KnowledgeBoat Logo
|
OPEN IN APP

Chapter 21

Volume & Surface Area of Solids

Class - 10 RS Aggarwal Mathematics Solutions



Exercise 21A

Question 1

Find the curved surface area and the total surface area of the cylinder for which:

(i) h = 16 cm, r = 10.5 cm

(ii) h = 5 cm, r = 21 cm

(iii) h = 20 cm, r = 14 cm

(iv) h = 1 m, r = 1.4 cm

Answer

(i) Total surface area of cylinder = 2πr(h + r)

=2×227×10.5(10.5+16)=2×227×10.5(26.5)=2×227×278.25=1749 cm2= 2 \times \dfrac{22}{7} \times 10.5(10.5 + 16) \\[1em] = 2 \times \dfrac{22}{7} \times 10.5(26.5) \\[1em] = 2 \times \dfrac{22}{7} \times 278.25 \\[1em] = 1749 \text{ cm}^2

Curved surface area of cylinder = 2πrh

=2×227×10.5×16=73927=1056 cm2= 2 \times \dfrac{22}{7} \times 10.5 \times 16 \\[1em] = \dfrac{7392}{7} \\[1em] = 1056 \text{ cm}^2

Hence, the curved surface area = 1056 cm2 and the total surface area of the cylinder = 1749 cm2.

(ii) Total surface area of cylinder = 2πr(h + r)

=2×227×21(21+5)=2×227×21(26)=240247=3432 cm2= 2 \times \dfrac{22}{7} \times 21(21 + 5) \\[1em] = 2 \times \dfrac{22}{7} \times 21(26) \\[1em] = \dfrac{24024}{7} \\[1em] = 3432 \text{ cm}^2

Curved surface area of cylinder = 2πrh

=2×227×21×5=46207=660 cm2= 2 \times \dfrac{22}{7} \times 21 \times 5 \\[1em] = \dfrac{4620}{7} \\[1em] = 660 \text{ cm}^2

Hence, the curved surface area = 660 cm2 and the total surface area of the cylinder = 3432 cm2.

(iii) Total surface area of cylinder = 2πr(h + r)

=2×227×14(14+20)=2×227×14(34)=209447=2992 cm2= 2 \times \dfrac{22}{7} \times 14(14 + 20) \\[1em] = 2 \times \dfrac{22}{7} \times 14(34) \\[1em] = \dfrac{20944}{7} \\[1em] = 2992 \text{ cm}^2

Curved surface area of cylinder = 2πrh

=2×227×14×20=123207=1760 cm2= 2 \times \dfrac{22}{7} \times 14 \times 20 \\[1em] = \dfrac{12320}{7} \\[1em] = 1760 \text{ cm}^2

Hence, the curved surface area = 1760 cm2 and the total surface area of the cylinder = 2992 cm2.

(iv) Given, h = 1 m = 100 cm and r = 1.4 cm

Total surface area of cylinder = 2πr(h + r)

=2×227×1.4×(1.4+100)=2×227×1.4×(101.4)=6246.247=892.32 cm2= 2 \times \dfrac{22}{7} \times 1.4 \times (1.4 + 100) \\[1em] = 2 \times \dfrac{22}{7} \times 1.4 \times (101.4) \\[1em] = \dfrac{6246.24}{7} \\[1em] = 892.32 \text{ cm}^2

Curved surface area of cylinder = 2πrh

=2×227×1.4×100=61607=880 cm2= 2 \times \dfrac{22}{7} \times 1.4 \times 100 \\[1em] = \dfrac{6160}{7} \\[1em] = 880 \text{ cm}^2

Hence, the curved surface area = 880 cm2 and the total surface area of the cylinder = 892.32 cm2.

Question 2

Find the volume of the cylinder in which:

(i) Height = 21 cm and Base Radius = 5 cm

(ii) Diameter = 28 cm and Height = 40 cm

Answer

By formula, Volume of cylinder = πr2h

(i) Given,

Height (h) = 21 cm and base radius (r) = 5 cm

Volume of cylinder = πr2h

=227×52×21=227×25×21=115507=1650 cm3.= \dfrac{22}{7} \times 5^2 \times 21 \\[1em] = \dfrac{22}{7} \times 25 \times 21 \\[1em] = \dfrac{11550}{7} \\[1em] = 1650 \text{ cm}^3.

Hence, volume of a cylinder = 1650 cm3.

(ii) Given,

Height (h) = 40 cm and Diameter (d) = 28 cm

Radius (r) = Diameter2=282=14 cm\dfrac{\text{Diameter}}{2} = \dfrac{28}{2} = 14 \text{ cm}

Volume of cylinder = πr2h

=227×142×40=227×196×40=1724807=24640 cm3.= \dfrac{22}{7} \times 14^2 \times 40 \\[1em] = \dfrac{22}{7} \times 196 \times 40 \\[1em] = \dfrac{172480}{7} \\[1em] = 24640 \text{ cm}^3.

Hence, volume of a cylinder = 24640 cm3.

Question 3

Find the weight of a solid cylinder of radius of radius 10.5 cm and height 60 cm, if the material of the cylinder weighs 5 grams per cu. cm

Answer

Given, radius (r) = 10.5 cm and height (h) = 60 cm

By formula,

Volume of cylinder = πr2h

=227×(10.5)2×60=227×110.25×60=1455307=20790 cm3.= \dfrac{22}{7} \times (10.5)^2 \times 60 \\[1em] = \dfrac{22}{7} \times 110.25 \times 60 \\[1em] = \dfrac{145530}{7} \\[1em] = 20790 \text{ cm}^3.

Given, the material of the cylinder weighs 5 grams per cu.cm

⇒ 1 gram = 11000\dfrac{1}{1000} kg

⇒ 5 gram = 51000\dfrac{5}{1000} kg

∴ Total weight of the cylinder = 20790 × 51000=1039501000=103.95\dfrac{5}{1000} = \dfrac{103950}{1000} = 103.95 kg.

Hence, the weight of a solid cylinder is 103.95 kg.

Question 4

A cylindrical tank has a capacity of 6160 m3. Find its depth, if its radius is 14 m. Also, find the cost of painting its curved surface at ₹ 30 per m2.

Answer

Let radius (r) = 14 m and depth or height = h meters

By formula,

Volume of cylinder = πr2h

6160=227×142×h6160=227×196×hh=6160×722×196h=431204312h=10 m.\Rightarrow 6160 = \dfrac{22}{7} \times 14^2 \times \text{h} \\[1em] \Rightarrow 6160 = \dfrac{22}{7} \times 196 \times \text{h} \\[1em] \Rightarrow \text{h} = \dfrac{6160 \times 7}{22 \times 196} \\[1em] \Rightarrow \text{h} = \dfrac{43120}{4312} \\[1em] \Rightarrow \text{h} = 10 \text{ m}.

Curved surface area of cylinder = 2πrh

=2×227×14×10=61607=880 m2= 2 \times \dfrac{22}{7} \times 14 \times 10 \\[1em] = \dfrac{6160}{7} \\[1em] = 880 \text{ m}^2

Given, the cost of painting its curved surface is ₹ 30 per m2.

⇒ 880 × 30 = ₹ 26,400.

Hence, depth of the cylindrical tank is 10 m and the cost of painting its curved surface is ₹ 26,400.

Question 5

(i) The curved surface area of a cylinder is 4400 cm2 and the circumference of its base is 110 cm. Find the height and the volume of the cylinder.

(ii) The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm. Find the radius of the cylinder and also its volume.

Answer

Given, curved surface area of a cylinder = 4400 cm2

(i) By formula,

Curved surface area of cylinder = 2πrh

∴ 2πrh = 4400 ....(1)

Given, circumference of base = 110 cm

We know that circumference = 2πr

∴ 2πr = 110 ....(2)

Dividing eq. (1) by (2),

2πrh2πr=4400110h=40 cm.\Rightarrow \dfrac{2π\text{rh}}{2π\text{r}} = \dfrac{4400}{110} \\[1em] \Rightarrow \text{h} = 40 \text{ cm.}

From eq.(1), we have,

2×227×r=110r=110×722×2r=77044r=17.5 cm.\Rightarrow 2 \times \dfrac{22}{7} \times \text{r} = 110 \\[1em] \Rightarrow \text{r} = \dfrac{110 \times 7}{22 \times 2} \\[1em] \Rightarrow \text{r} = \dfrac{770}{44} \\[1em] \Rightarrow \text{r} = 17.5 \text{ cm.}

Volume of cylinder = πr2h

Putting values we get,

=227×(17.5)2×40=227×306.25×40=2695007=38500 cm3.= \dfrac{22}{7} \times (17.5)^2 \times 40 \\[1em] = \dfrac{22}{7} \times 306.25 \times 40 \\[1em] = \dfrac{269500}{7} \\[1em] = 38500 \text{ cm}^3.

Hence, the height of the cylinder is 40 cm and volume of the cylinder = 38500 cm3.

(ii) Given, circumference of base = 132 cm

We know that circumference = 2πr

∴ 2πr = 132

2×227×r=132r=132×722×2r=92444r=21 cm.\Rightarrow 2 \times \dfrac{22}{7} \times \text{r} = 132 \\[1em] \Rightarrow \text{r} = \dfrac{132 \times 7}{22 \times 2} \\[1em] \Rightarrow \text{r} = \dfrac{924}{44} \\[1em] \Rightarrow \text{r} = 21 \text{ cm.}

Given, height (h) = 25 cm.

Volume of cylinder = πr2h

Putting values we get,

=227×(21)2×25=227×441×25=2425507=34650 cm3.= \dfrac{22}{7} \times (21)^2 \times 25 \\[1em] = \dfrac{22}{7} \times 441 \times 25 \\[1em] = \dfrac{242550}{7} \\[1em] = 34650 \text{ cm}^3.

Hence, radius of the cylinder is 21 cm and volume of the cylinder is 34650 cm3.

Question 6

The total surface area of a solid cylinder is 462 cm2 and its curved surface area is one-third of its total surface area. Find the volume of the cylinder.

Answer

Given,

Total surface area = 462 cm2

⇒ 2πr(h + r) = 462

⇒ πr(h + r) = 4622\dfrac{462}{2}

⇒ πr(h + r) = 231 ....(1)

Given, curved surface area is one-third of its total surface area.

⇒ Curved surface area = 13\dfrac{1}{3} × total surface area

curved surface areatotal surface area=132πrh2πr(h + r)=13h(h + r)=13\Rightarrow \dfrac{\text{curved surface area}}{\text{total surface area}} = \dfrac{1}{3} \\[1em] \Rightarrow \dfrac{2π\text{rh}}{2π\text{r(h + r)}} = \dfrac{1}{3} \\[1em] \Rightarrow \dfrac{\text{h}}{\text{(h + r)}} = \dfrac{1}{3} \\[1em]

⇒ 3h = h + r

⇒ 3h - h = r

⇒ 2h = r

⇒ h = r2\dfrac{\text{r}}{2}

Substituting value of h in eq.(1), we have:

πr(h + r)=231227×r(r2+r)=231227×r(r+2r2)=231227×r×3r2=231227×3r22=231r2=7×2×23122×3r2=323466r2=49r=49r=7 cm.\Rightarrow π\text{r(h + r)} = 231 \\[1em] \Rightarrow \dfrac{22}{7} \times \text{r}\Big(\dfrac{\text{r}}{2} + \text{r}\Big) = 231 \\[1em] \Rightarrow \dfrac{22}{7} \times \text{r}\Big(\dfrac{\text{r} + 2\text{r}}{2}\Big) = 231 \\[1em] \Rightarrow \dfrac{22}{7} \times \text{r} \times \dfrac{3\text{r}}{2} = 231 \\[1em] \Rightarrow \dfrac{22}{7} \times \dfrac{3\text{r}^2}{2} = 231 \\[1em] \Rightarrow \text{r}^2 = \dfrac{7 \times 2 \times 231}{22 \times 3} \\[1em] \Rightarrow \text{r}^2 = \dfrac{3234}{66} \\[1em] \Rightarrow \text{r}^2 = 49 \\[1em] \Rightarrow \text{r} = \sqrt{49} \\[1em] \Rightarrow \text{r} = 7 \text{ cm}.

⇒ h = r2=72=3.5 cm.\dfrac{\text{r}}{2} = \dfrac{7}{2} = 3.5 \text{ cm}.

Volume of cylinder = πr2h

=227×72×3.5=227×49×3.5=37737=539 cm3.= \dfrac{22}{7} \times 7^2 \times 3.5 \\[1em] = \dfrac{22}{7} \times 49 \times 3.5 \\[1em] = \dfrac{3773}{7} \\[1em] = 539 \text{ cm}^3.

Hence, volume of cylinder is 539 cm3.

Question 7

The sum of the radius of the base and the height of a solid cylinder is 37 m. If the total surface area of the cylinder be 1628 m2, find its volume.

Answer

Given, r + h = 37 m

Total surface area = 1628 m2

⇒ 2πr(h + r) = 1628

⇒ πr(h + r) = 16282\dfrac{1628}{2}

227×r×37=814r=814×722×37r=5698814r=7 m.\Rightarrow \dfrac{22}{7} \times \text{r} \times 37 = 814 \\[1em] \Rightarrow \text{r} = \dfrac{814 \times 7}{22 \times 37} \\[1em] \Rightarrow \text{r} = \dfrac{5698}{814} \\[1em] \Rightarrow \text{r} = 7 \text{ m.}

⇒ r + h = 37

⇒ 7 + h = 37

⇒ h = 37 - 7

⇒ h = 30 m.

Volume of cylinder = πr2h

=227×72×30=227×49×30=323407=4620 m3.= \dfrac{22}{7} \times 7^2 \times 30 \\[1em] = \dfrac{22}{7} \times 49 \times 30 \\[1em] = \dfrac{32340}{7} \\[1em] = 4620 \text{ m}^3.

Hence, volume of solid cylinder is 4620 m3.

Question 8

Find the height of a solid circular cylinder having total surface area of 660 cm2 and radius 5 cm.

Answer

Total surface area = 660 cm2

⇒ 2πr(h + r) = 660

πr(h+r)=6602227×5(h+5)=6602h+5=330×722×5h+5=2310110h+5=21h=215h=16 cm.\Rightarrow πr(h + r) = \dfrac{660}{2} \\[1em] \Rightarrow \dfrac{22}{7} \times 5(\text{h} + 5) = \dfrac{660}{2} \\[1em] \Rightarrow \text{h} + 5 = 330 \times \dfrac{7}{22 \times 5} \\[1em] \Rightarrow \text{h} + 5 = \dfrac{2310}{110} \\[1em] \Rightarrow \text{h} + 5 = 21 \\[1em] \Rightarrow \text{h} = 21 - 5 \\[1em] \Rightarrow \text{h} = 16 \text{ cm.}

Hence, the height of a solid circular cylinder is 16 cm.

Question 9

Find the total surface area of a hollow cylinder open at both ends, if its length is 12 cm, external diameter is 8 cm and the thickness is 2 cm.

Answer

Given, external diameter = 8 cm and h = 12 cm

External radius (R) = diameter2=82=4\dfrac{\text{diameter}}{2} = \dfrac{8}{2} = 4 cm.

Let internal radius be r cm.

Thickness = (R - r)

⇒ 2 = 4 - r

⇒ r = 4 - 2

⇒ r = 2 cm.

By formula,

Total surface area of hollow cylinder = 2π(Rh + rh + R2 - r2)

=2×227(4×12+2×12+4222)=447(48+24+164)=447×84=36967=528 cm2.= 2 \times \dfrac{22}{7} (4 \times 12 + 2 \times 12 + 4^2 - 2^2) \\[1em] = \dfrac{44}{7} (48 + 24 + 16 - 4) \\[1em] = \dfrac{44}{7} \times 84 \\[1em] = \dfrac{3696}{7} \\[1em] = 528 \text{ cm}^2.

Hence, the total surface area of the given hollow cylinder open at both ends is 528 cm2.

Question 10

Water is flowing at the rate of 3 km/hr through a circular pipe of 20 cm internal diameter into a circular cistern of diameter 10 m and depth 2 m. In how much time will the cistern be filled?

Answer

Let the cistern be filled in x hours.

Water column forms a cylinder of radius (r) = diameter2=202×1100=110 m.\dfrac{\text{diameter}}{2} = \dfrac{20}{2} \times \dfrac{1}{100} = \dfrac{1}{10} \text{ m}.

Given, water is flowing at the rate of 3 km/hr through a circular pipe.

= 3×100060×60=56\dfrac{3 \times 1000}{60 \times 60} = \dfrac{5}{6} m/s

Volume of water that flows in 1 second = Area of cross section of pipe × rate of flow of water

= πr2 × rate of flow of water

=227×(110)2×56=227×1100×56=1104200=11420= \dfrac{22}{7} \times \Big(\dfrac{1}{10}\Big)^2 \times \dfrac{5}{6} \\[1em] = \dfrac{22}{7} \times \dfrac{1}{100} \times \dfrac{5}{6} \\[1em] = \dfrac{110}{4200} \\[1em] = \dfrac{11}{420}

Given, diameter of cistern = 10 m

Radius (r) = diameter2=102=5\dfrac{\text{diameter}}{2} = \dfrac{10}{2} = 5 m

Depth of cistern = 2 m

Volume of cistern = πr2h

=227×52×2=227×25×2=11007= \dfrac{22}{7} \times 5^2 \times 2 \\[1em] = \dfrac{22}{7} \times 25 \times 2 \\[1em] = \dfrac{1100}{7}

Required time = Volume of cisternvolume of water flows in 1 second\dfrac{\text{Volume of cistern}}{\text{volume of water flows in 1 second}}

=1100711420=11007×42011=46200077 seconds=46200077×160×60 hours=53=123 hours.= \dfrac{\dfrac{1100}{7}}{\dfrac{11}{420}} \\[1em] = \dfrac{1100}{7} \times \dfrac{420}{11} \\[1em] = \dfrac{462000}{77} \text{ seconds}\\[1em] = \dfrac{462000}{77} \times \dfrac{1}{60 \times 60}\text{ hours} \\[1em] = \dfrac{5}{3} \\[1em] = 1\dfrac{2}{3} \text{ hours.}

= 1 hour 40 min.

Hence, cistern will be filled in 1 hour 40 min.

Question 11

A swimming pool 70 m long, 44 m wide and 3 m deep, is filled by water issuing from a pipe of diameter 35 cm, at 6 m per second. How many hours does it take to fill the pool?

Answer

Volume of the swimming pool = 70 × 44 × 3 = 9240 m3

Radius of the pipe = Diameter2=352×1100=35200=0.175\dfrac{\text{Diameter}}{2} = \dfrac{35}{2} \times \dfrac{1}{100} = \dfrac{35}{200} = 0.175 m

Volume of water flowing out of the pipe per second = Area of cross section of the pipe × rate of flow of water

= πr2 × 6 m/s

=227×(0.175)2×6=227×0.030625×6=4.04257=0.5775 m3= \dfrac{22}{7} \times (0.175)^2 \times 6 \\[1em] = \dfrac{22}{7} \times 0.030625 \times 6 \\[1em] = \dfrac{4.0425}{7} \\[1em] = 0.5775 \text{ m}^3

Required time = Volume of swimming poolvolume of water flow per second\dfrac{\text{Volume of swimming pool}}{\text{volume of water flow per second}}

=92400.5775=16000 seconds=1600060×60=409=449 hours.= \dfrac{9240}{0.5775} \\[1em] = 16000 \text{ seconds} \\[1em] = \dfrac{16000}{60 \times 60} \\[1em] = \dfrac{40}{9} \\[1em] = 4\dfrac{4}{9} \text{ hours.}

Hence, time required to fill the pool is 4494\dfrac{4}{9} hours.

Question 12

Water is flowing at the rate of 8 m per second through a circular pipe whose internal diameter is 2 cm, into a cylindrical tank, the radius of whose base is 40 cm. Determine the increase in the water level in 30 minutes.

Answer

Internal radius of circular pipe = Diameter2=22=1 cm.\dfrac{\text{Diameter}}{2} = \dfrac{2}{2} = 1 \text{ cm.}

Volume of water flowing through pipe per second = Area of cross section of pipe × rate of flow of water

= πr2 × 8 m/s

= πr2 × 8 × 100 cm/s

=227×(1)2×800=227×800=176007 cm3/s= \dfrac{22}{7} \times (1)^2 \times 800 \\[1em] = \dfrac{22}{7} \times 800 \\[1em] = \dfrac{17600}{7} \text{ cm}^3/s

Volume of cylindrical tank = πR2h

=227×402×h=227×1600×h=352007×h= \dfrac{22}{7} \times 40^2 \times \text{h} \\[1em] = \dfrac{22}{7} \times 1600 \times \text{h} \\[1em] = \dfrac{35200}{7} \times \text{h}

Volume of water flowing through pipe in 30 minutes = Volume of cylindrical tank

(1 minute = 60 second so, 30 minutes = 30 × 60 = 1800 s)

1800×176007=352007×h316800007=352007×hh=316800007×735200h=900 cm.h=9 m.\Rightarrow 1800 \times \dfrac{17600}{7} = \dfrac{35200}{7} \times \text{h} \\[1em] \Rightarrow \dfrac{31680000}{7} = \dfrac{35200}{7} \times \text{h} \\[1em] \Rightarrow \text{h} = \dfrac{31680000}{7} \times \dfrac{7}{35200} \\[1em] \Rightarrow \text{h} = 900 \text{ cm.} \\[1em] \Rightarrow \text{h} = 9 \text{ m.}

Hence, the increase in the water level in 30 minutes is 9 m.

Question 13

A 20 m deep well with diameter 7 m is dug up and the earth from digging is spread evenly to form a platform 22 m × 14 m. Determine the height of the platform.

Answer

The shape of the deep well will be cylindrical with radius (r) and height (h) = 20 m.

By formula,

Volume of a cylinder = πr2h

r = diameter2=72=3.5\dfrac{\text{diameter}}{2} = \dfrac{7}{2} = 3.5 m.

Let height of platform be H.

Volume of earth is spread evenly to form a rectangular platform (cuboid).

Volume of platform = 22 m × 14 m × height(H)

Volume of earth dug from well = Volume of earth spread evenly to form a platform

πr2 h=22×14×H227×(3.5)2×20=308×H227×12.25×20=308×H53907×308=HH=53902156H=2.5 m.\Rightarrow π\text{r}^2 \text{ h} = 22 \times 14 \times \text{H} \\[1em] \Rightarrow \dfrac{22}{7} \times (3.5)^2 \times 20 = 308 \times \text{H} \\[1em] \Rightarrow \dfrac{22}{7} \times 12.25 \times 20 = 308 \times \text{H} \\[1em] \Rightarrow \dfrac{5390}{7 \times 308} = \text{H} \\[1em] \Rightarrow \text{H} = \dfrac{5390}{2156} \\[1em] \Rightarrow \text{H} = 2.5 \text{ m.}

Hence, the height of the platform is 2.5 m.

Question 14

Find the mass of a metallic hollow cylindrical pipe 24 cm long with internal diameter 10 cm and made of 5 mm thick metal, if 1 cm3 of the metal weighs 7.5 grams.

Answer

Internal radius of the pipe, r = diameter2=102=5\dfrac{\text{diameter}}{2} = \dfrac{10}{2} = 5 cm

Given,

Thickness = 5 mm = 0.5 cm

Thickness = External radius (R) - Internal radius (r)

⇒ R = r + thickness

⇒ R = 5.5 cm

Length of the pipe (h) = 24 cm

External volume = πR2h

=227×(5.5)2×24=227×30.25×24=159727= \dfrac{22}{7} \times (5.5)^2 \times 24 \\[1em] = \dfrac{22}{7} \times 30.25 \times 24 \\[1em] = \dfrac{15972}{7}

Internal volume = πr2h

=227×(5)2×24=227×25×24=132007= \dfrac{22}{7} \times (5)^2 \times 24 \\[1em] = \dfrac{22}{7} \times 25 \times 24 \\[1em] = \dfrac{13200}{7}

Volume of metal = External volume - Internal volume

=159727132007=15972132007=27727=396 cm3.= \dfrac{15972}{7} - \dfrac{13200}{7} \\[1em] = \dfrac{15972 - 13200}{7} \\[1em] = \dfrac{2772}{7} \\[1em] = 396 \text{ cm}^3.

Given, 1 cm3 of the metal weighs 7.5 grams.

(1g = 11000kg\dfrac{1}{1000} \text{kg})

Total weight of the pipe = 396×7.5×11000=29701000=2.97396 \times 7.5 \times \dfrac{1}{1000} = \dfrac{2970}{1000} = 2.97 kg

Hence, the mass of a metallic hollow cylindrical pipe is 2.97 kg.

Question 15

A well with 10 m inside diameter is dug 8.4 m deep. Earth taken out of it is spread all around it to a width of 7.5 m to form an embankment. Find the height of the embankment.

Answer

Radius of the well, r = diameter2=102=5\dfrac{\text{diameter}}{2} = \dfrac{10}{2} = 5 m

Depth of the well (h) = 8.4 m

A well with 10 m inside diameter is dug 8.4 m deep. Earth taken out of it is spread all around it to a width of 7.5 m to form an embankment. Find the height of the embankment. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Cla    ss 10.

Volume of the earth dug out from the well = πr2h

=227×52×8.4=227×25×8.4=46207=660 m3= \dfrac{22}{7} \times 5^2 \times 8.4 \\[1em] = \dfrac{22}{7} \times 25 \times 8.4 \\[1em] = \dfrac{4620}{7} \\[1em] = 660 \text{ m}^3

External radius, R = radius of the well + 7.5 = 5 + 7.5 = 12.5 m

The embankment forms a hollow cylinder around the well.

Let height of the embankment be H.

∴ Volume of embankment = πR2H - πr2H

= πH(R2 - r2)

=227×H×[(12.5)252]=227×H×(156.2525)=227×H×131.25=2887.57×H=412.5 H m3= \dfrac{22}{7} \times \text{H} \times [(12.5)^2 - 5^2] \\[1em] = \dfrac{22}{7} \times \text{H} \times (156.25 - 25) \\[1em] = \dfrac{22}{7} \times \text{H} \times 131.25 \\[1em] = \dfrac{2887.5}{7} \times \text{H} \\[1em] = 412.5 \text{ H} \text{ m}^3

Volume of earth dug out = Volume of the embankment

660=412.5HH=660412.5H=1.6 m.\Rightarrow 660 = 412.5 \text{H} \\[1em] \Rightarrow \text{H} = \dfrac{660}{412.5} \\[1em] \Rightarrow \text{H} = 1.6 \text{ m.}

Hence, the height of the embankment is 1.6 m.

