KnowledgeBoat Logo
|
OPEN IN APP

Chapter 22

Trigonometrical Identities

Class - 10 RS Aggarwal Mathematics Solutions



Exercise 22A

Question 1

Prove the following identity:

(cosecA+1cosecA1)=(1+sinA1sinA)\Big(\dfrac{\cosec A + 1}{\cosec A - 1}\Big) = \Big(\dfrac{1 + \sin A}{1 - \sin A}\Big)

Answer

Solving L.H.S:

cosecA+1cosecA11sinA+11sinA11+sinAsinA1sinAsinA(1+sinA)×sinA(1sinA)×sinA1+sinA1sinA.\Rightarrow \dfrac{\cosec A + 1}{\cosec A - 1} \\[1em] \Rightarrow \dfrac{\dfrac{1}{\sin A} + 1}{\dfrac{1}{\sin A} - 1} \\[1em] \Rightarrow \dfrac{\dfrac{1 + \sin A}{\sin A}}{\dfrac{1 - \sin A}{\sin A}} \\[1em] \Rightarrow \dfrac{(1 + \sin A) \times \sin A}{(1 - \sin A) \times \sin A} \\[1em] \Rightarrow \dfrac{1 + \sin A}{1 - \sin A}.

Since, L.H.S. = R.H.S.

Hence, proved that (cosecA+1cosecA1)=(1+sinA1sinA)\Big(\dfrac{\cosec A + 1}{\cosec A - 1}\Big) = \Big(\dfrac{1 + \sin A}{1 - \sin A}\Big).

Question 2

Prove the following identity:

(secA1secA+1)=(1cosA1+cosA)\Big(\dfrac{\sec A - 1}{\sec A + 1}\Big) = \Big(\dfrac{1 - \cos A}{1 + \cos A}\Big)

Answer

Solving L.H.S:

secA1secA+11cosA11cosA+11cosAcosA1+cosAcosA(1cosA)×cosA(1+cosA)×cosA1cosA1+cosA.\Rightarrow \dfrac{\sec A - 1}{\sec A + 1} \\[1em] \Rightarrow \dfrac{\dfrac{1}{\cos A} - 1}{\dfrac{1}{\cos A} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{1 - \cos A}{\cos A}}{\dfrac{1 + \cos A}{\cos A}} \\[1em] \Rightarrow \dfrac{(1 - \cos A) \times \cos A}{(1 + \cos A) \times \cos A} \\[1em] \Rightarrow \dfrac{1 - \cos A}{1 + \cos A}.

Since, L.H.S. = R.H.S.

Hence, proved that (secA1secA+1)=(1cosA1+cosA)\Big(\dfrac{\sec A - 1}{\sec A + 1}\Big) = \Big(\dfrac{1 - \cos A}{1 + \cos A}\Big).

Question 3

Prove the following identity:

(sinA×tanA1cosA)=1+secA\Big(\dfrac{\sin A \times \tan A}{1 - \cos A}\Big) = 1 + \sec A

Answer

Solving L.H.S of the equation:

sinA×sinAcosA1cosAsin2AcosA(1cosA) By formula, sin2A=1cos2A1cos2AcosA(1cosA)(1+cosA)(1cosA)cosA(1cosA)(1+cosA)cosA1cosA+cosAcosAsecA+1.\Rightarrow \dfrac{\sin A \times \dfrac{\sin A}{\cos A}}{1 - \cos A} \\[1em] \Rightarrow \dfrac{\sin^2 A}{\cos A(1 - \cos A)} \\[1em] \text{ By formula, } \sin^2 A = 1 - \cos^2 A \\[1em] \Rightarrow \dfrac{1 - \cos^2 A}{\cos A(1 - \cos A)} \\[1em] \Rightarrow \dfrac{(1 + \cos A)(1 - \cos A)}{\cos A(1 - \cos A)} \\[1em] \Rightarrow \dfrac{(1 + \cos A)}{\cos A} \\[1em] \Rightarrow \dfrac{1}{\cos A} + \dfrac{\cos A}{\cos A} \\[1em] \Rightarrow \sec A + 1.

Since, L.H.S. = R.H.S.

Hence, proved that (sinA×tanA1cosA)=1+secA\Big(\dfrac{\sin A \times \tan A}{1 - \cos A}\Big) = 1 + \sec A.

Question 4

Prove the following identity:

(1tanA+cotA)=cosA×sinA\Big(\dfrac{1}{\tan A + \cot A}\Big) = \cos A \times \sin A

Answer

Solving L.H.S. of the equation :

1tanA+cotA1sinAcosA+cosAsinA1sin2A+cos2AsinAcosAsinAcosAsin2A+cos2AsinAcosA\Rightarrow \dfrac{1}{\tan A + \cot A} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\sin A}{\cos A} + \dfrac{\cos A}{\sin A}} \\[1em] \Rightarrow \dfrac{1}{\dfrac{\sin^2 A + \cos^2 A}{\sin A \cos A}} \\[1em] \Rightarrow \dfrac{\sin A \cos A}{\sin^2 A + \cos^2 A} \\[1em] \Rightarrow \sin A \cos A

Since, L.H.S. = R.H.S.

Hence, proved that (1tanA+cotA)=cosA×sinA\Big(\dfrac{1}{\tan A + \cot A}\Big) = \cos A \times \sin A.

Question 5

Prove the following identity:

(1 + tan A)2 + (1 - tan A)2 = 2 sec2 A

Answer

Solving L.H.S. of the equation :

⇒ (1 + tan A)2 + (1 - tan A)2

⇒ 1 + tan2A + 2 tan A + 1 + tan2 A - 2 tan A

⇒ 2 + 2 tan2A

⇒ 2(1 + tan2A)

By formula,

1 + tan2A = sec2 A

⇒ 2sec2 A

Since, L.H.S. = R.H.S.

Hence, proved that (1 + tan A)2 + (1 - tan A)2 = 2 sec2 A.

Question 6

Prove the following identity:

(sin2 θ - 1) (tan2 θ + 1) + 1 = 0

Answer

Solving L.H.S:

⇒ (sin2 θ - 1) (tan2 θ + 1) + 1

By formula,

⇒ sin2θ − 1 = − cos2θ

⇒ tan2θ+ 1 = sec2θ

= -cos2θ (sec2θ) + 1

By formula,

⇒ cos2θ × sec2θ = 1

= −1 + 1

= 0

Since, L.H.S. = R.H.S.

Hence, proved that (sin2 θ - 1) (tan2 θ + 1) + 1 = 0.

Question 7

Prove the following identity:

cosec A (1 + cos A)(cosec A - cot A) = 1

Answer

Solving L.H.S. of the equation :

⇒ cosec A(1 + cos A)(cosec A - cot A)

1sinA×(1+cosA)×(1sinAcosAsinA)1+cosAsinA×1cosAsinA1cos2Asin2A By formula, sin2A+cos2A=11cos2A1cos2A1.\Rightarrow \dfrac{1}{\sin A} \times (1 + \cos A) \times \Big(\dfrac{1}{\sin A} - \dfrac{\cos A}{\sin A}\Big) \\[1em] \Rightarrow \dfrac{1 + \cos A}{\sin A} \times \dfrac{1 - \cos A}{\sin A} \\[1em] \Rightarrow \dfrac{1 - \cos^2 A}{\sin^2 A} \\[1em] \text{ By formula, } \sin^2 A + \cos^2 A = 1 \\[1em] \Rightarrow \dfrac{1 - \cos^2 A}{1 -\cos^2 A} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that cosec A (1 + cos A)(cosec A - cot A) = 1.

Question 8

Prove the following identity:

sec A (1 - sin A)(sec A + tan A) = 1

Answer

Solving L.H.S. of the equation :

⇒ sec A(1 - sin A)(sec A + tan A)

1cosA×(1sinA)×(1cosA+sinAcosA)1sinAcosA×1+sinAcosA1sin2Acos2Acos2Acos2A1.\Rightarrow \dfrac{1}{\cos A} \times (1 - \sin A) \times \Big(\dfrac{1}{\cos A} + \dfrac{\sin A}{\cos A}\Big) \\[1em] \Rightarrow \dfrac{1 - \sin A}{\cos A} \times \dfrac{1 + \sin A}{\cos A} \\[1em] \Rightarrow \dfrac{1 - \sin^2 A}{\cos^2 A} \\[1em] \Rightarrow \dfrac{\cos^2 A}{\cos^2 A} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that sec A (1 - sin A)(sec A + tan A) = 1.

Question 9

Prove the following identity:

(cosec θ - sin θ)(sec θ - cos θ)(tan θ + cot θ) = 1

Answer

Solving L.H.S. of the equation :

⇒ (cosec θ - sin θ)(sec θ - cos θ)(tan θ + cot θ) = 1

(1sinθsinθ)(1cosθcosθ)(sinθcosθ+cosθsinθ)(1sin2θsinθ)(1cos2θcosθ)(sin2θ+cos2θcosθsinθ)(cos2θsinθ)(sin2θcosθ)(1cosθsinθ)cos2θsin2θcos2θsin2θ1.\Rightarrow \Big(\dfrac{1}{\sin \theta } - \sin \theta \Big) \Big(\dfrac{1}{\cos \theta } - \cos \theta \Big) \Big(\dfrac{\sin \theta}{\cos \theta } + \dfrac{\cos \theta}{\sin \theta }\Big) \\[1em] \Rightarrow \Big(\dfrac{1 - \sin^2 \theta}{\sin \theta}\Big) \Big(\dfrac{1 - \cos^2 \theta}{\cos \theta } \Big) \Big(\dfrac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta } \Big) \\[1em] \Rightarrow \Big(\dfrac{\cos^2 \theta}{\sin \theta}\Big) \Big(\dfrac{\sin^2 \theta}{\cos \theta } \Big) \Big(\dfrac{1}{\cos \theta \sin \theta } \Big) \\[1em] \Rightarrow \dfrac{\cos^2 \theta \sin^2 \theta}{\cos^2 \theta \sin^2 \theta } \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that (cosec θ - sin θ)(sec θ - cos θ)(tan θ + cot θ) = 1.

Question 10

Prove the following identity:

(cosec A + sin A)(cosec A - sin A) = cot2 A + cos2 A

Answer

By formula,

cosec2 A = 1 + cot2 A

sin2 A = 1 - cos2 A

Solving L.H.S. of the equation

⇒ (cosec A + sin A)(cosec A - sin A)

⇒ cosec2 A - sin2 A

⇒ 1 + cot2 A - (1 - cos2 A)

⇒ 1 - 1 + cot2 A + cos2 A

⇒ cot2 A + cos2 A.

Hence, proved that (cosec A + sin A)(cosec A - sin A) = cot2 A + cos2 A.

Question 11

Prove the following identity:

(sec A + cos A)(sec A - cos A) = sin2 A + tan2 A

Answer

By formula,

sec2 A = 1 + tan2 A

cos2 A = 1 - sin2 A

Solving L.H.S. of the equation

⇒ (sec A - cos A)(sec A + cos A)

⇒ sec2 A - cos2 A

⇒ 1 + tan2 A - (1 - sin2 A)

⇒ 1 - 1 + tan2 A + sin2 A

⇒ sin2 A + tan2 A.

Since, L.H.S. = R.H.S.,

Hence, proved that (sec A + cos A)(sec A - cos A) = sin2 A + tan2 A.

Question 12

Prove the following identity:

tan2 A - sin2 A = sin2 A tan2 A

Answer

Solving L.H.S of equation,

sin2Acos2Asin2Asin2A(1cos2A1)sin2A(1cos2Acos2A)sin2A(sin2Acos2A)sin2Atan2A.\Rightarrow \dfrac{\sin^2 A}{\cos^2 A} - \sin^2 A \\[1em] \Rightarrow \sin^2 A \Big( \dfrac{1}{\cos^2 A} - 1 \Big) \\[1em] \Rightarrow \sin^2 A \Big( \dfrac{1 - \cos^2 A}{\cos^2 A} \Big) \\[1em] \Rightarrow \sin^2 A \Big(\dfrac{\sin^2 A}{\cos^2 A} \Big) \\[1em] \Rightarrow \sin^2 A \tan^2 A.

Since, L.H.S. = R.H.S.,

Hence, proved that tan2 A - sin2 A = sin2 A tan2 A.

Question 13

Prove the following identity:

cot2 A - cos2 A = cos2 A cot2 A

Answer

Solving L.H.S of equation,

cos2Asin2Acos2Acos2A(1sin2A1)cos2A(1sin2Asin2A)cos2A(cos2Asin2A)cos2Acot2A.\Rightarrow \dfrac{\cos^2 A}{\sin^2 A} - \cos^2 A \\[1em] \Rightarrow \cos^2 A \Big( \dfrac{1}{\sin^2 A} - 1 \Big) \\[1em] \Rightarrow \cos^2 A \Big( \dfrac{1 - \sin^2 A}{\sin^2 A} \Big) \\[1em] \Rightarrow \cos^2 A \Big(\dfrac{\cos^2 A}{\sin^2 A} \Big) \\[1em] \Rightarrow \cos^2 A \cot^2 A.

Since, L.H.S. = R.H.S.,

Hence, proved that cot2 A - cos2 A = cos2 A cot2 A.

Question 14

Prove the following identity:

sec2 A + cosec2 A = sec2 A cosec2 A

Answer

Solving L.H.S of equation,

1cos2A+1sin2Asin2A+cos2Acos2Asin2A By formula, sin2A+cos2A=11cos2Asin2A1cos2A×1sin2Asec2Acosec2A.\Rightarrow \dfrac{1}{\cos^2 A} + \dfrac{1}{\sin^2 A} \\[1em] \Rightarrow \dfrac{\sin^2 A + \cos^2 A}{\cos^2 A \sin^2 A} \\[1em] \text{ By formula, } \sin^2 A + \cos^2 A = 1 \\[1em] \Rightarrow \dfrac{1}{\cos^2 A \sin^2 A} \\[1em] \Rightarrow \dfrac{1}{\cos^2 A} \times \dfrac{1}{\sin^2 A} \\[1em] \Rightarrow \sec^2 A \cosec^2 A.

Since, L.H.S. = R.H.S.,

Hence, proved that sec2 A + cosec2 A = sec2 A cosec2 A.

Question 15

Prove the following identity:

tan2 A + cot2 A + 2 = sec2 A cosec2 A

Answer

Solving L.H.S of equation,

sin2Acos2A+cos2Asin2A+2sin4A+cos4A+2cos2Asin2Acos2Asin2A(sin2A+cos2A)2cos2Asin2A12cos2Asin2A1sin2A×1cos2Acosec2Asec2A.\Rightarrow \dfrac{\sin^2 A}{\cos^2 A} + \dfrac{\cos^2 A}{\sin^2 A} + 2 \\[1em] \Rightarrow \dfrac{\sin^4 A + \cos^4 A + 2\cos^2 A \sin^2 A}{\cos^2 A \sin^2 A} \\[1em] \Rightarrow \dfrac{(\sin^2 A + \cos^2 A)^2}{\cos^2 A \sin^2 A} \\[1em] \Rightarrow \dfrac{1^2}{\cos^2 A \sin^2 A} \\[1em] \Rightarrow \dfrac{1}{\sin^2 A} \times \dfrac{1}{\cos^2 A} \\[1em] \Rightarrow \cosec^2 A \sec^2 A .

Since, L.H.S. = R.H.S.,

Hence, proved that tan2 A + cot2 A + 2 = sec2 A cosec2 A.

