text{n times})\Big]

Above sequence : 10 + 102 + ......... + 10n

It is a G.P. with common term (a) = 10 and common ratio (r) = 10.

By formula,

Sum of G.P. = a(1rn)1r\dfrac{a(1 - r^n)}{1 - r}

49[10(10n1)101n]\dfrac{4}{9}\Big[\dfrac{10(10^n - 1)}{10 - 1} - n\Big]

49[10(10n1)9n]\dfrac{4}{9}\Big[\dfrac{10(10^n - 1)}{9} - n\Big].

Hence, sum of 4 + 44 + 444 + ...... upto n terms = 49[10(10n1)9n].\dfrac{4}{9}\Big[\dfrac{10(10^n - 1)}{9} - n\Big].

(ii) Given,

0.7+0.77+0.777+....... upto n terms 7(0.1+0.11+0.111+...... upto n terms )79(0.9+0.99+0.999+....... upto n terms )79[(10.1)+(10.01)+(10.001)+.......... upto n terms]79[1+1+...... upto n terms (0.1+0.01+0.001+........)]79[n(110+1100+11000+...... upto n terms)]\Rightarrow 0.7 + 0.77 + 0.777 + ....... \text{ upto n terms } \\[1em] \Rightarrow 7(0.1 + 0.11 + 0.111 + ...... \text{ upto n terms }) \\[1em] \Rightarrow \dfrac{7}{9}(0.9 + 0.99 + 0.999 + ....... \text{ upto n terms }) \\[1em] \Rightarrow \dfrac{7}{9}[(1 - 0.1) + (1 - 0.01) + (1 - 0.001) + .......... \text{ upto n terms}] \\[1em] \Rightarrow \dfrac{7}{9}[1 + 1 + ...... \text{ upto n terms } - (0.1 + 0.01+ 0.001 + ........)] \\[1em] \Rightarrow \dfrac{7}{9} \Big[n - \Big(\dfrac{1}{10} + \dfrac{1}{100} + \dfrac{1}{1000} + ...... \text{ upto n terms}\Big)\Big] \\[1em]

Above sequence : 110+1100+11000+.........\dfrac{1}{10} + \dfrac{1}{100} + \dfrac{1}{1000} + .........

It is a G.P. with first term (a) = 110\dfrac{1}{10} and common ratio (r) = 110\dfrac{1}{10}.

By formula,

Sum of G.P. = a(1rn)1r\dfrac{a(1 - r^n)}{1 - r}

79[n110(1(110)n)1110]79[n110(1110n)910]79[n(1110n)9]79[n19(1110n)]\Rightarrow \dfrac{7}{9} \Big[n - \dfrac{\dfrac{1}{10}\Big(1 - \Big(\dfrac{1}{10}\Big)^n\Big)}{1 - \dfrac{1}{10}}\Big] \\[1em] \Rightarrow \dfrac{7}{9} \Big[n -\dfrac{\dfrac{1}{10}\Big(1 - \dfrac{1}{10^n}\Big)}{\dfrac{9}{10}}\Big] \\[1em] \Rightarrow \dfrac{7}{9} \Big[n -\dfrac{\Big(1 - \dfrac{1}{10^n}\Big)}{9}\Big] \\[1em] \Rightarrow \dfrac{7}{9} \Big[n - \dfrac{1}{9}\Big(1 - \dfrac{1}{10^n}\Big)\Big]

Hence, sum of 0.7 + 0.77 + 0.777 + ....... upto n terms = 79[n19(1110n)]\dfrac{7}{9} \Big[n - \dfrac{1}{9}\Big(1 - \dfrac{1}{10^n}\Big)\Big].

Question 61

Find (using G.P.) the value of 0.4230.4\overline{23}.

Answer

Let, x = 0.4230.4\overline{23}.

⇒ x = 0.4232323......

⇒ 10x = 4.232323.......

⇒ 1000x = 423.2323.......

⇒ 1000x - 10x = 423.2323....... - 4.232323.......

⇒ 990x = 419

⇒ x = 419990\dfrac{419}{990}

Hence, 0.423ˉ=4199900.4\bar{23} = \dfrac{419}{990}.

Question 62

If for a G.P., pth, qth and rth terms are a, b and c respectively; prove that :

(q - r)log a + (r - p)log b + (p - q)log c = 0

Answer

Let first term of G.P. be A and common ratio be R.

pth term = a

ARp - 1 = a.

qth term = b

ARq - 1 = b.

rth term = c

ARr - 1 = c.

aqr.brp.cpq=(ARp1)qr.(ARq1)rp.(ARr1)pq=Aqr.R(p1)(qr).Arp.R(q1)(rp).Apq.R(r1)(pq)=Aqr+rp+pq.R(p1)(qr)+(q1)(rp)+(r1)(pq)=A0.R(pqprq+r)+(qrqpr+p)+(rprqp+q)=A0.R0=1.\Rightarrow a^{q - r}.b^{r - p}.c^{p - q} = (AR^{p - 1})^{q - r}.(AR^{q - 1})^{r - p}.(AR^{r - 1})^{p - q} \\[1em] = A^{q - r}.R^{(p - 1)(q - r)}.A^{r - p}.R^{(q - 1)(r - p)}.A^{p - q}.R^{(r - 1)(p - q)} \\[1em] = A^{q - r + r - p + p - q}.R^{(p - 1)(q - r) + (q - 1)(r - p) + (r - 1)(p - q)} \\[1em] = A^0.R^{(pq - pr - q + r) + (qr - qp - r + p) + (rp - rq - p + q)} \\[1em] = A^0.R^0 \\[1em] = 1.

Hence, proved that

aqr.brp.cpq=1Taking log on both sideslog(aqr.brp.cpq)=log 1log(aqr)+log(brp)+log(cpq)=0(qr)log a+(rp)log b+(pq)log c=0.\Rightarrow a^{q - r}.b^{r - p}.c^{p - q} = 1 \\[1em] \text{Taking log on both sides} \\[1em] \Rightarrow log(a^{q - r}.b^{r - p}.c^{p - q}) = log \space 1 \\[1em] \Rightarrow log(a^{q - r}) + log(b^{r - p}) + log(c^{p - q}) = 0 \\[1em] \Rightarrow (q - r)log \space a + (r - p)log \space b + (p - q)log \space c = 0.

Hence, proved that (q - r)log a + (r - p)log b + (p - q)log c = 0.

Question 63

If a, b and c are in G.P., prove that :

log a, log b and log c are in A.P.

Answer

Given, a, b and c are in G.P.

∴ b2 = ac .......(i)

For, log a, log b and log c to be in A.P,

log b- log a = log c - log b

log b + log b = log a + log c

2log b = log a + log c

L.H.S. = 2log b = log b2

R.H.S. = log ac

Since, b2 = ac,

L.H.S. = R.H.S.

∴ 2log b = log a + log c

Hence, proved that log a, log b and log c are in A.P.

Question 64

If each term of a G.P. is raised to the power x, show that the resulting sequence is also a G.P.

Answer

Let a, b and c be in G.P.

∴ b2 = ac

Let, b2 = ac = m ........(i)

Each term be raised to power x.

So, terms = ax, bx and cx.

Terms are in G.P. if common ratio between terms are equal,

bxax=cxbxbx.bx=cx.ax(bx)2=(ax.cx)(b2)x=(ac)xFrom (i),mx=mx.\Rightarrow \dfrac{b^x}{a^x} = \dfrac{c^x}{b^x} \\[1em] \Rightarrow b^x.b^x = c^x.a^x \\[1em] \Rightarrow (b^x)^2 = (a^x.c^x) \\[1em] \Rightarrow (b^2)^x = (ac)^x \\[1em] \text{From (i)},\\[1em] \Rightarrow m^x = m^x.

Since, L.H.S. = R.H.S.,

Hence, proved that on raising each term of a G.P. to the power x, the resulting sequence is also a G.P.

Question 65

If a, b and c are in A.P. a, x, b are in G.P. whereas b, y and c are also in G.P.

Show that : x2, b2, y2 are in A.P.

Answer

Given,

a, b, c are in A.P.

⇒ 2b = a + c ........(i)

a, x, b are in G.P.

⇒ x2 = ab ........(ii)

b, y and c are in G.P.

⇒ y2 = bc .........(iii)

Adding (ii) and (iii) we get,

⇒ x2 + y2 = ab + bc

⇒ x2 + y2 = b(a + c)

⇒ x2 + y2 = b.2b (From i)

⇒ x2 + y2 = 2b2.

Hence, proved that x2, b2, y2 are in A.P.

Question 66

If x, y and z are in G.P., show that x4, y4 and z4 are also in G.P.

Answer

Given, x, y and z are in G.P.

yx=zy\therefore \dfrac{y}{x} = \dfrac{z}{y}

∴ y2 = xz = m (let) .....(1)

New terms = x4, y4 and z4.

For the terms to be in G.P., common ratio between terms must be equal,

y4x4=z4y4(y4)2=x4.z4(y2)4=(xz)4\Rightarrow \dfrac{y^4}{x^4} = \dfrac{z^4}{y^4} \\[1em] \Rightarrow (y^4)^2 = x^4.z^4 \\[1em] \Rightarrow (y^2)^4 = (xz)^4

Substituting value from equation (1), we get :

⇒ m4 = m4.

Since, L.H.S. = R.H.S.

Hence, proved that x4, y4 and z4 are in G.P.

Question 67

Find the sum of first n terms of the G.P. 5,15,45\sqrt{5}, \sqrt{15}, \sqrt{45}, ...........

Answer

Common ratio (r) = 155=5×35=3\dfrac{\sqrt{15}}{\sqrt{5}} = \dfrac{\sqrt{5} \times \sqrt{3}}{\sqrt{5}} = \sqrt{3}.

By formula,

Sum of first n terms of G.P. = a(rn1)(r1)\dfrac{a(r^n - 1)}{(r - 1)}

Substituting values we get :

(S)=5[(3)n1]31(S) = \dfrac{\sqrt{5}[(\sqrt{3})^n - 1]}{\sqrt{3} - 1}.

Hence, sum of first n terms of the G.P. 5,15,45..... is 5[(3)n1]31.\sqrt{5}, \sqrt{15}, \sqrt{45} ..... \text{ is } \dfrac{\sqrt{5}[(\sqrt{3})^n - 1]}{\sqrt{3} - 1}.

REFLECTION

Question 68

Find the values of m and n, in each case; if :

(i) (4, -3) on reflection in x-axis gives (-m, n).

(ii) (m, 5) on reflection in y-axis gives (-5, n - 2)

(iii) (-6, n + 2) on reflection in origin gives (m + 3, -4).

Answer

(i) We know that,

On reflection in x-axis, the sign of y-coordinate changes.

∴ (4, -3) on reflection in x-axis gives (4, 3).

Given,

(4, -3) on reflection in x-axis gives (-m, n)

∴ (-m, n) = (4, 3)

⇒ -m = 4 and n = 3

⇒ m = -4 and n = 3.

Hence, m = -4 and n = 3.

(ii) We know that,

On reflection in y-axis, the sign of x-coordinate changes.

∴ (m, 5) on reflection in y-axis gives (-m, 5).

Given,

(m, 5) on reflection in y-axis gives (-5, n - 2)

∴ (-m, 5) = (-5, n - 2)

⇒ -m = -5 and n - 2 = 5

⇒ m = 5 and n = 7.

Hence, m = 5 and n = 7.

(iii) We know that,

On reflection in origin, the sign of x-coordinate and y-coordinate changes.

∴ (-6, n + 2) on reflection in origin gives [6, -(n + 2)].

Given,

(-6, n + 2) on reflection in origin gives (m + 3, -4)

∴ [6, -(n + 2)] = (m + 3, -4)

⇒ 6 = m + 3 and -(n + 2) = -4

⇒ m = 6 - 3 and -n - 2 = -4

⇒ m = 3 and -n = -4 + 2

⇒ m = 3 and -n = -2

⇒ m = 3 nd n = 2.

Hence, m = 3 and n = 2.

Question 69

Points A and B have the coordinates (-2, 4) and (-4, 1) respectively. Find :

(i) the co-ordinates of A', the image of A in the line x = 0.

(ii) the coordinates of B', the image of B in the y-axis.

(iii) the coordinates of A", the image of A in the line BB'.

Points A and B have the coordinates (-2, 4) and (-4, 1) respectively. Find. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Hence, write the angle between the lines A'A" and BB'. Assign a special name to the figure B'A'BA".

Answer

(i) x = 0 is the y-axis.

On reflection in y-axis,

A(-2, 4) ⇒ A'(2, 4).

Hence, coordinates of A' = (2, 4).

(ii) On reflection in y-axis,

B(-4, 1) ⇒ B'(4, 1).

Hence, coordinates of B' = (4, 1).

(iii) From graph,

On reflection in line BB'

A(-2, 4) ⇒ A"(-2, -2).

Hence, coordinates of A" = (-2, -2).

From graph,

Angle between lines A'A" and BB' = 56° 19' and B'A'BA" is a parallelogram.

Question 70

Triangle OA1B1 is the reflection of triangle OAB in origin, where A1 (4, -5) is the image of A and B1 (-7, 0) is the image of B.

(i) Write down the co-ordinates of A and B and draw a diagram to represent this information.

(ii) Give a special name to the quadrilateral ABA1B1. Give reason.

(iii) Find the co-ordinates of A2, the image of A under reflection in x-axis followed by reflection in y-axis.

(iv) Find the co-ordinates of B2, the image of B under reflection in y-axis followed by reflection in origin.

Answer

(i) From graph,

Triangle OA1B1 is the reflection of triangle OAB in origin, where A1 (4, -5) is the image of A and B1 (-7, 0) is the image of B. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Coordinates of A = (-4, 5) and B = (7, 0).

(ii) By distance formula,

OA = (40)2+(50)2=(4)2+52=16+25=41\sqrt{(-4 - 0)^2 + (5 - 0)^2} = \sqrt{(-4)^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41} units.

OA1 = (40)2+(50)2=16+25=41\sqrt{(4 - 0)^2 + (-5 - 0)^2} = \sqrt{16 + 25} = \sqrt{41} units.

OB = OB1 = 7 units.

Since, diagonals bisect each other.

Hence, ABA1B1 is a parallelogram.

(iii) We know that,

On reflection in x-axis, the sign of y-coordinate changes.

∴ (-4, 5) on reflection in x-axis gives (-4, -5).

We know that,

On reflection in y-axis, the sign of x-coordinate changes.

∴ (-4, -5) on reflection in y-axis gives (4, -5).

∴ A2 = (4, -5).

Hence, coordinates of A2 = (4, -5).

(iv) We know that,

On reflection in y-axis, the sign of x-coordinate changes.

∴ (7, 0) on reflection in y-axis gives (-7, 0).

We know that,

On reflection in x-axis, the sign of y-coordinate changes.

∴ (-7, 0) on reflection in x-axis gives (-7, 0).

∴ B2 = (-7, 0).

Hence, coordinates of B2 = (-7, 0).

SECTION AND MID-POINT FORMULAE

Question 71

In what ratio does the point M(p, -1) divide the line segment joining the points A(1, -3) and B(6, 2) ? Hence, find the value of p.

In what ratio does the point M(p, -1) divide the line segment joining the points A(1, -3) and B(6, 2) ? Hence, find the value of p. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Let the point M(p, -1) divide the line segment joining the points A(1, -3) and B(6, 2) in ratio k : 1.

By section formula,

y=m1y2+m2y1m1+m2y = \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}

Substituting value we get,

1=k×2+1×3k+11=2k3k+1(k+1)=2k3k1=2k32k+k=1+33k=2k=23.\Rightarrow -1 = \dfrac{k \times 2 + 1 \times -3}{k + 1} \\[1em] \Rightarrow -1 = \dfrac{2k - 3}{k + 1} \\[1em] \Rightarrow -(k + 1) = 2k - 3 \\[1em] \Rightarrow -k - 1 = 2k - 3 \\[1em] \Rightarrow 2k + k = -1 + 3 \\[1em] \Rightarrow 3k = 2 \\[1em] \Rightarrow k = \dfrac{2}{3}.

⇒ k : 1 = 23:1\dfrac{2}{3} : 1 = 2 : 3.

By section formula,

x=m1x2+m2x1m1+m2x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}

Substituting value we get,

p=2×6+3×12+3p=12+35p=155p=3.\Rightarrow p = \dfrac{2 \times 6 + 3 \times 1}{2 + 3} \\[1em] \Rightarrow p = \dfrac{12 + 3}{5} \\[1em] \Rightarrow p = \dfrac{15}{5} \\[1em] \Rightarrow p = 3.

Hence, ratio = 2 : 3 and p = 3.

Question 72

A(-4, 4), B(x, -1) and C(6, y) are the vertices of △ABC. If the centroid of this triangle ABC is at the origin, find the values of x and y.

Answer

By formula,

Centroid of triangle = (x1+x2+x33,y1+y2+y33)\Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big)

Given,

Centroid of triangle = (0, 0)

Substituting values for x-coordinate we get,

0=(4+x+63)4+x+6=0x+2=0x=2.\Rightarrow 0 = \Big(\dfrac{-4 + x + 6}{3}\Big) \\[1em] \Rightarrow -4 + x + 6 = 0 \\[1em] \Rightarrow x + 2 = 0 \\[1em] \Rightarrow x = -2.

Substituting values for y-coordinate we get,

0=(4+(1)+y3)41+y=0y+3=0y=3.\Rightarrow 0 = \Big(\dfrac{4 + (-1) + y}{3}\Big) \\[1em] \Rightarrow 4 - 1 + y = 0 \\[1em] \Rightarrow y + 3 = 0 \\[1em] \Rightarrow y = -3.

Hence, x = -2 and y = -3.

Question 73

A(2, 5), B(-1, 2) and C(5, 8) are the vertices of △ABC. P and Q are points on AB and AC respectively such that AP : PB = AQ : QC = 1 : 2.

(a) Find the coordinates of points P and Q.

(b) Show that BC = 3 × PQ.

A(2, 5), B(-1, 2) and C(5, 8) are the vertices of △ABC. P and Q are points on AB and AC respectively such that AP : PB = AQ : QC = 1 : 2. (a) Find the coordinates of points P and Q. (b) Show that BC = 3 × PQ. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

(a) Let coordinates of P be (x, y)

By section formula,

P(x, y) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values we get,

P=(1×1+2×21+2,1×2+2×51+2)P=(1+43,2+103)P=(33,123)P=(1,4).\Rightarrow P = \Big(\dfrac{1 \times -1 + 2 \times 2}{1 + 2}, \dfrac{1 \times 2 + 2 \times 5}{1 + 2}\Big) \\[1em] \Rightarrow P = \Big(\dfrac{-1 + 4}{3}, \dfrac{2 + 10}{3}\Big) \\[1em] \Rightarrow P = \Big(\dfrac{3}{3}, \dfrac{12}{3}\Big) \\[1em] \Rightarrow P = (1, 4).

Let coordinates of Q be (a, b)

By section formula,

Q(a, b) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Substituting values we get,

Q=(1×5+2×21+2,1×8+2×51+2)Q=(5+43,8+103)Q=(93,183)Q=(3,6).\Rightarrow Q = \Big(\dfrac{1 \times 5 + 2 \times 2}{1 + 2}, \dfrac{1 \times 8 + 2 \times 5}{1 + 2}\Big) \\[1em] \Rightarrow Q = \Big(\dfrac{5 + 4}{3}, \dfrac{8 + 10}{3}\Big) \\[1em] \Rightarrow Q = \Big(\dfrac{9}{3}, \dfrac{18}{3}\Big) \\[1em] \Rightarrow Q = (3, 6).

Hence, coordinates of P = (1, 4) and Q = (3, 6).

(b) By distance formula,

BC=[5(1)]2+(82)2=[5+1]2+62=62+62=36+36=72=62 units.PQ=(31)2+(64)2=22+22=4+4=8=22.BC = \sqrt{[5 - (-1)]^2 + (8 - 2)^2} \\[1em] = \sqrt{[5 + 1]^2 + 6^2} \\[1em] = \sqrt{6^2 + 6^2} \\[1em] = \sqrt{36 + 36} \\[1em] = \sqrt{72} = 6\sqrt{2} \text{ units}. \\[1em] PQ = \sqrt{(3 - 1)^2 + (6 - 4)^2} \\[1em] = \sqrt{2^2 + 2^2} \\[1em] = \sqrt{4 + 4} \\[1em] = \sqrt{8} \\[1em] = 2\sqrt{2}.

3PQ = 3 × 22=622\sqrt{2} = 6\sqrt{2} = BC.

Hence, proved that BC = 3PQ.

Question 74

Show that the points (a, b), (a + 3, b + 4), (a - 1, b + 7) and (a - 4, b + 3) are the vertices of a parallelogram.

Answer

Let the points be A(a, b), B(a + 3, b + 4), C(a - 1, b + 7) and D(a - 4, b + 3).

We know that,

Distance formula = (x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

By distance formula,

AB=(a+3a)2+(b+4b)2=32+42=9+16=25=5 units.BC=[(a1)(a+3)]2+[(b+7)(b+4)]2=[aa13]2+[bb+74]2=[4]2+[3]2=16+9=25=5 units.CD=[(a4)(a1)]2+[(b+3)(b+7)]2=[aa4+1]2+[bb+37]2=[3]2+[4]2=9+16=25=5 units.DA=[a(a4)]2+[b(b+3)]2=42+(3)2=16+9=25=5 units.AB = \sqrt{(a + 3 - a)^2 + (b + 4 - b)^2} \\[1em] = \sqrt{3^2 + 4^2} \\[1em] = \sqrt{9 + 16} \\[1em] = \sqrt{25} \\[1em] = 5\text{ units}. \\[1em] BC = \sqrt{[(a - 1) - (a + 3)]^2 + [(b + 7) - (b + 4)]^2} \\[1em] =\sqrt{[a - a - 1 - 3]^2 + [b - b + 7 - 4]^2} \\[1em] = \sqrt{[-4]^2 + [3]^2} \\[1em] = \sqrt{16 + 9} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}. \\[1em] CD = \sqrt{[(a - 4) - (a - 1)]^2 + [(b + 3) - (b + 7)]^2} \\[1em] = \sqrt{[a - a - 4 + 1]^2 + [b - b + 3 - 7]^2} \\[1em] = \sqrt{[-3]^2 + [-4]^2} \\[1em] = \sqrt{9 + 16} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}. \\[1em] DA = \sqrt{[a - (a - 4)]^2 + [b - (b + 3)]^2} \\[1em] = \sqrt{4^2 + (-3)^2} \\[1em] = \sqrt{16 + 9} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}.

Since, AB = BC = CD = DA.

Hence, proved that ABCD are the vertices of a parallelogram.

