Find the co-ordinates of point P which divides the line segment joining A(-2, -7) and B(6, 1) in the ratio 5 : 3.
Answer
Let point P be (x, y).
Given,
m1 : m2 = 5 : 3
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 5 × 6 + 3 × − 2 5 + 3 , 5 × 1 + 3 × − 7 5 + 3 ) ⇒ ( x , y ) = ( 30 − 6 8 , 5 − 21 8 ) ⇒ ( x , y ) = ( 24 8 , − 16 8 ) ⇒ ( x , y ) = ( 3 , − 2 ) . \Rightarrow (x, y) = \Big(\dfrac{5 \times 6 + 3 \times -2}{5 + 3}, \dfrac{5 \times 1 + 3 \times -7}{5 + 3}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{30 - 6}{8}, \dfrac{5 - 21}{8}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{24}{8}, \dfrac{-16}{8}\Big) \\[1em] \Rightarrow (x, y) = (3, -2). ⇒ ( x , y ) = ( 5 + 3 5 × 6 + 3 × − 2 , 5 + 3 5 × 1 + 3 × − 7 ) ⇒ ( x , y ) = ( 8 30 − 6 , 8 5 − 21 ) ⇒ ( x , y ) = ( 8 24 , 8 − 16 ) ⇒ ( x , y ) = ( 3 , − 2 ) .
Hence, the coordinates of P are (3, -2).
The line segment joining the points A(4, -3) and B(4, 2) is divided by the point P such that AP : AB = 2 : 5. Find the co-ordinates of P.
Answer
Let point P be (x, y).
⇒ A P A B = 2 5 ⇒ A P A P + P B = 2 5 ⇒ 5 A P = 2 A P + 2 P B ⇒ 3 A P = 2 P B ⇒ A P P B = 2 3 ⇒ A P : P B = 2 : 3. \Rightarrow \dfrac{AP}{AB} = \dfrac{2}{5} \\[1em] \Rightarrow \dfrac{AP}{AP + PB} = \dfrac{2}{5} \\[1em] \Rightarrow 5AP = 2AP + 2PB \\[1em] \Rightarrow 3AP = 2PB \\[1em] \Rightarrow \dfrac{AP}{PB} = \dfrac{2}{3} \\[1em] \Rightarrow AP : PB = 2 : 3. ⇒ A B A P = 5 2 ⇒ A P + PB A P = 5 2 ⇒ 5 A P = 2 A P + 2 PB ⇒ 3 A P = 2 PB ⇒ PB A P = 3 2 ⇒ A P : PB = 2 : 3.
m1 : m2 = AP : PB = 2 : 3.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 2 × 4 + 3 × 4 2 + 3 , 2 × 2 + 3 × − 3 2 + 3 ) ⇒ ( x , y ) = ( 8 + 12 5 , 4 − 9 5 ) ⇒ ( x , y ) = ( 20 5 , − 5 5 ) ⇒ ( x , y ) = ( 4 , − 1 ) . \Rightarrow (x, y) = \Big(\dfrac{2 \times 4+ 3 \times 4}{2 + 3}, \dfrac{2 \times 2 + 3 \times -3}{2 + 3}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{8 + 12}{5}, \dfrac{4 - 9}{5}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{20}{5}, \dfrac{-5}{5}\Big) \\[1em] \Rightarrow (x, y) = (4, -1). ⇒ ( x , y ) = ( 2 + 3 2 × 4 + 3 × 4 , 2 + 3 2 × 2 + 3 × − 3 ) ⇒ ( x , y ) = ( 5 8 + 12 , 5 4 − 9 ) ⇒ ( x , y ) = ( 5 20 , 5 − 5 ) ⇒ ( x , y ) = ( 4 , − 1 ) .
Hence, the coordinates of P are (4, -1).
P(1, -2) is a point on the line segment A(3, -6) and B(x, y) such that AP : PB is equal to 2 : 3. Find the co-ordinates of B.
Answer
Given,
m1 : m2 = 2 : 3
By section-formula,
x = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substituting values we get :
⇒ 1 = ( 2 × x + 3 × 3 2 + 3 ) ⇒ 1 = ( 2 x + 9 5 ) ⇒ 5 = 2 x + 9 ⇒ 5 − 9 = 2 x ⇒ − 4 = 2 x ⇒ x = − 4 2 ⇒ x = − 2. \Rightarrow 1 = \Big(\dfrac{2 \times x + 3 \times 3}{2 + 3}\Big) \\[1em] \Rightarrow 1 = \Big(\dfrac{2x + 9}{5}\Big) \\[1em] \Rightarrow 5 = 2x + 9 \\[1em] \Rightarrow 5 - 9 = 2x \\[1em] \Rightarrow -4 = 2x \\[1em] \Rightarrow x = \dfrac{-4}{2} \\[1em] \Rightarrow x = -2. ⇒ 1 = ( 2 + 3 2 × x + 3 × 3 ) ⇒ 1 = ( 5 2 x + 9 ) ⇒ 5 = 2 x + 9 ⇒ 5 − 9 = 2 x ⇒ − 4 = 2 x ⇒ x = 2 − 4 ⇒ x = − 2.
By section-formula,
y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ − 2 = ( 2 × y + 3 × − 6 2 + 3 ) ⇒ − 2 = ( 2 y − 18 5 ) ⇒ − 10 = 2 y − 18 ⇒ − 10 + 18 = 2 y ⇒ 8 = 2 y ⇒ y = 8 2 ⇒ y = 4. \Rightarrow -2 = \Big(\dfrac{2 \times y + 3 \times -6}{2 + 3}\Big) \\[1em] \Rightarrow -2 = \Big(\dfrac{2y - 18}{5}\Big) \\[1em] \Rightarrow -10 = 2y - 18 \\[1em] \Rightarrow -10 + 18 = 2y \\[1em] \Rightarrow 8 = 2y \\[1em] \Rightarrow y = \dfrac{8}{2} \\[1em] \Rightarrow y = 4. ⇒ − 2 = ( 2 + 3 2 × y + 3 × − 6 ) ⇒ − 2 = ( 5 2 y − 18 ) ⇒ − 10 = 2 y − 18 ⇒ − 10 + 18 = 2 y ⇒ 8 = 2 y ⇒ y = 2 8 ⇒ y = 4.
Hence, the coordinates of B are (-2, 4).
Find a point P on the line segment joining A(14,-5) and (-4,4), which is twice as far from A as from B
Answer
Let point P be (x, y).
Since, point P is twice as far from A as from B.
⇒ AP = 2BP
⇒ A P B P = 2 1 \dfrac{AP}{BP} = \dfrac{2}{1} BP A P = 1 2
⇒ AP : BP = 2 : 1.
⇒ m1 : m2 = AP : PB = 2 : 1
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 2 × − 4 + 1 × 14 2 + 1 , 2 × 4 + 1 × − 5 2 + 1 ) ⇒ ( x , y ) = ( − 8 + 14 3 , 8 − 5 3 ) ⇒ ( x , y ) = ( 6 3 , 3 3 ) ⇒ ( x , y ) = ( 2 , 1 ) . \Rightarrow (x, y) = \Big(\dfrac{2 \times -4+ 1 \times 14}{2 + 1}, \dfrac{2 \times 4 + 1 \times -5}{2 + 1}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{-8 + 14}{3}, \dfrac{8 - 5}{3}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{6}{3}, \dfrac{3}{3}\Big) \\[1em] \Rightarrow (x, y) = (2, 1). ⇒ ( x , y ) = ( 2 + 1 2 × − 4 + 1 × 14 , 2 + 1 2 × 4 + 1 × − 5 ) ⇒ ( x , y ) = ( 3 − 8 + 14 , 3 8 − 5 ) ⇒ ( x , y ) = ( 3 6 , 3 3 ) ⇒ ( x , y ) = ( 2 , 1 ) .
Hence, the coordinates of P are (2, 1).
Find the co-ordinates of the points of trisection of the line segment joining the points A(5, -3) and B(2, -9).
Answer
Let point P is the first point of trisection, meaning it divides the segment AB internally in the ratio m1 : m2 = 1 : 2
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ P ( x , y ) = ( 1 × 2 + 2 × 5 1 + 2 , 1 × − 9 + 2 × − 3 1 + 2 ) ⇒ P ( x , y ) = ( 2 + 10 3 , − 9 − 6 3 ) ⇒ P ( x , y ) = ( 12 3 , − 15 3 ) ⇒ P ( x , y ) = ( 4 , − 5 ) . \Rightarrow P(x, y) = \Big(\dfrac{1 \times 2 + 2 \times 5}{1 + 2}, \dfrac{1 \times -9 + 2 \times -3}{1 + 2}\Big) \\[1em] \Rightarrow P(x, y) = \Big(\dfrac{2 + 10}{3}, \dfrac{-9 - 6}{3}\Big) \\[1em] \Rightarrow P(x, y) = \Big(\dfrac{12}{3}, \dfrac{-15}{3}\Big) \\[1em] \Rightarrow P(x, y) = (4, -5). ⇒ P ( x , y ) = ( 1 + 2 1 × 2 + 2 × 5 , 1 + 2 1 × − 9 + 2 × − 3 ) ⇒ P ( x , y ) = ( 3 2 + 10 , 3 − 9 − 6 ) ⇒ P ( x , y ) = ( 3 12 , 3 − 15 ) ⇒ P ( x , y ) = ( 4 , − 5 ) .
Let point Q is the second point of trisection, meaning it divides the segment AB internally in the ratio m1 : m2 = 2 : 1
Substituting values we get :
⇒ Q ( a , b ) = ( 2 × 2 + 1 × 5 2 + 1 , 2 × − 9 + 1 × − 3 2 + 1 ) ⇒ Q ( a , b ) = ( 4 + 5 3 , − 18 − 3 3 ) ⇒ Q ( a , b ) = ( 9 3 , − 21 3 ) ⇒ Q ( a , b ) = ( 3 , − 7 ) . \Rightarrow Q(a, b) = \Big(\dfrac{2 \times 2 + 1 \times 5}{2 + 1}, \dfrac{2 \times -9 + 1 \times -3}{2 + 1}\Big) \\[1em] \Rightarrow Q(a, b) = \Big(\dfrac{4 + 5}{3}, \dfrac{-18 - 3}{3}\Big) \\[1em] \Rightarrow Q(a, b) = \Big(\dfrac{9}{3}, \dfrac{-21}{3}\Big) \\[1em] \Rightarrow Q(a, b) = (3, -7). ⇒ Q ( a , b ) = ( 2 + 1 2 × 2 + 1 × 5 , 2 + 1 2 × − 9 + 1 × − 3 ) ⇒ Q ( a , b ) = ( 3 4 + 5 , 3 − 18 − 3 ) ⇒ Q ( a , b ) = ( 3 9 , 3 − 21 ) ⇒ Q ( a , b ) = ( 3 , − 7 ) .
Hence, the coordinates of trisection are P(4, -5) and Q(3, -7).
Find the co-ordinates of the mid-point of the line segment joining :
(i) A(5, 7) and B(-3, -1)
(ii) P(-5, -8) and Q(3, 4)
Answer
(i) Let mid-point of the line segment joining AB be P(x,y).
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( x , y ) = ( 5 + ( − 3 ) 2 , 7 + ( − 1 ) 2 ) ⇒ ( x , y ) = ( 2 2 , 6 2 ) ⇒ ( x , y ) = ( 1 , 3 ) . \Rightarrow (x, y) = \Big(\dfrac{5 + (-3)}{2}, \dfrac{7 + (-1)}{2}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{2}{2}, \dfrac{6}{2}\Big) \\[1em] \Rightarrow (x, y) = (1, 3). ⇒ ( x , y ) = ( 2 5 + ( − 3 ) , 2 7 + ( − 1 ) ) ⇒ ( x , y ) = ( 2 2 , 2 6 ) ⇒ ( x , y ) = ( 1 , 3 ) .
Hence, the coordinates of mid-point are (1, 3).
(ii) Let mid-point of the line segment joining PQ be B(x,y).
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( x , y ) = ( − 5 + 3 2 , − 8 + 4 2 ) ⇒ ( x , y ) = ( − 2 2 , − 4 2 ) ⇒ ( x , y ) = ( − 1 , − 2 ) . \Rightarrow (x, y) = \Big(\dfrac{-5 + 3}{2}, \dfrac{-8 + 4}{2}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{-2}{2}, \dfrac{-4}{2}\Big) \\[1em] \Rightarrow (x, y) = (-1, -2). ⇒ ( x , y ) = ( 2 − 5 + 3 , 2 − 8 + 4 ) ⇒ ( x , y ) = ( 2 − 2 , 2 − 4 ) ⇒ ( x , y ) = ( − 1 , − 2 ) .
Hence, the coordinates of mid-point are (-1, -2).
The line segment joining A(-3, 1) and B(7, -5) is a diameter of a circle whose centre is C. Find the co-ordinates of the centre C.
Answer
Since the line segment joining points A and B is the diameter of the circle, the centre of the circle must be the mid-point of the diameter AB.
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ C ( x , y ) = ( − 3 + 7 2 , 1 + ( − 5 ) 2 ) ⇒ C ( x , y ) = ( 4 2 , − 4 2 ) ⇒ C ( x , y ) = ( 2 , − 2 ) . \Rightarrow C(x, y) = \Big(\dfrac{-3 + 7}{2}, \dfrac{1 + (-5)}{2}\Big) \\[1em] \Rightarrow C(x, y) = \Big(\dfrac{4}{2}, \dfrac{-4}{2}\Big) \\[1em] \Rightarrow C(x, y) = (2, -2). ⇒ C ( x , y ) = ( 2 − 3 + 7 , 2 1 + ( − 5 ) ) ⇒ C ( x , y ) = ( 2 4 , 2 − 4 ) ⇒ C ( x , y ) = ( 2 , − 2 ) .
Hence, the coordinates of centre (C) are (2, -2).
A(10, 5), B(6, -3) and C(2, 1) are the vertices of a ΔABC. L is the mid-point of AB and M is the mid-point of AC. Write down the co-ordinates of L and M. Show that L M = 1 2 B C . LM = \dfrac{1}{2} BC. L M = 2 1 BC .
Answer
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
L is the mid-point of AB.
Substituting values we get :
⇒ L = ( 10 + 6 2 , 5 + ( − 3 ) 2 ) ⇒ L = ( 16 2 , 2 2 ) ⇒ L = ( 8 , 1 ) . \Rightarrow L = \Big(\dfrac{10 + 6}{2}, \dfrac{5 + (-3)}{2}\Big) \\[1em] \Rightarrow L = \Big(\dfrac{16}{2}, \dfrac{2}{2}\Big) \\[1em] \Rightarrow L = (8, 1). ⇒ L = ( 2 10 + 6 , 2 5 + ( − 3 ) ) ⇒ L = ( 2 16 , 2 2 ) ⇒ L = ( 8 , 1 ) .
Given,
M is the mid-point of AC.
Substituting values we get :
⇒ M = ( 10 + 2 2 , 5 + 1 2 ) ⇒ M = ( 12 2 , 6 2 ) ⇒ M = ( 6 , 3 ) . \Rightarrow M = \Big(\dfrac{10 + 2}{2}, \dfrac{5 + 1}{2}\Big) \\[1em] \Rightarrow M = \Big(\dfrac{12}{2}, \dfrac{6}{2}\Big) \\[1em] \Rightarrow M = (6, 3). ⇒ M = ( 2 10 + 2 , 2 5 + 1 ) ⇒ M = ( 2 12 , 2 6 ) ⇒ M = ( 6 , 3 ) .
By distance formula,
d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Substituting values we get :
L M = ( 6 − 8 ) 2 + ( 3 − 1 ) 2 = ( − 2 ) 2 + ( 2 ) 2 = 4 + 4 = 8 = 2 2 . B C = ( 2 − 6 ) 2 + ( 1 − ( − 3 ) ) 2 = ( − 4 ) 2 + ( 4 ) 2 = 16 + 16 = 32 = 16 × 2 = 4 2 = 2 × 2 2 = 2 × L M . LM = \sqrt{(6 - 8)^2 + (3 - 1)^2} \\[1em] = \sqrt{(-2)^2 + (2)^2} \\[1em] = \sqrt{4 + 4} \\[1em] = \sqrt{8} = 2\sqrt{2}. \\[1em] BC = \sqrt{(2 - 6)^2 + (1 - (-3))^2} \\[1em] = \sqrt{(-4)^2 + (4)^2} \\[1em] = \sqrt{16 + 16} \\[1em] = \sqrt{32} \\[1em] = \sqrt{16 \times 2} \\[1em] = 4\sqrt{2} \\[1em] = 2 \times 2\sqrt{2} \\[1em] = 2 \times LM. L M = ( 6 − 8 ) 2 + ( 3 − 1 ) 2 = ( − 2 ) 2 + ( 2 ) 2 = 4 + 4 = 8 = 2 2 . BC = ( 2 − 6 ) 2 + ( 1 − ( − 3 ) ) 2 = ( − 4 ) 2 + ( 4 ) 2 = 16 + 16 = 32 = 16 × 2 = 4 2 = 2 × 2 2 = 2 × L M .
Thus, BC = 2LM or LM = 1 2 B C . \dfrac{1}{2}BC. 2 1 BC .
Hence, proved that L M = 1 2 B C LM = \dfrac{1}{2}BC L M = 2 1 BC .