Exercise 21B

Question 1

The height of a right circular cone is 24 cm and the radius of its base is 7 cm. Calculate :

(i) the slant height of the cone

(ii) the lateral surface area of the cone

(iii) the total surface area of the cone

(iv) the volume of the cone

Answer

Given, h = 24 cm and r = 7 cm

(i) Slant height, l = h2+r2=242+72=576+49=625=25 cm.\sqrt{\text{h}^2 + \text{r}^2} = \sqrt{24^2 + 7^2} = \sqrt{576 + 49} = \sqrt{625} = 25 \text{ cm.}

Hence, slant height of the cone is 25 cm.

(ii) Lateral surface area = πrl

=227×7×25=38507=550 cm2= \dfrac{22}{7} \times 7 \times 25 \\[1em] = \dfrac{3850}{7} \\[1em] = 550 \text{ cm}^2

Hence, lateral surface area of the cone is 550 cm2.

(iii) Total surface area = πr(l + r)

=227×7(25+7)=1547×(32)=49287=704 cm2= \dfrac{22}{7} \times 7(25 + 7) \\[1em] = \dfrac{154}{7} \times (32) \\[1em] = \dfrac{4928}{7} \\[1em] = 704 \text{ cm}^2

Hence, total surface area of the cone is 704 cm2.

(iv) Volume of cone = 13\dfrac{1}{3} πr2h

=13×227×72×24=2221×49×24=2587221=1232 cm3= \dfrac{1}{3} \times \dfrac{22}{7} \times 7^2 \times 24 \\[1em] = \dfrac{22}{21} \times 49 \times 24 \\[1em] = \dfrac{25872}{21} \\[1em] = 1232 \text{ cm}^3

Hence, volume of the cone is 1232 cm3.

Question 2

The height of a right circular cone is 8 cm and the diameter of its base is 12 cm. Calculate :

(i) the slant height of the cone

(ii) the total surface area of the cone

(iii) the volume of the cone

Answer

Given, h = 8 cm and r = diameter2=122=6\dfrac{\text{diameter}}{2} = \dfrac{12}{2} = 6 cm

(i) Slant height, l = h2+r2=82+62=64+36=100=10 cm.\sqrt{\text{h}^2 + \text{r}^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10 \text{ cm.}

Hence, slant height of the cone is 10 cm.

(ii) Total surface area = πr(l + r)

=227×6(10+6)=1327×(16)=21127=301.7 cm2= \dfrac{22}{7} \times 6(10 + 6) \\[1em] = \dfrac{132}{7} \times (16) \\[1em] = \dfrac{2112}{7} \\[1em] = 301.7 \text{ cm}^2

Hence, total surface area of the cone is 301.7 cm2.

(iii) Volume of cone = 13\dfrac{1}{3} πr2h

=13×227×62×8=2221×36×8=633621=301.7 cm3= \dfrac{1}{3} \times \dfrac{22}{7} \times 6^2 \times 8 \\[1em] = \dfrac{22}{21} \times 36 \times 8 \\[1em] = \dfrac{6336}{21} \\[1em] = 301.7 \text{ cm}^3

Hence, volume of the cone is 301.7 cm3.

Question 3

The slant height of a cone is 17 cm and the radius of its base is 15 cm. Find:

(i) the height of the cone

(ii) the volume of the cone

(iii) the total surface area of the cone

Answer

Given, slant height, l = 17 cm and radius, r = 15 cm

(i) l2 = r2 + h2

⇒ h2 = l2 - r2

⇒ h2 = 172 - 152

⇒ h2 = 289 - 225

⇒ h2 = 64

⇒ h = 64=8 cm.\sqrt{64} = 8 \text{ cm.}

Hence, height of the cone is 8 cm.

(ii) Volume of cone = 13\dfrac{1}{3} πr2h

=13×227×152×8=2221×225×8=3960021=1885.7 cm3= \dfrac{1}{3} \times \dfrac{22}{7} \times 15^2 \times 8 \\[1em] = \dfrac{22}{21} \times 225 \times 8 \\[1em] = \dfrac{39600}{21} \\[1em] = 1885.7 \text{ cm}^3

Hence, volume of the cone is 1885.7 cm3.

(iii) Total surface area = πr(l + r)

=227×15(17+15)=3307×(32)=105607=1508.6 cm2= \dfrac{22}{7} \times 15(17 + 15) \\[1em] = \dfrac{330}{7} \times (32) \\[1em] = \dfrac{10560}{7} \\[1em] = 1508.6 \text{ cm}^2

Hence, total surface area of the cone is 1508.6 cm2.

Question 4

The volume of a right circular cone is 660 cm3 and diameter of its base is 12 cm. Calculate:

(i) the height of the cone

(ii) the slant height of the cone

(ii) the total surface area of the cone

Answer

Given, radius, r = diameter2=122=6 cm.\dfrac{\text{diameter}}{2} = \dfrac{12}{2} = 6 \text{ cm.}

Volume of cone = 660 cm3

(i) By formula,

Volume of cone = 13\dfrac{1}{3} πr2h

660=13×227×62×h660=2221×36×hh=660×2122×36h=13860792h=17.5 cm.\Rightarrow 660 = \dfrac{1}{3} \times \dfrac{22}{7} \times 6^2 \times \text{h} \\[1em] \Rightarrow 660 = \dfrac{22}{21} \times 36 \times \text{h} \\[1em] \Rightarrow \text{h} = \dfrac{660 \times 21}{22 \times 36} \\[1em] \Rightarrow \text{h} = \dfrac{13860}{792} \\[1em] \Rightarrow \text{h} = 17.5 \text{ cm}.

Hence, the height of the cone is 17.5 cm.

(ii) By formula,

Slant height (l) = h2+r2\sqrt{\text{h}^2 + \text{r}^2}

=(17.5)2+62=306.25+36=342.25=18.5 cm.= \sqrt{(17.5)^2 + 6^2} = \sqrt{306.25 + 36} = \sqrt{342.25} = 18.5 \text{ cm.}

Hence, slant height of the cone is 18.5 cm.

(iii) Total surface area = πr(l + r)

=227×6×(18.5+6)=1327×(24.5)=32347=462 cm2= \dfrac{22}{7} \times 6 \times (18.5 + 6) \\[1em] = \dfrac{132}{7} \times (24.5) \\[1em] = \dfrac{3234}{7} \\[1em] = 462 \text{ cm}^2

Hence, total surface area of the cone is 462 cm2.

Question 5

The total surface of a right circular cone of slant height 20 cm is 384π cm2. Calculate:

(i) its radius in cm

(ii) its volume in cm3, in terms of π

Answer

Given, slant height, l = 20 cm and total surface area of cone = 384π cm2

(i) By formula,

Total surface area = πr(l + r)

⇒ 384π = πr(20 + r)

⇒ 384 = 20r + r2

⇒ r2 + 20r - 384 = 0

⇒ r2 + 32r - 12r - 384 = 0

⇒ r(r + 32) - 12(r + 32) = 0

⇒ (r + 32) = 0 or (r - 12) = 0

⇒ r = - 32 or r = 12

Since, radius cannot be negative.

∴ r = 12 cm.

Hence, radius of the cone is 12 cm.

(ii) l2 = r2 + h2

⇒ h2 = l2 - r2

⇒ h2 = 202 - 122

⇒ h2 = 400 - 144

⇒ h2 = 256

⇒ h = 256=16 cm.\sqrt{256} = 16 \text{ cm.}

Volume of cone = 13\dfrac{1}{3} πr2h

=13×π×122×16=13×π×144×16=23043π=768π cm3= \dfrac{1}{3} \times π \times 12^2 \times 16 \\[1em] = \dfrac{1}{3} \times π \times 144 \times 16 \\[1em] = \dfrac{2304}{3} π \\[1em] = 768 π \text{ cm}^3

Hence, volume of the cone is 768 π cm3.

Question 6

The radius and the height of a right circular cone are in the ratio of 5 : 12 and its volume is 2512 cm3. Find:

(i) the radius and height of the cone

(ii) the curved surface area of the cone

(iii) the total surface area of the cone

(Take π = 3.14)

Answer

Given, radius(r) : height(h) = 5 : 12

(i) Let r = 5x and h = 12x

Volume of cone = 13\dfrac{1}{3} πr2h

2512=13×3.14×(5x)2×12x2512=3.14×25x2×4xx3=25123.14×25×4x3=2512314x3=8x=83x=2\Rightarrow 2512 = \dfrac{1}{3} \times 3.14 \times (5\text{x})^2 \times 12\text{x} \\[1em] \Rightarrow 2512 = 3.14 \times 25\text{x}^2 \times 4\text{x} \\[1em] \Rightarrow \text{x}^3 = \dfrac{2512}{3.14 \times 25 \times 4} \\[1em] \Rightarrow \text{x}^3 = \dfrac{2512}{314} \\[1em] \Rightarrow \text{x}^3 = 8 \\[1em] \Rightarrow \text{x} = \sqrt[3]{8} \\[1em] \Rightarrow \text{x} = 2

⇒ r = 5x = 5 × 2 = 10 cm

⇒ h = 12x = 12 × 2 = 24 cm

Hence, radius of the cone is 10 cm and height of the cone is 24 cm.

(ii) Curved surface area = πrl

l2 = r2 + h2

⇒ l2 = 102 + 242

⇒ l2 = 100 + 576

⇒ l2 = 676

⇒ l = 676\sqrt{676} = 26 cm

=3.14×10×26=816.4 cm2= 3.14 \times 10 \times 26 \\[1em] = 816.4 \text{ cm}^2

Hence, curved surface area of the cone is 816.4 cm2.

(iii) Total surface area = πr(l + r)

=3.14×10(26+10)=3.14×10×36=1130.4 cm2= 3.14 \times 10(26 + 10) \\[1em] = 3.14 \times 10 \times 36 \\[1em] = 1130.4 \text{ cm}^2

Hence, total surface area of the cone is 1130.4 cm2.

Question 7

The curved surface area of a cone is 4070 cm2 and its diameter is 70 cm. Calculate its :

(i) slant height

(ii) height and

(iii) volume

Answer

Radius, r = diameter2=702=35 cm.\dfrac{\text{diameter}}{2} = \dfrac{70}{2} = 35 \text{ cm.}

(i) Curved surface area = πrl

4070=227×35×ll=4070×722×35l=28490770l=37 cm.\Rightarrow 4070 = \dfrac{22}{7} \times 35 \times \text{l} \\[1em] \Rightarrow \text{l} = \dfrac{4070 \times 7}{22 \times 35} \\[1em] \Rightarrow \text{l} = \dfrac{28490}{770} \\[1em] \Rightarrow \text{l} = 37 \text{ cm.}

Hence, slant height of the cone is 37 cm.

(ii) l2 = r2 + h2

⇒ 372 = 352 + h2

⇒ h2 = 1369 - 1225

⇒ h2 = 144

⇒ h = 144\sqrt{144} = 12 cm

Hence, height of the cone is 12 cm.

(iii) Volume of cone = 13\dfrac{1}{3} πr2h

=13×227×352×12=2221×1225×12=32340021=15400 cm3= \dfrac{1}{3} \times \dfrac{22}{7} \times 35^2 \times 12 \\[1em] = \dfrac{22}{21} \times 1225 \times 12 \\[1em] = \dfrac{323400}{21} \\[1em] = 15400 \text{ cm}^3

Hence, volume of the cone is 15400 cm3.

Question 8

How many metres of canvas 1.25 m will be needed to make a conical tent whose base radius is 17.5 m and height 6 m?

Answer

Given, r = 17.5 m and h = 6 m

l2 = r2 + h2

⇒ l2 = 17.52 + 62

⇒ l2 = 306.25 + 36

⇒ l2 = 342.25

⇒ l = 342.25\sqrt{342.25} = 18.5 m

So, the total curved surface area of the tent = πrl

=227×17.5×18.5=7122.57=1017.5 m2= \dfrac{22}{7} \times 17.5 \times 18.5 \\[1em] = \dfrac{7122.5}{7} \\[1em] = 1017.5 \text{ m}^2

Width of the canvas used = 1.25 m

Length of canvas = area of canvaswidth of canvas=1017.51.25\dfrac{\text{area of canvas}}{\text{width of canvas}} = \dfrac{1017.5}{1.25} = 814 m.

Hence, 814 metres of canvas will be needed to make a conical tent.

Question 9

A circus tent is cylindrical to a height of 3 meters and conical above it. If its diameter is 105 m and the slant height of the conical portion is 53 m, calculate the length of the canvas 2.5 m wide to make the required tent.

Answer

From figure,

Radius of conical part = radius of cylindrical part = r.

Radius of the cylindrical part of the tent (r) = diameter2=1052 m\dfrac{\text{diameter}}{2} = \dfrac{105}{2} \text{ m}

Radius of the conical part (r) = 1052 m\dfrac{105}{2} \text{ m}

Slant height (l) = 53 m

A circus tent is cylindrical to a height of 3 meters and conical above it. If its diameter is 105 m and the slant height of the conical portion is 53 m, calculate the length of the canvas 2.5 m wide to make the required tent. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

So, the total curved surface area of the tent = 2πrh + πrl

=2×227×1052×3+227×1052×53=1386014+12243014=990+8745=9735 m2.= 2 \times \dfrac{22}{7} \times \dfrac{105}{2} \times 3 + \dfrac{22}{7} \times \dfrac{105}{2} \times 53 \\[1em] = \dfrac{13860}{14} + \dfrac{122430}{14} \\[1em] = 990 + 8745 \\[1em] = 9735 \text{ m}^2.

Width of the canvas used = 2.5 m

Length of canvas = area of canvaswidth of canvas=97352.5\dfrac{\text{area of canvas}}{\text{width of canvas}} = \dfrac{9735}{2.5} = 3894 m.

Hence, length of the canvas required to make tent is 3894 m.

Question 10

An iron pillar consists of a cylindrical portion, 2.8 m high and 20 cm in diameter and a cone 42 cm high is surrounding it. Find the weight of the pillar, given that 1 cm3 of iron weighs 7.5 g.

Answer

Radius of cylindrical portion, r = diameter2=202\dfrac{\text{diameter}}{2} = \dfrac{20}{2} = 10 cm

Height of the cylindrical portion, h = 2.8 m = 2.8 × 100 = 280 cm

Height of the conical portion, H = 42 cm

An iron pillar consists of a cylindrical portion, 2.8 m high and 20 cm in diameter and a cone 42 cm high is surrounding it. Find the weight of the pillar, given that 1 cm<sup>3</sup> of iron weighs 7.5 g. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

From figure,

Radius of the conical part = radius of the cylindrical portion = r = 10 cm

Volume of iron pole = Volume of cylindrical portion + Volume of conical portion

= πr2h + 13\dfrac{1}{3} πr2H

=227×102×280+13×227×102×42=227×100×280+13×227×100×42=227×100×280+227×100×14=6160007+308007=616000+308007=6468007=92400 cm3.= \dfrac{22}{7} \times 10^2 \times 280 + \dfrac{1}{3} \times \dfrac{22}{7} \times 10^2 \times 42 \\[1em] = \dfrac{22}{7} \times 100 \times 280 + \dfrac{1}{3} \times \dfrac{22}{7} \times 100 \times 42 \\[1em] = \dfrac{22}{7} \times 100 \times 280 + \dfrac{22}{7} \times 100 \times 14 \\[1em] = \dfrac{616000}{7} + \dfrac{30800}{7} \\[1em] = \dfrac{616000 + 30800}{7} \\[1em] = \dfrac{646800}{7} \\[1em] = 92400 \text{ cm}^3.

Given,

Weight of 1 cm3 of iron = 7.5 gm.

Total weight = 92400 × 7.5 = 693000 gm = 6930001000\dfrac{693000}{1000} kg = 693 kg.

Hence, the weight of the pillar is 693 kg.

Question 11

Water flows at the rate of 10 m per minute through a cylindrical pipe 5 mm in diameter. How long would it take to fill a conical vessel whose diameter at the base is 40 cm and depth 24 cm?

Answer

Radius of cylindrical pipe, r = diameter2=0.52\dfrac{\text{diameter}}{2} = \dfrac{0.5}{2} = 0.25 cm

Given, water flows at the rate of 10 m per minute.

Length of the cylindrical portion, h = 10 m = 10 × 100 = 1000 cm

Height of the conical portion, H = 24 cm

Radius of conical pipe, R = diameter2=402\dfrac{\text{diameter}}{2} = \dfrac{40}{2} = 20 cm

Volume of water that flows in 1 min = πr2h

=227×(0.25)2×1000=227×0.0625×1000=13757= \dfrac{22}{7} \times (0.25)^2 \times 1000 \\[1em] = \dfrac{22}{7} \times 0.0625 \times 1000 \\[1em] = \dfrac{1375}{7}

Volume of the conical vessel = 13\dfrac{1}{3} πR2H

=13×227×202×24=227×400×8=704007= \dfrac{1}{3} \times \dfrac{22}{7} \times 20^2 \times 24 \\[1em] = \dfrac{22}{7} \times 400 \times 8 \\[1em] = \dfrac{70400}{7}

Required time = Volume of conical vesselVolume of water that flows in 1 min\dfrac{\text{Volume of conical vessel}}{\text{Volume of water that flows in 1 min}}

=70400713757=704007×71375=704001375=51.2 min.= \dfrac{\dfrac{70400}{7}}{\dfrac{1375}{7}} \\[1em] = \dfrac{70400}{7} \times \dfrac{7}{1375} \\[1em] = \dfrac{70400}{1375} \\[1em] = 51.2 \text{ min.}

= 51 min 12 sec.

Hence, time required to fill a conical vessel is 51 min 12 sec.

Question 12(i)

A conical tent is to accommodate 11 persons. Each person must have 4 m2 of the space on the ground and 20m3 of air to breathe. Find the height of the cone.

Answer

Given,

Each person must have 20 m3 of air to breathe.

∴ 11 persons need 11 × 20 m3 = 220 m3

Each person must have 4 m2 of the space on the ground.

∴ 11 persons need 11 × 4 m2 = 44 m2

Base of the conical tent = area of the circle = πr2

44=227×r2r2=7×4422r2=30822r2=14 m.\Rightarrow 44 = \dfrac{22}{7} \times \text{r}^2 \\[1em] \Rightarrow \text{r}^2 = \dfrac{7 \times 44}{22} \\[1em] \Rightarrow \text{r}^2 = \dfrac{308}{22} \\[1em] \Rightarrow \text{r}^2 = 14 \text{ m.}

Let height of the conical tent be h meters.

Since, conical tent needs to accomodate 11 persons, so its volume will be equal to volume of air required for 11 persons.

13πr2h=22013×227×14×h=220h=220×7×322×14h=4620308h=15 m.\Rightarrow \dfrac{1}{3}π \text{r}^2 \text{h} = 220 \\[1em] \Rightarrow \dfrac{1}{3} \times \dfrac{22}{7} \times 14 \times \text{h} = 220 \\[1em] \Rightarrow \text{h} = \dfrac{220 \times 7 \times 3}{22 \times 14} \\[1em] \Rightarrow \text{h} = \dfrac{4620}{308} \\[1em] \Rightarrow \text{h} = 15 \text{ m.}

Hence, height of the tent is 15 m..

Question 12(ii)

A conical tent is to accommodate 77 persons. Each person must have 16 m3 of air to breathe. Given the radius of the tent as 7 m, find the height of the tent and also its curved surface area.

Answer

Given,

Each person must have 16 m3 of air to breathe.

∴ 77 persons need 77 × 16 m3 = 1232 m3

Radius of the tent (r) = 7 m

Let height of the conical tent be h meters.

Since, conical tent needs to accomodate 77 persons, so its volume will be equal to volume of air required for 77 persons.

13πr2h=123213×227×72×h=123213×227×49×h=1232h=1232×7×322×49h=258721078h=24 m.\Rightarrow \dfrac{1}{3}π \text{r}^2 \text{h} = 1232 \\[1em] \Rightarrow \dfrac{1}{3} \times \dfrac{22}{7} \times 7^2 \times \text{h} = 1232 \\[1em] \Rightarrow \dfrac{1}{3} \times \dfrac{22}{7} \times 49 \times \text{h} = 1232 \\[1em] \Rightarrow \text{h} = \dfrac{1232 \times 7 \times 3}{22 \times 49} \\[1em] \Rightarrow \text{h} = \dfrac{25872}{1078} \\[1em] \Rightarrow \text{h} = 24 \text{ m.}

By formula,

l2 = r2 + h2

⇒ l2 = 72 + 242

⇒ l2 = 49 + 576

⇒ l2 = 625

⇒ l = 625\sqrt{625} = 25 m

Curved surface area of the tent = πrl

=227×7×25=22×25=550 m2= \dfrac{22}{7} \times 7 \times 25 \\[1em] = 22 \times 25 \\[1em] = 550 \text{ m}^2

Hence, height of the tent is 24 m and curved surface area of the tent is 550 m2.

Question 13

A right circular cone is 3.6 cm high and the radius of its base is 1.6 cm. It is melted and recast into a right circular cone with radius of its base as 1.2 cm. Find its height.

Answer

Radius of cone, r = 1.6 cm

Height of the cone, h = 3.6 cm

Volume of circular cone = 13\dfrac{1}{3} πr2h

=13×227×(1.6)2×3.6=13×227×2.56×3.6=202.75221= \dfrac{1}{3} \times \dfrac{22}{7} \times (1.6)^2 \times 3.6 \\[1em] = \dfrac{1}{3} \times \dfrac{22}{7} \times 2.56 \times 3.6 \\[1em] = \dfrac{202.752}{21}

Volume of cone of radius (R) = 1.2 cm and height (H)

Volume of circular cone = 13\dfrac{1}{3} πR2H

=13×227×(1.2)2×H=13×227×1.44×H=31.6821H= \dfrac{1}{3} \times \dfrac{22}{7} \times (1.2)^2 \times \text{H} \\[1em] = \dfrac{1}{3} \times \dfrac{22}{7} \times 1.44 \times \text{H} \\[1em] = \dfrac{31.68}{21} \text{H}

Since, cone is melted and recasted into right circular cone of radius 1.2 cm, the volume remains the same.

202.75221=31.6821HH=202.752×2131.68×21H=6.4 cm.\therefore \dfrac{202.752}{21} = \dfrac{31.68}{21} \text{H} \\[1em] \Rightarrow \text{H} = \dfrac{202.752 \times 21}{31.68 \times 21} \\[1em] \Rightarrow \text{H} = 6.4 \text{ cm.}

Hence, height of the cone is 6.4 cm.

Question 14

A solid metallic cylinder of base radius 3 cm and height 5 cm is melted to form cones, each of height 1 cm and base radius 1 mm. Find the number of cones.

Answer

For larger cylinder,

Height (H) = 5 cm

Radius (R) = 3 cm

For smaller cones,

Height (h) = 1 cm

Radius (r) = 1 mm = 0.1 cm

Let no. of smaller cones formed be n.

Volume of larger cylinder = n × Volume of smaller cones

πR2H=n×13πr2h227×(3)2×5=n×13×227×(0.1)2×1227×9×5=n×13×227×0.01×19907=n×0.2221n=990×210.22×7n=207901.54n=13500\Rightarrow π\text{R}^2\text{H} = \text{n} \times \dfrac{1}{3}π\text{r}^2\text{h} \\[1em] \Rightarrow \dfrac{22}{7} \times (3)^2 \times 5 = \text{n} \times \dfrac{1}{3} \times \dfrac{22}{7} \times (0.1)^2 \times 1 \\[1em] \Rightarrow \dfrac{22}{7} \times 9 \times 5 = \text{n} \times \dfrac{1}{3} \times \dfrac{22}{7} \times 0.01 \times 1 \\[1em] \Rightarrow \dfrac{990}{7} = \text{n} \times \dfrac{0.22}{21} \\[1em] \Rightarrow \text{n} = \dfrac{990 \times 21}{0.22 \times 7} \\[1em] \Rightarrow \text{n} = \dfrac{20790}{1.54} \\[1em] \Rightarrow \text{n} = 13500

Hence, the number of cones formed = 13500.

Question 15

A conical vessel, whose internal radius is 12 cm and height 50 cm, is full of liquid. The contents are emptied into a cylindrical vessel with internal radius 10 cm. Find the height to which the liquid rises in the cylindrical vessel.

Answer

For cylindrical vessel,

Let height be H cm

Radius (R) = 10 cm

For conical vessel,

Height (h) = 50 cm

Radius (r) = 12 cm

Since, contents in conical vessel are emptied into a cylindrical vessel, hence there volume will be same.

∴ Volume of cylinder = Volume of conical vessel

πR2H=13πr2hR2H=13r2h102×H=13×122×50100×H=13×144×50H=144×503×100H=7200300H=24 cm.\Rightarrow π\text{R}^2\text{H} = \dfrac{1}{3}π\text{r}^2\text{h} \\[1em] \Rightarrow \text{R}^2\text{H} = \dfrac{1}{3}\text{r}^2\text{h} \\[1em] \Rightarrow 10^2 \times \text{H} = \dfrac{1}{3} \times 12^2 \times 50 \\[1em] \Rightarrow 100 \times \text{H} = \dfrac{1}{3} \times 144 \times 50 \\[1em] \Rightarrow \text{H} = \dfrac{144 \times 50}{3 \times 100} \\[1em] \Rightarrow \text{H} = \dfrac{7200}{300} \\[1em] \Rightarrow \text{H} = 24 \text{ cm.}

Hence, height to which the liquid rises in the cylindrical vessel is 24 cm.

Question 16

The height of a cone is 40 cm. A small cone is cut off at the top by a plane parallel to its base. If its volume be 164\dfrac{1}{64} of the volume of the given cone, at what height above the base is the section cut?

Answer

Let OAB be the given cone of height 40 cm and base radius R cm. Let this cone be cut by the plane CND (parallel to the base plane AMB) to obtain cone OCD with height h cm and base radius r cm as shown in the figure below :

The height of a cone is 40 cm. A small cone is cut off at the top by a plane parallel to its base. If its volume be of the volume of the given cone, at what height above the base is the section cut? Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

From figure,

∠NOD = ∠MOB (Common angle)

∠OND = ∠OMB = 90° (Heights are perpendicular to radii)

∠ODN = ∠OBM (Corresponding angles since ND || MB)

∴ △OND ~ △OMB (By AA similarity)

We know that,

Ratio of corresponding sides of similar triangle are proportional.

rR=h40\dfrac{\text{r}}{\text{R}} = \dfrac{\text{h}}{40} ...(1)

According to given,

Volume of cone OCD = 164\dfrac{1}{64} Volume of cone OAB

13\dfrac{1}{3} πr2h = 164×13\dfrac{1}{64} \times \dfrac{1}{3} πR2 × 40

Dividing both sides by π and multiplying by 3 we get,

r2h=4064×R2r2R2=58h(rR)2=58h\Rightarrow \text{r}^2 \text{h} = \dfrac{40}{64} \times \text{R}^2 \\[1em] \Rightarrow \dfrac{\text{r}^2}{\text{R}^2} = \dfrac{5}{8 \text{h}} \\[1em] \Rightarrow \Big(\dfrac{\text{r}}{\text{R}}\Big)^2 = \dfrac{5}{8 \text{h}} \\[1em]

Using eq.(1),

(h40)2=58hh21600=58hh3=5×16008h3=5×200h3=1000h=10003h=10 cm.\Rightarrow \Big(\dfrac{\text{h}}{40}\Big)^2 = \dfrac{5}{8 \text{h}} \\[1em] \Rightarrow \dfrac{\text{h}^2}{1600} = \dfrac{5}{8 \text{h}} \\[1em] \Rightarrow \text{h}^3 = \dfrac{5 \times 1600}{8} \\[1em] \Rightarrow \text{h}^3 = 5 \times 200 \\[1em] \Rightarrow \text{h}^3 = 1000 \\[1em] \Rightarrow \text{h} = \sqrt[3]{1000} \\[1em] \Rightarrow \text{h} = 10 \text{ cm.}

The height of the cone OCD = 10 cm

∴ The section is cut at the height of 40 - 10 = 30 cm.