Question 75

A(-4, 2), B(0, 2) and C(-2, -4) are vertices of a triangle ABC. P, Q and R are mid-points of sides BC, CA and AB, respectively. Show that the centroid of △PQR is the same as the centroid of △ABC.

Answer

By formula,

Mid-point (M) = (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

A(-4, 2), B(0, 2) and C(-2, -4) are vertices of a triangle ABC. P, Q and R are mid-points of sides BC, CA and AB, respectively. Show that the centroid of △PQR is the same as the centroid of △ABC. Section and Mid-Point Formula, Concise Mathematics Solutions ICSE Class 10.

Given,

P is mid-point of BC.

P=(0+(2)2,2+(4)2)=(22,22)=(1,1).\therefore P = \Big(\dfrac{0 + (-2)}{2}, \dfrac{2 + (-4)}{2}\Big) \\[1em] = \Big(\dfrac{-2}{2}, \dfrac{-2}{2}\Big) \\[1em] = (-1, -1).

Q is mid-point of CA.

Q=(2+(4)2,4+22)=(62,22)=(3,1).\therefore Q = \Big(\dfrac{-2 + (-4)}{2}, \dfrac{-4 + 2}{2}\Big) \\[1em] = \Big(\dfrac{-6}{2}, \dfrac{-2}{2}\Big) \\[1em] = (-3, -1).

R is mid-point of AB.

R=(4+02,2+22)=(42,42)=(2,2).\therefore R = \Big(\dfrac{-4 + 0}{2}, \dfrac{2 + 2}{2}\Big) \\[1em] = \Big(\dfrac{-4}{2}, \dfrac{4}{2}\Big) \\[1em] = (-2, 2).

Centroid of the triangle is given by (G) = (x1+x2+x33,y1+y2+y33)\Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big)

Let G1 and G2 be centroid of △ABC and △PQR.

Substituting values we get,

G1=(4+0+(2)3,2+2+(4)3)=(63,03)=(2,0).G2=((1)+(3)+(2)3,(1)+(1)+23)=(63,03)=(2,0).G_1 = \Big(\dfrac{-4 + 0 + (-2)}{3}, \dfrac{2 + 2 + (-4)}{3}\Big) \\[1em] = \Big(-\dfrac{6}{3}, \dfrac{0}{3}\Big) \\[1em] = (-2, 0). \\[1em] G_2 = \Big(\dfrac{(-1) + (-3) + (-2)}{3}, \dfrac{(-1) + (-1) + 2}{3}\Big) \\[1em] = \Big(\dfrac{-6}{3}, \dfrac{0}{3}\Big) \\[1em] = (-2, 0).

Since, G1 = G2.

Hence, proved that the centroid of △PQR is the same as the centroid of △ABC.

EQUATIONS OF STRAIGHT LINES

Question 76

Given points A(1, 5), B(-3, 7) and C(15, 9).

(i) Find the equation of a line passing through the mid-point of AC and the point B.

(ii) Find the equation of the line through C and parallel to AB.

(iii) The lines obtained in part (i) and (ii) above, intersect each other at a point P. Find the coordinates of the point P.

(iv) Assign, giving reason, a special name of the figure PABC.

Answer

(i) By formula,

Mid-point (M) = (m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big)

Let D be the mid-point of AC.

D = (1+152,5+92)=(162,142)\Big(\dfrac{1 + 15}{2}, \dfrac{5 + 9}{2}\Big) = \Big(\dfrac{16}{2}, \dfrac{14}{2}\Big) = (8, 7).

Given points A(1, 5), B(-3, 7) and C(15, 9). (i) Find the equation of a line passing through the mid-point of AC and the point B. (ii) Find the equation of the line through C and parallel to AB. (iii) The lines obtained in part (i) and (ii) above, intersect each other at a point P. Find the coordinates of the point P. (iv) Assign, giving reason, a special name of the figure PABC. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

By two-point formula,

Equation of straight line :

⇒ y - y1 = y2y1x2x1\dfrac{y_2 - y_1}{x_2 - x_1}(x - x1)

Equation of BD :

y7=778(3)[x(3)]y7=0×(x+3)y7=0.\Rightarrow y - 7 = \dfrac{7 - 7}{8 - (-3)}[x - (-3)] \\[1em] \Rightarrow y - 7 = 0 \times (x + 3) \\[1em] \Rightarrow y - 7 = 0.

Hence, equation of a line passing through the mid-point of AC and the point B is y - 7 = 0.

(ii) By formula,

Slope = y2y1x2x1\dfrac{y_2 - y_1}{x_2 - x_1}

Slope of AB = 7531=24=12\dfrac{7 - 5}{-3 - 1} = -\dfrac{2}{4} = -\dfrac{1}{2}.

As, slope of parallel lines are equal.

∴ Slope of line parallel to AB = -12\dfrac{1}{2}.

By point-slope form, equation :

yy1=m(xx1)y - y_1 = m(x - x_1)

Slope of line through C and parallel to AB.

y9=12(x15)2(y9)=1(x15)2y18=x+15x+2y=15+18x+2y=33.\Rightarrow y - 9 = -\dfrac{1}{2}(x - 15) \\[1em] \Rightarrow 2(y - 9) = -1(x - 15) \\[1em] \Rightarrow 2y - 18 = -x + 15 \\[1em] \Rightarrow x + 2y = 15 + 18 \\[1em] \Rightarrow x + 2y = 33.

Hence, equation of the line through C and parallel to AB is x + 2y = 33.

(iii) Equations are :

⇒ y - 7 = 0 ..........(1)

⇒ x + 2y = 33 .........(2)

From equation (1),

⇒ y = 7 ........(3)

Substituting above value of y in equation (2), we get :

⇒ x + 2(7) = 33

⇒ x + 14 = 33

⇒ x = 33 - 14 = 19.

∴ P = (x, y) = (19, 7).

Hence, P = (19, 7).

(iv) Steps :

  1. Mark points A, B, C and P.

  2. Join AB, BC, CP and PA.

  3. From graph, PABC is a trapezium.

Hence, PABC is a trapezium.

Question 77

The line x - 4y = 6 is the perpendicular bisector of the line segment AB. If B = (1, 3); find the coordinates of point A.

Answer

Given, equation of line,

⇒ x - 4y = 6

⇒ x - 4y - 6 = 0

⇒ 4y = x - 6

⇒ y = 14x64\dfrac{1}{4}x - \dfrac{6}{4}.

Comparing with y = mx + c, we get :

Slope = 14\dfrac{1}{4}.

Since, given line and AB are perpendicular to each other, so their products = -1. Let slope of line AB be m1.

14×m1=1\therefore \dfrac{1}{4} \times m_1 = -1

⇒ m1 = -4.

Now, equation of AB can be found by point slope form,

⇒ y - y1 = m(x - x1)

⇒ y - 3 = -4(x - 1)

⇒ y - 3 = -4x + 4

⇒ 4x + y - 3 - 4 = 0

⇒ 4x + y - 7 = 0.

Since, line x - 4y - 6 = 0 is perpendicular bisector of 4x + y - 7 = 0 hence solving them simultaneously to find point of intersection,

⇒ x - 4y = 6 .........(1)

⇒ 4x + y = 7 ........(2)

Multiplying (2) with 4 and adding with (1), we get :

⇒ 4(4x + y) + x - 4y = 4 × 7 + 6

⇒ 16x + 4y + x - 4y = 28 + 6

⇒ 17x = 34

⇒ x = 3417\dfrac{34}{17}

⇒ x = 2.

Putting value of x in (1),

⇒ 2 - 4y = 6

⇒ -4y = 4

⇒ y = -1.

Mid-point of AB = (2, -1). Let A be (a, b).

By mid-point formula, coordinates of mid-point of AB are (x1+x22,y1+y22)\Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big)

(2,1)=(a+12,b+32)a+12=2 and b+32=1a+1=4 and b+3=2a=3 and b=5.\therefore (2, -1) = \Big(\dfrac{a + 1}{2}, \dfrac{b + 3}{2}\Big) \\[1em] \Rightarrow \dfrac{a + 1}{2} = 2 \text{ and } \dfrac{b + 3}{2} = -1 \\[1em] \Rightarrow a + 1 = 4 \text{ and } b + 3 = -2 \\[1em] \Rightarrow a = 3 \text{ and } b = -5.

Hence, coordinates of A = (3, -5).

Question 78

Find the equation of a line passing through the points (7, -3) and (2, -2). If this line meets x-axis at point P and y-axis at point Q; find the co-ordinates of points P and Q.

Answer

By two-point formula,

Equation of line : yy1=y2y1x2x1(xx1)y - y_1 = \dfrac{y_2 - y_1}{x_2 - x_1}(x - x_1)

∴ Equation of line passing through (7, -3) and (2, -2) is

y(3)=2(3)27×(x7)y+3=2+35×(x7)y+3=15(x7)5(y+3)=(x7)5y+15=x+7x+5y+157=0x+5y+8=0.\Rightarrow y - (-3) = \dfrac{-2 - (-3)}{2 - 7} \times (x - 7) \\[1em] \Rightarrow y + 3 = \dfrac{-2 + 3}{-5} \times (x - 7) \\[1em] \Rightarrow y + 3 = -\dfrac{1}{5}(x - 7) \\[1em] \Rightarrow 5(y + 3) = -(x - 7) \\[1em] \Rightarrow 5y + 15 = -x + 7 \\[1em] \Rightarrow x + 5y + 15 - 7 = 0 \\[1em] \Rightarrow x + 5y + 8 = 0.

Given,

Line meets x-axis at point P. We know that, y-coordinate = 0 at x-axis.

Substituting, y = 0 in x + 5y + 8 = 0, we get :

⇒ x + 5(0) + 8 = 0

⇒ x + 8 = 0

⇒ x = -8.

∴ P = (-8, 0).

Line meets y-axis at point Q. We know that, x-coordinate = 0 at y-axis.

Substituting, x = 0 in x + 5y + 8 = 0, we get :

⇒ 0 + 5y + 8 = 0

⇒ 5y + 8 = 0

⇒ y = -85\dfrac{8}{5}.

∴ Q = (0,85)\Big(0, -\dfrac{8}{5}\Big).

Hence, equation of line is x + 5y + 8 = 0, P = (-8, 0) and Q = (0,85)\Big(0, -\dfrac{8}{5}\Big).

Question 79

A(-3, 1), B(4, 4) and C(1, -2) are the vertices of a triangle ABC. Find :

(i) the equation of median BD,

(ii) the equation of altitude AE.

Answer

(i) D is the mid-point of AC [∵ BD is median]

By mid-point formula,

D=(x1+x22,y1+y22)D=(3+12,1+(2)2)D=(22,12)D=(1,12)\Rightarrow D = \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) \\[1em] \Rightarrow D = \Big(\dfrac{-3 + 1}{2}, \dfrac{1 + (-2)}{2}\Big) \\[1em] \Rightarrow D = \Big(\dfrac{-2}{2}, \dfrac{-1}{2}\Big) \\[1em] \Rightarrow D = \Big(-1, -\dfrac{1}{2}\Big)

By two-point formula,

Equation of line : yy1=y2y1x2x1(xx1)y - y_1 = \dfrac{y_2 - y_1}{x_2 - x_1}(x - x_1)

∴ Equation of line passing through (4, 4) and (1,12)\Big(-1, -\dfrac{1}{2}\Big).

y4=12414×(x4)y4=1825×(x4)y4=925×(x4)y4=910(x4)10(y4)=9(x4)10y40=9x369x10y36+40=09x10y+4=09x+4=10y.\Rightarrow y - 4 = \dfrac{-\dfrac{1}{2} - 4}{-1 - 4} \times (x - 4) \\[1em] \Rightarrow y - 4 = \dfrac{\dfrac{-1 - 8}{2}}{-5} \times (x - 4) \\[1em] \Rightarrow y - 4 = \dfrac{-\dfrac{9}{2}}{-5} \times (x - 4) \\[1em] \Rightarrow y - 4 = \dfrac{9}{10}(x - 4) \\[1em] \Rightarrow 10(y - 4) = 9(x - 4) \\[1em] \Rightarrow 10y - 40 = 9x - 36 \\[1em] \Rightarrow 9x - 10y - 36 + 40 = 0 \\[1em] \Rightarrow 9x - 10y + 4 = 0 \\[1em] \Rightarrow 9x + 4 = 10y.

Hence, equation of median BD is 10y = 9x + 4.

(ii) By formula,

Slope = y2y1x2x1\dfrac{y_2 - y_1}{x_2- x_1}

Slope of BC = 2414=63\dfrac{-2 - 4}{1 - 4} = \dfrac{-6}{-3} = 2.

We know that,

Product of slope of perpendicular lines = -1.

⇒ Slope of BC × Slope of AE = -1

⇒ 2 × Slope of AE = -1

⇒ Slope of AE = -12\dfrac{1}{2}.

By point slope form, equation of AE :

yy1=m(xx1)y1=12[x(3)]2(y1)=[x+3]2y2=x32y+x=3+2x+2y=1x+2y+1=0.\Rightarrow y - y_1 = m(x - x_1) \\[1em] \Rightarrow y - 1 = -\dfrac{1}{2}[x - (-3)] \\[1em] \Rightarrow 2(y - 1) = -[x + 3] \\[1em] \Rightarrow 2y - 2 = -x - 3 \\[1em] \Rightarrow 2y + x = -3 + 2 \\[1em] \Rightarrow x + 2y = -1 \\[1em] \Rightarrow x + 2y + 1 = 0.

Hence, equation of altitude AE is x + 2y + 1 = 0.

Question 80

Find equation of perpendicular bisector of the line segment joining the points (4, -3) and (3, 1).

Answer

Mid-point of line segment joining the points (4, -3) and (3, 1) is (4+32,3+12)=(72,22)=(72,1).\Big(\dfrac{4 + 3}{2}, \dfrac{-3 + 1}{2}\Big) = \Big(\dfrac{7}{2}, \dfrac{-2}{2}\Big) = \Big(\dfrac{7}{2}, -1\Big).

Slope of line joining the points (4, -3) and (3, 1) is :

=y2y1x2x1=1(3)34=41=4.= \dfrac{y_2 - y_1}{x_2 - x_1} \\[1em] = \dfrac{1 - (-3)}{3 - 4} \\[1em] = \dfrac{4}{-1} \\[1em] = -4.

We know that,

⇒ Product of slopes of perpendicular line = -1.

⇒ Slope of line joining the points (4, -3) and (3, 1) × Slope of perpendicular line = -1

⇒ -4 × Slope of perpendicular line = -1

⇒ Slope of perpendicular line = 14\dfrac{1}{4}.

Perpendicular bisector of the line segment joining the points (4, -3) and (3, 1) will have slope = 14\dfrac{1}{4} and will pass through the point (72,1)\Big(\dfrac{7}{2}, -1\Big).

By point-slope form, equation of perpendicular bisector is

yy1=m(xx1)y(1)=14(x72)4(y+1)=x724y+4=x722(4y+4)=2(x72)8y+8=2x72x8y78=02x8y15=0.\Rightarrow y - y_1 = m(x - x_1) \\[1em] \Rightarrow y - (-1) = \dfrac{1}{4}\Big(x - \dfrac{7}{2}\Big) \\[1em] \Rightarrow 4(y + 1) = x - \dfrac{7}{2} \\[1em] \Rightarrow 4y + 4 = x - \dfrac{7}{2} \\[1em] \Rightarrow 2(4y + 4) = 2\Big(x - \dfrac{7}{2}\Big) \\[1em] \Rightarrow 8y + 8 = 2x - 7 \\[1em] \Rightarrow 2x - 8y - 7 - 8 = 0 \\[1em] \Rightarrow 2x - 8y - 15 = 0.

Hence, equation of perpendicular bisector of the line segment joining the points (4, -3) and (3, 1) is 2x - 8y - 15 = 0.

Question 81(a)

If (p + 1)x + y = 3 and 3y - (p - 1)x = 4 are perpendicular to each other, find the value of p.

Answer

Given 1st equation,

⇒ (p + 1)x + y = 3

⇒ y = -(p + 1)x + 3

Comparing above equation with y = mx + c, we get :

⇒ Slope (m1) = -(p + 1)

Given 2nd equation,

⇒ 3y - (p - 1)x = 4

⇒ 3y = (p - 1)x + 4

⇒ y = (p1)x3+43\dfrac{(p - 1)x}{3} + \dfrac{4}{3}

Comparing above equation with y = mx + c, we get :

⇒ Slope (m2) = p13\dfrac{p - 1}{3}

We know that,

Product of slopes of perpendicular lines = -1.

(p+1)×p13=1(p21)3=1(p21)=3p21=3p2=4p=4=±2.\therefore -(p + 1) \times \dfrac{p - 1}{3} = -1 \\[1em] \Rightarrow \dfrac{-(p^2 - 1)}{3} = -1 \\[1em] \Rightarrow -(p^2 - 1) = -3 \\[1em] \Rightarrow p^2 - 1 = 3 \\[1em] \Rightarrow p^2 = 4 \\[1em] \Rightarrow p = \sqrt{4} = \pm 2.

Hence, p = ±2\pm 2.

Question 81(b)

If y + (2p + 1)x + 3 = 0 and 8y - (2p - 1)x = 5 are mutually perpendicular, find the value of p.

Answer

Given,

⇒ y + (2p + 1)x + 3 = 0

⇒ y = -(2p + 1)x - 3

Comparing above equation with y = mx + c, we get :

⇒ Slope (m1) = -(2p + 1)

Given,

⇒ 8y - (2p - 1)x = 5

⇒ 8y = (2p - 1)x + 5

⇒ y = 2p18+58\dfrac{2p - 1}{8} + \dfrac{5}{8}

Comparing above equation with y = mx + c, we get :

⇒ Slope (m2) = 2p18\dfrac{2p - 1}{8}.

We know that,

Product of slopes of perpendicular lines = -1.

(2p+1)×2p18=1(4p21)8=1(4p21)=84p21=84p2=9p2=94p=94=±32=±112.\therefore -(2p + 1) \times \dfrac{2p - 1}{8} = -1 \\[1em] \Rightarrow \dfrac{-(4p^2 - 1)}{8} = -1 \\[1em] \Rightarrow -(4p^2 - 1) = -8 \\[1em] \Rightarrow 4p^2 - 1 = 8 \\[1em] \Rightarrow 4p^2 = 9 \\[1em] \Rightarrow p^2 = \dfrac{9}{4} \\[1em] \Rightarrow p = \sqrt{\dfrac{9}{4}} = \pm \dfrac{3}{2} = \pm 1\dfrac{1}{2}.

Hence, p = ±112\pm 1\dfrac{1}{2}.

Question 82

The coordinates of the vertex A of a square ABCD is (1, 2) and the equation of diagonal BD is x + 2y = 10. Find the equation of the other diagonal and the co-ordinates of the centre of the square.

Answer

The square is shown in the fig below:

The coordinates of the vertex A of a square ABCD is (1, 2) and the equation of diagonal BD is x + 2y = 10. Find the equation of the other diagonal and the co-ordinates of the centre of the square. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Given,

Equation of diagonal BD is x + 2y = 10

⇒ 2y = -x + 10

⇒ y = 12x+102-\dfrac{1}{2}x + \dfrac{10}{2}

Comparing it with y = mx + c, we get :

Slope (m1) = 12-\dfrac{1}{2}.

We know that,

Diagonals of a square are perpendicular to each other and product of slopes of perpendicular lines = -1.

Let slope of diagonal AC = m2.

m2×12=1m2=2m2=2.\therefore m_2 \times -\dfrac{1}{2} = -1 \\[1em] \Rightarrow -m_2 = -2 \\[1em] \Rightarrow m_2 = 2.

By point-slope form,

Equation of AC is y - y1 = m(x - x1)

⇒ y - 2 = 2(x - 1)

⇒ y - 2 = 2x - 2

⇒ 2x - 2 + 2 = y

⇒ y = 2x.

Since, center of the square is the point of intersection of its diagonals.

Solving,

x + 2y = 10 and y = 2x simultaneously, we get :

⇒ x + 2y = 10 .......(1)

⇒ y = 2x .........(2)

Substituting value of y from eq (2) in (1), we get :

⇒ x + 2(2x) = 10

⇒ x + 4x = 10

⇒ 5x = 10

⇒ x = 105\dfrac{10}{5}

⇒ x = 2.

⇒ y = 2x = 2(2) = 4.

Center = (2, 4).

Hence, equation of other diagonal is y = 2x and coordinates of circle = (2, 4).

Question 83

Find the value of a for which the points A(a, 3), B(2, 1) and C(5, a) are collinear. Hence, find the equation of line.

Answer

Since, points A, B and C are collinear.

∴ Slope of AB = Slope of BC

132a=a15222a=a132×3=(a1)(2a)2aa22+a=63aa2=6+2a23a4=0a24a+a4=0a(a4)+1(a4)=0(a+1)(a4)=0a+1=0 or a4=0a=1 or a=4.\Rightarrow \dfrac{1- 3}{2 - a} = \dfrac{a - 1}{5 - 2} \\[1em] \Rightarrow \dfrac{-2}{2 - a} = \dfrac{a - 1}{3} \\[1em] \Rightarrow -2 \times 3 = (a - 1)(2 - a) \\[1em] \Rightarrow 2a - a^2 - 2 + a = -6 \\[1em] \Rightarrow 3a - a^2 = -6 + 2 \\[1em] \Rightarrow a^2 - 3a - 4 = 0 \\[1em] \Rightarrow a^2 - 4a + a - 4 = 0 \\[1em] \Rightarrow a(a - 4) + 1(a - 4) = 0 \\[1em] \Rightarrow (a + 1)(a - 4) = 0 \\[1em] \Rightarrow a + 1 = 0 \text{ or } a - 4 = 0 \\[1em] \Rightarrow a = -1 \text{ or } a = 4.

Let a = -1.

A = (-1, 3) and B = (2, 1).

Slope of AB =y2y1x2x1=132(1)=23.\text{Slope of AB } = \dfrac{y_2 - y_1}{x_2 - x_1} \\[1em] = \dfrac{1 - 3}{2 - (-1)} \\[1em] = \dfrac{-2}{3}.

By point-slope form,

Equation of AB,

⇒ y - y1 = m(x - x1)

⇒ y - 3 = 23-\dfrac{2}{3}[x - (-1)]

⇒ 3(y - 3) = -2(x + 1)

⇒ 3y - 9 = -2x - 2

⇒ 3y - 9 = -2x - 2

⇒ 2x + 3y = -2 + 9

⇒ 2x + 3y = 7.

Let a = 4.

A = (4, 3) and B = (2, 1).

Slope of AB =y2y1x2x1=1324=22=1.\text{Slope of AB } = \dfrac{y_2 - y_1}{x_2 - x_1} \\[1em] = \dfrac{1 - 3}{2 - 4} \\[1em] = \dfrac{-2}{-2} = 1.