The mid-point of the line segment joining A(p, 5) and B(3, q) is M(-1, 4). Find the values of p and q.
Answer
Given,
Mid-point of the line segment joining A(p, 5) and B(3, q) is M(-1, 4).
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( − 1 , 4 ) = ( p + 3 2 , 5 + q 2 ) ⇒ ( − 1 , 4 ) = ( p + 3 2 , 5 + q 2 ) ⇒ − 1 = p + 3 2 and 4 = 5 + q 2 ⇒ p + 3 = − 2 and 5 + q = 8 ⇒ p = − 2 − 3 and q = 8 − 5 ⇒ p = − 5 and q = 3. \Rightarrow (-1, 4) = \Big(\dfrac{p + 3}{2}, \dfrac{5 + q}{2} \Big) \\[1em] \Rightarrow (-1, 4) = \Big(\dfrac{p + 3}{2}, \dfrac{5 + q}{2}\Big) \\[1em] \Rightarrow -1 = \dfrac{p + 3}{2} \text{ and } 4 = \dfrac{5 + q}{2} \\[1em] \Rightarrow p + 3 = -2 \text{ and } 5 + q = 8 \\[1em] \Rightarrow p = -2 - 3 \text{ and } q = 8 - 5 \\[1em] \Rightarrow p = -5 \text{ and } q = 3. ⇒ ( − 1 , 4 ) = ( 2 p + 3 , 2 5 + q ) ⇒ ( − 1 , 4 ) = ( 2 p + 3 , 2 5 + q ) ⇒ − 1 = 2 p + 3 and 4 = 2 5 + q ⇒ p + 3 = − 2 and 5 + q = 8 ⇒ p = − 2 − 3 and q = 8 − 5 ⇒ p = − 5 and q = 3.
Hence, p = -5 and q = 3.
The centre of a circle is C(-2, 3) and one end of a diameter PQ is P(2, -4). Find the co-ordinates of Q.
Answer
Since PQ is the diameter of the circle and C is the center, C must be the mid-point of the segment PQ.
Let coordinates of Q be (x1 , y1 ).
By using mid-point formula,
x-coordinate = ( x 1 + x 2 2 ) \Big(\dfrac{x_1 + x_2}{2}\Big) ( 2 x 1 + x 2 )
Substituting values we get :
⇒ − 2 = ( 2 + x 1 2 ) ⇒ − 4 = 2 + x 1 ⇒ − 4 − 2 = x 1 ⇒ x 1 = − 6. \Rightarrow -2 = \Big(\dfrac{2 + x_1}{2}\Big) \\[1em] \Rightarrow -4 = 2 + x_1 \\[1em] \Rightarrow -4 - 2 = x_1 \\[1em] \Rightarrow x_1 = -6. ⇒ − 2 = ( 2 2 + x 1 ) ⇒ − 4 = 2 + x 1 ⇒ − 4 − 2 = x 1 ⇒ x 1 = − 6.
By using mid-point formula,
y-coordinate = ( y 1 + y 2 2 ) \Big(\dfrac{y_1 + y_2}{2}\Big) ( 2 y 1 + y 2 )
Substituting values we get :
⇒ 3 = ( − 4 + y 1 2 ) ⇒ 6 = − 4 + y 1 ⇒ 6 + 4 = y 1 ⇒ y 1 = 10. \Rightarrow 3 = \Big(\dfrac{-4 + y_1}{2}\Big) \\[1em] \Rightarrow 6 = -4 + y_1 \\[1em] \Rightarrow 6 + 4 = y_1 \\[1em] \Rightarrow y_1 = 10. ⇒ 3 = ( 2 − 4 + y 1 ) ⇒ 6 = − 4 + y 1 ⇒ 6 + 4 = y 1 ⇒ y 1 = 10.
Q = (x1 , y1 ) = (-6, 10).
Hence, coordinates of Q are (-6, 10).
The point P(-4, 1) divides the line segment joining the points A(2, -2) and B in the ratio 3 : 5. Find the co-ordinates of point B.
Answer
Let coordinates of B be (a, b).
Point P(-4, 1) divides the line segment joining A(2, -2) and B(a, b) in the ratio 3 : 5.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( − 4 , 1 ) = ( 3 a + 5 ( 2 ) 3 + 5 , 3 b + 5 ( − 2 ) 3 + 5 ) ⇒ ( − 4 , 1 ) = ( 3 a + 10 8 , 3 b − 10 8 ) ⇒ − 4 = ( 3 a + 10 8 ) and 1 = ( 3 b − 10 8 ) ⇒ − 32 = 3 a + 10 and 8 = 3 b − 10 ⇒ − 32 − 10 = 3 a and 8 + 10 = 3 b ⇒ − 42 = 3 a and 18 = 3 b ⇒ a = − 42 3 and b = 18 3 ⇒ a = − 14 and b = 6. \Rightarrow (-4, 1) = \Big(\dfrac{3a + 5(2)}{3 + 5}, \dfrac{3b + 5(-2)}{3 + 5}\Big) \\[1em] \Rightarrow (-4, 1) = \Big(\dfrac{3a + 10}{8}, \dfrac{3b - 10}{8}\Big) \\[1em] \Rightarrow -4 = \Big(\dfrac{3a + 10}{8}\Big) \text{ and } 1 = \Big(\dfrac{3b - 10}{8}\Big) \\[1em] \Rightarrow -32 = 3a + 10 \text{ and } 8 = 3b - 10 \\[1em] \Rightarrow -32 - 10 = 3a \text{ and } 8 + 10 = 3b \\[1em] \Rightarrow -42 = 3a \text{ and } 18 = 3b \\[1em] \Rightarrow a = \dfrac{-42}{3} \text{ and } b = \dfrac{18}{3} \\[1em] \Rightarrow a = -14 \text{ and }b = 6 . ⇒ ( − 4 , 1 ) = ( 3 + 5 3 a + 5 ( 2 ) , 3 + 5 3 b + 5 ( − 2 ) ) ⇒ ( − 4 , 1 ) = ( 8 3 a + 10 , 8 3 b − 10 ) ⇒ − 4 = ( 8 3 a + 10 ) and 1 = ( 8 3 b − 10 ) ⇒ − 32 = 3 a + 10 and 8 = 3 b − 10 ⇒ − 32 − 10 = 3 a and 8 + 10 = 3 b ⇒ − 42 = 3 a and 18 = 3 b ⇒ a = 3 − 42 and b = 3 18 ⇒ a = − 14 and b = 6.
B = (a, b) = (-14, 6).
Hence, coordinates of B(-14, 6).
In what ratio does the point P(2, -5) divide the join of A(-3, 5) and B(4, -9)?
Answer
Let the point P(2, -5) divide the line segment AB in the ratio k : 1.
By section-formula,
x-coordinate = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substituting values we get :
⇒ 2 = ( k ( 4 ) + 1 ( − 3 ) k + 1 ) ⇒ 2 ( k + 1 ) = 4 k − 3 ⇒ 2 k + 2 = 4 k − 3 ⇒ 2 + 3 = 4 k − 2 k ⇒ 5 = 2 k ⇒ k = 5 2 ⇒ k : 1 = 5 2 : 1 = 5 : 2. \Rightarrow 2 = \Big(\dfrac{k(4) + 1(-3)}{k + 1}\Big) \\[1em] \Rightarrow 2(k + 1) = 4k - 3 \\[1em] \Rightarrow 2k + 2 = 4k - 3 \\[1em] \Rightarrow 2 + 3 = 4k - 2k \\[1em] \Rightarrow 5 = 2k \\[1em] \Rightarrow k = \dfrac{5}{2} \\[1em] \Rightarrow k : 1 = \dfrac{5}{2} : 1 = 5 : 2. ⇒ 2 = ( k + 1 k ( 4 ) + 1 ( − 3 ) ) ⇒ 2 ( k + 1 ) = 4 k − 3 ⇒ 2 k + 2 = 4 k − 3 ⇒ 2 + 3 = 4 k − 2 k ⇒ 5 = 2 k ⇒ k = 2 5 ⇒ k : 1 = 2 5 : 1 = 5 : 2.
Hence, point P divide AB in the ratio 5 : 2.
In what ratio does the point P(a, -1) divide the join of A(1, -3) and B(6, 2)? Hence, find the value of a.
Answer
Let the point P(2, -5) divide the segment AB in the ratio k : 1.
By section-formula,
y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ − 1 = ( k ( 2 ) + 1 ( − 3 ) k + 1 ) ⇒ − 1 ( k + 1 ) = 2 k − 3 ⇒ − k − 1 = 2 k − 3 ⇒ − 1 + 3 = 2 k + k ⇒ 3 k = 2 ⇒ k = 2 3 ⇒ k : 1 = 2 3 : 1 = 2 : 3. \Rightarrow -1 = \Big(\dfrac{k(2) + 1(-3)}{k + 1}\Big) \\[1em] \Rightarrow -1(k + 1) = 2k - 3 \\[1em] \Rightarrow -k - 1 = 2k - 3 \\[1em] \Rightarrow -1 + 3 = 2k + k \\[1em] \Rightarrow 3k = 2 \\[1em] \Rightarrow k = \dfrac{2}{3} \\[1em] \Rightarrow k : 1 = \dfrac{2}{3} : 1 = 2 : 3. ⇒ − 1 = ( k + 1 k ( 2 ) + 1 ( − 3 ) ) ⇒ − 1 ( k + 1 ) = 2 k − 3 ⇒ − k − 1 = 2 k − 3 ⇒ − 1 + 3 = 2 k + k ⇒ 3 k = 2 ⇒ k = 3 2 ⇒ k : 1 = 3 2 : 1 = 2 : 3.
By section-formula,
x-coordinate = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substitute values we get:
⇒ a = ( 2 × 6 + 3 × 1 2 + 3 ) = ( 12 + 3 5 ) = 15 5 = 3. \Rightarrow a = \Big(\dfrac{2 \times 6 + 3 \times 1}{2 + 3}\Big) \\[1em] = \Big(\dfrac{12 + 3}{5}\Big) \\[1em] = \dfrac{15}{5} \\[1em] = 3. ⇒ a = ( 2 + 3 2 × 6 + 3 × 1 ) = ( 5 12 + 3 ) = 5 15 = 3.
Hence, point P divide AB in the ratio 2 : 3 and value of a = 3.
The line segment joining A(2, 3) and B(6, -5) is intercepted by the x-axis at the point k. Find the ratio in which k divides AB. Also, write the co-ordinates of the point k.
Answer
Since the point k lies on the x-axis, its y-coordinate must be 0. Let the coordinates of k be (x, 0).
Let k divide the line segment joining A(2, 3) and B(6, -5) in the ratio m1 :m2
By section-formula,
y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ 0 = ( m 1 ( − 5 ) + m 2 ( 3 ) m 1 + m 2 ) ⇒ − 5 m 1 + 3 m 2 = 0 ⇒ 5 m 1 = 3 m 2 ⇒ m 1 m 2 = 3 5 ⇒ m 1 : m 2 = 3 : 5. \Rightarrow 0 = \Big(\dfrac{m_1(-5) + m_2(3)}{m_1 + m_2}\Big) \\[1em] \Rightarrow -5m_1 + 3m_2 = 0 \\[1em] \Rightarrow 5m_1 = 3m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{3}{5} \\[1em] \Rightarrow m_1 : m_2 = 3 : 5. ⇒ 0 = ( m 1 + m 2 m 1 ( − 5 ) + m 2 ( 3 ) ) ⇒ − 5 m 1 + 3 m 2 = 0 ⇒ 5 m 1 = 3 m 2 ⇒ m 2 m 1 = 5 3 ⇒ m 1 : m 2 = 3 : 5.
By section-formula,
x = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substituting values we get :
⇒ x = ( 3 ( 6 ) + 5 ( 2 ) 3 + 5 ) ⇒ x = ( 18 + 10 8 ) ⇒ x = ( 28 8 ) ⇒ x = 7 2 \Rightarrow x = \Big(\dfrac{3(6) + 5(2)}{3 + 5}\Big) \\[1em] \Rightarrow x = \Big(\dfrac{18 + 10}{8}\Big) \\[1em] \Rightarrow x = \Big(\dfrac{28}{8}\Big) \\[1em] \Rightarrow x = \dfrac{7}{2} ⇒ x = ( 3 + 5 3 ( 6 ) + 5 ( 2 ) ) ⇒ x = ( 8 18 + 10 ) ⇒ x = ( 8 28 ) ⇒ x = 2 7
Hence, ratio in which k divides AB = 3 : 5 and coordinates of the point k are ( 7 2 , 0 ) \Big(\dfrac{7}{2}, 0\Big) ( 2 7 , 0 ) .
In what ratio is the segment joining the points A(6, 5) and B(-3, 2) divided by the y-axis? Find the point at which the y-axis cuts AB.
Answer
When a point lies on the y-axis, its x-coordinate is always 0. Let the point where the y-axis cuts AB be P(0, y).
Let ratio in which P divides AB be m1 : m2 .
By section-formula,
x = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substituting values we get :
⇒ 0 = ( m 1 ( − 3 ) + m 2 ( 6 ) m 1 + m 2 ) ⇒ 0 = − 3 m 1 + 6 m 2 ⇒ 3 m 1 = 6 m 2 ⇒ m 1 m 2 = 6 3 = 2. \Rightarrow 0 = \Big(\dfrac{m_1(-3) + m_2(6)}{m_1 + m_2}\Big) \\[1em] \Rightarrow 0 = -3m_1 + 6m_2 \\[1em] \Rightarrow 3m_1 = 6m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{6}{3} = 2. ⇒ 0 = ( m 1 + m 2 m 1 ( − 3 ) + m 2 ( 6 ) ) ⇒ 0 = − 3 m 1 + 6 m 2 ⇒ 3 m 1 = 6 m 2 ⇒ m 2 m 1 = 3 6 = 2.
Thus, m1 : m2 = 2 : 1.
By section-formula,
y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substitute values we get:
⇒ y = ( 2 ( 2 ) + 1 ( 5 ) 2 + 1 ) = ( 4 + 5 3 ) = ( 9 3 ) = 3. \Rightarrow y = \Big(\dfrac{2(2) + 1(5)}{2 + 1}\Big) \\[1em] = \Big(\dfrac{4 + 5}{3}\Big) \\[1em] = \Big(\dfrac{9}{3}\Big) \\[1em] = 3. ⇒ y = ( 2 + 1 2 ( 2 ) + 1 ( 5 ) ) = ( 3 4 + 5 ) = ( 3 9 ) = 3.
P = (0, y) = (0, 3).
Hence, AB is divided in ratio 2 : 1 and point at which the y-axis cuts AB is (0, 3).
(i) Write down the co-ordinates of the point P that divides the line segment joining A(-4, 1) and B(17, 10) in the ratio 1 : 2.
(ii) Calculate the distance OP, where O is the origin.
(iii) In what ratio does the y-axis divide the line AB?
Answer
(i) The point P divides the line segment joining A(-4, 1) and B(17, 10) in the ratio m1 : m2 = 1 : 2.
Let coordinates of P be (x, y).
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 1 ( 17 ) + 2 ( − 4 ) 1 + 2 , 1 ( 10 ) + 2 ( 1 ) 1 + 2 ) ⇒ ( x , y ) = ( 17 − 8 3 , 10 + 2 3 ) ⇒ ( x , y ) = ( 9 3 , 12 3 ) ⇒ ( x , y ) = ( 3 , 4 ) . \Rightarrow (x, y) = \Big(\dfrac{1(17) + 2(-4)}{1 + 2}, \dfrac{1(10) + 2(1)}{1 + 2}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{17 - 8}{3}, \dfrac{10 + 2}{3}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{9}{3}, \dfrac{12}{3}\Big) \\[1em] \Rightarrow (x, y) = (3, 4). ⇒ ( x , y ) = ( 1 + 2 1 ( 17 ) + 2 ( − 4 ) , 1 + 2 1 ( 10 ) + 2 ( 1 ) ) ⇒ ( x , y ) = ( 3 17 − 8 , 3 10 + 2 ) ⇒ ( x , y ) = ( 3 9 , 3 12 ) ⇒ ( x , y ) = ( 3 , 4 ) .
P = (x, y) = (3, 4)
Hence, coordinates of P = (3, 4).
(ii) Using distance formula,
d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Substitute values we get,
O P = ( 3 − 0 ) 2 + ( 4 − 0 ) 2 = ( 3 ) 2 + ( 4 ) 2 = 9 + 16 = 25 = 5 units . OP = \sqrt{(3 - 0)^2 + (4 - 0)^2} \\[1em] = \sqrt{(3)^2 + (4)^2} \\[1em] = \sqrt{9 + 16} \\[1em] = \sqrt{25} \\[1em] = \text{5 units}. OP = ( 3 − 0 ) 2 + ( 4 − 0 ) 2 = ( 3 ) 2 + ( 4 ) 2 = 9 + 16 = 25 = 5 units .
Hence, distance of OP is 5 units.
(iii) A point on the y-axis has an x-coordinate of 0. Let the y-axis cut AB at K(0, y). let the ratio be k : 1.