Hence, the section is cut above 30 cm from the base.

Question 17

A hollow metallic cylindrical tube has an internal radius of 3 cm and height 21 cm. The thickness of the metal is 0.5 cm. The tube is melted and cast into a right circular cone of height 7 cm. Find the radius of the cone, correct to one decimal place.

Answer

Internal radius (r) = 3 cm

Height (h) = 21 cm

Thickness = External radius (R) - Internal radius

⇒ 0.5 = External radius - 3 cm

⇒ External radius = 0.5 + 3 = 3.5 cm

Volume of hollow cylinder = π(R2 - r2)h,

Putting values we get,

∴ Volume of metal = π(3.52 - 32) × 21

=227×(12.259)×21=22×3.25×3=214.5 cm3= \dfrac{22}{7} \times (12.25 - 9) \times 21 \\[1em] = 22 \times 3.25 \times 3 \\[1em] = 214.5 \text{ cm}^3

Given the tube is melted and cast into a right circular cone of height (H) 7 cm.

So, the volume of metal and volume of cone will be same.

∴ 214.5 = 13\dfrac{1}{3} πr2H

214.5=13×227×r2×7214.5=13×22×r2r2=214.5×322r2=29.25r=29.25r=5.4 cm.\Rightarrow 214.5 = \dfrac{1}{3} \times \dfrac{22}{7} \times \text{r}^2 \times 7 \\[1em] \Rightarrow 214.5 = \dfrac{1}{3} \times 22 \times \text{r}^2 \\[1em] \Rightarrow \text{r}^2 = \dfrac{214.5 \times 3}{22} \\[1em] \Rightarrow \text{r}^2 = 29.25 \\[1em] \Rightarrow \text{r} = \sqrt{29.25} \\[1em] \Rightarrow \text{r} = 5.4 \text{ cm.}

Hence, radius of the cone is 5.4 cm.

Question 18

From a circular cylinder of diameter 10 cm and height 12 cm, a conical cavity of the same base radius and of the same height is hollowed out. Find the volume and the whole surface of the remaining solid. Leave the answer in π

Answer

Given,

Height of the cylinder (H) = 12 cm

Radius of the base of the cylinder (R) = diameter2=102\dfrac{\text{diameter}}{2} = \dfrac{10}{2} = 5 cm

Height of the cone (h) = 12 cm

Radius of the cone (r) = 5 cm

Volume of the remaining part = Volume of cylinder - Volume of cone

= πR2H - 13\dfrac{1}{3} πr2h

=π×52×12π×13×52×12=π(25×1225×4)=π(300100)=200π cm3= π \times 5^2 \times 12 - π \times \dfrac{1}{3} \times 5^2 \times 12 \\[1em] = π(25 \times 12 - 25 \times 4) \\[1em] = π(300 - 100) \\[1em] = 200 π \text{ cm}^3

∴ The volume of the remaining solid is 200 π cm3.

By formula,

l2 = r2 + h2

⇒ l2 = 52 + 122

⇒ l2 = 25 + 144

⇒ l2 = 169

⇒ l = 169\sqrt{169} = 13 cm

Total surface area of remaining solid = Curved surface area of cylinder + curved surface area of cone + base area of cylinder

= 2πRH + πrl + πR2

= π(2RH + rl + R2)

= π(2 × 5 × 12 + 5 × 13 + 52)

= π(120 + 65 + 25)

= 210 π cm2.

Hence, the volume of the remaining solid is 200 π cm3 and total surface area of remaining solid is 210 π cm2.

Question 19

From a cube of edge 14 cm, a cone of maximum size is carved out. Find the volume of the cone and of the remaining material, each correct to one place of decimal.

Answer

Edge of a cube = 14 cm

Volume = side3 = 143 = 2744 cm3.

Cone of maximum size is carved out as shown in figure,

From a cube of edge 14 cm, a cone of maximum size is carved out. Find the volume of the cone and of the remaining material, each correct to one place of decimal. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Diameter of the cone cut out from it = 14 cm

Radius, r = diameter2=142\dfrac{\text{diameter}}{2} = \dfrac{14}{2} = 7 cm

Height, h = 14 cm

Volume of cone = 13\dfrac{1}{3} πr2h

=13×227×72×14=13×22×49×2=21563=718.67 cm3.= \dfrac{1}{3} \times \dfrac{22}{7} \times 7^2 \times 14 \\[1em] = \dfrac{1}{3} \times 22 \times 49 \times 2 \\[1em] = \dfrac{2156}{3} \\[1em] = 718.67 \text{ cm}^3.

Rounding off to one decimal place = 718.8 cm3

Volume of the remaining material = Volume of the cube - Volume of the cone

= 2744 - 718.67

= 2025.33 cm3

Rounding off to one decimal place = 2025.3 cm3

Hence, the volume of the cone is 718.8 cm3 and of the remaining material is 2025.3 cm3.

Question 20

A cone of maximum volume is carved out of a block of wood of size 20 cm × 10 cm × 10 cm. Find the volume of the cone carved out, correct to one decimal place.

Answer

Volume of block of wood = 20 cm × 10 cm × 10 cm = 2000 cm3

Diameter of the cone for maximum volume = 10 cm

Cone of maximum volume is carved out as shown in figure,

A cone of maximum volume is carved out of a block of wood of size 20 cm × 10 cm × 10 cm. Find the volume of the cone carved out, correct to one decimal place. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Radius, r = diameter2=102\dfrac{\text{diameter}}{2} = \dfrac{10}{2} = 5 cm.

Height of the cone for maximum volume, h = 20 cm

Volume of cone = 13\dfrac{1}{3} πr2h

=13×227×52×20=13×227×25×20=1100021=523.8 cm3.= \dfrac{1}{3} \times \dfrac{22}{7} \times 5^2 \times 20 \\[1em] = \dfrac{1}{3} \times \dfrac{22}{7} \times 25 \times 20 \\[1em] = \dfrac{11000}{21} \\[1em] = 523.8 \text{ cm}^3.

Hence, the volume of the cone carved out is 523.8 cm3.

Question 21

From a solid wooden cylinder of height 28 cm and diameter 6 cm, two conical cavities are hollowed out. The diameters of the cones are also of 6 cm and height 10.5 cm. Find the volume of the remaining solid.

From a solid wooden cylinder of height 28 cm and diameter 6 cm, two conical cavities are hollowed out. The diameters of the cones are also of 6 cm and height 10.5 cm. Find the volume of the remaining solid. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Answer

Given,

Diameter of solid wooden cylinder (D) = 6 cm

Radius of solid wooden cylinder (R) = 62\dfrac{6}{2} = 3 cm

Height of solid wooden cylinder (H) = 28 cm

Diameter of cone (d) = 6 cm

Radius of cone (r) = 62\dfrac{6}{2} = 3 cm

Height of the cone (h) = 10.5 cm

Volume of cylinder = πR2H

=227×32×28=22×9×4=792 cm3.= \dfrac{22}{7} \times 3^2 \times 28 \\[1em] = 22 \times 9 \times 4 \\[1em] = 792 \text{ cm}^3.

Volume of single cone = 13\dfrac{1}{3} πr2h

=13×227×32×10.5=227×9×3.5=6937=99 cm3.= \dfrac{1}{3} \times \dfrac{22}{7} \times 3^2 \times 10.5 \\[1em] = \dfrac{22}{7} \times 9 \times 3.5 \\[1em] = \dfrac{693}{7} \\[1em] = 99 \text{ cm}^3.

Volume of two conical cavities = 2 × 99 = 198 cm3

Volume of remaining solid = Volume of cylinder - Volume of 2 conical cavities

= 792 - 198

= 594 cm3.

Hence, volume of the remaining solid = 594 cm3.

Exercise 21C

Question 1

Find the volume and surface area of a sphere of radius :

(i) 10.5 cm

(ii) 4.2 cm

Answer

(i) Given, r = 10.5 cm

Surface area of sphere = 4πr2

=4×227×10.52=4×227×110.25=97027=1386 cm2.= 4 \times \dfrac{22}{7} \times 10.5^2 \\[1em] = 4 \times \dfrac{22}{7} \times 110.25 \\[1em] = \dfrac{9702}{7} \\[1em] = 1386 \text{ cm}^2.

Volume of sphere = 43\dfrac{4}{3} πr3

=43×227×10.53=43×227×1157.625=10187121=4851 cm3.= \dfrac{4}{3} \times \dfrac{22}{7} \times 10.5^3 \\[1em] = \dfrac{4}{3} \times \dfrac{22}{7} \times 1157.625 \\[1em] = \dfrac{101871}{21} \\[1em] = 4851 \text{ cm}^3.

Hence, volume of the sphere is 4851 cm3 and surface area of a sphere is 1386 cm2.

(ii) Given, r = 4.2 cm

Surface area of sphere = 4πr2

=4×227×4.22=4×227×17.64=1552.327=221.76 cm2.= 4 \times \dfrac{22}{7} \times 4.2^2 \\[1em] = 4 \times \dfrac{22}{7} \times 17.64 \\[1em] = \dfrac{1552.32}{7} \\[1em] = 221.76 \text{ cm}^2.

Volume of sphere = 43\dfrac{4}{3} πr3

=43×227×4.23=43×227×74.088=6519.74421=310.464 cm3.= \dfrac{4}{3} \times \dfrac{22}{7} \times 4.2^3 \\[1em] = \dfrac{4}{3} \times \dfrac{22}{7} \times 74.088 \\[1em] = \dfrac{6519.744}{21} \\[1em] = 310.464 \text{ cm}^3.

Hence, volume of the sphere is 310.464 cm3 and surface area of a sphere is 221.76 cm2.

Question 2

The volume of a sphere is 228 π cm3. Calculate its radius and hence its surface area to nearest cm2.

Answer

Given, volume of a sphere is 228 π cm3.

Let radius be r cm.

Volume of sphere = 43\dfrac{4}{3} πr3

228π=43×π×r3Dividing by π on both sides, we get:228=43×r3r3=228×34r3=6844r3=171r=5.556 cm.\Rightarrow 228 π = \dfrac{4}{3} \times π \times \text{r}^3 \\[1em] \text{Dividing by π on both sides, we get:} \\[1em] \Rightarrow 228 = \dfrac{4}{3} \times \text{r}^3 \\[1em] \Rightarrow \text{r}^3 = \dfrac{228 \times 3}{4} \\[1em] \Rightarrow \text{r}^3 = \dfrac{684}{4} \\[1em] \Rightarrow \text{r}^3 = 171 \\[1em] \Rightarrow \text{r} = 5.55 \approx 6 \text{ cm.}

Surface area of sphere = 4πr2

=4×227×62=4×227×36=31687=452.57453 cm2.= 4 \times \dfrac{22}{7} \times 6^2 \\[1em] = 4 \times \dfrac{22}{7} \times 36 \\[1em] = \dfrac{3168}{7} \\[1em] = 452.57 \approx 453 \text{ cm}^2.

Hence, radius is 6 cm and its surface area is 453 cm2.

Question 3

The curved surface area of a sphere is 2826 cm2. Calculate its radius and hence its volume .

(Take π = 3.14)

Answer

Given, curved surface area of a sphere is 2826 cm2

Curved surface area of sphere = 4πr2

2826=4×3.14×r22826=12.56×r2r2=282612.56r2=225r=225r=15 cm.\Rightarrow 2826 = 4 \times 3.14 \times \text{r}^2 \\[1em] \Rightarrow 2826 = 12.56 \times \text{r}^2 \\[1em] \Rightarrow \text{r}^2 = \dfrac{2826}{12.56} \\[1em] \Rightarrow \text{r}^2 = 225 \\[1em] \Rightarrow \text{r} = \sqrt{225} \\[1em] \Rightarrow \text{r} = 15 \text{ cm.}

Volume of sphere = 43\dfrac{4}{3} πr3

=43×3.14×153=43×3.14×3375=423903=14130 cm3.= \dfrac{4}{3} \times 3.14 \times 15^3 \\[1em] = \dfrac{4}{3} \times 3.14 \times 3375 \\[1em] = \dfrac{42390}{3} \\[1em] = 14130 \text{ cm}^3.

Hence, radius is 15 cm and volume of sphere is 14130 cm3.

Question 4

Find the curved surface area and the total surface area of a hemisphere of diameter 10 cm.

Answer

Given, diameter = 10 cm

Radius, r = diameter2=102\dfrac{\text{diameter}}{2} = \dfrac{10}{2} = 5 cm.

Curved surface area of hemisphere = 2πr2

=2×227×52=2×227×25=11007=157.1 cm2.= 2 \times \dfrac{22}{7} \times 5^2 \\[1em] = 2 \times \dfrac{22}{7} \times 25 \\[1em] = \dfrac{1100}{7} \\[1em] = 157.1 \text{ cm}^2.

Total surface area of hemisphere = 3πr2

=3×227×52=3×227×25=16507=235.71 cm2.= 3 \times \dfrac{22}{7} \times 5^2 \\[1em] = 3 \times \dfrac{22}{7} \times 25 \\[1em] = \dfrac{1650}{7} \\[1em] = 235.71 \text{ cm}^2.

Hence, the curved surface area is 157.1 cm2 and the total surface area is 235.71 cm2.

Question 5

How many bullets can be made out of a cube of lead whose edge measures 22 cm, each bullet being 2 cm in diameter?

Answer

Edge of a cube = 22 cm

Volume of cube = side3 = 223 = 10648 cm3.

Bullets are spherical in shape.

Radius of bullet, r = diameter2=22=1cm.\dfrac{\text{diameter}}{2} = \dfrac{2}{2} = 1 \text{cm.}

Volume of each bullet = 43\dfrac{4}{3} πr3

=43×227×13=8821 cm3.= \dfrac{4}{3} \times \dfrac{22}{7} \times 1^3 \\[1em] = \dfrac{88}{21} \text{ cm}^3.

Let the number of bullets formed be n.

∴ Volume of cube = n × Volume of each bullet

10648=n×8821n=10648×2188n=22360888n=2541\Rightarrow 10648 = \text{n} \times \dfrac{88}{21} \\[1em] \Rightarrow \text{n} = \dfrac{10648 \times 21}{88} \\[1em] \Rightarrow \text{n} = \dfrac{223608}{88} \\[1em] \Rightarrow \text{n} = 2541

Hence, 2541 bullets can be made out of a cube of lead.

Question 6

How many lead shots each 3 mm in diameter can be made from a cuboid of dimensions 9 cm × 11 cm × 12 cm?

Answer

Shots is in the shape of sphere.

(3 mm = 0.3 cm)

Radius of sphere, r = diameter2=0.32=0.15cm.\dfrac{\text{diameter}}{2} = \dfrac{0.3}{2} = 0.15 \text{cm.}

Let the number of sphere formed be n.

Volume of cuboid = n × Volume of each shot

lbh=n×43πr39×11×12=n×43×227×0.1531188=n×43×227×0.0033751188=n×0.29721n=21×11880.297n=249480.297n=84000.\therefore \text{lbh} = \text{n} \times \dfrac{4}{3} π \text{r}^3 \\[1em] \Rightarrow 9 \times 11 \times 12 = \text{n} \times \dfrac{4}{3} \times \dfrac{22}{7} \times 0.15^3 \\[1em] \Rightarrow 1188 = \text{n} \times \dfrac{4}{3} \times \dfrac{22}{7} \times 0.003375 \\[1em] \Rightarrow 1188 = \text{n} \times \dfrac{0.297}{21} \\[1em] \Rightarrow \text{n} = \dfrac{21 \times 1188}{0.297} \\[1em] \Rightarrow \text{n} = \dfrac{24948}{0.297} \\[1em] \Rightarrow \text{n} = 84000.

Hence, there are 84000 lead shots.

Question 7

How many bullets, each of diameter 1.5 cm, can be made by melting a cylinder of lead having radius of the base 5 cm and height 18 cm ?

Answer

Bullet is in shape of sphere.

Radius of bullet, r = diameter2=1.52\dfrac{\text{diameter}}{2} = \dfrac{1.5}{2} = 0.75 cm

Radius of cylinder, R = 5 cm

Height of cylinder, h = 18 cm

Given, bullets are made by melting a cylinder of lead.

∴ Volume of cylinder = n × Volume of each bullet

πR2h=n×43πr3Divide by π on both sides, we get:R2h=n×43r352×18=n×43×0.75325×18=n×43×0.421875450=n×0.5625n=4500.5625n=800.\Rightarrow π \text{R}^2 \text{h} = \text{n} \times \dfrac{4}{3} π \text{r}^3 \\[1em] \text{Divide by π on both sides, we get:} \\[1em] \Rightarrow \text{R}^2 \text{h} = \text{n} \times \dfrac{4}{3} \text{r}^3 \\[1em] \Rightarrow 5^2 \times 18 = \text{n} \times \dfrac{4}{3} \times 0.75^3 \\[1em] \Rightarrow 25 \times 18 = \text{n} \times \dfrac{4}{3} \times 0.421875 \\[1em] \Rightarrow 450 = \text{n} \times 0.5625 \\[1em] \Rightarrow \text{n} = \dfrac{450}{0.5625} \\[1em] \Rightarrow \text{n} = 800.

Hence, 800 bullets are made.

Question 8

How many lead balls, each of radius 1.5 cm can be made by melting a bigger ball of radius 9 cm?

Answer

Given,

Radius of bigger ball, R = 9 cm

Radius of smaller ball, r = 1.5 cm

Let the number of smaller lead balls formed be n.

∴ Volume of big ball = n × Volume of each small ball

43πR3=n×43πr3Dividing both sides by 4π and multiplying by 3, we get :R3=n×r393=n×1.53729=n×3.375n=7293.375n=216.\Rightarrow \dfrac{4}{3}π\text{R}^3 = \text{n} \times \dfrac{4}{3}π\text{r}^3 \\[1em] \text{Dividing both sides by 4π and multiplying by 3, we get :} \\[1em] \Rightarrow \text{R}^3 = \text{n} \times \text{r}^3 \\[1em] \Rightarrow 9^3 = \text{n} \times 1.5^3 \\[1em] \Rightarrow 729 = \text{n} \times 3.375 \\[1em] \Rightarrow \text{n} = \dfrac{729}{3.375} \\[1em] \Rightarrow \text{n} = 216.

Hence, 216 lead balls can be made.

Question 9

A metallic sphere of radius 10.5 cm is melted and then recast into small cones, each of radius 3.5 cm and height 3 cm. Find the number of cones thus obtained.

Answer

Radius of sphere, r = 10.5 cm

Let the number of cones formed by recasting metallic sphere be n.

Radius of cone, R = 3.5 cm

Height, h = 3 cm

Volume of sphere = n × Volume of each cone

43πr3=n×13πR2hDividing both sides by π and multiplying by 3, we get :4r3=n×R2h4×10.53=n×3.52×34×1157.625=n×12.25×34630.5=n×36.75n=4630.536.75n=126.\Rightarrow \dfrac{4}{3}π\text{r}^3 = \text{n} \times \dfrac{1}{3}π\text{R}^2 \text{h} \\[1em] \text{Dividing both sides by π and multiplying by 3, we get :} \\[1em] \Rightarrow 4\text{r}^3 = \text{n} \times \text{R}^2 \text{h} \\[1em] \Rightarrow 4 \times 10.5^3 = \text{n} \times 3.5^2 \times 3 \\[1em] \Rightarrow 4 \times 1157.625 = \text{n} \times 12.25 \times 3 \\[1em] \Rightarrow 4630.5 = \text{n} \times 36.75 \\[1em] \Rightarrow \text{n} = \dfrac{4630.5}{36.75} \\[1em] \Rightarrow \text{n} = 126.

Hence, the number of cones obtained is 126.

Question 10

The surface area of a solid metallic sphere is 616 cm2 . It is melted and recast into smaller spheres of diameter 3.5 cm. How many such spheres can be obtained?

Answer

Surface area of a metallic sphere = 616 cm2

Let the radius of this sphere be R cm.

∴ 4πR2 = 616

4×227×R2=616887×R2=616R2=616×788R2=431288R2=49R=49R=7 cm.\Rightarrow 4 \times \dfrac{22}{7} \times \text{R}^2 = 616 \\[1em] \Rightarrow \dfrac{88}{7} \times \text{R}^2 = 616 \\[1em] \Rightarrow \text{R}^2 = \dfrac{616 \times 7}{88} \\[1em] \Rightarrow \text{R}^2 = \dfrac{4312}{88} \\[1em] \Rightarrow \text{R}^2 = 49 \\[1em] \Rightarrow \text{R} = \sqrt{49} \\[1em] \Rightarrow \text{R} = 7 \text{ cm.}

Given,

Big sphere is melted and recast into smaller spheres of diameter 3.5 cm.

Radius, r = diameter2=3.52\dfrac{\text{diameter}}{2} = \dfrac{3.5}{2} = 1.75 cm

Let the number of smaller spheres formed be n.

Volume of big sphere = n × Volume of each small sphere

43πR3=n×43πr3Dividing both sides by 4π and multiplying by 3, we get :R3=n×r373=n×1.753343=n×5.359375n=3435.359375n=64.\Rightarrow \dfrac{4}{3}π\text{R}^3 = \text{n} \times \dfrac{4}{3}π\text{r}^3 \\[1em] \text{Dividing both sides by 4π and multiplying by 3, we get :} \\[1em] \Rightarrow \text{R}^3 = \text{n} \times \text{r}^3 \\[1em] \Rightarrow 7^3 = \text{n} \times 1.75^3 \\[1em] \Rightarrow 343 = \text{n} \times 5.359375 \\[1em] \Rightarrow \text{n} = \dfrac{343}{5.359375} \\[1em] \Rightarrow \text{n} = 64.

Hence, 64 small spheres can be formed.

Question 11

A copper sphere having a radius of 6 cm is melted and then drawn into a cylindrical wire of radius 2 mm. Calculate the length of the wire.

Answer

Let the length of the wire be h cm

Radius of the sphere, R = 6 cm

Radius of the wire, r = 2 mm = 0.2 cm

Given, copper sphere is melted into wire.

∴ Volume of the wire = Volume of the sphere

πr2h=43πR3r2h=43R30.22×h=43×630.04×h=43×216h=4×2163×0.04h=8640.12h=7200 cm.h=72 m.\Rightarrow π\text{r}^2 \text{h} = \dfrac{4}{3}π\text{R}^3 \\[1em] \Rightarrow \text{r}^2 \text{h} = \dfrac{4}{3}\text{R}^3 \\[1em] \Rightarrow 0.2^2 \times \text{h} = \dfrac{4}{3} \times 6^3 \\[1em] \Rightarrow 0.04 \times \text{h} = \dfrac{4}{3} \times 216 \\[1em] \Rightarrow \text{h} = \dfrac{4 \times 216}{3 \times 0.04} \\[1em] \Rightarrow \text{h} = \dfrac{864}{0.12} \\[1em] \Rightarrow \text{h} = 7200 \text{ cm.} \\[1em] \Rightarrow \text{h} = 72 \text{ m}.

Hence, the length of the wire is 72 m.

Question 12

A hemisphere of lead of radius 12 cm is melted and cast into a right circular cone of height 54 cm. Find the radius of the base of the cone.

Answer

Radius of hemisphere, r = 12 cm

Volume of hemisphere = 23πr3\dfrac{2}{3}π\text{r}^3

Radius of the cone = R cm

Height of the cone, h = 54 cm

Volume of cone = 13πR2h\dfrac{1}{3}π\text{R}^2 \text{h}

Since, hemisphere is melted and recasted into a cone, the volume remains the same.

13πR2h=23πr313R2h=23r3R2=2×33×h×r3R2=2×33×54×123R2=6162×1728R2=10368162R2=64R=64R=8 cm.\therefore \dfrac{1}{3}π\text{R}^2 \text{h} = \dfrac{2}{3}π\text{r}^3 \\[1em] \Rightarrow \dfrac{1}{3}\text{R}^2 \text{h} = \dfrac{2}{3}\text{r}^3 \\[1em] \Rightarrow \text{R}^2 = \dfrac{2 \times 3}{3 \times \text{h}} \times \text{r}^3 \\[1em] \Rightarrow \text{R}^2 = \dfrac{2 \times 3}{3 \times 54} \times 12^3 \\[1em] \Rightarrow \text{R}^2 = \dfrac{6}{162} \times 1728 \\[1em] \Rightarrow \text{R}^2 = \dfrac{10368}{162} \\[1em] \Rightarrow \text{R}^2 = 64 \\[1em] \Rightarrow \text{R} = \sqrt{64} \\[1em] \Rightarrow \text{R} = 8 \text{ cm.}

Hence, the radius of the base of the cone is 8 cm.

Question 13

A spherical metallic ball of radius 3 cm is melted and recast into three spherical balls. The radii of two of these balls are 2.5 cm 2 cm respectively. Find the radius of the third ball.

Answer

Radius of larger spherical metallic ball, R = 3 cm

Radius of smaller spherical balls are 2.5 cm, 2 cm and r cm

Given,

A spherical metallic ball of radius 3 cm is melted and recast into three spherical balls.

∴ Volume of larger spherical ball = Volume of ball of radius 2.5 cm + Volume of ball of radius 2 cm + Volume of ball of radius r cm

43πR3=43π×2.53+43π×23+43πr343πR3=43π(2.53+23+r3)R3=(2.53+23+r3)33=15.625+8+r3r3=2715.6258r3=3.375r=3.3753r=1.5 cm.\Rightarrow \dfrac{4}{3}π\text{R}^3 = \dfrac{4}{3}π \times 2.5^3 + \dfrac{4}{3}π \times 2^3 + \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \dfrac{4}{3}π\text{R}^3 = \dfrac{4}{3}π(2.5^3 + 2^3 + \text{r}^3) \\[1em] \Rightarrow \text{R}^3 = (2.5^3 + 2^3 + \text{r}^3) \\[1em] \Rightarrow 3^3 = 15.625 + 8 + \text{r}^3 \\[1em] \Rightarrow \text{r}^3 = 27 - 15.625 - 8 \\[1em] \Rightarrow \text{r}^3 = 3.375 \\[1em] \Rightarrow \text{r} = \sqrt[3]{3.375} \\[1em] \Rightarrow \text{r} = 1.5 \text{ cm.}

Hence, the radius of the third ball is 1.5 cm.