Question 16

Prove the following identity:

sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A

Answer

Solving L.H.S of equation,

⇒ sin A (1 + tan A) + cos A (1 + cot A)

⇒ sin A + sin A tan A + cos A + cos A cotA

sinA+sin2AcosA+cosA+cos2AsinAsinA+cos2AsinA+cosA+sin2AcosAsin2A+cos2AsinA+sin2A+cos2AcosA1sinA+1cosAsecA+cosecA.\Rightarrow \sin A + \dfrac{\sin^2 A}{\cos A} + \cos A + \dfrac{\cos^2 A}{\sin A} \\[1em] \Rightarrow \sin A + \dfrac{\cos^2 A}{\sin A} + \cos A +\dfrac{\sin^2 A}{\cos A} \\[1em] \Rightarrow \dfrac{\sin^2 A + \cos^2 A}{\sin A} + \dfrac{\sin^2 A + \cos^2 A}{\cos A} \\[1em] \Rightarrow \dfrac{1}{\sin A} + \dfrac{1}{\cos A} \\[1em] \Rightarrow \sec A + \cosec A.

Since, L.H.S. = R.H.S.,

Hence, proved that sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A.

Question 17

Prove the following identity:

(11+tan2A)+(11+cot2A)=1\Big(\dfrac{1}{1 + \tan^2 A}\Big) + \Big(\dfrac{1}{1 + \cot^2 A}\Big) = 1

Answer

Solving L.H.S of equation,

(11+tan2A)+(11+cot2A)=1\Big(\dfrac{1}{1 + \tan^2 A}\Big) + \Big(\dfrac{1}{1 + \cot^2 A}\Big) = 1

By formula:

1 + tan2 A = sec2 A

1 + cot2 A = cosec2 A

1sec2A+1cosec2Acos2A+sin2A By formula, sin2A+cos2A=11.\Rightarrow \dfrac{1}{\sec^2 A} + \dfrac{1}{\cosec^2 A} \\[1em] \Rightarrow \cos^2 A + \sin^2 A\\[1em] \text{ By formula, } \sin^2 A + \cos^2 A = 1 \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.,

Hence, proved that (11+tan2A)+(11+cot2A)=1\Big(\dfrac{1}{1 + \tan^2 A}\Big) + \Big(\dfrac{1}{1 + \cot^2 A}\Big) = 1.

Question 18

Prove the following identity:

(11+sinA)+(11sinA)=2sec2A\Big(\dfrac{1}{1 + \sin A}\Big) + \Big(\dfrac{1}{1 - \sin A}\Big) = 2 \sec^2 A

Answer

Solving L.H.S. of the equation :

11+sinA+11sinA1sinA+1+sinA(1sinA)(1+sinA)2(1sin2A) By formula, sin2A+cos2A=12cos2A2sec2A.\Rightarrow \dfrac{1}{1 + \sin A} + \dfrac{1}{1 - \sin A} \\[1em] \Rightarrow \dfrac{1 - \sin A + 1 + \sin A}{(1 - \sin A)(1 + \sin A)} \\[1em] \Rightarrow \dfrac{2}{(1 - \sin^2 A)} \\[1em] \text{ By formula, } \sin^2 A + \cos^2 A = 1 \\[1em] \Rightarrow \dfrac{2}{\cos^2 A} \\[1em] \Rightarrow 2\sec^2 A.

Since, L.H.S. = R.H.S.,

Hence, proved that (11+sinA)+(11sinA)=2sec2A\Big(\dfrac{1}{1 + \sin A}\Big) + \Big(\dfrac{1}{1 - \sin A}\Big) = 2 \sec^2 A.

Question 19

Prove the following identity:

(1+sinAcosA)+(cosA1+sinA)=2secA\Big(\dfrac{1 + \sin A}{\cos A}\Big) + \Big(\dfrac{\cos A}{1 + \sin A}\Big) = 2 \sec A

Answer

Solving L.H.S. of the equation :

1+sinAcosA+cosA1+sinA(1+sinA)2+cos2AcosA(1+sinA)1+2sinA+sin2A+cos2AcosA(1+sinA) By formula, sin2A+cos2A=11+2sinA+1cosA(1+sinA)2+2sinAcosA(1+sinA)2(1+sinA)cosA(1+sinA)2cosA2secA.\Rightarrow \dfrac{1 + \sin A}{\cos A} + \dfrac{\cos A}{1 + \sin A} \\[1em] \Rightarrow \dfrac{(1 + \sin A)^2 + \cos^2 A}{\cos A(1 + \sin A)} \\[1em] \Rightarrow \dfrac{1 + 2\sin A + \sin^2 A + \cos^2 A}{\cos A(1 + \sin A)} \\[1em] \text{ By formula, } \sin^2 A + \cos^2 A = 1 \\[1em] \Rightarrow \dfrac{1 + 2\sin A + 1}{\cos A(1 + \sin A)} \\[1em] \Rightarrow \dfrac{2 + 2\sin A}{\cos A(1 + \sin A)} \\[1em] \Rightarrow \dfrac{2(1 + \sin A)}{\cos A(1 + \sin A)} \\[1em] \Rightarrow \dfrac{2}{\cos A} \\[1em] \Rightarrow 2\sec A.

Since, L.H.S. = R.H.S.,

Hence, proved that (1+sinAcosA)+(cosA1+sinA)=2secA\Big(\dfrac{1 + \sin A}{\cos A}\Big) + \Big(\dfrac{\cos A}{1 + \sin A}\Big) = 2 \sec A.

Question 20

Prove the following identity:

(cosecAcosecA1)+(cosecAcosecA+1)=2sec2A\Big(\dfrac{\cosec A}{\cosec A - 1}\Big) + \Big(\dfrac{\cosec A}{\cosec A + 1}\Big) = 2 \sec^2 A

Answer

Solving L.H.S. of the equation :

cosecAcosecA1+cosecAcosecA+1cosecA(cosecA+1)+cosecA(cosecA1)(cosecA1)(cosecA+1)cosec2A+cosecA+cosec2AcosecAcosec2A12cosec2Acot2A2×1sin2Acos2Asin2A2cos2A2sec2A.\Rightarrow \dfrac{\cosec A}{\cosec A - 1} + \dfrac{\cosec A}{\cosec A + 1} \\[1em] \Rightarrow \dfrac{\cosec A(\cosec A + 1) + \cosec A(\cosec A - 1)}{(\cosec A - 1) (\cosec A + 1)} \\[1em] \Rightarrow \dfrac{\cosec^2 A + \cosec A + \cosec^2 A - \cosec A}{\cosec^2 A - 1} \\[1em] \Rightarrow \dfrac{2\cosec^2 A}{\cot^2 A} \\[1em] \Rightarrow \dfrac{2 \times \dfrac{1}{\sin^2 A}}{\dfrac{\cos^2 A}{\sin^2 A}} \\[1em] \Rightarrow \dfrac{2}{\cos^2 A} \\[1em] \Rightarrow 2\sec^2 A.

Since, L.H.S. = R.H.S.,

Hence, proved that (cosecAcosecA1)+(cosecAcosecA+1)=2sec2A\Big(\dfrac{\cosec A}{\cosec A - 1}\Big) + \Big(\dfrac{\cosec A}{\cosec A + 1}\Big) = 2 \sec^2 A.

Question 21

Prove the following identity:

(1 + cot A - cosec A)(1 + tan A + sec A) = 2

Answer

Solving L.H.S. of the equation :

(1+cosAsinA1sinA)(1+sinAcosA+1cosA)(sinA+cosA1sinA)(cosA+sinA+1cosA)(sinA+cosA1)(cosA+sinA+1)sinAcosAsin2A+sinAcosA+sinA+sinAcosA+cosA+cos2AsinAcosA1sinAcosAsin2A+cos2A+2sinAcosA1sinAcosA1+2sinAcosA1sinAcosA2sinAcosAsinAcosA2.\Rightarrow \Big(1 + \dfrac{\cos A}{\sin A} - \dfrac{1}{\sin A} \Big)\Big(1 + \dfrac{\sin A}{\cos A} + \dfrac{1}{\cos A} \Big) \\[1em] \Rightarrow \Big(\dfrac{\sin A + \cos A - 1}{\sin A}\Big)\Big(\dfrac{\cos A + \sin A + 1}{\cos A} \Big) \\[1em] \Rightarrow \dfrac{(\sin A + \cos A - 1) (\cos A + \sin A + 1)}{\sin A \cos A} \\[1em] \Rightarrow \dfrac{\sin^2 A + \sin A \cos A + \sin A + \sin A \cos A + \cos A + \cos^2 A - \sin A - \cos A - 1}{\sin A \cos A} \\[1em] \Rightarrow \dfrac{\sin^2 A + \cos^2 A + 2\sin A \cos A - 1}{\sin A \cos A} \\[1em] \Rightarrow \dfrac{1 + 2\sin A \cos A - 1}{\sin A \cos A} \\[1em] \Rightarrow \dfrac{ 2\sin A \cos A }{\sin A \cos A} \\[1em] \Rightarrow 2.

Since, L.H.S. = R.H.S.,

Hence, proved that (1 + cot A - cosec A)(1 + tan A + sec A) = 2.

Question 22

Prove the following identity:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Answer

By formula,

sin2 A + cos2 A = 1

sec2 A = 1 + tan2 A

cosec2 A = 1 + cot2 A

Solving L.H.S. of the equation :

⇒ (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

⇒ sin2 A + cosec2 A + 2 sin A. cosec A + cos2 A + sec2 A + 2 cos A. sec A

⇒ sin2 A + 1 + cot2 A + 2 × sin A × 1sinA\dfrac{1}{\sin A} + cos2 A + 1 + tan2 A + 2 × cos A × 1cosA\dfrac{1}{\cos A}

⇒ sin2 A + cos2 A + 1 + cot2 A + 2 + 1 + tan2 A + 2

⇒ 1 + 1 + 2 + 1 + 2 + cot2 A + tan2 A

⇒ 7 + tan2 A + cot2 A.

Since, L.H.S. = R.H.S.

Hence, proved that (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A.

Question 23

Prove the following identity:

(cos3A+sin3AcosA+sinA)+(cos3Asin3AcosAsinA)=2\Big(\dfrac{\cos^3 A + \sin^3 A}{\cos A + \sin A}\Big) + \Big(\dfrac{\cos^3 A - \sin^3 A}{\cos A - \sin A}\Big) = 2

Answer

Solving L.H.S of equation,

(cos3A+sin3AcosA+sinA)+(cos3Asin3AcosAsinA)(cosA+sinA)(cos2A+sin2AcosAsinA)cosA+sinA+(cosAsinA)(cos2A+sin2A+cosAsinA)cosAsinA(cos2A+sin2AcosAsinA)+(cos2A+sin2A+cosAsinA) By formula, sin2A+cos2A=1(1cosAsinA)+(1+cosAsinA)2.\Rightarrow \Big(\dfrac{\cos^3 A + \sin^3 A}{\cos A + \sin A}\Big) + \Big(\dfrac{\cos^3 A - \sin^3 A}{\cos A - \sin A}\Big) \\[1em] \Rightarrow \dfrac{(\cos A + \sin A)(\cos^2 A + \sin^2 A - \cos A \sin A)}{\cos A + \sin A} + \dfrac{(\cos A - \sin A)(\cos^2 A + \sin^2 A + \cos A \sin A)}{\cos A - \sin A} \\[1em] \Rightarrow (\cos^2 A + \sin^2 A - \cos A \sin A) + (\cos^2 A + \sin^2 A + \cos A \sin A) \text{ By formula, } \sin^2 A + \cos^2 A = 1 \\[1em] \Rightarrow (1 - \cos A \sin A) + (1 + \cos A \sin A) \\[1em] \Rightarrow 2.

Since, L.H.S. = R.H.S.

Hence, proved that (cos3A+sin3AcosA+sinA)+(cos3Asin3AcosAsinA)=2\Big(\dfrac{\cos^3 A + \sin^3 A}{\cos A + \sin A}\Big) + \Big(\dfrac{\cos^3 A - \sin^3 A}{\cos A - \sin A}\Big) = 2.

Question 24

Prove the following identity:

(tanA1cotA)+(cotA1tanA)=secAcosecA+1\Big(\dfrac{\tan A}{1 - \cot A}\Big) + \Big(\dfrac{\cot A}{1 - \tan A}\Big) = \sec A \cosec A + 1

Answer

Solving L.H.S of equation,

sinAcosA1cosAsinA+cosAsinA1sinAcosAsinAcosAsinAcosAsinA+cosAsinAcosAsinAcosAsin2AcosAsinAcosA+cos2AsinAcosAsinAsin2AcosA(sinAcosA)cos2AsinA(sinAcosA)1sinAcosA(sin2AcosAcos2AsinA)1sinAcosA(sin3Acos3AcosAsinA)1sinAcosA((sinAcosA)(sin2A+cos2A+sinAcosA)cosAsinA)1+sinAcosAcosAsinA1cosAsinA+cosAsinAcosAsinAsecAcosecA+1.\Rightarrow \dfrac{\dfrac{\sin A}{\cos A}}{1 - \dfrac{\cos A}{\sin A}} + \dfrac{\dfrac{\cos A}{\sin A}}{1 - \dfrac{\sin A}{\cos A}} \\[1em] \Rightarrow \dfrac{\dfrac{\sin A}{\cos A}}{\dfrac{\sin A - \cos A}{\sin A}} + \dfrac{\dfrac{\cos A}{\sin A}}{\dfrac{\cos A - \sin A}{\cos A}} \\[1em] \Rightarrow \dfrac{\dfrac{\sin^2 A}{\cos A}}{\sin A - \cos A} + \dfrac{\dfrac{\cos^2 A}{\sin A}}{\cos A - \sin A} \\[1em] \Rightarrow \dfrac{\sin^2 A}{\cos A(\sin A - \cos A)} - \dfrac{\cos^2 A}{\sin A(\sin A - \cos A)} \\[1em] \Rightarrow \dfrac{1}{\sin A - \cos A} \Big(\dfrac{\sin^2 A}{\cos A} - \dfrac{\cos^2 A}{\sin A} \Big) \\[1em] \Rightarrow \dfrac{1}{\sin A - \cos A} \Big(\dfrac{\sin^3 A - \cos^3 A}{\cos A \sin A} \Big) \\[1em] \Rightarrow \dfrac{1}{\sin A - \cos A} \Big(\dfrac{(\sin A - \cos A)(\sin^2 A + \cos^2 A + \sin A \cos A)}{\cos A \sin A} \Big) \\[1em] \Rightarrow \dfrac{1 + \sin A \cos A}{\cos A \sin A} \\[1em] \Rightarrow \dfrac{1}{\cos A \sin A} + \dfrac{\cos A \sin A}{\cos A \sin A} \\[1em] \Rightarrow \sec A \cosec A + 1.

Since, L.H.S. = R.H.S.

Hence, proved that (tanA1cotA)+(cotA1tanA)=secAcosecA+1\Big(\dfrac{\tan A}{1 - \cot A}\Big) + \Big(\dfrac{\cot A}{1 - \tan A}\Big) = \sec A \cosec A + 1.