By section-formula,
x = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substitute values we get,
⇒ 0 = ( k ( 17 ) + 1 ( − 4 ) k + 1 ) ⇒ 17 k − 4 = 0 ⇒ 17 k = 4 ⇒ k = 4 17 ⇒ k : 1 = 4 17 : 1 = 4 : 17. \Rightarrow 0 = \Big(\dfrac{k(17) + 1(-4)}{k + 1}\Big) \\[1em] \Rightarrow 17k - 4 = 0 \\[1em] \Rightarrow 17k = 4 \\[1em] \Rightarrow k = \dfrac{4}{17} \\[1em] \Rightarrow k : 1 = \dfrac{4}{17} : 1 = 4 : 17. ⇒ 0 = ( k + 1 k ( 17 ) + 1 ( − 4 ) ) ⇒ 17 k − 4 = 0 ⇒ 17 k = 4 ⇒ k = 17 4 ⇒ k : 1 = 17 4 : 1 = 4 : 17.
Hence, y-axis cut line AB in ratio 4 : 17.
The line segment joining P(-4, 5) and Q(3, 2) intersects the y-axis at R. PM and QN are perpendiculars from P and Q on the x-axis. Find :
(i) the ratio PR : RQ
(ii) the coordinates of R.
(iii) the area of quadrilateral PMNQ.
Answer
(i) The point R lies on the y-axis, so its x-coordinate is 0.
Let R(0, y) divide the line segment PQ in the ratio m1 : m2
By section-formula,
x = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substitute values we get,
⇒ 0 = ( m 1 ( 3 ) + m 2 ( − 4 ) m 1 + m 2 ) ⇒ 0 = 3 m 1 − 4 m 2 ⇒ 3 m 1 = 4 m 2 ⇒ m 1 m 2 = 4 3 . \Rightarrow 0 = \Big(\dfrac{m_1(3) + m_2(-4)}{m_1 + m_2}\Big) \\[1em] \Rightarrow 0 = 3m_1 - 4m_2 \\[1em] \Rightarrow 3m_1 = 4m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{4}{3}. ⇒ 0 = ( m 1 + m 2 m 1 ( 3 ) + m 2 ( − 4 ) ) ⇒ 0 = 3 m 1 − 4 m 2 ⇒ 3 m 1 = 4 m 2 ⇒ m 2 m 1 = 3 4 .
Hence, the ratio PR : RQ = 4 : 3.
(ii) Given,
P(-4, 5) and Q(3, 2)
m1 : m2 = 4 : 3.
By section-formula,
y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substitute values we get,
⇒ y = ( 4 ( 2 ) + 3 ( 5 ) 4 + 3 ) ⇒ y = ( 8 + 15 7 ) ⇒ y = ( 23 7 ) . \Rightarrow y = \Big(\dfrac{4(2) + 3(5)}{4 + 3}\Big) \\[1em] \Rightarrow y = \Big(\dfrac{8 + 15}{7}\Big) \\[1em] \Rightarrow y = \Big(\dfrac{23}{7}\Big). ⇒ y = ( 4 + 3 4 ( 2 ) + 3 ( 5 ) ) ⇒ y = ( 7 8 + 15 ) ⇒ y = ( 7 23 ) .
Hence, the coordinates of R = ( 0 , 23 7 ) \Big(0, \dfrac{23}{7}\Big) ( 0 , 7 23 ) .
(iii) From figure,
PQNM is a trapezium, with PM and QN being the parallel sides, as both are perpendicular to x-axis.
From figure,
PM = 5 units, MN = 7 units and QN = 2 units.
The area of a trapezoid is given by :
Area = 1 2 \dfrac{1}{2} 2 1 × Sum of parallel sides × Distance between them
= 1 2 × ( P M + Q N ) × M N = 1 2 × ( 5 + 2 ) × 7 = 49 2 = 24.5 sq. units = \dfrac{1}{2} \times (PM + QN) \times MN \\[1em] = \dfrac{1}{2} \times (5 + 2) \times 7 \\[1em] = \dfrac{49}{2} \\[1em] = 24.5 \text{ sq. units} = 2 1 × ( PM + QN ) × MN = 2 1 × ( 5 + 2 ) × 7 = 2 49 = 24.5 sq. units
Hence, area of PQNM = 24.5 sq.units.
In the given figure, the line segment AB meets x-axis at A and y-axis at B. The point P(-3, 1) on AB divides it in ratio 2 : 3. Find the coordinates of A and B.
Answer
Since, point A and B lies on x-axis and y-axis respectively. Let their coordinates be A(a, 0) and B(0, b).
Given,
The line segment AB be divided by point P(-3, 1) in the ratio AP : PB = 2 : 3.
By section formula,
⇒ ( x , y ) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) ⇒ ( − 3 , 1 ) = ( 2 ( 0 ) + 3 ( a ) 2 + 3 , 2 ( b ) + 3 ( 0 ) 2 + 3 ) ⇒ ( − 3 , 1 ) = ( 3 a 5 , 2 b 5 ) ⇒ − 3 = ( 3 a 5 ) , 1 = ( 2 b 5 ) ⇒ − 15 = 3 a , 5 = 2 b ⇒ a = − 15 3 , b = 5 2 ⇒ a = − 5 , b = 5 2 ⇒ A = ( a , 0 ) = ( − 5 , 0 ) ⇒ B = ( 0 , b ) = ( 0 , 5 2 ) . \Rightarrow (x, y) = \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) \\[1em] \Rightarrow (-3, 1) = \Big(\dfrac{2(0) + 3(a)}{2 + 3}, \dfrac{2(b) + 3(0)}{2 + 3}\Big) \\[1em] \Rightarrow (-3, 1) = \Big(\dfrac{3a}{5}, \dfrac{2b}{5}\Big) \\[1em] \Rightarrow -3 = \Big(\dfrac{3a}{5}\Big), 1 = \Big(\dfrac{2b}{5}\Big) \\[1em] \Rightarrow -15 = 3a, 5 = 2b \\[1em] \Rightarrow a = \dfrac{-15}{3}, b = \dfrac{5}{2} \\[1em] \Rightarrow a = -5, b = \dfrac{5}{2} \\[1em] \Rightarrow A = (a, 0) = (-5, 0) \\[1em] \Rightarrow B = (0, b) = \Big(0, \dfrac{5}{2}\Big). ⇒ ( x , y ) = ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 ) ⇒ ( − 3 , 1 ) = ( 2 + 3 2 ( 0 ) + 3 ( a ) , 2 + 3 2 ( b ) + 3 ( 0 ) ) ⇒ ( − 3 , 1 ) = ( 5 3 a , 5 2 b ) ⇒ − 3 = ( 5 3 a ) , 1 = ( 5 2 b ) ⇒ − 15 = 3 a , 5 = 2 b ⇒ a = 3 − 15 , b = 2 5 ⇒ a = − 5 , b = 2 5 ⇒ A = ( a , 0 ) = ( − 5 , 0 ) ⇒ B = ( 0 , b ) = ( 0 , 2 5 ) .
Hence, A(-5, 0) and B ( 0 , 5 2 ) B\Big(0, \dfrac{5}{2}\Big) B ( 0 , 2 5 ) .
Show that the line segment joining the points A(-5, 8) and B(10, -4) is trisected by the coordinate axes. Also, find the points of trisection of AB.
Answer
Let x-axis divide AB in the ratio k : 1 at the point P(x, 0).
By section-formula,
y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get,
⇒ 0 = ( k ( − 4 ) + 1 ( 8 ) k + 1 ) ⇒ 0 = ( − 4 k + 8 k + 1 ) ⇒ 0 = − 4 k + 8 ⇒ 4 k = 8 ⇒ k = 8 4 = 2. \Rightarrow 0 = \Big(\dfrac{k(-4) + 1(8)}{k + 1}\Big) \\[1em] \Rightarrow 0 = \Big(\dfrac{-4k + 8}{k + 1}\Big) \\[1em] \Rightarrow 0 = -4k + 8 \\[1em] \Rightarrow 4k = 8 \\[1em] \Rightarrow k = \dfrac{8}{4} = 2. ⇒ 0 = ( k + 1 k ( − 4 ) + 1 ( 8 ) ) ⇒ 0 = ( k + 1 − 4 k + 8 ) ⇒ 0 = − 4 k + 8 ⇒ 4 k = 8 ⇒ k = 4 8 = 2.
The x-axis divides AB in the ratio k : 1 = 2 : 1.
Thus, m1 : m2 = 2 : 1.
By section-formula,
x = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substituting values we get,
⇒ x = ( 2 ( 10 ) + 1 ( − 5 ) 2 + 1 ) ⇒ x = ( 20 − 5 3 ) ⇒ x = ( 15 3 ) ⇒ x = 5. \Rightarrow x = \Big(\dfrac{2(10) + 1(-5)}{2 + 1}\Big) \\[1em] \Rightarrow x = \Big(\dfrac{20 - 5}{3}\Big) \\[1em] \Rightarrow x = \Big(\dfrac{15}{3}\Big) \\[1em] \Rightarrow x = 5. ⇒ x = ( 2 + 1 2 ( 10 ) + 1 ( − 5 ) ) ⇒ x = ( 3 20 − 5 ) ⇒ x = ( 3 15 ) ⇒ x = 5.
The coordinates of P = (x, 0) = (5, 0).
Let the y-axis divide AB in the ratio p : 1 at the point Q(0, y).
By section-formula,
x = ( m 1 x 2 + m 2 x 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 )
Substituting values we get,
⇒ 0 = ( p ( 10 ) + 1 ( − 5 ) p + 1 ) ⇒ 0 = ( 10 p − 5 p + 1 ) ⇒ 10 p − 5 = 0 ⇒ 10 p = 5 ⇒ p = 5 10 ⇒ p = 1 2 ⇒ p : 1 = 1 2 : 1 = 1 : 2. \Rightarrow 0 = \Big(\dfrac{p(10) + 1(-5)}{p + 1}\Big) \\[1em] \Rightarrow 0 = \Big(\dfrac{10p - 5}{p + 1}\Big) \\[1em] \Rightarrow 10p - 5 = 0 \\[1em] \Rightarrow 10p = 5 \\[1em] \Rightarrow p = \dfrac{5}{10} \\[1em] \Rightarrow p = \dfrac{1}{2} \\[1em] \Rightarrow p : 1 = \dfrac{1}{2} : 1 = 1 : 2. ⇒ 0 = ( p + 1 p ( 10 ) + 1 ( − 5 ) ) ⇒ 0 = ( p + 1 10 p − 5 ) ⇒ 10 p − 5 = 0 ⇒ 10 p = 5 ⇒ p = 10 5 ⇒ p = 2 1 ⇒ p : 1 = 2 1 : 1 = 1 : 2.
By section-formula,
y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substitute values we get,
⇒ y = ( 1 × − 4 + 2 × 8 1 + 2 ) = ( − 4 + 16 3 ) = 12 3 = 4. \Rightarrow y = \Big(\dfrac{1 \times -4 + 2 \times 8}{1 + 2}\Big) \\[1em] = \Big(\dfrac{-4 + 16}{3}\Big) \\[1em] = \dfrac{12}{3} \\[1em] = 4. ⇒ y = ( 1 + 2 1 × − 4 + 2 × 8 ) = ( 3 − 4 + 16 ) = 3 12 = 4.
The coordinates of Q = (0, y) = (0, 4).
Hence, points of trisection of AB are Q(5, 0) and P(0, 4).
The mid-points of the sides BC, CA and AB of ΔABC are D(2, 1), E(-1, -3) and F(4, 5) respectively. Find the co-ordinates of A, B and C.
Answer
Let the vertices of ΔABC be A(x1 , y1 ), B(x2 , y2 ), and C(x3 , y3 ).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Given,
D(2, 1) is the midpoint of BC.
Substitute values we get,
⇒ x 2 + x 3 2 = 2 ⇒ x 2 + x 3 = 4 ....(1) ⇒ y 2 + y 3 2 = 1 ⇒ y 2 + y 3 = 2 ....(2) \Rightarrow \dfrac{x_2 + x_3}{2} = 2 \\[1em] \Rightarrow x_2 + x_3 = 4 \text{ ....(1)} \\[1em] \Rightarrow \dfrac{y_2 + y_3}{2} = 1 \\[1em] \Rightarrow y_2 + y_3 = 2 \text{ ....(2)} ⇒ 2 x 2 + x 3 = 2 ⇒ x 2 + x 3 = 4 ....(1) ⇒ 2 y 2 + y 3 = 1 ⇒ y 2 + y 3 = 2 ....(2)
Given,
E(-1, -3) is the midpoint of CA.
⇒ x 3 + x 1 2 = − 1 ⇒ x 3 + x 1 = − 2 .....(3) ⇒ y 3 + y 1 2 = − 3 ⇒ y 3 + y 1 = − 6 ....(4) \Rightarrow \dfrac{x_3 + x_1}{2} = -1 \\[1em] \Rightarrow x_3 + x_1 = -2 \text{ .....(3)} \\[1em] \Rightarrow \dfrac{y_3 + y_1}{2} = -3 \\[1em] \Rightarrow y_3 + y_1 = -6 \text{ ....(4)} ⇒ 2 x 3 + x 1 = − 1 ⇒ x 3 + x 1 = − 2 .....(3) ⇒ 2 y 3 + y 1 = − 3 ⇒ y 3 + y 1 = − 6 ....(4)
Given,
F(4, 5) is the midpoint of CA.
⇒ x 1 + x 2 2 = 4 ⇒ x 1 + x 2 = 8 ....(5) ⇒ y 1 + y 2 2 = 5 ⇒ y 1 + y 2 = 10 ....(6) \Rightarrow \dfrac{x_1 + x_2}{2} = 4 \\[1em] \Rightarrow x_1 + x_2 = 8 \text{ ....(5)} \\[1em] \Rightarrow \dfrac{y_1 + y_2}{2} = 5 \\[1em] \Rightarrow y_1 + y_2 = 10 \text{ ....(6)} ⇒ 2 x 1 + x 2 = 4 ⇒ x 1 + x 2 = 8 ....(5) ⇒ 2 y 1 + y 2 = 5 ⇒ y 1 + y 2 = 10 ....(6)
Adding the three equations (1), (3) and (5), we get :
⇒ (x2 + x3 ) + (x3 + x1 ) + (x1 + x2 ) = 4 + (-2) + 8
⇒ 2x1 +2x2 + 2x3 = 10
⇒ 2(x1 +x2 + x3 ) = 10
⇒ (x1 +x2 + x3 ) = 10 2 \dfrac{10}{2} 2 10
⇒ (x1 +x2 + x3 ) = 5 .....(7)
Subtract (Eq. 3) from (Eq. 7) :
⇒ (x1 +x2 + x3 ) - ( x2 + x3 ) = 5 - 4
⇒ (x1 +x2 + x3 -x2 - x3 ) = 5 - 4
⇒ x1 = 1.
Subtract (Eq. 2) from (Eq. 7) :
⇒ (x1 +x2 + x3 ) - ( x3 + x1 ) = 5 - (-2)
⇒ (x1 +x2 + x3 -x3 - x1 ) = 5 + 2
⇒ x2 = 7.
Subtract (Eq. 5) from (Eq. 7):
⇒ (x1 +x2 + x3 ) - ( x1 + x2 ) = 5 - 8
⇒ (x1 +x2 + x3 -x1 - x2 ) = -3
⇒ x3 = -3.
Adding equations (2), (4) and (5), we get :
⇒ (y2 + y3 ) + (y3 + y1 ) + (y1 + y2 ) = 2 + (-6) + 10
⇒ 2y1 +2y2 + 2y3 = 6
⇒ 2(y1 +y2 + y3 ) = 6
⇒ (y1 +y2 + y3 ) = 6 2 \dfrac{6}{2} 2 6
⇒ (y1 +y2 + y3 ) = 3 .....(8)
Subtract (Eq. 2) from (Eq. 8):
⇒ (y1 +y2 + y3 ) - ( y2 + y3 ) = 3 - 2
⇒ (y1 +y2 + y3 -y2 - y3 ) = 1
⇒ y1 = 1.
Subtract (Eq. 4) from (Eq. 8):
⇒ (y1 + y2 + y3 ) - ( y3 + y1 ) = 3-(-6)
⇒ (y1 +y2 + y3 -y3 - y1 ) = 3 + 6
⇒ y2 = 9.
Subtract (Eq. 6) from (Eq. 8):
⇒ (y1 + y2 + y3 ) - ( y1 + y2 ) = 3 - 10
⇒ (y1 +y2 + y3 -y1 - y2 ) = -7
⇒ y3 = -7.
⇒ A = (x1 , y1 ) = (1, 1), B = (x2 , y2 ) = (7, 9), C = (x3 , y3 ) = (-3, -7).
Hence, A = (1, 1), B = (7, 9) and C = (-3, -7).
Prove that the points A(-2, -1), B(1, 0), C(4, 3) and D(1, 2) are the vertices of a parallelogram ABCD.
Answer
Given,
A(-2, -1), B(1, 0), C(4, 3) and D(1, 2).
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
The Midpoint of Diagonal AC :
⇒ M ( A C ) = ( − 2 + 4 2 , − 1 + 3 2 ) ⇒ M ( A C ) = ( 2 2 , 2 2 ) ⇒ M ( A C ) = ( 1 , 1 ) . \Rightarrow M_{(AC)} = \Big(\dfrac{-2 + 4}{2}, \dfrac{-1 + 3}{2}\Big) \\[1em] \Rightarrow M_{(AC)} = \Big(\dfrac{2}{2}, \dfrac{2}{2}\Big) \\[1em] \Rightarrow M_{(AC)} = (1, 1). ⇒ M ( A C ) = ( 2 − 2 + 4 , 2 − 1 + 3 ) ⇒ M ( A C ) = ( 2 2 , 2 2 ) ⇒ M ( A C ) = ( 1 , 1 ) .