Question 14

A solid metallic sphere of radius 6 cm is melted and made into a solid cylinder of height 32 cm. Find the:

(i) radius of the cylinder

(ii) curved surface area of the cylinder

(Take π = 3.1)

Answer

(i) Radius of the metallic sphere, R = 6 cm

Height of the cylinder, h = 32 cm

Volume of cylinder = Volume of metallic sphere (As sphere is melted and formed into a cylinder)

πr2h=43πR3r2=43×R3hr2=43×6332r2=43×21632r2=86496r2=9r=9r=3 cm.\therefore π\text{r}^2\text{h} = \dfrac{4}{3}π\text{R}^3 \\[1em] \Rightarrow \text{r}^2 = \dfrac{4}{3} \times \dfrac{\text{R}^3}{\text{h}} \\[1em] \Rightarrow \text{r}^2 = \dfrac{4}{3} \times \dfrac{6^3}{32} \\[1em] \Rightarrow \text{r}^2 = \dfrac{4}{3} \times \dfrac{216}{32} \\[1em] \Rightarrow \text{r}^2 = \dfrac{864}{96} \\[1em] \Rightarrow \text{r}^2 = 9 \\[1em] \Rightarrow \text{r} = \sqrt{9} \\[1em] \Rightarrow \text{r} = 3 \text{ cm.}

Hence, radius of the cylinder is 3 cm.

(ii) Curved surface area of cylinder = 2πrh

= 2 × 3.1 × 3 × 32

= 595.2 cm2

Hence, curved surface area of the cylinder is 595.2 cm2.

Question 15

A hemispherical bowl of internal diameter 36 cm contains water. This water is to be filled in cylindrical bottles, each of radius 3 cm and height 6 cm. How many bottles are required to empty the bowl?

Answer

Given,

Internal radius of hemispherical bowl, R = diameter2=362\dfrac{\text{diameter}}{2} = \dfrac{36}{2} = 18 cm

Radius of cylindrical bottles, r = 3 cm

Height of the cylindrical bottles, h = 6 cm

Let number of cylindrical bottles needed be n.

∴ Volume of hemispherical bowl = n × Volume of each cylindrical bottle

23πR3=n×πr2h23R3=n×r2h23×183=n×32×623×5832=n×9×6116643=n×54n=116643×54n=11664162n=72\Rightarrow \dfrac{2}{3}π\text{R}^3 = \text{n} \times π\text{r}^2\text{h} \\[1em] \Rightarrow \dfrac{2}{3}\text{R}^3 = \text{n} \times \text{r}^2\text{h} \\[1em] \Rightarrow \dfrac{2}{3} \times 18^3 = \text{n} \times 3^2 \times 6 \\[1em] \Rightarrow \dfrac{2}{3} \times 5832 = \text{n} \times 9 \times 6 \\[1em] \Rightarrow \dfrac{11664}{3} = \text{n} \times 54 \\[1em] \Rightarrow \text{n} = \dfrac{11664}{3 \times 54} \\[1em] \Rightarrow \text{n} = \dfrac{11664}{162} \\[1em] \Rightarrow \text{n} = 72

Hence, 72 bottles are required to empty the bowl.

Question 16

A cylindrical vessel 60 cm in diameter is partially filled with water. A sphere of diameter 36 cm is dropped into it and is fully submerged in water. Find the increase in the level of water in the vessel.

Answer

Radius of the sphere, r = diameter2=362\dfrac{\text{diameter}}{2} = \dfrac{36}{2} = 18 cm

Radius of cylinder, R = diameter2=602\dfrac{\text{diameter}}{2} = \dfrac{60}{2} = 30 cm

Let height of water raised be h cm.

Volume of water rise in cylinder = Volume of sphere

πR2h=43πr3R2h=43r3h=43×r3R2h=43×183302h=43×5832900h=233282700h=8.64 cm.\Rightarrow π\text{R}^2\text{h} = \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \text{R}^2\text{h} = \dfrac{4}{3}\text{r}^3 \\[1em] \Rightarrow \text{h} = \dfrac{4}{3} \times \dfrac{\text{r}^3}{\text{R}^2} \\[1em] \Rightarrow \text{h} = \dfrac{4}{3} \times \dfrac{18^3}{30^2} \\[1em] \Rightarrow \text{h} = \dfrac{4}{3} \times \dfrac{5832}{900} \\[1em] \Rightarrow \text{h} = \dfrac{23328}{2700} \\[1em] \Rightarrow \text{h} = 8.64 \text{ cm.}

Hence, the height by which water level raised is 8.64 cm.

Question 17

There is water to a height of 16 cm in a cylindrical glass jar of radius 12.5 cm. Inside the water, there is a sphere of diameter 15 cm, completely immersed. By what height will water go down, when the sphere is removed?

Answer

Given, radius of glass jar, R = 12.5 cm

Diameter of sphere = 15 cm

Radius of sphere, r = diameter2=152\dfrac{\text{diameter}}{2} = \dfrac{15}{2} = 7.5 cm

When the sphere is removed from the jar, volume of water decreases.

Let h be the height by which water level decrease.

Volume of water decreased = Volume of sphere

πR2h=43πr3R2h=43r3h=43×r3R2h=43×7.5312.52h=43×421.875156.25h=1687.5468.75h=3.6 cm.\Rightarrow π\text{R}^2\text{h} = \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \text{R}^2\text{h} = \dfrac{4}{3}\text{r}^3 \\[1em] \Rightarrow \text{h} = \dfrac{4}{3} \times \dfrac{\text{r}^3}{\text{R}^2} \\[1em] \Rightarrow \text{h} = \dfrac{4}{3} \times \dfrac{7.5^3}{12.5^2} \\[1em] \Rightarrow \text{h} = \dfrac{4}{3} \times \dfrac{421.875}{156.25} \\[1em] \Rightarrow \text{h} = \dfrac{1687.5}{468.75} \\[1em] \Rightarrow \text{h} = 3.6 \text{ cm.}

Hence, the height by which water level decrease is 3.6 cm.

Question 18

A cylindrical tub of radius 12 cm contains water upto a depth of 20 cm. A spherical iron ball is dropped into the tub and is fully immersed in it. Thus, the level of water is raised by 6.75 cm. Find the radius of the ball.

Answer

Let the radius of the sphere be r cm.

Radius of cylinder, R = 12 cm

SInce, a spherical iron ball is dropped into the tub and is fully immersed in it.

Height of water raised by 6.75 cm.

∴ h = 6.75 cm.

Volume of water rise in cylinder = Volume of sphere

πR2h=43πr3R2h=43r3r3=34×R2×hr3=34×122×6.75r3=34×144×6.75r3=29164r3=729r=7293r=9 cm.\Rightarrow π\text{R}^2\text{h} = \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \text{R}^2\text{h} = \dfrac{4}{3}\text{r}^3 \\[1em] \Rightarrow \text{r}^3 = \dfrac{3}{4} \times \text{R}^2 \times \text{h} \\[1em] \Rightarrow \text{r}^3 = \dfrac{3}{4} \times 12^2 \times 6.75 \\[1em] \Rightarrow \text{r}^3 = \dfrac{3}{4} \times 144 \times 6.75 \\[1em] \Rightarrow \text{r}^3 = \dfrac{2916}{4} \\[1em] \Rightarrow \text{r}^3 = 729 \\[1em] \Rightarrow \text{r} = \sqrt[3]{729} \\[1em] \Rightarrow \text{r} = 9 \text{ cm.}

Hence, the radius of the ball is 9 cm.

Question 19

Some lead spheres, each of diameter 6 cm, are dropped into a beaker containing some water and are fully submerged. The diameter of the beaker is 18 cm. Calculate, the number of lead spheres dropped into it, if the water level rises by 40 cm.

Answer

Given,

Diameter of lead spheres = 6 cm

Radius, r = diameter2=62\dfrac{\text{diameter}}{2} = \dfrac{6}{2} = 3 cm

Diameter of beaker = 18 cm

Radius of beaker, R = diameter2=182\dfrac{\text{diameter}}{2} = \dfrac{18}{2} = 9 cm

Increase in water level, h = 40 cm

Let n spheres are dropped.

∴ Volume of water increased in beaker = n × Volume of one sphere

πR2h=n×43πr3Divide by π on both sides, we get:R2h=n×43r392×40=n×43×3381×40=n×43×273240=n×36n=324036n=90.\Rightarrow π\text{R}^2 \text{h} = \text{n} \times \dfrac{4}{3} π\text{r}^3 \\[1em] \text{Divide by π on both sides, we get:} \Rightarrow \text{R}^2 \text{h} = \text{n} \times \dfrac{4}{3} \text{r}^3 \\[1em] \Rightarrow 9^2 \times 40 = \text{n} \times \dfrac{4}{3} \times 3^3 \\[1em] \Rightarrow 81 \times 40 = \text{n} \times \dfrac{4}{3} \times 27 \\[1em] \Rightarrow 3240 = \text{n} \times 36 \\[1em] \Rightarrow \text{n} = \dfrac{3240}{36} \\[1em] \Rightarrow \text{n} = 90.

Hence, the number of lead spheres dropped into the beaker are 90.

Question 20

A vessel is in the form of an inverted cone. Its height is 11 cm and the radius of its top which is open, is 2.5 cm. It is filled with water upto the rim. When lead shots, each of which is a sphere of radius 0.25 cm are dropped into the vessel, 25\dfrac{2}{5} of the water flows out. Find the number of lead shots dropped into the vessel.

Answer

Radius of the top of the inverted cone, R = 2.5 cm

Height of the cone, H = 11 cm

Radius of lead shot, r = 0.25 cm

When lead shots are dropped into vessel, 25\dfrac{2}{5} of water flows out.

∴ Volume of water flown out = 25\dfrac{2}{5} Volume of cone.

=25×13πR2H=215×π×2.52×11=215×π×6.25×11=137.515π= \dfrac{2}{5} \times \dfrac{1}{3}π\text{R}^2 \text{H} \\[1em] = \dfrac{2}{15} \times π\times 2.5^2 \times 11 \\[1em] = \dfrac{2}{15} \times π\times 6.25 \times 11 \\[1em] = \dfrac{137.5}{15} π

Let the number of spheres be n.

∴ Volume of water flown out = n × Volume of each lead shot

137.515π=n×43×πr3Divide by π on both sides, we get:137.515=n×43×0.253137.515=n×43×0.015625137.515=n×0.06253n=137.5×30.0625×15n=412.50.9375n=440.\Rightarrow \dfrac{137.5}{15} π = \text{n} \times \dfrac{4}{3} \times π\text{r}^3 \\[1em] \text{Divide by π on both sides, we get:} \Rightarrow \dfrac{137.5}{15} = \text{n} \times \dfrac{4}{3} \times 0.25^3 \\[1em] \Rightarrow \dfrac{137.5}{15} = \text{n} \times \dfrac{4}{3} \times 0.015625 \\[1em] \Rightarrow \dfrac{137.5}{15} = \text{n} \times \dfrac{0.0625}{3} \\[1em] \Rightarrow \text{n} = \dfrac{137.5 \times 3}{0.0625 \times 15} \\[1em] \Rightarrow \text{n} = \dfrac{412.5}{0.9375} \\[1em] \Rightarrow \text{n} = 440.

Hence, the number of lead shots are 440.

Question 21

A spherical shell of lead whose external and internal diameters are 24 cm and 18 cm, is melted and recast into a right circular cylinder 37 cm high. Find the diameter of the base of the cylinder.

Answer

Given,

Height of the solid right circular cylinder, h = 37 cm

Internal radius of metallic spherical shell, r = diameter2=182\dfrac{\text{diameter}}{2} = \dfrac{18}{2} = 9 cm

External radius of metallic spherical shell, R = diameter2=242\dfrac{\text{diameter}}{2} = \dfrac{24}{2} = 12 cm

Let the radius of cylinder be a cm.

As, metallic spherical shell is recasted into right circular cylinder.

∴ Volume of spherical shell = Volume of cylinder

43π(R3r3)=πa2hDivide by π on both sides, we get:43(R3r3)=a2h43×(12393)=a2×3743×(1728729)=a2×3743×999=a2×37a2=4×9993×37a2=3996111a2=36a=36a=6 cm.\Rightarrow \dfrac{4}{3} π(\text{R}^3 - \text{r}^3) = π\text{a}^2\text{h} \\[1em] \text{Divide by π on both sides, we get:} \Rightarrow \dfrac{4}{3} (\text{R}^3 - \text{r}^3) = \text{a}^2\text{h} \\[1em] \Rightarrow \dfrac{4}{3} \times (12^3 - 9^3) = \text{a}^2 \times 37 \\[1em] \Rightarrow \dfrac{4}{3} \times (1728 - 729) = \text{a}^2 \times 37 \\[1em] \Rightarrow \dfrac{4}{3} \times 999 = \text{a}^2 \times 37 \\[1em] \Rightarrow \text{a}^2 = \dfrac{4 \times 999}{3 \times 37} \\[1em] \Rightarrow \text{a}^2 = \dfrac{3996}{111} \\[1em] \Rightarrow \text{a}^2 = 36 \\[1em] \Rightarrow \text{a} = \sqrt{36} \\[1em] \Rightarrow \text{a} = 6 \text{ cm.}

Diameter = 2a = 2 × 6 = 12 cm.

Hence, diameter of the base of the cylinder is 12 cm.

Question 22

A solid wooden toy is in the form of a cone mounted on a hemisphere. The radii of the hemisphere and the base of the cone are 4.2 cm each and the total height of the toy is 10.2 cm. Calculate :

(i) the volume of wood used in the toy

(ii) the total surface area of the toy, correct to two places of decimal.

A solid wooden toy is in the form of a cone mounted on a hemisphere. The radii of the hemisphere and the base of the cone are 4.2 cm each and the total height of the toy is 10.2 cm. Calculate. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Answer

Given,

The solid wooden toy is in the shape of a right circular cone mounted on a hemisphere.

Radius of hemisphere, r = 4.2 cm

Total height, h = 10.2 cm

Height of conical part, H = 10.2 - 4.2 = 6 cm

(i) Volume of wood used in toy = Volume of cone + Volume of hemisphere

=13πr2H+23πr3=13×227×4.22×6+23×227×4.23=13×227×17.64×6+23×227×74.088=2328.4821+3259.87221=5588.35221=266.11cm3= \dfrac{1}{3} π\text{r}^2\text{H} + \dfrac{2}{3} π\text{r}^3 \\[1em] = \dfrac{1}{3} \times \dfrac{22}{7} \times 4.2^2 \times 6 + \dfrac{2}{3} \times \dfrac{22}{7} \times 4.2^3 \\[1em] = \dfrac{1}{3} \times \dfrac{22}{7} \times 17.64 \times 6 + \dfrac{2}{3} \times \dfrac{22}{7} \times 74.088 \\[1em] = \dfrac{2328.48}{21} + \dfrac{3259.872}{21} \\[1em] = \dfrac{5588.352}{21} \\[1em] = 266.11 \text{cm}^3

Hence, the volume of wood used in the toy is 266.11 cm3.

(ii) By formula,

l2 = r2 + h2

⇒ l2 = 4.22 + 62

⇒ l2 = 17.64 + 36

⇒ l2 = 53.64

⇒ l = 53.64\sqrt{53.64} = 7.32 cm

Total surface area of toy = Curved surface area of cone + curved surface area of hemisphere

=πrl+2πr2=227×4.2×7.32+2×227×4.22=676.3687+2×227×17.64=676.3687+776.167=676.368+776.167=1452.5287=207.56cm2= π\text{rl} + 2π\text{r}^2 \\[1em] = \dfrac{22}{7} \times 4.2 \times 7.32 + 2 \times \dfrac{22}{7} \times 4.2^2 \\[1em] = \dfrac{676.368}{7} + 2 \times \dfrac{22}{7} \times 17.64 \\[1em] = \dfrac{676.368}{7} + \dfrac{776.16}{7} \\[1em] = \dfrac{676.368 + 776.16}{7} \\[1em] = \dfrac{1452.528}{7} \\[1em] = 207.56 \text{cm}^2

Hence, the total surface area of the toy is 207.56 cm2.

Question 23

In the given figure, a metal container is in the form of a cylinder surmounted by a hemisphere. The internal height of the cylinder is 7 m and the internal radius is 3.5 m. Calculate:

(i) the total area of the internal surface, excluding the base.

(ii) the internal volume of the container in m3.

Draw a ΔABC in which BC = 5.6 cm, ∠B = 45° and the median AD from A to BC is 4.5 cm. Inscribe a circle in it. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Answer

Given,

Radius of cylindrical portion = Radius of hemispherical portion = r = 3.5 m

Height of cylinder, h = 7 m

(i) Area of internal surface = Surface area of cylinder + Surface area of hemisphere

= 2πrh + 2πr2

= 2πr(h + r)

= 2 × 227\dfrac{22}{7} × 3.5(7 + 3.5)

= 2 × 227\dfrac{22}{7} × 36.75

= 2 × 22 × 5.25

= 231 m2

Hence, the total area of the internal surface, excluding the base is 231 m2.

(ii) Internal volume of container = Volume of hemisphere + Volume of cylinder

=23πr3+πr2h=23×227×3.53+227×3.52×7=23×227×42.875+227×12.25×7=23×22×6.125+269.5=89.83+269.5=359.33=35913m3= \dfrac{2}{3} π\text{r}^3 + π\text{r}^2\text{h} \\[1em] = \dfrac{2}{3} \times \dfrac{22}{7} \times 3.5^3 + \dfrac{22}{7} \times 3.5^2 \times 7 \\[1em] = \dfrac{2}{3} \times \dfrac{22}{7} \times 42.875 + \dfrac{22}{7} \times 12.25 \times 7 \\[1em] = \dfrac{2}{3} \times 22 \times 6.125 + 269.5 \\[1em] = 89.83 + 269.5 \\[1em] = 359.33 \\[1em] = 359 \dfrac{1}{3} \text{m}^3

Hence, the volume of container is 359.33 m3.

Question 24

The adjoining figure represents a solid consisting of a cylinder surmounted by a cone at one end and a hemisphere at the other end. Given that, common radius = 3.5 cm, the height of the cylinder = 6.5 cm and the total height = 12.8 cm, calculate the volume of the solid, correct to the nearest integer.

The adjoining figure represents a solid consisting of a cylinder surmounted by a cone at one end and a hemisphere at the other end. Given that, common radius = 3.5 cm, the height of the cylinder = 6.5 cm and the total height = 12.8 cm, calculate the volume of the solid, correct to the nearest integer. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Answer

Given, common radius, r = 3.5 cm

Height of cylinder, H = 6.5 cm

Height of hemisphere = radius of hemisphere = 3.5 cm

Height of cone, h = Total height of the solid - height of cylinder - height of hemisphere = 12.8 - 6.5 - 3.5 = 2.8 cm

Volume of solid = Volume of cone + Volume of cylinder + Volume of hemisphere

=13πr2h+πr2H+23πr3=πr2(13h+H+23r)=227×(3.5)2×(13×2.8+6.5+23×3.5)=227×12.25×(2.83+6.5+73)=22×1.75×(2.8+19.5+73)=38.5×29.33=1128.053=376.02376 cm3.= \dfrac{1}{3} π\text{r}^2\text{h} + π\text{r}^2\text{H} + \dfrac{2}{3} π\text{r}^3 \\[1em] = π\text{r}^2 \Big(\dfrac{1}{3} \text{h} + \text{H} + \dfrac{2}{3} \text{r}\Big) \\[1em] = \dfrac{22}{7} \times (3.5)^2 \times \Big(\dfrac{1}{3} \times 2.8 + 6.5 + \dfrac{2}{3} \times 3.5 \Big) \\[1em] = \dfrac{22}{7} \times 12.25 \times \Big(\dfrac{2.8}{3} + 6.5 + \dfrac{7}{3} \Big) \\[1em] = 22 \times 1.75 \times \Big(\dfrac{2.8 + 19.5 + 7}{3} \Big) \\[1em] = 38.5 \times \dfrac{29.3}{3} \\[1em] = \dfrac{1128.05}{3} \\[1em] = 376.02 \approx 376 \text{ cm}^3.

Hence, volume of solid is 376 cm3.

Question 25

The adjoining figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. Their common radius is 7 cm. The height of the cylinder and cone each is 4 cm. Find the volume of the solid.

The adjoining figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. Their common radius is 7 cm. The height of the cylinder and cone each is 4 cm. Find the volume of the solid. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Answer

Given, common radius, r = 7 cm

Height of cone, h = 4 cm

Height of cylinder, H = 4 cm

Volume of solid = Volume of cone + Volume of cylinder + Volume of hemisphere

=13πr2h+πr2H+23πr3=πr2(13h+H+23r)=227×72(13×4+4+23×7)=227×49(43+4+143)=22×7(4+12+143)=154×303=154×10=1540 cm3.= \dfrac{1}{3} π\text{r}^2\text{h} + π\text{r}^2\text{H} + \dfrac{2}{3} π\text{r}^3 \\[1em] = π\text{r}^2 \Big(\dfrac{1}{3} \text{h} + \text{H} + \dfrac{2}{3} \text{r}\Big) \\[1em] = \dfrac{22}{7} \times 7^2 \Big(\dfrac{1}{3} \times 4 + 4 + \dfrac{2}{3} \times 7 \Big) \\[1em] = \dfrac{22}{7} \times 49 \Big(\dfrac{4}{3} + 4 + \dfrac{14}{3} \Big) \\[1em] = 22 \times 7 \Big(\dfrac{4 + 12 + 14}{3} \Big) \\[1em] = 154 \times \dfrac{30}{3} \\[1em] = 154 \times 10 \\[1em] = 1540 \text{ cm}^3.

Hence, volume of solid is 1540 cm3.

Question 26

A solid is in the shape of a hemisphere of radius 7 cm, surmounted by a cone of height 4 cm. The solid is immersed completely in a cylindrical container filled with water to a certain height. If the radius of the cylinder is 14 cm, find the rise in the water.

A solid is in the shape of a hemisphere of radius 7 cm, surmounted by a cone of height 4 cm. The solid is immersed completely in a cylindrical container filled with water to a certain height. If the radius of the cylinder is 14 cm, find the rise in the water. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Answer

Radius of hemisphere, r = 7 cm

Height of cone, h = 4 cm

Radius of cylinder, R = 14 cm

Let the rise in water level be x cm.

∴ Volume of water that rises by x cm in the cylindrical container = Volume of hemisphere submerged + Volume of cone submerged

πR2x=23πr3+13πr2hR2x=13(2r3+r2h)3×142x=2×73+72×43×196x=2×343+49×4588x=686+196588x=882x=882588x=1.5 cm.\Rightarrow π\text{R}^2\text{x} = \dfrac{2}{3} π\text{r}^3 + \dfrac{1}{3} π\text{r}^2\text{h} \\[1em] \Rightarrow \text{R}^2\text{x} = \dfrac{1}{3} (2\text{r}^3 + \text{r}^2\text{h}) \\[1em] \Rightarrow 3 \times 14^2\text{x} = 2 \times 7^3 + 7^2 \times 4 \\[1em] \Rightarrow 3 \times 196 \text{x} = 2 \times 343 + 49 \times 4 \\[1em] \Rightarrow 588 \text{x} = 686 + 196 \\[1em] \Rightarrow 588 \text{x} = 882 \\[1em] \Rightarrow \text{x} = \dfrac{882}{588} \\[1em] \Rightarrow \text{x} = 1.5 \text{ cm.}

Hence, rise in water level is 1.5 cm.

Question 27

A solid is in the form of a cylinder with hemispherical ends. The total height of the solid is 19 cm and the diameter of the cylinder is 7 cm. Find the volume and the surface area of the solid.

Answer

A solid is in the form of a cylinder with hemispherical ends. The total height of the solid is 19 cm and the diameter of the cylinder is 7 cm. Find the volume and the surface area of the solid. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

From figure,

Radius of cylinder = Radius of hemisphere = r = diameter2=72\dfrac{\text{diameter}}{2} = \dfrac{7}{2} = 3.5 cm

Height of cylinder, h = Total height - (2 × Radius of hemisphere)

= 19 - 2 × 3.5

= 19 - 7

= 12 cm.

Total volume of solid = 2 × Volume of hemisphere + Volume of cylinder

=2×23πr3+πr2h=πr2(43r+h)=227×3.52(43×3.5+12)=227×12.25(143+12)=269.57×14+363=269.57×503=1347521=19253=641.67 cm3.= 2 \times \dfrac{2}{3} π\text{r}^3 + π\text{r}^2\text{h} \\[1em] = π\text{r}^2 (\dfrac{4}{3} \text{r} + \text{h}) \\[1em] = \dfrac{22}{7} \times 3.5^2 (\dfrac{4}{3} \times 3.5 + 12) \\[1em] = \dfrac{22}{7} \times 12.25 (\dfrac{14}{3} + 12) \\[1em] = \dfrac{269.5}{7} \times \dfrac{14 + 36}{3} \\[1em] = \dfrac{269.5}{7} \times \dfrac{50}{3} \\[1em] = \dfrac{13475}{21} \\[1em] = \dfrac{1925}{3} \\[1em] = 641.67 \text{ cm}^3.

Surface area of solid = 2 × 2πr2 + 2πrh

= πr(4r + 2h)

=227×3.5(4×3.5+2×12)=22×0.5(14+24)=11×38=418 cm2.= \dfrac{22}{7} \times 3.5 (4 \times 3.5 + 2 \times 12) \\[1em] = 22 \times 0.5 (14 + 24) \\[1em] = 11 \times 38 \\[1em] = 418 \text{ cm}^2.

Hence, the volume of solid is 64123641\dfrac{2}{3} cm3 and surface area of solid is 418 cm2.

Question 28

A hemispherical and a conical hole is scooped out of a solid wooden cylinder. Find the volume of the remaining solid where the measurements are as follows :

The height of the solid cylinder is 7 cm, radius of each of hemisphere, cone and cylinder is 3 cm. Height of cone is 3 cm. Give your answer correct to the nearest whole number.