By point-slope form,

Equation of AB,

⇒ y - y1 = m(x - x1)

⇒ y - 3 = 1[x - 4]

⇒ y - 3 = x - 4

⇒ x - y = -3 + 4

⇒ x - y = 1.

Hence, a = -1 or 4 and equation of line = 2x + 3y = 7 or x - y = 1.

Question 84

Find the equation of the line which is perpendicular to the line xayb\dfrac{x}{a} - \dfrac{y}{b} = 1 at the point where this line meets y-axis.

Answer

Let A be the point where the line xayb\dfrac{x}{a} - \dfrac{y}{b} = 1 meets y-axis.

So, x co-ordinate of point A will be zero.

Substituting x = 0 in equation we get,

0ayb=1yb=1y=b.\Rightarrow \dfrac{0}{a} - \dfrac{y}{b} = 1 \\[1em] \Rightarrow -\dfrac{y}{b} = 1 \\[1em] \Rightarrow y = -b.

A = (0, -b).

The given line equation is,

xayb=1yb=xa1y=bax1.\Rightarrow \dfrac{x}{a} - \dfrac{y}{b} = 1 \\[1em] \Rightarrow \dfrac{y}{b} = \dfrac{x}{a} - 1 \\[1em] \Rightarrow y = \dfrac{b}{a}x - 1.

Comparing above equation with y = mx + c we get,

Slope (m) = ba\dfrac{b}{a}

Let slope of perpendicular line be m1.

As product of slope of perpendicular lines is -1,

∴ m × m1 = -1

ba×m1=1\dfrac{b}{a} \times m_1 = -1

⇒ m1 = ab-\dfrac{a}{b}.

Equation of line through P and slope = ab-\dfrac{a}{b} is

⇒ y - y1 = m(x - x1)

⇒ y - (-b) = ab-\dfrac{a}{b}(x - 0)

⇒ b(y + b) = -ax

⇒ by + b2 = -ax

⇒ ax + by + b2 = 0

Hence, equation of required line is ax + by + b2 = 0.

Question 85

Find :

(i) equation of AB

(ii) equation of CD

Find (i) equation of AB (ii) equation of CD. Equation of a Line, Concise Mathematics Solutions ICSE Class 10.

Answer

(i) By formula,

Slope = y2y1x2x1\dfrac{y_2 - y_1}{x_2 - x_1}

Substituting values we get,

Slope of AB =343(5)=18.\text{Slope of AB } = \dfrac{3 - 4}{3 - (-5)} \\[1em] = -\dfrac{1}{8}.

By point-slope form,

Equation of AB is :

⇒ y - y1 = m(x - x1)

⇒ y - 4 = 18[x(5)]-\dfrac{1}{8}[x - (-5)]

⇒ 8(y - 4) = -1(x + 5)

⇒ 8y - 32 = -x - 5

⇒ x + 8y = -5 + 32

⇒ x + 8y = 27.

Hence, equation of AB is x + 8y = 27.

(ii) From part (i) above,

Slope of AB (m1) = 18-\dfrac{1}{8}

Let slope of CD be m2.

Since, AB ⊥ CD.

∴ m1 × m2 = -1

18×m2=1-\dfrac{1}{8} \times m_2 = -1

m2=8m_2 = 8.

From figure,

D = (-3, 0)

By point-slope form,

Equation of CD is :

⇒ y - y1 = m(x - x1)

⇒ y - 0 = 8[x - (-3)]

⇒ y = 8(x + 3)

⇒ y = 8x + 24.

Hence, equation of CD is y = 8x + 24.

Question 86

A line through point P(4, 3) meets x-axis at point A and the y-axis at point B. If BP is double of PA, find the equation of AB.

Answer

Let co-ordinates of A be (a, 0) and B be (0, b).

Given,

BP = 2PA

BPPA=21 or PABP=12\dfrac{BP}{PA} = \dfrac{2}{1} \text{ or } \dfrac{PA}{BP} = \dfrac{1}{2}.

∴ P divides AB in the ratio 1 : 2.

By section formula,

P=(m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)(4,3)=(1×0+2×a1+2,1×b+2×01+2)(4,3)=(0+2a3,b+03)(4,3)=(2a3,b3)4=2a3 and 3=b3a=4×32 and b=9a=6 and b=9.\Rightarrow P = \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) \\[1em] \Rightarrow (4, 3) = \Big(\dfrac{1 \times 0 + 2 \times a}{1 + 2}, \dfrac{1 \times b + 2 \times 0}{1 + 2}\Big) \\[1em] \Rightarrow (4, 3) = \Big(\dfrac{0 + 2a}{3}, \dfrac{b + 0}{3}\Big) \\[1em] \Rightarrow (4, 3) = \Big(\dfrac{2a}{3}, \dfrac{b}{3}\Big) \\[1em] \Rightarrow 4 = \dfrac{2a}{3} \text{ and } 3 = \dfrac{b}{3} \\[1em] \Rightarrow a = \dfrac{4 \times 3}{2} \text{ and } b = 9 \\[1em] \Rightarrow a = 6 \text{ and } b = 9.

A = (a, 0) = (6, 0) and B = (0, b) = (0, 9).

Slope of AB = 9006=96=32\dfrac{9 - 0}{0 - 6} = -\dfrac{9}{6} = -\dfrac{3}{2}.

By point-slope form,

Equation of AB is :

⇒ y - y1 = m(x - x1)

⇒ y - 0 = 32-\dfrac{3}{2}(x - 6)

⇒ 2y = -3(x - 6)

⇒ 2y = -3x + 18

⇒ 3x + 2y = 18.

Hence, equation of AB is 3x + 2y = 18.

SIMILARITY

Question 87

M is the mid-point of a line segment AB; AXB and MYB are equilateral triangles on opposite sides of AB; XY cuts AB at Z. Prove that : AZ = 2ZB.

M is the mid-point of a line segment AB; AXB and MYB are equilateral triangles on opposite sides of AB; XY cuts AB at Z. Prove that : AZ = 2ZB. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

In △XZB and △MZY,

∠XZB = ∠MZY (Vertically opposite angles are equal)

∠XBZ = ∠YMZ (Each = 60°)

△XZB ~ △MZY [By AA postulate]

In similar triangles,

The ratios between the lengths of corresponding sides are equal.

ZBMZ=BXMY\dfrac{ZB}{MZ} = \dfrac{BX}{MY}

As sides of equilateral triangle are equal so,

BX = AB

and

MY = MB

BXMY=ABMB\dfrac{BX}{MY} = \dfrac{AB}{MB}

ZBMZ=BXMY=ABMB\dfrac{ZB}{MZ} = \dfrac{BX}{MY} = \dfrac{AB}{MB} ......(1)

As, M is the mid-point of AB.

∴ MB = 12AB\dfrac{1}{2}AB

From (1),

ZBMZ=ABMBZBAZAM=AB12ABZBAZAM=2ZB=2(AZAM)ZB=2AZ2AMZB=2AZAB [M is mid-point of AB]ZB=AZ+AZABZB=AZ(ABAZ)ZB=AZZB2ZB=AZ.\Rightarrow \dfrac{ZB}{MZ} = \dfrac{AB}{MB} \\[1em] \Rightarrow \dfrac{ZB}{AZ - AM} = \dfrac{AB}{\dfrac{1}{2}AB} \\[1em] \Rightarrow \dfrac{ZB}{AZ - AM} = 2 \\[1em] \Rightarrow ZB = 2(AZ - AM) \\[1em] \Rightarrow ZB = 2AZ - 2AM \\[1em] \Rightarrow ZB = 2AZ - AB \space [\because \text{M is mid-point of AB}] \\[1em] \Rightarrow ZB = AZ + AZ - AB \\[1em] \Rightarrow ZB = AZ - (AB - AZ) \\[1em] \Rightarrow ZB = AZ - ZB \\[1em] \Rightarrow 2ZB = AZ.

Hence, proved that AZ = 2ZB.

Question 88

In the given figure, if AC = 3 cm and CB = 6 cm, find the length of CR.

In the given figure, if AC = 3 cm and CB = 6 cm, find the length of CR. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

In △ABQ and △ACK,

CK || BQ

∴ ∠ACK = ∠ABQ [Corresponding angles are equal]

∠KAC = ∠QAB (Common)

∴ △ACK ~ △ABQ

From figure,

AB = AC + CB = 3 + 6 = 9 cm.

In similar triangles,

The ratios between the lengths of corresponding sides are equal.

ACAB=AKAQ=CKBQ39=AKAQ=CK7.5AKAQ=39AKAQ=13 ..........(1)\therefore \dfrac{AC}{AB} = \dfrac{AK}{AQ} = \dfrac{CK}{BQ} \\[1em] \Rightarrow \dfrac{3}{9} = \dfrac{AK}{AQ} = \dfrac{CK}{7.5} \\[1em] \Rightarrow \dfrac{AK}{AQ} = \dfrac{3}{9} \\[1em] \Rightarrow \dfrac{AK}{AQ} = \dfrac{1}{3} \space ..........(1)

Also,

CK7.5=13CK=7.53=2.5\Rightarrow \dfrac{CK}{7.5} = \dfrac{1}{3} \\[1em] \Rightarrow CK = \dfrac{7.5}{3} = 2.5

In △KRQ and △APQ,

AP || KR

∴ ∠KRQ = ∠APQ [Corresponding angles are equal]

∠KQR = ∠AQP (Common)

∴ △KRQ ~ △APQ

In similar triangles,

The ratios between the lengths of corresponding sides are equal.

KRAP=KQAQKR4.5=AQAKAQKR4.5=AQAQAKAQKR4.5=113 (From 1)KR4.5=23KR=4.5×23KR=3 cm.\therefore \dfrac{KR}{AP} = \dfrac{KQ}{AQ} \\[1em] \Rightarrow \dfrac{KR}{4.5} = \dfrac{AQ - AK}{AQ} \\[1em] \Rightarrow \dfrac{KR}{4.5} = \dfrac{AQ}{AQ} - \dfrac{AK}{AQ} \\[1em] \Rightarrow \dfrac{KR}{4.5} = 1 - \dfrac{1}{3} \text{ (From 1)} \\[1em] \Rightarrow \dfrac{KR}{4.5} = \dfrac{2}{3} \\[1em] \Rightarrow KR = 4.5 \times \dfrac{2}{3} \\[1em] \Rightarrow KR = 3 \text{ cm}.

From figure,

CR = CK + KR = 2.5 + 3 = 5.5 cm

Hence, CR = 5.5 cm

Question 89

The given figure shows a trapezium in which AB is parallel to DC and diagonals AC and BD intersect at point O. If BO : OD = 4 : 7, find :

The given figure shows a trapezium in which AB is parallel to DC and diagonals AC and BD intersect at point O. If BO : OD = 4 : 7, find. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) △AOD : △AOB

(ii) △AOB : △ACB

(iii) △DOC : △AOB

(iv) △ABD : △BOC

Answer

(i) Given,

⇒ BO : OD = 4 : 7

⇒ OD : OB = 7 : 4

Since,

△AOD and △AOB have common vertex at A and their bases OD and OB are along the same straight line.

Area of △AODArea of △AOB=ODOB=74\therefore \dfrac{\text{Area of △AOD}}{\text{Area of △AOB}} = \dfrac{OD}{OB} = \dfrac{7}{4}.

Hence, △AOD : △AOB = 7 : 4.

(ii) Since,

△AOB and △ACB have common vertex at A and their bases AO and AC are along the same straight line.

Area of △AOBArea of △ACB=AOAC=411\therefore \dfrac{\text{Area of △AOB}}{\text{Area of △ACB}} = \dfrac{AO}{AC} = \dfrac{4}{11}

Hence, △AOB : △ACB = 4 : 11.

(iii) Given,

BO : OD = 4 : 7

In △AOB and △DOC

∠AOB = ∠COD [Vertically opposite angles are equal]

∠ABO = ∠ODC [Alternate angles are equal]

∴ △AOB ~ △DOC [By AA axiom]

By area theorem,

Ratio of area of two similar triangles is equal to the square of the ratio of the corresponding sides.

Area of △DOCArea of △AOB=(ODOB)2=(74)2=4916=49:16.\therefore \dfrac{\text{Area of △DOC}}{\text{Area of △AOB}} = \Big(\dfrac{OD}{OB}\Big)^2 \\[1em] = \Big(\dfrac{7}{4}\Big)^2 \\[1em] = \dfrac{49}{16} \\[1em] = 49 : 16.

Hence, △DOC : △AOB = 49 : 16.

(iv) Given,

BO : OD = 4 : 7

BOOD=47ODBO=74ODBO+1=74+1OD+BOBO=7+44BDBO=114.\Rightarrow \dfrac{BO}{OD} = \dfrac{4}{7} \\[1em] \Rightarrow \dfrac{OD}{BO} = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{OD}{BO} + 1 = \dfrac{7}{4} + 1 \\[1em] \Rightarrow \dfrac{OD + BO}{BO} = \dfrac{7 + 4}{4} \\[1em] \Rightarrow \dfrac{BD}{BO} = \dfrac{11}{4}.

Since,

△ABD and △BOC have common vertex at B and their bases BD and OB are along the same straight line.

Area of △ABDArea of △BOC=BDBO=114.\therefore \dfrac{\text{Area of △ABD}}{\text{Area of △BOC}} = \dfrac{BD}{BO} = \dfrac{11}{4}.

Hence, △ABD : △BOC = 11 : 4.

Question 90

A model of a ship is made to a scale of 1 : 160. Find :

(i) the length of the ship, if the length of its model is 1.2 m

(ii) the area of the deck of the ship , if the area of deck of its model is 1.2 m2.

(iii) the volume of the ship, if the volume of its model is 1.2 m3.

Answer

Given,

Scale of model = 1 : 160

Scale factor (k) = 1160\dfrac{1}{160}

(i) By formula,

⇒ Length of model = Scale factor × Length of ship

⇒ 1.2 = 1160\dfrac{1}{160} × Length of ship

⇒ Length of ship = 1.2 × 160 = 192 m.

Hence, length of ship = 192 m.

(ii) By formula,

⇒ Area of model = (Scale factor)2 × Area of ship

⇒ 1.2 = (1160)2\Big(\dfrac{1}{160}\Big)^2 × Area of ship

⇒ 1.2 = 1160×160\dfrac{1}{160 \times 160} × Area of ship

⇒ Area of ship = 1.2 × 160 × 160 = 30720 m2.

Hence, area of ship = 30720 m2.

(iii) By formula,

⇒ Volume of model = (Scale factor)3 × Volume of ship

⇒ 1.2 = (1160)3\Big(\dfrac{1}{160}\Big)^3 × Volume of ship

⇒ 1.2 = 1160×160×160\dfrac{1}{160 \times 160 \times 160} × Volume of ship

⇒ Volume of ship = 1.2 × 160 × 160 × 160 = 49,15,200 m3.

Hence, volume of ship = 49,15,200 m3.

Question 91

In trapezium ABCD, AB || DC and DC = 2AB. EF drawn parallel to AB cuts AD in F and BC in E such that 4 BE = 3EC. Diagonal DB intersects FE at point G. Prove that : 7EF = 10AB.

In trapezium ABCD, AB || DC and DC = 2AB. EF drawn parallel to AB cuts AD in F and BC in E such that 4 BE = 3EC. Diagonal DB intersects FE at point G. Prove that : 7EF = 10AB. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Given,

⇒ 4BE = 3EC

BEEC=34\dfrac{BE}{EC} = \dfrac{3}{4}

In △DFG and △DAB,

⇒ ∠DFG = ∠DAB [As corresponding angles are equal]

⇒ ∠FDG = ∠ADB (Common)

⇒ △DFG ~ △DAB [By AA postulate]

In similar triangles,

The ratios between the lengths of corresponding sides are equal.

DFDA=FGAB\dfrac{DF}{DA} = \dfrac{FG}{AB} ..........(1)

In trapezium ABCD, we have

EF || AB || DC

AFDF=BEECAFDF=34AFDF+1=34+1AF+DFDF=3+44ADDF=74DFAD=47 ..........(2)\therefore \dfrac{AF}{DF} = \dfrac{BE}{EC} \\[1em] \Rightarrow \dfrac{AF}{DF} = \dfrac{3}{4} \\[1em] \Rightarrow \dfrac{AF}{DF} + 1 = \dfrac{3}{4} + 1 \\[1em] \Rightarrow \dfrac{AF + DF}{DF} = \dfrac{3 + 4}{4} \\[1em] \Rightarrow \dfrac{AD}{DF} = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{DF}{AD} = \dfrac{4}{7} \space ..........(2)

From (1) and (2), we get :

FGAB=47\dfrac{FG}{AB} = \dfrac{4}{7}

FG = 47\dfrac{4}{7}AB .........(3)

In △BEG and △BCD,

⇒ ∠BEG = ∠BCD [As corresponding angles are equal]

⇒ ∠GBE = ∠DBC (Common angle)

⇒ △BEG ~ △BCD [By AA postulate]

In similar triangles,

The ratios between the lengths of corresponding sides are equal.

BEBC=EGCD\dfrac{BE}{BC} = \dfrac{EG}{CD} ..............(4)

Given,

BEEC=34ECBE=43ECBE+1=43+1EC+BEBE=4+33BCBE=73BEBC=37EGCD=37 [From (4)]EG=37CDEG=37×2ABEG=67AB ..........(5)\Rightarrow \dfrac{BE}{EC} = \dfrac{3}{4} \\[1em] \Rightarrow \dfrac{EC}{BE} = \dfrac{4}{3} \\[1em] \Rightarrow \dfrac{EC}{BE} + 1 = \dfrac{4}{3} + 1 \\[1em] \Rightarrow \dfrac{EC + BE}{BE} = \dfrac{4 + 3}{3} \\[1em] \Rightarrow \dfrac{BC}{BE} = \dfrac{7}{3} \\[1em] \Rightarrow \dfrac{BE}{BC} = \dfrac{3}{7} \\[1em] \Rightarrow \dfrac{EG}{CD} = \dfrac{3}{7} \space [\text{From (4)}] \\[1em] \Rightarrow EG = \dfrac{3}{7}CD \\[1em] \Rightarrow EG = \dfrac{3}{7} \times 2AB \\[1em] \Rightarrow EG = \dfrac{6}{7}AB \space ..........(5)

Adding equation (3) and (5),

FG+EG=47AB+67ABEF=107AB7EF=10AB.\Rightarrow FG + EG = \dfrac{4}{7}AB + \dfrac{6}{7}AB \\[1em] \Rightarrow EF = \dfrac{10}{7}AB \\[1em] \Rightarrow 7EF = 10AB.

Hence, proved that 7EF = 10AB.

Question 92

Given : ABCD is a rhombus, DPR and CBR are straight lines.

Prove that :

DP × CR = DC × PR.

Given : ABCD is a rhombus, DPR and CBR are straight lines. Prove that DP × CR = DC × PR. Similarity, Concise Mathematics Solutions ICSE Class 10.

Answer

Since, ABCD is a rhombus.

So, AD || BC.

In △DPA and △RPC,

⇒ ∠DPA = ∠RPC (Vertically opposite angles are equal)

⇒ ∠PAD = ∠PCR [Since, AD || CD and AC is transversal]

∴ △DPA ~ △RPC [By AA]

Since, corresponding sides of similar triangles are proportional we have :

DPPR=ADCR\dfrac{DP}{PR} = \dfrac{AD}{CR} ..........(1)

In rhombus all sides are equal.

∴ AD = DC

Substituting in (1) we get,

DPPR=DCCR\dfrac{DP}{PR} = \dfrac{DC}{CR}

⇒ DP × CR = DC × PR.

Hence, proved that DP × CR = DC × PR.

Question 93

Given : FB = FD, AE ⊥ FD and FC ⊥ AD.

Prove that : FBAD=BCED.\dfrac{FB}{AD} = \dfrac{BC}{ED}.

Given : FB = FD, AE ⊥ FD and FC ⊥ AD. Prove that : FB/AD = BC/ED. Similarity, Concise Mathematics Solutions ICSE Class 10.

Answer

Given, FB = FD

∴ ∠FBD = ∠FDB [Since, opposite sides of equal angles are equal] ......(1)

In △AED and △FCB,

∠ADE = ∠FBC [From 1]

∠AED = ∠FCB [Both = 90°]

∴ △AED ~ △FCB [By AA]

Since, corresponding sides of similar triangles are proportional we have :

FBAD=BCED\dfrac{FB}{AD} = \dfrac{BC}{ED}.

Hence, proved that FBAD=BCED\dfrac{FB}{AD} = \dfrac{BC}{ED}.

Question 94

In the figure, QR is parallel to AB and DR is parallel to QB.

Prove that : PQ2 = PD × PA.

In the figure, QR is parallel to AB and DR is parallel to QB. Prove that : PQ^2 = PD × PA. Similarity, Concise Mathematics Solutions ICSE Class 10.

Answer

In △PQR and △PAB,

∠PQR = ∠PAB [Corresponding angles are equal]

∠PRQ = ∠PBA [Corresponding angles are equal]

Hence, △PQR ~ △PAB [By AA]

Since, corresponding sides of similar triangles are proportional to each other.

PQPA=PRPB\therefore \dfrac{PQ}{PA} = \dfrac{PR}{PB} ........(1)

In △PDR and △PQB,

∠PDR = ∠PQB [Corresponding angles are equal]

∠PRD = ∠PBQ [Corresponding angles are equal]

Hence, △PDR ~ △PQB [By AA]

Since, corresponding sides of similar triangles are proportional to each other.

PDPQ=PRPB\therefore \dfrac{PD}{PQ} = \dfrac{PR}{PB} ........(2)

From (1) and (2) we get :

PQPA=PDPQPQ2=PD×PA.\Rightarrow \dfrac{PQ}{PA} =\dfrac{PD}{PQ} \\[1em] \Rightarrow PQ^2 = PD \times PA.

Hence, proved that PQ2 = PD × PA.

Question 95

The given figure shows a trapezium in which AB is parallel to DC and diagonals AC and BD intersect at point P. If AP : CP = 3 : 5.

Find :

(i) △APB : △CPB

(ii) △DPC : △APB

(iii) △ADP : △APB

(iv) △APB : △ADB

The figure shows a trapezium in which AB is parallel to DC and diagonals AC and BD intersect at point P. If AP : CP = 3 : 5. Find △APB : △CPB △DPC : △APB △ADP : △APB △APB : △ADB. Similarity, Concise Mathematics Solutions ICSE Class 10.

Answer

(i) Since, △APB and △CPB have common vertex at B and their bases AP and PC are along the same straight line AC.

∴ △APB : △CPB = AP : PC = 3 : 5.

Hence, △APB : △CPB = 3 : 5.

(ii) In △DPC and △APB,

∠DPC = ∠APB [Vertically opposite angles are equal]

∠PAB = ∠PCD [Alternate angles are equal]

∴ △DPC ~ △APB.