The Midpoint of Diagonal BD :
⇒ M ( B D ) = ( 1 + 1 2 , 0 + 2 2 ) ⇒ M ( B D ) = ( 2 2 , 2 2 ) ⇒ M ( B D ) = ( 1 , 1 ) \Rightarrow M_{(BD)} = \Big(\dfrac{1 + 1}{2}, \dfrac{0 + 2}{2}\Big) \\[1em] \Rightarrow M_{(BD)} = \Big(\dfrac{2}{2}, \dfrac{2}{2}\Big) \\[1em] \Rightarrow M_{(BD)} = (1, 1) ⇒ M ( B D ) = ( 2 1 + 1 , 2 0 + 2 ) ⇒ M ( B D ) = ( 2 2 , 2 2 ) ⇒ M ( B D ) = ( 1 , 1 )
Since the midpoint of diagonal AC, MAC (1, 1), is the same as the midpoint of diagonal BD, MBD (1, 1), the diagonals AC and BD bisect each other.
We know that,
A quadrilateral is a parallelogram if its diagonals bisect each other.
Hence, proved that ABCD is a parallelogram.
If the points A(-2, -1), B(1, 0), C(a, 3) and D(1, b) form a parallelogram, find the values of a and b.
Answer
We know that,
Diagonals of a parallelogram bisect each other.
Since, ABCD is a // gm.
Thus, Mid-point of AC = Mid-point of BD.
Given,
A(-2, -1), B(1, 0), C(a, 3) and D(1, b)
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Mid-point of AC :
⇒ M A C = ( − 2 + a 2 , − 1 + 3 2 ) ⇒ M A C = ( − 2 + a 2 , 2 2 ) ⇒ M A C = ( − 2 + a 2 , 1 ) . \Rightarrow M_{AC} = \Big(\dfrac{-2 + a}{2}, \dfrac{-1 + 3}{2}\Big) \\[1em] \Rightarrow M_{AC} = \Big(\dfrac{-2 + a}{2}, \dfrac{2}{2}\Big) \\[1em] \Rightarrow M_{AC} = \Big(\dfrac{-2 + a}{2}, 1\Big). ⇒ M A C = ( 2 − 2 + a , 2 − 1 + 3 ) ⇒ M A C = ( 2 − 2 + a , 2 2 ) ⇒ M A C = ( 2 − 2 + a , 1 ) .
Midpoint of Diagonal BD :
⇒ M B D = ( 1 + 1 2 , 0 + b 2 ) ⇒ M B D = ( 2 2 , b 2 ) ⇒ M B D = ( 1 , b 2 ) . \Rightarrow M_{BD} = \Big(\dfrac{1 + 1}{2}, \dfrac{0 + b}{2}\Big) \\[1em] \Rightarrow M_{BD} = \Big(\dfrac{2}{2}, \dfrac{b}{2}\Big) \\[1em] \Rightarrow M_{BD} = \Big(1, \dfrac{b}{2}\Big) . ⇒ M B D = ( 2 1 + 1 , 2 0 + b ) ⇒ M B D = ( 2 2 , 2 b ) ⇒ M B D = ( 1 , 2 b ) .
Equating the x-coordinates of mid-points of AC and BD, we get :
⇒ − 2 + a 2 \dfrac{-2 + a}{2} 2 − 2 + a = 1
⇒ -2 + a = 2
⇒ a = 2 + 2
⇒ a = 4.
Equating the y-coordinates:
⇒ 1 = b 2 \dfrac{b}{2} 2 b
⇒ b = 2.
Hence, a = 4 and b = 2.
The three vertices of a parallelogram ABCD, taken in order, are A(-1, 0), B(3, 1) and C(2, 2). Find the co-ordinates of the fourth vertex of the parallelogram.
Answer
Let coordinates of D be (x, y).
By using mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Mid-point of AC :
⇒ M A C = ( − 1 + 2 2 , 0 + 2 2 ) ⇒ M A C = ( 1 2 , 1 ) . \Rightarrow M_{AC} = \Big(\dfrac{-1 + 2}{2}, \dfrac{0 + 2}{2}\Big) \\[1em] \Rightarrow M_{AC} = \Big(\dfrac{1}{2}, 1\Big). ⇒ M A C = ( 2 − 1 + 2 , 2 0 + 2 ) ⇒ M A C = ( 2 1 , 1 ) .
Midpoint of Diagonal BD :
⇒ M B D = ( 3 + x 2 , 1 + y 2 ) \Rightarrow M_{BD} = \Big(\dfrac{3 + x}{2}, \dfrac{1 + y}{2}\Big) ⇒ M B D = ( 2 3 + x , 2 1 + y )
Since its a parallelogram, the midpoint of diagonal AC must be equal to the midpoint of diagonal BD, as diagonals bisect each other.
Equating the x-coordinates:
⇒ 3 + x 2 = 1 2 \Rightarrow \dfrac{3 + x}{2} = \dfrac{1}{2} ⇒ 2 3 + x = 2 1
⇒ 3 + x = 1
⇒ x = 1 - 3
⇒ x = -2.
Equating the y-coordinates:
⇒ 1 + y 2 = 1 \Rightarrow \dfrac{1 + y}{2} = 1 ⇒ 2 1 + y = 1
⇒ 1 + y = 2
⇒ y = 2 - 1
⇒ y = 1.
Hence, coordinates of D = (-2, 1).
Find the lengths of the medians of a ΔABC whose vertices are A(-1, 3), B(1, -1) and C(5, 1). Also, find the co-ordinates of the centroid of ΔABC.
Answer
Using the Midpoint Formula,
( x , y ) = ( x 1 + x 2 2 , y 1 + y 2 2 ) (x, y) = \Big( \dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2} \Big) ( x , y ) = ( 2 x 1 + x 2 , 2 y 1 + y 2 ) .
Let D be the midpoint of BC.
⇒ D = ( 1 + 5 2 , − 1 + 1 2 ) ⇒ D = ( 6 2 , 0 2 ) ⇒ D = ( 3 , 0 ) . \Rightarrow D = \Big( \dfrac{1 + 5}{2}, \dfrac{-1 + 1}{2} \Big) \\[1em] \Rightarrow D = \Big( \dfrac{6}{2}, \dfrac{0}{2} \Big) \\[1em] \Rightarrow D = (3, 0). ⇒ D = ( 2 1 + 5 , 2 − 1 + 1 ) ⇒ D = ( 2 6 , 2 0 ) ⇒ D = ( 3 , 0 ) .
Let E be the midpoint of AC.
⇒ E = ( − 1 + 5 2 , 3 + 1 2 ) ⇒ E = ( 4 2 , 4 2 ) ⇒ E = ( 2 , 2 ) . \Rightarrow E = \Big( \dfrac{-1 + 5}{2}, \dfrac{3 + 1}{2} \Big) \\[1em] \Rightarrow E = \Big( \dfrac{4}{2}, \dfrac{4}{2} \Big) \\[1em] \Rightarrow E = (2, 2). ⇒ E = ( 2 − 1 + 5 , 2 3 + 1 ) ⇒ E = ( 2 4 , 2 4 ) ⇒ E = ( 2 , 2 ) .
Let F be the midpoint of AB.
⇒ F = ( − 1 + 1 2 , 3 + ( − 1 ) 2 ) ⇒ F = ( 0 2 , 2 2 ) ⇒ F = ( 0 , 1 ) . \Rightarrow F = \Big( \dfrac{-1 + 1}{2}, \dfrac{3 + (-1)}{2} \Big) \\[1em] \Rightarrow F = \Big( \dfrac{0}{2}, \dfrac{2}{2} \Big) \\[1em] \Rightarrow F = (0, 1). ⇒ F = ( 2 − 1 + 1 , 2 3 + ( − 1 ) ) ⇒ F = ( 2 0 , 2 2 ) ⇒ F = ( 0 , 1 ) .
Length of Median AD : A(-1, 3) and D(3, 0)
Using Distance Formula,
D = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} D = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 .
Substituting values we get:
A D = ( 3 − ( − 1 ) ) 2 + ( 0 − 3 ) 2 = ( 4 ) 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units . AD = \sqrt{(3 - (-1))^2 + (0 - 3)^2} \\[1em] = \sqrt{(4)^2 + (-3)^2} \\[1em] = \sqrt{16 + 9} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}. A D = ( 3 − ( − 1 ) ) 2 + ( 0 − 3 ) 2 = ( 4 ) 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units .
Length of Median BE:
B(1, -1) and E(2, 2)
B E = ( 2 − 1 ) 2 + ( 2 − ( − 1 ) ) 2 = ( 1 ) 2 + ( 3 ) 2 = 1 + 9 = 10 units . BE = \sqrt{(2 - 1)^2 + (2 - (-1))^2} \\[1em]= \sqrt{(1)^2 + (3)^2} \\[1em] = \sqrt{1 + 9} \\[1em] = \sqrt{10} \text{ units}. BE = ( 2 − 1 ) 2 + ( 2 − ( − 1 ) ) 2 = ( 1 ) 2 + ( 3 ) 2 = 1 + 9 = 10 units .
Length of Median CF:
C(5, 1) and F(0, 1)
C F = ( 0 − 5 ) 2 + ( 1 − 1 ) 2 = ( − 5 ) 2 + ( 0 ) 2 = 25 + 0 = 25 = 5 units . CF = \sqrt{(0 - 5)^2 + (1 - 1)^2} \\[1em] = \sqrt{(-5)^2 + (0)^2} \\[1em] = \sqrt{25 + 0} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}. CF = ( 0 − 5 ) 2 + ( 1 − 1 ) 2 = ( − 5 ) 2 + ( 0 ) 2 = 25 + 0 = 25 = 5 units .
Centroid of triangle (G) = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) = \Big( \dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3} \Big) = ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
Substituting values we get :
⇒ Centroid = ( − 1 + 1 + 5 3 , 3 + ( − 1 ) + 1 3 ) = ( 5 3 , 3 3 ) = ( 5 3 , 1 ) . \Rightarrow \text{Centroid} = \Big(\dfrac{-1 + 1 + 5}{3}, \dfrac{3 + (-1) + 1}{3}\Big) \\[1em] = \Big(\dfrac{5}{3}, \dfrac{3}{3}\Big) \\[1em] = \Big(\dfrac{5}{3}, 1\Big). ⇒ Centroid = ( 3 − 1 + 1 + 5 , 3 3 + ( − 1 ) + 1 ) = ( 3 5 , 3 3 ) = ( 3 5 , 1 ) .
Hence, AD = 5 units , B E = 10 BE = \sqrt{10} BE = 10 units, CF = 5 units, coordinates of centroid are ( 5 3 , 1 ) \Big(\dfrac{5}{3}, 1\Big) ( 3 5 , 1 ) .
Find the co-ordinates of the centroid of ΔPQR whose vertices are P(6, 3), Q(-2, 5) and R(-1, 7).
Answer
By using the centroid formula,
( x , y ) = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) (x, y) = \Big( \dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3} \Big) ( x , y ) = ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
P(6, 3), Q(-2, 5) and R(-1, 7)
Substitute values we get:
⇒ ( x , y ) = ( 6 + ( − 2 ) + ( − 1 ) 3 , 3 + 5 + 7 3 ) ⇒ ( x , y ) = ( 6 − 3 3 , 15 3 ) ⇒ ( x , y ) = ( 3 3 , 15 3 ) ⇒ ( x , y ) = ( 1 , 5 ) . \Rightarrow (x, y) = \Big( \dfrac{6 + (-2) + (-1)}{3}, \dfrac{3 + 5 + 7}{3} \Big) \\[1em] \Rightarrow (x, y) = \Big( \dfrac{6 - 3}{3}, \dfrac{15}{3} \Big) \\[1em] \Rightarrow (x, y) = \Big( \dfrac{3}{3}, \dfrac{15}{3} \Big) \\[1em] \Rightarrow (x, y) = (1, 5). ⇒ ( x , y ) = ( 3 6 + ( − 2 ) + ( − 1 ) , 3 3 + 5 + 7 ) ⇒ ( x , y ) = ( 3 6 − 3 , 3 15 ) ⇒ ( x , y ) = ( 3 3 , 3 15 ) ⇒ ( x , y ) = ( 1 , 5 ) .
Hence, coordinates of centroid of ΔPQR = (1, 5).
Find the co-ordinates of the point of intersection of the medians of the triangle whose vertices are A(-7, 5), B(-1, -3) and C(5, 7).
Answer
The medians of a triangle intersect at centroid of triangle.
By using the centroid formula,
( x , y ) = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) (x, y) = \Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3} \Big) ( x , y ) = ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
A(-7, 5), B(-1, -3) and C(5, 7)
Substitute values we get:
⇒ ( x , y ) = ( − 7 + ( − 1 ) + 5 3 , 5 + ( − 3 ) + 7 3 ) ⇒ ( x , y ) = ( − 8 + 5 3 , 5 + 4 3 ) ⇒ ( x , y ) = ( − 3 3 , 9 3 ) ⇒ ( x , y ) = ( − 1 , 3 ) . \Rightarrow (x, y) = \Big( \dfrac{-7 + (-1) + 5}{3}, \dfrac{5 + (-3) + 7}{3} \Big) \\[1em] \Rightarrow (x, y) = \Big( \dfrac{-8 + 5}{3}, \dfrac{5 + 4}{3} \Big) \\[1em] \Rightarrow (x, y) = \Big( \dfrac{-3}{3}, \dfrac{9}{3} \Big) \\[1em] \Rightarrow (x, y) = (-1, 3). ⇒ ( x , y ) = ( 3 − 7 + ( − 1 ) + 5 , 3 5 + ( − 3 ) + 7 ) ⇒ ( x , y ) = ( 3 − 8 + 5 , 3 5 + 4 ) ⇒ ( x , y ) = ( 3 − 3 , 3 9 ) ⇒ ( x , y ) = ( − 1 , 3 ) .
Hence, co-ordinates of the point of intersection of the medians = (-1, 3).
If G(-2, 1) is the centroid of ΔABC, two of whose vertices are A(1, -6) and B(-5, 2), find the third vertex of the triangle.
Answer
Let coordinates of third vertex be C(x3 , y3 ).
By using the centroid formula,
( x , y ) = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) (x, y) = \Big( \dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3} \Big) ( x , y ) = ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
Given,
G(-2, 1) is the centroid.
Substituting values we get :
⇒ ( − 2 , 1 ) = ( 1 + ( − 5 ) + x 3 3 , − 6 + 2 + y 3 3 ) ⇒ − 2 = ( 1 + ( − 5 ) + x 3 3 ) , 1 = ( − 6 + 2 + y 3 3 ) ⇒ − 6 = 1 + ( − 5 ) + x 3 , 3 = − 6 + 2 + y 3 ⇒ − 6 = − 4 + x 3 , 3 = − 4 + y 3 ⇒ − 6 + 4 = x 3 , 3 + 4 = y 3 ⇒ x 3 = − 2 , y 3 = 7. \Rightarrow (-2, 1) = \Big( \dfrac{1 + (-5) + x_3}{3}, \dfrac{-6 + 2 + y_3}{3}\Big) \\[1em] \Rightarrow -2 = \Big( \dfrac{1 + (-5) + x_3}{3}\Big), 1 = \Big( \dfrac{-6 + 2 + y_3}{3}\Big) \\[1em] \Rightarrow -6 = 1 + (-5) + x_3, 3 = -6 + 2 + y_3 \\[1em] \Rightarrow -6 = -4 + x_3, 3 = -4 + y_3 \\[1em] \Rightarrow -6 + 4 = x_3, 3 + 4 = y_3 \\[1em] \Rightarrow x_3 = -2, y_3 = 7. ⇒ ( − 2 , 1 ) = ( 3 1 + ( − 5 ) + x 3 , 3 − 6 + 2 + y 3 ) ⇒ − 2 = ( 3 1 + ( − 5 ) + x 3 ) , 1 = ( 3 − 6 + 2 + y 3 ) ⇒ − 6 = 1 + ( − 5 ) + x 3 , 3 = − 6 + 2 + y 3 ⇒ − 6 = − 4 + x 3 , 3 = − 4 + y 3 ⇒ − 6 + 4 = x 3 , 3 + 4 = y 3 ⇒ x 3 = − 2 , y 3 = 7.
Hence, coordinates of third vertex = (-2, 7).
A(6, y), B(-4, 4) and C(x, -1) are the vertices of ΔABC whose centroid is the origin. Calculate the values of x and y.
Answer
By using the centroid formula,
( x , y ) = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) (x, y) = \Big( \dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3} \Big) ( x , y ) = ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
Origin (0,0) is the centroid of triangle ABC.
Solving for x-coordinate:
⇒ 0 = ( 6 + ( − 4 ) + x 3 ) ⇒ 0 = 2 + x ⇒ x = − 2. \Rightarrow 0 = \Big(\dfrac{6 + (-4) + x}{3}\Big) \\[1em] \Rightarrow 0 = 2 + x \\[1em] \Rightarrow x = -2. ⇒ 0 = ( 3 6 + ( − 4 ) + x ) ⇒ 0 = 2 + x ⇒ x = − 2.