A hemispherical and a conical hole is scooped out of a solid wooden cylinder. Find the volume of the remaining solid where the measurements are as follows. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Answer

Given,

Radius, r = 3 cm

Height of cone, h = 3 cm

Height of cylinder, H = 7 cm

From figure,

Volume of remaining solid = Volume of cylinder - Volume of cone - Volume of hemisphere

∴ Volume of remaining solid = πr2H - 13\dfrac{1}{3} πr2h - 23\dfrac{2}{3} πr3

=πr2(H13h23r)=227×32(713×323×3)=227×9(712)=227×9×4=7927=113.14113 cm3.= π\text{r}^2(\text{H} - \dfrac{1}{3}\text{h} - \dfrac{2}{3} \text{r}) \\[1em] = \dfrac{22}{7} \times 3^2(7 - \dfrac{1}{3} \times 3 - \dfrac{2}{3} \times 3) \\[1em] = \dfrac{22}{7} \times 9(7 - 1 - 2) \\[1em] = \dfrac{22}{7} \times 9 \times 4 \\[1em] = \dfrac{792}{7} \\[1em] = 113.14 \approx 113 \text{ cm}^3.

Hence, the volume of the remaining solid is 113 cm3.

Question 29

A cylinder, a hemisphere and a cone have equal base diameters and have the same height. Prove that their volumes are in the ratio 3 : 2 : 1.

Answer

Let the common radius of shapes be r and height be h.

Ratio of their volumes = Volume of cylinder : Volume of hemisphere : Volume of cone

Since, a cylinder, a hemisphere and a cone have equal base diameters and have the same height.

⇒ They share a same radius r.

For hemisphere, the height is the distance from the centre of its base to its heighest point, which is equal to the radius.

⇒ h = r

=πr2h:23πr3:13πr2h=πr2h:23πr2r:13πr2h=πr2h:23πr2h:13πr2h=1:23:13= π\text{r}^2\text{h} : \dfrac{2}{3} π\text{r}^3 : \dfrac{1}{3} π\text{r}^2\text{h} \\[1em] = π\text{r}^2\text{h} : \dfrac{2}{3} π\text{r}^2 \text{r} : \dfrac{1}{3} π\text{r}^2\text{h} \\[1em] = π\text{r}^2\text{h} : \dfrac{2}{3} π\text{r}^2 \text{h} : \dfrac{1}{3} π\text{r}^2\text{h} \\[1em] = 1 : \dfrac{2}{3} : \dfrac{1}{3}

On multiplying by 3, ratio = 3 : 2 : 1

Hence, proved that their volumes are in the ratio 3 : 2 : 1.

Question 30

The radius of a sphere is doubled. Find the increase per cent in its surface area.

Answer

Let original radius be r units and new radius be R units.

Given, radius of a sphere is doubled.

∴ R = 2 × r = 2r

Let the original surface area be s and new surface area be S.

By formula,

Percentage increase in surface area = S - ss×100\dfrac{\text{S - s}}{\text{s}} \times 100

=4πR24πr24πr2×100=4π(R2r2)4πr2×100=(R2r2)r2×100=((2r)2r2)r2×100=(4r2r2)r2×100=3r2r2×100=300= \dfrac{4 π\text{R}^2 - 4 π\text{r}^2}{4π\text{r}^2} \times 100 \\[1em] = \dfrac{4 π(\text{R}^2 - \text{r}^2)}{4π\text{r}^2} \times 100 \\[1em] = \dfrac{(\text{R}^2 - \text{r}^2)}{\text{r}^2} \times 100 \\[1em] = \dfrac{(\text{(2r)}^2 - \text{r}^2)}{\text{r}^2} \times 100 \\[1em] = \dfrac{(4\text{r}^2 - \text{r}^2)}{\text{r}^2} \times 100 \\[1em] = \dfrac{3\text{r}^2}{\text{r}^2} \times 100 \\[1em] = 300 %.

Hence, percentage increase in surface area is 300%.

Question 31

If the radius of a sphere is increased by 50%, find the increase per cent in its volume.

Answer

Let original radius be r units and new radius be R units.

Given, radius of a sphere is increased by 50%.

∴ R = r + 50100\dfrac{50}{100} × r = r + 12\dfrac{1}{2} r = r + 0.5 r = 1.5 r

Let the original volume be v and new volume be V.

By formula,

Percentage increase in volume = V - vv×100\dfrac{\text{V - v}}{\text{v}} \times 100

=43πR343πr343πr3×100=43π(R3r3)43πr3×100=(R3r3)r3×100=((1.5r)3r3)r3×100=(3.375r3r3)r3×100=2.375r3r3×100=237.5= \dfrac{\dfrac{4}{3} π\text{R}^3 - \dfrac{4}{3} π\text{r}^3}{\dfrac{4}{3} π\text{r}^3} \times 100 \\[1em] = \dfrac{\dfrac{4}{3} π(\text{R}^3 - \text{r}^3)}{\dfrac{4}{3} π\text{r}^3} \times 100 \\[1em] = \dfrac{(\text{R}^3 - \text{r}^3)}{\text{r}^3} \times 100 \\[1em] = \dfrac{(\text{(1.5r)}^3 - \text{r}^3)}{\text{r}^3} \times 100 \\[1em] = \dfrac{(3.375\text{r}^3 - \text{r}^3)}{\text{r}^3} \times 100 \\[1em] = \dfrac{2.375\text{r}^3}{\text{r}^3} \times 100 \\[1em] = 237.5 %

Hence, percentage increase in volume is 237.5%.

Question 32

If the ratio of the volume of two spheres is 1 : 8, find the ratio of their surface areas.

Answer

Given,

Ratio of the volumes of the two spheres is 1 : 8

Volume of sphere 1Volume of sphere 2=1843πR343πr3=18R3r3=1323Rr=12\therefore \dfrac{\text{Volume of sphere 1}}{\text{Volume of sphere 2}} = \dfrac{1}{8} \\[1em] \Rightarrow \dfrac{\dfrac{4}{3} π\text{R}^3}{\dfrac{4}{3} π\text{r}^3} = \dfrac{1}{8} \\[1em] \Rightarrow \dfrac{\text{R}^3}{\text{r}^3} = \dfrac{1^3}{2^3} \\[1em] \Rightarrow \dfrac{\text{R}}{\text{r}} = \dfrac{1}{2}

Surface area of sphere = 4πr2

Surface area of sphere 1Surface area of sphere 2=4πR24πr2=(Rr)2=(12)2=14.\therefore \dfrac{\text{Surface area of sphere 1}}{\text{Surface area of sphere 2}} = \dfrac{4π\text{R}^2}{4π\text{r}^2} \\[1em] = \Big(\dfrac{\text{R}}{\text{r}}\Big)^2 \\[1em] = \Big(\dfrac{1}{2}\Big)^2 \\[1em] = \dfrac{1}{4}.

Hence, the ratio of the surface areas of two spheres is 1 : 4.

Multiple Choice Questions

Question 1

The weight of a metallic right circular cylinder with base radius 10.5 cm and height 60 cm, it being given that 1 cm3 of metal weighs 5 gm, is :

  1. 48.75 kg

  2. 97.65 kg

  3. 102.45 kg

  4. 103.95 kg

Answer

Radius of cylinder, r = 10.5 cm

Height of cylinder, h = 60 cm

Volume of cylinder = πr2h

=227×10.52×60=227×110.25×60=1455307=20790 cm3= \dfrac{22}{7} \times 10.5^2 \times 60 \\[1em] = \dfrac{22}{7} \times 110.25 \times 60 \\[1em] = \dfrac{145530}{7} \\[1em] = 20790 \text{ cm}^3

Given, 1 cm3 of metal weighs 5 gm.

Toatl weight = 5 × 20790 = 103950 g = 103950 × 11000\dfrac{1}{1000} = 103.95 kg.

Hence, option 4 is the correct option.

Question 2

If the diameter of the base of a closed right circular cylinder be equal to its height h, then its whole surface area is :

  1. πh2

  2. 32\dfrac{3}{2} πh2

  3. 43\dfrac{4}{3} πh2

  4. 2 πh2

Answer

Let radius of cylinder be r cm.

Given, diameter = height = h cm

Radius = diameter2=h2\dfrac{\text{diameter}}{2} = \dfrac{\text{h}}{2}

Total surface area of cylinder = 2πr(r + h)

=2πh2(h2+h)=πh×(h+2h2)=πh×3h2=32πh2= 2 π \dfrac{\text{h}}{2} \Big(\dfrac{\text{h}}{2} + \text{h}\Big) \\[1em] = π \text{h} \times \Big(\dfrac{\text{h} + 2 \text{h}}{2}\Big) \\[1em] = π \text{h} \times \dfrac{3\text{h}}{2} \\[1em] = \dfrac{3}{2} π \text{h}^2

Hence, option 2 is the correct option.

Question 3

The radius of a roller 100 cm long is 14 cm. The curved surface area of the roller is :

  1. 13200 cm2

  2. 15400 cm2

  3. 4400 cm2

  4. 8800 cm2

Answer

Length of the roller, h = 100 cm

Radius of the roller, r = 14 cm

Roller is in the shape of a cylinder.

∴ Curved surface area of roller = 2πrh

= 2×227×14×1002 \times \dfrac{22}{7} \times 14 \times 100

= 2 × 22 × 2 × 100

= 8800 cm2.

Hence, option 4 is the correct option.

Question 4

The ratio between the radius of the base and the height of a cylinder is 2 : 3. If its volume is 1617 cm3 the total surface area of the cylinder is :

  1. 308 cm2

  2. 462 cm2

  3. 540 cm2

  4. 770 cm2

Answer

Let radius of cylinder, r = 2a and height, h = 3a.

Given,

Volume of cylinder = 1617 cm3

By formula,

Volume of cylinder = πr2h

1617=227×(2a)2×3a1617×722=4(a)2×3a1131922=12a3514.512=a3a3=42.875a=42.8753a=3.5\Rightarrow 1617 = \dfrac{22}{7} \times (\text{2a})^2 \times \text{3a} \\[1em] \Rightarrow 1617 \times \dfrac{7}{22} = 4(\text{a})^2 \times \text{3a} \\[1em] \Rightarrow \dfrac{11319}{22} = 12\text{a}^3 \\[1em] \Rightarrow \dfrac{514.5}{12} = \text{a}^3 \\[1em] \Rightarrow \text{a}^3 = 42.875 \\[1em] \Rightarrow \text{a} = \sqrt[3]{42.875} \\[1em] \Rightarrow \text{a} = 3.5

∴ Radius = 2a = 2 × 3.5 = 7 cm

Height = 3a = 3 × 3.5 = 10.5 cm

Total surface area of cylinder = 2πr(r + h)

=2×227×7(7+10.5)=2×22×17.5=770cm2.= 2 \times \dfrac{22}{7} \times 7 (7 + 10.5) \\[1em] = 2 \times 22 \times 17.5 \\[1em] = 770 \text{cm}^2.

Hence, option 4 is the correct option.

Question 5

A solid cylinder has a total surface area of 231 cm2. If its curved surface area is two-thirds of the total surface area, the volume of the cylinder is :

  1. 269.5 cm3

  2. 308 cm3

  3. 363.4 cm3

  4. 385 cm3

Answer

Given,

Total surface area of cylinder = 231 cm2

⇒ 2πr2 + 2πrh = 231 ...(1)

Curved surface area = 23\dfrac{2}{3} (Total surface area)

= 23×231=2×77\dfrac{2}{3} \times 231 = 2 \times 77 = 154 cm2

By formula,

Curved surface area of cylinder = 2πrh

⇒ 2πrh = 154 ...(2)

Substituting eq.(2) in eq.(1), we have :

⇒ 2πr2 + 154 = 231

⇒ 2πr2 = 231 - 154

⇒ 2πr2 = 77

r2=772πr2=772×227r2=77×72×22r2=53944r2=12.25r=12.25r=3.5 cm.\Rightarrow \text{r}^2 = \dfrac{77}{2π} \\[1em] \Rightarrow \text{r}^2 = \dfrac{77}{2 \times \dfrac{22}{7}} \\[1em] \Rightarrow \text{r}^2 = \dfrac{77 \times 7}{2 \times 22} \\[1em] \Rightarrow \text{r}^2 = \dfrac{539}{44} \\[1em] \Rightarrow \text{r}^2 = 12.25 \\[1em] \Rightarrow \text{r} = \sqrt{12.25} \\[1em] \Rightarrow \text{r} = 3.5 \text{ cm.}

Substituting value of r in eq.(2), we get:

2×227×3.5×h=1542×22×0.5×h=15422h=154h=15422h=7 cm.\Rightarrow 2 \times \dfrac{22}{7} \times 3.5 \times \text{h} = 154 \\[1em] \Rightarrow 2 \times 22 \times 0.5 \times \text{h} = 154 \\[1em] \Rightarrow 22\text{h} = 154 \\[1em] \Rightarrow \text{h} = \dfrac{154}{22} \\[1em] \Rightarrow \text{h} = 7 \text{ cm.}

Volume of cylinder = πr2h

=227×3.52×7=22×12.25=269.5 cm3.= \dfrac{22}{7} \times 3.5^2 \times 7 \\[1em] = 22 \times 12.25 \\[1em] = 269.5 \text{ cm}^3.

Hence, option 1 is the correct option.

Question 6

The sum of the radius of the base and the height of a solid cylinder is 37 m. If the total surface area of the cylinder be 1628 m2, its volume is :

  1. 3180 m3

  2. 4620 m3

  3. 5240 m3

  4. None of these

Answer

Let radius be r m and height be h m.

Given,

r + h = 37 m ...(1)

Totals surface area of cylinder = 1628 m2

⇒ 2πr(r + h) = 1628

⇒ 2πr × 37 = 1628

74×227×r=162816287×r=1628r=1628×71628r=7 m.\Rightarrow 74 \times \dfrac{22}{7} \times \text{r} = 1628 \\[1em] \Rightarrow \dfrac{1628}{7} \times \text{r} = 1628 \\[1em] \Rightarrow \text{r} = \dfrac{1628 \times 7}{1628} \\[1em] \Rightarrow \text{r} = 7 \text{ m.}

Substituting value of r in eq.(1), we have:

⇒ r + h = 37

⇒ 7 + h = 37

⇒ h = 37 - 7

⇒ h = 30 m.

Volume of cylinder = πr2h

=227×72×30=227×49×30=22×7×30=4620 m3.= \dfrac{22}{7} \times 7^2 \times 30 \\[1em] = \dfrac{22}{7} \times 49 \times 30 \\[1em] = 22 \times 7 \times 30 \\[1em] = 4620 \text{ m}^3.

Hence, option 2 is the correct option.

Question 7

The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. The ratio of their volumes is :

  1. 4 : 9

  2. 9 : 4

  3. 20 : 27

  4. 27 : 20

Answer

Let radius and heights of two cylinders be r, h and R, H.

Given,

rR=23 and hH=53\dfrac{\text{r}}{\text{R}} = \dfrac{2}{3} \text{ and } \dfrac{\text{h}}{\text{H}} = \dfrac{5}{3}

Volume of cylinder 1 = v

Volume of cylinder 2 = V

vV=πr2hπR2H=r2R2×hH=(rR)2×hH=(23)2×53=49×53=2027.\Rightarrow \dfrac{\text{v}}{\text{V}} = \dfrac{π\text{r}^2\text{h}}{π\text{R}^2\text{H}} \\[1em] = \dfrac{\text{r}^2}{\text{R}^2} \times \dfrac{\text{h}}{\text{H}} \\[1em] = \Big(\dfrac{\text{r}}{\text{R}}\Big)^2 \times \dfrac{\text{h}}{\text{H}} \\[1em] = \Big(\dfrac{2}{3}\Big)^2 \times \dfrac{5}{3} \\[1em] = \dfrac{4}{9} \times \dfrac{5}{3} \\[1em] = \dfrac{20}{27}.

Hence, option 3 is the correct option.

Question 8

Two steel sheets each of length a1 and breadth a2 are used to prepare the surface of two right circular cylinders - one having volume V1 and height a2 and the other having volume V2 and height a1. Then :

  1. V1 = V2

  2. a1 V1 = a2 V2

  3. a2 V1 = a1 V2

  4. V1a2=V2a1\dfrac{\text{V}_1}{\text{a}_2} = \dfrac{\text{V}_2}{\text{a}_1}

Answer

For cylinder 1,

Height of cylinder, h = a2

Radius of cylinder be r cm

Circumference of base = 2πr = a1

2×π×r=a1r=a12π\Rightarrow 2 \times π \times \text{r} = \text{a}_1 \\[1em] \Rightarrow \text{r} = \dfrac{\text{a}_1}{2π}

Volume of cylinder 1, V1 = πr2h

=π×(a12π)2×a2=π×a124π2×a2=a12a24π= π \times \Big(\dfrac{\text{a}_1}{2π}\Big)^2 \times \text{a}_2 \\[1em] = π \times \dfrac{\text{a}_1^2}{4π^2} \times \text{a}_2 \\[1em] = \dfrac{\text{a}_1^2 \text{a}_2 }{4π}

For cylinder 2,

Height of cylinder, H = a1

Radius of cylinder be R

Circumference of base = 2πR = a2

2×π×R=a2R=a22πR=a22π\Rightarrow 2 \times π \times \text{R} = \text{a}_2 \\[1em] \Rightarrow \text{R} = \dfrac{\text{a}_2}{2π} \\[1em] \Rightarrow \text{R} = \dfrac{\text{a}_2}{2π}

Volume of cylinder 2, V2 = πR2H

=π×(a22π)2×a1=π×a224π2×a1=a22a14π= π \times \Big(\dfrac{\text{a}_2}{2π}\Big)^2 \times \text{a}_1 \\[1em] = π \times \dfrac{\text{a}_2^2}{4π^2} \times \text{a}_1 \\[1em] = \dfrac{\text{a}_2^2 \text{a}_1}{4π}

Ratio of the volumes of the two cylinders:

Volume of cylinder 1Volume of cylinder 2=a12a24πa22a14πV1V2=a12a24π×4πa22a1V1V2=a1a2V1a2=V2a1\Rightarrow \dfrac{\text{Volume of cylinder 1}}{\text{Volume of cylinder 2}} = \dfrac{\dfrac{\text{a}_1^2 \text{a}_2 }{4π}}{\dfrac{\text{a}_2^2 \text{a}_1}{4π}} \\[1em] \Rightarrow \dfrac{\text{V}_1}{\text{V}_2} = \dfrac{\text{a}_1^2 \text{a}_2 }{4π} \times \dfrac{4π}{\text{a}_2^2 \text{a}_1} \\[1em] \Rightarrow \dfrac{\text{V}_1}{\text{V}_2} = \dfrac{\text{a}_1}{\text{a}_2} \\[1em] \Rightarrow \text{V}_1 \text{a}_2 = \text{V}_2 \text{a}_1

Hence, option 3 is the correct option.

Question 9

Two circular cylinders of equal volumes have their heights in the ratio 1 : 2. The ratio of their radii is :

  1. 1 : 2\sqrt{2}

  2. 2\sqrt{2} : 1

  3. 1 : 2

  4. 1 : 4

Answer

Let radius and heights of two cylinders be r, h and R, H.

Given,

hH=12\dfrac{\text{h}}{\text{H}} = \dfrac{1}{2}

Volume of cylinder 1 = v

Volume of cylinder 2 = V

⇒ v = V

πr2h=πR2HDivide by π on both sides, we get:r2=R2×Hhr2R2=21(rR)2=21rR=21rR=21\Rightarrow π\text{r}^2\text{h} = π\text{R}^2\text{H} \\[1em] \text{Divide by π on both sides, we get:} \\[1em] \Rightarrow \text{r}^2 = \text{R}^2 \times \dfrac{\text{H}}{\text{h}} \\[1em] \Rightarrow \dfrac{\text{r}^2}{\text{R}^2} = \dfrac{2}{1} \\[1em] \Rightarrow \Big(\dfrac{\text{r}}{\text{R}}\Big)^2 = \dfrac{2}{1} \\[1em] \Rightarrow \dfrac{\text{r}}{\text{R}} = \sqrt{\dfrac{2}{1}} \\[1em] \Rightarrow \dfrac{\text{r}}{\text{R}} = \dfrac{\sqrt{2}}{1} \\[1em]

∴ r : R = 2\sqrt{2} : 1

Hence, option 2 is the correct option.

Question 10

The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2. If the total surface area is 616 cm2, the volume of the cylinder is :

  1. 1232 cm3

  2. 1078 cm3

  3. 1848 cm3

  4. 1548 cm3

Answer

Total surface area = 616 cm2

⇒ 2πr(h + r) = 616

⇒ πr(h + r) = 6162\dfrac{616}{2}

⇒ πr(h + r) = 308 ....(1)

Ratio between its curved surface area and total surface area = 1 : 2

Curved surface areaTotal surface area=122πrh2πr(h + r)=12h(h + r)=12\Rightarrow \dfrac{\text{Curved surface area}}{\text{Total surface area}} = \dfrac{1}{2} \\[1em] \Rightarrow \dfrac{2π\text{rh}}{2π\text{r(h + r)}} = \dfrac{1}{2} \\[1em] \Rightarrow \dfrac{\text{h}}{\text{(h + r)}} = \dfrac{1}{2} \\[1em]

⇒ 2h = h + r

⇒ 2h - h = r

⇒ h = r

Substituting value of h in eq.(1), we get:

⇒ πr(r + r) = 308

⇒ πr × 2r = 308

⇒ 2πr2 = 308

2×227×r2=308447×r2=308r2=308×744r2=215644r2=49r=49r=7 cm.\Rightarrow 2 \times \dfrac{22}{7} \times \text{r}^2 = 308 \\[1em] \Rightarrow \dfrac{44}{7} \times \text{r}^2 = 308 \\[1em] \Rightarrow \text{r}^2 = \dfrac{308 \times 7}{44} \\[1em] \Rightarrow \text{r}^2 = \dfrac{2156}{44} \\[1em] \Rightarrow \text{r}^2 = 49 \\[1em] \Rightarrow \text{r} = \sqrt{49} \\[1em] \Rightarrow \text{r} = 7 \text{ cm.}

⇒ h = 7 cm

Volume of cylinder = πr2h

= 227\dfrac{22}{7} × 72 × 7

= 22 × 49

= 1078 cm3.

Hence, option 2 is the correct option.

Question 11

The number of coins, 1.5 cm in diameter and 0.2 cm thick to be melted to form a right circular cylinder of height 10 cm and diameter 4.5 cm, is :

  1. 380

  2. 450

  3. 472

  4. 540

Answer

Given,

Radius of coin, r = diameter2=1.52\dfrac{\text{diameter}}{2} = \dfrac{1.5}{2} = 0.75 cm

Height of coin, h = 0.2 cm

Radius of cylinder, R = diameter2=4.52\dfrac{\text{diameter}}{2} = \dfrac{4.5}{2} = 2.25 cm

Height of cylinder, H = 10 cm

Let no. of coins required to be melted to form cylinder be n.

Volume of cylinder = n × Volume of each coin

∴ πR2H = n × πr2h

n=πR2Hπr2hn=2.252×100.752×0.2n=5.0625×100.5625×0.2n=50.6250.1125n=450\Rightarrow \text{n} = \dfrac{π\text{R}^2\text{H}}{π\text{r}^2\text{h}} \\[1em] \Rightarrow \text{n} = \dfrac{2.25^2 \times 10}{0.75^2 \times 0.2} \\[1em] \Rightarrow \text{n} = \dfrac{5.0625 \times 10}{0.5625 \times 0.2} \\[1em] \Rightarrow \text{n} = \dfrac{50.625}{0.1125} \\[1em] \Rightarrow \text{n} = 450

Hence, option 2 is the correct option.

Question 12

A rectangular tin sheet is 12 cm long and 5 cm broad. It is rolled along its length to form a cylinder by making the opposite edges just touch each other. The volume of the cylinder (in cm3) is :

  1. 60π\dfrac{60}{π}

  2. 100π\dfrac{100}{π}

  3. 120π\dfrac{120}{π}

  4. 180π\dfrac{180}{π}

Answer

For cylinder, rolled along its length:

Height of cylinder, h = 5 cm

Radius of cylinder be r cm

Circumference of base = 2πr = 12

2×π×r=12r=122πr=6π cm.\Rightarrow 2 \times π \times \text{r} = 12 \\[1em] \Rightarrow \text{r} = \dfrac{12}{2π} \\[1em] \Rightarrow \text{r} = \dfrac{6}{π} \text{ cm.}

Volume of cylinder = πr2h

=π×(6π)2×5=π×(36π2)×5=180π cm3= π \times \Big(\dfrac{6}{π}\Big)^2 \times 5 \\[1em] = π \times \Big(\dfrac{36}{π^2}\Big) \times 5 \\[1em] = \dfrac{180}{π} \text{ cm}^3

Hence, option 4 is the correct option.

Question 13

If the radius of the base of a right circular cylinder is halved, keeping the height same, what is the ratio of the volume of the new cylinder to that of the original one?

  1. 1 : 2

  2. 1 : 4

  3. 1 : 8

  4. 4 : 1

Answer

For old cylinder,

Let height = h and Radius = r

So, for new cylinder,

Height = h and radius = r2\dfrac{\text{r}}{2}

We know that volume of cylinder = π × radius2 × height

∴ Volume of old cylinder = πr2h

and Volume of new cylinder = π (r2)2(\dfrac{\text{r}}{2})^2 h

Volume of new cylinderVolume of old cylinder=π(r2)2hπr2h=r24r2=r24r2=14\therefore \dfrac{\text{Volume of new cylinder}}{\text{Volume of old cylinder}} = \dfrac{π(\dfrac{\text{r}}{2})^2\text{h}}{π\text{r}^2\text{h}} \\[1em] = \dfrac{\dfrac{\text{r}^2}{4}}{\text{r}^2} \\[1em] = \dfrac{\text{r}^2}{4\text{r}^2} \\[1em] = \dfrac{1}{4}

Hence, option 2 is the correct option.

Question 14

The curved surface area of a cylinder is 4400 cm2 and the circumference of its base is 110 cm. The volume of the cylinder (in cm3) is :

  1. 36000

  2. 38500

  3. 40150

  4. 42250

Answer

Given, curved surface area of cylinder = 4400 cm2

We know that curved surface area of cylinder = 2πrh

∴ 2πrh = 4400 .....(1)

Given, circumference of base = 110 cm

We know that circumference = 2πr

∴ 2πr = 110 .....(2)

2×227×r=110r=110×722×2r=77044r=17.5 cm.\Rightarrow 2 \times \dfrac{22}{7} \times \text{r} = 110 \\[1em] \Rightarrow \text{r} = \dfrac{110 \times 7}{22 \times 2} \\[1em] \Rightarrow \text{r} = \dfrac{770}{44} \\[1em] \Rightarrow \text{r} = 17.5 \text{ cm.}

Dividing eq.(1) by (2), we get:

2πrh2πr=4400110\dfrac{2π\text{rh}}{2π\text{r}} = \dfrac{4400}{110}

⇒ h = 40 cm

Volume of cylinder = πr2h

=227×17.52×40=227×306.25×40=2695007=38500 cm3.= \dfrac{22}{7} \times 17.5^2 \times 40 \\[1em] = \dfrac{22}{7} \times 306.25 \times 40 \\[1em] = \dfrac{269500}{7} \\[1em] = 38500 \text{ cm}^3.

