The distance between the points (7, -5) and (3, -1) is :
4 units
3 units
4 2 4{\sqrt2} 4 2 units
5 units
Answer
Let (7, -5) = (x1 , y1 ) and (3, -1) = (x2 , y2 )
Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 3 − 7 ) 2 + ( ( − 1 ) − ( − 5 ) ) 2 = ( − 4 ) 2 + ( 4 ) 2 = 16 + 16 = 32 = 4 2 units \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] = \sqrt{(3 - 7)^2 + ((-1) - (-5))^2}\\[1em] = \sqrt{(-4)^2 + (4)^2}\\[1em] = \sqrt{16 + 16}\\[1em] = \sqrt{32}\\[1em] = 4{\sqrt2} \text{units} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 3 − 7 ) 2 + (( − 1 ) − ( − 5 ) ) 2 = ( − 4 ) 2 + ( 4 ) 2 = 16 + 16 = 32 = 4 2 units
Hence, option 3 is the correct option.
The distance of point (-4, 3) from the origin is :
5 units
-5 units
4 units
3 units
Answer
Since, distance between origin and (x, y) = x 2 + y 2 \sqrt{x^2 + y^2} x 2 + y 2
∴ Distance between origin and the point (-4, 3)
= ( − 4 ) 2 + 3 2 = 16 + 9 = 25 = 5 units = \sqrt{(-4)^2 + 3^2}\\[1em] = \sqrt{16 + 9}\\[1em] = \sqrt{25}\\[1em] = \text{5 units} = ( − 4 ) 2 + 3 2 = 16 + 9 = 25 = 5 units
Hence, option 1 is the correct option.
The distance between the points (-3, 2) and (x, 10) is 10 units. The value of x is :
3
-9
3 or -9
3 and -9
Answer
Let (-3, 2) = (x1 , y1 ) and (x, 10) = (x2 , y2 )
Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 10 = ( x − ( − 3 ) ) 2 + ( 10 − 2 ) 2 ⇒ 10 = ( x + 3 ) 2 + 8 2 ⇒ 10 2 = ( x + 3 ) 2 + ( 8 ) 2 ⇒ 100 = ( x + 3 ) 2 + 64 ⇒ 100 − 64 = ( x + 3 ) 2 ⇒ 36 = ( 3 + x ) 2 ⇒ 36 = 3 + x ± 6 = 3 + x 6 = x + 3 or − 6 = 3 + x x = 6 − 3 or − 6 − 3 = x x = 3 or − 9 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] 10 = \sqrt{(x - (-3))^2 + (10 - 2)^2}\\[1em] ⇒ 10 = \sqrt{(x + 3)^2 + 8^2}\\[1em] ⇒ 10^2 = (x + 3)^2 + (8)^2\\[1em] ⇒ 100 = (x + 3)^2 + 64\\[1em] ⇒ 100 - 64 = (x + 3)^2\\[1em] ⇒ 36 = (3 + x)^2\\[1em] ⇒ \sqrt{36} = 3 + x\\[1em] ± 6 = 3 + x\\[1em] 6 = x + 3 \text{ or} -6 = 3 + x \\[1em] x = 6 - 3 \text{ or} -6 -3 = x \\[1em] x = 3 \text{ or} -9\\[1em] ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 10 = ( x − ( − 3 ) ) 2 + ( 10 − 2 ) 2 ⇒ 10 = ( x + 3 ) 2 + 8 2 ⇒ 1 0 2 = ( x + 3 ) 2 + ( 8 ) 2 ⇒ 100 = ( x + 3 ) 2 + 64 ⇒ 100 − 64 = ( x + 3 ) 2 ⇒ 36 = ( 3 + x ) 2 ⇒ 36 = 3 + x ± 6 = 3 + x 6 = x + 3 or − 6 = 3 + x x = 6 − 3 or − 6 − 3 = x x = 3 or − 9
Hence, option 3 is the correct option.