Solving for y-coordinate:
⇒ 0 = ( y + 4 + ( − 1 ) 3 ) ⇒ 0 = y + 3 ⇒ y = − 3. \Rightarrow 0 = \Big(\dfrac{y + 4 + (-1)}{3}\Big) \\[1em] \Rightarrow 0 = y + 3 \\[1em] \Rightarrow y = -3. ⇒ 0 = ( 3 y + 4 + ( − 1 ) ) ⇒ 0 = y + 3 ⇒ y = − 3.
Hence, x = -2 and y = -3.
ABC is a triangle and G(4, 3) is its centroid. If A(1, 3), B(4, b) and C(a, 1) be the vertices, find the values of a and b and hence find the length of side BC.
Answer
By using the centroid formula,
( x , y ) = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) (x, y) = \Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big) ( x , y ) = ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
Given,
A(1, 3), B(4, b) and C(a, 1).
G(4, 3) is the centroid of triangle ABC.
Solving for x-coordinate :
⇒ 4 = 1 + 4 + a 3 ⇒ 12 = 5 + a ⇒ a = 12 − 5 ⇒ a = 7. \Rightarrow 4 = \dfrac{1 + 4 + a}{3} \\[1em] \Rightarrow 12 = 5 + a \\[1em] \Rightarrow a = 12 - 5 \\[1em] \Rightarrow a = 7. ⇒ 4 = 3 1 + 4 + a ⇒ 12 = 5 + a ⇒ a = 12 − 5 ⇒ a = 7.
C = (a, 1) = (7, 1)
Solving for y-coordinate :
⇒ 3 = 3 + b + 1 3 ⇒ 9 = 4 + b ⇒ b = 9 − 4 ⇒ b = 5. \Rightarrow 3 = \dfrac{3 + b + 1}{3} \\[1em] \Rightarrow 9 = 4 + b \\[1em] \Rightarrow b = 9 - 4 \\[1em] \Rightarrow b = 5. ⇒ 3 = 3 3 + b + 1 ⇒ 9 = 4 + b ⇒ b = 9 − 4 ⇒ b = 5.
B = (4, b) = (4, 5)
By using distance formula,
D = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} D = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 .
Substituting values we get:
B C = ( 7 − 4 ) 2 + ( 1 − 5 ) 2 = ( 3 ) 2 + ( − 4 ) 2 = 9 + 16 = 25 = 5 units . BC = \sqrt{(7 - 4)^2 + (1 - 5)^2} \\[1em] = \sqrt{(3)^2 + (-4)^2} \\[1em] = \sqrt{9 + 16} \\[1em] = \sqrt{25} \\[1em] = 5 \text{ units}. BC = ( 7 − 4 ) 2 + ( 1 − 5 ) 2 = ( 3 ) 2 + ( − 4 ) 2 = 9 + 16 = 25 = 5 units .
Hence, a = 7 and b = 5, length of BC = 5 units.
Calculate the ratio in which the line segment joining A(-4, 2) and B(3, 6) is divided by the point P(x, 3). Also, find
(i) x
(ii) length of AP.
Answer
(i) Let the point P(x, 3) divide the line segment joining A(-4, 2) and B(3, 6) in the ratio m1 : m2 .
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ 3 = ( m 1 ( 6 ) + m 2 ( 2 ) m 1 + m 2 ) ⇒ 3 ( m 1 + m 2 ) = 6 m 1 + 2 m 2 ⇒ 3 m 1 + 3 m 2 = 6 m 1 + 2 m 2 ⇒ 3 m 2 − 2 m 2 = 6 m 1 − 3 m 1 ⇒ m 2 = 3 m 1 ⇒ m 1 m 2 = 1 3 . \Rightarrow 3 = \Big(\dfrac{m_1(6) + m_2(2)}{m_1 + m_2}\Big) \\[1em] \Rightarrow 3(m_1 + m_2) = {6m_1 + 2m_2} \\[1em] \Rightarrow 3m_1 + 3m_2 = 6m_1 + 2m_2 \\[1em] \Rightarrow 3m_2 - 2m_2 = 6m_1 - 3m_1 \\[1em] \Rightarrow m_2 = 3m_1 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{1}{3}. ⇒ 3 = ( m 1 + m 2 m 1 ( 6 ) + m 2 ( 2 ) ) ⇒ 3 ( m 1 + m 2 ) = 6 m 1 + 2 m 2 ⇒ 3 m 1 + 3 m 2 = 6 m 1 + 2 m 2 ⇒ 3 m 2 − 2 m 2 = 6 m 1 − 3 m 1 ⇒ m 2 = 3 m 1 ⇒ m 2 m 1 = 3 1 .
Solving for x-coordinate with the ratio m 1 = 1 m_1 = 1 m 1 = 1 and m 2 = 3 m_2 = 3 m 2 = 3 :
⇒ x = ( 1 ) ( 3 ) + ( 3 ) ( − 4 ) 1 + 3 = 3 − 12 4 = − 9 4 . \Rightarrow x = \dfrac{(1)(3) + (3)(-4)}{1 + 3} \\[1em] = \frac{3 - 12}{4} \\[1em] = \frac{-9}{4}. ⇒ x = 1 + 3 ( 1 ) ( 3 ) + ( 3 ) ( − 4 ) = 4 3 − 12 = 4 − 9 .
Hence, x = − 9 4 \dfrac{-9}{4} 4 − 9 .
(ii) Solving length of AP
By using Distance Formula
D = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} D = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
A(-4, 2) and P ( − 9 4 , 3 ) P\Big(\dfrac{-9}{4}, 3\Big) P ( 4 − 9 , 3 ) .
A P = ( − 9 4 − ( − 4 ) ) 2 + ( 3 − 2 ) 2 = ( − 9 4 + 16 4 ) 2 + ( 1 ) 2 = ( 7 4 ) 2 + 1 2 = 49 16 + 16 16 = 65 16 = 65 4 units AP = \sqrt{\Big(-\dfrac{9}{4} - (-4)\Big)^2 + (3 - 2)^2} \\[1em] =\sqrt{\Big(-\dfrac{9}{4} + \dfrac{16}{4}\Big)^2 + (1)^2} \\[1em] = \sqrt{\Big(\dfrac{7}{4}\Big)^2 + 1^2} \\[1em] = \sqrt{\dfrac{49}{16} + \dfrac{16}{16}} \\[1em] = \sqrt{\dfrac{65}{16}} \\[1em] = \dfrac{\sqrt{65}}{4} \text{ units} A P = ( − 4 9 − ( − 4 ) ) 2 + ( 3 − 2 ) 2 = ( − 4 9 + 4 16 ) 2 + ( 1 ) 2 = ( 4 7 ) 2 + 1 2 = 16 49 + 16 16 = 16 65 = 4 65 units
Hence, length of AP = 65 4 \dfrac{\sqrt{65}}{4} 4 65 units.
In what ratio is the line joining P(5, 3) and Q(-5, 3) divided by the x-axis? Also, find the co-ordinates of the point of intersection.
Answer
Let point on x-axis dividing PQ be (a, 0).
By section formula,
y = m 1 y 2 + m 2 y 1 m 1 + m 2 \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2} m 1 + m 2 m 1 y 2 + m 2 y 1
Substituting values we get :
⇒ 0 = m 1 × 3 + m 2 × 3 m 1 + m 2 ⇒ 0 = 3 m 1 + 3 m 2 ⇒ 3 m 1 = − 3 m 2 ⇒ m 1 m 2 = − 3 3 ⇒ m 1 m 2 = − 1 1 \Rightarrow 0 = \dfrac{m_1 \times 3 + m_2 \times 3}{m_1 + m_2} \\[1em] \Rightarrow 0 = 3m_1 + 3m_2 \\[1em] \Rightarrow 3m_1 = -3m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = -\dfrac{3}{3} \\[1em] \Rightarrow \dfrac{m_1}{m_2} = -\dfrac{1}{1} ⇒ 0 = m 1 + m 2 m 1 × 3 + m 2 × 3 ⇒ 0 = 3 m 1 + 3 m 2 ⇒ 3 m 1 = − 3 m 2 ⇒ m 2 m 1 = − 3 3 ⇒ m 2 m 1 = − 1 1
The negative ratio shows that the line PQ does not intersects with x-axis.
Hence, the x-axis does not intersect the line PQ, so no ratio or point of intersection exists.
Find a point P which divides internally the line segment joining the points A(-3, 9) and B(1, -3) in the ratio 1 : 3.
Answer
Let Point P divides the line segment joining A(−3, 9) and B(1, −3) internally in the ratio m1 : m2 = 1 : 3.
By using section formula,
P(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get:
P = ( 1 × 1 + 3 × − 3 1 + 3 , 1 × − 3 + 3 × 9 1 + 3 ) = ( 1 − 9 4 , − 3 + 27 4 ) = ( − 8 4 , 24 4 ) = ( − 2 , 6 ) . P = \Big(\dfrac{1 \times 1 + 3 \times -3}{1 + 3}, \dfrac{1 \times -3 + 3 \times 9}{1 + 3}\Big) \\[1em] = \Big(\dfrac{1 - 9}{4}, \dfrac{-3 + 27}{4}\Big) \\[1em] = \Big(\dfrac{-8}{4}, \dfrac{24}{4}\Big) \\[1em] = (-2, 6). P = ( 1 + 3 1 × 1 + 3 × − 3 , 1 + 3 1 × − 3 + 3 × 9 ) = ( 4 1 − 9 , 4 − 3 + 27 ) = ( 4 − 8 , 4 24 ) = ( − 2 , 6 ) .
Hence, coordinates of P = (-2, 6).
Multiple Choice Questions
The coordinates of the point P which divides the join of A(5, -2) and B(9, 6) in the ratio 3 : 1 are :
(4, -7)
( 7 2 , 4 ) \Big(\dfrac{7}{2}, 4\Big) ( 2 7 , 4 )
(8, 4)
(12, 8)
Answer
Let point P be (x, y).
Given,
m1 : m2 = 3 : 1
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 3 × 9 + 1 × 5 3 + 1 , 3 × 6 + 1 × − 2 3 + 1 ) = ( 27 + 5 4 , 18 − 2 4 ) = ( 32 4 , 16 4 ) = ( 8 , 4 ) . \Rightarrow (x, y) = \Big(\dfrac{3 \times 9 + 1 \times 5}{3 + 1}, \dfrac{3 \times 6 + 1 \times -2}{3 + 1}\Big) \\[1em] = \Big(\dfrac{27 + 5}{4}, \dfrac{18 - 2}{4}\Big) \\[1em] = \Big(\dfrac{32}{4}, \dfrac{16}{4}\Big) \\[1em] = (8, 4). ⇒ ( x , y ) = ( 3 + 1 3 × 9 + 1 × 5 , 3 + 1 3 × 6 + 1 × − 2 ) = ( 4 27 + 5 , 4 18 − 2 ) = ( 4 32 , 4 16 ) = ( 8 , 4 ) .
Hence, Option 3 is the correct option.
The coordinates of the point on x-axis which divides the line segment joining the points (2, 3) and (5, -6) in the ratio 1 : 2 are :
(2, 0)
(-2, 0)
(3, 0)
(-3, 0)
Answer
Let point P be (x, y).
Given,
m1 : m2 = 1 : 2
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 1 × 5 + 2 × 2 1 + 2 , 1 × ( − 6 ) + 2 × 3 1 + 2 ) = ( 5 + 4 3 , − 6 + 6 3 ) = ( 9 3 , 0 3 ) = ( 3 , 0 ) . \Rightarrow (x, y) = \Big(\dfrac{1 \times 5 + 2 \times 2}{1 + 2}, \dfrac{1 \times (-6) + 2 \times 3}{1 + 2}\Big) \\[1em] = \Big(\dfrac{5 + 4}{3}, \dfrac{-6 + 6}{3}\Big) \\[1em] = \Big(\dfrac{9}{3}, \dfrac{0}{3}\Big) \\[1em] = (3, 0). ⇒ ( x , y ) = ( 1 + 2 1 × 5 + 2 × 2 , 1 + 2 1 × ( − 6 ) + 2 × 3 ) = ( 3 5 + 4 , 3 − 6 + 6 ) = ( 3 9 , 3 0 ) = ( 3 , 0 ) .
Hence, Option 3 is the correct option.
The point which divides the line segment joining the points A(3, -2) and B(6, 7) internally in the ratio 3 : 2 lies in which of the following quadrants?
I
II
III
IV
Answer
Let point P be (x, y).
Given,
m1 : m2 = 3 : 2
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 3 × 6 + 2 × 3 3 + 2 , 3 × 7 + 2 × ( − 2 ) 3 + 2 ) = ( 18 + 6 5 , 21 − 4 5 ) = ( 24 5 , 17 5 ) . \Rightarrow (x, y) = \Big(\dfrac{3 \times 6 + 2 \times 3}{3 + 2}, \dfrac{3 \times 7 + 2 \times (-2)}{3 + 2}\Big) \\[1em] = \Big(\dfrac{18 + 6}{5}, \dfrac{21 - 4}{5}\Big) \\[1em] = \Big(\dfrac{24}{5}, \dfrac{17}{5}\Big). ⇒ ( x , y ) = ( 3 + 2 3 × 6 + 2 × 3 , 3 + 2 3 × 7 + 2 × ( − 2 ) ) = ( 5 18 + 6 , 5 21 − 4 ) = ( 5 24 , 5 17 ) .
Here, both x and y are positive.
Therefore, the point lies in the 1st Quadrant.
Hence, Option 1 is the correct option.
If the point R(k, 4) divides the line segment joining the points P(2, 6) and Q(5, 1) in the ratio 2 : 3, then the value of k is:
-5
( − 16 5 ) \Big(\dfrac{-16}{5}\Big) ( 5 − 16 )
5
( 16 5 ) \Big(\dfrac{16}{5}\Big) ( 5 16 )
Answer
Given,
R = (k, 4)
m1 : m2 = 2 : 3
R(k, 4) divides the line segment joining the points P(2, 6) and Q(5, 1) in the ratio 2 : 3.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( k , 4 ) = ( 2 × 5 + 3 × 2 2 + 3 , 2 × 1 + 3 × 6 2 + 3 ) ⇒ ( k , 4 ) = ( 10 + 6 5 , 2 + 18 5 ) ⇒ ( k , 4 ) = ( 16 5 , 20 5 ) ⇒ ( k , 4 ) = ( 16 5 , 4 ) . \Rightarrow (k, 4) = \Big(\dfrac{2 \times 5 + 3 \times 2}{2 + 3}, \dfrac{2 \times 1 + 3 \times 6}{2 + 3}\Big) \\[1em] \Rightarrow (k, 4) = \Big(\dfrac{10 + 6}{5}, \dfrac{2 + 18}{5}\Big) \\[1em] \Rightarrow (k, 4) = \Big(\dfrac{16}{5}, \dfrac{20}{5}\Big) \\[1em] \Rightarrow (k, 4) = \Big(\dfrac{16}{5}, 4\Big). ⇒ ( k , 4 ) = ( 2 + 3 2 × 5 + 3 × 2 , 2 + 3 2 × 1 + 3 × 6 ) ⇒ ( k , 4 ) = ( 5 10 + 6 , 5 2 + 18 ) ⇒ ( k , 4 ) = ( 5 16 , 5 20 ) ⇒ ( k , 4 ) = ( 5 16 , 4 ) .
Thus, k = 16 5 \dfrac{16}{5} 5 16 .
Hence, Option 4 is the correct option.
If the point P(k, 0) divides the line segment joining the points A(2, -2) and B(-7, 4) in the ratio 1 : 2, then the value of k is:
-2
-1
1
2
Answer
Given,
P = (k, 0)
m1 : m2 = 1 : 2
P(k, 0) divides the line segment joining the points A(2, -2) and B(-7, 4) in the ratio 1 : 2.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( k , 0 ) = ( 1 × ( − 7 ) + 2 × 2 1 + 2 , 1 × 4 + 2 × ( − 2 ) 1 + 2 ) ⇒ ( k , 0 ) = ( − 7 + 4 3 , 4 − 4 3 ) ⇒ ( k , 0 ) = ( − 3 3 , 0 3 ) ⇒ ( k , 0 ) = ( − 1 , 0 ) . \Rightarrow (k, 0) = \Big(\dfrac{1 \times (-7) + 2 \times 2}{1 + 2}, \dfrac{1 \times 4 + 2 \times (-2)}{1 + 2}\Big) \\[1em] \Rightarrow (k, 0) = \Big(\dfrac{-7 + 4}{3}, \dfrac{4 - 4}{3}\Big) \\[1em] \Rightarrow (k, 0) = \Big(\dfrac{-3}{3}, \dfrac{0}{3}\Big) \\[1em] \Rightarrow (k, 0) = (-1, 0). ⇒ ( k , 0 ) = ( 1 + 2 1 × ( − 7 ) + 2 × 2 , 1 + 2 1 × 4 + 2 × ( − 2 ) ) ⇒ ( k , 0 ) = ( 3 − 7 + 4 , 3 4 − 4 ) ⇒ ( k , 0 ) = ( 3 − 3 , 3 0 ) ⇒ ( k , 0 ) = ( − 1 , 0 ) .
Thus, k = -1.
Hence, Option 2 is the correct option.
If the point P(6, 2) divides the line segment joining A(6, 5) and B(4, y) in the ratio 3 : 1, then the value of y is :
1
2
3
4
Answer
Let point P be (6, 2).
Given,
m1 : m2 = 3 : 1
P(6, 2) divides the line segment joining A(6, 5) and B(4, y) in the ratio 3 : 1.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
We use the y–coordinate to find y.