Hence, option 2 is the correct option.

Question 15

The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3. The ratio of their curved surface areas is :

  1. 2 : 5

  2. 8 : 7

  3. 10 : 9

  4. 16 : 9

Answer

Given,

r : R = 2 : 3

Let r = 2x and R = 3x

h : H = 5 : 3

Let h = 5y and H = 3y

CSA of 1st cylinderCSA of 2nd cylinder=2πrh2πRH=rhRH=2x×5y3x×3y=10xy9xy=109=10:9\dfrac{\text{CSA of 1st cylinder}}{\text{CSA of 2nd cylinder}} = \dfrac{2π\text{rh}}{2π\text{RH}} \\[1em] = \dfrac{\text{rh}}{\text{RH}} \\[1em] = \dfrac{\text{2x} \times \text{5y}}{\text{3x} \times {\text{3y}}} \\[1em] = \dfrac{10\text{xy}}{9\text{xy}} \\[1em] = \dfrac{10}{9} \\[1em] = 10 : 9

Hence, option 3 is the correct option.

Question 16

Two rectangular sheets of paper each 30 cm × 18 cm are made into two right circular cylinders, one by rolling the paper along its length and the other along the breadth. The ratio of the volumes of the two cylinders, thus formed, is :

  1. 2 : 1

  2. 3 : 2

  3. 4 : 3

  4. 5 : 3

Answer

For cylinder 1, rolled along its length:

Height of cylinder, h = 18 cm

Radius of cylinder be r cm

Circumference of base = 2πr = 30

2×π×r=302π×r=30r=302πr=15π cm.\Rightarrow 2 \times π \times \text{r} = 30 \\[1em] \Rightarrow 2π \times \text{r} = 30 \\[1em] \Rightarrow \text{r} = \dfrac{30}{2π} \\[1em] \Rightarrow \text{r} = \dfrac{15}{π} \text{ cm.}

Volume of cylinder 1 = πr2h

=π×(15π)2×18=π×(225π2)×18=4050π cm3= π \times \Big(\dfrac{15}{π}\Big)^2 \times 18 \\[1em] = π \times \Big(\dfrac{225}{π^2}\Big) \times 18 \\[1em] = \dfrac{4050}{π} \text{ cm}^3

For cylinder 2, rolled along its breadth:

Height of cylinder, H = 30 cm

Radius of cylinder be R cm

Circumference of base = 2πR = 18

2×π×R=182π×R=18R=182πR=9π cm.\Rightarrow 2 \times π \times \text{R} = 18 \\[1em] \Rightarrow 2π \times \text{R} = 18 \\[1em] \Rightarrow \text{R} = \dfrac{18}{2π} \\[1em] \Rightarrow \text{R} = \dfrac{9}{π} \text{ cm.}

Volume of cylinder 2 = πR2H

=π×(9π)2×30=π×(81π2)×30=2430π cm3= π \times \Big(\dfrac{9}{π}\Big)^2 \times 30 \\[1em] = π \times \Big(\dfrac{81}{π^2}\Big) \times 30 \\[1em] = \dfrac{2430}{π} \text{ cm}^3

Ratio of the volumes of the two cylinders:

=Volume of cylinder 1Volume of cylinder 2=4050π2430π=4050π×π2430=53= \dfrac{\text{Volume of cylinder 1}}{\text{Volume of cylinder 2}} \\[1em] = \dfrac{\dfrac{4050}{π}}{\dfrac{2430}{π}} \\[1em] = \dfrac{4050}{π} \times \dfrac{π}{2430} \\[1em] = \dfrac{5}{3}

Hence, option 4 is the correct option.

Question 17

Two cylindrical vessels with radii 15 cm and 10 cm and heights 35 cm and 15 cm respectively are filled with water. If this water when poured into a cylindrical vessel, 15 cm in height, fills it completely then the radius of the vessel is :

  1. 17.5 cm

  2. 18 cm

  3. 20 cm

  4. 25 cm

Answer

Given,

For cylinder 1,

Radius, r = 15 cm

Height, h = 35 cm

For cylinder 2,

Radius, R = 10 cm

Height, H = 15 cm

By formula, Volume of cylinder = πr2h

Volume of cylinder 1 = v

=227×152×35=22×225×5=24750 cm3.= \dfrac{22}{7} \times 15^2 \times 35 \\[1em] = 22 \times 225 \times 5 \\[1em] = 24750 \text{ cm}^3.

Volume of cylinder 2 = V

=227×102×15=227×100×15=330007 cm3.= \dfrac{22}{7} \times 10^2 \times 15 \\[1em] = \dfrac{22}{7} \times 100 \times 15 \\[1em] = \dfrac{33000}{7} \text{ cm}^3.

Given, water from cylinder 1 and 2 is poured into cylinder 3.

Volume of cylinder 3 = Volume of cylinder 1 + Volume of cylinder 2

= 24750 + 330007\dfrac{33000}{7}

= 173250+330007=2062507 cm3\dfrac{173250 + 33000}{7} = \dfrac{206250}{7} \text{ cm}^3

For cylinder 3,

Radius be a cm

Height = 15 cm

Volume of cylinder 3 = πa2 × 15

2062507=227×a2×152062507×722×15=a2206250330=a2a2=625a=625a=25 cm.\Rightarrow \dfrac{206250}{7} = \dfrac{22}{7} \times \text{a}^2 \times 15 \\[1em] \Rightarrow \dfrac{206250}{7} \times \dfrac{7}{22 \times 15} = \text{a}^2 \\[1em] \Rightarrow \dfrac{206250}{330} = \text{a}^2 \\[1em] \Rightarrow \text{a}^2 = 625 \\[1em] \Rightarrow \text{a} = \sqrt{625} \\[1em] \Rightarrow \text{a} = 25 \text{ cm.}

Hence, option 4 is the correct option.

Question 18

A hollow garden roller 63 cm wide with a girth of 440 cm is made of iron 4 cm thick. The volume of the iron used is :

  1. 154982 cm3

  2. 106372 cm3

  3. 107812 cm3

  4. 107712 cm3

Answer

Length of the roller (h) = 63 cm

Let external radius be R cm and internal radius be r cm.

Girth of the roller = Circumference of roller = 440 cm

⇒ 2πR = 440

2×227R=440447R=440R=440×744R=308044R=70 cm.\Rightarrow 2 \times \dfrac{22}{7} \text{R} = 440 \\[1em] \Rightarrow \dfrac{44}{7} \text{R} = 440 \\[1em] \Rightarrow \text{R} = 440 \times \dfrac{7}{44} \\[1em] \Rightarrow \text{R} = \dfrac{3080}{44} \\[1em] \Rightarrow \text{R} = 70 \text{ cm.}

Thickness = External radius (R) - internal radius (r)

⇒ 4 = 70 - r

⇒ r = 70 - 4 = 66 cm

External volume = πR2h

=227×(70)2×63=22×4900×9=970200= \dfrac{22}{7} \times (70)^2 \times 63 \\[1em] = 22 \times 4900 \times 9 \\[1em] = 970200

Internal volume = πr2h

=227×(66)2×63=22×4356×9=862488= \dfrac{22}{7} \times (66)^2 \times 63 \\[1em] = 22 \times 4356 \times 9 \\[1em] = 862488

Volume of iron = External volume - Internal volume

= 970200 - 862488

= 107712 cm3

Hence, option 4 is the correct option.

Question 19

If the radius of the base of a right circular cone is 3r and its height is equal to the radius of the base, then its volume is :

  1. 13\dfrac{1}{3} πr3

  2. 23\dfrac{2}{3} πr3

  3. 3 πr3

  4. 9 πr3

Answer

Given, radius = 3r and height(h) = 3r

Volume of cone = 13\dfrac{1}{3} πr2h

=13×π×(3r)2×3r=π×9r2×r=9πr3= \dfrac{1}{3} \times π \times (3\text{r})^2 \times 3\text{r} \\[1em] = π \times 9\text{r}^2 \times \text{r} \\[1em] = 9 π\text{r}^3

Hence, option 4 is the correct option.

Question 20

The radius and height of a right circular cone are in the ratio of 5 : 12 and its volume is 2512 cm3. The slant height of the cone is :

(Take π = 3.14)

  1. 14 cm

  2. 16 cm

  3. 24 cm

  4. 26 cm

Answer

Given, radius(r) : height(h) = 5 : 12

Let r = 5x and h = 12x

Volume of cone = 13\dfrac{1}{3} πr2h

2512=13×3.14×(5x)2×12x2512=3.14×25x2×4xx3=25123.14×25×4x3=2512314x3=8x=83x=2 cm.\Rightarrow 2512 = \dfrac{1}{3} \times 3.14 \times (5\text{x})^2 \times 12\text{x} \\[1em] \Rightarrow 2512 = 3.14 \times 25\text{x}^2 \times 4\text{x} \\[1em] \Rightarrow \text{x}^3 = \dfrac{2512}{3.14 \times 25 \times 4} \\[1em] \Rightarrow \text{x}^3 = \dfrac{2512}{314} \\[1em] \Rightarrow \text{x}^3 = 8 \\[1em] \Rightarrow \text{x} = \sqrt[3]{8} \\[1em] \Rightarrow \text{x} = 2 \text{ cm.}

⇒ r = 5x = 5 × 2 = 10 cm

⇒ h = 12x = 12 × 2 = 24 cm

Curved surface area = πrl

l2 = r2 + h2

⇒ l2 = 102 + 242

⇒ l2 = 100 + 576

⇒ l2 = 676

⇒ l = 676\sqrt{676} = 26 cm

Hence, option 4 is the correct option.

Question 21

How many metres of cloth 2.5 m wide will be required to make a conical tent whose base radius is 7 m and height is 24 m?

  1. 120 m

  2. 180 m

  3. 220 m

  4. 550 m

Answer

Given, r = 7 m and h = 24 m

l2 = r2 + h2

⇒ l2 = 72 + 242

⇒ l2 = 49 + 576

⇒ l2 = 625

⇒ l = 625\sqrt{625} = 25 m

So, the total curved surface area of the tent = πrl

=227×7×25=22×25=550 m2= \dfrac{22}{7} \times 7 \times 25 \\[1em] = 22 \times 25 \\[1em] = 550 \text{ m}^2

Width of the cloth used = 2.5 m

Length of canvas = area of canvaswidth of canvas=5502.5\dfrac{\text{area of canvas}}{\text{width of canvas}} = \dfrac{550}{2.5} = 220 m.

Hence, option 3 is the correct option.

Question 22

The length of the canvas, 1.1 m wide required to build a conical tent of height 14 m and floor area 346.5 m2, is :

  1. 490 m

  2. 525 m

  3. 665 m

  4. 860 m

Answer

Given,

Height of cone, h = 14 m

Area of base floor = 346.5 m2

πr2=346.5227×r2=346.5r2=346.5×722r2=2425.522r2=110.25r=110.25r=10.5 m.\Rightarrow π\text{r}^2 = 346.5 \\[1em] \Rightarrow \dfrac{22}{7} \times \text{r}^2 = 346.5 \\[1em] \Rightarrow \text{r}^2 = \dfrac{346.5 \times 7}{22} \\[1em] \Rightarrow \text{r}^2 = \dfrac{2425.5}{22} \\[1em] \Rightarrow \text{r}^2 = 110.25 \\[1em] \Rightarrow \text{r} = \sqrt{110.25} \\[1em] \Rightarrow \text{r} = 10.5 \text{ m.}

By formula,

l2 = r2 + h2

⇒ l2 = 10.52 + 142

⇒ l2 = 110.25 + 196

⇒ l2 = 306.25

⇒ l = 306.25\sqrt{306.25} = 17.5 m

So, the total curved surface area of the tent = πrl

=227×10.5×17.5=4042.57=577.5 m2= \dfrac{22}{7} \times 10.5 \times 17.5 \\[1em] = \dfrac{4042.5}{7} \\[1em] = 577.5 \text{ m}^2

Let length of canvas be a m.

Area of canvas = Curved surface area of cone

⇒ a × b = 577.5

⇒ a × 1.1 = 577.5

⇒ a = 577.51.1\dfrac{577.5}{1.1}

⇒ a = 525 m

Hence, option 2 is the correct option.

Question 23

The volume of conical tent is 462 m3 and the area of the base is 154 m2. The height of the cone is :

  1. 15 m

  2. 12 m

  3. 9 m

  4. 24 m

Answer

Given, Area of base = 154 m2

⇒ πr2 = 154

227r2=154r2=154×722r2=107822r2=49r=49r=7 m.\Rightarrow \dfrac{22}{7} \text{r}^2 = 154 \\[1em] \Rightarrow \text{r}^2 = 154 \times \dfrac{7}{22} \\[1em] \Rightarrow \text{r}^2 = \dfrac{1078}{22} \\[1em] \Rightarrow \text{r}^2 = 49 \\[1em] \Rightarrow \text{r} = \sqrt{49} \\[1em] \Rightarrow \text{r} = 7 \text{ m.}

Volume of cone = 462 m3

By formula,

Volume of cone = 13\dfrac{1}{3} πr2h

462=13×227×72×h462=2221×49×hh=462×2122×49h=97021078h=9 m.\Rightarrow 462 = \dfrac{1}{3} \times \dfrac{22}{7} \times 7^2 \times \text{h} \\[1em] \Rightarrow 462 = \dfrac{22}{21} \times 49 \times \text{h} \\[1em] \Rightarrow \text{h} = \dfrac{462 \times 21}{22 \times 49} \\[1em] \Rightarrow \text{h} = \dfrac{9702}{1078} \\[1em] \Rightarrow \text{h} = 9 \text{ m}.

Hence, option 3 is the correct option.

Question 24

A conical tent is to accomodate 11 persons such that each person occupies 4 m2 space on the ground and has 20 m3 of air to breathe. The height of the cone is :

  1. 14 m

  2. 15 m

  3. 16 m

  4. 20 m

Answer

Given,

Each person must have 20 m3 of air to breathe.

∴ 11 persons need 11 × 20 m3 = 220 m3

Each person must have 4 m2 of the space on the ground.

∴ 11 persons need 11 × 4 m2 = 44 m2

Base of the conical tent = area of the circle = πr2

44=227×r2r2=7×4422r2=30822r2=14 m.\Rightarrow 44 = \dfrac{22}{7} \times \text{r}^2 \\[1em] \Rightarrow \text{r}^2 = \dfrac{7 \times 44}{22} \\[1em] \Rightarrow \text{r}^2 = \dfrac{308}{22} \\[1em] \Rightarrow \text{r}^2 = 14 \text{ m.}

Let height of the conical tent be h meters.

Since, conical tent needs to accomodate 11 persons, so its volume will be equal to volume of air required for 11 persons.

13πr2h=22013×227×14×h=220h=220×7×322×14h=4620308h=15 m.\Rightarrow \dfrac{1}{3}π \text{r}^2 \text{h} = 220 \\[1em] \Rightarrow \dfrac{1}{3} \times \dfrac{22}{7} \times 14 \times \text{h} = 220 \\[1em] \Rightarrow \text{h} = \dfrac{220 \times 7 \times 3}{22 \times 14} \\[1em] \Rightarrow \text{h} = \dfrac{4620}{308} \\[1em] \Rightarrow \text{h} = 15 \text{ m.}

Hence, option 2 is the correct option.

Question 25

The diameters of two cones are equal. If their slant heights are in the ratio 5 : 4 the ratio of their curved surface areas is:

  1. 4 : 5

  2. 5 : 4

  3. 16 : 25

  4. 25 : 16

Answer

Given, ratio of slant height = 5 : 4

Let slant height of 1st cone be 5a and 2nd cone be 4a cm.

For 1st cone,

⇒ Diameter = d

⇒ Radius = r

⇒ Slant height, l = 5a

For 2nd cone,

⇒ Diameter = D

⇒ Radius = R

⇒ Slant height, L = 4a

Given,

⇒ d = D

∴ r = R

CSA of 1st coneCSA of 2nd cone=πrlπRL=lL=5a4a=54=5:4\Rightarrow \dfrac{\text{CSA of 1st cone}}{\text{CSA of 2nd cone}} = \dfrac{π\text{rl}}{π\text{RL}} \\[1em] = \dfrac{\text{l}}{\text{L}} \\[1em] = \dfrac{5\text{a}}{4\text{a}} \\[1em] = \dfrac{5}{4} \\[1em] = 5 : 4

Hence, option 2 is the correct option.

Question 26

If the radius of the base of a cone is halved, keeping the height same, what is the ratio of the volume of the new cone to that of the original cone?

  1. 1 : 2

  2. 1 : 3

  3. 1 : 4

  4. 2 : 3

Answer

For older cone,

⇒ Radius = r

⇒ Height = h

⇒ Volume = v

For new cone,

⇒ Radius = R = r2\dfrac{\text{r}}{2}

⇒ Height = h

⇒ Volume = V

Volume of cone = 13πr2h\dfrac{1}{3}π \text{r}^2 \text{h}

Vv=13πR2h13πr2h=(r2)2r2=r24r2=r24r2=14.\Rightarrow \dfrac{\text{V}}{\text{v}} = \dfrac{\dfrac{1}{3}π \text{R}^2 \text{h}}{\dfrac{1}{3}π \text{r}^2 \text{h}} \\[1em] = \dfrac{\Big(\dfrac{\text{r}}{2}\Big)^2}{\text{r}^2} \\[1em] = \dfrac{\dfrac{\text{r}^2}{4}}{\text{r}^2} \\[1em] = \dfrac{\text{r}^2}{4\text{r}^2} \\[1em] = \dfrac{1}{4}.

Hence, option 3 is the correct option.

Question 27

A cone of height 7 cm and base radius 3 cm is carved from a rectangular block of wood 10 cm × 5 cm × 2 cm. The percentage of wood wasted is:

  1. 34%

  2. 46%

  3. 54%

  4. 66%

Answer

Volume of rectangular block = 10 cm × 5 cm × 2 cm = 100 cm3

Volume of cone = 13πr2h\dfrac{1}{3}π \text{r}^2 \text{h}

=13×227×32×7=13×22×9=22×3=66 cm3.= \dfrac{1}{3} \times \dfrac{22}{7} \times 3^2 \times 7 \\[1em] = \dfrac{1}{3} \times 22 \times 9 \\[1em] = 22 \times 3 \\[1em] = 66 \text{ cm}^3.

Volume of wood wasted = Volume of rectangular block - Volume of cone

= 100 - 66

= 34 cm3

Percentage of wood wasted

= Volume of wood wastedTotal volume of rectangular block×100=34100×100\dfrac{\text{Volume of wood wasted}}{\text{Total volume of rectangular block}} \times 100 = \dfrac{34}{100} \times 100 = 34%

Hence, option 1 is the correct option.

Question 28

An edge of a cube measures 10 cm. If the largest possible right circular cone is cut out of this cube, then the volume of the cone is:

  1. 260 cm3

  2. 260.9 cm3

  3. 261.9 cm3

  4. 262.7 cm3

Answer

Edge of a cube = 10 cm

Volume = side3 = 103 = 1000 cm3.

Cone of maximum size is carved out as shown in figure,

An edge of a cube measures 10 cm. If the largest possible right circular cone is cut out of this cube, then the volume of the cone is. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Diameter of the cone cut out from it = 10 cm

Radius, r = diameter2=102\dfrac{\text{diameter}}{2} = \dfrac{10}{2} = 5 cm

Height, h = 10 cm

Volume of cone = 13\dfrac{1}{3} πr2h

=13×227×52×10=13×227×25×10=550021=261.9 cm3.= \dfrac{1}{3} \times \dfrac{22}{7} \times 5^2 \times 10 \\[1em] = \dfrac{1}{3} \times \dfrac{22}{7} \times 25 \times 10 \\[1em] = \dfrac{5500}{21} \\[1em] = 261.9 \text{ cm}^3.

Hence, option 3 is the correct option.

Question 29

If the height of a cone is doubled, then its volume is increased by :

  1. 100%

  2. 200%

  3. 300%

  4. 400%

Answer

For older cone,

⇒ Radius = r

⇒ Height = h

⇒ Volume = v

For new cone,

⇒ Radius = r

⇒ Height = 2h

⇒ Volume = V

Volume of cone = 13π×(radius)2×height\dfrac{1}{3}π \times \text{(radius)}^2 \times \text{height}

Increase in the volume of cone = Volume of new cone - Volume of old coneVolume of old cone×100\dfrac{\text{Volume of new cone - Volume of old cone}}{\text{Volume of old cone}} \times 100

=V - vv×100=(13πr2×2h)(13πr2h)13πr2h×100=13πr2h(21)13πr2h×100=100= \dfrac{\text{V - v}}{\text{v}} \times 100 \\[1em] = \dfrac{(\dfrac{1}{3}π \text{r}^2 \times \text{2h}) - (\dfrac{1}{3}π \text{r}^2 \text{h})}{\dfrac{1}{3}π \text{r}^2 \text{h}} \times 100 \\[1em] = \dfrac{\dfrac{1}{3}π \text{r}^2 \text{h}(2 - 1)}{\dfrac{1}{3}π \text{r}^2 \text{h}} \times 100 \\[1em] = 100%.

Hence, option 1 is the correct option.

Question 30

If the height of two cones are in the ratio of 1 : 4 and the radii of their bases are in the ratio 4 : 1, then the ratio of their volumes is:

  1. 1 : 2

  2. 2 : 3

  3. 3 : 4

  4. 4 : 1

Answer

Let height of cones be 1a and 4a and radius of the cones be 4b and 1b.

Volume of cone = 13πr2h\dfrac{1}{3}π \text{r}^2 \text{h}

Volume of 1st cone, V = 13π(4b)21a=13π×16b2×a\dfrac{1}{3}π (\text{4b})^2 \text{1a} = \dfrac{1}{3}π \times 16\text{b}^2 \times \text{a}

Volume of 2nd cone, v = 13π(1b)24a=13π×b2×4a\dfrac{1}{3}π (\text{1b})^2 \text{4a} = \dfrac{1}{3}π \times \text{b}^2 \times 4\text{a}

Vv=13π×16b2×a13π×b2×4a=164=41.\Rightarrow \dfrac{\text{V}}{\text{v}} = \dfrac{\dfrac{1}{3}π \times 16\text{b}^2 \times \text{a}}{\dfrac{1}{3}π \times \text{b}^2 \times 4\text{a}} \\[1em] = \dfrac{16}{4} \\[1em] = \dfrac{4}{1}.

= 4 : 1

Hence, option 4 is the correct option.

Question 31

If the volumes of two cones are in the ratio of 1 : 4 and their diameters are in the ratio 4 : 5, then the ratio of their heights is :

  1. 1 : 5

  2. 5 : 4

  3. 5 : 16

  4. 25 : 64

Answer

Let Volume of cones be V and v respectively.

⇒ V : v = 1 : 4

Diameters of cones be D and d respectively.

⇒ D = 4b and d = 5b

Radius of 1st cone = diameter2=4b2\dfrac{\text{diameter}}{2} = \dfrac{4\text{b}}{2} = 2b

Radius of 2nd cone = diameter2=5b2\dfrac{\text{diameter}}{2} = \dfrac{5\text{b}}{2} = 2.5b

Let the height of cones be h and H respectively.

By formula,

Volume of cone = 13πr2h\dfrac{1}{3}π \text{r}^2 \text{h}

Vv=13π(2b)2h13π(2.5b)2H14=13π×4b2h13π×6.25b2H14=4h6.25HHh=4×46.25Hh=166.25Hh=166.25\therefore \dfrac{\text{V}}{\text{v}} = \dfrac{\dfrac{1}{3}π (\text{2b})^2 \text{h}}{\dfrac{1}{3}π (\text{2.5b})^2 \text{H}} \\[1em] \Rightarrow \dfrac{1}{4} = \dfrac{\dfrac{1}{3}π \times \text{4b}^2 \text{h}}{\dfrac{1}{3}π \times 6.25\text{b}^2 \text{H}} \\[1em] \Rightarrow \dfrac{1}{4} = \dfrac{4 \text{h}}{6.25\text{H}} \\[1em] \Rightarrow \dfrac{\text{H}}{\text{h}} = \dfrac{4 \times 4}{6.25} \\[1em] \Rightarrow \dfrac{\text{H}}{\text{h}} = \dfrac{16}{6.25} \\[1em] \Rightarrow \dfrac{\text{H}}{\text{h}} = \dfrac{16}{6.25} \\[1em]

Multipy and divide by 100 on R.H.S

Hh=16×1006.25×100Hh=1600625Hh=6425\Rightarrow \dfrac{\text{H}}{\text{h}} = \dfrac{16 \times 100}{6.25 \times 100} \\[1em] \Rightarrow \dfrac{\text{H}}{\text{h}} = \dfrac{1600}{625} \\[1em] \Rightarrow \dfrac{\text{H}}{\text{h}} = \dfrac{64}{25}

∴ h : H = 25 : 64

Hence, option 4 is the correct option.

Question 32

The radii of the bases of a cylinder and a cone are in the ratio 3 : 4 and their heights are in the ratio 2 : 3. Then their volumes are in the ratio:

  1. 3 : 4

  2. 4 : 3

  3. 8 : 9

  4. 9 : 8

Answer

For cylinder,

Radius = 3a

Height = 2b

Volume of cylinder, v = πr2h = π × (3a)2 × 2b = π × 9a2 × 2b = 18πa2b

For cone,

Radius = 4a

Height = 3b

Volume of cone, V = 13πr2h\dfrac{1}{3}π \text{r}^2 \text{h}

=13π(4a)23b=π×16a2b= \dfrac{1}{3}π (\text{4a})^2 \text{3b} \\[1em] = π \times 16\text{a}^2 \text{b} \\[1em]

vV=π×18a2bπ×16a2b=1816=98\therefore \dfrac{\text{v}}{\text{V}} = \dfrac{π \times 18\text{a}^2 \text{b}}{π \times 16\text{a}^2 \text{b}} \\[1em] = \dfrac{18}{16} \\[1em] = \dfrac{9}{8}

= 9 : 8

Hence, option 4 is the correct option.

Question 33

A right cylindrical vessel is full with water. How many cones having the same diameter and height as those of the right cylinder will be needed to store that water?

  1. 2

  2. 3

  3. 4

  4. 5

Answer

Volume of cone = 13πr2h\dfrac{1}{3}π \text{r}^2 \text{h}

Volume of cylinder = πr2h

Let the number of cones required be n.

∴ Volume of cylinder = n × Volume of cone

⇒ πr2h = n × 13πr2h\dfrac{1}{3}π \text{r}^2 \text{h}

⇒ 3 × πr2h = n × πr2h

∴ n = 3

Hence, option 2 is the correct option.