The point (x, y) is equidistant from the points (3, 6) and (-3, 4); the relation between x and y is :
3x - y = 5
3x - y - 5 = 0
y - 3x = 0
3x + y = 5
Answer
Given (x, y) is equidistant from (3, 6) and (-3, 4)
i.e. distance between (x, y) and (3, 6) = distance between (x, y) and (-3, 4)
( x − 3 ) 2 + ( y − 6 ) 2 = ( x − ( − 3 ) ) 2 + ( y − 4 ) 2 ⇒ ( x − 3 ) 2 + ( y − 6 ) 2 = ( x + 3 ) 2 + ( y − 4 ) 2 ⇒ ( x − 3 ) 2 + ( y − 6 ) 2 = ( x + 3 ) 2 + ( y − 4 ) 2 ⇒ x 2 + 9 − 6 x + y 2 + 36 − 12 y = x 2 + 9 + 6 x + y 2 + 16 − 8 y ⇒ 36 − 16 = 6 x + 6 x + 12 y − 8 y ⇒ 20 = 12 x + 4 y ⇒ 3 x + y = 5 \sqrt{(x - 3)^2 + (y - 6)^2} = \sqrt{(x - (-3))^2 + (y - 4)^2}\\[1em] ⇒ \sqrt{(x - 3)^2 + (y - 6)^2} = \sqrt{(x + 3)^2 + (y - 4)^2}\\[1em] ⇒ (x - 3)^2 + (y - 6)^2 = (x + 3)^2 + (y - 4)^2\\[1em] ⇒ x^2 + 9 - 6x + y^2 + 36 - 12y = x^2 + 9 + 6x + y^2 + 16 -8y\\[1em] ⇒ 36 - 16 = 6x + 6x + 12y -8y\\[1em] ⇒ 20 = 12x + 4y\\[1em] ⇒ 3x + y = 5 ( x − 3 ) 2 + ( y − 6 ) 2 = ( x − ( − 3 ) ) 2 + ( y − 4 ) 2 ⇒ ( x − 3 ) 2 + ( y − 6 ) 2 = ( x + 3 ) 2 + ( y − 4 ) 2 ⇒ ( x − 3 ) 2 + ( y − 6 ) 2 = ( x + 3 ) 2 + ( y − 4 ) 2 ⇒ x 2 + 9 − 6 x + y 2 + 36 − 12 y = x 2 + 9 + 6 x + y 2 + 16 − 8 y ⇒ 36 − 16 = 6 x + 6 x + 12 y − 8 y ⇒ 20 = 12 x + 4 y ⇒ 3 x + y = 5
Hence, option 4 is the correct option.
The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is :
12 units
6 units
5 units
10 units
Answer
Let (0, 4) = (x1 , y1 ), (0, 0) = (x2 , y2 ) and (3, 0) = (x3 , y3 )
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
The perimeter of a triangle
= ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( x 3 − x 2 ) 2 + ( y 3 − y 2 ) 2 + ( x 3 − x 1 ) 2 + ( y 3 − y 1 ) 2 = ( 0 − 0 ) 2 + ( 0 − 4 ) 2 + ( 3 − 0 ) 2 + ( 0 − 0 ) 2 + ( 3 − 0 ) 2 + ( 0 − 4 ) 2 = ( − 4 ) 2 + ( 3 ) 2 + ( 3 ) 2 + ( − 4 ) 2 = 16 + 9 + 9 + 16 = 4 + 3 + 25 = 4 + 3 + 5 = 12 units = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} + \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2} + \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}\\[1em] = \sqrt{(0 - 0)^2 + (0 - 4)^2} + \sqrt{(3 - 0)^2 + (0 - 0)^2} + \sqrt{(3 - 0)^2 + (0 - 4)^2}\\[1em] = \sqrt{(- 4)^2} + \sqrt{(3)^2} + \sqrt{(3)^2 + (- 4)^2}\\[1em] = \sqrt{16} + \sqrt{9} + \sqrt{9 + 16}\\[1em] = 4 + 3 + \sqrt{25}\\[1em] = 4 + 3 + 5\\[1em] = 12 \text{units} = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( x 3 − x 2 ) 2 + ( y 3 − y 2 ) 2 + ( x 3 − x 1 ) 2 + ( y 3 − y 1 ) 2 = ( 0 − 0 ) 2 + ( 0 − 4 ) 2 + ( 3 − 0 ) 2 + ( 0 − 0 ) 2 + ( 3 − 0 ) 2 + ( 0 − 4 ) 2 = ( − 4 ) 2 + ( 3 ) 2 + ( 3 ) 2 + ( − 4 ) 2 = 16 + 9 + 9 + 16 = 4 + 3 + 25 = 4 + 3 + 5 = 12 units
Hence, option 1 is the correct option.