Question 25

Prove the following identity:

(sinA1+cotA)(cosA1+tanA)=sinAcosA\Big(\dfrac{\sin A}{1 + \cot A}\Big) - \Big(\dfrac{\cos A}{1 + \tan A}\Big) = \sin A - \cos A

Answer

The L.H.S of above equation can be written as,

(sinA1+cotA)(cosA1+tanA)sinA1+cosAsinAcosA1+sinAcosAsinAsinA+cosAsinAcosAcosA+sinAcosAsin2AsinA+cosAcos2AcosA+sinAsin2Acos2AcosA+sinA(sinA+cosA)(sinAcosA)cosA+sinAsinAcosA.\Rightarrow \Big(\dfrac{\sin A}{1 + \cot A}\Big) - \Big(\dfrac{\cos A}{1 + \tan A}\Big) \\[1em] \Rightarrow \dfrac{\sin A}{1 + \dfrac{\cos A}{\sin A}} - \dfrac{\cos A}{1 + \dfrac{\sin A}{\cos A}} \\[1em] \Rightarrow \dfrac{\sin A}{\dfrac{\sin A + \cos A}{\sin A}} - \dfrac{\cos A}{\dfrac{\cos A + \sin A}{\cos A}} \\[1em] \Rightarrow \dfrac{\sin^2 A}{\sin A + \cos A} - \dfrac{\cos^2 A}{\cos A + \sin A} \\[1em] \Rightarrow \dfrac{\sin^2 A - \cos^2 A}{\cos A + \sin A} \\[1em] \Rightarrow \dfrac{(\sin A + \cos A)(\sin A - \cos A)}{\cos A + \sin A} \\[1em] \Rightarrow \sin A - \cos A.

Since, L.H.S. = R.H.S.

Hence, proved that (sinA1+cotA)(cosA1+tanA)=sinAcosA\Big(\dfrac{\sin A}{1 + \cot A}\Big) - \Big(\dfrac{\cos A}{1 + \tan A}\Big) = \sin A - \cos A.

Question 26

Prove the following identity:

(tanθ+sinθtanθsinθ)=(secθ+1secθ1)\Big(\dfrac{\tan \theta + \sin \theta}{\tan \theta - \sin \theta}\Big) = \Big(\dfrac{\sec \theta + 1}{\sec \theta - 1}\Big)

Answer

Solving L.H.S of the equation,

tanθ+sinθtanθsinθsinθcosθ+sinθsinθcosθsinθsinθ(1cosθ+1)sinθ(1cosθ1)1cosθ+11cosθ1secθ+1secθ1.\Rightarrow \dfrac{\tan \theta + \sin \theta}{\tan \theta - \sin \theta} \\[1em] \Rightarrow \dfrac{\dfrac{\sin \theta}{\cos \theta} + \sin \theta}{\dfrac{\sin \theta}{\cos \theta} - \sin \theta} \\[1em] \Rightarrow \dfrac{\sin \theta \Big(\dfrac{1}{\cos \theta} + 1\Big)}{\sin \theta \Big(\dfrac{1}{\cos \theta} - 1\Big)} \\[1em] \Rightarrow \dfrac{\dfrac{1}{\cos \theta} + 1}{\dfrac{1}{\cos \theta} - 1} \\[1em] \Rightarrow \dfrac{\sec \theta + 1}{\sec \theta - 1}.

Since, L.H.S. = R.H.S.

Hence, proved that (tanθ+sinθtanθsinθ)=(secθ+1secθ1)\Big(\dfrac{\tan \theta + \sin \theta}{\tan \theta - \sin \theta}\Big) = \Big(\dfrac{\sec \theta + 1}{\sec \theta - 1}\Big).

Question 27

Prove the following identity:

(cotθ+cosecθ1cotθcosecθ+1)=(1+cosθsinθ)\Big(\dfrac{\cot \theta + \cosec \theta - 1}{\cot \theta - \cosec \theta + 1}\Big) = \Big(\dfrac{1 + \cos \theta}{\sin \theta}\Big)

Answer

L.H.S. of the equation can be written as,

cotθ+cosecθ1cotθcosecθ+1cosθsinθ+1sinθ1cosθsinθ1sinθ+1cosθ+1sinθsinθcosθ1+sinθsinθcosθ+1sinθcosθ1+sinθcosθ+(1sinθ)cosθ(1sinθ)cosθ+(1sinθ)cosθ(1sinθ)×cosθ+(1sinθ)cosθ+(1sinθ)[cosθ+(1sinθ)]2cos2θ(1sinθ)2cos2θ+(1sinθ)2+2cosθ(1sinθ)cos2θ(1sinθ)2cos2θ+sin2θ+1+2cosθ2sinθ2sinθcosθcos2θ1sin2θ+2sinθ By formula, sin2A+cos2A=11+1+2cosθ2sinθ2sinθcosθ1sin2θ1sin2θ+2sinθ2+2cosθ2sinθ2sinθcosθ2sinθ2sin2θ2(1+cosθ)2sinθ(1+cosθ)2sinθ(1sinθ)(1+cosθ)(22sinθ)2sinθ(1sinθ)2(1+cosθ)(1sinθ)2sinθ(1sinθ)1+cosθsinθ.\Rightarrow \dfrac{\cot \theta + \cosec \theta - 1}{\cot \theta - \cosec \theta + 1} \\[1em] \Rightarrow \dfrac{\dfrac{\cos \theta}{\sin \theta} + \dfrac{1}{\sin \theta} - 1}{\dfrac{\cos \theta}{\sin \theta} - \dfrac{1}{\sin \theta} + 1} \\[1em] \Rightarrow \dfrac{\dfrac{\cos \theta + 1 - \sin \theta}{\sin \theta}}{\dfrac{\cos \theta - 1 + \sin \theta}{\sin \theta}} \\[1em] \Rightarrow \dfrac{\cos \theta + 1 - \sin \theta}{\cos \theta - 1 + \sin \theta} \\[1em] \Rightarrow \dfrac{\cos \theta + (1 - \sin \theta)}{\cos \theta - (1 - \sin \theta)} \\[1em] \Rightarrow \dfrac{\cos \theta + (1 - \sin \theta)}{\cos \theta - (1 - \sin \theta)} \times \dfrac{\cos \theta + (1 - \sin \theta)}{\cos \theta + (1 - \sin \theta)} \\[1em] \Rightarrow \dfrac{[\cos \theta + (1 - \sin \theta)]^2}{\cos^2 \theta - (1 - \sin \theta)^2} \\[1em] \Rightarrow \dfrac{\cos^2 \theta + (1 - \sin \theta)^2 + 2\cos \theta(1 - \sin \theta)}{\cos^2 \theta - (1 - \sin \theta)^2} \\[1em] \Rightarrow \dfrac{\cos^2 \theta + \sin^2 \theta + 1 + 2\cos \theta - 2\sin \theta - 2\sin \theta \cos \theta}{\cos^2 \theta - 1 - \sin^2 \theta + 2\sin \theta} \\[1em] \text{ By formula, } \sin^2 A + \cos^2 A = 1 \\[1em] \Rightarrow \dfrac{1 + 1 + 2\cos \theta - 2\sin \theta - 2\sin \theta \cos \theta}{1 - \sin^2 \theta - 1 - \sin^2 \theta + 2\sin \theta} \\[1em] \Rightarrow \dfrac{2 + 2\cos \theta - 2\sin \theta - 2\sin \theta \cos \theta}{2\sin \theta - 2\sin^2 \theta} \\[1em] \Rightarrow \dfrac{2(1 + \cos \theta) - 2\sin \theta (1 + \cos \theta)}{2\sin \theta (1 - \sin \theta)} \\[1em] \Rightarrow \dfrac{(1 + \cos \theta) (2 - 2\sin \theta)}{2\sin \theta (1 - \sin \theta)} \\[1em] \Rightarrow \dfrac{2(1 + \cos \theta) (1 - \sin \theta)}{2\sin \theta (1 - \sin \theta)} \\[1em] \Rightarrow \dfrac{1 + \cos \theta}{\sin \theta}.

Since, L.H.S. = R.H.S.

Hence, proved that (cotθ+cosecθ1cotθcosecθ+1)=(1+cosθsinθ)\Big(\dfrac{\cot \theta + \cosec \theta - 1}{\cot \theta - \cosec \theta + 1}\Big) = \Big(\dfrac{1 + \cos \theta}{\sin \theta}\Big).

Question 28

Prove the following identity:

(cotA12sec2A)=(cotA1+tanA)\Big(\dfrac{\cot A - 1}{2 - \sec^2 A}\Big) = \Big(\dfrac{\cot A}{1 + \tan A}\Big)

Answer

L.H.S. of the equation can be written as,

cosAsinA121cos2AcosAsinAsinA2cos21cos2Acos2A(cosAsinA)sinA(2cos2A1)cos2A(cosAsinA)sinA[2cos2A(sin2A+cos2A)]cos2A(cosAsinA)sinA[2cos2Asin2Acos2A]cos2A(cosAsinA)sinA(cos2Asin2A)cos2A(cosAsinA)sinA(cosAsinA)(cosA+sinA)cos2AsinA(cosA+sinA)(cosA)(cosA)sinA(cosA+sinA)cotA(cosA)(cosA+sinA)cotA(cosA)cosA(cosA+sinA)cosAcotA1+tanA.\Rightarrow \dfrac{\dfrac{\cos A}{\sin A} - 1}{2 - \dfrac{1}{\cos^2 A}} \\[1em] \Rightarrow \dfrac{\dfrac{\cos A - \sin A}{\sin A}}{\dfrac{2\cos^2 - 1}{\cos^2 A}} \\[1em] \Rightarrow \dfrac{\cos^2 A(\cos A - \sin A)}{ \sin A(2\cos^2 A - 1)} \\[1em] \Rightarrow \dfrac{\cos^2 A(\cos A - \sin A)}{ \sin A[2\cos^2 A - (\sin^2 A + \cos^2 A)]} \\[1em] \Rightarrow \dfrac{\cos^2 A(\cos A - \sin A)}{ \sin A[2\cos^2 A - \sin^2 A - \cos^2 A]} \\[1em] \Rightarrow \dfrac{\cos^2 A(\cos A - \sin A)}{ \sin A(\cos^2 A - \sin^2 A)} \\[1em] \Rightarrow \dfrac{\cos^2 A(\cos A - \sin A)}{ \sin A(\cos A - \sin A)(\cos A + \sin A)} \\[1em] \Rightarrow \dfrac{\cos^2 A}{ \sin A(\cos A + \sin A)} \\[1em] \Rightarrow \dfrac{(\cos A)(\cos A)}{ \sin A(\cos A + \sin A)} \\[1em] \Rightarrow \dfrac{\cot A(\cos A)}{(\cos A + \sin A)} \\[1em] \Rightarrow \dfrac{\dfrac{\cot A(\cos A)}{\cos A}}{\dfrac{(\cos A + \sin A)}{\cos A}} \\[1em] \Rightarrow \dfrac{\cot A}{1 + \tan A}.

Since, L.H.S. = R.H.S.

Hence, proved that (cotA12sec2A)=(cotA1+tanA)\Big(\dfrac{\cot A - 1}{2 - \sec^2 A}\Big) = \Big(\dfrac{\cot A}{1 + \tan A}\Big).

Question 29

Prove the following identity:

(1secA+tanA)(1cosA)=(1cosA)(1secAtanA)\Big(\dfrac{1}{\sec A + \tan A}\Big) - \Big(\dfrac{1}{\cos A}\Big) = \Big(\dfrac{1}{\cos A}\Big) - \Big(\dfrac{1}{\sec A - \tan A}\Big)

Answer

The equation can be written as,

1secA+tanA+1secAtanA=2cosA\dfrac{1}{\sec A + \tan A} + \dfrac{1}{\sec A - \tan A} = \dfrac{2}{\cos A}

L.H.S. of the equation can be written as,

secAtanA+secA+tanA(secA+tanA)(secAtanA)2secA(sec2Atan2A)2secA2cosA.\Rightarrow \dfrac{\sec A - \tan A + \sec A + \tan A}{(\sec A + \tan A)(\sec A - \tan A)} \\[1em] \Rightarrow \dfrac{2\sec A}{(\sec^2 A - \tan^2 A)} \\[1em] \Rightarrow 2\sec A \\[1em] \Rightarrow \dfrac{2}{\cos A}.

Since, L.H.S. = R.H.S.

Hence, proved that

(1secA+tanA)(1cosA)=(1cosA)(1secAtanA)\Big(\dfrac{1}{\sec A + \tan A}\Big) - \Big(\dfrac{1}{\cos A}\Big) = \Big(\dfrac{1}{\cos A}\Big) - \Big(\dfrac{1}{\sec A - \tan A}\Big).

Question 30

Prove the following identity:

(sinAcotA+cosecA)=2+(sinAcotAcosecA)\Big(\dfrac{\sin A}{\cot A + \cosec A}\Big) = 2 + \Big(\dfrac{\sin A}{\cot A - \cosec A}\Big)

Answer

L.H.S. of the equation can be written as,

(sinAcotA+cosecA)sinAcosAsinA+1sinAsinAcosA+1sinAsin2AcosA+1\Rightarrow \Big(\dfrac{\sin A}{\cot A + \cosec A}\Big) \\[1em] \Rightarrow \dfrac{\sin A}{\dfrac{\cos A}{\sin A} + \dfrac{1}{\sin A}} \\[1em] \Rightarrow \dfrac{\sin A}{\dfrac{\cos A + 1}{\sin A}} \\[1em] \Rightarrow \dfrac{\sin^2 A}{\cos A + 1} \\[1em]

Multiplying numerator and denominator by (cos A - 1), we get :

sin2A(cosA1)cosA+1(cosA1)sin2A(cosA1)cos2A1sin2A(cosA1)sin2A(cosA1)1cosA\Rightarrow \dfrac{\sin^2 A(\cos A − 1)}{\cos A + 1(\cos A − 1)} \\[1em] \Rightarrow \dfrac{\sin^2 A(\cos A − 1)}{\cos^2 A - 1} \\[1em] \Rightarrow \dfrac{\sin^2 A(\cos A − 1)}{-\sin^2 A} \\[1em] \Rightarrow -(\cos A − 1) \\[1em] \Rightarrow 1 - \cos A

R.H.S. of the equation can be written as,

2+(sinAcotAcosecA)2+sinAcosAsinA1sinA2+sinAcosA1sinA2+sin2AcosA1\Rightarrow 2 + \Big(\dfrac{\sin A}{\cot A - \cosec A}\Big) \\[1em] \Rightarrow 2 + \dfrac{\sin A}{\dfrac{\cos A}{\sin A} - \dfrac{1}{\sin A}} \\[1em] \Rightarrow 2 + \dfrac{\sin A}{\dfrac{\cos A - 1}{\sin A}} \\[1em] \Rightarrow 2 + \dfrac{\sin^2 A}{\cos A - 1} \\[1em]

Multiplying numerator and denominator by (cos A + 1), we get :

2+sin2A(cosA+1)cosA1(cosA+1)2+sin2A(cosA+1)cos2A12+sin2A(cosA+1)sin2A2(cosA+1)1cosA\Rightarrow 2 + \dfrac{\sin^2 A(\cos A + 1)}{\cos A - 1(\cos A + 1)} \\[1em] \Rightarrow 2 + \dfrac{\sin^2 A(\cos A + 1)}{\cos^2 A - 1} \\[1em] \Rightarrow 2 + \dfrac{\sin^2 A(\cos A + 1)}{-\sin^2 A} \\[1em] \Rightarrow 2 -(\cos A + 1) \\[1em] \Rightarrow 1 - \cos A

Since, L.H.S. = R.H.S.