⇒ 2 = 3 × y + 1 × 5 3 + 1 ⇒ 2 = 3 y + 5 4 ⇒ 8 = 3 y + 5 ⇒ 3 y = 3 ⇒ y = 1. \Rightarrow 2 = \dfrac{3 \times y + 1 \times 5}{3 + 1} \\[1em] \Rightarrow 2 = \dfrac{3y + 5}{4} \\[1em] \Rightarrow 8 = 3y + 5 \\[1em] \Rightarrow 3y = 3 \\[1em] \Rightarrow y = 1. ⇒ 2 = 3 + 1 3 × y + 1 × 5 ⇒ 2 = 4 3 y + 5 ⇒ 8 = 3 y + 5 ⇒ 3 y = 3 ⇒ y = 1.
Hence, Option 1 is the correct option.
The ratio in which the point P(1, 2) divides the join of the points A(-2, 1) and B(7, 4) is:
1 : 2
2 : 1
3 : 2
2 : 3
Answer
Let the ratio in which P divides AB be k : 1.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Using the y–coordinate to find ratio.
⇒ 2 = ( k ( 4 ) + 1 ( 1 ) k + 1 ) ⇒ 2 = ( 4 k + 1 k + 1 ) ⇒ 2 ( k + 1 ) = 4 k + 1 ⇒ 2 k + 2 = 4 k + 1 ⇒ 2 − 1 = 4 k − 2 k ⇒ 2 k = 1 ⇒ k = 1 2 ⇒ k : 1 = 1 2 : 1 = 1 : 2. \Rightarrow 2 = \Big(\dfrac{k(4) + 1(1)}{k + 1}\Big) \\[1em] \Rightarrow 2 = \Big(\dfrac{4k + 1}{k + 1}\Big) \\[1em] \Rightarrow 2(k + 1) = 4k + 1 \\[1em] \Rightarrow 2k + 2 = 4k + 1 \\[1em] \Rightarrow 2 - 1 = 4k - 2k \\[1em] \Rightarrow 2k = 1 \\[1em] \Rightarrow k = \dfrac{1}{2}\\[1em] \Rightarrow k : 1 = \dfrac{1}{2} : 1 = 1 : 2. ⇒ 2 = ( k + 1 k ( 4 ) + 1 ( 1 ) ) ⇒ 2 = ( k + 1 4 k + 1 ) ⇒ 2 ( k + 1 ) = 4 k + 1 ⇒ 2 k + 2 = 4 k + 1 ⇒ 2 − 1 = 4 k − 2 k ⇒ 2 k = 1 ⇒ k = 2 1 ⇒ k : 1 = 2 1 : 1 = 1 : 2.
Hence, Option 1 is the correct option.
The ratio in which the line segment joining A(2, -3) and B(5, 6) is divided by x-axis is :
1 : 2
2 : 1
3 : 5
2 : 3
Answer
Let the point where x-axis intersects the line segment be P(x, 0).
Let the ratio in which P divides AB be m1 : m2 .
By section-formula (using y–coordinate),
⇒ y = ( m 1 y 2 + m 2 y 1 m 1 + m 2 ) ⇒ 0 = m 1 × 5 + m 2 × ( − 3 ) m 1 + m 2 ⇒ 0 = 5 m 1 − 3 m 2 ⇒ 5 m 1 = 3 m 2 ⇒ m 1 m 2 = 3 5 . \Rightarrow y = \Big(\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) \\[1em] \Rightarrow 0 = \dfrac{m_1 \times 5 + m_2 \times (-3)}{m_1 + m_2} \\[1em] \Rightarrow 0 = 5m_1 - 3m_2 \\[1em] \Rightarrow 5m_1 = 3m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{3}{5}. ⇒ y = ( m 1 + m 2 m 1 y 2 + m 2 y 1 ) ⇒ 0 = m 1 + m 2 m 1 × 5 + m 2 × ( − 3 ) ⇒ 0 = 5 m 1 − 3 m 2 ⇒ 5 m 1 = 3 m 2 ⇒ m 2 m 1 = 5 3 .
Thus, the required ratio is 3 : 5.
Hence, Option 3 is the correct option.
In what ratio is the line segment joining the points P(-4, 2) and Q(8, 3) divided by y-axis?
1 : 3
3 : 1
1 : 2
2 : 1
Answer
Let the point where y-axis divides the line segment be R(0, y).
Let the ratio be m1 : m2 .
Using section-formula,
⇒ x = m 1 x 2 + m 2 x 1 m 1 + m 2 ⇒ 0 = m 1 × 8 + m 2 × ( − 4 ) m 1 + m 2 ⇒ 0 = 8 m 1 − 4 m 2 ⇒ 8 m 1 = 4 m 2 ⇒ m 1 m 2 = 4 8 = 1 2 . \Rightarrow x = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} \\[1em] \Rightarrow 0 = \dfrac{m_1 \times 8 + m_2 \times (-4)}{m_1 + m_2} \\[1em] \Rightarrow 0 = 8m_1 - 4m_2 \\[1em] \Rightarrow 8m_1 = 4m_2 \\[1em] \Rightarrow \dfrac{m_1}{m_2} = \dfrac{4}{8} = \dfrac{1}{2}. ⇒ x = m 1 + m 2 m 1 x 2 + m 2 x 1 ⇒ 0 = m 1 + m 2 m 1 × 8 + m 2 × ( − 4 ) ⇒ 0 = 8 m 1 − 4 m 2 ⇒ 8 m 1 = 4 m 2 ⇒ m 2 m 1 = 8 4 = 2 1 .
Thus, the required ratio is 1 : 2.
Hence, Option 3 is the correct option.
Point P divides the line segment joining R(-1, 3) and S(9, 8) in the ratio k : 1. If P lies on the line x - y + 2 = 0, then the value of k is:
1 2 \dfrac{1}{2} 2 1
1 3 \dfrac{1}{3} 3 1
1 4 \dfrac{1}{4} 4 1
2 3 \dfrac{2}{3} 3 2
Answer
Let point P be (x, y).
Given,
m1 : m2 = k : 1
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( k × 9 + 1 × ( − 1 ) k + 1 , k × 8 + 1 × 3 k + 1 ) = ( 9 k − 1 k + 1 , 8 k + 3 k + 1 ) . \Rightarrow (x, y) = \Big(\dfrac{k \times 9 + 1 \times (-1)}{k + 1}, \dfrac{k \times 8 + 1 \times 3}{k + 1}\Big) \\[1em] = \Big(\dfrac{9k - 1}{k + 1}, \dfrac{8k + 3}{k + 1}\Big). ⇒ ( x , y ) = ( k + 1 k × 9 + 1 × ( − 1 ) , k + 1 k × 8 + 1 × 3 ) = ( k + 1 9 k − 1 , k + 1 8 k + 3 ) .
Since P lies on the line x - y + 2 = 0, substituting values of x and y:
⇒ 9 k − 1 k + 1 − 8 k + 3 k + 1 + 2 = 0 ⇒ 9 k − 1 − ( 8 k + 3 ) k + 1 + 2 = 0 ⇒ 9 k − 1 − 8 k − 3 k + 1 + 2 = 0 ⇒ k − 4 k + 1 + 2 = 0 ⇒ k − 4 + 2 ( k + 1 ) k + 1 = 0 ⇒ k − 4 + 2 k + 2 k + 1 = 0 ⇒ 3 k − 2 k + 1 = 0 ⇒ 3 k − 2 = 0 ⇒ 3 k = 2 ⇒ k = 2 3 . \Rightarrow \dfrac{9k - 1}{k + 1} - \dfrac{8k + 3}{k + 1} + 2 = 0 \\[1em] \Rightarrow \dfrac{9k - 1 - (8k + 3)}{k + 1} + 2 = 0 \\[1em] \Rightarrow \dfrac{9k - 1 - 8k - 3}{k + 1} + 2 = 0 \\[1em] \Rightarrow \dfrac{k - 4}{k + 1} + 2 = 0 \\[1em] \Rightarrow \dfrac{k - 4 + 2(k + 1)}{k + 1} = 0 \\[1em] \Rightarrow \dfrac{k - 4 + 2k + 2}{k + 1} = 0 \\[1em] \Rightarrow \dfrac{3k - 2}{k + 1} = 0 \\[1em] \Rightarrow 3k - 2 = 0 \\[1em] \Rightarrow 3k = 2 \\[1em] \Rightarrow k = \dfrac{2}{3}. ⇒ k + 1 9 k − 1 − k + 1 8 k + 3 + 2 = 0 ⇒ k + 1 9 k − 1 − ( 8 k + 3 ) + 2 = 0 ⇒ k + 1 9 k − 1 − 8 k − 3 + 2 = 0 ⇒ k + 1 k − 4 + 2 = 0 ⇒ k + 1 k − 4 + 2 ( k + 1 ) = 0 ⇒ k + 1 k − 4 + 2 k + 2 = 0 ⇒ k + 1 3 k − 2 = 0 ⇒ 3 k − 2 = 0 ⇒ 3 k = 2 ⇒ k = 3 2 .
Hence, Option 4 is the correct option.
In the adjoining figure, P(5, -3) and Q(3, y) are the points of trisection of the line segment joining A(7, -2) and B(1, -5). Then, y equals :
-4
( − 5 2 ) \Big(\dfrac{-5}{2}\Big) ( 2 − 5 )
2
4
Answer
Since P and Q trisect the line segment AB, the point Q(3, y) divides A(7, -2) and B(1, -5) in the ratio 2 : 1.
Let point Q be (3, y).
Given,
m1 : m2 = 2 : 1
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( 3 , y ) = ( 2 × 1 + 1 × 7 2 + 1 , 2 × ( − 5 ) + 1 × ( − 2 ) 2 + 1 ) ⇒ ( 3 , y ) = ( 2 + 7 3 , − 10 − 2 3 ) ⇒ ( 3 , y ) = ( 9 3 , − 12 3 ) ⇒ ( 3 , y ) = ( 3 , − 4 ) . \Rightarrow (3, y) = \Big(\dfrac{2 \times 1 + 1 \times 7}{2 + 1}, \dfrac{2 \times (-5) + 1 \times (-2)}{2 + 1}\Big) \\[1em] \Rightarrow (3, y) = \Big(\dfrac{2 + 7}{3}, \dfrac{-10 - 2}{3}\Big) \\[1em] \Rightarrow (3, y) = \Big(\dfrac{9}{3}, \dfrac{-12}{3}\Big) \\[1em] \Rightarrow (3, y) = (3, -4). ⇒ ( 3 , y ) = ( 2 + 1 2 × 1 + 1 × 7 , 2 + 1 2 × ( − 5 ) + 1 × ( − 2 ) ) ⇒ ( 3 , y ) = ( 3 2 + 7 , 3 − 10 − 2 ) ⇒ ( 3 , y ) = ( 3 9 , 3 − 12 ) ⇒ ( 3 , y ) = ( 3 , − 4 ) .
Thus, y = -4.
Hence, Option 1 is the correct option.
If the point P(6, -3) lies on the line segment joining points A(4, 2) and B(8, 4), then:
AP = 3 4 \dfrac{3}{4} 4 3 AB
AP = 1 4 \dfrac{1}{4} 4 1 AB
PB = 1 3 \dfrac{1}{3} 3 1 AB
AP = 1 2 \dfrac{1}{2} 2 1 AB
Answer
Let the ratio in which P divides AB be k : 1.
By section-formula,
x = m 1 x 2 + m 2 x 1 m 1 + m 2 \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2} m 1 + m 2 m 1 x 2 + m 2 x 1
Substituting values we get :
⇒ 6 = ( k ( 8 ) + 1 ( 4 ) k + 1 ) ⇒ 6 = ( 8 k + 4 k + 1 ) ⇒ 6 ( k + 1 ) = 8 k + 4 ⇒ 6 k + 6 = 8 k + 4 ⇒ 6 − 4 = 8 k − 6 k ⇒ 2 = 2 k ⇒ k = 1 1 = 1 : 1. \Rightarrow 6 = \Big(\dfrac{k(8) + 1(4)}{k + 1}\Big) \\[1em] \Rightarrow 6 = \Big(\dfrac{8k + 4}{k + 1}\Big) \\[1em] \Rightarrow 6(k + 1) = 8k + 4 \\[1em] \Rightarrow 6k + 6 = 8k + 4 \\[1em] \Rightarrow 6 - 4 = 8k - 6k \\[1em] \Rightarrow 2 = 2k \\[1em] \Rightarrow k = \dfrac{1}{1} = 1:1. ⇒ 6 = ( k + 1 k ( 8 ) + 1 ( 4 ) ) ⇒ 6 = ( k + 1 8 k + 4 ) ⇒ 6 ( k + 1 ) = 8 k + 4 ⇒ 6 k + 6 = 8 k + 4 ⇒ 6 − 4 = 8 k − 6 k ⇒ 2 = 2 k ⇒ k = 1 1 = 1 : 1.
This means that P is the midpoint of AB.
∴ AP = 1 2 \dfrac{1}{2} 2 1 AB.
Hence, Option 4 is the correct option.
The mid-point of the line segment joining the points (-3, 2) and (7, 6) is:
(-2, -4)
(-2, 4)
(2, 4)
(4, 2)
Answer
Let the mid-point be M(x, y).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ M ( x , y ) = ( − 3 + 7 2 , 2 + 6 2 ) ⇒ ( 4 2 , 8 2 ) ⇒ ( 2 , 4 ) . \Rightarrow M(x, y) = \Big(\dfrac{-3 + 7}{2}, \dfrac{2 + 6}{2}\Big) \\[1em] \Rightarrow \Big(\dfrac{4}{2}, \dfrac{8}{2}\Big) \\[1em] \Rightarrow (2, 4). ⇒ M ( x , y ) = ( 2 − 3 + 7 , 2 2 + 6 ) ⇒ ( 2 4 , 2 8 ) ⇒ ( 2 , 4 ) .
Hence, Option 3 is the correct option.
If A(4, 2), B(6, 5) and C(1, 4) be the vertices of ΔABC and AD is a median, then the coordinates of D are:
( 5 2 , 3 ) \Big(\dfrac{5}{2}, 3\Big) ( 2 5 , 3 )
( 5 , 7 2 ) \Big(5, \dfrac{7}{2}\Big) ( 5 , 2 7 )
( 7 2 , 9 2 ) \Big(\dfrac{7}{2}, \dfrac{9}{2}\Big) ( 2 7 , 2 9 )
none of these
Answer
Since AD is a median, D is the mid-point of BC.
Let point D be (x, y).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
⇒ ( x , y ) = ( 6 + 1 2 , 5 + 4 2 ) ⇒ ( 7 2 , 9 2 ) . \Rightarrow (x, y) = \Big(\dfrac{6 + 1}{2}, \dfrac{5 + 4}{2}\Big) \\[1em] \Rightarrow \Big(\dfrac{7}{2}, \dfrac{9}{2}\Big). ⇒ ( x , y ) = ( 2 6 + 1 , 2 5 + 4 ) ⇒ ( 2 7 , 2 9 ) .
Hence, Option 3 is the correct option.
If (3, -6) is the mid-point of the line segment joining (0, 0) and (x, y), then the point (x, y) is:
(-3, 6)
(6, -6)
(6, -12)
( 3 2 , − 3 ) \Big(\dfrac{3}{2}, -3\Big) ( 2 3 , − 3 )
Answer
Given, (3, -6) is the mid-point of the line segment joining (0, 0) and (x, y).
∴ ( 3 , − 6 ) = ( 0 + x 2 , 0 + y 2 ) ⇒ ( 3 , − 6 ) = ( x 2 , y 2 ) ⇒ 3 = x 2 and − 6 = y 2 ⇒ x = 6 and y = − 12 \therefore (3, -6) = \Big(\dfrac{0 + x}{2}, \dfrac{0 + y}{2}\Big) \\[1em] \Rightarrow (3, -6) = \Big(\dfrac{x}{2}, \dfrac{y}{2}\Big) \\[1em] \Rightarrow 3 = \dfrac{x}{2} \text{ and } -6 = \dfrac{y}{2} \\[1em] \Rightarrow x = 6 \text{ and } y = -12 ∴ ( 3 , − 6 ) = ( 2 0 + x , 2 0 + y ) ⇒ ( 3 , − 6 ) = ( 2 x , 2 y ) ⇒ 3 = 2 x and − 6 = 2 y ⇒ x = 6 and y = − 12
(x, y) = (6, -12).
Hence, Option 3 is the correct option.
Point P ( a 8 , 4 ) P\Big(\dfrac{a}{8}, 4\Big) P ( 8 a , 4 ) is the mid-point of the line segment joining the points A(-5, 2) and B(4, 6). Then, the value of a is:
-8
-4
2
4
Answer
Given,
P ( a 8 , 4 ) P\Big(\dfrac{a}{8}, 4\Big) P ( 8 a , 4 ) is the mid-point of the line segment joining the points A(-5, 2) and B(4, 6).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( a 8 , 4 ) = ( − 5 + 4 2 , 2 + 6 2 ) ⇒ ( a 8 , 4 ) = ( − 1 2 , 4 ) \Rightarrow \Big(\dfrac{a}{8}, 4\Big) = \Big(\dfrac{-5 + 4}{2}, \dfrac{2 + 6}{2}\Big) \\[1em] \Rightarrow \Big(\dfrac{a}{8}, 4\Big) = \Big(\dfrac{-1}{2}, 4\Big) ⇒ ( 8 a , 4 ) = ( 2 − 5 + 4 , 2 2 + 6 ) ⇒ ( 8 a , 4 ) = ( 2 − 1 , 4 )
Comparing the x-coordinates, we get :
⇒ a 8 = − 1 2 ⇒ a = − 8 2 ⇒ a = − 4. \Rightarrow \dfrac{a}{8} = \dfrac{-1}{2} \\[1em] \Rightarrow a = \dfrac{-8}{2} \\[1em] \Rightarrow a = -4. ⇒ 8 a = 2 − 1 ⇒ a = 2 − 8 ⇒ a = − 4.