Find the distance between the following pairs of points :
(i) (-3, 6) and (2, -6)
(ii) (-a, -b) and (a, b)
(iii) ( 3 5 , 2 ) \Big(\dfrac{3}{5},2\Big) ( 5 3 , 2 ) and ( − 1 5 , 1 2 5 ) \Big(-\dfrac{1}{5}, 1\dfrac{2}{5}\Big) ( − 5 1 , 1 5 2 )
(iv) ( 3 + 1 , 1 ) \Big({\sqrt3 +1},1\Big) ( 3 + 1 , 1 ) and (0, 3 \sqrt{3} 3 )
Answer
(i) Let (-3, 6) = (x1 , y1 ) and (2, -6) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 2 − ( − 3 ) ) 2 + ( − 6 − 6 ) 2 = ( 5 ) 2 + ( − 12 ) 2 = 25 + 144 = 169 = 13 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] = \sqrt{(2 - (-3))^2 + (-6 - 6)^2}\\[1em] = \sqrt{(5)^2 + (-12)^2}\\[1em] = \sqrt{25 + 144}\\[1em] = \sqrt{169}\\[1em] = 13 ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 2 − ( − 3 ) ) 2 + ( − 6 − 6 ) 2 = ( 5 ) 2 + ( − 12 ) 2 = 25 + 144 = 169 = 13
Hence, distance between the given points is 13.
(ii) Let (-a, -b) = (x1 , y1 ) and (a, b) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( a − ( − a ) ) 2 + ( b − ( − b ) ) 2 = ( 2 a ) 2 + ( 2 b ) 2 = 4 a 2 + 4 b 2 = 2 a 2 + b 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] = \sqrt{(a - (-a))^2 + (b - (-b))^2}\\[1em] = \sqrt{(2a)^2 + (2b)^2}\\[1em] = \sqrt{4a^2 + 4b^2}\\[1em] = 2\sqrt{a^2 + b^2}\\[1em] ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( a − ( − a ) ) 2 + ( b − ( − b ) ) 2 = ( 2 a ) 2 + ( 2 b ) 2 = 4 a 2 + 4 b 2 = 2 a 2 + b 2
Hence, distance between the given points is 2 a 2 + b 2 2\sqrt{a^2 + b^2} 2 a 2 + b 2 .
(iii) Let ( 3 5 , 2 ) \Big(\dfrac{3}{5},2\Big) ( 5 3 , 2 ) = (x1 , y1 ) and ( − 1 5 , 1 2 5 ) \Big(-\dfrac{1}{5}, 1\dfrac{2}{5}\Big) ( − 5 1 , 1 5 2 ) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( − 1 5 − 3 5 ) 2 + ( ( 1 2 5 − 2 ) ) 2 = ( − 4 5 ) 2 + ( 7 − 10 5 ) 2 = 16 25 + ( − 3 5 ) 2 = 16 25 + 9 25 = 25 25 = 1 = 1 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] = \sqrt{\Big(\dfrac{-1}{5} - \dfrac{3}{5} \Big)^2 + \Big(\Big(1\dfrac{2}{5} - 2 \Big)\Big)^2}\\[1em] = \sqrt{\Big(\dfrac{-4}{5}\Big)^2 + \Big(\dfrac{7-10}{5}\Big)^2}\\[1em] = \sqrt{\dfrac{16}{25} + \Big(\dfrac{-3}{5}\Big)^2}\\[1em] = \sqrt{\dfrac{16}{25} + \dfrac{9}{25}}\\[1em] = \sqrt{\dfrac{25}{25}}\\[1em] = \sqrt{1}\\[1em] = 1 ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 5 − 1 − 5 3 ) 2 + ( ( 1 5 2 − 2 ) ) 2 = ( 5 − 4 ) 2 + ( 5 7 − 10 ) 2 = 25 16 + ( 5 − 3 ) 2 = 25 16 + 25 9 = 25 25 = 1 = 1
Hence, distance between the given points is 1.
(iv) Let ( 3 + 1 , 1 ) \Big({\sqrt3 +1},1\Big) ( 3 + 1 , 1 ) = (x1 , y1 ) and (0, 3 \sqrt{3} 3 ) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 0 − ( 3 + 1 ) ) 2 + ( 3 − 1 ) 2 = ( − ( 3 + 1 ) ) 2 + ( 3 − 1 ) 2 = 3 + 1 + 2 3 + 1 + 3 − 2 3 = 8 = 2 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] = \sqrt{(0 - ({\sqrt3 +1}))^2 + (\sqrt3 - 1)^2}\\[1em] = \sqrt{(-{(\sqrt3 +1)})^2 + (\sqrt3 - 1)^2}\\[1em] = \sqrt{3 + 1 + 2\sqrt3 + 1 + 3 - 2\sqrt3}\\[1em] = \sqrt{8}\\[1em] = 2\sqrt2 ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 0 − ( 3 + 1 ) ) 2 + ( 3 − 1 ) 2 = ( − ( 3 + 1 ) ) 2 + ( 3 − 1 ) 2 = 3 + 1 + 2 3 + 1 + 3 − 2 3 = 8 = 2 2
Hence, distance between the given points is 2 2 2\sqrt2 2 2 = 2.83.