Hence, proved that (sinAcotA+cosecA)=2+(sinAcotAcosecA)\Big(\dfrac{\sin A}{\cot A + \cosec A}\Big) = 2 + \Big(\dfrac{\sin A}{\cot A - \cosec A}\Big).

Question 31

Prove the following identity:

cotAtanA=(2cos2A1sinAcosA)\cot A - \tan A = \Big(\dfrac{2 \cos^2 A - 1}{\sin A \cos A}\Big)

Answer

L.H.S. of the equation can be written as,

cosAsinAsinAcosAcos2Asin2AsinAcosAcos2A(1cos2A)sinAcosAcos2A1+cos2AsinAcosA2cos2A1sinAcosA.\Rightarrow \dfrac{\cos A}{\sin A} - \dfrac{\sin A}{\cos A} \\[1em] \Rightarrow \dfrac{\cos^2 A - \sin^2 A}{\sin A \cos A} \\[1em] \Rightarrow \dfrac{\cos^2 A - (1 - \cos^2 A)}{\sin A \cos A} \\[1em] \Rightarrow \dfrac{\cos^2 A - 1 + \cos^2 A}{\sin A \cos A} \\[1em] \Rightarrow \dfrac{2\cos^2 A - 1}{\sin A \cos A}.

Since, L.H.S. = R.H.S.

Hence, proved that cotAtanA=(2cos2A1sinAcosA)\cot A - \tan A = \Big(\dfrac{2 \cos^2 A - 1}{\sin A \cos A}\Big).

Question 32

Prove the following identity:

(1+cosA1cosA)=cosecA+cotA\sqrt{\Big(\dfrac{1 + \cos A}{1 - \cos A}\Big)} = \cosec A + \cot A

Answer

The L.H.S. of the equation can be written as,

(1+cosA)(1+cosA)(1cosA)(1+cosA)(1+cosA)2(1cos2A)(1+cosA)2sin2A(1+cosA)sinA1sinA+cosAsinAcosecA+cotA\Rightarrow \sqrt{\dfrac{(1 + \cos A)(1 + \cos A)}{(1 - \cos A)(1 + \cos A)}} \\[1em] \Rightarrow \sqrt{\dfrac{(1 + \cos A)^2}{(1 - \cos^2 A)}} \\[1em] \Rightarrow \sqrt{\dfrac{(1 + \cos A)^2}{\sin^2 A}} \\[1em] \Rightarrow \dfrac{(1 + \cos A)}{\sin A} \\[1em] \Rightarrow \dfrac{1}{\sin A} + \dfrac{\cos A}{\sin A} \\[1em] \Rightarrow \cosec A + \cot A

Since, L.H.S. = R.H.S.

Hence, proved that (1+cosA1cosA)=cosecA+cotA\sqrt{\Big(\dfrac{1 + \cos A}{1 - \cos A}\Big)} = \cosec A + \cot A.

Question 33

Prove the following identity:

(1sinA1+sinA)=secAtanA\sqrt{\Big(\dfrac{1 - \sin A}{1 + \sin A}\Big)} = \sec A - \tan A

Answer

The L.H.S. of the equation can be written as,

(1sinA1+sinA)1sinA1+sinA×1sinA1sinA(1sinA)21sin2A(1sinA)2cos2A(1sinA)cosA1cosAsinAcosAsecAtanA.\Rightarrow \sqrt{\Big(\dfrac{1 - \sin A}{1 + \sin A}\Big)} \\[1em] \Rightarrow \sqrt{\dfrac{1 - \sin A}{1 + \sin A} \times \dfrac{1 - \sin A}{1 - \sin A} } \\[1em] \Rightarrow \sqrt{\dfrac{(1 - \sin A)^2}{1 - \sin^2 A}} \\[1em] \Rightarrow \sqrt{\dfrac{(1 - \sin A)^2}{\cos^2 A}} \\[1em] \Rightarrow \dfrac{(1 - \sin A)}{\cos A} \\[1em] \Rightarrow \dfrac{1}{\cos A} - \dfrac{\sin A}{\cos A} \\[1em] \Rightarrow \sec A - \tan A.

Since, L.H.S. = R.H.S.

Hence, proved that (1sinA1+sinA)=secAtanA\sqrt{\Big(\dfrac{1 - \sin A}{1 + \sin A}\Big)} = \sec A - \tan A.

Question 34

Prove the following identity:

(cot2A(cosecA+1)2)=(1sinA1+sinA)\Big(\dfrac{\cot^2 A}{(\cosec A + 1)^2}\Big) = \Big(\dfrac{1 - \sin A}{1 + \sin A}\Big)

Answer

The L.H.S. of the equation can be written as,

(cot2A(cosecA+1)2)cosec2A1(cosecA+1)2(cosecA1)(cosecA+1)(cosecA+1)2cosecA1(cosecA+1)1sinA11sinA+11sinAsinA1+sinAsinA1sinA1+sinA.\Rightarrow \Big(\dfrac{\cot^2 A}{(\cosec A + 1)^2}\Big) \\[1em] \Rightarrow \dfrac{\cosec^2 A - 1}{(\cosec A + 1)^2}\\[1em] \Rightarrow \dfrac{(\cosec A - 1)(\cosec A + 1)}{(\cosec A + 1)^2}\\[1em] \Rightarrow \dfrac{\cosec A - 1}{(\cosec A + 1)}\\[1em] \Rightarrow \dfrac{\dfrac{1}{\sin A} - 1}{\dfrac{1}{\sin A} + 1}\\[1em] \Rightarrow \dfrac{\dfrac{1 - \sin A}{\sin A}}{\dfrac{1 + \sin A}{\sin A} }\\[1em] \Rightarrow \dfrac{1 - \sin A}{1 + \sin A}.

Since, L.H.S. = R.H.S.

Hence, proved that (cot2A(cosecA+1)2)=(1sinA1+sinA)\Big(\dfrac{\cot^2 A}{(\cosec A + 1)^2}\Big) = \Big(\dfrac{1 - \sin A}{1 + \sin A}\Big).

Question 35

Prove the following identity:

(cosA1tanA)+(sin2AsinAcosA)=cosA+sinA\Big(\dfrac{\cos A}{1 - \tan A}\Big) + \Big(\dfrac{\sin^2 A}{\sin A - \cos A}\Big) = \cos A + \sin A

Answer

The L.H.S. of the equation can be written as,

(cosA1tanA)+(sin2AsinAcosA)cosA1sinAcosA+sin2AsinAcosAcosAcosAsinAcosA+sin2AsinAcosAcos2AcosAsinAsin2AcosAsinAcos2Asin2AcosAsinA(cosA+sinA)(cosAsinA)cosAsinAcosA+sinA\Rightarrow \Big(\dfrac{\cos A}{1 - \tan A}\Big) + \Big(\dfrac{\sin^2 A}{\sin A - \cos A}\Big) \\[1em] \Rightarrow \dfrac{\cos A}{1 - \dfrac{\sin A}{\cos A}} + \dfrac{\sin^2 A}{\sin A - \cos A} \\[1em] \Rightarrow \dfrac{\cos A}{\dfrac{\cos A - \sin A}{\cos A}} + \dfrac{\sin^2 A}{\sin A - \cos A} \\[1em] \Rightarrow \dfrac{\cos^2 A}{\cos A - \sin A} - \dfrac{\sin^2 A}{\cos A - \sin A} \\[1em] \Rightarrow \dfrac{\cos^2 A - \sin^2 A}{\cos A - \sin A} \\[1em] \Rightarrow \dfrac{(\cos A + \sin A)(\cos A - \sin A)}{\cos A - \sin A} \\[1em] \Rightarrow \cos A + \sin A

Since, L.H.S. = R.H.S.

Hence, proved that (cosA1tanA)+(sin2AsinAcosA)=cosA+sinA\Big(\dfrac{\cos A}{1 - \tan A}\Big) + \Big(\dfrac{\sin^2 A}{\sin A - \cos A}\Big) = \cos A + \sin A.

Question 36

Prove the following identity:

(1tanθ1cotθ)2=tan2θ\Big(\dfrac{1 - \tan \theta}{1 - \cot \theta}\Big)^2 = \tan^2 \theta

Answer

The L.H.S of above equation can be written as,

(1tanθ1cotθ)2(1tanθ11tanθ)2((1tanθ)(tanθ)tanθ1)2((1tanθ)(tanθ)(1tanθ))2(tanθ)2tan2θ.\Rightarrow \Big(\dfrac{1 - \tan \theta}{1 - \cot \theta}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{1 - \tan \theta}{1 - \dfrac{1}{\tan \theta}}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{(1 - \tan \theta)(\tan \theta)}{{\tan \theta - 1}}\Big)^2 \\[1em] \Rightarrow \Big(\dfrac{(1 - \tan \theta)(\tan \theta)}{{-(1 - \tan \theta)}}\Big)^2 \\[1em] \Rightarrow (-\tan \theta)^2 \\[1em] \Rightarrow \tan^2 \theta .

Since, L.H.S. = R.H.S.

Hence, proved that (1tanθ1cotθ)2=tan2θ\Big(\dfrac{1 - \tan \theta}{1 - \cot \theta}\Big)^2 = \tan^2 \theta.

Question 37

Prove the following identity:

(cosA1+sinA)+tanA=secA\Big(\dfrac{\cos A}{1 + \sin A}\Big) + \tan A = \sec A

Answer

The L.H.S of above equation can be written as,

(cosA1+sinA)+tanA(cosA1+sinA×1sinA1sinA)+sinAcosA(cosA(1sinA)1sin2A)+sinAcosA(cosA(1sinA)cos2A)+sinAcosA(1sinAcosA)+sinAcosA(1sinA+sinAcosA)(1cosA)secA.\Rightarrow \Big(\dfrac{\cos A}{1 + \sin A}\Big) + \tan A \\[1em] \Rightarrow \Big(\dfrac{\cos A}{1 + \sin A} \times \dfrac{1 - \sin A}{1 - \sin A} \Big) + \dfrac{\sin A}{\cos A} \\[1em] \Rightarrow \Big(\dfrac{\cos A(1 - \sin A)}{1 - \sin^2 A} \Big) + \dfrac{\sin A}{\cos A} \\[1em] \Rightarrow \Big(\dfrac{\cos A(1 - \sin A)}{\cos^2 A} \Big) + \dfrac{\sin A}{\cos A} \\[1em] \Rightarrow \Big(\dfrac{1 - \sin A}{\cos A} \Big) + \dfrac{\sin A}{\cos A} \\[1em] \Rightarrow \Big(\dfrac{1 - \sin A + \sin A}{\cos A} \Big) \\[1em] \Rightarrow \Big(\dfrac{1}{\cos A} \Big) \\[1em] \Rightarrow \sec A.

Since, L.H.S. = R.H.S.

Hence, proved that (cosA1+sinA)+tanA=secA\Big(\dfrac{\cos A}{1 + \sin A}\Big) + \tan A = \sec A.

Question 38

Prove the following identity:

(sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ(\sin \theta + \cos \theta)(\tan \theta + \cot \theta) = \sec \theta + \cosec \theta

Answer

Given equation,

⇒ (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.

Solving L.H.S. of the equation :

⇒ (sin θ + cos θ)(tan θ + cot θ)

(sinθ+cosθ)(sinθcosθ+cosθsinθ)(sinθ+cosθ)(sin2θ+cos2θcosθ(sinθ))(sinθ+cosθ)(1cosθsinθ)sinθcosθsinθ+cosθcosθsinθ1cosθ+1sinθsecθ+cosecθ.\Rightarrow (\sin \theta + \cos \theta) \Big(\dfrac{\sin \theta}{\cos \theta} + \dfrac{\cos \theta}{\sin \theta}\Big) \\[1em] \Rightarrow (\sin \theta + \cos \theta) \Big(\dfrac{\sin^2 \theta + \cos^2 \theta}{\cos \theta(\sin \theta)} \Big) \\[1em] \Rightarrow (\sin \theta + \cos \theta) \Big(\dfrac{1}{\cos \theta \sin \theta} \Big) \\[1em] \Rightarrow \dfrac{\sin \theta}{\cos \theta \sin \theta} + \dfrac{\cos \theta}{\cos \theta \sin \theta} \\[1em] \Rightarrow \dfrac{1}{\cos \theta} + \dfrac{1}{\sin \theta} \\[1em] \Rightarrow \sec \theta + \cosec \theta.

Since, L.H.S. = R.H.S.

Hence, proved that (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ(\sin \theta + \cos \theta)(\tan \theta + \cot \theta) = \sec \theta + \cosec \theta.

Question 39

Prove the following identity:

(1+tan2A)+(1+cot2A)=(1sin2Asin4A)(1 + \tan^2 A) + (1 + \cot^2 A) = \Big(\dfrac{1}{\sin^2 A - \sin^4 A}\Big)

Answer

Solving L.H.S. of the equation :

(1+tan2A)+(1+cot2A)sec2A+cosec2A1cos2A+1sin2Asin2A+cos2Acos2Asin2A1cos2Asin2A1(1sin2A)sin2A1sin2Asin4A.\Rightarrow (1 + \tan^2 A) + (1 + \cot^2 A) \\[1em] \Rightarrow \sec^2 A + \cosec^2 A \\[1em] \Rightarrow \dfrac{1}{\cos^2 A} + \dfrac{1}{\sin^2 A} \\[1em] \Rightarrow \dfrac{\sin^2 A + \cos^2 A}{\cos^2 A \sin^2 A} \\[1em] \Rightarrow \dfrac{1}{\cos^2 A \sin^2 A} \\[1em] \Rightarrow \dfrac{1}{(1 - \sin^2 A) \sin^2 A} \\[1em] \Rightarrow \dfrac{1}{\sin^2 A - \sin^4 A} .

Since, L.H.S. = R.H.S.

Hence, proved that (1+tan2A)+(1+cot2A)=(1sin2Asin4A)(1 + \tan^2 A) + (1 + \cot^2 A) = \Big(\dfrac{1}{\sin^2 A - \sin^4 A}\Big).

Question 40

Prove the following identity:

sec2A+cosec2A=tanA+cotA\sqrt{\sec^2 A + \cosec^2 A} = \tan A + \cot A

Answer

Solving L.H.S. of the equation :

sec2A+cosec2A1cos2A+1sin2Asin2A+cos2Acos2Asin2A1cos2Asin2A1cosAsinA.\Rightarrow \sqrt{\sec^2 A + \cosec^2 A} \\[1em] \Rightarrow \sqrt{\dfrac{1}{\cos^2 A} + \dfrac{1}{\sin^2 A}} \\[1em] \Rightarrow \sqrt{\dfrac{\sin^2 A + \cos^2 A}{\cos^2 A \sin^2 A}} \\[1em] \Rightarrow \sqrt{\dfrac{1}{\cos^2 A \sin^2 A}} \\[1em] \Rightarrow \dfrac{1}{\cos A \sin A}.

Solving R.H.S. of the equation :

tanA+cotAsinAcosA+cosAsinAsin2A+cos2AcosAsinA1cosAsinA.\Rightarrow \tan A + \cot A \\[1em] \Rightarrow \dfrac{\sin A}{\cos A} + \dfrac{\cos A}{\sin A} \\[1em] \Rightarrow \dfrac{\sin^2 A + \cos^2 A}{\cos A \sin A} \\[1em] \Rightarrow \dfrac{1}{\cos A \sin A}.