Hence, Option 2 is the correct option.
A(-3, b) and B(1, b + 4) are two points. If the coordinates of the mid-point of AB are (-1, 1), then the value of b is :
-1
0
1
2
Answer
Given,
Mid-point of AB = (-1, 1).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( − 1 , 1 ) = ( − 3 + 1 2 , b + ( b + 4 ) 2 ) ⇒ ( − 1 , 1 ) = ( − 2 2 , 2 b + 4 2 ) ⇒ ( − 1 , 1 ) = ( − 1 , b + 2 ) \Rightarrow (-1, 1) = \Big(\dfrac{-3 + 1}{2}, \dfrac{b + (b + 4)}{2}\Big) \\[1em] \Rightarrow (-1, 1) = \Big(\dfrac{-2}{2}, \dfrac{2b + 4}{2}\Big) \\[1em] \Rightarrow (-1, 1) = (-1, b + 2) ⇒ ( − 1 , 1 ) = ( 2 − 3 + 1 , 2 b + ( b + 4 ) ) ⇒ ( − 1 , 1 ) = ( 2 − 2 , 2 2 b + 4 ) ⇒ ( − 1 , 1 ) = ( − 1 , b + 2 )
Comparing the y-coordinates, we get :
⇒ 1 = b + 2
⇒ b = -1.
Hence, Option 1 is the correct option.
If the point R(5, 7) is the mid-point of the line segment joining the points P(3, y) and Q(x, 9), then (x + y) equals:
7
9
12
14
Answer
Given,
R(5, 7) is the mid-point of the line segment joining the points P(3, y) and Q(x, 9).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( 5 , 7 ) = ( 3 + x 2 , y + 9 2 ) ⇒ 5 = 3 + x 2 and 7 = y + 9 2 ⇒ 10 = 3 + x and 14 = y + 9 ⇒ x = 7 and y = 5. \Rightarrow (5, 7) = \Big(\dfrac{3 + x}{2}, \dfrac{y + 9}{2}\Big) \\[1em] \Rightarrow 5 = \dfrac{3 + x}{2} \text{ and } 7 = \dfrac{y + 9}{2} \\[1em] \Rightarrow 10 = 3 + x \text{ and } 14 = y + 9 \\[1em] \Rightarrow x = 7 \text{ and } y = 5. ⇒ ( 5 , 7 ) = ( 2 3 + x , 2 y + 9 ) ⇒ 5 = 2 3 + x and 7 = 2 y + 9 ⇒ 10 = 3 + x and 14 = y + 9 ⇒ x = 7 and y = 5.
x + y = 7 + 5 = 12.
Hence, Option 3 is the correct option.
If the point (2, 1) is the mid-point of the line segment PQ joining the points P ( 9 2 , − 4 ) P\Big(\dfrac{9}{2}, -4\Big) P ( 2 9 , − 4 ) and Q(a, b), then (a + b) is equal to:
7 4 \dfrac{7}{4} 4 7
11 4 \dfrac{11}{4} 4 11
7 2 \dfrac{7}{2} 2 7
11 2 \dfrac{11}{2} 2 11
Answer
Let the mid-point of PQ be (2, 1).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( 2 , 1 ) = ( 9 2 + a 2 , − 4 + b 2 ) \Rightarrow (2, 1) = \Big(\dfrac{\dfrac{9}{2} + a}{2}, \dfrac{-4 + b}{2}\Big) ⇒ ( 2 , 1 ) = ( 2 2 9 + a , 2 − 4 + b )
Comparing the x coordinates, we get :
⇒ 9 2 + a 2 = 2 ⇒ 9 2 + a = 4 ⇒ a = 4 − 9 2 ⇒ a = 8 − 9 2 = − 1 2 . \Rightarrow \dfrac{\dfrac{9}{2} + a}{2} = 2 \\[1em] \Rightarrow \dfrac{9}{2} + a = 4 \\[1em] \Rightarrow a = 4 - \dfrac{9}{2} \\[1em] \Rightarrow a = \dfrac{8 - 9}{2} = \dfrac{-1}{2}. ⇒ 2 2 9 + a = 2 ⇒ 2 9 + a = 4 ⇒ a = 4 − 2 9 ⇒ a = 2 8 − 9 = 2 − 1 .
Comparing the y coordinates, we get :
⇒ − 4 + b 2 = 1 \dfrac{-4 + b}{2} = 1 2 − 4 + b = 1
⇒ -4 + b = 2
⇒ b = 6.
⇒ a + b ⇒ − 1 2 + 6 ⇒ − 1 + 12 2 ⇒ 11 2 . \Rightarrow a + b \\[1em] \Rightarrow \dfrac{-1}{2} + 6 \\[1em] \Rightarrow \dfrac{-1 + 12}{2} \\[1em] \Rightarrow \dfrac{11}{2}. ⇒ a + b ⇒ 2 − 1 + 6 ⇒ 2 − 1 + 12 ⇒ 2 11 .
Hence, Option 4 is the correct option.
The coordinates of the vertices of ΔABC are respectively (-4, -2), (6, 2) and (4, 6). The centroid G of ΔABC is:
(2, 2)
(2, 3)
(3, 3)
(0, -1)
Answer
By centroid formula,
G(x, y) = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) \Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big) ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
Substituting values we get :
⇒ G = ( − 4 + 6 + 4 3 , − 2 + 2 + 6 3 ) = ( 6 3 , 6 3 ) = ( 2 , 2 ) . \Rightarrow G = \Big(\dfrac{-4 + 6 + 4}{3}, \dfrac{-2 + 2 + 6}{3}\Big) \\[1em] = \Big(\dfrac{6}{3}, \dfrac{6}{3}\Big) \\[1em] = (2, 2). ⇒ G = ( 3 − 4 + 6 + 4 , 3 − 2 + 2 + 6 ) = ( 3 6 , 3 6 ) = ( 2 , 2 ) .
Hence, Option 1 is the correct option.
Two vertices of a ΔABC are A(-1, 4) and B(5, 2) and its centroid is (0, -3). The coordinates of C are :
(4, 3)
(4, 15)
(-4, -15)
(-15, -4)
Answer
Let the coordinates of C be (x, y).
By centroid formula,
Centroid = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) \Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big) ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
Given,
G(0, -3) is the centroid of the triangle.
Substituting values we get :
⇒ ( 0 , − 3 ) = ( − 1 + 5 + x 3 , 4 + 2 + y 3 ) ⇒ ( 0 , − 3 ) = ( 4 + x 3 , 6 + y 3 ) ⇒ 0 = 4 + x 3 and − 3 = 6 + y 3 ⇒ 4 + x = 0 and 6 + y = − 9 ⇒ x = − 4 and y = − 9 − 6 ⇒ x = − 4 and y = − 15. \Rightarrow (0, -3) = \Big(\dfrac{-1 + 5 + x}{3}, \dfrac{4 + 2 + y}{3}\Big) \\[1em] \Rightarrow (0, -3) = \Big(\dfrac{4 + x}{3}, \dfrac{6 + y}{3}\Big) \\[1em] \Rightarrow 0 = \dfrac{4 + x}{3} \text{ and } -3 = \dfrac{6 + y}{3} \\[1em] \Rightarrow 4 + x = 0 \text{ and } 6 + y = -9 \\[1em] \Rightarrow x = -4 \text{ and } y = -9 - 6 \\[1em] \Rightarrow x = -4 \text{ and } y = -15. ⇒ ( 0 , − 3 ) = ( 3 − 1 + 5 + x , 3 4 + 2 + y ) ⇒ ( 0 , − 3 ) = ( 3 4 + x , 3 6 + y ) ⇒ 0 = 3 4 + x and − 3 = 3 6 + y ⇒ 4 + x = 0 and 6 + y = − 9 ⇒ x = − 4 and y = − 9 − 6 ⇒ x = − 4 and y = − 15.
C = (x, y) = (-4, -15).
Hence, Option 3 is the correct option.
The mid-point of the line segment joining (4p, 5) and (2, 3q) is (5, 5p - 1). The values of p and q are respectively:
2, 8 3 \dfrac{8}{3} 3 8
-2, 8 3 \dfrac{8}{3} 3 8
2, 13 3 \dfrac{13}{3} 3 13
-2, 13 3 \dfrac{13}{3} 3 13
Answer
Given,
Mid-point of the line segment joining (4p, 5) and (2, 3q) is (5, 5p - 1).
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( 5 , 5 p − 1 ) = ( 4 p + 2 2 , 5 + 3 q 2 ) ⇒ ( 5 , 5 p − 1 ) = ( 2 ( 2 p + 1 ) 2 , 5 + 3 q 2 ) ⇒ ( 5 , 5 p − 1 ) = ( 2 p + 1 , 5 + 3 q 2 ) \Rightarrow (5, 5p - 1) = \Big(\dfrac{4p + 2}{2}, \dfrac{5 + 3q}{2}\Big) \\[1em] \Rightarrow (5, 5p - 1) = \Big(\dfrac{2(2p + 1)}{2}, \dfrac{5 + 3q}{2}\Big) \\[1em] \Rightarrow (5, 5p - 1) = \Big(2p + 1, \dfrac{5 + 3q}{2}\Big) ⇒ ( 5 , 5 p − 1 ) = ( 2 4 p + 2 , 2 5 + 3 q ) ⇒ ( 5 , 5 p − 1 ) = ( 2 2 ( 2 p + 1 ) , 2 5 + 3 q ) ⇒ ( 5 , 5 p − 1 ) = ( 2 p + 1 , 2 5 + 3 q )
Comparing the x coordinates, we get :
⇒ 2p + 1 = 5
⇒ 2p = 5 - 1
⇒ 2p = 4
⇒ p = 4 2 \dfrac{4}{2} 2 4
⇒ p = 2.
Comparing y-coordinates we get :
⇒ 5 p − 1 = 5 + 3 q 2 ⇒ 5 × 2 − 1 = 5 + 3 q 2 ⇒ 9 = 5 + 3 q 2 ⇒ 18 = 5 + 3 q ⇒ 3 q = 18 − 5 ⇒ 3 q = 13 ⇒ q = 13 3 . \Rightarrow 5p - 1 = \dfrac{5 + 3q}{2} \\[1em] \Rightarrow 5 \times 2 - 1 = \dfrac{5 + 3q}{2} \\[1em] \Rightarrow 9 = \dfrac{5 + 3q}{2} \\[1em] \Rightarrow 18 = 5 + 3q \\[1em] \Rightarrow 3q = 18 - 5 \\[1em] \Rightarrow 3q = 13 \\[1em] \Rightarrow q = \dfrac{13}{3}. ⇒ 5 p − 1 = 2 5 + 3 q ⇒ 5 × 2 − 1 = 2 5 + 3 q ⇒ 9 = 2 5 + 3 q ⇒ 18 = 5 + 3 q ⇒ 3 q = 18 − 5 ⇒ 3 q = 13 ⇒ q = 3 13 .
p = 2 and q = 13 3 \dfrac{13}{3} 3 13 .
Hence, Option 3 is the correct option.
If the line segment joining the points P and Q(3, -4) is bisected at the origin, then the coordinates of P are:
(3, -2)
(3, -4)
(-3, -4)
(-3, 4)
Answer
Let the coordinates of P be (x, y).
Given, the origin (0, 0) is the mid-point of PQ.
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( 0 , 0 ) = ( x + 3 2 , y + ( − 4 ) 2 ) ⇒ 0 = x + 3 2 and 0 = y − 4 2 ⇒ x + 3 = 0 and y − 4 = 0 ⇒ x = − 3 and y = 4 ⇒ P = ( x , y ) = ( − 3 , 4 ) . \Rightarrow (0, 0) = \Big(\dfrac{x + 3}{2}, \dfrac{y + (-4)}{2}\Big) \\[1em] \Rightarrow 0 = \dfrac{x + 3}{2} \text{ and } 0 = \dfrac{y - 4}{2} \\[1em] \Rightarrow x + 3 = 0 \text{ and } y - 4 = 0 \\[1em] \Rightarrow x = -3 \text{ and } y = 4 \\[1em] \Rightarrow P = (x, y) = (-3, 4). ⇒ ( 0 , 0 ) = ( 2 x + 3 , 2 y + ( − 4 ) ) ⇒ 0 = 2 x + 3 and 0 = 2 y − 4 ⇒ x + 3 = 0 and y − 4 = 0 ⇒ x = − 3 and y = 4 ⇒ P = ( x , y ) = ( − 3 , 4 ) .
Hence, Option 4 is the correct option.
A line intersects the y-axis and x-axis at the points P and Q respectively. If (2, -5) is the mid-point of PQ, then the coordinates of P and Q are respectively:
(0, 10) and (-4, 0)
(0, -5) and (2, 0)
(0, 4) and (-10, 0)
(0, -10) and (4, 0)
Answer
Let P(0, a) be the point on y-axis and Q(b, 0) be the point on x-axis.
Given, (2, -5) is the mid-point of PQ.
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( 2 , − 5 ) = ( 0 + b 2 , a + 0 2 ) ⇒ ( 2 , − 5 ) = ( b 2 , a 2 ) ⇒ 2 = b 2 and − 5 = a 2 ⇒ b = 4 and a = − 10. \Rightarrow (2, -5) = \Big(\dfrac{0 + b}{2}, \dfrac{a + 0}{2}\Big) \\[1em] \Rightarrow (2, -5) = \Big(\dfrac{b}{2}, \dfrac{a}{2}\Big) \\[1em] \Rightarrow 2 = \dfrac{b}{2} \text{ and } -5 = \dfrac{a}{2} \\[1em] \Rightarrow b = 4 \text{ and } a = -10. ⇒ ( 2 , − 5 ) = ( 2 0 + b , 2 a + 0 ) ⇒ ( 2 , − 5 ) = ( 2 b , 2 a ) ⇒ 2 = 2 b and − 5 = 2 a ⇒ b = 4 and a = − 10.
P(0, -10) and Q(4, 0)
Hence, Option 4 is the correct option.
P is the mid-point of AB and Q is the mid-point of AP. If the coordinates of A are (2, -4) and coordinates of Q are (1, -1), then the coordinates of B are:
(1, -1)
(-1, 6)
(-2, 6)
(-2, 8)
Answer
Given,
Coordinates of A = (2, -4) and Q = (1, -1)
Let the coordinates of B be (a, b).
Given that Q is the mid-point of AP and P is the mid-point of AB.
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Let point P be (p,q)
Since Q is the mid-point of AP, we have
⇒ ( 1 , − 1 ) = ( 2 + p 2 , − 4 + q 2 ) ⇒ 1 = 2 + p 2 and − 1 = − 4 + q 2 ⇒ 2 + p = 2 and − 4 + q = − 2 ⇒ p = 2 − 2 and q = − 2 + 4 ⇒ p = 0 and q = 2. \Rightarrow (1, -1) = \Big(\dfrac{2 + p}{2}, \dfrac{-4 + q}{2}\Big) \\[1em] \Rightarrow 1 = \dfrac{2 + p}{2} \text{ and } -1 = \dfrac{-4 + q}{2} \\[1em] \Rightarrow 2 + p = 2 \text{ and } -4 + q = -2 \\[1em] \Rightarrow p = 2 - 2 \text{ and } q = -2 + 4 \\[1em] \Rightarrow p = 0 \text{ and } q = 2 . ⇒ ( 1 , − 1 ) = ( 2 2 + p , 2 − 4 + q ) ⇒ 1 = 2 2 + p and − 1 = 2 − 4 + q ⇒ 2 + p = 2 and − 4 + q = − 2 ⇒ p = 2 − 2 and q = − 2 + 4 ⇒ p = 0 and q = 2.
Hence, the coordinates of P are (0, 2).
Now, since P is the mid-point of AB. We have,
⇒ ( 0 , 2 ) = ( 2 + a 2 , − 4 + b 2 ) ⇒ 0 = 2 + a 2 and 2 = − 4 + b 2 ⇒ 2 + a = 0 and − 4 + b = 4 ⇒ a = − 2 and b = 4 + 4 ⇒ a = − 2 and b = 8. \Rightarrow (0, 2) = \Big(\dfrac{2 + a}{2}, \dfrac{-4 + b}{2}\Big) \\[1em] \Rightarrow 0 = \dfrac{2 + a}{2} \text{ and } 2 = \dfrac{-4 + b}{2} \\[1em] \Rightarrow 2 + a = 0 \text{ and } -4 + b = 4 \\[1em] \Rightarrow a = -2 \text{ and } b = 4 + 4 \\[1em] \Rightarrow a = -2 \text{ and } b = 8. ⇒ ( 0 , 2 ) = ( 2 2 + a , 2 − 4 + b ) ⇒ 0 = 2 2 + a and 2 = 2 − 4 + b ⇒ 2 + a = 0 and − 4 + b = 4 ⇒ a = − 2 and b = 4 + 4 ⇒ a = − 2 and b = 8.