Find the distance between the origin and the point :
(i) (-8, 6)
(ii) (-5, -12)
(iii) (8, -15)
Answer
(i) Since, distance between origin and (x, y) = x 2 + y 2 \sqrt{x^2 + y^2} x 2 + y 2
∴ Distance between origin and the point (-8, 6)
= ( − 8 ) 2 + 6 2 = 64 + 36 = 100 = 10 = \sqrt{(-8)^2 + 6^2}\\[1em] = \sqrt{64 + 36}\\[1em] = \sqrt{100}\\[1em] = \text{10} = ( − 8 ) 2 + 6 2 = 64 + 36 = 100 = 10
Hence, the distance between the origin and the point (-8, 6) is 10.
(ii) Since, distance between origin and (x, y) = x 2 + y 2 \sqrt{x^2 + y^2} x 2 + y 2
∴ Distance between origin and the point (-5, -12)
= ( − 5 ) 2 + ( − 12 ) 2 = 25 + 144 = 169 = 13 = \sqrt{(-5)^2 + (-12)^2}\\[1em] = \sqrt{25 + 144}\\[1em] = \sqrt{169}\\[1em] = \text{13} = ( − 5 ) 2 + ( − 12 ) 2 = 25 + 144 = 169 = 13
Hence, the distance between the origin and the point (-5, -12) is 13.
(iii) Since, distance between origin and (x, y) = x 2 + y 2 \sqrt{x^2 + y^2} x 2 + y 2
∴ Distance between origin and the point (8, -15)
= 8 2 + ( − 15 ) 2 = 64 + 225 = 289 = 17 = \sqrt{8^2 + (-15)^2}\\[1em] = \sqrt{64 + 225}\\[1em] = \sqrt{289}\\[1em] = \text{17} = 8 2 + ( − 15 ) 2 = 64 + 225 = 289 = 17
Hence, the distance between the origin and the point is 17.
The distance between the points (3, 1) and (0, x) is 5. Find x.
Answer
Let (3, 1) = (x1 , y1 ) and (0, x) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 5 = ( 0 − 3 ) 2 + ( x − 1 ) 2 ⇒ 5 = ( − 3 ) 2 + ( x − 1 ) 2 ⇒ 5 2 = ( − 3 ) 2 + ( x − 1 ) 2 ⇒ 25 = 9 + ( x − 1 ) 2 ⇒ 25 − 9 = ( x − 1 ) 2 ⇒ 16 = ( x − 1 ) 2 ⇒ 16 = x − 1 ⇒ 4 = x − 1 and − 4 = x − 1 ⇒ x = 4 + 1 and x = − 4 + 1 ⇒ x = 5 and − 3 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] ⇒ 5 = \sqrt{(0 - 3)^2 + (x - 1)^2}\\[1em] ⇒ 5 = \sqrt{(-3)^2 + (x - 1)^2}\\[1em] ⇒ 5^2 = (-3)^2 + (x - 1)^2\\[1em] ⇒ 25 = 9 + (x - 1)^2\\[1em] ⇒ 25 - 9 = (x - 1)^2\\[1em] ⇒ 16 = (x - 1)^2\\[1em] ⇒ \sqrt{16} = x - 1\\[1em] ⇒ 4 = x - 1 \text{ and} -4 = x -1\\[1em] ⇒ x = 4 + 1 \text{ and } x = -4 + 1\\[1em] ⇒ x = 5 \text{ and} -3\\[1em] ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 5 = ( 0 − 3 ) 2 + ( x − 1 ) 2 ⇒ 5 = ( − 3 ) 2 + ( x − 1 ) 2 ⇒ 5 2 = ( − 3 ) 2 + ( x − 1 ) 2 ⇒ 25 = 9 + ( x − 1 ) 2 ⇒ 25 − 9 = ( x − 1 ) 2 ⇒ 16 = ( x − 1 ) 2 ⇒ 16 = x − 1 ⇒ 4 = x − 1 and − 4 = x − 1 ⇒ x = 4 + 1 and x = − 4 + 1 ⇒ x = 5 and − 3
Hence, the value of x = 5 and -3.
Find the co-ordinates of points on the x-axis which are at a distance of 17 units from the point (11, -8).
Answer
Let the co-ordinates of the point on the x-axis be (x, 0).