We know that,

The ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

Area of △DPCArea of △APB=PC2AP2=5232=259.\therefore \dfrac{\text{Area of △DPC}}{\text{Area of △APB}} = \dfrac{PC^2}{AP^2}\\[1em] = \dfrac{5^2}{3^2} = \dfrac{25}{9}.

Hence, △DPC : △APB = 25 : 9.

(iii) Since, △DPC ~ △APB,

PDPB=PCAP=53\therefore \dfrac{PD}{PB} = \dfrac{PC}{AP} = \dfrac{5}{3} ..........(1)

Since, △ADP and △APB have common vertex at A and their bases DP and PB are along the same straight line.

∴ △ADP : △APB = DP : PB = 5 : 3 .........[From 1]

Hence, △ADP : △APB = 5 : 3.

(iv) From part (iii)

PDPB=53\dfrac{PD}{PB} = \dfrac{5}{3}

Let PD = 5x and PB = 3x.

From figure,

BD = PD + PB = 5x + 3x = 8x.

Since, △APB and △ADB have common vertex at A and their bases PB and DB are along the same straight line.

∴ △APB : △ADB = PB : BD = 3x : 8x = 3 : 8

Hence, △APB : △ADB = 3 : 8.

Question 96

In the following diagram, lines l, m and n are parallel to each other. Two transversals p and q intersect the parallel lines at points A, B, C and P, Q, R as shown.

Prove that: ABBC=PQQR\dfrac{AB}{BC} = \dfrac{PQ}{QR}

In the diagram, lines l, m and n are parallel to each other. Two transversals p and q intersect the parallel lines at points A, B, C and P, Q, R as shown. Prove that: AB/BC = PQ/QR. Similarity, Concise Mathematics Solutions ICSE Class 10.

Answer

Join A and R. Let AR meet BQ at point D.

In the diagram, lines l, m and n are parallel to each other. Two transversals p and q intersect the parallel lines at points A, B, C and P, Q, R as shown. Prove that: AB/BC = PQ/QR. Similarity, Concise Mathematics Solutions ICSE Class 10.

In ∆ACR, BD || CR.

By Basic proportionality theorem, we get

ABBC=ADDR\dfrac{AB}{BC} = \dfrac{AD}{DR} .....(1)

In ∆APR, DQ || AP.

By Basic proportionality theorem, we get

PQQR=ADDR\dfrac{PQ}{QR} = \dfrac{AD}{DR} .....(2)

From (1) and (2) we get :

ABBC=PQQR\dfrac{AB}{BC} = \dfrac{PQ}{QR}

Hence proved that ABBC=PQQR\dfrac{AB}{BC} = \dfrac{PQ}{QR}.

Question 97

The following figure shows a triangle ABC in which AD and BE are perpendiculars to BC and AC respectively.

Show that :

(i) △ADC ~ △BEC

(ii) CA × CE = CB × CD

(iii) △ABC ~ △DEC

(iv) CD × AB = CA × DE

The figure shows a triangle ABC in which AD and BE are perpendiculars to BC and AC respectively. Show that (i) △ADC ~ △BEC (ii) CA × CE = CB × CD (iii) △ABC ~ △DEC (iv) CD × AB = CA × DE. Similarity, Concise Mathematics Solutions ICSE Class 10.

Answer

(i) In △ADC and △BEC,

∠ADC = ∠BEC [Both = 90°]

∠ACD = ∠BCE [Common angle]

∴ △ADC ~ △BEC [By AA].

Hence, proved that △ADC ~ △BEC.

(ii) Since, △ADC ~ △BEC.

We know that,

Corresponding sides of similar triangles are equal.

CACB=CDCE\therefore \dfrac{CA}{CB} = \dfrac{CD}{CE}

⇒ CA × CE = CB × CD.

Hence, proved that CA × CE = CB × CD.

(iii) From part (ii) we get,

CACB=CDCECACD=CBCE\Rightarrow \dfrac{CA}{CB} = \dfrac{CD}{CE} \\[1em] \Rightarrow \dfrac{CA}{CD} = \dfrac{CB}{CE}

∠DCE = ∠BCA [Common angle]

∴ △ABC ~ △DEC [By SAS]

Hence, proved that △ABC ~ △DEC.

(iv) Since, △ABC ~ △DEC

We know that,

Corresponding sides of similar triangles are proportional to each other.

CACD=ABDE\dfrac{CA}{CD} = \dfrac{AB}{DE}

⇒ CD × AB = CA × DE.

Hence, proved that CD × AB = CA × DE.

LOCI

Question 98

In triangle ABC, D is mid-point of AB and CD is perpendicular to AB. Bisector of ∠ABC meets CD at E and AC at F. Prove that :

(i) E is equidistant from A and B.

(ii) F is equidistant from AB and BC.

Answer

(i) Join AE.

In triangle ABC, D is mid-point of AB and CD is perpendicular to AB. Bisector of ∠ABC meets CD at E and AC at F. Prove that. (i) E is equidistant from A and B. (ii) F is equidistant from AB and BC. Prove that : 7EF = 10AB. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

In △EAD and △EBD,

⇒ ED = ED (Common)

⇒ AD = BD (As D is the mid-point of AB)

⇒ ∠EDA = ∠EDB (Both = 90°).

∴ △EAD ≅ △EBD (By SAS axiom)

∴ EA = EB (By C.P.C.T.)

Hence, proved that E is equidistant from A and B.

(ii) Draw FL ⊥ BC and FM ⊥ AB.

In triangle ABC, D is mid-point of AB and CD is perpendicular to AB. Bisector of ∠ABC meets CD at E and AC at F. Prove that. (i) E is equidistant from A and B. (ii) F is equidistant from AB and BC. Prove that : 7EF = 10AB. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

In △BLF and △BMF,

⇒ BF = BF (Common)

⇒ ∠LBF = ∠FBM (As BF is the angle bisector of ∠ABC)

⇒ ∠BLF = ∠BMF (Both = 90°).

∴ △BLF ≅ △BMF (By ASA axiom)

∴ FL = FM (By C.P.C.T.)

Hence, proved that F is equidistant from AB and BC.

Question 99

Use graph paper for this question. Take 2 cm = 1 unit on both axes.

(i) Plot the points A(1, 1), B(5, 3) and C(2, 7).

(ii) Construct the locus of points equidistant from A and B.

(iii) Construct the locus of points equidistant from AB and AC.

(iv) Locate the point P such that PA = PB and P is equidistant from AB and AC.

(v) Measure and record the length PA in cm.

Answer

Steps of construction :

  1. Plot the points A(1, 1), B(5, 3) and C(2, 7).

  2. Join the points AB, BC, and AC to form a triangle.

  3. Draw DE, perpendicular bisector of AB. (As locus of points equidistant from two points is the perpendicular bisector of line joining them).

  4. Draw AF, angle bisector of A. (As locus of points equidistant from two lines is the angular bisector of angle between them).

  5. Mark point P as the intersection of DE and AF.

  6. Measure AP.

Use graph paper for this question. Take 2 cm = 1 unit on both axes. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Hence, AP = 2.8 cm.

Question 100

The speed of sound is 332 meters per second. A gun is fired. Describe the locus of all the people on the earth's surface, who hear the sound exactly after one second.

Answer

Since, speed of sound is 332 m/s.

So, in 1 s it will travel = 332 meters.

Hence, locus of all the people on Earth's surface who will hear sound one second later will be the circumference of a circle whose radius is 332 m and centre is the point where the gun is fired.

CIRCLES

Question 101

In the given figure, ∠ADC = 130° and BC = BE. Find ∠CBE if AB ⊥ CE.

In the given figure, ∠ADC = 130° and BC = BE. Find ∠CBE if AB ⊥ CE. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Since, ABCD is a cyclic quadrilateral and sum of opposite angles in a cyclic quadrilateral = 180°.

∴ ∠ADC + ∠ABC = 180°

⇒ 130° + ∠ABC = 180°

⇒ ∠ABC = 50°.

In the given figure, ∠ADC = 130° and BC = BE. Find ∠CBE if AB ⊥ CE. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

From figure,

⇒ ∠FBC = ∠ABC = 50°.

In △FBC,

By angle sum property of triangle,

⇒ ∠FBC + ∠BCF + ∠CFB = 180°

⇒ 50° + ∠BCF + 90° = 180°

⇒ ∠BCF = 180° - 90° - 50° = 40°.

Given,

BC = BE

In △BCE,

⇒ ∠BEC = ∠BCE = 40°. (As angles opposite to equal sides are equal)

In △FBE,

By angle sum property of triangle,

⇒ ∠BEF + ∠FBE + ∠EFB = 180°

⇒ 40° + ∠FBE + 90° = 180°

⇒ ∠FBE = 180° - 90° - 40° = 50°.

From figure,

∠CBE = ∠FBC + ∠FBE = 50° + 50° = 100°.

Hence, ∠CBE = 100°.

Question 102

In the given figure, ∠OAB = 30° and ∠OCB = 57°, find ∠BOC and ∠AOC.

In the given figure, ∠OAB = 30° and ∠OCB = 57°, find ∠BOC and ∠AOC. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

In △AOB,

⇒ OA = OB [Radius of same circle]

⇒ ∠OBA = ∠BAO = 30° [Angles opposite to equal sides are equal]

Also,

⇒ ∠OBA + ∠BAO + ∠AOB = 180° [By angles sum property of triangle]

⇒ 30° + 30° + ∠AOB = 180°

⇒ ∠AOB = 180° - 60° = 120°

In △OCB,

OC = OB [Radius of same circle]

⇒ ∠OBC = ∠OCB = 57° [Angles opposite to equal sides are equal]

Also,

⇒ ∠OCB + ∠OBC + ∠BOC = 180° [By angles sum property of triangle]

⇒ 57° + 57° + ∠BOC = 180°

⇒ ∠BOC = 180° - 114° = 66°

From figure,

⇒ ∠AOB = ∠AOC + ∠BOC

⇒ 120° = ∠AOC + 66°

⇒ ∠AOC = 120° - 66° = 54°.

Hence, ∠AOC = 54° and ∠BOC = 66°.

Question 103

In the given figure, O is the center of the circle. If chord AB = chord AC, OP ⊥ AB and OQ ⊥ AC; show that : PB = QC.

In the given figure, O is the center of the circle. If chord AB = chord AC, OP ⊥ AB and OQ ⊥ AC; show that : PB = QC. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Let AB = AC = x

In the given figure, O is the center of the circle. If chord AB = chord AC, OP ⊥ AB and OQ ⊥ AC; show that : PB = QC. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Given,

OP ⊥ AB and OQ ⊥ AC

⇒ OM ⊥ AB and ON ⊥ AC

Since, the perpendicular to a chord from the center of the circle bisects the chord,

∴ AM = MB = x2\dfrac{x}{2} and AN = NC = x2\dfrac{x}{2}

∴ MB = NC .............(1)

Since, equal chords of a circle are equidistant from the center,

∴ ON = OM = y (let)

Let radius of circle be r.

From figure,

⇒ OQ = OP = r

⇒ QN = OQ - ON = r - y

⇒ PM = OP - OM = r - y

∴ QN = PM .........(2)

In △QNC and △PMB,

⇒ NC = MB [From (1)]

⇒ QN = PM [From (2)]

⇒ ∠QNC = ∠PMB [Both equal to 90°]

∴ △QNC ≅ △∠PMB by SAS axiom.

∴ PB = QC (By C.P.C.T.)

Hence, proved that PB = QC.

Question 104

In the given figure, AB and XY are diameters of a circle with center O. If ∠APX = 30°, find :

In the given figure, AB and XY are diameters of a circle with center O. If ∠APX = 30°, find. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) ∠AOX

(ii) ∠APY

(iii) ∠BPY

(iv) ∠OAX

Answer

In the given figure, AB and XY are diameters of a circle with center O. If ∠APX = 30°, find. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) Arc AX subtends ∠AOX at the center and ∠APX at the remaining part of the circle.

⇒ ∠AOX = 2∠APX (∵ angle subtended on center is twice the angle subtended on the remaining part of the circle.)

⇒ ∠AOX = 2 × 30° = 60°.

Hence, the value of ∠AOX = 60°.

(ii) From figure,

∠XPY = 90° [∵ angle in semicircle = 90°]

∴ ∠APY = ∠XPY - ∠APX = 90° - 30° = 60°.

Hence, the value of ∠APY = 60°.

(iii) From figure,

∠APB = 90° [∵ angle in semicircle = 90°]

∴ ∠BPY = ∠APB - ∠APY = 90° - 60° = 30°.

Hence, the value of ∠BPY = 30°.

(iv) In △AOX,

OA = OX (Radius of same circle)

∴ ∠OAX = ∠OXA

Since, sum of angles of a triangle = 180°

∴ ∠AOX + ∠OAX + ∠OXA = 180°

⇒ 60° + ∠OAX + ∠OAX = 180°

⇒ 2∠OAX = 120°

⇒ ∠OAX = 120°2\dfrac{120°}{2}

⇒ ∠OAX = 60°.

Hence, the value of ∠OAX = 60°.

Question 105(a)

In the adjoining figure; AB = AD, BD = CD and ∠DBC = 2∠ABD. Prove that : ABCD is a cyclic quadrilateral.

In the adjoining figure; AB = AD, BD = CD and ∠DBC = 2∠ABD. Prove that : ABCD is a cyclic quadrilateral. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

In △ABD,

AB = AD

∠ADB = ∠ABD (∵ angles opposite to equal sides are equal) ......(1)

In △BDC,

BD = CD

∠DCB = ∠DBC (∵ angles opposite to equal sides are equal) ......(2)

In △ADB,

⇒ ∠DAB + ∠ADB + ∠ABD = 180° [Angle sum property of triangle]

⇒ ∠DAB + ∠ABD + ∠ABD = 180° [From (1)]

⇒ ∠DAB + 2∠ABD = 180°

⇒ ∠DAB + ∠DBC = 180° [As, ∠DBC = 2∠ABD (Given)]

⇒ ∠DAB + ∠DCB = 180° [From (2)]

Since, ∠DAB and ∠DCB are opposite angles of a quadrilateral and sum of opposite angles in a cyclic quadrilateral = 180°.

Hence, proved that ABCD is a cyclic quadrilateral.

Question 105(b)

AB is a diameter of a circle with centre O. Chord CD is equal to radius OC. AC and BD produced intersect at P. Prove that : ∠APB = 60°.

AB is a diameter of a circle with centre O. Chord CD is equal to radius OC. AC and BD produced intersect at P. Prove that : ∠APB = 60°. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

AB is a diameter of a circle with centre O. Chord CD is equal to radius OC. AC and BD produced intersect at P. Prove that : ∠APB = 60°. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

From figure,

∠ADB = 90° [Angle subtended by diameter is a right angle.]

In △COD,

OC = OD [Radius of same circle]

∴ OC = OD = CD.

So, △COD is an equilateral triangle.

∴ ∠COD = 60°.

We know that,

Angle subtended by chord in the center is double the angle in the circumference.

⇒ ∠COD = 2∠CAD

⇒ ∠CAD = 12\dfrac{1}{2}∠COD

⇒ ∠CAD = 12×60°\dfrac{1}{2} \times 60° = 30°.

In △APD,

⇒ ∠PAD = ∠CAD = 30°.

⇒ ∠ADP + ∠ADB = 180° [Linear pair]

⇒ ∠ADP = 180° - ∠ADB = 180° - 90° = 90°.

By angle sum property.

⇒ ∠ADP + ∠APD + ∠PAD = 180°

⇒ 90° + ∠APD + 30° = 180°

⇒ ∠APD + 120° = 180°

⇒ ∠APD = 180° - 120°

⇒ ∠APD = 60°.

From figure,

⇒ ∠APB = ∠APD = 60°.

Hence, proved that ∠APB = 60°.

TANGENTS & INTERSECTING CHORDS

Question 106

In the given figure, AC = AB and ∠ABC = 72°. OA and OB are two tangents. Determine :

In the given figure, AC = AB and ∠ABC = 72°. OA and OB are two tangents. Determine. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) ∠AOB

(ii) angle subtended by the chord AB at the center.

Answer

In the given figure, AC = AB and ∠ABC = 72°. OA and OB are two tangents. Determine. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) Since,

⇒ AB = AC

⇒ ∠ACB = ∠ABC = 72° [∵ angles opposite to equal sides are equal]

From figure,

⇒ ∠BAO = ∠ACB = 72° [Angles in alternate segment are equal]

⇒ OA = OB [Tangents from a fixed point outside the circle are equal.]

⇒ ∠OBA = ∠BAO = 72° [Since angle opposite to equal sides are equal]

In △ABO,

⇒ ∠BAO + ∠OBA + ∠AOB = 180° [By angle sum property of triangle]

⇒ 72° + 72° + ∠AOB = 180°

⇒ ∠AOB = 180° - 144° = 36°.

Hence, ∠AOB = 36°.

(ii) We know that,

Angle subtended by a chord at the centre of the circle is twice the angle subtended by it at any point of the circumference.

∴ ∠ADB = 2∠ACB = 2 × 72° = 144°.

Hence, angle subtended by AB at the centre of the circle = 144°.

Question 107

In the given figure, PQ, PR and ST are tangents to the same circle. If ∠P = 40° and ∠QRT = 75°, find a, b and c.

In the given figure, PQ, PR and ST are tangents to the same circle. If ∠P = 40° and ∠QRT = 75°, find a, b and c. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

From figure,

PQ = PR [Tangents from a fixed point outside the circle are equal.]

⇒ ∠PRQ = ∠PQR = a [Since angle opposite to equal sides are equal]

In △PQR,

⇒ ∠QPR + ∠PQR + ∠PRQ = 180° [By angle sum property of triangle]

⇒ 40° + a + a = 180°

⇒ 2a = 180° - 40°

⇒ 2a = 140°

⇒ a = 140°2\dfrac{140°}{2}

⇒ a = 70°.

From figure,

⇒ ∠PRQ + ∠QRT + ∠TRS = 180° [Linear pair]

⇒ 70° + 75° + ∠TRS = 180°

⇒ ∠TRS = 180° - 145° = 35°

⇒ SR = ST [Tangents from a fixed point outside the circle are equal.]

⇒ ∠STR = ∠TRS = 35° [Since angle opposite to equal sides are equal]

∴ c = 35°

In △SRT,

⇒ ∠STR + ∠TRS + ∠TSR = 180° [By angle sum property of triangle]

⇒ 35° + 35° + b = 180°

⇒ b = 180° - 70° = 110°.

Hence, a = 70°, b = 110° and c = 35°.

Question 108

In the given figure, ∠ABC = 90° and BC is diameter of the given circle. Show that :

In the given figure, ∠ABC = 90° and BC is diameter of the given circle. Show that. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) AC × AD = AB2

(ii) AC × CD = BC2

Answer

(i) As, BC is the diameter.

We know that,

Angle in a semicircle is a right angle.

∴ ∠BDC = 90°

From figure,

⇒ ∠BDC + ∠BDA = 180° [Linear Pair]

⇒ 90° + ∠BDA = 180°

⇒ ∠BDA = 180° - 90°

⇒ ∠BDA = 90°.

As, AB is the tangent and BC is diameter and tangent at any point and line from that point to center are perpendicular to each other.

⇒ ∠ABC = 90°

In △ABC and △ABD,

∠ABC = ∠ADB (Both equal to 90°)

∠BAD = ∠BAC (Common)

∴ △ABC ~ △ABD

In similar triangles,

Ratio of corresponding sides are in equal proportion.

ACAB=ABADAB2=AC×AD.\therefore \dfrac{AC}{AB} = \dfrac{AB}{AD} \\[1em] \Rightarrow AB^2 = AC \times AD.

Hence, proved that AB2 = AC × AD.

(ii) In △ABC and △BDC,

⇒ ∠ABC = ∠BDC (Both equal to 90°)

⇒ ∠BCA = ∠BCD (Common)

∴ △ABC ~ △BDC

In similar triangles,

Ratio of corresponding sides are in equal proportion.

ADBC=BCCDBC2=AD×CD.\therefore \dfrac{AD}{BC} = \dfrac{BC}{CD} \\[1em] \Rightarrow BC^2 = AD \times CD.

Hence, proved that BC2 = AD × CD.

Question 109

In the given figure, AB, BC and CA are tangents to the given circle. If AB = 12 cm, BC = 8 cm and AC = 10 cm, find the lengths of AD, BE and CF.

In the given figure, AB, BC and CA are tangents to the given circle. If AB = 12 cm, BC = 8 cm and AC = 10 cm, find the lengths of AD, BE and CF. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

As, tangents from an exterior fixed point to a circle are equal in length,

Let,

AD = AF = x cm

BD = BE = y cm

CF = CE = z cm

From figure,

⇒ AD + BD = AB

⇒ x + y = 12 .........(1)

⇒ AF + CF = AC

⇒ x + z = 10 ........(2)

⇒ BE + CE = BC

⇒ y + z = 8 ..........(3)

Subtracting eq (3) from (1), we get :

⇒ x + y - (y + z) = 12 - 8

⇒ x - z = 4 ............(4)

Adding equation (2) and (4), we get :

⇒ (x + z) + (x - z) = 10 + 4

⇒ 2x = 14

⇒ x = 142\dfrac{14}{2}

⇒ x = 7.

Substituting value of x in equation (1), we get :

⇒ 7 + y = 12

⇒ y = 12 - 7

⇒ y = 5.

Substituting value of y in equation (3), we get :

⇒ y + z = 8

⇒ 5 + z = 8

⇒ z = 8 - 5

⇒ z = 3.

∴ AD = x = 7, BE = y = 5 and CF = z = 3.

Hence, AD = 7 cm, BE = 5 cm and CF = 3 cm.

Question 110(a)

AB and CD are two chords of a circle intersecting at point P inside the circle. If

(i) AB = 24 cm, AP = 4 cm and PD = 8 cm, determine CP.

(ii) AP = 3 cm, PB = 2.5 cm and CD = 6.5 cm, determine CP.

Answer

(i) From figure,

AB and CD are two chords of a circle intersecting at point P inside the circle. If (i) AB = 24 cm, AP = 4 cm and PD = 8 cm, determine CP. (ii) AP = 3 cm, PB = 2.5 cm and CD = 6.5 cm, determine CP. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

⇒ AB = AP + PB

⇒ 24 = 4 + PB

⇒ PB = 24 - 4

⇒ PB = 20 cm.

We know that,

If two chords intersect in a circle, then the products of the measures of the segments of the chords are equal.

⇒ AP × PB = CP × PD

⇒ 4 × 20 = CP × 8

⇒ 80 = 8CP

⇒ CP = 808\dfrac{80}{8} = 10.

Hence, CP = 10 cm.

(ii) Let CP = x, so PD = (6.5 - x).