Since, L.H.S. = R.H.S.

Hence, proved that sec2A+cosec2A=tanA+cotA\sqrt{\sec^2 A + \cosec^2 A} = \tan A + \cot A.

Question 41

Prove the following identity:

(tan A + cot A)(cosec A - sin A)(sec A - cos A) = 1

Answer

Solving L.H.S. of the above equation :

⇒ (tan A + cot A)(cosec A - sin A)(sec A - cos A)

(sinAcosA+cosAsinA)(1sinAsinA)(1cosAcosA)(sin2A+cos2AcosAsinA)(1sin2AsinA)(1cos2AcosA)By formula,sin2A+cos2A=1,1sin2A=cos2Aand1cos2A=sin2A.(1cosAsinA)(cos2AsinA)(sin2AcosA)(cos2Asin2Acos2Asin2A)1.\Rightarrow \Big(\dfrac{\sin A}{\cos A} + \dfrac{\cos A}{\sin A} \Big) \Big(\dfrac{1}{\sin A} - \sin A\Big) \Big(\dfrac{1}{\cos A} - \cos A \Big) \\[1em] \Rightarrow \Big(\dfrac{\sin^2 A + \cos^2 A}{\cos A \sin A} \Big) \Big(\dfrac{1 - \sin^2 A}{\sin A}\Big) \Big(\dfrac{1 - \cos^2 A}{\cos A}\Big) \\[1em] \text{By formula,} \sin^2 A + \cos^2 A = 1, 1 - \sin^2 A = \cos^2 A and 1 - \cos^2 A = \sin^2 A. \\[1em] \Rightarrow \Big(\dfrac{1}{\cos A \sin A} \Big) \Big(\dfrac{\cos^2 A}{\sin A}\Big) \Big(\dfrac{\sin^2 A}{\cos A}\Big) \\[1em] \Rightarrow \Big(\dfrac{\cos^2 A\sin^2 A}{\cos^2 A \sin^2 A} \Big) \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.

Hence, proved that (tan A + cot A)(cosec A - sin A)(sec A - cos A) = 1.

Question 42

Prove the following identity:

(1+sinθ)2+(1sinθ)22cos2θ=sec2θ+tan2θ\dfrac{(1 + \sin \theta)^2 + (1 - \sin \theta)^2}{2 \cos^2 \theta} = \sec^2 \theta + \tan^2 \theta

Answer

Solving L.H.S. of the above equation :

(1+2sinθ+sin2θ)+(12sinθ+sin2θ)2cos2θ2+2sin2θ2cos2θ2(1+sin2θ)2cos2θ(1+sin2θ)cos2θ1cos2θ+sin2θcos2θsec2θ+tan2θ.\Rightarrow \dfrac{(1 + 2\sin \theta + \sin^2 \theta) + (1 - 2\sin \theta + \sin^2 \theta)}{2 \cos^2 \theta} \\[1em] \Rightarrow \dfrac{2 + 2 \sin^2 \theta}{2 \cos^2 \theta} \\[1em] \Rightarrow \dfrac{2(1 + \sin^2 \theta)}{2 \cos^2 \theta} \\[1em] \Rightarrow \dfrac{(1 + \sin^2 \theta)}{\cos^2 \theta} \\[1em] \Rightarrow \dfrac{1}{\cos^2 \theta} + \dfrac{\sin^2 \theta}{\cos^2 \theta} \\[1em] \Rightarrow \sec^2 \theta + \tan^2 \theta.

Since, L.H.S. = R.H.S.

Hence, proved that (1+sinθ)2+(1sinθ)22cos2θ=sec2θ+tan2θ\dfrac{(1 + \sin \theta)^2 + (1 - \sin \theta)^2}{2 \cos^2 \theta} = \sec^2 \theta + \tan^2 \theta.

Exercise 22B

Question 1

Eliminate θ between the given equations:

x = a cosec θ, y = b cot θ

Answer

Given,

x = a cosec θ, y = b cot θ

⇒ cosec θ = xa\dfrac{x}{a}

⇒ cot θ = yb\dfrac{y}{b}

Using the identity

cosec2 θ - cot2 θ = 1

Substitute the values:

(xa)2(yb)2=1x2a2y2b2=1\Rightarrow \Big(\dfrac{x}{a}\Big)^2 - \Big(\dfrac{y}{b}\Big)^2 = 1 \\[1em] \Rightarrow \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1

Hence, the required relation is x2a2y2b2=1\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1.

Question 2

Eliminate θ between the given equations:

x = a cot θ + b cosec θ, y = a cosec θ + b cot θ

Answer

x = a cot θ + b cosec θ .....(1)

y = a cosec θ + b cot θ .....(2)

Subtract equation (2) from (1):

⇒ x - y = a cot θ + b cosec θ - (a cosec θ + b cot θ)

⇒ x - y = a cot θ + b cosec θ - a cosec θ - b cot θ

⇒ x - y = a (cot θ - cosec θ) - b (cot θ - cosec θ)

⇒ x - y = (a - b) (cot θ - cosec θ)

Add equation (2) from (1):

⇒ x + y = a cot θ + b cosec θ + (a cosec θ + b cot θ)

⇒ x + y = a (cot θ + cosec θ) + b (cot θ + cosec θ)

⇒ x + y = (a + b) (cot θ + cosec θ)

Now multiply:

⇒ (x + y)(x - y) = (a + b)(a - b)(cot θ + cosec θ)(cot θ - cosec θ)

⇒ x2 - y2 = (a2 - b2)(cot2 θ - cosec2 θ)

By identity: cot2 θ − cosec 2 θ = −1

⇒ x2 - y2 = - (a2 - b2)

⇒ x2 - y2 = b2 - a2

Hence, the required relation is x2 - y2 = b2 - a2 .

Question 3

Eliminate θ between the given equations:

x = a sec3 θ, y = b tan3 θ

Answer

Given,

⇒ x = a sec3 θ

⇒ sec3 θ = xa\dfrac{x}{a}

⇒ sec2 θ = (xa)23\Big(\dfrac{x}{a}\Big)^\dfrac{2}{3}

⇒ y = b tan3 θ

⇒ tan3 θ = yb\dfrac{y}{b}

⇒ tan2 θ = (yb)23\Big(\dfrac{y}{b}\Big)^\dfrac{2}{3}

Using the identity

sec2 θ - tan2 θ = 1

Substitute,

(xa)23(yb)23=1\Big(\dfrac{x}{a}\Big)^\dfrac{2}{3} - \Big(\dfrac{y}{b}\Big)^\dfrac{2}{3} = 1

Hence,the required relation is (xa)23(yb)23=1\Big(\dfrac{x}{a}\Big)^\dfrac{2}{3} - \Big(\dfrac{y}{b}\Big)^\dfrac{2}{3} = 1.

Question 4

Eliminate θ between the given equations:

(xa)cosθ+(yb)sinθ=1,(xa)sinθ(yb)cosθ=1\Big(\dfrac{x}{a}\Big) \cos \theta + \Big(\dfrac{y}{b}\Big) \sin \theta = 1, \Big(\dfrac{x}{a}\Big) \sin \theta - \Big(\dfrac{y}{b}\Big) \cos \theta = -1

Answer

(xa)cosθ+(yb)sinθ=1.....(1)(xa)sinθ(yb)cosθ=1.....(2)\Big(\dfrac{x}{a}\Big) \cos \theta + \Big(\dfrac{y}{b}\Big) \sin \theta = 1.....(1)\\[1em] \Big(\dfrac{x}{a}\Big) \sin \theta - \Big(\dfrac{y}{b}\Big) \cos \theta = -1.....(2)

Square and add equations (1) and (2):

[(xa)cosθ+(yb)sinθ]2+[(xa)sinθ(yb)cosθ]2=12+(1)2[(xa)2cos2θ+(yb)2sin2θ+2xyabsinθcosθ]+[(xa)2sin2θ+(yb)2cos2θ2xyabsinθcosθ]=2(xa)2cos2θ+(yb)2sin2θ+(xa)2sin2θ+(yb)2cos2θ=2(xa)2(cos2θ+sin2θ)+(yb)2(sin2θ+cos2θ)=2(xa)2+(yb)2=2.\Rightarrow \Big[\Big(\dfrac{x}{a}\Big) \cos \theta + \Big(\dfrac{y}{b}\Big) \sin \theta\Big]^2 + \Big[\Big(\dfrac{x}{a}\Big) \sin \theta - \Big(\dfrac{y}{b}\Big) \cos \theta\Big]^2 = 1^2 + (-1)^2 \\[1em] \Rightarrow \Big[\Big(\dfrac{x}{a}\Big)^2 \cos^2 \theta + \Big(\dfrac{y}{b}\Big)^2 \sin^2 \theta + 2\dfrac{xy}{ab} \sin \theta \cos \theta \Big] + \Big[\Big(\dfrac{x}{a}\Big)^2 \sin^2 \theta + \Big(\dfrac{y}{b}\Big)^2 \cos^2 \theta - 2\dfrac{xy}{ab} \sin \theta \cos \theta\Big] = 2 \\[1em] \Rightarrow \Big(\dfrac{x}{a}\Big)^2 \cos^2 \theta + \Big(\dfrac{y}{b}\Big)^2 \sin^2 \theta + \Big(\dfrac{x}{a}\Big)^2 \sin^2 \theta + \Big(\dfrac{y}{b}\Big)^2 \cos^2 \theta = 2 \\[1em] \Rightarrow \Big(\dfrac{x}{a}\Big)^2 (\cos^2 \theta + \sin^2 \theta) + \Big(\dfrac{y}{b}\Big)^2 (\sin^2 \theta + \cos^2 \theta) = 2 \\[1em] \Rightarrow \Big(\dfrac{x}{a}\Big)^2 + \Big(\dfrac{y}{b}\Big)^2 = 2 .

Hence, the required relation is (xa)2+(yb)2=2\Big(\dfrac{x}{a}\Big)^2 + \Big(\dfrac{y}{b}\Big)^2 = 2.

Question 5

Eliminate θ between the given equations:

x = h + a cos θ, y = k + b sin θ

Answer

⇒ x = h + a cos θ

⇒ cos θ = xha\dfrac{x - h}{a}.....(1)

⇒ y = k + b sin θ

⇒ sin θ = ykb\dfrac{y - k}{b}.....(2)

Square and add equations (1) and (2):

(xha)2+(ykb)2=cos2θ+sin2θ(xha)2+(ykb)2=1(xh)2a2+(yk)2b2=1.\Rightarrow \Big(\dfrac{x - h}{a}\Big)^2 + \Big(\dfrac{y - k}{b}\Big)^2 = \cos^2 \theta + \sin^2 \theta \\[1em] \Rightarrow \Big(\dfrac{x - h}{a}\Big)^2 + \Big(\dfrac{y - k}{b}\Big)^2 = 1 \\[1em] \Rightarrow \dfrac{(x - h)^2}{a^2} + \dfrac{(y - k)^2}{b^2} = 1 .

Hence,the required relation is (xh)2a2+(yk)2b2=1\dfrac{(x - h)^2}{a^2} + \dfrac{(y - k)^2}{b^2} = 1.

Question 6

If cosAcosB\dfrac{\cos A}{\cos B} = m and cosAsinB\dfrac{\cos A}{\sin B} = n, prove that : (m2 + n2)cos2B = n2

Answer

To prove:

(m2 + n2)cos2B = n2

Substituting value of m and n in L.H.S. of the above equation :

[(cosAcosB)2+(cosAsinB)2]cos2B[cos2Acos2B+cos2Asin2B]cos2B[cos2Asin2B+cos2Acos2Bcos2Bsin2B]cos2Bcos2A(sin2B+cos2B)sin2Bcos2Asin2B(cosAsinB)2n2\Rightarrow \Big[\Big(\dfrac{\cos A}{\cos B}\Big)^2 + \Big(\dfrac{\cos A}{\sin B}\Big)^2 \Big] \cos^2B \\[1em] \Rightarrow \Big[\dfrac{\cos^2 A}{\cos^2 B} + \dfrac{\cos^2 A}{\sin^2 B} \Big] \cos^2B \\[1em] \Rightarrow \Big[\dfrac{\cos^2 A \sin^2 B + \cos^2 A\cos^2 B}{\cos^2 B\sin^2 B} \Big] \cos^2 B \\[1em] \Rightarrow \dfrac{\cos^2 A (\sin^2 B + \cos^2 B)}{\sin^2 B} \\[1em] \Rightarrow \dfrac{\cos^2 A}{\sin^2 B} \\[1em] \Rightarrow \Big(\dfrac{\cos A}{\sin B}\Big)^2 \\[1em] \Rightarrow n^2

Since, L.H.S. = R.H.S.

Hence, proved that (m2 + n2)cos2B = n2.

Question 7

If x = a sec A cos B, y = b sec A sin B and z = c tan A, prove that x2a2+y2b2z2c2=1\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} - \dfrac{z^2}{c^2} = 1

Answer

⇒ x = a sec A cos B

sec A cos B = xa\dfrac{x}{a}....(1)

⇒ y = b sec A sin B

sec A sin B = yb\dfrac{y}{b}....(2)

Square and add equations (1) and (2) :

x2a2+y2b2=sec2Acos2B+sec2Asin2Bx2a2+y2b2=sec2A(cos2B+sin2B)x2a2+y2b2=sec2A...(3)\Rightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = \sec^2 A \cos^2 B + \sec^2 A \sin^2 B \\[1em] \Rightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = \sec^2 A (\cos^2 B + \sin^2 B) \\[1em] \Rightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = \sec^2 A ...(3)

Now,

⇒ z = c tan A

tan A = zc\dfrac{z}{c}

tan2 A = z2c2\dfrac{z^2}{c^2}...(4)

Subtract (4) from (3):

x2a2+y2b2z2c2=sec2Atan2Ax2a2+y2b2z2c2=1.\Rightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} - \dfrac{z^2}{c^2} = \sec^2 A - \tan^2 A \\[1em] \Rightarrow \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} - \dfrac{z^2}{c^2} = 1.

Hence, proved that x2a2+y2b2z2c2=1\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} - \dfrac{z^2}{c^2} = 1.

Exercise 22C

Question 1

Using tables, find the values of:

(i) sin 83° 12′

(ii) sin 61° 14′

(iii) sin 9° 55′

(iv) sin 32° 40′

Answer

(i) Given,

sin 83° 12′

⇒ sin 83° 12′

From table we have,

∴ sin 83° 12′ = 0.9930

Mean difference of 0′ = 0.0000

Hence, sin 83° 12′ = 0.9930.

(ii) Given,

sin 61° 12′

⇒ sin 61° 12′ + 1'

From table we have,

sin 61° 12′ = 0.8763

Mean difference of 2' = .0003 (To be added)

sin 61° 14′ = 0.8763 + 0.0003 = 0.8766

Hence, sin 61° 14′ = 0.8766.

(iii) Given,

sin 9° 55′

⇒ sin 9° 54′ + 1'

From table we have,

sin 9° 54′ = 0.1719

Mean difference of 1' = .0003 (To be added)

sin 9° 55′ = 0.1719 + 0.0003 = 0.1722

Hence, sin 9° 55′ = 0.1722.

(iv) Given,

sin 32° 40′

⇒ sin 32° 36′ + 4'

From table we have,

sin 32° 36′ = 0.5388

Mean difference of 4' = .0010 (To be added)

sin 32° 40′ = 0.5388 + 0.0010 = 0.5398

Hence, sin 32° 40′ = 0.5398.