Since, distance = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Let (x, 0) = (x1 , y1 ) and (11, -8) = (x2 , y2 )
⇒ Distance between the given points =
⇒ 17 = ( 11 − x ) 2 + ( − 8 − 0 ) 2 ⇒ 17 = ( 11 − x ) 2 + ( − 8 ) 2 ⇒ 17 2 = ( 11 − x ) 2 + ( − 8 ) 2 ⇒ 289 = 121 + x 2 − 22 x + 64 ⇒ 289 = 185 + x 2 − 22 x ⇒ 185 + x 2 − 22 x − 289 = 0 ⇒ x 2 − ( 26 x − 4 x ) − 104 = 0 ⇒ x 2 − 26 x + 4 x − 104 = 0 ⇒ ( x 2 − 26 x ) + ( 4 x − 104 ) = 0 ⇒ x ( x − 26 ) + 4 ( x − 26 ) = 0 ⇒ ( x − 26 ) ( x + 4 ) = 0 ⇒ x = 26 and − 4 \\[1em] ⇒ 17 = \sqrt{(11 - x)^2 + (-8 - 0)^2}\\[1em] ⇒ 17 = \sqrt{(11 - x)^2 + (-8)^2}\\[1em] ⇒ 17^2 = (11 - x)^2 + (-8)^2\\[1em] ⇒ 289 = 121 + x^2 - 22x + 64\\[1em] ⇒ 289 = 185 + x^2 - 22x\\[1em] ⇒ 185 + x^2 - 22x - 289 = 0\\[1em] ⇒ x^2 - (26x - 4x) - 104 = 0\\[1em] ⇒ x^2 - 26x + 4x - 104 = 0\\[1em] ⇒ (x^2 - 26x) + (4x - 104) = 0\\[1em] ⇒ x(x - 26) + 4(x - 26) = 0\\[1em] ⇒ (x - 26)(x + 4) = 0\\[1em] ⇒ x = 26 \text{ and} -4 ⇒ 17 = ( 11 − x ) 2 + ( − 8 − 0 ) 2 ⇒ 17 = ( 11 − x ) 2 + ( − 8 ) 2 ⇒ 1 7 2 = ( 11 − x ) 2 + ( − 8 ) 2 ⇒ 289 = 121 + x 2 − 22 x + 64 ⇒ 289 = 185 + x 2 − 22 x ⇒ 185 + x 2 − 22 x − 289 = 0 ⇒ x 2 − ( 26 x − 4 x ) − 104 = 0 ⇒ x 2 − 26 x + 4 x − 104 = 0 ⇒ ( x 2 − 26 x ) + ( 4 x − 104 ) = 0 ⇒ x ( x − 26 ) + 4 ( x − 26 ) = 0 ⇒ ( x − 26 ) ( x + 4 ) = 0 ⇒ x = 26 and − 4
Hence, the co-ordinates of points are (26, 0) and (-4, 0).
Find the co-ordinates of the points on the y-axis, which are at a distance of 10 units from the point (-8, 4).
Answer
Let (0, y) = (x1 , y1 ) and (-8, 4) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 10 = ( − 8 − 0 ) 2 + ( 4 − y ) 2 ⇒ 10 = ( − 8 ) 2 + ( 4 − y ) 2 ⇒ 10 2 = 64 + 16 + y 2 − 8 y ⇒ 100 = 80 + y 2 − 8 y ⇒ 80 + y 2 − 8 y − 100 = 0 ⇒ y 2 − 8 y − 20 = 0 ⇒ y 2 − ( 10 y − 2 y ) − 20 = 0 ⇒ y 2 − 10 y + 2 y − 20 = 0 ⇒ ( y 2 − 10 y ) + ( 2 y − 20 ) = 0 ⇒ y ( y − 10 ) + 2 ( y − 10 ) = 0 ⇒ ( y − 10 ) ( y + 2 ) = 0 ⇒ y = 10 and − 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] ⇒ 10 = \sqrt{(-8 - 0)^2 + (4 - y)^2}\\[1em] ⇒ 10 = \sqrt{(-8)^2 + (4 - y)^2}\\[1em] ⇒ 10^2 = 64 + 16 + y^2 - 8y\\[1em] ⇒ 100 = 80 + y^2 - 8y\\[1em] ⇒ 80 + y^2 - 8y - 100 = 0 \\[1em] ⇒ y^2 - 8y - 20 = 0 \\[1em] ⇒ y^2 - (10y - 2y) - 20 = 0 \\[1em] ⇒ y^2 - 10y + 2y - 20 = 0 \\[1em] ⇒ (y^2 - 10y) + (2y - 20) = 0 \\[1em] ⇒ y(y - 10) + 2(y - 10) = 0 \\[1em] ⇒ (y - 10)(y + 2) = 0 \\[1em] ⇒ y = 10 \text{ and } -2 ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 10 = ( − 8 − 0 ) 2 + ( 4 − y ) 2 ⇒ 10 = ( − 8 ) 2 + ( 4 − y ) 2 ⇒ 1 0 2 = 64 + 16 + y 2 − 8 y ⇒ 100 = 80 + y 2 − 8 y ⇒ 80 + y 2 − 8 y − 100 = 0 ⇒ y 2 − 8 y − 20 = 0 ⇒ y 2 − ( 10 y − 2 y ) − 20 = 0 ⇒ y 2 − 10 y + 2 y − 20 = 0 ⇒ ( y 2 − 10 y ) + ( 2 y − 20 ) = 0 ⇒ y ( y − 10 ) + 2 ( y − 10 ) = 0 ⇒ ( y − 10 ) ( y + 2 ) = 0 ⇒ y = 10 and − 2
Hence, the co-ordinates of points are (0, 10) and (0, -2).