We know that,

If two chords intersect in a circle , then the products of the measures of the segments of the chords are equal.

⇒ AP × PB = CP × PD

⇒ 3 × 2.5 = x(6.5 - x)

⇒ 7.5 = 6.5x - x2

⇒ x2 - 6.5x + 7.5 = 0

⇒ x2 - 5x - 1.5x + 7.5 = 0

⇒ x(x - 5) - 1.5(x - 5) = 0

⇒ (x - 1.5)(x - 5) = 0

⇒ x - 1.5 = 0 or x - 5 = 0

⇒ x = 1.5 or x = 5.

Hence, CP = 1.5 cm or 5 cm.

Question 110(b)

AB and CD are two chords of a circle intersecting at point P outside the circle. If

(i) PA = 8 cm, PC = 5 cm and PD = 4 cm, determine AB.

(ii) PC = 30 cm, CD = 14 cm and PA = 24 cm, determine AB.

Answer

(i) We know that,

If two chords of a circle intersect externally, then the product of the lengths of the segments are equal.

⇒ AP × PB = CP × PD

⇒ 8 × PB = 5 × 4

⇒ PB = 208\dfrac{20}{8} = 2.5

From figure,

AB and CD are two chords of a circle intersecting at point P outside the circle. If (i) PA = 8 cm, PC = 5 cm and PD = 4 cm, determine AB. (ii) PC = 30 cm, CD = 14 cm and PA = 24 cm, determine AB. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

AB = PA - PB = 8 - 2.5 = 5.5 cm.

Hence, AB = 5.5 cm.

(ii) From figure,

⇒ PC = CD + PD

⇒ 30 = 14 + PD

⇒ PD = 16 cm.

We know that,

If two chords of a circle intersect externally, then the product of the lengths of the segments are equal.

⇒ AP × PB = PC × PD

⇒ 24 × PB = 30 × 16

⇒ PB = 30×1624\dfrac{30 \times 16}{24} = 20

From figure,

AB = PA - PB = 24 - 20 = 4 cm.

Hence, AB = 4 cm.

Question 111

Two circles touch each other internally at a point P. A chord AB of the bigger circle intersects the other circle in C and D. Prove that : ∠CPA = ∠DPB.

Two circles touch each other internally at a point P. A chord AB of the bigger circle intersects the other circle in C and D. Prove that : ∠CPA = ∠DPB. Tangents and Intersecting Chords, Concise Mathematics Solutions ICSE Class 10.

Answer

Draw tangent at point P,

Two circles touch each other internally at a point P. A chord AB of the bigger circle intersects the other circle in C and D. Prove that : ∠CPA = ∠DPB. Tangents and Intersecting Chords, Concise Mathematics Solutions ICSE Class 10.

∠PAB = ∠BPS .............(1) [Angles in alternate segments are equal.]

∠PCD = ∠DPS .............(2) [Angles in alternate segments are equal.]

Subtracting (1) from (2), we get :

⇒ ∠PCD - ∠PAB = ∠DPS - ∠BPS ............(3)

In △PAC,

⇒ ∠PCD = ∠PAC + ∠CPA [An exterior angle is equal to sum of two opposite interior angles.]

⇒ ∠PCD = ∠PAB + ∠CPA [From figure, ∠PAC = ∠PAB]

Substituting above value of ∠PCD in (3), we get :

⇒ ∠PAB + ∠CPA - ∠PAB = ∠DPS - ∠BPS

⇒ ∠CPA = ∠DPB [From figure, ∠DPS - ∠BPS = ∠DPB].

Hence, proved that ∠CPA = ∠DPB.

Question 112

In the given figure, MN is the common chord of two intersecting circles and AB is their common tangent.

Prove that the line NM produced bisects AB at P.

In the figure, MN is the common chord of two intersecting circles and AB is their common tangent. Prove that the line NM produced bisects AB at P. Tangents and Intersecting Chords, Concise Mathematics Solutions ICSE Class 10.

Answer

We know that,

If a chord and a tangent intersect externally, then the product of the lengths of the segments of the chord is equal to the square of the length of the tangent from the point of contact to the point of intersection.

∴ AP2 = PM x PN ..........(1)

From P, PB is the tangent and PMN is the secant for second circle.

∴ PB2 = PM x PN ......... (2)

From (1) and (2), we have

⇒ AP2 = PB2

⇒ AP = PB

Hence, proved that P is the midpoint of AB.

Question 113

In the given figure, PAT is tangent to the circle with center O, at point A on its circumference and is parallel to chord BC. If CDQ is a line segment, show that :

(i) ∠BAP = ∠ADQ

(ii) ∠AOB = 2∠ADQ

(iii) ∠ADQ = ∠ADB.

In the figure, PAT is tangent to the circle with center O, at point A on its circumference and is parallel to chord BC. If CDQ is a line segment, show that :  (i) ∠BAP = ∠ADQ (ii) ∠AOB = 2∠ADQ (iii) ∠ADQ = ∠ADB. Tangents and Intersecting Chords, Concise Mathematics Solutions ICSE Class 10.

Answer

(i) Since, PAT || BC

∠BAP = ∠ABC [Alternate angles are equal] .........(1)

In cyclic quadrilateral ABCD,

∠ABC + ∠ADC = 180° [Sum of opposite angles in a cyclic quadrilateral = 180°] ................(2)

From figure,

∠ADQ + ∠ADC = 180° [Linear pairs] .........(3)

From (2) and (3), we get :

∠ADQ = ∠ABC ............(4)

From (1) and (4), we get :

∠BAP = ∠ADQ.

Hence, proved that ∠BAP = ∠ADQ.

(ii) We know that,

Angle subtended by an arc at the center is twice the angle subtended at any other point of circumference.

Arc AB subtends ∠AOB at the center and ∠ADB at the remaining part of the circle.

⇒ ∠AOB = 2∠ADB ............(3)

From figure,

∠ADB = ∠PAB [Angles in alternate segment are equal.]

Substituting above value in (3), we get :

⇒ ∠AOB = 2∠PAB

∠PAB = ∠ADQ [Proved above]

⇒ ∠AOB = 2∠ADQ.

Hence, proved that ∠AOB = 2∠ADQ.

(iii) From figure,

∠BAP = ∠ADB [Angles in alternate segment are equal.] .........(4)

∠BAP = ∠ADQ [Proved in part (i)] ...........(5)

From (4) and (5), we get :

∠ADQ = ∠ADB.

Hence, proved that ∠ADQ = ∠ADB.

CONSTRUCTIONS

Question 114

Construct a triangle ABC in which AC = 5 cm, BC = 7 cm and AB = 6 cm.

Construct a triangle ABC in which AC = 5 cm, BC = 7 cm and AB = 6 cm. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

(i) Mark D, the mid-point of AB.

(ii) Construct a circle which touches BC at C and passes through D.

Answer

Steps of construction :

  1. Draw a line segment AC = 5 cm.

  2. From A draw an arc of radius 6 cm and from C draw an arc of radius 7 cm, intersecting each other at point B.

  3. Draw XY, the perpendicular bisector of AB, and mark D as the mid point.

  4. Draw perpendicular bisector of CD.

  5. From C, draw a line segment perpendicular to AC, which intersect the PQ, perpendicular bisector of CD at O.

  6. Take O as centre and OD as radius draw a circle.

Question 115

Using ruler and compasses only; draw a circle of radius 4 cm. Produce AB, a diameter of this circle, upto point X so that BX = 4 cm. Construct a circle to touch AB at X and to touch the circle, drawn earlier, externally.

Using ruler and compasses only; draw a circle of radius 4 cm. Produce AB, a diameter of this circle, upto point X so that BX = 4 cm. Construct a circle to touch AB at X and to touch the circle, drawn earlier, externally. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Steps of construction :

  1. Taking O as center and radius = 4 cm draw a circle.

  2. Draw AB, the diameter of circle with center O.

  3. Produce AB to X such that BX = 4 cm.

  4. Draw DE perpendicular bisector of BX, intersecting BX at C.

  5. From C, as center and CX as radius draw a circle touching circle with center O at B and passing through X.

MENSURATION

Question 116

A cylinder of circumference 8 cm and length 21 cm rolls without sliding for 4124\dfrac{1}{2} seconds at the rate of 9 complete rounds per second. Find:

(i) distance travelled by the cylinder in 4124\dfrac{1}{2} seconds, and

(ii) the area covered by the cylinder in 4124\dfrac{1}{2} seconds

Answer

(i) If distance covered in one revolution is 8 cm, then distance covered in 9 revolutions = 9 x 8 = 72 cm or distance covered in 1 second = 72 cm.

Distance covered in 4124\dfrac{1}{2} seconds = 72 x 4.5 = 324 cm.

Hence, distance travelled by the cylinder in 4124\dfrac{1}{2} seconds is 324 cm.

A cylinder of circumference 8 cm and length 21 cm rolls without sliding for seconds at the rate of 9 complete rounds per second. Find: (i) distance travelled by the cylinder in seconds, and (ii) the area covered by the cylinder in seconds. Cylinder, Cone, Sphere, Concise Mathematics Solutions ICSE Class 10.

(ii) Given, circumference = 8 cm.

∴ 2πr = 8

2×227×r=82 \times \dfrac{22}{7} \times r = 8

⇒ r = 8×72×22=1411\dfrac{8 \times 7}{2 \times 22} = \dfrac{14}{11} cm.

By formula,

Curved surface area = 2πrh

= 2 x 227×1411\dfrac{22}{7} \times \dfrac{14}{11} x 21

= 2 x 2 x 2 x 21

= 168 cm2.

So, the area covered in one revolution = 168 cm2,

∴ The area covered in 9 revolutions = 168 x 9 = 1512 cm2,

∴ The area covered in 1 second = 1512 cm2,

Thus, the area covered in 4124\dfrac{1}{2} seconds = 1512 x 4.5 = 6804 cm2.

Hence, the area covered by cylinder in 4124\dfrac{1}{2} seconds = 6804 cm2.

Question 117

A cylindrical bucket 28 cm in diameter and 72 cm high is full of water. The water is emptied into a rectangular tank 66 cm long and 28 cm wide. Find the height of the water level in the tank.

Answer

Given,

Diameter of cylindrical bucket = 28 cm

Radius (r) = Diameter2=282\dfrac{\text{Diameter}}{2} = \dfrac{28}{2} = 14 cm.

Height (H) = 72 cm.

Length of rectangular tank (l) = 66 cm

Breadth of rectangular tank (b) = 28 cm.

Let height of water be h cm in the rectangular tank.

Since, water is emptied into a rectangular tank from cylindrical bucket,

∴ Volume of cylindrical bucket = Volume of water in rectangular tank

πr2H=l×b×hh=πr2Hlbh=227×142×7266×28h=22×196×727×66×28h=7×727×3h=24 cm.\Rightarrow πr^2H = l × b × h \\[1em] \Rightarrow h = \dfrac{πr^2H}{lb} \\[1em] \Rightarrow h = \dfrac{\dfrac{22}{7} \times 14^2 \times 72}{66 \times 28} \\[1em] \Rightarrow h = \dfrac{22 \times 196 \times 72}{7 \times 66 \times 28} \\[1em] \Rightarrow h = \dfrac{7 \times 72}{7 \times 3} \\[1em] \Rightarrow h = 24\text{ cm}.

Hence, height of water level in rectangular tank = 24 cm.

Question 118

The radius of a solid right circular cylinder increases by 20% and its height decreases by 20%. Find the percentage change in its volume.

Answer

Let the radius of a solid right cylinder be r cm and height be h cm.

∴ Volume of cylinder = πr2h

New radius (r') = r + 20100×r=120r100\dfrac{20}{100} \times r = \dfrac{120r}{100} = 1.2r.

New height (h') = h - 20100×h=80h100\dfrac{20}{100} \times h = \dfrac{80h}{100} = 0.8h.

⇒ New volume of the solid right circular cylinder = πr'2h'

= π x (1.2r)2 x 0.8h

= 1.152 πr2h.

Increase in volume = New volume - Original volume

= 1.152 πr2h - πr2h

= 0.152 πr2h.

By formula,

Percentage change in volume = Increase in volumeOriginal volume\dfrac{\text{Increase in volume}}{\text{Original volume}} x 100%

= 0.152πr2hπr2h\dfrac{0.152πr^2h}{πr^2h} x 100%

= 15.2 %.

Hence, percentage change in volume = 15.2 %.

Question 119

The sum of the inner and the outer curved surfaces of a hollow metallic cylinder is 1056 cm2 and the volume of the material is 1056 cm3. Find its internal and external radii. Given that the height of the cylinder is 21 cm.

Answer

Given,

Sum of the inner and the outer curved surfaces of a hollow metallic cylinder = 1056 cm2

∴ 2πrh + 2πRh = 1056

⇒ 2πh(r + R) = 1056

447h(r+R)\dfrac{44}{7}h(r + R) = 1056

⇒ h(r + R) = 1056×744\dfrac{1056 \times 7}{44}

⇒ h(r + R) = 168 ...........(1)

Volume of the material = 1056 cm3

∴ π(R2 - r2)h = 1056

227×(R2r2)h\dfrac{22}{7} \times (R^2 - r^2)h = 1056

⇒ (R2 - r2)h = 1056×722\dfrac{1056 \times 7}{22}

⇒ (R2 - r2)h = 336 .........(2)

Dividing (2) by (1) we get,

(R2r2)h(R+r)h=336168(Rr)(R+r)h(R+r)h=2Rr=2R=r+2\Rightarrow \dfrac{(R^2 - r^2)h}{(R + r)h} = \dfrac{336}{168} \\[1em] \Rightarrow \dfrac{(R - r)(R + r)h}{(R + r)h} = 2 \\[1em] \Rightarrow R - r = 2 \\[1em] \Rightarrow R = r + 2

Substituting value of height and R in equation (1) we get :

⇒ 21(r + r + 2) = 168

⇒ 21(2r + 2) = 168

⇒ 2r + 2 = 16821\dfrac{168}{21}

⇒ 2r + 2 = 8

⇒ 2r = 8 - 2

⇒ 2r = 6

⇒ r = 62\dfrac{6}{2}

⇒ r = 3 cm.

⇒ R = r + 2 = 3 + 2 = 5 cm.

Hence, internal radius = 3 cm and external radius = 5 cm.

Question 120

A tent is of the shape of a right circular cylinder upto height of 3 meters and then becomes a right circular cone with a maximum height of 13.5 meters above the ground. Calculate the cost of painting the inner surface of the tent at ₹ 4 per sq. meter, if the radius of the base is 14 meters.

Answer

Given,

Height of cylindrical portion (h) = 3 m

Height of conical part (H) = Maximum height of tent (above ground) - Height of cylindrical portion = 13.5 - 3 = 10.5 m.

Radius of base of cylindrical portion = Radius of conical portion = r = 14 m.

⇒ Curved surface area of tent = Curved surface area of cone + Curved surface area of cylinder

⇒ Curved surface area of tent (C) = πrl + 2πrh .......(1)

We know that,

l=r2+H2=142+(10.5)2=196+110.25=306.25=17.5 m.l = \sqrt{r^2 + H^2} \\[1em] = \sqrt{14^2 + (10.5)^2} \\[1em] = \sqrt{196 + 110.25} \\[1em] = \sqrt{306.25} \\[1em] = 17.5 \text{ m}.

Substituting values in equation (1), we get :

C=227×14×17.5+2×227×14×3=22×2×17.5+2×22×2×3=770+264=1034 m2.\Rightarrow C = \dfrac{22}{7} \times 14 \times 17.5 + 2 \times \dfrac{22}{7} \times 14 \times 3 \\[1em] = 22 \times 2 \times 17.5 + 2 \times 22 \times 2 \times 3 \\[1em] = 770 + 264 \\[1em] = 1034 \text{ m}^2.

Given,

Cost of painting the inner surface of the tent at ₹ 4 per sq. meter.

Total cost = Curved surface area of tent × 4

= 1034 × 4 = ₹ 4136.

Hence, cost of painting the inner surface = ₹ 4136.

Question 121

A copper wire of diameter 6 mm is evenly wrapped on the cylinder of length 18 cm and diameter 49 cm to cover the whole surface. Find :

(i) the length

(ii) the volume of the wire.

Answer

Given,

Diameter of copper wire = 6 mm = 0.6 cm

Length of cylinder (l) = 18 cm

Diameter of cylindrical base = 49 cm

Radius of cylindrical base (r) = 492\dfrac{49}{2} = 24.5 cm.

(i) Given,

Copper wire is evenly wrapped on the cylinder to cover the whole surface.

As it is covers the whole length of cylinder.

∴ No. of times it wraps around = Length of cylinderDiameter of wire=180.6\dfrac{\text{Length of cylinder}}{\text{Diameter of wire}} = \dfrac{18}{0.6} = 30.

For each turn, length of copper wire = Circumference of cylinder = 2πr

= 2 × 227\dfrac{22}{7} × 24.5

= 154 cm.

Total length = 30 × 154 = 4620 cm = 4620100\dfrac{4620}{100} = 46.20 m.

Hence, total length of copper wire = 46.20 m.

(ii) Since, wire is in the form of cylinder.

Height = Length of wire

Given,

Radius of wire (R) = 0.62\dfrac{0.6}{2} = 0.3 cm.

Volume of wire = πR2 × length

= 227×(0.3)2×4620\dfrac{22}{7} \times (0.3)^2 \times 4620

= 9147.67\dfrac{9147.6}{7} = 1306.8 cm3.

Hence, volume of wire = 1306.8 cm3.

Question 122

A pool has a uniform circular cross section of radius 5 m and uniform depth 1.4 m. It is filled by a pipe which delivers water at the rate of 20 litres per sec. Calculate, in minutes, the time taken to fill the pool. If the pool is emptied in 42 min. by another cylindrical pipe through which water flows at 2 m per sec, calculate the radius of the pipe in cm.

Answer

Given,

Radius of pool (R) = 5 m,

Depth of pool (H) = 1.4 m.

Since, pool is in the form of cylinder.

Volume of water in pool = πR2H

= 227×52×1.4\dfrac{22}{7} \times 5^2 \times 1.4 = 110 m3

= 110 × 1000 litres = 11 × 104 liters.

Volume of water coming out of filling pipe = 20 litres/sec.

Time taken to fill the tank = 11×10420\dfrac{11 \times 10^4}{20} second

= 11×10420×60\dfrac{11 \times 10^4}{20 \times 60} minutes

= 110012=9123\dfrac{1100}{12} = 91\dfrac{2}{3} minutes.

Let radius of pipe be r cm.

Volume of water coming out from draining pipe in 1 sec = Area of cross section × Rate

= πr2 × 2 m/sec

= (200 × πr2) cm3

= (200 × πr2 × 10-3) liters.

Given,

Time required for emptying the pool = 42 min = 42 × 60 seconds.

Volume of water in poolVolume of water drained out in 1 sec=42×6011×104200×103×πr2=42×6011×102×1032×227×r2=42×601100×7×10344r2=2520100×7×1034r2=25207000004r2=2520r2=7000004×2520r2=1000004×360r2=250036r=250036r=506=253=813 cm.\therefore \dfrac{\text{Volume of water in pool}}{\text{Volume of water drained out in 1 sec}} = 42 \times 60 \\[1em] \Rightarrow \dfrac{11 \times 10^4}{200 \times 10^{-3} \times πr^2} = 42 \times 60 \\[1em] \Rightarrow \dfrac{11 \times 10^2 \times 10^3}{2 \times \dfrac{22}{7} \times r^2} = 42 \times 60 \\[1em] \Rightarrow \dfrac{1100 \times 7 \times 10^3}{44r^2} = 2520 \\[1em] \Rightarrow \dfrac{100 \times 7 \times 10^3}{4r^2} = 2520 \\[1em] \Rightarrow \dfrac{700000}{4r^2} = 2520 \\[1em] \Rightarrow r^2 = \dfrac{700000}{4 \times 2520} \\[1em] \Rightarrow r^2 = \dfrac{100000}{4 \times 360} \\[1em] \Rightarrow r^2 = \dfrac{2500}{36} \\[1em] \Rightarrow r = \sqrt{\dfrac{2500}{36}} \\[1em] \Rightarrow r = \dfrac{50}{6} = \dfrac{25}{3} = 8\dfrac{1}{3} \text{ cm}.

Hence, time taken to fill the pool = 912391\dfrac{2}{3} minutes and radius of pipe = 8138\dfrac{1}{3} cm.

Question 123

A test tube consists of a hemisphere and a cylinder of the same radius. The volume of water required to fill the whole tube is 28493\dfrac{2849}{3} cm3 and 26183\dfrac{2618}{3} cm3 of water is required to fill the tube to a level which is 2 cm below the top of the tube. Find the radius of the tube and the length of its cylindrical part.

A test tube consists of a hemisphere and a cylinder of the same radius. The volume of water required to fill the whole tube is cm3 and cm3 of water is required to fill the tube to a level which is 2 cm below the top of the tube. Find the radius of the tube and the length of its cylindrical part. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Let length of cylindrical part be h cm and radius of hemispherical and conical part be r cm.

Given,

Volume of water required to fill whole test tube = 28493\dfrac{2849}{3} cm3.

Volume of water required to fill test tube upto a level which is 2 cm below the top of tube = 26183\dfrac{2618}{3} cm3.

∴ Volume of water above 2 cm part of the test tube = 2849326183=2313\dfrac{2849}{3} - \dfrac{2618}{3} = \dfrac{231}{3} = 77 cm3.

π×r2×2=77447r2=77r2=77×744r2=53944r2=494r=494r=72=3.5 cm.\Rightarrow π \times r^2 \times 2 = 77 \\[1em] \Rightarrow \dfrac{44}{7}r^2 = 77 \\[1em] \Rightarrow r^2 = \dfrac{77 \times 7}{44} \\[1em] \Rightarrow r^2 = \dfrac{539}{44} \\[1em] \Rightarrow r^2 = \dfrac{49}{4} \\[1em] \Rightarrow r = \sqrt{\dfrac{49}{4}} \\[1em] \Rightarrow r = \dfrac{7}{2} = 3.5 \text{ cm}.

Volume of water in test tube = Volume of cylindrical part + Volume of hemispherical part = 28493\dfrac{2849}{3} cm3.