Question 2

Using tables, find the values of:

(i) cos 48° 36′

(ii) cos 23° 6′

(iii) cos 70° 17′

(iv) cos 85° 8′

Answer

(i) Given,

cos 48° 36′

⇒ cos 48° 36′ = cos 48° 36′

From table we have,

cos 48° 36′ = 0.6613

Mean difference of 0′ = 0.0000

Therefore,

cos 48° 36′ = 0.6613

Hence, cos 48° 36′ = 0.6613.

(ii) Given,

cos 23° 6′

⇒ cos 23° 6′ = cos 23° 6′

From table we have,

cos 23° 6′ = 0.9198

Mean difference of 0′ = 0.0000

Therefore,

cos 23° 6′ = 0.9198

Hence, cos 23° 6′ = 0.9198.

(iii) Given,

cos 70° 17′

⇒ cos 70° 18′ − 1′

From table we have,

cos 70° 18′ = 0.3371

Mean difference of 1′ = 0.0003 (to be added)

Therefore,

cos 70° 17′ = 0.3371 + 0.0003

cos 70° 17′ = 0.3374

Hence, cos 70° 17′ = 0.3374.

(iv) Given,

cos 85° 8′

From table we have,

cos 85° 6′ = 0.0854

Mean difference of 2′ = 0.0006 (to be subtracted)

Therefore,

cos 85° 8′ = 0.0854 − 0.0006

cos 85° 8′ = 0.0848

Hence, cos 85° 8′ = 0.0848.

Question 3

Using tables, find the values of :

(i) tan 24° 24′

(ii) tan 9° 38′

(iii) tan 31° 27′

(iv) tan 65° 50′

Answer

(i) Given,

tan 24° 24′

⇒ tan 24° 24′

From table we have,

tan 24° 24′ = 0.4536

Mean difference of 0′ = 0.0000

Therefore,

tan 24° 24′ = 0.4536

Hence, tan 24° 24′ = 0.4536.

(ii) Given,

tan 9° 38′

⇒ tan 9° 36′ + 2'

From table we have,

tan 9° 36′ = 0.1691

Mean difference of 2′ = 0.0006 (to be added)

Therefore,

tan 9° 38′ = 0.1691 + 0.0006 = 0.1697

Hence, tan 9° 38′ = 0.1697.

(iii) Given,

tan 31° 27′

⇒ tan 31° 24′ + 3'

From table we have,

tan 31° 24′ = 0.6104

Mean difference of 3′ = 0.0012 (to be added)

Therefore,

tan 31° 27′ = 0.6104 + 0.0012 = 0.6116

Hence, tan 31° 27′ = 0.6116.

(iv) Given,

tan 65° 50′

⇒ tan 65° 48′ + 2'

From table we have,

tan 65° 48′ = 2.2251

Mean difference of 2′ = 0.0034 (to be added)

Therefore,

tan 65° 50′ = 2.2251 + 0.0034 = 2.2285

Hence, tan 65° 50′ = 2.2285.

Question 4

Using tables, find the acute angle θ, when:

sin θ = 0.36

sin θ = 0.4274

sin θ = 0.5955

sin θ = 0.8229

Answer

(i) Given,

sin θ = 0.36

sin 21° 6' = .3600 (From tables)

Difference = .0000

Mean difference for 0' = .0000

Hence, θ = 21° 6'.

(ii) Given,

sin θ = 0.4274

sin 25° 18' = 0.4274 (From tables)

Difference = .0000

Mean difference for 0' = .0000

Hence, θ = 25° 18'.

(iii) Given,

sin θ = 0.5955

sin 36° 30' = 0.5948 (From tables)

Difference = .0007

Mean difference for 3' = .0007

θ = 36° 30'+ 3' = 36° 33'

Hence, θ = 36° 33'.

(iv) Given,

sin θ = 0.8229

sin 55° 18' = 0.8221 (From tables)

Difference = .0008

Mean difference for 5' = .0008

θ = 55° 18'+ 5' = 55° 23'

Hence, θ = 55° 23'.

Question 5

If sin θ = 0.42, find :

(i) θ

(ii) cos θ

(iii) tan θ

Answer

(i) Given,

sin θ = 0.42

sin 24° 48'= 0.4195 (From tables)

Difference = .0005

Mean difference for 2' = .0005

θ = 24° 48'+ 2' = 24° 50'

Hence, θ = 24° 50'.

(ii) cos θ

cos 24° 48' = 0.9078

Mean difference for 2' = .0002 (to be subtracted)

Therefore,

cos 24° 50' = 0.9078 - 0.0002 = 0.9076

Hence, cos 24° 50' = 0.9076.

(iii) tan θ

tan 24° 48' = 0.4621

Mean difference for 2' = .0007 (to be added)

Therefore,

tan 24° 48' = 0.4621 + 0.0007 = 0.4628

Hence, tan 24° 50' = 0.4628.

Question 6

Using tables, find the acute angle θ, when:

(i) cos θ = 0.94

(ii) cos θ = 0.8092

(iii) cos θ = 0.1679

Answer

(i) Given,

cos θ = 0.94

cos 19° 54' = .9403

Difference = .0003

Mean difference of 3' = .0003

θ = 19° 54' + 3' = 19° 57'.

Hence, θ = 19° 57'.

(ii) Given,

cos θ = 0.8092

cos 35° 54' = .8100

Difference = .0008

Mean difference of 5' = .0008

θ = 35° 54' + 5' = 35° 59'.

Hence, θ = 35° 59'.

(iii) Given,

cos θ = 0.1679

cos 80° 18' = 0.1685

Difference = .0006

Mean difference of 2' = .0006

θ = 80° 18' + 2' = 80° 20'.

Hence, θ = 80° 20'.

Question 7

If cos θ = 0.51, find:

(i) θ

(ii) sin θ

(iii)tan θ

Answer

(i) Given,

cos θ = 0.51

cos 59° 18' = .5105

Difference = .0005

Mean difference of 2' = .0005

θ = 59° 18' + 2' = 59° 20'.

Hence, θ = 59° 20'.

(ii) Given,

sin θ

sin 59° 18' = .8599

Mean difference of 2' = .0003

sin 59° 20' = .8599 + .0003 = 0.8602.

Hence, sin 59° 20' = 0.8602.

(iii) Given,

tan θ

tan 59° 18' = 1.6842

Mean difference of 2' = .0022

tan 59° 20' = 1.6842 + .0022= 1.6864.

Hence, tan 59° 20' = 1.6864.

Question 8

Using tables, find the acute angle θ, when:

(i) tan θ = 1.476

(ii) tan θ = 2.91

(iii) tan θ = 0.3

Answer

(i) Given,

tan θ = 1.476

tan 55° 54' = 1.4770

Difference = .0010

Mean difference of 1' = .0009(to be subtracted)

θ = 55° 54' - 1' = 55° 53'.

Hence, θ = 55° 53'.

(ii) Given,

tan θ = 2.91

tan 71° = 2.9042

Difference = .0058

Mean difference of 2' = .0058(to be added)

θ = 71° + 2' = 71° 2'.

Hence, θ = 71° 2'.

(iii) Given,

tan θ = 0.3

tan 16° 42' = 0.3

Difference = 0.000

Mean difference of 0' = .000

θ = 16° 42'.

Hence, θ = 16° 42'.

Multiple Choice Questions

Question 1

In ΔABC, if AC = 17 m and BC = 8 m, then tan A =

  1. (815)\Big(\dfrac{8}{15}\Big)

  2. (158)\Big(\dfrac{15}{8}\Big)

  3. (817)\Big(\dfrac{8}{17}\Big)

  4. (1517)\Big(\dfrac{15}{17}\Big)

In ΔABC, if AC = 17 m and BC = 8 m, then tan A = Tangent Properties of Circles, RSA Mathematics Solutions ICSE Class 10.

Answer

tan A = oppositeadjacent=BCAB=815\dfrac{\text{opposite}}{\text{adjacent}} = \dfrac{BC}{AB} = \dfrac{8}{15}

Hence, option 1 is the correct option.

Question 2

If sin θ = (513)\Big(\dfrac{5}{13}\Big), then the value of tan θ is:

  1. (512)\Big(\dfrac{5}{12}\Big)

  2. (1213)\Big(\dfrac{12}{13}\Big)

  3. (125)\Big(\dfrac{12}{5}\Big)

  4. (1312)\Big(\dfrac{13}{12}\Big)

Answer

Given,

sin θ = (513)=oppositehypotenuse\Big(\dfrac{5}{13}\Big) = \dfrac{\text{opposite}}{\text{hypotenuse}}

Opposite = 5, Hypotenuse = 13

tan A = oppositeadjacent=512\dfrac{\text{opposite}}{\text{adjacent}} = \dfrac{5}{12}

Hence, option 1 is the correct option.

Question 3

If sec θ = (257)\Big(\dfrac{25}{7}\Big), then the value of cot θ is:

  1. (2524)\Big(\dfrac{25}{24}\Big)

  2. (247)\Big(\dfrac{24}{7}\Big)

  3. (724)\Big(\dfrac{7}{24}\Big)

  4. (2425)\Big(\dfrac{24}{25}\Big)

Answer

sec θ = (257)=hypotenusebase\Big(\dfrac{25}{7}\Big) = \dfrac{\text{hypotenuse}}{\text{base}}

Perpendicular = 25272=576\sqrt{25^2 - 7^2} = \sqrt{576} = 24.

cot θ = Baseperpendicular=(724)\dfrac{\text{Base}}{\text{perpendicular}} = \Big(\dfrac{7}{24}\Big).

Hence, option 3 is the correct option.

Question 4

The value of (1 + tan2θ)(1 − sin θ)(1 + sin θ) is:

  1. 0

  2. 1

  3. sec2θ sin2θ

  4. cot2θ

Answer

Given,

⇒ (1 + tan2θ)(1 − sin θ)(1 + sin θ)

⇒ sec2θ (1 - sin2θ)

⇒ sec2θ cos2θ

⇒ 1

Hence, option 2 is the correct option.

Question 5

Given that sin θ = (ab)\Big(\dfrac{a}{b}\Big), then cos θ is equal to:

  1. (ba)\Big(\dfrac{b}{a}\Big)

  2. (ab2a2)\Big(\dfrac{a}{\sqrt{b^2 - a^2}}\Big)

  3. (bb2a2)\Big(\dfrac{b}{\sqrt{b^2 - a^2}}\Big)

  4. (b2a2b)\Big(\dfrac{\sqrt{b^2 - a^2}}{b}\Big)

Answer

Let ABC be a right angle triangle with ∠B = 90° and ∠C = θ.

By formula,

sinθ=perpendicularhypotenuse\sin \theta = \dfrac{\text{perpendicular}}{\text{hypotenuse}}

Substituting values we get :

ab=ABAC\dfrac{a}{b} = \dfrac{AB}{AC}

Let AB = ak and AC = bk.

In right angle triangle ABC,

⇒ AC2 = AB2 + BC2

⇒ (bk)2 = (ak)2 + BC2

⇒ b2k2 = a2k2 + BC2

⇒ BC2 = b2k2 - a2k2

⇒ BC = kb2a2\sqrt{b^2 - a^2}

By formula,

cosθ=basehypotenuse=BCAC=kb2a2bk=b2a2b.\cos \theta = \dfrac{\text{base}}{\text{hypotenuse}} \\[1em] = \dfrac{BC}{AC} \\[1em] = \dfrac{k\sqrt{b^2 - a^2}}{bk} \\[1em] = \dfrac{\sqrt{b^2 - a^2}}{b} .

Hence, option 4 is the correct option.

Question 6

In the adjoining figure, D is the mid-point of BC. Then the value of (cotycotx)\Big(\dfrac{\cot y}{\cot x}\Big) is:

  1. (12)\Big(\dfrac{1}{2}\Big)

  2. (13)\Big(\dfrac{1}{3}\Big)

  3. (14)\Big(\dfrac{1}{4}\Big)

  4. 2

The maximum volume of a cone that can be carved out of a solid hemisphere of radius r. Tangent Properties of Circles, RSA Mathematics Solutions ICSE Class 10.

Answer

We know that,

cotθ=baseperpendicularcotycotx=ACBCACCDcotycotx=CDBCcotycotx=CD2CDcotycotx=12.cot θ = \dfrac{\text{base}}{\text{perpendicular}} \\[1em] \Rightarrow \dfrac{\cot y}{\cot x} = \dfrac{\dfrac{AC}{BC}}{\dfrac{AC}{CD}} \\[1em] \Rightarrow \dfrac{\cot y}{\cot x} = \dfrac{CD}{BC} \\[1em] \Rightarrow \dfrac{\cot y}{\cot x} = \dfrac{CD}{2CD} \\[1em] \Rightarrow \dfrac{\cot y}{\cot x} = \dfrac{1}{2} .

Hence, option 1 is the correct option.

Question 7

If tan A = (512)\Big(\dfrac{5}{12}\Big), then the value of (sin A + cos A) sec A is:

  1. (512)\Big(\dfrac{5}{12}\Big)

  2. (712)\Big(\dfrac{7}{12}\Big)

  3. (1712)\Big(\dfrac{17}{12}\Big)

  4. (513)\Big(\dfrac{5}{13}\Big)

Answer

Given,

(sin A + cos A) sec A

(sinA+cosA)1cosAsinAcosA+cosAcosAtanA+1512+15+12121712.\Rightarrow (\sin A + \cos A)\dfrac{1}{\cos A} \\[1em] \Rightarrow \dfrac{\sin A}{\cos A} + \dfrac{\cos A}{\cos A} \\[1em] \Rightarrow \tan A + 1 \\[1em] \Rightarrow \dfrac{5}{12} + 1 \\[1em] \Rightarrow \dfrac{5 + 12}{12} \\[1em] \Rightarrow \dfrac{17}{12}.

Hence, option 3 is the correct option.

Question 8

If 3 cos θ = 1, then the value of cosec θ is:

  1. 222\sqrt{2}

  2. (322)\Big(\dfrac{3}{2\sqrt{2}}\Big)

  3. (233)\Big(\dfrac{2\sqrt{3}}{3}\Big)

  4. (432)\Big(\dfrac{4}{3\sqrt{2}}\Big)

Answer

Given,

3 cos θ = 1

We know that,

⇒ sin2 θ = 1 - cos2 θ

sin2θ=119sin2θ=919sin2θ=89sinθ=223cosecθ=1sinθ=322.\Rightarrow \sin^2 \theta = 1 - \dfrac{1}{9} \\[1em] \Rightarrow \sin^2 \theta = \dfrac{9 - 1}{9} \\[1em] \Rightarrow \sin^2 \theta = \dfrac{8}{9} \\[1em] \Rightarrow \sin \theta = \dfrac{2\sqrt{2}}{3} \\[1em] \Rightarrow \cosec \theta = \dfrac{1}{\sin \theta} = \dfrac{3}{2\sqrt{2}}.

Hence, option 2 is the correct option.

Question 9

If x cos A = 1 and tan A = y, then x2 − y2 is equal to:

  1. 0

  2. 1

  3. −tan A

  4. tan A

Answer

Given,

x cos A = 1

cos A = 1x\dfrac{1}{x}

⇒ sec A = x

tan A = y

We know that

sec2 A - tan2 A = 1

∴ x2 − y2 = 1

Hence, option 2 is the correct option.