A point A is at a distance of 10 \sqrt{10} 10 units from the point (4, 3). Find the co-ordinates of point A, if its ordinate is twice its abscissa.
Answer
Let (a, 2a) = (x1 , y1 ) and (4, 3) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 10 = ( 4 − a ) 2 + ( 3 − 2 a ) 2 ⇒ 10 = ( 4 − a ) 2 + ( 3 − 2 a ) 2 ⇒ 10 = 16 + a 2 − 8 a + 9 + 4 a 2 − 12 a ⇒ 10 = 25 + 5 a 2 − 20 a ⇒ 25 + 5 a 2 − 20 a − 10 = 0 ⇒ 5 a 2 − 20 a + 15 = 0 ⇒ a 2 − 4 a + 3 = 0 ⇒ a 2 − ( 3 a + 1 a ) + 3 = 0 ⇒ a 2 − 3 a − 1 a + 3 = 0 ⇒ a ( a − 3 ) − 1 ( a − 3 ) = 0 ⇒ ( a − 3 ) ( a − 1 ) = 0 ⇒ a = 3 and 1 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] ⇒ \sqrt{10} = \sqrt{(4 - a)^2 + (3 - 2a)^2}\\[1em] ⇒ 10 = (4 - a)^2 + (3 - 2a)^2\\[1em] ⇒ 10 = 16 + a^2 - 8a + 9 + 4a^2 - 12a\\[1em] ⇒ 10 = 25 + 5a^2 - 20a\\[1em] ⇒ 25 + 5a^2 - 20a - 10 = 0\\[1em] ⇒ 5a^2 - 20a + 15 = 0\\[1em] ⇒ a^2 - 4a + 3 = 0\\[1em] ⇒ a^2 - (3a + 1a) + 3 = 0\\[1em] ⇒ a^2 - 3a - 1a + 3 = 0\\[1em] ⇒ a(a - 3) - 1(a - 3) = 0\\[1em] ⇒ (a - 3)(a - 1) = 0\\[1em] ⇒ a = 3 \text{ and } 1 ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 10 = ( 4 − a ) 2 + ( 3 − 2 a ) 2 ⇒ 10 = ( 4 − a ) 2 + ( 3 − 2 a ) 2 ⇒ 10 = 16 + a 2 − 8 a + 9 + 4 a 2 − 12 a ⇒ 10 = 25 + 5 a 2 − 20 a ⇒ 25 + 5 a 2 − 20 a − 10 = 0 ⇒ 5 a 2 − 20 a + 15 = 0 ⇒ a 2 − 4 a + 3 = 0 ⇒ a 2 − ( 3 a + 1 a ) + 3 = 0 ⇒ a 2 − 3 a − 1 a + 3 = 0 ⇒ a ( a − 3 ) − 1 ( a − 3 ) = 0 ⇒ ( a − 3 ) ( a − 1 ) = 0 ⇒ a = 3 and 1
For each value of a = x, we can find the corresponding value of y:
If a = 3, then y = 2a = 6 If a = 1, then y = 2a = 2 Hence, the co-ordinates of point A are (3, 6) and (1, 2).
A point P (2, -1) is equidistant from the points (a, 7) and (-3, a). Find a.