πr2h+23πr3=28493πr2(h+2r3)=28493227r2(h+2r3)=28493227×(3.5)2×(h+2×3.53)=2849338.5×(h+73)=28493h+73=28493×38.5h+73=2849115.5h+73=284901155h+73=743h=74373h=673=2213 cm.\therefore πr^2h + \dfrac{2}{3}πr^3 = \dfrac{2849}{3} \\[1em] \Rightarrow πr^2\Big(h + \dfrac{2r}{3}\Big) = \dfrac{2849}{3} \\[1em] \Rightarrow \dfrac{22}{7}r^2\Big(h + \dfrac{2r}{3}\Big) = \dfrac{2849}{3} \\[1em] \Rightarrow \dfrac{22}{7} \times (3.5)^2 \times \Big(h + \dfrac{2 \times 3.5}{3}\Big) = \dfrac{2849}{3} \\[1em] \Rightarrow 38.5 \times \Big(h + \dfrac{7}{3}\Big) = \dfrac{2849}{3} \\[1em] \Rightarrow h + \dfrac{7}{3} = \dfrac{2849}{3 \times 38.5} \\[1em] \Rightarrow h + \dfrac{7}{3} = \dfrac{2849}{115.5} \\[1em] \Rightarrow h + \dfrac{7}{3} = \dfrac{28490}{1155} \\[1em] \Rightarrow h + \dfrac{7}{3} = \dfrac{74}{3} \\[1em] \Rightarrow h = \dfrac{74}{3} - \dfrac{7}{3} \\[1em] \Rightarrow h = \dfrac{67}{3} = 22\dfrac{1}{3} \text{ cm}.

Hence, radius of tube = 3.5 cm and length of cylindrical part = 221322\dfrac{1}{3} cm.

Question 124

A sphere is placed in an inverted hollow conical vessel of base radius 5 cm and vertical height 12 cm. If the highest point of the sphere is at the level of the base of the cone, find the radius of the sphere. Show that the volume of the sphere and the conical vessel are as 40 : 81.

A sphere is placed in an inverted hollow conical vessel of base radius 5 cm and vertical height 12 cm. If the highest point of the sphere is at the level of the base of the cone, find the radius of the sphere. Show that the volume of the sphere and the conical vessel are as 40 : 81. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Given,

Radius of cone (R) = 5 cm.

Height of cone (H) = 12 cm

Let radius of sphere be r cm.

From figure,

FE = FD = r cm

AD = 12 cm, DC = 5 cm

Slant height (AC) = AD2+CD2=122+52\sqrt{AD^2 + CD^2} = \sqrt{12^2 + 5^2}

= 144+25=169\sqrt{144 + 25} = \sqrt{169} = 13 cm.

In △ADC and △AFE,

⇒ ∠ADC = ∠AEF (Both equal to 90°)

⇒ ∠A = ∠A (Common)

∴ △ADC ~ △AFE (By A.A. axiom)

Ratio of corresponding sides of similar triangle are equal.

FEDC=AFACr5=12r1313r=5(12r)13r=605r18r=60r=6018=103 cm.\therefore \dfrac{FE}{DC} = \dfrac{AF}{AC} \\[1em] \Rightarrow \dfrac{r}{5} = \dfrac{12 - r}{13} \\[1em] \Rightarrow 13r = 5(12 - r) \\[1em] \Rightarrow 13r = 60 - 5r \\[1em] \Rightarrow 18r = 60 \\[1em] \Rightarrow r = \dfrac{60}{18} = \dfrac{10}{3} \text{ cm}.

Ratio of volume of sphere to volume of cone.

Volume of sphereVolume of cone=43πr313πR2H=4r3R2H=4×(103)352×12=4×10002725×12=400025×27×12=4081=40:81.\Rightarrow \dfrac{\text{Volume of sphere}}{\text{Volume of cone}} = \dfrac{\dfrac{4}{3}πr^3}{\dfrac{1}{3}πR^2H} \\[1em] = \dfrac{4r^3}{R^2H} \\[1em] = \dfrac{4 \times \Big(\dfrac{10}{3}\Big)^3}{5^2 \times 12} \\[1em] = \dfrac{4 \times \dfrac{1000}{27}}{25 \times 12} \\[1em] = \dfrac{4000}{25 \times 27 \times 12} \\[1em] = \dfrac{40}{81} = 40 : 81.

Hence, proved that ratio of volume of sphere and conical vessel = 40 : 81.

Question 125

The difference between the outer and the inner curved surface areas of a hollow cylinder, 14 cm long, is 88 sq. cm. Find the outer and the inner radii of the cylinder, given that the volume of metal used is 176 cu. cm.

Answer

Given,

Height of cylinder (H) = 14 cm

Let outer radius of cylinder be R cm and inner radius be r cm.

Given,

Difference between the outer and the inner curved surface areas of a hollow cylinder is 88 sq. cm.

2πRH2πrH=882πH(Rr)=882×227×14(Rr)=8888(Rr)=88Rr=1 ............(1)\therefore 2πRH - 2πrH = 88 \\[1em] \Rightarrow 2πH(R - r) = 88 \\[1em] \Rightarrow 2 \times \dfrac{22}{7} \times 14 (R - r) = 88 \\[1em] \Rightarrow 88(R - r) = 88 \\[1em] \Rightarrow R - r = 1 \space ............(1)

Given,

Volume of metal = 176 cu. cm

π(R2r2)H=176227×(R2r2)×14=17644(R2r2)=176(R2r2)=17644(R2r2)=4(Rr)(R+r)=41×(R+r)=4 .......[From (1)](R+r)=4...........(2)\therefore π(R^2 - r^2)H = 176 \\[1em] \Rightarrow \dfrac{22}{7} \times (R^2 - r^2) \times 14 = 176 \\[1em] \Rightarrow 44(R^2 - r^2) = 176 \\[1em] \Rightarrow (R^2 - r^2) = \dfrac{176}{44} \\[1em] \Rightarrow (R^2 - r^2) = 4 \\[1em] \Rightarrow (R - r)(R + r) = 4 \\[1em] \Rightarrow 1 \times (R + r) = 4 \text{ .......[From (1)]} \\[1em] \Rightarrow (R + r) = 4 ...........(2)

Adding equation (1) and (2), we get :

⇒ R - r + R + r = 1 + 4

⇒ 2R = 5

⇒ R = 52\dfrac{5}{2} = 2.5 cm

Substituting value of R in equation (1), we get :

⇒ 2.5 - r = 1

⇒ r = 2.5 - 1 = 1.5 cm

Hence, outer radii = 2.5 cm and inner radii = 1.5 cm.

Question 126

The surface area of a solid sphere is increased by 21% without changing its shape. Find the percentage increase in its :

(i) radius

(ii) volume

Answer

Let original radius be r units and new radius be R units.

Given,

Surface area of a solid sphere is increased by 21% without changing its shape.

4πR2=4πr2+21100×4πr24πR2=4π(r2+21100r2)R2=r2+21100r2R2=121100r2R=121100r2R=1110r.\therefore 4πR^2 = 4πr^2 + \dfrac{21}{100} \times 4πr^2 \\[1em] \Rightarrow 4πR^2 = 4π(r^2 + \dfrac{21}{100}r^2) \\[1em] \Rightarrow R^2 = r^2 + \dfrac{21}{100}r^2 \\[1em] \Rightarrow R^2 = \dfrac{121}{100}r^2 \\[1em] \Rightarrow R = \sqrt{\dfrac{121}{100}r^2} \\[1em] \Rightarrow R = \dfrac{11}{10}r.

By formula,

Percentage increase in radius=Rrr×100=1110rrr×100=r10r×100=110×100=10\text{Percentage increase in radius} = \dfrac{R - r}{r} \times 100 \\[1em] = \dfrac{\dfrac{11}{10}r - r}{r} \times 100 \\[1em] = \dfrac{\dfrac{r}{10}}{r} \times 100 \\[1em] = \dfrac{1}{10} \times 100 \\[1em] = 10%.

Hence, percentage increase in radius = 10%.

(ii) Let original volume be v and new volume be V.

By formula,

Percentage increase in volume=Vvv×100=43πR343πr343πr3×100=43π(R3r3)43πr3×100=R3r3r3×100=(1110r)3r3r3×100=1331100011×100=1331100010001×100=3311000×100=33.1\text{Percentage increase in volume} = \dfrac{V - v}{v} \times 100 \\[1em] = \dfrac{\dfrac{4}{3}πR^3 - \dfrac{4}{3}πr^3}{\dfrac{4}{3}πr^3} \times 100\\[1em] = \dfrac{\dfrac{4}{3}π(R^3 - r^3)}{\dfrac{4}{3}πr^3} \times 100\\[1em] = \dfrac{R^3 - r^3}{r^3} \times 100 \\[1em] = \dfrac{\Big(\dfrac{11}{10}r\Big)^3 - r^3}{r^3} \times 100 \\[1em] = \dfrac{\dfrac{1331}{1000} - 1}{1} \times 100 \\[1em] = \dfrac{\dfrac{1331 - 1000}{1000}}{1} \times 100 \\[1em] = \dfrac{331}{1000}\times 100 \\[1em] = 33.1%.

Hence, percentage increase in volume = 33.1%.

Question 127

A wooden toy is in the shape of a cone mounted on a cylinder as shown alongside.

If the height of the cone is 24 cm, the total height of the toy is 60 cm and the radius of the base of the cone = twice the radius of the base of the cylinder = 10 cm; find the total surface area of the toy. [Take π = 3.14]

A vessel is a hollow cylinder fitted with a hemispherical bottom of the same base. The depth of the cylindrical part is m and the diameter of hemisphere is 3.5 m. Calculate the capacity and the internal surface area of the vessel. Cylinder, Cone, Sphere, Concise Mathematics Solutions ICSE Class 10.

Answer

Given,

Height of the cone (h) = 24 cm

Height of the cylinder (H) = 60 - 24 = 36 cm

Radius of the cone (r) = 10 cm

Given,

Radius of the base of the cone = Twice the radius of the base of the cylinder.

Radius of base of cylinder (R) = 5 cm.

By formula,

⇒ l2 = r2 + h2

⇒ l2 = 102 + 242

⇒ l2 = 100 + 576

⇒ l2 = 676

⇒ l = 676\sqrt{676} = 26 cm.

Total surface area of the toy = Surface area of the conical part + Base area of conical part + Surface area of the cylinder

= πrl + πr2 + 2πRH

= π(rl + r2 + 2RH)

= 3.14 × (10 × 26 + 102 + 2 × 5 × 36)

= 3.14 × (260 + 100 + 360)

= 3.14 × 720

= 2260.8 cm2.

Hence, total surface area of troy = 2260.8 cm2.

Question 128

The cross-section of a railway tunnel is a rectangle 6 m broad and 8 m high surmounted by a semi-circle as shown in the figure. The tunnel is 35 m long. Find the cost of plastering the internal surface of the tunnel (excluding the floor) at the rate of ₹ 2.25 per m2.

The cross-section of a railway tunnel is a rectangle 6 m broad and 8 m high surmounted by a semi-circle as shown in the figure. The tunnel is 35 m long. Find the cost of plastering the internal surface of the tunnel (excluding the floor) at the rate of ₹ 2.25 per m<sup>2</sup>. Cylinder, Cone, Sphere, Concise Mathematics Solutions ICSE Class 10.

Answer

Given,

Breadth of tunnel (b) = 6 m

Height of tunnel (h) = 8 m

Length of tunnel (l) = 35 m

Let radius of semi-circle be r meters.

From figure,

⇒ 2r = 6

⇒ r = 3 m.

Circumference of semi-circle = πr = 227×3=667\dfrac{22}{7} \times 3 = \dfrac{66}{7} m.

Internal surface area of tunnel = Circumference of semi-circle × Length + Area of side interior rectangular walls

= πrl + hl + hl

= πrl + 2hl

= 667×35+2×8×35\dfrac{66}{7} \times 35 + 2 \times 8 \times 35

= 330 + 560

= 890 m2.

Given,

Rate of plastering = ₹ 2.25 per m2.

Total cost = 890 × ₹ 2.25 = ₹ 2002.50.

Hence, cost of plastering internal surface area of tunnel = ₹ 2002.50

TRIGONOMETRY

Question 129(i)

Prove that :

(1 + cos Asin A)2=1 + cos A1 - cos A\Big(\dfrac{\text{1 + cos A}}{\text{sin A}}\Big)^2 = \dfrac{\text{1 + cos A}}{\text{1 - cos A}}

Answer

To prove:

Equation : (1 + cos Asin A)2=1 + cos A1 - cos A\Big(\dfrac{\text{1 + cos A}}{\text{sin A}}\Big)^2 = \dfrac{\text{1 + cos A}}{\text{1 - cos A}}.

Solving L.H.S. of the above equation :

(1 + cos Asin A)2(1 + cos A)2sin2A(1 + cos A)2(1 - cos2A)(1 + cos A)2(1 - cos A)(1 + cos A)1 + cos A1 - cos A.\Rightarrow \Big(\dfrac{\text{1 + cos A}}{\text{sin A}}\Big)^2 \\[1em] \Rightarrow \dfrac{(\text{1 + cos A})^2}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{(\text{1 + cos A})^2}{(\text{1 - cos}^2 A)} \\[1em] \Rightarrow \dfrac{(\text{1 + cos A})^2}{\text{(1 - cos A)(1 + cos A)}} \\[1em] \Rightarrow \dfrac{\text{1 + cos A}}{\text{1 - cos A}}.

∴ L.H.S. = R.H.S.

Hence, proved that (1 + cos Asin A)2=1 + cos A1 - cos A\Big(\dfrac{\text{1 + cos A}}{\text{sin A}}\Big)^2 = \dfrac{\text{1 + cos A}}{\text{1 - cos A}}.

Question 129(ii)

Prove that :

1 + sec Asec A=sin2A1 - cos A\dfrac{\text{1 + sec A}}{\text{sec A}} = \dfrac{\text{sin}^2 A}{\text{1 - cos A}}

Answer

To prove:

Equation : 1 + sec Asec A=sin2A1 - cos A\dfrac{\text{1 + sec A}}{\text{sec A}} = \dfrac{\text{sin}^2 A}{\text{1 - cos A}}.

Solving L.H.S. of the above equation :

1 + sec Asec A1+1cos A1cos A1 + cos Acos A1cos A1 + cos Acos A×cos A1 + cos A.\Rightarrow \dfrac{\text{1 + sec A}}{\text{sec A}} \\[1em] \Rightarrow \dfrac{1 + \dfrac{1}{\text{cos A}}}{\dfrac{1}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\dfrac{\text{1 + cos A}}{\text{cos A}}}{\dfrac{1}{\text{cos A}}} \\[1em] \Rightarrow \dfrac{\text{1 + cos A}}{\text{cos A}} \times \text{cos A} \\[1em] \Rightarrow \text{1 + cos A}.

Solving R.H.S. of the above equation :

sin2A1 - cos A1 - cos2A1 - cos A(1 - cos A)(1 + cos A)1 - cos A1 + cos A.\Rightarrow \dfrac{\text{sin}^2 A}{\text{1 - cos A}} \\[1em] \Rightarrow \dfrac{\text{1 - cos}^2 A}{\text{1 - cos A}} \\[1em] \Rightarrow \dfrac{\text{(1 - cos A)(1 + cos A)}}{\text {1 - cos A}} \\[1em] \Rightarrow \text{1 + cos A}.

Since, L.H.S. = R.H.S = 1 + cos A.

Hence, proved that 1 + sec Asec A=sin2A1 - cos A\dfrac{\text{1 + sec A}}{\text{sec A}} = \dfrac{\text{sin}^2 A}{\text{1 - cos A}}.

Question 129(iii)

Prove that :

sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A

Answer

To prove:

Equation : sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A.

Solving L.H.S. of the above equation :

sin A(1 + tan A) + cos A(1 + cot A)sin A + sin A tan A + cos A + cos A cot Asin A + sin A×sin Acos A+cos A + cos A×cos Asin Asin A + cos A+sin2Acos A+cos2Asin A(sin A+cos2Asin A)+(cos A+sin2Acos A)(sin2A+cos2Asin A)+(cos2A+sin2Acos A)\Rightarrow \text{sin A(1 + tan A) + cos A(1 + cot A)} \\[1em] \Rightarrow \text{sin A + sin A tan A + cos A + cos A cot A} \\[1em] \Rightarrow \text{sin A + sin A} \times \dfrac{\text{sin A}}{\text{cos A}} + \text{cos A + cos A} \times \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \text{sin A + cos A} + \dfrac{\text{sin}^2 A}{\text{cos A}} + \dfrac{\text{cos}^2 A}{\text{sin A}} \\[1em] \Rightarrow \Big(\text{sin A} + \dfrac{\text{cos}^2 A}{\text{sin A}}\Big) + \Big(\text{cos A} + \dfrac{\text{sin}^2 A}{\text{cos A}}\Big) \\[1em] \Rightarrow \Big(\dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{sin A}}\Big) + \Big(\dfrac{\text{cos}^2 A + \text{sin}^2 A}{\text{cos A}}\Big)

By formula,

sin2 A + cos2 A = 1.

1sin A+1cos Acosec A + sec A.\Rightarrow \dfrac{1}{\text{sin A}} + \dfrac{1}{\text{cos A}} \\[1em] \Rightarrow \text{cosec A + sec A}.

∴ L.H.S. = R.H.S.

Hence, proved that sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A.

Question 129(iv)

Prove that :

sin2 A tan A + cos2 A cot A + 2 sin A cos A = tan A + cot A

Answer

To prove:

Equation : sin2 A tan A + cos2 A cot A + 2 sin A cos A = tan A + cot A.

Solving L.H.S. of the above equation :

sin2A tan A + cos2A cot A + 2 sin A cos Asin2A×sin Acos A+cos2A×cos Asin A+2 sin A cos Asin3Acos A+cos3Asin A+2 sin A cos Asin4A+cos4A+2 sin2Acos2Asin A cos A(sin2A+cos2A)2sin A cos A\Rightarrow \text{sin}^2 A \text{ tan A + cos}^2 A \text{ cot A + 2 sin A cos A} \\[1em] \Rightarrow \text{sin}^2 A \times \dfrac{\text{sin A}}{\text{cos A}} + \text{cos}^2 A \times \dfrac{\text{cos A}}{\text{sin A}} + \text{2 sin A cos A} \\[1em] \Rightarrow \dfrac{\text{sin}^3 A}{\text{cos A}} + \dfrac{\text{cos}^3 A}{\text{sin A}} + \text{2 sin A cos A} \\[1em] \Rightarrow \dfrac{\text{sin}^4 A + \text{cos}^4 A + \text{2 sin}^2 A \text{cos}^2 A}{\text{sin A cos A}} \\[1em] \Rightarrow \dfrac{(\text{sin}^2 A + \text{cos}^2 A)^2}{\text{sin A cos A}}

By formula,

sin2 A + cos2 A = 1

1sin A cos A\Rightarrow \dfrac{1}{\text{sin A cos A}}.

Solving R.H.S. of the above equation :

tan A + cot Asin Acos A+cos Asin Asin2A+cos2Acos A sin A1sin A cos A.\Rightarrow \text{tan A + cot A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{cos A}} + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{sin}^2 A + \text{cos}^2 A}{\text{cos A sin A}} \\[1em] \Rightarrow \dfrac{1}{\text{sin A cos A}}.

Since, L.H.S. = R.H.S. = 1sin A cos A\dfrac{1}{\text{sin A cos A}}.

Hence, proved that sin2 A tan A + cos2 A cot A + 2 sin A cos A = tan A + cot A.

Question 129(v)

Prove that :

cosec A + cot A = 1cosec A - cot A\dfrac{1}{\text{cosec A - cot A}}

Answer

Solving R.H.S. of the equation :

1cosec A - cot A11sin Acos Asin A11 - cos Asin Asin A1 - cos A\Rightarrow \dfrac{1}{\text{cosec A - cot A}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{1}{\text{sin A}} - \dfrac{\text{cos A}}{\text{sin A}}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{1 - cos A}}{\text{sin A}}} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{1 - cos A}}

Multiplying numerator and denominator by (1 + cos A) we get :

sin A1 - cos A×1 + cos A1 + cos Asin A + sin A. cos A1 - cos2A\Rightarrow \dfrac{\text{sin A}}{\text{1 - cos A}} \times \dfrac{\text{1 + cos A}}{\text{1 + cos A}} \\[1em] \Rightarrow \dfrac{\text{sin A + sin A. cos A}}{\text{1 - cos}^2 A}

By formula,

1 - cos2 A = sin2 A

sin A + sin A. cos Asin2Asin Asin2A+sin A. cos Asin2A1sin A+cos Asin Acosec A + cot A.\Rightarrow \dfrac{\text{sin A + sin A. cos A}}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{\text{sin A}}{\text{sin}^2 A} + \dfrac{\text{sin A. cos A}}{\text{sin}^2 A} \\[1em] \Rightarrow \dfrac{1}{\text{sin A}} + \dfrac{\text{cos A}}{\text{sin A}} \\[1em] \Rightarrow \text{cosec A + cot A}.

Since, L.H.S. = R.H.S.

Hence, proved that cosec A + cot A = 1cosec A - cot A\dfrac{1}{\text{cosec A - cot A}}.

Question 129(vi)

Prove that :

cot A + cosec A - 1cot A - cosec A + 1=1 + cos Asin A\dfrac{\text{cot A + cosec A - 1}}{\text{cot A - cosec A + 1}} = \dfrac{\text{1 + cos A}}{\text{sin A}}

Answer

Solving L.H.S. of the equation :

cot A + cosec A - 1cot A - cosec A + 1\Rightarrow \dfrac{\text{cot A + cosec A - 1}}{\text{cot A - cosec A + 1}}

By formula,

cosec2 A - cot2 A = 1

cot A + cosec A - (cosec2Acot2A)cot A - cosec A + 1(cot A + cosec A) - (cosecAcotA)(cosec A + cot A)cot A - cosec A + 1(cot A + cosec A)[1 - (cosec A - cot A)]cot A - cosec A + 1(cot A + cosec A)(cot A - cosec A + 1)cot A - cosec A + 1cot A + cosec Acos Asin A+1sin Acos A + 1sin A.\Rightarrow \dfrac{\text{cot A + cosec A - (cosec}^2 A - \text{cot}^2 A)}{\text{cot A - cosec A + 1}} \\[1em] \Rightarrow \dfrac{\text{(cot A + cosec A) - (cosec} A - \text{cot} A)\text{(cosec A + cot A)}}{\text{cot A - cosec A + 1}} \\[1em] \Rightarrow \dfrac{\text{(cot A + cosec A)[1 - (cosec A - cot A)]}}{\text{cot A - cosec A + 1}} \\[1em] \Rightarrow \dfrac{\text{(cot A + cosec A)(cot A - cosec A + 1)}}{\text{cot A - cosec A + 1}} \\[1em] \Rightarrow \text{cot A + cosec A} \\[1em] \Rightarrow \dfrac{\text{cos A}}{\text{sin A}} + \dfrac{1}{\text{sin A}} \\[1em] \Rightarrow \dfrac{\text{cos A + 1}}{\text{sin A}}.

Since, L.H.S. = R.H.S.

Hence, proved that cot A + cosec A - 1cot A - cosec A + 1=1 + cos Asin A\dfrac{\text{cot A + cosec A - 1}}{\text{cot A - cosec A + 1}} = \dfrac{\text{1 + cos A}}{\text{sin A}}.