Question 10

In the adjoining figure, if PS = 14 cm, then the value of tan α is equal to:

  1. (43)\Big(\dfrac{4}{3}\Big)

  2. (53)\Big(\dfrac{5}{3}\Big)

  3. (133)\Big(\dfrac{13}{3}\Big)

  4. (143)\Big(\dfrac{14}{3}\Big)

Draw a ΔABC in which BC = 5.6 cm, ∠B = 45° and the median AD from A to BC is 4.5 cm. Inscribe a circle in it. Tangent Properties of Circles, RSA Mathematics Solutions ICSE Class 10.

Answer

ST = PS − RQ = 14 − 5 = 9 cm

In ΔSTR,

TR=13252=16925=144=12.TR = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12.

We know that,

tanα=oppositeadjacenttanα=TRSTtanα=129tanα=43.\tan \alpha = \dfrac{\text{opposite}}{\text{adjacent}} \\[1em] \tan \alpha = \dfrac{TR}{ST} \\[1em] \tan \alpha = \dfrac{12}{9} \\[1em] \tan \alpha = \dfrac{4}{3}.

Hence, option 1 is the correct option.

Question 11

The value of (1 + tan θ + sec θ)(1 + cot θ − cosec θ) is:

  1. −4

  2. −1

  3. 1

  4. 2

Answer

Given,

(1 + tan θ + sec θ)(1 + cot θ − cosec θ)

(1+sinθcosθ+1cosθ)(1+cosθsinθ1sinθ)(cosθ+sinθ+1cosθ)(sinθ+cosθ1sinθ)(cosθ+sinθ)212cosθsinθcos2θ+sin2θ+2sinθcosθ1cosθsinθ1+2sinθcosθ1cosθsinθ2sinθcosθcosθsinθ2.\Rightarrow \Big(1 + \dfrac{\sin \theta}{\cos \theta} + \dfrac{1}{\cos \theta}\Big) \Big(1 + \dfrac{\cos \theta}{\sin \theta} - \dfrac{1}{\sin \theta}\Big)\\[1em] \Rightarrow \Big( \dfrac{\cos \theta + \sin \theta + 1}{\cos \theta} \Big) \Big(\dfrac{\sin \theta + \cos \theta - 1}{\sin \theta} \Big)\\[1em] \Rightarrow \dfrac{(\cos \theta + \sin \theta)^2 - 1^2}{\cos \theta \sin \theta} \\[1em] \Rightarrow \dfrac{\cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta - 1}{\cos \theta \sin \theta} \\[1em] \Rightarrow \dfrac{1 + 2\sin \theta \cos \theta - 1}{\cos \theta \sin \theta} \\[1em] \Rightarrow \dfrac{ 2\sin \theta \cos \theta}{\cos \theta \sin \theta} \\[1em] \Rightarrow 2.

Hence, option 4 is the correct option.

Question 12

If sin θ = (12)\Big(\dfrac{1}{2}\Big), then the value of (15cot2θ+15)\Big(\dfrac{1}{5} \cot^2\theta + \dfrac{1}{5}\Big) is:

  1. (15)\Big(\dfrac{1}{5}\Big)

  2. (45)\Big(\dfrac{4}{5}\Big)

  3. (1125)\Big(\dfrac{1}{125}\Big)

  4. 25

Answer

Solving,

(15cot2θ+15)15(cot2θ+1)15(cosec2θ).\Rightarrow \Big(\dfrac{1}{5} \cot^2\theta + \dfrac{1}{5}\Big) \\[1em] \Rightarrow \dfrac{1}{5} \Big(\cot^2\theta + 1 \Big) \\[1em] \Rightarrow \dfrac{1}{5} (\cosec^2 \theta).

We know that,

cosecθ=1sinθcosecθ=112=2cosec2θ=22=415cosec2θ15(4)45.\cosec \theta = \dfrac{1}{\sin \theta } \\[1em] \Rightarrow \cosec \theta = \dfrac{1}{\dfrac{1}{2}} = 2\\[1em] \Rightarrow \cosec^2 \theta = 2^2 = 4 \\[1em] \Rightarrow \dfrac{1}{5}\cosec^2 \theta \\[1em] \Rightarrow \dfrac{1}{5}(4) \\[1em] \Rightarrow \dfrac{4}{5}.

Hence, option 2 is the correct option.

Question 13

If cos θ = (23)\Big(\dfrac{2}{3}\Big), then 2 sec2θ + 2 tan2θ − 7 is equal to:

  1. 0

  2. 1

  3. 3

  4. 4

Answer

cos θ = 23\dfrac{2}{3}

sec θ = 32\dfrac{3}{2}

sec2 θ = 94\dfrac{9}{4}

tan2 θ = sec2 θ - 1 = 941=54\dfrac{9}{4} - 1 = \dfrac{5}{4}

Given,

⇒ 2 sec2θ + 2 tan2θ − 7

2(94)+2(54)7(184)+(104)7(284)7770.\Rightarrow 2\Big(\dfrac{9}{4}\Big) + 2\Big(\dfrac{5}{4}\Big) - 7 \\[1em] \Rightarrow \Big(\dfrac{18}{4}\Big) + \Big(\dfrac{10}{4}\Big) - 7 \\[1em] \Rightarrow \Big(\dfrac{28}{4}\Big) - 7 \\[1em] \Rightarrow 7 - 7 \\[1em] \Rightarrow 0.

Hence, option 1 is the correct option.

Question 14

If 24 cot θ = 7, then sin θ is equal to:

  1. (247)\Big(\dfrac{24}{7}\Big)

  2. (2425)\Big(\dfrac{24}{25}\Big)

  3. (725)\Big(\dfrac{7}{25}\Big)

  4. (2524)\Big(\dfrac{25}{24}\Big)

Answer

Given,

24 cot θ = 7

cot θ = 724=adjacentopposite\dfrac{7}{24} = \dfrac{\text{adjacent}}{\text{opposite}}

We know that,

Hypotenuse=opposite2+adjacent2=(24)2+(7)2=576+49=625=25.\Rightarrow \text{Hypotenuse} = \sqrt{\text{opposite}^2 + \text{adjacent}^2 } \\[1em] = \sqrt{(24)^2 + (7)^2} \\[1em] = \sqrt{576 + 49} \\[1em] = \sqrt{625} \\[1em] = 25.

Now,

sin θ = oppositehypotenuse=2425\dfrac{\text{opposite}}{\text{hypotenuse}} = \dfrac{24}{25}

Hence, option 2 is the correct option.

Question 15

If tan θ + cot θ = 2, then tan2θ + cot2θ is equal to:

  1. 1

  2. 2

  3. 4

  4. 8

Answer

Given,

tan θ + cot θ = 2

Square on both sides,

⇒ (tan θ + cot θ)2 = 22

⇒ tan2 θ + cot2 θ + 2 tan θ cot θ = 4

⇒ tan2 θ + cot2 θ + 2 tan θ 1tanθ\dfrac{1}{\tan \theta} = 4

⇒ tan2 θ + cot2 θ + 2 = 4

⇒ tan2 θ + cot2 θ = 4 - 2

⇒ tan2 θ + cot2 θ = 2

Hence, option 2 is the correct option.

Question 16

If cot A + (1cotA)\Big(\dfrac{1}{\cot A}\Big) = 2, then cot2A + (1cot2A)\Big(\dfrac{1}{\cot^2 A}\Big) equals:

  1. 0

  2. 1

  3. 2

  4. 4

Answer

Given,

cot A + (1cotA)\Big(\dfrac{1}{\cot A}\Big) = 2

Square on both sides,

(cotA+1cotA)2=22cot2A+1cot2A+2=4cot2A+1cot2A=42cot2A+1cot2A=2.\Rightarrow \Big(\cot A + \dfrac{1}{\cot A}\Big)^2 = 2^2 \\[1em] \Rightarrow \cot^2 A + \dfrac{1}{\cot^2 A} + 2 = 4 \\[1em] \Rightarrow \cot^2 A + \dfrac{1}{\cot^2 A} = 4 - 2 \\[1em] \Rightarrow \cot^2 A + \dfrac{1}{\cot^2 A} = 2 .

Hence, option 3 is the correct option.

Question 17

If 4 tan θ = 3, then (4sinθ3cosθ4sinθ+3cosθ)\Big(\dfrac{4\sin\theta - 3\cos\theta}{4\sin\theta + 3\cos\theta}\Big) = ?

  1. 0

  2. (13)\Big(\dfrac{1}{3}\Big)

  3. (23)\Big(\dfrac{2}{3}\Big)

  4. (34)\Big(\dfrac{3}{4}\Big)

Answer

tan θ = 34\dfrac{3}{4}

Then,

sin θ = 35\dfrac{3}{5}, cos θ = 45\dfrac{4}{5}

Substitute,

4(35)3(45)4(35)+3(45)(125)(125)(125)+(125)02450.\Rightarrow \dfrac{4\Big(\dfrac{3}{5}\Big) - 3\Big(\dfrac{4}{5}\Big)}{4\Big(\dfrac{3}{5}\Big) + 3\Big(\dfrac{4}{5}\Big)} \\[1em] \Rightarrow \dfrac{\Big(\dfrac{12}{5}\Big) - \Big(\dfrac{12}{5}\Big)}{\Big(\dfrac{12}{5}\Big) + \Big(\dfrac{12}{5}\Big)} \\[1em] \Rightarrow \dfrac{0}{\dfrac{24}{5}} \\[1em] \Rightarrow 0.

Hence, option 1 is the correct option.

Question 18

If tan θ = (17)\Big(\dfrac{1}{\sqrt{7}}\Big), then the value of (cosec2θ+sec2θcosec2θsec2θ)\Big(\dfrac{\cosec^2\theta + \sec^2\theta}{\cosec^2\theta - \sec^2\theta}\Big) is:

  1. (34)\Big(\dfrac{3}{4}\Big)

  2. (43)\Big(\dfrac{4}{3}\Big)

  3. (37)\Big(\dfrac{3}{7}\Big)

  4. (47)\Big(\dfrac{4}{7}\Big)

Answer

Given,

tan θ = (17)\Big(\dfrac{1}{\sqrt{7}}\Big)

tan2 θ = (17)\Big(\dfrac{1}{7}\Big)

We know that,

sec2θ=1+tan2θsec2θ=1+17sec2θ=87.cosec2θ=1+cot2θcosec2θ=1+7cosec2θ=8.\sec^2 \theta = 1 + \tan^2 \theta \\[1em] \sec^2 \theta = 1 + \dfrac{1}{7} \\[1em] \sec^2 \theta = \dfrac{8}{7}. \\[1em] \cosec^2 \theta = 1 + \cot^2 \theta \\[1em] \cosec^2 \theta = 1 + 7 \\[1em] \cosec^2 \theta = 8.

Given expression,

(cosec2θ+sec2θcosec2θsec2θ)8+8788756+8756876448=43.\Rightarrow \Big(\dfrac{\cosec^2\theta + \sec^2\theta}{\cosec^2\theta - \sec^2\theta}\Big) \\[1em] \Rightarrow \dfrac{8 + \dfrac{8}{7}}{8 - \dfrac{8}{7}} \\[1em] \Rightarrow \dfrac{\dfrac{56 + 8}{7}}{\dfrac{56 - 8}{7}} \\[1em] \Rightarrow \dfrac{64}{48} = \dfrac{4}{3}.

Hence, option 2 is the correct option.

Question 19

(1 + sin A)(1 − sin A) is equal to:

  1. cosec2A

  2. sin2A

  3. sec2A

  4. cos2A

Answer

⇒ (1 + sin A)(1 − sin A)

⇒ 1 − sin2 A

⇒ cos2A

Hence, option 4 is the correct option.

Question 20

sin A expressed in terms of cot A is:

  1. (11+cot2A)\Big(\dfrac{1}{\sqrt{1 + \cot^2 A}}\Big)

  2. (1+cot2AcotA)\Big(\dfrac{\sqrt{1 + \cot^2 A}}{\cot A}\Big)

  3. (1+cot2A1)\Big(\dfrac{\sqrt{1 + \cot^2 A}}{1}\Big)

  4. (1cot2AcotA)\Big(\dfrac{\sqrt{1 - \cot^2 A}}{\cot A}\Big)

Answer

1 + cot2 A = cosec2 A

1+cot2A\sqrt{1 + \cot^2 A} = cosec A

sin A = 1cosecA\dfrac{1}{\cosec A}

sin A = 11+cot2A\dfrac{1}{\sqrt{1 + \cot^2 A}}

Hence, option 1 is the correct option.

Question 21

If sec θ = 2x and y tan θ = 2, then the value of 2(x21y2)2\Big(x^2 - \dfrac{1}{y^2}\Big) is:

  1. (12)\Big(\dfrac{1}{2}\Big)

  2. (13)\Big(\dfrac{1}{3}\Big)

  3. (14)\Big(\dfrac{1}{4}\Big)

  4. 1

Answer

sec θ = 2x

x = secθ2\dfrac{\sec \theta}{2}

y tan θ = 2

1y=tanθ2\dfrac{1}{y} = \dfrac{\tan \theta}{2}

We have,

2(x21y2)2(sec2θ4tan2θ4)24(sec2θtan2θ)12(sec2θtan2θ)12.\Rightarrow 2\Big(x^2 - \dfrac{1}{y^2}\Big) \\[1em] \Rightarrow 2\Big(\dfrac{\sec^2 \theta}{4} - \dfrac{\tan^2 \theta}{4}\Big) \\[1em] \Rightarrow \dfrac{2}{4}\Big(\sec^2 \theta - \tan^2 \theta\Big) \\[1em] \Rightarrow \dfrac{1}{2}\Big(\sec^2 \theta - \tan^2 \theta\Big) \\[1em] \Rightarrow \dfrac{1}{2}.

Hence, option 1 is the correct option.

Question 22

(cos4 θ − sin4 θ) is equal to :

  1. 2 cos2 θ + 1

  2. 2 cos2 θ − 1

  3. 2 sin2 θ + 1

  4. 2 sin2 θ − 1

Answer

⇒ (cos4 θ − sin4 θ)

⇒ (cos2 θ − sin2 θ)(cos2 θ + sin2 θ)

⇒ (cos2 θ - sin2 θ)

⇒ (cos2 θ - 1 + cos2 θ)

⇒ (2cos2 θ - 1)

Hence, option 2 is the correct option.

Question 23

If cosec θ − cot θ = 13\dfrac{1}{3}, then the value of cosec θ + cot θ is :

  1. 1

  2. 2

  3. 3

  4. 4

Answer

We know that,

cosec2 θ − cot2 θ = 1

cosec θ − cot θ (cosec θ + cot θ)= 1

13\dfrac{1}{3} (cosec θ + cot θ)= 1

(cosec θ + cot θ)= 3

Hence, option 3 is the correct option.

Question 24

If sin θ − cos θ = 0, then the value of sin θ + cos θ is :

  1. 12\dfrac{1}{\sqrt{2}}

  2. 2\sqrt{2}

  3. 14\dfrac{1}{4}

  4. 34\dfrac{3}{4}

Answer

sin θ = cos θ

Divide both sides by cos θ

sinθcosθ=cosθcosθ\dfrac{\sin \theta}{\cos \theta} = \dfrac{\cos \theta}{\cos \theta}

tan θ = 1

For acute angles, tan θ = 1 when θ = 45°.

⇒ sin 45° + cos 45°

12+12\dfrac{1}{\sqrt2} + \dfrac{1}{\sqrt2}

22\dfrac{2}{\sqrt2}

2\sqrt2

Hence, option 2 is the correct option.