Question 34

A conical vessel whose internal radius is 10 cm and height 48 cm is full of water. If this water is poured into a cylindrical vessel with internal radius 20 cm, the height to which water rises in it is:

(Take π = 3.14)

  1. 3 cm

  2. 4 cm

  3. 5 cm

  4. 6 cm

Answer

Given, radius of cone, R = 10 cm

Height of cone, H = 48 cm

Height of water in cylinder be h cm

Radius of cylinder, r = 20 cm

Since, water from conical vessel is poured into cylindrical vessel.

∴ Volume of cone = Volume of water in cylinder

13πR2H=πr2h13×102×48=202×h100×16=400×hh=100×16400h=1600400h=4 cm.\Rightarrow \dfrac{1}{3}π \text{R}^2 \text{H} = π \text{r}^2 \text{h} \\[1em] \Rightarrow \dfrac{1}{3} \times 10^2 \times 48 = 20^2 \times \text{h} \\[1em] \Rightarrow 100 \times 16 = 400 \times \text{h} \\[1em] \Rightarrow \text{h} = \dfrac{100 \times 16}{400} \\[1em] \Rightarrow \text{h} = \dfrac{1600}{400} \\[1em] \Rightarrow \text{h} = 4 \text{ cm.}

Hence, option 2 is the correct option.

Question 35

A cylindrical vessel 32 cm high and 18 cm as the radius of the base, is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, the radius of its base is :

  1. 12 cm

  2. 24 cm

  3. 36 cm

  4. 48 cm

Answer

Given, radius of conical heap be R cm

Height of cone, H = 24 cm

Height of cylinder, h = 32 cm

Radius of cylinder, r = 18 cm

Since, sand from cylindrical vessel is poured to form conical heap.

∴ Volume of sand in cone = Volume of cylinder

13πR2H=πr2h13R2H=r2h13×R2×24=182×32R2×8=324×32R2×8=10368R2=103688R2=1296R=1296R=36 cm.\Rightarrow \dfrac{1}{3}π \text{R}^2 \text{H} = π \text{r}^2 \text{h} \\[1em] \Rightarrow \dfrac{1}{3} \text{R}^2 \text{H} = \text{r}^2 \text{h} \\[1em] \Rightarrow \dfrac{1}{3} \times \text{R}^2 \times 24 = 18^2 \times 32 \\[1em] \Rightarrow \text{R}^2 \times 8 = 324 \times 32 \\[1em] \Rightarrow \text{R}^2 \times 8 = 10368 \\[1em] \Rightarrow \text{R}^2 = \dfrac{10368}{8} \\[1em] \Rightarrow \text{R}^2 = 1296 \\[1em] \Rightarrow \text{R} = \sqrt{1296} \\[1em] \Rightarrow \text{R} = 36 \text{ cm.}

Hence, option 3 is the correct option.

Question 36

The volume of a sphere is 38808 cu. cm. The curved surface area of the sphere (in cm2) is:

  1. 1386

  2. 4158

  3. 5544

  4. 8316

Answer

Given,

Volume of sphere = 38808 cm3

Let the radius of the sphere be r cm.

By formula,

Volume of sphere = 43\dfrac{4}{3} πr3

43×227×r3=38808r3=38808×7×322×4r3=81496888r3=9261r=92613r=21 cm.\Rightarrow \dfrac{4}{3} \times \dfrac{22}{7} \times \text{r}^3 = 38808 \\[1em] \Rightarrow \text{r}^3 = \dfrac{38808 \times 7 \times 3}{22 \times 4} \\[1em] \Rightarrow \text{r}^3 = \dfrac{814968}{88} \\[1em] \Rightarrow \text{r}^3 = 9261 \\[1em] \Rightarrow \text{r} = \sqrt[3]{9261} \\[1em] \Rightarrow \text{r} = 21 \text{ cm}.

Curved surface area of sphere = 4πr2

= 4 × 227\dfrac{22}{7} × 21 × 21

= 4 × 22 × 3 × 21

= 5544 cm2.

Hence, option 3 is the correct option.

Question 37

If the ratio of volumes of two spheres is 1 : 8, then the ratio of their surface areas is :

  1. 1 : 2

  2. 1 : 4

  3. 1 : 8

  4. 1 : 16

Answer

Let radius of two spheres be r and R.

Given,

Ratio of volume of the two spheres is 1 : 8.

Volume of sphere = 43\dfrac{4}{3} π.(radius)3

Volume of Sphere 1Volume of Sphere 2=1843×π×r343×π×R3=18r3R3=18(rR)3=18rR=(18)3rR=12.\therefore \dfrac{\text{Volume of Sphere 1}}{\text{Volume of Sphere 2}} = \dfrac{1}{8} \\[1em] \Rightarrow \dfrac{\dfrac{4}{3} \times π \times \text{r}^3}{\dfrac{4}{3} \times π \times \text{R}^3} = \dfrac{1}{8} \\[1em] \Rightarrow \dfrac{\text{r}^3}{\text{R}^3} = \dfrac{1}{8} \\[1em] \Rightarrow \Big(\dfrac{\text{r}}{\text{R}}\Big)^3 = \dfrac{1}{8} \\[1em] \Rightarrow \dfrac{\text{r}}{\text{R}} = \sqrt[3]{\Big(\dfrac{1}{8}\Big)} \\[1em] \Rightarrow \dfrac{\text{r}}{\text{R}} = \dfrac{1}{2}.

Surface area of sphere = 4π.(radius)2

Surface area of Sphere 1Surface area of Sphere 2=18=4×π×r24×π×R2=(rR)2=(12)2=14=1:4.\therefore \dfrac{\text{Surface area of Sphere 1}}{\text{Surface area of Sphere 2}} = \dfrac{1}{8} \\[1em] = \dfrac{4 \times π \times \text{r}^2}{4 \times π \times \text{R}^2} \\[1em] = \Big(\dfrac{\text{r}}{\text{R}}\Big)^2 \\[1em] = \Big(\dfrac{1}{2}\Big)^2 \\[1em] = \dfrac{1}{4} \\[1em] = 1 : 4.

Hence, option 2 is the correct option.

Question 38

The surface area of a sphere is 154 cm2. The volume of the sphere is :

  1. 359 13\dfrac{1}{3} cm3

  2. 179 23\dfrac{2}{3} cm3

  3. 736 13\dfrac{1}{3} cm3

  4. 1437 13\dfrac{1}{3} cm3

Answer

Let radius of sphere be r cm.

Given, surface area of a sphere = 154 cm2

⇒ 4πr2 = 154

4×227×r2=154r2=154×722×4r2=107888r2=12.25r=12.25r=3.5 cm.\Rightarrow 4 \times \dfrac{22}{7} \times \text{r}^2 = 154 \\[1em] \Rightarrow \text{r}^2 = \dfrac{154 \times 7}{22 \times 4} \\[1em] \Rightarrow \text{r}^2 = \dfrac{1078}{88} \\[1em] \Rightarrow \text{r}^2 = 12.25 \\[1em] \Rightarrow \text{r} = \sqrt{12.25} \\[1em] \Rightarrow \text{r} = 3.5 \text{ cm.}

Volume of sphere = 43\dfrac{4}{3} πr3

=43×227×3.53=43×227×42.875=377321=17923 cm3.= \dfrac{4}{3} \times \dfrac{22}{7} \times 3.5^3 \\[1em] = \dfrac{4}{3} \times \dfrac{22}{7} \times 42.875 \\[1em] = \dfrac{3773}{21} \\[1em] = 179\dfrac{2}{3} \text{ cm}^3.

Hence, option 2 is the correct option.

Question 39

Volume of a cylinder of height 3 cm is 48π cm3. Radius of the cylinder is :

  1. 48 cm

  2. 16 cm

  3. 4 cm

  4. 24 cm

Answer

Given, height of cylinder, h = 3 cm

Radius of cylinder be r cm

Volume of cylinder = 48π cm3

By formula,

Volume of cylinder = πr2h

⇒ πr2h = 48π

⇒ r2 × 3 = 48

r2=483r2=16r=16r=4 cm.\Rightarrow \text{r}^2 = \dfrac{48}{3} \\[1em] \Rightarrow \text{r}^2 = 16 \\[1em] \Rightarrow \text{r} = \sqrt{16} \\[1em] \Rightarrow \text{r} = 4 \text{ cm.}

Hence, option 3 is the correct option.

Question 40

Three solid spherical beads of radii 3 cm, 4 cm and 5 cm are melted and recast into a single spherical bead. Its radius is :

  1. 6 cm

  2. 7 cm

  3. 8 cm

  4. 9 cm

Answer

Given, three spherical beads of radii 3 cm, 4 cm and 5 cm.

Volume of sphere = 43\dfrac{4}{3} πr3

Volume of single spherical bead = Volume of bead of radius 3 cm + Volume of bead of radius 4 cm + Volume of bead of radius 5 cm

43π×r3=43π×33+43π×43+43π×53r3=(33+43+53)r3=27+64+125r3=216r=2163r=6 cm.\Rightarrow \dfrac{4}{3}π \times \text{r}^3 = \dfrac{4}{3}π \times 3^3 + \dfrac{4}{3}π \times 4^3 + \dfrac{4}{3}π \times 5^3 \\[1em] \Rightarrow \text{r}^3 = (3^3 + 4^3 + 5^3) \\[1em] \Rightarrow \text{r}^3 = 27 + 64 + 125 \\[1em] \Rightarrow \text{r}^3 = 216 \\[1em] \Rightarrow \text{r} = \sqrt[3]{216} \\[1em] \Rightarrow \text{r} = 6 \text{ cm.}

Hence, option 1 is the correct option.

Question 41

If a solid sphere of radius 10 cm is moulded into 8 spherical solid balls of equal radius, then the surface area of each ball (in cm2) is :

  1. 50 π

  2. 60 π

  3. 75 π

  4. 100 π

Answer

Let radius of small spherical balls be r cm.

Radius of sphere, R = 10 cm

Volume of solid sphere = 8 × Volume of small spherical balls

43π×R3=8×43π×r3103=8×r31000=8×r3r3=10008r=100083r=102r=5 cm.\Rightarrow \dfrac{4}{3}π \times \text{R}^3 = 8 \times \dfrac{4}{3}π \times \text{r}^3 \\[1em] \Rightarrow 10^3 = 8 \times \text{r}^3 \\[1em] \Rightarrow 1000 = 8 \times \text{r}^3 \\[1em] \Rightarrow \text{r}^3 = \dfrac{1000}{8} \\[1em] \Rightarrow \text{r} = \sqrt[3]{\dfrac{1000}{8}} \\[1em] \Rightarrow \text{r} = \dfrac{10}{2} \\[1em] \Rightarrow \text{r} = 5 \text{ cm.}

Surface area of small ball = 4 πr2

= 4 × π × 5 × 5

= 100 π cm2.

Hence, option 4 is the correct option.

Question 42

The number of solid spheres, each of diameter 6 cm that can be moulded to form a solid metal cylinder of height 45 cm and diameter 4 cm, is :

  1. 3

  2. 4

  3. 5

  4. 6

Answer

Given,

Diameter of sphere = 6 cm

Radius of sphere, r = diameter2=62\dfrac{\text{diameter}}{2} = \dfrac{6}{2} = 3 cm

Height of cylinder, h = 45 cm

Diameter of cylinder = 4 cm

Radius of cylinder, R = diameter2=42\dfrac{\text{diameter}}{2} = \dfrac{4}{2} = 2 cm

Number of solid spheres required be n.

Since, the number of solid spheres, are moulded to form a solid metal cylinder.

∴ Volume of cylinder = n × Volume of solid sphere

πR2h=n×43π×r3R2h=n×43×r322×45=n×43×334×45=n×43×27180=n×4×9180=n×36n=18036n=5.\Rightarrow π\text{R}^2\text{h} = \text{n} \times \dfrac{4}{3}π \times \text{r}^3 \\[1em] \Rightarrow \text{R}^2\text{h} = \text{n} \times \dfrac{4}{3} \times \text{r}^3 \\[1em] \Rightarrow 2^2 \times 45 = \text{n} \times \dfrac{4}{3} \times 3^3 \\[1em] \Rightarrow 4 \times 45 = \text{n} \times \dfrac{4}{3} \times 27 \\[1em] \Rightarrow 180 = \text{n} \times 4 \times 9 \\[1em] \Rightarrow 180 = \text{n} \times 36 \\[1em] \Rightarrow \text{n} = \dfrac{180}{36} \\[1em] \Rightarrow \text{n} = 5.

Hence, option 3 is the correct option.

Question 43

If the height and diameter of a right circular cylinder are 32 cm and 6 cm respectively, then the radius of the sphere whose volume is equal to the volume of the cylinder is :

  1. 3 cm

  2. 4 cm

  3. 4.5 cm

  4. 6 cm

Answer

Given,

Height of cylinder, h = 32 cm

Diameter of cylinder = 6 cm

Radius of cylinder, R = diameter2=62\dfrac{\text{diameter}}{2} = \dfrac{6}{2} = 3 cm

Let radius of sphere be r cm.

Since, volume of sphere is equal to the volume of the cylinder.

∴ Volume of cylinder = Volume of solid sphere

πR2h=43π×r3R2h=43×r332×32=43×r39×32×3=4×r3864=4×r3r3=8644r3=216r=2163r=6 cm.\Rightarrow π\text{R}^2\text{h} = \dfrac{4}{3}π \times \text{r}^3 \\[1em] \Rightarrow \text{R}^2\text{h} = \dfrac{4}{3} \times \text{r}^3 \\[1em] \Rightarrow 3^2 \times 32 = \dfrac{4}{3} \times \text{r}^3 \\[1em] \Rightarrow 9 \times 32 \times 3 = 4 \times \text{r}^3 \\[1em] \Rightarrow 864 = 4 \times \text{r}^3 \\[1em] \Rightarrow \text{r}^3 = \dfrac{864}{4} \\[1em] \Rightarrow \text{r}^3 = 216 \\[1em] \Rightarrow \text{r} = \sqrt[3]{216} \\[1em] \Rightarrow \text{r} = 6 \text{ cm.}

Hence, option 4 is the correct option.

Question 44

If the volume of a sphere is twice that of the other, then the ratio of their radii is :

  1. 2 : 1

  2. 4 : 1

  3. 2\sqrt{2} : 1

  4. 23\sqrt[3]{2} : 1

Answer

Let the radius of sphere 1 be r cm and radius of sphere 2 be R cm.

Volume of sphere = 43π×r3\dfrac{4}{3}π \times \text{r}^3

Given,

Volume of sphere 1 = 2 × Volume of sphere 2

43π×r3=2×43π×R3r3=2×R3r3R3=21(rR)3=21rR=213rR=231\Rightarrow \dfrac{4}{3}π \times \text{r}^3 = 2 \times \dfrac{4}{3}π \times \text{R}^3 \\[1em] \Rightarrow \text{r}^3 = 2 \times \text{R}^3 \\[1em] \Rightarrow \dfrac{\text{r}^3}{\text{R}^3} = \dfrac{2}{1} \\[1em] \Rightarrow \Big(\dfrac{\text{r}}{\text{R}}\Big)^3 = \dfrac{2}{1} \\[1em] \Rightarrow \dfrac{\text{r}}{\text{R}} = \sqrt[3]{\dfrac{2}{1}} \\[1em] \Rightarrow \dfrac{\text{r}}{\text{R}} = \dfrac{\sqrt[3]{2}}{1}

Hence, option 4 is the correct option.

Question 45

If a sphere just fits in a right circular cylinder, then the ratio of the volume of sphere to the volume of the cylinder is :

  1. 1 : 3

  2. 1 : 2

  3. 2 : 3

  4. 1 : 4

Answer

Let r be the radius of the sphere

If a sphere just fits in a right circular cylinder, then the ratio of the volume of sphere to the volume of the cylinder is. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

The radius of cylinder is also r cm and height of the cylinder is 2r cm

By formula,

Volume of cylinder = πr2h

= πr2(2r)

= 2πr3

By formula,

Volume of sphere = 43π×r3\dfrac{4}{3}π \times \text{r}^3

Ratio of the volume of sphere to the volume of the cylinder:

=43π×r32π×r3=43×12=46=23= \dfrac{\dfrac{4}{3}π \times \text{r}^3}{2π \times \text{r}^3} \\[1em] = \dfrac{4}{3} \times \dfrac{1}{2} \\[1em] = \dfrac{4}{6} \\[1em] = \dfrac{2}{3}

Hence, option 3 is the correct option.

Question 46

A sphere of radius 6 cm is dropped into a cylindrical vessel, partly filled with water. The radius of the vessel is 8 cm. If the sphere is submerged completely, then the surface of the water rises by :

  1. 2 cm

  2. 3 cm

  3. 4 cm

  4. 4.5 cm

Answer

Radius of sphere, r = 6 cm

Radius of cylinder, R = 8 cm

Let the rise in water level be x cm.

∴ Volume of water that rises by x cm in the cylindrical vessel = Volume of sphere submerged

πR2x=43πr382x=43×6364x=43×21664x=4×7264x=288x=28864x=4.5 cm.\Rightarrow π\text{R}^2\text{x} = \dfrac{4}{3} π\text{r}^3 \\[1em] \Rightarrow 8^2\text{x} = \dfrac{4}{3} \times 6^3 \\[1em] \Rightarrow 64\text{x} = \dfrac{4}{3} \times 216 \\[1em] \Rightarrow 64\text{x} = 4 \times 72 \\[1em] \Rightarrow 64\text{x} = 288 \\[1em] \Rightarrow \text{x} = \dfrac{288}{64} \\[1em] \Rightarrow \text{x} = 4.5 \text{ cm.}

Hence, option 4 is the correct option.

Question 47

If a cylindrical rod of iron whose length is 12 times its radius is melted and cast into spherical balls of the same radius, then the number of balls will be :

  1. 3

  2. 6

  3. 9

  4. 27

Answer

Let radius of the cylinder be r cm.

Length of cylindrical rod, h = 12r

Radius of spherical balls be r cm

Number of spherical balls required be n.

Since, a cylindrical rod of iron is melted and cast into spherical balls of the same radius.

∴ Volume of cylindrical rod = n × Volume of spherical ball

πr2h=n×43πr3r2×12r=n×43r312r3=n×43r312=n×43n=12×34n=364n=9.\Rightarrow π\text{r}^2\text{h} = \text{n} \times \dfrac{4}{3} π\text{r}^3 \\[1em] \Rightarrow \text{r}^2 \times \text{12r} = \text{n} \times \dfrac{4}{3} \text{r}^3 \\[1em] \Rightarrow 12\text{r}^3 = \text{n} \times \dfrac{4}{3} \text{r}^3 \\[1em] \Rightarrow 12 = \text{n} \times \dfrac{4}{3} \\[1em] \Rightarrow \text{n} = \dfrac{12 \times 3}{4} \\[1em] \Rightarrow \text{n} = \dfrac{36}{4} \\[1em] \Rightarrow \text{n} = 9.

Hence, option 3 is the correct option.

Question 48

If a solid sphere of radius r is melted and recast into the shape of a solid cone of height r then the radius of the base of the cone is :

  1. r

  2. 2r

  3. 3r

  4. 4r

Answer

Given,

Radius of sphere = r cm

Height of cone, h = r cm

Let radius of cone be R cm

Since, sphere is melted and recasted into cone.

∴ Volume of sphere = Volume of cone

43πr3=13πR2h43r3=13R2×r3×43×r3=R2×r4×r3r=R24×r2=R2R=4×r2R=2r\Rightarrow \dfrac{4}{3} π\text{r}^3 = \dfrac{1}{3} π\text{R}^2\text{h} \\[1em] \Rightarrow \dfrac{4}{3} \text{r}^3 = \dfrac{1}{3} \text{R}^2 \times \text{r} \\[1em] \Rightarrow 3 \times \dfrac{4}{3} \times \text{r}^3 = \text{R}^2 \times \text{r} \\[1em] \Rightarrow 4 \times \dfrac{\text{r}^3}{\text{r}} = \text{R}^2 \\[1em] \Rightarrow 4 \times \text{r}^2 = \text{R}^2 \\[1em] \Rightarrow \text{R} = \sqrt{4 \times \text{r}^2} \\[1em] \Rightarrow \text{R} = 2\text{r}

Hence, option 2 is the correct option.

Question 49

If the volume and the surface area of a sphere are numerically the same, then its radius is:

  1. 1 unit

  2. 2 units

  3. 3 units

  4. 4 units

Answer

Let radius of sphere be r cm.

Given,

Volume of sphere = Surface area of sphere

43πr3=4πr24πr3=3×4πr24r3=12×r2r3=124×r2r3r2=3r=3 units.\Rightarrow \dfrac{4}{3} π\text{r}^3 = 4π\text{r}^2 \\[1em] \Rightarrow 4π\text{r}^3 = 3 \times 4π\text{r}^2 \\[1em] \Rightarrow 4\text{r}^3 = 12 \times \text{r}^2 \\[1em] \Rightarrow \text{r}^3 = \dfrac{12}{4} \times \text{r}^2 \\[1em] \Rightarrow \dfrac{\text{r}^3}{\text{r}^2} = 3 \\[1em] \Rightarrow \text{r} = 3 \text{ units.}

Hence, option 3 is the correct option.

Question 50

The diameter of a copper sphere is 6 cm. The sphere is melted and drawn into a long wire of uniform circular cross section. If the length of the wire is 36 cm, then its radius is :

  1. 0.5 cm

  2. 1 cm

  3. 1.2 cm

  4. 1.5 cm

Answer

Given,

Let the wire's radius be a.

Given, sphere is melted into the wire.

The wire formed is a cylinder, hence the volume of wire will be equal to the volume of sphere.

Radius of sphere, r = diameter2=62\dfrac{\text{diameter}}{2} = \dfrac{6}{2} = 3 cm

Volume of sphere, V = 43πr3\dfrac{4}{3} π\text{r}^3

=43π×33=43π×27=4×9π=36π cm3= \dfrac{4}{3}π \times 3^3 \\[1em] = \dfrac{4}{3}π \times 27 \\[1em] = 4 \times 9π \\[1em] = 36 π \text{ cm}^3

Given, length of wire = 36 cm

So, height of cylinder = 36 cm

Volume of cylinder, V = 36 π cm3

∴ πr2h = 36 π

r2×36=36r2=3636r2=1r=1r=1 cm.\Rightarrow \text{r}^2 \times 36 = 36 \\[1em] \Rightarrow \text{r}^2 = \dfrac{36}{36} \\[1em] \Rightarrow \text{r}^2 = 1 \\[1em] \Rightarrow \text{r} = \sqrt{1} \\[1em] \Rightarrow \text{r} = 1 \text{ cm.}

Hence, option 2 is the correct option.

Question 51

A spherical ball of radius 3 cm is melted and recast into three spherical balls. The radii of two of these balls are 1.5 cm and 2 cm. The radius of the third ball is :

  1. 0.5 cm

  2. 1 cm

  3. 1.5 cm

  4. 2.5 cm

Answer

Radius of larger spherical metallic ball, R = 3 cm

Radius of smaller spherical balls are 1.5 cm, 2 cm and r cm

Given,

A spherical metallic ball of radius 3 cm is melted and recast into three spherical balls.

∴ Volume of larger spherical ball = Volume of ball of radius 1.5 cm + Volume of ball of radius 2 cm + Volume of ball of radius r cm

43πR3=43π×1.53+43π×23+43πr343πR3=43π(1.53+23+r3)R3=(1.53+23+r3)33=3.375+8+r3r3=273.3758r3=15.625r=15.6253r=2.5 cm.\Rightarrow \dfrac{4}{3}π\text{R}^3 = \dfrac{4}{3}π \times 1.5^3 + \dfrac{4}{3}π \times 2^3 + \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \dfrac{4}{3}π\text{R}^3 = \dfrac{4}{3}π(1.5^3 + 2^3 + \text{r}^3) \\[1em] \Rightarrow \text{R}^3 = (1.5^3 + 2^3 + \text{r}^3) \\[1em] \Rightarrow 3^3 = 3.375 + 8 + \text{r}^3 \\[1em] \Rightarrow \text{r}^3 = 27 - 3.375 - 8 \\[1em] \Rightarrow \text{r}^3 = 15.625 \\[1em] \Rightarrow \text{r} = \sqrt[3]{15.625} \\[1em] \Rightarrow \text{r} = 2.5 \text{ cm.}

Hence, option 4 is the correct option.

Question 52

A sphere of diameter 12.6 cm is melted and cast into a right circular cone of height 25.2 cm. The radius of the base of the cone is :

  1. 2 cm

  2. 2.1 cm

  3. 3 cm

  4. 6.3 cm

Answer

Radius of sphere, r = diameter2=12.62=6.3 cm.\dfrac{\text{diameter}}{2} = \dfrac{12.6}{2} = 6.3 \text{ cm.}

Volume of sphere = 43πr3\dfrac{4}{3}π\text{r}^3

Radius of the cone = R cm

Height of the cone, h = 25.2 cm

Volume of cone = 13πR2h\dfrac{1}{3}π\text{R}^2 \text{h}

Since, sphere is melted and recasted into a cone, the volume remains the same.

13πR2h=43πr313R2h=43r3R2=4×33×h×r3R2=123×25.2×6.33R2=1275.6×250.047R2=3000.56475.6R2=39.69R=39.69R=6.3 cm.\therefore \dfrac{1}{3}π\text{R}^2 \text{h} = \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \dfrac{1}{3}\text{R}^2 \text{h} = \dfrac{4}{3}\text{r}^3 \\[1em] \Rightarrow \text{R}^2 = \dfrac{4 \times 3}{3 \times \text{h}} \times \text{r}^3 \\[1em] \Rightarrow \text{R}^2 = \dfrac{12}{3 \times 25.2} \times 6.3^3 \\[1em] \Rightarrow \text{R}^2 = \dfrac{12}{75.6} \times 250.047 \\[1em] \Rightarrow \text{R}^2 = \dfrac{3000.564}{75.6} \\[1em] \Rightarrow \text{R}^2 = 39.69 \\[1em] \Rightarrow \text{R} = \sqrt{39.69} \\[1em] \Rightarrow \text{R} = 6.3 \text{ cm.}

Hence, option 4 is the correct option.

Question 53

How many lead shots each 0.3 cm in diameter can be made from a cuboid of dimensions 9 cm × 11 cm × 12 cm?

  1. 7200

  2. 8400

  3. 72000

  4. 84000

Answer

Shots is in the shape of sphere.

Radius of sphere, r = diameter2=0.32=0.15cm.\dfrac{\text{diameter}}{2} = \dfrac{0.3}{2} = 0.15 \text{cm.}

Let the number of spheres formed be n.