Therefore, the coordinates of B are (-2, 8).
Hence, Option 4 is the correct option.
If a point R ( 23 5 , 33 5 ) R\Big(\dfrac{23}{5}, \dfrac{33}{5}\Big) R ( 5 23 , 5 33 ) divides the line segment PQ joining the points P(3, 5) and Q(x, y) in the ratio 2 : 3 internally, then the values of x and y respectively are :
4, 7
5, 9
7, 8
7, 9
Answer
Given,
Point R = ( 23 5 , 33 5 ) \Big(\dfrac{23}{5}, \dfrac{33}{5}\Big) ( 5 23 , 5 33 ) and P(3, 5), Q(x, y).
Given,
m1 : m2 = 2 : 3
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( 23 5 , 33 5 ) = ( 2 x + 3 × 3 2 + 3 , 2 y + 3 × 5 2 + 3 ) ⇒ 23 5 = 2 x + 9 5 , 33 5 = 2 y + 15 5 ⇒ 23 = 2 x + 9 , 33 = 2 y + 15 ⇒ 23 − 9 = 2 x , 33 − 15 = 2 y ⇒ 14 = 2 x , 18 = 2 y ⇒ x = 14 2 , y = 18 2 ⇒ x = 7 , y = 9. \Rightarrow \Big(\dfrac{23}{5}, \dfrac{33}{5}\Big) = \Big(\dfrac{2x + 3 \times 3}{2 + 3}, \dfrac{2y + 3 \times 5}{2 + 3}\Big) \\[1em] \Rightarrow \dfrac{23}{5} = \dfrac{2x + 9}{5}, \dfrac{33}{5} = \dfrac{2y + 15}{5} \\[1em] \Rightarrow 23 = 2x + 9, 33 = 2y + 15 \\[1em] \Rightarrow 23 - 9 = 2x, 33 - 15 = 2y \\[1em] \Rightarrow 14 = 2x, 18 = 2y \\[1em] \Rightarrow x = \dfrac{14}{2}, y = \dfrac{18}{2} \\[1em] \Rightarrow x = 7, y = 9. ⇒ ( 5 23 , 5 33 ) = ( 2 + 3 2 x + 3 × 3 , 2 + 3 2 y + 3 × 5 ) ⇒ 5 23 = 5 2 x + 9 , 5 33 = 5 2 y + 15 ⇒ 23 = 2 x + 9 , 33 = 2 y + 15 ⇒ 23 − 9 = 2 x , 33 − 15 = 2 y ⇒ 14 = 2 x , 18 = 2 y ⇒ x = 2 14 , y = 2 18 ⇒ x = 7 , y = 9.
Therefore, the values of x and y are 7 and 9 respectively.
Hence, Option 4 is the correct option.
The points A, B and C divide the line segment joining the points P(-3, 8) and Q(9, -4) into four equal parts. If A is nearest to P, then the coordinates of A are:
(-3, 5)
(0, 5)
(3, 5)
(6, -1)
Answer
Given,
The points dividing PQ into four equal parts be A, B and C such that A is nearest to P.
Since the line segment PQ is divided into four equal parts, the point A divides PQ in the ratio 1 : 3.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values we get :
⇒ ( x , y ) = ( 1 × 9 + 3 × ( − 3 ) 1 + 3 , 1 × ( − 4 ) + 3 × 8 1 + 3 ) ⇒ ( 9 − 9 4 , − 4 + 24 4 ) ⇒ ( 0 4 , 20 4 ) ⇒ ( 0 , 5 ) . \Rightarrow (x, y) = \Big(\dfrac{1 \times 9 + 3 \times (-3)}{1 + 3}, \dfrac{1 \times (-4) + 3 \times 8}{1 + 3}\Big) \\[1em] \Rightarrow \Big(\dfrac{9 - 9}{4}, \dfrac{-4 + 24}{4}\Big) \\[1em] \Rightarrow \Big(\dfrac{0}{4}, \dfrac{20}{4}\Big) \\[1em] \Rightarrow (0, 5). ⇒ ( x , y ) = ( 1 + 3 1 × 9 + 3 × ( − 3 ) , 1 + 3 1 × ( − 4 ) + 3 × 8 ) ⇒ ( 4 9 − 9 , 4 − 4 + 24 ) ⇒ ( 4 0 , 4 20 ) ⇒ ( 0 , 5 ) .
Hence, Option 2 is the correct option.
The line 2x + y - 4 = 0 divides the line segment joining A(2, -2) and B(3, 7) in the ratio:
2 : 3
2 : 5
2 : 7
2 : 9
Answer
Let the required point be P(x, y) which divides A(2, -2) and B(3, 7) in the ratio k : 1.
By section-formula,
(x, y) = ( m 1 x 2 + m 2 x 1 m 1 + m 2 , m 1 y 2 + m 2 y 1 m 1 + m 2 ) \Big(\dfrac{m_1x_2 + m_2x_1}{m_1 + m_2}, \dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}\Big) ( m 1 + m 2 m 1 x 2 + m 2 x 1 , m 1 + m 2 m 1 y 2 + m 2 y 1 )
Substituting values, we get :
⇒ ( x , y ) = ( k × 3 + 1 × 2 k + 1 , k × 7 + 1 × ( − 2 ) k + 1 ) ⇒ ( x , y ) = ( 3 k + 2 k + 1 , 7 k − 2 k + 1 ) \Rightarrow (x, y) = \Big(\dfrac{k \times 3 + 1 \times 2}{k + 1}, \dfrac{k \times 7 + 1 \times (-2)}{k + 1}\Big) \\[1em] \Rightarrow (x, y) = \Big(\dfrac{3k + 2}{k + 1}, \dfrac{7k - 2}{k + 1}\Big) ⇒ ( x , y ) = ( k + 1 k × 3 + 1 × 2 , k + 1 k × 7 + 1 × ( − 2 ) ) ⇒ ( x , y ) = ( k + 1 3 k + 2 , k + 1 7 k − 2 )
Since P lies on the line 2x + y - 4 = 0, substituting the values of x and y:
⇒ 2 ( 3 k + 2 k + 1 ) + ( 7 k − 2 k + 1 ) − 4 = 0 ⇒ 6 k + 4 + 7 k − 2 k + 1 − 4 = 0 ⇒ 13 k + 2 k + 1 = 4 ⇒ 13 k + 2 = 4 ( k + 1 ) ⇒ 13 k + 2 = 4 k + 4 ⇒ 9 k = 2 ⇒ k = 2 9 ⇒ k : 1 = 2 9 : 1 = 2 : 9. \Rightarrow 2\Big(\dfrac{3k + 2}{k + 1}\Big) + \Big(\dfrac{7k - 2}{k + 1}\Big) - 4 = 0 \\[1em] \Rightarrow \dfrac{6k + 4 + 7k - 2}{k + 1} - 4 = 0 \\[1em] \Rightarrow \dfrac{13k + 2}{k + 1} = 4 \\[1em] \Rightarrow 13k + 2 = 4(k + 1) \\[1em] \Rightarrow 13k + 2 = 4k + 4 \\[1em] \Rightarrow 9k = 2 \\[1em] \Rightarrow k = \dfrac{2}{9} \\[1em] \Rightarrow k : 1 = \dfrac{2}{9} : 1 = 2 : 9. ⇒ 2 ( k + 1 3 k + 2 ) + ( k + 1 7 k − 2 ) − 4 = 0 ⇒ k + 1 6 k + 4 + 7 k − 2 − 4 = 0 ⇒ k + 1 13 k + 2 = 4 ⇒ 13 k + 2 = 4 ( k + 1 ) ⇒ 13 k + 2 = 4 k + 4 ⇒ 9 k = 2 ⇒ k = 9 2 ⇒ k : 1 = 9 2 : 1 = 2 : 9.
Hence, Option 4 is the correct option.
The centre of the circle having end points of its one diameter as (-4, 2) and (4, -3) is:
(0, -1)
(2, -1)
( 0 , − 1 2 ) \Big(0, -\dfrac{1}{2}\Big) ( 0 , − 2 1 )
( 4 , − 5 2 ) \Big(4, -\dfrac{5}{2}\Big) ( 4 , − 2 5 )
Answer
Let the end points of the diameter be A(-4, 2) and B(4, -3). The centre of the circle is the mid-point of the diameter AB.
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( x , y ) = ( − 4 + 4 2 , 2 + ( − 3 ) 2 ) = ( 0 2 , − 1 2 ) = ( 0 , − 1 2 ) . \Rightarrow (x, y) = \Big(\dfrac{-4 + 4}{2}, \dfrac{2 + (-3)}{2}\Big) \\[1em] = \Big(\dfrac{0}{2}, \dfrac{-1}{2}\Big) \\[1em] = \Big(0, -\dfrac{1}{2}\Big). ⇒ ( x , y ) = ( 2 − 4 + 4 , 2 2 + ( − 3 ) ) = ( 2 0 , 2 − 1 ) = ( 0 , − 2 1 ) .
Hence, Option 3 is the correct option.
A circle has its centre at (4, 4). If one end of a diameter is (4, 0), then the coordinates of the other end are:
(0, 4)
(4, 8)
(4, -8)
(-4, -8)
Answer
Let one end of the diameter be A(4, 0) and the other end be B(x, y). Given that the centre of the circle is (4, 4), which is the mid-point of AB.
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values we get :
⇒ ( 4 , 4 ) = ( 4 + x 2 , 0 + y 2 ) ⇒ 4 = 4 + x 2 and 4 = y 2 ⇒ x + 4 = 8 and y = 8 ⇒ x = 8 − 4 = 4 and y = 8. \Rightarrow (4, 4) = \Big(\dfrac{4 + x}{2}, \dfrac{0 + y}{2}\Big) \\[1em] \Rightarrow 4 = \dfrac{4 + x}{2} \text{ and } 4 = \dfrac{y}{2} \\[1em] \Rightarrow x + 4 = 8 \text{ and } y = 8 \\[1em] \Rightarrow x = 8 - 4 = 4 \text{ and } y = 8. ⇒ ( 4 , 4 ) = ( 2 4 + x , 2 0 + y ) ⇒ 4 = 2 4 + x and 4 = 2 y ⇒ x + 4 = 8 and y = 8 ⇒ x = 8 − 4 = 4 and y = 8.
The coordinates of the other end of the diameter are (4, 8).
Hence, Option 2 is the correct option.
The vertices of a parallelogram in order are A(1, 2), B(4, y), C(x, 6) and D(3, 5). Then (x, y) is:
(6, 3)
(3, 6)
(5, 6)
(1, 4)
Answer
In a parallelogram, the diagonals bisect each other. Therefore, the mid-point of AC = mid-point of BD.
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values, we get :
For diagonal AC :
Mid-point of AC = ( 1 + x 2 , 2 + 6 2 ) = ( 1 + x 2 , 4 ) \text{Mid-point of AC} = \Big(\dfrac{1 + x}{2}, \dfrac{2 + 6}{2}\Big) = \Big(\dfrac{1 + x}{2}, 4\Big) Mid-point of AC = ( 2 1 + x , 2 2 + 6 ) = ( 2 1 + x , 4 )
For diagonal BD:
Mid-point of BD = ( 4 + 3 2 , y + 5 2 ) = ( 7 2 , y + 5 2 ) \text{Mid-point of BD} = \Big(\dfrac{4 + 3}{2}, \dfrac{y + 5}{2}\Big) = \Big(\dfrac{7}{2}, \dfrac{y + 5}{2}\Big) Mid-point of BD = ( 2 4 + 3 , 2 y + 5 ) = ( 2 7 , 2 y + 5 )
Since both mid-points are equal, we equate their coordinates:
⇒ ( 1 + x 2 , 4 ) = ( 7 2 , y + 5 2 ) ⇒ 1 + x 2 = 7 2 , 4 = y + 5 2 ⇒ 1 + x = 7 , y + 5 = 8 ⇒ x = 7 − 1 , y = 8 − 5 ⇒ x = 6 , y = 3. \Rightarrow \Big(\dfrac{1 + x}{2}, 4\Big) = \Big(\dfrac{7}{2}, \dfrac{y + 5}{2}\Big) \\[1em] \Rightarrow \dfrac{1 + x}{2} = \dfrac{7}{2}, 4 = \dfrac{y + 5}{2}\\[1em] \Rightarrow 1 + x = 7, y + 5 = 8 \\[1em] \Rightarrow x = 7 - 1, y = 8 - 5 \\[1em] \Rightarrow x = 6, y = 3. ⇒ ( 2 1 + x , 4 ) = ( 2 7 , 2 y + 5 ) ⇒ 2 1 + x = 2 7 , 4 = 2 y + 5 ⇒ 1 + x = 7 , y + 5 = 8 ⇒ x = 7 − 1 , y = 8 − 5 ⇒ x = 6 , y = 3.
(x, y) = (6, 3).
Hence, Option 1 is the correct option.
The fourth vertex D of a parallelogram ABCD whose three vertices are A(-2, 3), B(6, 7) and C(8, 3) is:
(0, 1)
(0, -1)
(-1, 0)
(1, 0)
Answer
In a parallelogram, the diagonals bisect each other. Therefore, the mid-point of AC = mid-point of BD.
By mid-point formula,
(x, y) = ( x 1 + x 2 2 , y 1 + y 2 2 ) \Big(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Big) ( 2 x 1 + x 2 , 2 y 1 + y 2 )
Substituting values, we get :
For diagonal AC:
Mid-point of AC = ( − 2 + 8 2 , 3 + 3 2 ) = ( 6 2 , 6 2 ) = ( 3 , 3 ) . \text{Mid-point of AC} = \Big(\dfrac{-2 + 8}{2}, \dfrac{3 + 3}{2}\Big) = \Big(\dfrac{6}{2}, \dfrac{6}{2}\Big) \\[1em] = (3, 3). Mid-point of AC = ( 2 − 2 + 8 , 2 3 + 3 ) = ( 2 6 , 2 6 ) = ( 3 , 3 ) .
Let point D be (x, y).
For diagonal BD:
Mid-point of BD = ( 6 + x 2 , 7 + y 2 ) ⇒ ( 3 , 3 ) = ( 6 + x 2 , 7 + y 2 ) ⇒ 3 = 6 + x 2 and 3 = 7 + y 2 ⇒ 6 = 6 + x and 6 = 7 + y ⇒ x = 0 and y = 6 − 7 = − 1. \text{Mid-point of BD} = \Big(\dfrac{6 + x}{2}, \dfrac{7 + y}{2}\Big) \\[1em] \Rightarrow (3, 3) = \Big(\dfrac{6 + x}{2}, \dfrac{7 + y}{2}\Big) \\[1em] \Rightarrow 3 = \dfrac{6 + x}{2} \text{ and } 3 = \dfrac{7 + y}{2} \\[1em] \Rightarrow 6 = 6 + x \text{ and } 6= 7 + y \\[1em] \Rightarrow x = 0 \text{ and } y = 6 - 7 = -1. Mid-point of BD = ( 2 6 + x , 2 7 + y ) ⇒ ( 3 , 3 ) = ( 2 6 + x , 2 7 + y ) ⇒ 3 = 2 6 + x and 3 = 2 7 + y ⇒ 6 = 6 + x and 6 = 7 + y ⇒ x = 0 and y = 6 − 7 = − 1.
D = (x, y) = (0, -1).
Hence, Option 2 is the correct option.
A(1, 4), B(4, 1) and C(x, 4) are the vertices of ΔABC. If the centroid of the triangle is G(4, 3), then x is equal to:
2
1
7
4
Answer
Given,
The vertices of the triangle be A(1, 4), B(4, 1) and C(x, 4). The centroid G of a triangle is given by the formula:
Centroid = ( x 1 + x 2 + x 3 3 , y 1 + y 2 + y 3 3 ) \Big(\dfrac{x_1 + x_2 + x_3}{3}, \dfrac{y_1 + y_2 + y_3}{3}\Big) ( 3 x 1 + x 2 + x 3 , 3 y 1 + y 2 + y 3 )
Substituting the given values we get :
⇒ ( 4 , 3 ) = ( 1 + 4 + x 3 , 4 + 1 + 4 3 ) ⇒ ( 4 , 3 ) = ( 5 + x 3 , 9 3 ) ⇒ ( 4 , 3 ) = ( 5 + x 3 , 3 ) ⇒ 4 = 5 + x 3 ⇒ 12 = 5 + x ⇒ x = 12 − 5 = 7. \Rightarrow (4, 3) = \Big(\dfrac{1 + 4 + x}{3}, \dfrac{4 + 1 + 4}{3}\Big) \\[1em] \Rightarrow (4, 3) = \Big(\dfrac{5 + x}{3}, \dfrac{9}{3}\Big) \\[1em] \Rightarrow (4, 3) = \Big(\dfrac{5 + x}{3}, 3\Big) \\[1em] \Rightarrow 4 = \dfrac{5 + x}{3} \\[1em] \Rightarrow 12 = 5 + x \\[1em] \Rightarrow x = 12 - 5 = 7. ⇒ ( 4 , 3 ) = ( 3 1 + 4 + x , 3 4 + 1 + 4 ) ⇒ ( 4 , 3 ) = ( 3 5 + x , 3 9 ) ⇒ ( 4 , 3 ) = ( 3 5 + x , 3 ) ⇒ 4 = 3 5 + x ⇒ 12 = 5 + x ⇒ x = 12 − 5 = 7.
Hence, Option 3 is the correct option.