Question 25

If sec θ + tan θ + 1 = 0, then sec θ − tan θ is equal to :

  1. −1

  2. 0

  3. 1

  4. 2

Answer

⇒ sec θ + tan θ + 1 = 0

⇒ sec θ + tan θ = -1

We know that,

⇒ sec2 θ - tan2 θ = 1

⇒ (sec θ + tan θ)(sec θ - tan θ) = 1

⇒ (-1)(sec θ - tan θ) = 1

⇒ sec θ - tan θ = -1

Hence, option 1 is the correct option.

Question 26

If sec θ + tan θ = x, then sec θ is equal to :

  1. x2+1x\dfrac{x^2 + 1}{x}

  2. x21x\dfrac{x^2 − 1}{x}

  3. x2+12x\dfrac{x^2 + 1}{2x}

  4. x212x\dfrac{x^2 − 1}{2x}

Answer

⇒ sec θ + tan θ = x ....(1)

We know that,

⇒ sec2 θ − tan2 θ = 1

⇒ (sec θ + tan θ)(sec θ − tan θ) = 1

⇒ x (sec θ − tan θ) = 1

⇒ sec θ − tan θ = 1x\dfrac{1}{x} ....(2)

Adding eqn (1) and (2):

⇒ sec θ + tan θ + sec θ − tan θ = x + 1x\dfrac{1}{x}

⇒ 2 sec θ = x+1xx + \dfrac{1}{x}

⇒ sec θ = 12(x+1x)\dfrac{1}{2}\Big(x + \dfrac{1}{x}\Big)

⇒ sec θ = 12(x2+1x)\dfrac{1}{2}\Big(\dfrac{x^2 + 1}{x}\Big)

⇒ sec θ = x2+12x\dfrac{x^2 + 1}{2x}

Hence, option 3 is the correct option.

Question 27

If sin θ − cos θ = 0, then the value of (sin4 θ + cos4 θ) is :

  1. 14\dfrac{1}{4}

  2. 12\dfrac{1}{2}

  3. 34\dfrac{3}{4}

  4. 1

Answer

⇒ sin θ − cos θ = 0

⇒ sin θ = cos θ

Divide by cos θ

sinθcosθ\dfrac{sin \theta}{\cos \theta} = 1

tan 45° = 1

Given expression,

(sin4 45° + cos4 45°)

(12)4+(12)4(14)+(14)12.\Rightarrow \Big(\dfrac{1}{\sqrt2}\Big)^4 + \Big(\dfrac{1}{\sqrt2}\Big)^4 \\[1em] \Rightarrow \Big(\dfrac{1}{4}\Big) + \Big(\dfrac{1}{4}\Big) \\[1em] \Rightarrow \dfrac{1}{2}.

Hence, option 2 is the correct option.

Question 28

If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2 − q2 is equal to :

  1. a2 − b2

  2. b2 − a2

  3. a2 + b2

  4. b − a

Answer

⇒ a cot θ + b cosec θ = p

p2 = (a cot θ + b cosec θ)2

p2 = (a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ)

⇒ b cot θ + a cosec θ = q

q2 = (b cot θ + a cosec θ)2

q2 = (b2 cot2 θ + a2 cosec2 θ + 2ab cot θ cosec θ)

⇒ p2 − q2 = (a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ) - (b2 cot2 θ + a2 cosec2 θ + 2ab cot θ cosec θ)

= (a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ - b2 cot2 θ - a2 cosec2 θ - 2ab cot θ cosec θ)

= (a2 cot2 θ + b2 cosec2 θ - b2 cot2 θ - a2 cosec2 θ )

= a2 (cot2 θ - cosec2) + b2 (cosec2 θ - cot2 θ )

= a2 (-1) + b2 (1)

= b2 - a2.

Hence, option 2 is the correct option.

Question 29

The expression equivalent to sec2 θ + cosec2 θ is :

  1. sec2 θ · cosec2 θ

  2. tan2 θ + cot2 θ

  3. 1sec2θ×cosec2θ\dfrac{1}{\sec^2 θ \times \cosec^2 θ}

  4. 2 sec2 θ + 1

Answer

sec2 θ + cosec2 θ

1cos2θ+1sin2θsin2θ+cos2θcos2θsin2θ1cos2θsin2θsec2θ(cosec2θ)\Rightarrow \dfrac{1}{\cos^2 \theta} + \dfrac{1}{\sin^2 \theta} \\[1em] \Rightarrow \dfrac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta\sin^2 \theta} \\[1em] \Rightarrow \dfrac{1}{\cos^2 \theta\sin^2 \theta} \\[1em] \Rightarrow \sec^2 \theta (\cosec^2 \theta)

Hence, option 1 is the correct option.

Question 30

If x = a cos3 θ and y = b sin3 θ, then (xa)23+(yb)23\Big(\dfrac{x}{a}\Big)^{\dfrac{2}{3}} + \Big(\dfrac{y}{b}\Big)^{\dfrac{2}{3}} is equal to :

  1. a

  2. b

  3. 1

  4. 2

Answer

Given,

x = a cos3 θ and y = b sin3 θ

xa=cos3θ(xa)23=cos2θyb=sin3θ(yb)23=sin2θ\Rightarrow \dfrac{x}{a} = \cos^3 θ \\[1em] \Rightarrow \Big(\dfrac{x}{a}\Big)^{\dfrac{2}{3}} = \cos^2 θ \\[1em] \Rightarrow \dfrac{y}{b} = \sin^3 θ \\[1em] \Rightarrow \Big(\dfrac{y}{b}\Big)^{\dfrac{2}{3}} = \sin^2 θ

Add the expressions,

(xa)23+(yb)23\Big(\dfrac{x}{a}\Big)^{\dfrac{2}{3}} + \Big(\dfrac{y}{b}\Big)^{\dfrac{2}{3}} = cos2 θ + sin2 θ

(xa)23+(yb)23\Big(\dfrac{x}{a}\Big)^{\dfrac{2}{3}} + \Big(\dfrac{y}{b}\Big)^{\dfrac{2}{3}} = 1

Hence, option 3 is the correct option.

Question 31

If sin θ + cosec θ = 2, then sin3 θ + cosec3 θ is equal to :

  1. 2

  2. 2 sin θ

  3. −2 sin θ

  4. 2 cos θ

Answer

sin θ + cosec θ = 2

Let,

⇒ sin θ = x

⇒ cosec θ = 1x\dfrac{1}{x}

x+1x=2x2+1x=2x2+1=2xx2+12x=0(x1)2=0x=1\Rightarrow x + \dfrac{1}{x} = 2 \\[1em] \Rightarrow \dfrac{x^2 + 1}{x} = 2 \\[1em] \Rightarrow x^2 + 1 = 2x \\[1em] \Rightarrow x^2 + 1 - 2x = 0 \\[1em] \Rightarrow (x - 1)^2 = 0 \\[1em] \Rightarrow x = 1

Hence,

sin θ = 1 and cosec θ = 1

⇒ sin3 θ + cosec3 θ

⇒ 13 + 13

⇒ 2

Hence, option 1 is the correct option.

Question 32

The expression equivalent to sec x, is :

  1. tanx+sinxsecx\tan x + \dfrac{\sin x}{\sec x}

  2. cosx+tanxcosx\cos x + \dfrac{\tan x}{\cos x}

  3. cos x + tan x sin x

  4. tan x − cos x sin x

Answer

Solving for option 3,

cos x + tan x sin x

cosx+sinxcosx×sinxcosx+sin2xcosxcos2x+sin2xcosx1cosxsecx\Rightarrow \cos x + \dfrac{\sin x}{\cos x} \times \sin x \\[1em] \Rightarrow \cos x + \dfrac{\sin^2 x}{\cos x} \\[1em] \Rightarrow \dfrac{\cos^2 x + \sin^2 x}{\cos x} \\[1em] \Rightarrow \dfrac{1}{\cos x} \\[1em] \Rightarrow \sec x

Hence, option 3 is the correct option.

Question 33

sin4Acos4A1sin2A\dfrac{\sin^4 A − \cos^4 A}{1 − \sin^2 A} is equal to :

  1. cot2 A − 1

  2. tan2 A − 1

  3. 1 − cot2 A

  4. 1 − tan2 A

Answer

sin4Acos4A1sin2A(sin2Acos2A)(sin2A+cos2A)cos2Asin2Acos2Acos2Asin2Acos2A1tan2A1.\Rightarrow \dfrac{\sin^4 A − \cos^4 A}{1 − \sin^2 A} \\[1em] \Rightarrow \dfrac{(\sin^2 A − \cos^2 A)(\sin^2 A + \cos^2 A)}{\cos^2 A} \\[1em] \Rightarrow \dfrac{\sin^2 A − \cos^2 A}{\cos^2 A} \\[1em] \Rightarrow \dfrac{\sin^2 A }{\cos^2 A} - 1 \\[1em] \Rightarrow \tan^2 A - 1 .

Hence, option 2 is the correct option.

Question 34

If sin A + sin2 A = 1, then cos2 A + cos4 A is :

  1. 12\dfrac{1}{2}

  2. 1

  3. 2

  4. 3

Answer

Given,

sin A + sin2 A = 1

It can be written as

sin A = 1 - sin2 A …. (1)

We have to find the value of (cos2 A + cos4 A)

Using the trigonometric identities,

cos2 A = 1 - sin2 A ….. (2)

From both the equations

sin A = cos2 A

Now, (cos2 A + cos4 A) = (cos2 A + (sin A)2)

= cos2 A + sin2A

cos2 A + sin2 A = 1

Therefore, (cos2 A + cos4 A) = 1

Hence, option 2 is the correct option.

Question 35

If cos A + cos2 A = 1, then sin2 A + sin4 A is :

  1. 1

  2. 2

  3. 3

  4. 4

Answer

cos A + cos2 A = 1

⇒ 1 - cos2 A = cos A

⇒ sin2 A = cos A

Given,

⇒ sin2 A + sin4 A

⇒ sin2 A + (sin2 A)2

⇒ sin2 A + cos2 A [∵ sin2 A = cos A]

⇒ 1.

Hence, option 1 is the correct option.

Question 36

(1sinA1+sinA)\sqrt{\Big(\dfrac{1 − \sin A}{1 + \sin A}\Big)} = ?

  1. sec A + tan A

  2. sec A − tan A

  3. sec A tan A

  4. none of these

Answer

Rationalize the expression,

(1sinA1+sinA)(1sinA1+sinA)×1sinA1sinA((1sinA)21sin2A)((1sinA)2cos2A)(1sinA)cosA1cosAsinAcosAsecAtanA\Rightarrow \sqrt{\Big(\dfrac{1 − \sin A}{1 + \sin A}\Big)} \\[1em] \Rightarrow \sqrt{\Big(\dfrac{1 − \sin A}{1 + \sin A}\Big) \times \dfrac{1 - \sin A}{1 - \sin A}} \\[1em] \Rightarrow \sqrt{\Big(\dfrac{(1 − \sin A)^2}{1 - \sin^2 A}\Big)} \\[1em] \Rightarrow \sqrt{\Big(\dfrac{(1 − \sin A)^2}{\cos^2 A}\Big)} \\[1em] \Rightarrow \dfrac{(1 − \sin A)}{\cos A} \\[1em] \Rightarrow \dfrac{1}{\cos A} − \dfrac{\sin A}{\cos A} \\[1em] \Rightarrow \sec A − \tan A

Hence, option 2 is the correct option.

Assertion-Reason Questions

Question 1

Assertion (A): (1+tanθ1+cotθ)2=tan2θ\Big(\dfrac{1 + \tan \theta}{1 + \cot \theta} \Big)^2 = \tan^2 \theta

Reason (R): tan2 θ + sec2 θ = 1

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

(1+tanθ1+cotθ)2(1+tanθ1+1tanθ)2(1+tanθtanθ+1tanθ)2tan2θ\Rightarrow \Big(\dfrac{1 + \tan \theta}{1 + \cot \theta} \Big)^2 \\[1em] \Rightarrow \Big(\dfrac{1 + \tan \theta}{1 + \dfrac{1}{\tan \theta}} \Big)^2 \\[1em] \Rightarrow \Big(\dfrac{1 + \tan \theta}{ \dfrac{\tan \theta + 1}{\tan \theta}} \Big)^2 \\[1em] \Rightarrow \tan^2 \theta

Therefore, assertion (A) is true.

tan2 θ + sec2 θ = 1 is incorrect

The correct identity is sec2 θ - tan2 θ = 1

Therefore, reason (R) is false.

A is true, R is false.

Hence, option 1 is the correct option.

Question 2

Assertion (A): (1 − cosec2 θ)(1 − sec2 θ) = 1

Reason (R): 1 + tan2 θ = sec2 θ and 1 + cot2 θ = cosec2 θ

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Solving L.H.S,

(1 − cosec2 θ)(1 − sec2 θ)

= (− cot2 θ)(− tan2 θ)

= 1tan2θ\dfrac{1}{\tan^2 \theta} (tan2 θ)

= 1

L.H.S = R.H.S

Therefore, assertion (A) is true.

1 + tan2 θ = sec2 θ and 1 + cot2 θ = cosec2 θ

These are standard trigonometric identities derived from the unit circle and the Pythagorean theorem.

Therefore, reason (R) is true.

Both A and R are true.

Hence, option 3 is the correct option.

Question 3

Assertion (A): If sec θ + tan θ = p, then sec θ = 2pp2+1\dfrac{2p}{p^2 + 1}

Reason (R): sec2 θ − tan2 θ = 1

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

sec θ + tan θ = p

We know that,

sec2 θ − tan2 θ = 1

(sec θ + tan θ)(sec θ − tan θ) = 1

(p)(sec θ − tan θ) = 1

sec θ − tan θ = 1p\dfrac{1}{p}

Add sec θ + tan θ and sec θ − tan θ,

sec θ + tan θ + sec θ − tan θ = p + 1p\dfrac{1}{p}

2sec θ = p2+1p\dfrac{p^2 + 1}{p}

sec θ = p2+12p\dfrac{p^2 + 1}{2p}

Assertion (A) is false.

sec2 θ − tan2 θ = 1 is a standard Pythagorean Identity.

Reason is true.

A is false, R is true

Hence, option 2 is the correct option.

Question 4

Assertion (A): For an acute angle θ, if sin θ = cos θ, then 2 sin2 θ + tan2 θ = 1

Reason (R): For any acute angle θ, sin (90° − θ) = cos (45° + θ)

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

For acute angle,

sinθcosθ\dfrac{\sin \theta}{\cos \theta} = 1

tan θ = 1

For an acute angle, this occurs when θ=45°\theta = 45°.

Substitute theta in expression,

⇒ 2 sin2 θ + tan2 θ = 1

⇒ 2 sin2 45° + tan2 45° = 1

2(12)2+12(12)+11+12.\Rightarrow 2\Big(\dfrac{1}{\sqrt2}\Big)^2 + 1 \\[1em] \Rightarrow 2\Big(\dfrac{1}{2}\Big) + 1 \\[1em] \Rightarrow 1 + 1 \\[1em] \Rightarrow 2.

Assertion is false.

sin (90° − θ) = cos (45° + θ) is not true.

The standard trigonometric identity is: sin (90° − θ) = cos θ

Reason is false

Both A and R are false

Hence, option 4 is the correct option.

PrevNext