Question 130

If tan A = 1 and tan B = 3\sqrt{3}; evaluate :

(i) cos A cos B - sin A sin B

(ii) sin A cos B + cos A sin B

Answer

Given,

⇒ tan A = 1

⇒ tan A = tan 45°

⇒ A = 45°.

⇒ tan B = 3\sqrt{3}

⇒ tan B = tan 60°

⇒ B = 60°.

(i) Solving,

⇒ cos A cos B - sin A sin B

⇒ cos 45° cos 60° - sin 45° sin 60°

12×1212×3212232213221322×222324264.\Rightarrow \dfrac{1}{\sqrt{2}} \times \dfrac{1}{2} - \dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2} \\[1em] \Rightarrow \dfrac{1}{2\sqrt{2}} - \dfrac{\sqrt{3}}{2\sqrt{2}} \\[1em] \Rightarrow \dfrac{1 - \sqrt{3}}{2\sqrt{2}} \\[1em] \Rightarrow \dfrac{1 - \sqrt{3}}{2\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{2} - \sqrt{3}\sqrt{2}}{4} \\[1em] \Rightarrow \dfrac{\sqrt{2} - \sqrt{6}}{4}.

Hence, cos A cos B - sin A sin B = 264.\dfrac{\sqrt{2} - \sqrt{6}}{4}.

(ii) Given,

⇒ sin A cos B + cos A sin B

⇒ sin 45° cos 60° + cos 45° sin 60°

12×12+12×32122+3221+3221+322×222(1+3)42+64.\Rightarrow \dfrac{1}{\sqrt{2}} \times \dfrac{1}{2} + \dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2} \\[1em] \Rightarrow \dfrac{1}{2\sqrt{2}} + \dfrac{\sqrt{3}}{2\sqrt{2}} \\[1em] \Rightarrow \dfrac{1 + \sqrt{3}}{2\sqrt{2}} \\[1em] \Rightarrow \dfrac{1 + \sqrt{3}}{2\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}} \\[1em] \Rightarrow \dfrac{\sqrt{2}(1 + \sqrt{3})}{4} \\[1em] \Rightarrow \dfrac{\sqrt{2} + \sqrt{6}}{4}.

Hence, sin A cos B + cos A sin B = 2+64.\dfrac{\sqrt{2} + \sqrt{6}}{4}.

Question 131

As observed from the top of a 100 m high light house, the angles of depression of two ships approaching it are 30° and 45°. If one ship is directly behind the other, find the distance between the two ships.

As observed from the top of a 100 m high light house, the angles of depression of two ships approaching it are 30° and 45°. If one ship is directly behind the other, find the distance between the two ships. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Let AB be the lighthouse and C and D be the position of ships.

From figure,

∠ADC = ∠EAD = 30° (Alternate angles are equal)

∠ACB = ∠EAC = 45° (Alternate angles are equal)

In right angle triangle ABD,

⇒ tan 30° = PerpendicularBase\dfrac{\text{Perpendicular}}{\text{Base}}

13=ABBD\dfrac{1}{\sqrt{3}} = \dfrac{AB}{BD}

⇒ BD = 3AB=1003\sqrt{3}AB = 100\sqrt{3} m.

In right angle triangle ABC,

⇒ tan 45° = PerpendicularBase\dfrac{\text{Perpendicular}}{\text{Base}}

1=ABBC1 = \dfrac{AB}{BC}

⇒ BC = AB = 100 m.

From figure,

CD = BD - BC = 1003100=100(31)100\sqrt{3} - 100 = 100(\sqrt{3} - 1)

= 100 × (1.732 - 1) m.

= 100 × 0.732 = 73.2 m.

Hence, distance between two ships = 73.2 m.

Question 132(a)

If (2 cos 2A - 1)(tan 3A - 1) = 0; find all possible values of A.

Answer

Given,

⇒ (2 cos 2A - 1)(tan 3A - 1) = 0

⇒ 2 cos 2A - 1 = 0 or tan 3A - 1 = 0

⇒ 2 cos 2A = 1 or tan 3A = 1

⇒ cos 2A = 12\dfrac{1}{2} or tan 3A = tan 45°

⇒ cos 2A = cos 60° or tan 3A = tan 45°

⇒ 2A = 60° or 3A = 45°

⇒ A = 60°2\dfrac{60°}{2} or A = 45°3\dfrac{45°}{3}

⇒ A = 30° or 15°.

Hence, A = 30° or 15°.

Question 132(b)

If cos A = 941\dfrac{9}{41}; find the value of 1sin2A1tan2A\dfrac{1}{\text{sin}^2 A} - \dfrac{1}{\text{tan}^2 A}.

Answer

Given,

cos A = 941\dfrac{9}{41};

Squaring both sides, we get :

cos2A=(941)2cos2A=8116811 - sin2A=811681sin2A=1811681sin2A=1681811681sin2A=16001681sin A=16001681sin A=4041.\Rightarrow \text{cos}^2 A = \Big(\dfrac{9}{41}\Big)^2 \\[1em] \Rightarrow \text{cos}^2 A = \dfrac{81}{1681} \\[1em] \Rightarrow \text{1 - sin}^2 A = \dfrac{81}{1681} \\[1em] \Rightarrow \text{sin}^2 A = 1 - \dfrac{81}{1681} \\[1em] \Rightarrow \text{sin}^2 A = \dfrac{1681 - 81}{1681} \\[1em] \Rightarrow \text{sin}^2 A = \dfrac{1600}{1681} \\[1em] \Rightarrow \text{sin A} = \sqrt{\dfrac{1600}{1681}} \\[1em] \Rightarrow \text{sin A} = \dfrac{40}{41}.

By formula,

tan A = sin Acos A=4041941=409\dfrac{\text{sin A}}{\text{cos A}} = \dfrac{\dfrac{40}{41}}{\dfrac{9}{41}} = \dfrac{40}{9}.

Substituting value of sin A and tan A in 1sin2A1tan2A\dfrac{1}{\text{sin}^2 A} - \dfrac{1}{\text{tan}^2 A}, we get :

1sin2A1tan2A1(4041)21(409)2(4140)2(940)216811600811600160016001.\Rightarrow \dfrac{1}{\text{sin}^2 A} - \dfrac{1}{\text{tan}^2 A} \\[1em] \Rightarrow \dfrac{1}{\Big(\dfrac{40}{41}\Big)^2} - \dfrac{1}{\Big(\dfrac{40}{9}\Big)^2} \\[1em] \Rightarrow \Big(\dfrac{41}{40}\Big)^2 - \Big(\dfrac{9}{40}\Big)^2 \\[1em] \Rightarrow \dfrac{1681}{1600} - \dfrac{81}{1600} \\[1em] \Rightarrow \dfrac{1600}{1600} \\[1em] \Rightarrow 1.

Hence, 1sin2A1tan2A\dfrac{1}{\text{sin}^2 A} - \dfrac{1}{\text{tan}^2 A} = 1.

Question 133

From the top of a light house, it is observed that a ship is sailing directly towards it and the angle of depression of the ship changes from 30° to 45° in 10 minutes. Assuming that the ship is sailing with uniform speed; calculate in how much more time (in minutes) will the ship reach the light house ?

From the top of a light house, it is observed that a ship is sailing directly towards it and the angle of depression of the ship changes from 30° to 45° in 10 minutes. Assuming that the ship is sailing with uniform speed; calculate in how much more time (in minutes) will the ship reach the light house? Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

Answer

Let AB be the lighthouse of height h meters and C and D be the position of the ship.

From figure,

∠ADC = ∠EAD = 30° (Alternate angles are equal)

∠ACB = ∠EAC = 45° (Alternate angles are equal)

From figure,

In right angle triangle ADB

⇒ tan 30° = PerpendicularBase\dfrac{\text{Perpendicular}}{\text{Base}}

13=ABBD\dfrac{1}{\sqrt{3}} = \dfrac{AB}{BD}

⇒ BD = 3AB=3h\sqrt{3}\text{AB} = \sqrt{3}h.

In right angle triangle ABC

⇒ tan 45° = PerpendicularBase\dfrac{\text{Perpendicular}}{\text{Base}}

⇒ 1 = ABBC\dfrac{AB}{BC}

⇒ BC = AB = h.

From figure,

CD = BD - BC = 3hh=h(31)\sqrt{3}h - h = h(\sqrt{3} - 1) meters.

Given,

Angle of depression of the ship changes from 30° to 45° in 10 minutes.

∴ Ship comes from position D to C in 10 minutes.

∴ Ship covers a distance of CD = h(31)h(\sqrt{3} - 1) in 10 minutes.

Speed of ship = DistanceTime=h(31)10\dfrac{\text{Distance}}{\text{Time}} = \dfrac{h(\sqrt{3} - 1)}{10} meter/minute.

Time taken by ship to cover (BC = h meters) is

Time=DistanceSpeed=hh(31)10=1031=101.7321=100.732=13.66 minutes.\text{Time} = \dfrac{\text{Distance}}{\text{Speed}} \\[1em] = \dfrac{h}{\dfrac{h(\sqrt{3} - 1)}{10}} \\[1em] = \dfrac{10}{\sqrt{3} - 1} \\[1em] = \dfrac{10}{1.732 - 1} \\[1em] = \dfrac{10}{0.732} \\[1em] = 13.66 \text{ minutes}.

Hence, ship will reach the lighthouse in 13.66 minutes.

Question 134

The angles of elevation of the top of a tower from two points on the ground at distances a and b meters from the base of the tower and in the same line are complementary. Prove that the height of the tower is ab\sqrt{ab} meter.

Answer

Let AB be the tower of height h meters, BC = a meters and BD = b meters.

The angles of elevation of the top of a tower from two points on the ground at distances a and b meters from the base of the tower and in the same line are complementary. Prove that the height of the tower is meter. Heights and Distances, Concise Mathematics Solutions ICSE Class 10.

According to question,

⇒ α + β = 90°

⇒ β = 90° - α

From figure,

In △ABD,

tan α=PerpendicularBasetan α=ABBDtan α=hb...........(1)\Rightarrow \text{tan α} = \dfrac{\text{Perpendicular}}{\text{Base}} \\[1em] \Rightarrow \text{tan α} = \dfrac{AB}{BD} \\[1em] \Rightarrow \text{tan α} = \dfrac{h}{b} ...........(1)

In △ABC,

tan β=PerpendicularBasetan β=ABBCtan β=hatan (90° - α)=hacot α=ha..........(2)\Rightarrow \text{tan β} = \dfrac{\text{Perpendicular}}{\text{Base}} \\[1em] \Rightarrow \text{tan β} = \dfrac{AB}{BC} \\[1em] \Rightarrow \text{tan β} = \dfrac{h}{a} \\[1em] \Rightarrow \text{tan (90° - α)} = \dfrac{h}{a} \\[1em] \Rightarrow \text{cot α} = \dfrac{h}{a} ..........(2)

Multiplying (1) by (2) we get,

⇒ tan α cot α = ha×hb\dfrac{h}{a} \times \dfrac{h}{b}

sin αcos α×cos αsin α=h2ab\dfrac{\text{sin α}}{\text{cos α}} \times \dfrac{\text{cos α}}{\text{sin α}} = \dfrac{h^2}{ab}

⇒ 1 = h2ab\dfrac{h^2}{ab}

⇒ h2 = ab

⇒ h = ab\sqrt{ab} meters.

Hence, proved that h = ab\sqrt{ab} meters.

Question 135

A 20 m high vertical pole and a vertical tower are on the same level ground in such a way that the angle of elevation of the top of the tower, as seen from the foot of the pole, is 60° and the angle of elevation of the top of the pole, as seen from the foot of tower is 30°. Find :

(i) the height of the tower;

(ii) the horizontal distance between the pole and the tower.

Answer

(i) Let CD be the tower and AB be the pole,

A 20 m high vertical pole and a vertical tower are on the same level ground in such a way that the angle of elevation of the top of the tower, as seen from the foot of the pole, is 60° and the angle of elevation of the top of the pole, as seen from the foot of tower is 30°. Find : (i) the height of the tower; (ii) the horizontal distance between the pole and the tower.  Heights and Distances, Concise Mathematics Solutions ICSE Class 10.

In △ABD,

tan 30°=PerpendicularBase13=ABBDBD=3ABBD=1.732×20BD=34.64 m.\text{tan 30°} = \dfrac{\text{Perpendicular}}{\text{Base}} \\[1em] \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{AB}{BD} \\[1em] \Rightarrow BD = \sqrt{3}AB \\[1em] \Rightarrow BD = 1.732 \times 20 \\[1em] \Rightarrow BD = 34.64 \text{ m}.

In △CBD,

tan 60°=PerpendicularBase3=CDBDCD=3BDCD=1.732×34.64CD=60 m.\text{tan 60°} = \dfrac{\text{Perpendicular}}{\text{Base}} \\[1em] \Rightarrow \sqrt{3} = \dfrac{CD}{BD} \\[1em] \Rightarrow CD = \sqrt{3}BD \\[1em] \Rightarrow CD = 1.732 \times 34.64 \\[1em] \Rightarrow CD = 60 \text{ m}.

Hence, height of tower = 60 meters.

(ii) From part (i),

BD = 34.64 m

Hence, horizontal distance between pole and tower = 34.64 meters.

Question 136

From a point, 36 m above the surface of a lake, the angle of elevation of a bird is observed to be 30° and the angle of depression of its image in the water of the lake is observed to be 60°. Find the actual height of the bird above the surface of the lake.

Answer

Let DE be the surface of lake and A be the point 36 m above surface of lake and F is the image of bird (B).

Let BC be h meters.

BD = DF (As distance of bird from lake = distance of image of bird in lake from lake)

From a point, 36 m above the surface of a lake, the angle of elevation of a bird is observed to be 30° and the angle of depression of its image in the water of the lake is observed to be 60°. Find the actual height of the bird above the surface of the lake. Heights and Distances, Concise Mathematics Solutions ICSE Class 10.

In △ABC,

tan 30°=PerpendicularBase13=BCACAC=3BCAC=3h.\text{tan 30°} = \dfrac{\text{Perpendicular}}{\text{Base}} \\[1em] \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{BC}{AC} \\[1em] \Rightarrow AC = \sqrt{3}BC \\[1em] \Rightarrow AC = \sqrt{3}h.

From figure,

⇒ CF = CD + DF

⇒ CF = CD + BD

⇒ CF = CD + BC + CD

⇒ CF = 36 + h + 36

⇒ CF = h + 72.

In △ACF,

tan 60°=PerpendicularBase3=CFAC3=h+723h3h=h+722h=72h=36 m.\text{tan 60°} = \dfrac{\text{Perpendicular}}{\text{Base}} \\[1em] \Rightarrow \sqrt{3} = \dfrac{CF}{AC} \\[1em] \Rightarrow \sqrt{3} = \dfrac{h + 72}{\sqrt{3}h} \\[1em] \Rightarrow 3h = h + 72 \\[1em] \Rightarrow 2h = 72 \\[1em] \Rightarrow h = 36 \text{ m}.

Height of bird from lake = BD = BC + CD = h + 36 = 36 + 36 = 72 m.

Hence, height of bird above surface of lake = 72 meters.

STATISTICS

Question 137(a)

Calculate the mean mark in the distribution given below :

MarksFrequency
1 - 107
11 - 209
21 - 3015
31 - 408
41 - 506
51 - 605

Also state :

(i) the median class

(ii) the modal class

Answer

The above distribution is discontinuous converting into continuous distribution, we get :

Adjustment factor = (Lower limit of one class - Upper limit of previous class) / 2

= 21202=12\dfrac{21 - 20}{2} = \dfrac{1}{2}

= 0.5

Subtract the adjustment factor (0.5) from all the lower limits and add the adjustment factor (0.5) to all the upper limits.

MarksFrequency (f)Cumulative frequencyClass mark (x)fx
0.5 - 10.5775.538.5
10.5 - 20.5916 (9 + 7)15.5139.5
20.5 - 30.51531 (15 + 16)25.5382.5
30.5 - 40.5839 (31 + 8)35.5284
40.5 - 50.5645 (39 + 6)45.5273
50.5 - 60.5550 (45 + 5)55.5277.5
TotalΣf = 50Σfx = 1395

Mean = ΣfxΣf=139550\dfrac{Σfx}{Σf} = \dfrac{1395}{50} = 27.9

Given, total terms = 50.

Since, terms are even.

By formula,

Median = 502\dfrac{50}{2} = 25th term.

From table,

15.5 th to 25.5 th term marks lies in the range 20.5 - 30.5.

∴ Median class = 21 - 30.

From table class 21 - 30 has the highest frequency.

∴ Modal class = 21 - 30.

Hence, mean = 27.9, median class = 21 - 30 and modal class = 21 - 30.

Question 137(b)

Calculate mean, median and mode of the following distribution :

MarksFrequency
33
45
58
67
79
84
93
101

Answer

Cumulative frequency distribution :

Marks (x)Frequency (f)Cumulative frequencyfx
3339
458 (5 + 3)20
5816 (8 + 8)40
6723 (7 + 16)42
7932 (9 + 23)63
8436 (4 + 32)32
9339 (3 + 36)27
10140 (1 + 39)10
TotalΣf = 40Σfx = 243

By formula,

Mean = ΣfxΣf=24340\dfrac{Σfx}{Σf} = \dfrac{243}{40} = 6.075

Given,

Total terms = 40, which is even.

By formula,

Median = n2=402\dfrac{n}{2} = \dfrac{40}{2} = 20th term.

From table,

Marks of 17th to 23rd term = 6.

∴ Median = 6.

Highest frequency is of 7 marks.

∴ Mode = 7.

Hence, mean = 6.075, median = 6 and mode = 7.

Question 138

By drawing an ogive; estimate the median for the following frequency distribution :

Weight (kg)No. of boys
10 - 1511
15 - 2025
20 - 2512
25 - 305
30 - 352

Answer

Cumulative frequency distribution table :

Weight (kg)No. of boys (frequency)Cumulative frequency
10 - 151111
15 - 202536 (11 + 25)
20 - 251248 (36 + 12)
25 - 30553 (48 + 5)
30 - 35255 (53 + 2)

Here, n = 55, which is odd.

By formula,

Median = n+12 th term=55+12=562\dfrac{n + 1}{2}\text{ th term} = \dfrac{55 + 1}{2} = \dfrac{56}{2} = 28th term.

Steps of construction of ogive :

  1. Take 2 cm = 5 units on x-axis.

  2. Take 1 cm = 10 units on y-axis.

  3. Plot the point (10, 0), as ogive always starts on x-axis representing the lower limit of the first class.

  4. Plot the points (15, 11), (20, 36), (25, 48), (30, 53) and (35, 55).

  5. Join the points by a free hand curve.

  6. Draw a line parallel to x-axis from point A (frequency) = 28, touching the graph at point B. From point B draw a line parallel to y-axis touching x-axis at point C.

By drawing an ogive; estimate the median for the following frequency distribution. Measures of Central Tendency, Concise Mathematics Solutions ICSE Class 10.

From graph, C = 18.4

Hence, median = 18.4

Question 139

Estimate the median for the given data by drawing ogive :

ClassFrequency
0 - 104
10 - 209
20 - 3015
30 - 4014
40 - 508

Answer

Cumulative frequency distribution table :

ClassFrequencyCumulative frequency
0 - 1044
10 - 20913 (4 + 9)
20 - 301528 (13 + 15)
30 - 401442 (28 + 14)
40 - 50850 (42 + 8)

Here, n = 50, which is even.

By formula,

Median = n2 th term=502\dfrac{n}{2}\text{ th term} = \dfrac{50}{2} = 25th term.

Steps of construction of ogive :

  1. Take 2 cm = 10 units on x-axis.

  2. Take 1 cm = 5 units on y-axis.

  3. Plot the point (0, 0), as ogive always starts on x-axis representing the lower limit of the first class.

  4. Plot the points (10, 4), (20, 13), (30, 28), (40, 42) and (50, 50).

  5. Join the points by a free hand curve.

  6. Draw a line parallel to x-axis from point A (frequency) = 25, touching the graph at point B. From point B draw a line parallel to y-axis touching x-axis at point C.

Estimate the median for the given data by drawing ogive. Measures of Central Tendency, Concise Mathematics Solutions ICSE Class 10.

From graph, C = 28.

Hence, median = 28.

Question 140

The following distribution represents the height of 160 students of a school.

Height (in cm)No. of Students
140 - 14512
145 - 15020
150 - 15530
155 - 16038
160 - 16524
165 - 17016
170 - 17512
175 - 1808

Draw an ogive for the given distribution taking 2 cm = 5 cm of height on one axis and 2 cm = 20 students on the other axis. Using the graph, determine :

(i) the median height.

(ii) the inter-quartile range.

(iii) the number of students whose height is above 172 cm ?

Answer

(i) Cumulative frequency distribution table :

Height (in cm)No. of studentsCumulative frequency
140 - 1451212
145 - 1502032 (12 + 20)
150 - 1553062 (32 + 30)
155 - 16038100 (62 + 38)
160 - 16524124 (100 + 24)
165 - 17016140 (124 + 16)
170 - 17512152 (140 + 12)
175 - 1808160 (152 + 8)

Here, n = 160, which is even.

Median = n2\dfrac{n}{2} th term = 1602\dfrac{160}{2} = 80th term.

Steps of construction :

  1. Take 1 cm = 5 cm on x-axis.

  2. Take 1 cm = 20 students on y-axis.

  3. Since, x axis starts at 140 hence, a kink is drawn at the starting of x-axis. Plot the point (140, 0) as ogive starts on x-axis representing lower limit of first class.

  4. Plot the points (145, 12), (150, 32), (155, 62), (160, 100), (165, 124), (170, 140), (175, 152) and (180, 160).

  5. Join the points by a free-hand curve.

  6. Draw a line parallel to x-axis from point J (no. of students) = 80, touching the graph at point K. From point K draw a line parallel to y-axis touching x-axis at point L.

From graph, L = 157.5

Hence, median = 157.5 cm

(ii) Here, n = 160, which is even.

By formula,

Lower quartile = n4=1604\dfrac{n}{4} = \dfrac{160}{4} = 40th term.

Draw a line parallel to x-axis from point P (no. of students) = 40, touching the graph at point Q. From point Q draw a line parallel to y-axis touching x-axis at point R.

From graph, R = 152

Upper quartile = 3n4=3×1604\dfrac{3n}{4} = \dfrac{3 \times 160}{4} = 120th term.

Draw a line parallel to x-axis from point M (no. of students) = 120, touching the graph at point N. From point N draw a line parallel to y-axis touching x-axis at point O.

From graph, O = 164

Inter quartile range = Upper quartile - Lower quartile

= 164 - 152 = 12.

Hence, inter quartile range = 12.