Answer
Given point (2, -1) is equidistant from (a, 7) and (-3, a).
i.e. distance between (2, -1) and (a, 7) = distance between (2, -1) and (-3, a)
( a − 2 ) 2 + ( 7 − ( − 1 ) ) 2 = ( ( − 3 ) − 2 ) 2 + ( a − ( − 1 ) ) 2 ⇒ ( a − 2 ) 2 + ( 7 + 1 ) 2 = ( − 3 − 2 ) 2 + ( a + 1 ) 2 ⇒ ( a − 2 ) 2 + ( 8 ) 2 = ( − 5 ) 2 + ( a + 1 ) 2 ⇒ ( a − 2 ) 2 + ( 8 ) 2 = ( − 5 ) 2 + ( a + 1 ) 2 ⇒ a 2 + 4 − 4 a + 64 = 25 + a 2 + 1 + 2 a ⇒ a 2 − 4 a + 68 = a 2 + 2 a + 26 ⇒ − 4 a + 68 = 2 a + 26 ⇒ 68 − 26 = 2 a + 4 a ⇒ 6 a = 42 ⇒ a = 42 6 ⇒ a = 7 \sqrt{(a - 2)^2 + (7 - (-1))^2} = \sqrt{((-3) - 2)^2 + (a - (-1))^2}\\[1em] ⇒ \sqrt{(a - 2)^2 + (7 + 1)^2} = \sqrt{(-3 - 2)^2 + (a + 1)^2}\\[1em] ⇒ \sqrt{(a - 2)^2 + (8)^2} = \sqrt{(-5)^2 + (a + 1)^2}\\[1em] ⇒ (a - 2)^2 + (8)^2 = (-5)^2 + (a + 1)^2\\[1em] ⇒ a^2 + 4 - 4a + 64 = 25 + a^2 + 1 + 2a\\[1em] ⇒ a^2 - 4a + 68 = a^2 + 2a + 26\\[1em] ⇒ - 4a + 68 = 2a + 26\\[1em] ⇒ 68 - 26 = 2a + 4a\\[1em] ⇒ 6a = 42\\[1em] ⇒ a = \dfrac{42}{6}\\[1em] ⇒ a = 7 ( a − 2 ) 2 + ( 7 − ( − 1 ) ) 2 = (( − 3 ) − 2 ) 2 + ( a − ( − 1 ) ) 2 ⇒ ( a − 2 ) 2 + ( 7 + 1 ) 2 = ( − 3 − 2 ) 2 + ( a + 1 ) 2 ⇒ ( a − 2 ) 2 + ( 8 ) 2 = ( − 5 ) 2 + ( a + 1 ) 2 ⇒ ( a − 2 ) 2 + ( 8 ) 2 = ( − 5 ) 2 + ( a + 1 ) 2 ⇒ a 2 + 4 − 4 a + 64 = 25 + a 2 + 1 + 2 a ⇒ a 2 − 4 a + 68 = a 2 + 2 a + 26 ⇒ − 4 a + 68 = 2 a + 26 ⇒ 68 − 26 = 2 a + 4 a ⇒ 6 a = 42 ⇒ a = 6 42 ⇒ a = 7
Hence, the value of a = 7.
What point on the x-axis is equidistant from the points (7, 6) and (-3, 4) ?
Answer
Let the required point on the x-axis be (x, 0).
Given (x, 0) is equidistant from (7, 6) and (-3, 4).