Volume of cuboid = n × Volume of each lead shot

lbh=n×43πr39×11×12=n×43×227×0.1531188=n×43×227×0.0033751188=n×0.29721n=21×11880.297n=249480.297n=84000.\therefore \text{lbh} = \text{n} \times \dfrac{4}{3} π \text{r}^3 \\[1em] \Rightarrow 9 \times 11 \times 12 = \text{n} \times \dfrac{4}{3} \times \dfrac{22}{7} \times 0.15^3 \\[1em] \Rightarrow 1188 = \text{n} \times \dfrac{4}{3} \times \dfrac{22}{7} \times 0.003375 \\[1em] \Rightarrow 1188 = \text{n} \times \dfrac{0.297}{21} \\[1em] \Rightarrow \text{n} = \dfrac{21 \times 1188}{0.297} \\[1em] \Rightarrow \text{n} = \dfrac{24948}{0.297} \\[1em] \Rightarrow \text{n} = 84000.

Hence, option 4 is the correct option.

Question 54

A metallic sphere of radius 10.5 cm in melted and then recast into small cones, each of radius 3.5 cm and height 3 cm. The number of cones formed is :

  1. 21

  2. 63

  3. 126

  4. 130

Answer

Radius of sphere, r = 10.5 cm

Let the number of cones formed by recasting metallic sphere be n.

Radius of cone, R = 3.5 cm

Height, h = 3 cm

Volume of sphere = n × Volume of each cone

43πr3=n×13πR2hDividing both sides by π and multiplying by 3, we get :4r3=n×R2h4×10.53=n×3.52×34×1157.625=n×12.25×34630.5=n×36.75n=4630.536.75n=126.\Rightarrow \dfrac{4}{3}π\text{r}^3 = \text{n} \times \dfrac{1}{3}π\text{R}^2 \text{h} \\[1em] \text{Dividing both sides by π and multiplying by 3, we get :} \\[1em] \Rightarrow 4\text{r}^3 = \text{n} \times \text{R}^2 \text{h} \\[1em] \Rightarrow 4 \times 10.5^3 = \text{n} \times 3.5^2 \times 3 \\[1em] \Rightarrow 4 \times 1157.625 = \text{n} \times 12.25 \times 3 \\[1em] \Rightarrow 4630.5 = \text{n} \times 36.75 \\[1em] \Rightarrow \text{n} = \dfrac{4630.5}{36.75} \\[1em] \Rightarrow \text{n} = 126.

Hence, option 3 is the correct option.

Question 55

A hemispherical bowl of internal radius 9 cm contains a liquid. This liquid is to be filled into cylindrical shaped small bottles of diameter 3 cm and height 4 cm. How many bottles will be needed to empty the bowl?

  1. 27

  2. 35

  3. 54

  4. 63

Answer

Given,

Internal radius of hemispherical bowl, R = 9 cm

Radius of cylindrical bottles, r = diameter2=32\dfrac{\text{diameter}}{2} = \dfrac{3}{2} = 1.5 cm

Height of the cylindrical bottles, h = 4 cm

Let number of cylindrical bottles needed be n.

∴ Volume of hemispherical bowl = n × Volume of each cylindrical bottle

23πR3=n×πr2h23R3=n×r2h23×93=n×1.52×423×729=n×2.25×42×243=n×9n=4869n=54.\Rightarrow \dfrac{2}{3}π\text{R}^3 = \text{n} \times π\text{r}^2\text{h} \\[1em] \Rightarrow \dfrac{2}{3}\text{R}^3 = \text{n} \times \text{r}^2\text{h} \\[1em] \Rightarrow \dfrac{2}{3} \times 9^3 = \text{n} \times 1.5^2 \times 4 \\[1em] \Rightarrow \dfrac{2}{3} \times 729 = \text{n} \times 2.25 \times 4 \\[1em] \Rightarrow 2 \times 243 = \text{n} \times 9 \\[1em] \Rightarrow \text{n} = \dfrac{486}{9} \\[1em] \Rightarrow \text{n} = 54.

Hence, option 3 is the correct option.

Question 56

A cone, a hemisphere and a cylinder stand on equal bases and have the same height. The ratio of their volumes is :

  1. 1 : 2 : 3

  2. 2 : 1 : 3

  3. 2 : 3 : 1

  4. 3 : 2 : 1

Answer

Let the common radius of shapes be r and height be h.

Ratio of their volumes = Volume of cone : Volume of hemisphere : Volume of cylinder

=13πr2h:23πr3:πr2h=13:23:1= \dfrac{1}{3} π\text{r}^2\text{h} : \dfrac{2}{3} π\text{r}^3 : π\text{r}^2\text{h} \\[1em] = \dfrac{1}{3} : \dfrac{2}{3} : 1

On multiplying by 3, ratio = 1 : 2 : 3

Hence, option 1 is the correct option.

Question 57

A hollow cylindrical drum has internal diameter of 30 cm and a height of 1 m. What is the maximum number of cylindrical boxes of diameter 10 cm and height 10 cm each that can be packed in the drum?

  1. 60

  2. 70

  3. 80

  4. 90

Answer

In hollow cylindrical drum,

Height, H = 1 m = 100 cm

Radius, R = Diameter2=302\dfrac{\text{Diameter}}{2} = \dfrac{30}{2} = 15 cm

For each cylindrical boxes,

Height, h = 10 cm

Radius, r = Diameter2=102\dfrac{\text{Diameter}}{2} = \dfrac{10}{2} = 5 cm

Let the maximum number of cylindrical boxes that can be packed be n.

Volume of hollow cylinder = n × Volume of cylindrical box

πR2H=n×πr2hR2H=n×r2h152×100=n×52×10225×100=n×25×1022500=n×250n=22500250n=90.\therefore π\text{R}^2\text{H} = \text{n} \times π\text{r}^2\text{h} \\[1em] \Rightarrow \text{R}^2\text{H} = \text{n} \times \text{r}^2\text{h} \\[1em] \Rightarrow 15^2 \times 100 = \text{n} \times 5^2 \times 10 \\[1em] \Rightarrow 225 \times 100 = \text{n} \times 25 \times 10 \\[1em] \Rightarrow 22500 = \text{n} \times 250 \\[1em] \Rightarrow \text{n} = \dfrac{22500}{250} \\[1em] \Rightarrow \text{n} = 90.

Hence, option 4 is the correct option.

Question 58

Ice-cream, completely filled in a cylinder of diameter 35 cm and height 32 cm, is to be served by completely filling identical disposable cones of diameter 4 cm and height 7 cm. The maximum number of persons that can be served in this way is :

  1. 950

  2. 1000

  3. 1050

  4. 1100

Answer

In ice-cream cylinder,

Radius of cylinder, R = diameter2=352\dfrac{\text{diameter}}{2} = \dfrac{35}{2} = 17.5 cm

Height of cylinder, H = 32 cm

In each ice-cream cone,

Radius of cone part, r = diameter2=42\dfrac{\text{diameter}}{2} = \dfrac{4}{2} = 2 cm

Height of cone, h = 7 cm

Let the number of children who get ice-cream cone be n.

Volume of cylinder = n × Volume of ice-cream cone

πR2H=n×13πr2h3×R2H=n×r2h3×17.52×32=n×22×73×306.25×32=n×4×729400=n×28n=2940028n=1050.\therefore π\text{R}^2\text{H} = \text{n} \times \dfrac{1}{3}π\text{r}^2\text{h} \\[1em] \Rightarrow 3 \times \text{R}^2\text{H} = \text{n} \times \text{r}^2\text{h} \\[1em] \Rightarrow 3 \times 17.5^2 \times 32 = \text{n} \times 2^2 \times 7 \\[1em] \Rightarrow 3 \times 306.25 \times 32 = \text{n} \times 4 \times 7 \\[1em] \Rightarrow 29400 = \text{n} \times 28 \\[1em] \Rightarrow \text{n} = \dfrac{29400}{28} \\[1em] \Rightarrow \text{n} = 1050.

Hence, option 3 is the correct option.

Question 59

A spherical iron ball is dropped into a cylindrical vessel of base diameter 14 cm containing water. The water level is increased by 9 13\dfrac{1}{3} cm. The radius of the ball is :

  1. 3.5 cm

  2. 7 cm

  3. 9 cm

  4. 12 cm

Answer

Let the radius of the sphere be r cm.

Radius of cylinder, R = diameter2=142\dfrac{\text{diameter}}{2} = \dfrac{14}{2} = 7 cm

Since, a spherical iron ball is dropped into the vessel.

Height of water raised by 9 13cm=283\dfrac{1}{3} \text{cm} = \dfrac{28}{3} cm

Volume of water rise in cylinder = Volume of sphere

πR2h=43πr3R2h=43r3r3=34×R2×hr3=34×72×283r3=34×49×283r3=411612r3=343r=3433r=7 cm.\Rightarrow π\text{R}^2\text{h} = \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \text{R}^2\text{h} = \dfrac{4}{3}\text{r}^3 \\[1em] \Rightarrow \text{r}^3 = \dfrac{3}{4} \times \text{R}^2 \times \text{h} \\[1em] \Rightarrow \text{r}^3 = \dfrac{3}{4} \times 7^2 \times \dfrac{28}{3} \\[1em] \Rightarrow \text{r}^3 = \dfrac{3}{4} \times 49 \times \dfrac{28}{3} \\[1em] \Rightarrow \text{r}^3 = \dfrac{4116}{12} \\[1em] \Rightarrow \text{r}^3 = 343 \\[1em] \Rightarrow \text{r} = \sqrt[3]{343} \\[1em] \Rightarrow \text{r} = 7 \text{ cm.}

Hence, option 2 is the correct option.

Question 60

A solid is in the form of a right circular cylinder with hemispherical ends. The total length of the solid is 35 cm. The diameter of the cylinder is one-fourth of its height. The surface area of the solid is :

  1. 462 cm2

  2. 693 cm2

  3. 750 cm2

  4. 770 cm2

Answer

Draw a ΔABC in which BC = 5.6 cm, ∠B = 45° and the median AD from A to BC is 4.5 cm. Inscribe a circle in it. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

From figure,

Height of cylinder be h cm

Given, Diameter of cylinder = 14\dfrac{1}{4} h

Radius of cylinder = Radius of hemisphere = r = diameter2=14×h2=h8\dfrac{\text{diameter}}{2} = \dfrac{\dfrac{1}{4} \times \text{h}}{2} = \dfrac{\text{h}}{8}

Height of cylinder, h = Total height - (2 × Radius of hemisphere)

h=352×h8h=35h4h+h4=354h+h4=355h4=355h=35×45h=140h=1405h=28 cm.\Rightarrow \text{h} = 35 - 2 \times \dfrac{\text{h}}{8} \\[1em] \Rightarrow \text{h} = 35 - \dfrac{\text{h}}{4} \\[1em] \Rightarrow \text{h} + \dfrac{\text{h}}{4} = 35 \\[1em] \Rightarrow \dfrac{4 \text{h} + \text{h}}{4} = 35 \\[1em] \Rightarrow \dfrac{5 \text{h}}{4} = 35 \\[1em] \Rightarrow 5\text{h} = 35 \times 4 \\[1em] \Rightarrow 5\text{h} = 140 \\[1em] \Rightarrow \text{h} = \dfrac{140}{5} \\[1em] \Rightarrow \text{h} = 28 \text{ cm.}

∴ r = h8=288=3.5 cm\dfrac{\text{h}}{8} = \dfrac{28}{8} = 3.5 \text{ cm}

Surface area of solid = 2 × 2πr2 + 2πrh

= πr(4r + 2h)

=227×3.5(4×3.5+2×28)=22×0.5(14+56)=11×70=770 cm2.= \dfrac{22}{7} \times 3.5 (4 \times 3.5 + 2 \times 28) \\[1em] = 22 \times 0.5 (14 + 56) \\[1em] = 11 \times 70 \\[1em] = 770 \text{ cm}^2.

Hence, option 4 is the correct option.

Question 61 to 64

Directions:

At an NCC camp, several tents were installed. Each tent is cylindrical to a height of 3 m and conical above it. The total height of the tent is 13.5 m and the radius of its base is 14 m.

Based on this information, answer the following questions:

  1. The slant height of the conical portion of the tent is :

(a) 16.5 m
(b) 17.5 m
(c) 18.5 m
(d) 19.5 m

  1. The cost of cloth required to make each tent at the rate of ₹ 80 per square meter is :

(a) ₹ 76560
(b) ₹ 80140
(c) ₹ 82720
(d) ₹ 85960

  1. If each cadet requires 8 m2 of floor space and there are 15 tents in all how many cadets can be accommodated in the camp?

(a) 960
(b) 1155
(c) 1320
(d) 1440

  1. If a tent has maximum number of cadets that it can accommodate as calculated in the above questions, what is the volume of air available to each cadet to breathe?

(a) 48 m3
(b) 52 m3
(c) 55 m3
(d) 77 m3

Answer

Draw a ΔABC in which BC = 5.6 cm, ∠B = 45° and the median AD from A to BC is 4.5 cm. Inscribe a circle in it. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

61. Given,

Height of cylinder, h = 3 m

Total height of tent, T = 13.5 m

Height of cone, H = T - h = 13.5 - 3 = 10.5 m

Radius of base of cylinder = Radius of cone = r = 14 m

Slant height of cone be l m.

l2 = r2 + H2

⇒ l2 = 142 + 10.52

⇒ l2 = 196 + 110.25

⇒ l2 = 306.25

⇒ l = 306.25\sqrt{306.25} = 17.5 m

Hence, Option (b) is the correct option.

62. Curved surface area of tent = Curved surface area of cone + Curved surface area of cylinder

= 2πrh + πrl

= πr(2h + l)

=227×14(2×3+17.5)=22×2(6+17.5)=44×23.5=1034 m2.= \dfrac{22}{7} \times 14 (2 \times 3 + 17.5) \\[1em] = 22 \times 2(6 + 17.5) \\[1em] = 44 \times 23.5 \\[1em] = 1034 \text{ m}^2.

Given, cost of cloth required to make each tent is ₹ 80 per square meter.

⇒ Total cost = 80 × 1034 = ₹ 82720

Hence, Option (c) is the correct option.

63. The floor space of a tent is base area of cylinder.

∴ Area of base = πr2

= 227\dfrac{22}{7} × 14 × 14

= 22 × 2 × 14

= 616 m2

Given each cadet requires 8 m2 of floor space.

The number of cadets per tent = Area of basespace required per cadet=6168\dfrac{\text{Area of base}}{\text{space required per cadet}} = \dfrac{616}{8} = 77 cadets.

Given, there are 15 tents.

∴ Total number of cadets = 77 × 15 = 1155 cadets.

Hence, Option (b) is the correct option.

64. Volume of air in each tent = Volume of air in cylinder + Volume of air in cone

=πr2h+13πr2H=πr2(h+13H)=227×142(3+13×10.5)=227×196(3+3.5)=22×28×6.5=4004 m3.= π\text{r}^2\text{h} + \dfrac{1}{3}π\text{r}^2\text{H} \\[1em] = π\text{r}^2 (\text{h} + \dfrac{1}{3}\text{H}) \\[1em] = \dfrac{22}{7} \times 14^2 (3 + \dfrac{1}{3} \times 10.5) \\[1em] = \dfrac{22}{7} \times 196 (3 + 3.5) \\[1em] = 22 \times 28 \times 6.5 \\[1em] = 4004 \text{ m}^3.

Volume of air available to each cadet to breathe = Volume of air per tentCadets per tent=400477\dfrac{\text{Volume of air per tent}}{\text{Cadets per tent}} = \dfrac{4004}{77} = 52 m3.

Hence, Option (b) is the correct option.

Question 65 to 68

Directions:

From a solid cylinder of height 30 cm and radius 7 cm, a conical cavity of height 24 cm and of base radius 7 cm is drilled out.

Based on this information, answer the following questions:

  1. The volume of the remaining solid is :

(a) 2856 cm3
(b) 3388 cm3
(c) 3672 cm3
(d) 4620 cm3

  1. The total surface area of the remaining solid is :

(a) 1870 cm2
(b) 2024 cm2
(c) 2178 cm2
(d) 2332 cm2

  1. The slant height of the cut out cone is :

(a) 18 cm
(b) 25 cm
(c) 26 cm
(d) 32 cm

  1. The total surface area of the cut out cone is :

(a) 550 cm2
(b) 704 cm2
(c) 858 cm2
(d) 616 cm2

Answer

Draw a ΔABC in which BC = 5.6 cm, ∠B = 45° and the median AD from A to BC is 4.5 cm. Inscribe a circle in it. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

65. Radius of solid cylinder = Radius of cone = r = 7 cm

Height of the cylinder, H = 30 cm

Height of cone, h = 24 cm

Volume of remaining solid = Volume of cylinder - Volume of cone

=πr2H13πr2h=πr2(Hh3)=227×72×(30243)=227×49×(308)=22×7×22=3388 cm3.= π\text{r}^2\text{H} - \dfrac{1}{3}π\text{r}^2\text{h} \\[1em] = π\text{r}^2(\text{H} - \dfrac{\text{h}}{3}) \\[1em] = \dfrac{22}{7} \times 7^2 \times (30 - \dfrac{24}{3}) \\[1em] = \dfrac{22}{7} \times 49 \times (30 - 8) \\[1em] = 22 \times 7 \times 22 \\[1em] = 3388 \text{ cm}^3.

Hence, Option (b) is the correct option.

66. Slant height of cone, l = h2+r2=242+72=576+49=625\sqrt{\text{h}^2 + \text{r}^2} = \sqrt{24^2 + 7^2} = \sqrt{576 + 49} = \sqrt{625} = 25 cm

Total surface area of reamining solid = Curved surface area of cylinder + Area of base of cylinder + Curved surface area of cone

= 2πrH + πr2 + πrl

= πr(2H + r + l)

= 227\dfrac{22}{7} × 7 (2 × 30 + 7 + 25)

= 22 × (60 + 32)

= 22 × 92

= 2024 cm2.

Hence, Option (b) is the correct option.

67. Slant height of cone, l = h2+r2=242+72=576+49=625\sqrt{\text{h}^2 + \text{r}^2} = \sqrt{24^2 + 7^2} = \sqrt{576 + 49} = \sqrt{625} = 25 cm

Hence, Option (b) is the correct option.

68. Total surface area of cut out cone = πr2 + πrl

= πr(r + l)

= 227\dfrac{22}{7} × 7 × (7 + 25)

= 22 × 32

= 704 cm2

Hence, Option (b) is the correct option.

Question 69 to 72

Directions:

The surface area of a solid metallic sphere is 900 π cm2.

Based on this information, answer the following questions:

  1. If the given sphere is melted and recast into 3 smaller spheres of equal volumes, then the radius of each smaller sphere is :

(a) 5 cm
(b) 5 3\sqrt{3} cm
(c) 5 33\sqrt[3]{3} cm
(d) 5 93\sqrt[3]{9} cm

  1. If the given sphere is cut into two hemispheres, then how much does the total surface area get increased? (Take π = 3.14) :

(a) no change
(b) 706.5 cm2
(c) 1015 cm2
(d) 1413 cm2

  1. If the given sphere is melted and recast into solid right cones, each of radius 2.5 cm and height 8 cm, how many cones are formed?

(a) 135
(b) 270
(c) 405
(d) 540

  1. If the given sphere is melted and recast into small spheres each of radius 0.5 cm, then the number of spheres formed is :

(a) 1350
(b) 2700
(c) 13500
(d) 27000

Answer

69. Given,

Let radius of sphere be R cm.

Surface area of a solid metallic sphere = 900 π cm2

∴ 4πR2 = 900 π

⇒ 4R2 = 900

⇒ R2 = 9004\dfrac{900}{4}

⇒ R2 = 225

⇒ R = 225\sqrt{225}

⇒ R = 15 cm

Let radius of small spheres be r cm.

Since, the given sphere is melted and recast into 3 smaller spheres of equal volumes.

Volume of sphere = 3 × Volume of small spheres

43πR3=3×43πr3R3=3×r3153=3×r33375=3×r3r3=33753r3=1125r=11253r=125×93r=593 cm.\therefore \dfrac{4}{3}π\text{R}^3 = 3 \times \dfrac{4}{3}π\text{r}^3 \\[1em] \Rightarrow \text{R}^3 = 3 \times \text{r}^3 \\[1em] \Rightarrow 15^3 = 3 \times \text{r}^3 \\[1em] \Rightarrow 3375 = 3 \times \text{r}^3 \\[1em] \Rightarrow \text{r}^3 = \dfrac{3375}{3} \\[1em] \Rightarrow \text{r}^3 = 1125 \\[1em] \Rightarrow \text{r} = \sqrt[3]{1125} \\[1em] \Rightarrow \text{r} = \sqrt[3]{125 \times 9} \\[1em] \Rightarrow \text{r} = 5\sqrt[3]{9} \text{ cm.}

Hence, Option (d) is the correct option.

70. When a sphere is cut into two hemispheres, two new circular faces are exposed.

∴ Radius of hemisphere = R = 15 cm.

The increase in total surface area = Area of two circular faces

= 2 × πR2

= 2 × 3.14 × 152

= 2 × 3.14 × 225

= 1413 cm2

Hence, Option (d) is the correct option.

71. Let, radius of cone be a = 2.5 cm

Height of cone, h = 8 cm

Let solid right cones formed be n.

Since, the given sphere is melted and recast into solid right cones.

∴ Volume of sphere = n × Volume of cone

43πR3=n×13πa2h4R3=n×a2hn=4R3a2hn=4×1532.52×8n=4×33756.25×8n=1350050n=270.\therefore \dfrac{4}{3}π \text{R}^3 = \text{n} \times \dfrac{1}{3}π\text{a}^2 \text{h} \\[1em] \Rightarrow 4 \text{R}^3 = \text{n} \times \text{a}^2 \text{h} \\[1em] \Rightarrow \text{n} = \dfrac{4 \text{R}^3}{\text{a}^2 \text{h}} \\[1em] \Rightarrow \text{n} = \dfrac{4 \times 15^3}{2.5^2 \times 8} \\[1em] \Rightarrow \text{n} = \dfrac{4 \times 3375}{6.25 \times 8} \\[1em] \Rightarrow \text{n} = \dfrac{13500}{50} \\[1em] \Rightarrow \text{n} = 270.

Hence, Option (b) is the correct option.

72. Let radius of small spheres be b = 0.5 cm.

Let number of small spheres formed be n.

Since, the given sphere is melted and recast into small spheres.

∴ Volume of sphere = n × Volume of small spheres

43πR3=n×43πb3R3=n×b3n=R3b3n=1530.53n=33750.125n=27000.\therefore \dfrac{4}{3}π \text{R}^3 = \text{n} \times \dfrac{4}{3}π \text{b}^3 \\[1em] \Rightarrow \text{R}^3 = \text{n} \times \text{b}^3 \\[1em] \Rightarrow \text{n} = \dfrac{\text{R}^3}{\text{b}^3} \\[1em] \Rightarrow \text{n} = \dfrac{15^3}{0.5^3} \\[1em] \Rightarrow \text{n} = \dfrac{3375}{0.125} \\[1em] \Rightarrow \text{n} = 27000.

Hence, Option (d) is the correct option.

Assertion–Reason Questions

Question 1

Assertion (A) : Slant height of a cone of height 4 cm and radius 3 cm is (4 + 3) cm = 7 cm.

Reason (R) : Curved surface area of a cone of radius r and slant height l is πrl.

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

Radius, r = 3 cm

Slant height be l cm

Height, h = 4 cm

By formula,

l2 = h2 + r2

⇒ l2 = 42 + 32

⇒ l2 = 16 + 9

⇒ l2 = 25

⇒ l = 25\sqrt{25}

⇒ l = 5 cm.

∴ Assertion (A) is false.

By formula,

Curved surface area of a cone of radius r and slant height l = πrl.

∴ Reason (R) is true.

Hence, option 2 is the correct option.

Question 2

Assertion (A) : The maximum volume of a cone that can be carved out of a solid hemisphere of radius r is 13\dfrac{1}{3} r3.

Reason (R) : For a cone of radius r and height h, volume is given by 23\dfrac{2}{3} πr2h.

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

The maximum height and radius of cone, inside a hemisphere of radius r cm can be r cm.

The maximum volume of a cone that can be carved out of a solid hemisphere of radius r. Volume And Surface Area of solid RSA Mathematics Solutions ICSE Class 10.

Volume of cone = 13\dfrac{1}{3} πr2h

=13πr2r=13πr3= \dfrac{1}{3} π\text{r}^2\text{r} \\[1em] = \dfrac{1}{3} π\text{r}^3 \\[1em]

∴ Assertion (A) is false.

For a cone of radius r and height h.

Volume of cone = 13\dfrac{1}{3} πr2h

∴ Reason (R) is false.

Hence, option 4 is the correct option.

Question 3

Assertion (A) : The total surface area of a right circular cone of slant height 13 cm and radius 5 cm is 90 π cm2.

Reason (R) : Curved surface area of a right circular cone is given by πr(l + r).

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

Radius, r = 5 cm

Slant height, l = 13 cm

Total surface area = πrl + πr2

= πr(l + r)

= πr(l + r)

= π5(13 + 5)

= π5(18)

= 90π cm2.

∴ Assertion (A) is true.

By formula,

Curved surface area of a right circular cone = πrl

∴ Reason (R) is false.

Hence, option 1 is the correct option.

Question 4

Assertion (A) : Two solid spheres of radii 2 cm and 4 cm are melted and recast into a cone of radius 6 cm. The height of the cone so obtained will be 8 cm.

Reason (R) : When we convert one solid into another, the volume of the two solids remains the same.

  1. A is true, R is the false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

Radius of first solid sphere, r = 2 cm

Radius of second solid sphere, R = 4 cm

Height of cone be h cm

Radius of cone, a = 6 cm

Since, two spheres are melted and recasted into cone.

∴ Volume of 1st sphere + Volume of 2nd sphere = Volume of cone

43πr3+43πR3=13πa2h43π(r3+R3)=13πa2h4(r3+R3)=a2h4(23+43)=62h4(8+64)=36h4(72)=36hh=28836h=8 cm.\therefore \dfrac{4}{3} π\text{r}^3 + \dfrac{4}{3} π\text{R}^3 = \dfrac{1}{3} π\text{a}^2\text{h} \\[1em] \Rightarrow \dfrac{4}{3} π(\text{r}^3 + \text{R}^3) = \dfrac{1}{3} π\text{a}^2\text{h} \\[1em] \Rightarrow 4(\text{r}^3 + \text{R}^3) = \text{a}^2\text{h} \\[1em] \Rightarrow 4(2^3 + 4^3) = 6^2\text{h} \\[1em] \Rightarrow 4(8 + 64) = 36\text{h} \\[1em] \Rightarrow 4(72) = 36\text{h} \\[1em] \Rightarrow \text{h} = \dfrac{288}{36} \\[1em] \Rightarrow \text{h} = 8 \text{ cm.}

∴ Assertion (A) is true.

Since, one solid is melted and converted into another, the volume of the two solids remains the same.

∴ Reason (R) is true.

Hence, option 3 is the correct option.

PrevNext