(iii) Draw a line parallel to y-axis from point S (height) = 172 cm, touching the graph at point T. From point T draw a line parallel to x-axis touching y-axis at point U.

From graph, U = 144.

∴ 144 students have height less than or equal to 172 cm.

No. of students whose height is more than 172 cm = 160 - 144 = 16.

The following distribution represents the height of 160 students of a school. Measures of Central Tendency, Concise Mathematics Solutions ICSE Class 10.

Hence, no. of students whose height is more than 172 cm = 16.

Question 141

Draw an ogive for the data given below and from the graph determine :

(i) the median marks,

(ii) the number of students who obtained more than 75% marks ?

MarksNo. of students
10 - 1914
20 - 2916
30 - 3922
40 - 4926
50 - 5918
60 - 6911
70 - 796
80 - 894
90 - 993

Answer

(i) The above distribution is discontinuous, converting into continuous distribution, we get :

Adjustment factor = (Lower limit of one class - Upper limit of previous class) / 2

= 20192=12\dfrac{20 - 19}{2} = \dfrac{1}{2}

= 0.5

Subtract the adjustment factor (0.5) from all the lower limits and add the adjustment factor (0.5) to all the upper limits.

Cumulative frequency distribution table :

MarksNo. of studentsCumulative frequency distribution
9.5 - 19.51414
19.5 - 29.51630 (14 + 16)
29.5 - 39.52252 (30 + 22)
39.5 - 49.52678 (52 + 26)
49.5 - 59.51896 (78 + 18)
59.5 - 69.511107 (96 + 11)
69.5 - 79.56113 (107 + 6)
79.5 - 89.54117 (113 + 4)
89.5 - 99.53120 (117 + 3)

Here, n = 120, which is even.

Median = n2\dfrac{n}{2}th term

= 1202\dfrac{120}{2} = 60th term.

Steps of construction :

  1. Since, the scale on x-axis starts at 9.5, a break (kink) is shown near the origin on x-axis to indicate that the graph is drawn to scale beginning at 9.5

  2. Take 1 cm along x-axis = 10 units.

  3. Take 1 cm along y-axis = 20 units.

  4. Plot the point (9.5, 0) as ogive starts on x-axis representing lower limit of first class.

  5. Plot the points (19.5, 14), (29.5, 30), (39.5, 52), (49.5, 78), (59.5, 96), (69.5, 107), (79.5, 113), (89.5, 117) and (99.5, 120).

  6. Join the points by a free-hand curve.

  7. Draw a line parallel to x-axis from point O (no. of students) = 60, touching the graph at point P. From point P draw a line parallel to y-axis touching x-axis at point Q.

From graph, Q = 42.5 or 43

Hence, median = 42.5 or 43.

(ii) Total marks = 100.

75% marks = 75100×100\dfrac{75}{100} \times 100 = 75.

Draw a line parallel to y-axis from point R (marks) = 75, touching the graph at point S. From point S draw a line parallel to x-axis touching y-axis at point T.

From graph, T = 111.

∴ 111 students score less than or equal to 75%.

Students scoring above than 75% = 120 - 111 = 9.

Draw an ogive for the data given below and from the graph determine. (i) the median marks, (ii) the number of students who obtained more than 75% marks. Measures of Central Tendency, Concise Mathematics Solutions ICSE Class 10.

Hence, 9 students score more than 75%.

Question 142

The incomes of the parents of 100 students in a class in a certain university are tabulated below.

Income (in thousand ₹)No. of students
0 - 88
8 - 1635
16 - 2435
24 - 3214
32 - 408

(i) Draw a cumulative frequency curve to estimate the median income.

(ii) If 15% of the students are given freeships on the basis of the income of their parents, find the annual income of parents, below which the freeships will be awarded.

(iii) Calculate the Arithmetic mean.

Answer

(i) Cumulative frequency distribution table :

Income (in thousand ₹)No. of students(frequency)Cumulative frequency
0 - 888
8 - 163543 (8 + 35)
16 - 243578 (43 + 35)
24 - 321492 (78 + 14)
32 - 408100 (92 + 8)

Here, n = 100, which is even.

Median = n2=1002\dfrac{n}{2} = \dfrac{100}{2} = 50th term.

Steps of construction of ogive :

  1. Take 2 cm = 8 thousand on x-axis.

  2. Take 1 cm = 10 students on y-axis.

  3. Plot the point (0, 0) as ogive starts from x-axis representing the lower limit of first class.

  4. Plot the points (8, 8), (16, 43), (24, 78), (32, 92) and (40, 100).

  5. Join the points by a free hand curve.

  6. Draw a line parallel to x-axis from point G (no. of students) = 50, touching the graph at point H. From point H draw a line parallel to y-axis touching x-axis at point I.

From graph, I = 17.6 (thousands)

Hence, median = 17.6 thousands.

(ii) 15% of 100 students = 15100×100\dfrac{15}{100} \times 100 = 15.

Draw a line parallel to x-axis from point J (no. of students) = 15, touching the graph at point K. From point K draw a line parallel to y-axis touching x-axis at point L.

From graph,

L = 9.6 thousands.

Hence, the annual income of parents, below which the freeships will be awarded is 9.6 thousands.

(iii)

Income (in thousand ₹)Class mean (x)No. of students (f)fx
0 - 84832
8 - 161235420
16 - 242035700
24 - 322814392
32 - 40368288
TotalΣf = 100Σfx = 1832

Mean = ΣfxΣf=1832100\dfrac{Σfx}{Σf} = \dfrac{1832}{100} = 18.32 (thousands)

The incomes of the parents of 100 students in a class in a certain university are tabulated below. Measures of Central Tendency, Concise Mathematics Solutions ICSE Class 10.

Hence, mean = 18.32 (thousands).

Question 143

Draw an ogive for the following distribution :

Income in ₹No. of employees
120 - 14030
140 - 16072
160 - 18090
180 - 20080
200 - 22070
220 - 24028

Use the ogive drawn to determine :

(i) the median income,

(ii) the number of employees whose income exceeds ₹ 190.

Answer

Cumulative frequency distribution table :

Income in ₹No. of employeesCumulative frequency
120 - 1403030
140 - 16072102 (30 + 72)
160 - 18090192 (102 + 90)
180 - 20080272 (192 + 80)
200 - 22070342 (272 + 70)
220 - 24028370 (342 + 28)

(i) Here, n = 370, which is even,

Median = n2=3702\dfrac{n}{2} = \dfrac{370}{2} = 185.

Steps of construction :

  1. Take 2 cm = ₹ 20 on x-axis.

  2. Take 1 cm = 50 employees on y-axis.

  3. A kink is shown near x-axis as it starts from 120. Plot the point (120, 0) as ogive starts on x-axis representing lower limit of first class.

  4. Plot the points (140, 30), (160, 102), (180, 192), (200, 272), (220, 342) and (240, 370).

  5. Join the points by a free-hand curve.

  6. Draw a line parallel to x-axis from point H (no. of employees) = 185, touching the graph at point I. From point I draw a line parallel to y-axis touching x-axis at point J.

Draw an ogive for the following distribution. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

From graph, J = 179

Hence, median wage = ₹ 179.

(ii) Steps :

  1. Draw a line parallel to y-axis from point K (income) = ₹ 190, touching the graph at point L. From point L draw a line parallel to x-axis touching y-axis at point M.

From graph, M = 232

It means that,

232 employees have income less than or equal to ₹ 190.

∴ No. of employees having income more than ₹ 190 = 370 - 232 = 138.

Hence, no. of employees having income more than ₹ 190 = 138.

Question 144

The result of a examination is tabulated below :

Marks (less than)No. of candidates
100
2025
3042
4065
5095
60120
70128
80135
90148
100150

Draw the ogive for the above data and from it determine :

(i) the number of candidates who got marks less than 45.

(ii) the number of candidates who got marks more than 75.

Answer

The above table can be written as :

MarksNo. of candidates
0 - 100
10 - 2025
20 - 3042
30 - 4065
40 - 5095
50 - 60120
60 - 70128
70 - 80135
80 - 90148
90 - 100150

Steps of construction :

  1. Take 1 cm = 10 marks on x-axis.

  2. Take 1 cm = 20 students on y-axis.

  3. Plot the point (0, 0) as ogive starts on x-axis representing lower limit of first class.

  4. Plot the points (10, 0), (20, 25), (30, 42), (40, 65), (50, 95), (60, 120), (70, 128), (80, 135), (90, 148) and (100, 150).

  5. Join the points by a free-hand curve.

  6. Draw a line parallel to y-axis from point L (marks) = 45, touching the graph at point M. From point M draw a line parallel to x-axis touching y-axis at point N.

The result of a examination is tabulated below. Chapterwise Revision, Concise Mathematics Solutions ICSE Class 10.

From graph, N = 80

Hence, no. of students having marks less than 45 = 80.

(ii) Steps :

  1. Draw a line parallel to y-axis from point O (marks) = 75, touching the graph at point P. From point P draw a line parallel to x-axis touching y-axis at point Q.

From graph, Q = 131

It means that,

131 students have marks less than or equal to 75.

∴ No. of students having marks more than 75 = 150 - 131 = 19.

Hence, no. of students having marks more than 75 = 19.

Question 145

Marks obtained by 200 students in an examination are given below :

MarksNo. of students
0 - 105
10 - 2011
20 - 3010
30 - 4020
40 - 5028
50 - 6037
60 - 7040
70 - 8029
80 - 9014
90 - 1006

Draw an ogive for the given distribution taking 2 cm = 10 marks on one axis and 2 cm = 20 students on the other axis. Using the graph, determine :

(i) The median marks

(ii) The number of students who failed if minimum marks required to pass is 40 ?

(iii) If scoring 85 and more marks is considered as grade one, find the number of students who secured grade one in the examination ?

Answer

(i) Cumulative frequency distribution table :

MarksNo. of studentsCumulative frequency
0 - 1055
10 - 201116
20 - 301026
30 - 402046
40 - 502874
50 - 6037111
60 - 7040151
70 - 8029180
80 - 9014194
90 - 1006200

Here, n = 200, which is even.

By formula,

Median = n2\dfrac{n}{2} th term

= 2002\dfrac{200}{2} = 100th term.

Steps of construction :

  1. Take 1 cm along x-axis = 10 marks.

  2. Take 1 cm along y-axis = 20 students.

  3. Plot the point (0, 0) as ogive starts from x-axis representing lower limit of first class.

  4. Plot the points (10, 5), (20, 16), (30, 26), (40, 46), (50, 74), (60, 111), (70, 151), (80, 180), (90, 194) and (100, 200).

  5. Join the points by a free hand curve.

  6. Draw a line parallel to x-axis from point L (no. of students) = 100, touching the graph at point M. From point M draw a line parallel to y-axis touching x-axis at point N.

From graph, N = 57

Hence, median = 57.

(ii) Minimum marks required to pass = 40.

Draw a line parallel to y-axis from point O (marks) = 40, touching the graph at point Q. From point Q draw a line parallel to x-axis touching y-axis at point P.

From graph,

P = 46.

∴ 46 students scored less than 40 marks.

Hence, 46 students failed the examination.

(iii) 85 or more marks is considered grade one.

Draw a line parallel to y-axis from point Q (marks) = 85, touching the graph at point R. From point R draw a line parallel to x-axis touching y-axis at point S.

From graph,

S = 188.

∴ 188 students scored less than 85 marks.

∴ 12 (200 - 188) students scored more than 85 marks.

Marks obtained by 200 students in an examination are given below. Measures of Central Tendency, Concise Mathematics Solutions ICSE Class 10.

Hence, 12 students secured grade one.

Question 146

Marks obtained by 40 students in a short assessment is given below, where a and b are two missing data.

MarksNumber of students
56
6a
716
813
9b

If the mean of the distribution is 7.2, find a and b.

Answer

Marks (x)Number of students (f)fx
5630
6a6a
716112
813104
9b9b
TotalΣf = a + b + 35Σfx = 246 + 6a + 9b

Total 40 students.

∴ a + b + 35 = 40

⇒ a + b = 40 - 35

⇒ a + b = 5

⇒ a = 5 - b ........(1)

Given, mean = 7.2

7.2=ΣfxΣf7.2=246+6a+9b40\therefore 7.2 = \dfrac{Σfx}{Σf} \\[1em] \Rightarrow 7.2 = \dfrac{246 + 6a + 9b}{40}

Substituting value of a from (1) in above equation :

7.2=246+6(5b)+9b407.2×40=246+306b+9b288=276+3b3b=2882763b=12b=123b=4.\Rightarrow 7.2 = \dfrac{246 + 6(5 - b) + 9b}{40} \\[1em] \Rightarrow 7.2 \times 40 = 246 + 30 - 6b + 9b \\[1em] \Rightarrow 288 = 276 + 3b \\[1em] \Rightarrow 3b = 288 - 276 \\[1em] \Rightarrow 3b = 12 \\[1em] \Rightarrow b = \dfrac{12}{3} \\[1em] \Rightarrow b = 4.

a = 5 - b = 5 - 4 = 1.

Hence, a = 1 and b = 4.

Question 147

The marks obtained by 100 students in a mathematics test are given below :

MarksNo. of students
0 - 103
10 - 207
20 - 3012
30 - 4017
40 - 5023
50 - 6014
60 - 709
70 - 806
80 - 905
90 - 1004

Draw an ogive for the given distribution on a graph sheet. Use a scale of 2 cm = 10 units on both the axes.

Use the ogive to estimate :

(i) median

(ii) lower quartile

(iii) number of students who obtained more than 85% marks in the test.

(iv) number of students failed, if the pass percentage was 35.

Answer

(i) Cumulative frequency distribution table :

MarksNo. of studentsCumulative frequency
0 - 1033
10 - 20710
20 - 301222
30 - 401739
40 - 502362
50 - 601476
60 - 70985
70 - 80691
80 - 90596
90 - 1004100

Here, n = 100, which is even.

Median = n2\dfrac{n}{2} th term

= 1002\dfrac{100}{2} = 50th term.

Steps of construction of ogive :

  1. Take 1 cm = 10 marks on x-axis.

  2. Take 1 cm = 20 students on y-axis.

  3. Plot the point (0, 0) as ogive starts from x-axis representing lower limit of first class.

  4. Plot the points (10, 3), (20, 10), (30, 22), (40, 39), (50, 62), (60, 76), (70, 85), (80, 91), (90, 96) and (100, 100).

  5. Join the points by a free hand curve.

  6. Draw a line parallel to x-axis from point L (no. of students) = 50, touching the graph at point M. From point M draw a line parallel to y-axis touching x-axis at point N.

From graph, N = 45

Hence, median = 45.

(ii) Here, n = 100, which is even.

By formula,

Lower quartile = n4=1004\dfrac{n}{4} = \dfrac{100}{4} = 25th term.

Draw a line parallel to x-axis from point O (no. of students) = 25, touching the graph at point P. From point P draw a line parallel to y-axis touching x-axis at point Q.

From graph, Q = 32

Hence, lower quartile = 32.

(iii) Total marks = 100.

85% of 100 marks = 85100×100\dfrac{85}{100} \times 100 = 85.

Draw a line parallel to y-axis from point R (marks) = 85, touching the graph at point S. From point S draw a line parallel to x-axis touching y-axis at point T.

From graph, T = 94.

It means that 94 students scored either less or equal to 85% marks.

No. of students left = 100 - 94 = 6.

Hence, no. of students scoring more than 85% marks = 6.

(iv) Total marks = 100.

35% of 100 marks = 35100×100\dfrac{35}{100} \times 100 = 35.

Draw a line parallel to y-axis from point U (marks) = 35, touching the graph at point V. From point V draw a line parallel to x-axis touching y-axis at point W.

From graph, W = 28.

The marks obtained by 100 students in a mathematics test are given below. Measures of Central Tendency, Concise Mathematics Solutions ICSE Class 10.

Hence, 28 students fail if pass percentage was 35%.

PROBABILITY

Question 148

A bag contains a red ball, a blue ball and a yellow ball, all the balls being of the same size. If a ball is drawn from the bag, without looking into it, find the probability that the ball drawn is :

(i) yellow

(ii) red

(iii) blue

Answer

No. of possible outcomes = 3 (1 red + 1 blue + 1 yellow)

(i) No. of yellow balls = 1.

∴ No. of favourable outcomes = 1

P(drawing a yellow ball) = No. of favourable outcomesNo. of possible outcomes=13\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{1}{3}.

Hence, probability of drawing a yellow ball = 13\dfrac{1}{3}.

(ii) No. of red balls = 1.

∴ No. of favourable outcomes = 1

P(drawing a red ball) = No. of favourable outcomesNo. of possible outcomes=13\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{1}{3}.

Hence, probability of drawing a red ball = 13\dfrac{1}{3}.

(iii) No. of blue balls = 1.

∴ No. of favourable outcomes = 1

P(drawing a blue ball) = No. of favourable outcomesNo. of possible outcomes=13\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{1}{3}.

Hence, probability of drawing a blue ball = 13\dfrac{1}{3}.

Question 149

A bag contains 6 red balls, 8 blue balls and 10 yellow balls, all the balls being of the same size. If a ball is drawn from the bag, without looking into it, find the probability that the ball drawn is :

(i) yellow

(ii) red

(iii) blue

(iv) not yellow

(v) not blue

Answer

No. of possible outcomes = 24 (6 red + 8 blue + 10 yellow)

(i) No. of yellow balls = 10.

∴ No. of favourable outcomes = 10

P(drawing a yellow ball) = No. of favourable outcomesNo. of possible outcomes=1024=512\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{10}{24} = \dfrac{5}{12}.

Hence, probability of drawing a yellow ball = 512\dfrac{5}{12}.

(ii) No. of red balls = 6.

∴ No. of favourable outcomes = 6

P(drawing a red ball) = No. of favourable outcomesNo. of possible outcomes=624=14\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{6}{24} = \dfrac{1}{4}.

Hence, probability of drawing a red ball = 14\dfrac{1}{4}.

(iii) No. of blue balls = 8.

∴ No. of favourable outcomes = 8

P(drawing a blue ball) = No. of favourable outcomesNo. of possible outcomes=824=13\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{8}{24} = \dfrac{1}{3}.

Hence, probability of drawing a blue ball = 13\dfrac{1}{3}.

(iv) No. of balls that are not yellow = 14 (6 red + 8 blue)

∴ No. of favourable outcomes = 14

P(not drawing a yellow ball) = No. of favourable outcomesNo. of possible outcomes=1424=712\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{14}{24} = \dfrac{7}{12}.

Hence, probability of not drawing a yellow ball = 712\dfrac{7}{12}.

(v) No. of balls that are not blue = 16 (6 red + 10 yellow)

∴ No. of favourable outcomes = 16

P(not drawing a blue ball) = No. of favourable outcomesNo. of possible outcomes=1624=23\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{16}{24} = \dfrac{2}{3}.

Hence, probability of not drawing a blue ball = 23\dfrac{2}{3}.

Question 150

Two dice are thrown at the same time. Write down all the possible outcomes. Find the probability of getting the sum of two numbers appearing on the top of the dice as :

(i) 13

(ii) less than 13

(iii) 10

(iv) less than 10

Answer

When two dice are thrown, simultaneously.

Possible outcomes = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

No. of possible outcomes = 6 × 6 = 36.

(i) Favourable outcomes for getting a sum of 13 = 0.

∴ No. of favourable outcomes = 0

P(getting a sum of 13) = No. of favourable outcomesNo. of possible outcomes=036\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{0}{36} = 0.

Hence, probability of getting a sum of 13 = 0.

(ii) Favourable outcomes for getting a sum less than 13 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

∴ No. of favourable outcomes = 36

P(getting a sum less than 13) = No. of favourable outcomesNo. of possible outcomes=3636\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{36}{36} = 1.

Hence, probability of getting a sum less than 13 = 1.

(iii) Favourable outcomes for getting a sum of 10 = {(4, 6), (5, 5), (6, 4)}.

∴ No. of favourable outcomes = 3

P(getting a sum of 10) = No. of favourable outcomesNo. of possible outcomes=336=112\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{3}{36} = \dfrac{1}{12}.

Hence, probability of getting a sum of 10 = 112\dfrac{1}{12}.

(iv) Favourable outcomes for getting a sum less than 10 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (6, 1), (6, 2), (6, 3)}.

∴ No. of favourable outcomes = 30

P(getting a sum less than 10) = No. of favourable outcomesNo. of possible outcomes=3036=56\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{30}{36} = \dfrac{5}{6}.

Hence, probability of getting a sum less than 10 = 56\dfrac{5}{6}.

Question 151

Five cards :- the ten, jack, queen, king and ace of diamonds are well-shuffled with their face downwards. One card is then picked up at random.

(i) What is the probability that the card is the queen ?

(ii) If the queen is drawn and put aside, what is the probability that the second card picked up is (a) an ace ? (b) a queen ?

Answer

There are five cards.

∴ No. of possible outcomes = 5.

(i) No. of queens = 1

∴ No. of favourable outcomes = 1

P(getting a queen) = No. of favourable outcomesNo. of possible outcomes=15\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{1}{5}.

Hence, probability of drawing a queen = 15\dfrac{1}{5}.

(ii) Since, queen is drawn and put aside.

∴ No. of cards left = 5 - 1 = 4

∴ No. of possible outcomes = 4.

(a) No. of ace cards = 1

∴ No. of favourable outcomes = 1

P(getting an ace) = No. of favourable outcomesNo. of possible outcomes=14\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{1}{4}.

Hence, probability of drawing an ace = 14\dfrac{1}{4}.

(b) No. of queen left = 0

∴ No. of favourable outcomes = 0

P(getting a queen) = No. of favourable outcomesNo. of possible outcomes=04\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{0}{4} = 0.

Hence, probability of getting a queen = 0.

Question 152

(i) A lot of 20 bulbs contains 4 defective bulbs. One bulb is drawn at random from the lot. What is the probability that this bulb is defective ?

(ii) Suppose the bulb drawn in (i) is not defective and is not replaced. Now one bulb is drawn at random from the rest. What is the probability that this bulb is not defective?

Answer

No. of defective bulbs = 4.

∴ No. of favourable outcomes = 4

P(getting a defective ball) = No. of favourable outcomesNo. of possible outcomes=420=15\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{4}{20} = \dfrac{1}{5}.

Hence, probability of getting a defective bulb = 15\dfrac{1}{5}.

(ii) Since, one bulb is drawn at random and is not defective and is not replaced.

∴ No. of possible outcomes = 19.

∴ No. of good bulbs present = 15 (16 - 1)

∴ No. of favourable outcomes = 15

P(not getting a defective ball) = No. of favourable outcomesNo. of possible outcomes=1519\dfrac{\text{No. of favourable outcomes}}{\text{No. of possible outcomes}} = \dfrac{15}{19}.

Hence, probability of not getting a defective bulb = 1519\dfrac{15}{19}.

PrevNext