i.e. distance between (x, 0) and (7, 6) = distance between (x, 0) and (-3, 4)
( 7 − x ) 2 + ( 6 − 0 ) 2 = ( ( − 3 ) − x ) 2 + ( 4 − 0 ) 2 ⇒ ( 7 − x ) 2 + ( 6 ) 2 = ( − 3 − x ) 2 + ( 4 ) 2 ⇒ ( 7 − x ) 2 + ( 6 ) 2 = ( − 3 − x ) 2 + ( 4 ) 2 ⇒ 49 + x 2 − 14 x + 36 = 9 + x 2 + 6 x + 16 ⇒ x 2 − 14 x + 85 = x 2 + 6 x + 25 ⇒ − 14 x + 85 = 6 x + 25 ⇒ − 14 x − 6 x = 25 − 85 ⇒ − 20 x = − 60 ⇒ x = 60 20 ⇒ x = 3 \sqrt{(7 - x)^2 + (6 - 0)^2} = \sqrt{((-3) - x)^2 + (4 - 0)^2}\\[1em] ⇒ \sqrt{(7 - x)^2 + (6)^2} = \sqrt{(-3 - x)^2 + (4)^2}\\[1em] ⇒ (7 - x)^2 + (6)^2 = (-3 - x)^2 + (4)^2\\[1em] ⇒ 49 + x^2 - 14x + 36 = 9 + x^2 + 6x + 16\\[1em] ⇒ x^2 - 14x + 85 = x^2 + 6x + 25\\[1em] ⇒ - 14x + 85 = 6x + 25\\[1em] ⇒ - 14x - 6x = 25 - 85\\[1em] ⇒ - 20x = -60\\[1em] ⇒ x = \dfrac{60}{20}\\[1em] ⇒ x = 3 ( 7 − x ) 2 + ( 6 − 0 ) 2 = (( − 3 ) − x ) 2 + ( 4 − 0 ) 2 ⇒ ( 7 − x ) 2 + ( 6 ) 2 = ( − 3 − x ) 2 + ( 4 ) 2 ⇒ ( 7 − x ) 2 + ( 6 ) 2 = ( − 3 − x ) 2 + ( 4 ) 2 ⇒ 49 + x 2 − 14 x + 36 = 9 + x 2 + 6 x + 16 ⇒ x 2 − 14 x + 85 = x 2 + 6 x + 25 ⇒ − 14 x + 85 = 6 x + 25 ⇒ − 14 x − 6 x = 25 − 85 ⇒ − 20 x = − 60 ⇒ x = 20 60 ⇒ x = 3
Hence, the point on the x-axis which is equidistant from the points (7, 6) and (-3, 4) is (3, 0).
Find a point on the y-axis which is equidistant from the points (5, 2) and (-4, 3).
Answer
Let the required point on the y-axis be (0, y).
Given (0, y) is equidistant from (5, 2) and (-4, 3).
i.e. distance between (0, y) and (5, 2) = distance between (0, y) and (-4, 3)
( 5 − 0 ) 2 + ( 2 − y ) 2 = ( ( − 4 ) − 0 ) 2 + ( 3 − y ) 2 ⇒ ( 5 ) 2 + ( 2 − y ) 2 = ( − 4 ) 2 + ( 3 − y ) 2 ⇒ ( 5 ) 2 + ( 2 − y ) 2 = ( − 4 ) 2 + ( 3 − y ) 2 ⇒ 25 + 4 + y 2 − 4 y = 16 + 9 + y 2 − 6 y ⇒ 29 + y 2 − 4 y = 25 + y 2 − 6 y ⇒ 29 − 4 y = 25 − 6 y ⇒ − 4 y + 6 y = 25 − 29 ⇒ 2 y = − 4 ⇒ y = − 4 2 ⇒ y = − 2 \sqrt{(5 - 0)^2 + (2 - y)^2} = \sqrt{((-4) - 0)^2 + (3 - y)^2}\\[1em] ⇒ \sqrt{(5)^2 + (2 - y)^2} = \sqrt{(-4)^2 + (3 - y)^2}\\[1em] ⇒ (5)^2 + (2 - y)^2 = (-4)^2 + (3 - y)^2\\[1em] ⇒ 25 + 4 + y^2 - 4y = 16 + 9 + y^2 - 6y\\[1em] ⇒ 29 + y^2 - 4y = 25 + y^2 - 6y\\[1em] ⇒ 29 - 4y = 25 - 6y\\[1em] ⇒ - 4y + 6y = 25 - 29\\[1em] ⇒ 2y = - 4\\[1em] ⇒ y = - \dfrac{4}{2}\\[1em] ⇒ y = - 2 ( 5 − 0 ) 2 + ( 2 − y ) 2 = (( − 4 ) − 0 ) 2 + ( 3 − y ) 2 ⇒ ( 5 ) 2 + ( 2 − y ) 2 = ( − 4 ) 2 + ( 3 − y ) 2 ⇒ ( 5 ) 2 + ( 2 − y ) 2 = ( − 4 ) 2 + ( 3 − y ) 2 ⇒ 25 + 4 + y 2 − 4 y = 16 + 9 + y 2 − 6 y ⇒ 29 + y 2 − 4 y = 25 + y 2 − 6 y ⇒ 29 − 4 y = 25 − 6 y ⇒ − 4 y + 6 y = 25 − 29 ⇒ 2 y = − 4 ⇒ y = − 2 4 ⇒ y = − 2
Hence, the point on the y-axis which is equidistant from the points (5, 2) and (-4, 3) is (0, -2).
A point P lies on the x-axis and another point Q lies on the y-axis.
(i) Write the ordinate of point P.
(ii) Write the abscissa of point Q.
(iii) If the abscissa of point P is -12 and the ordinate of point Q is -16; calculate the length of line segment PQ.
Answer
(i) The point P lies on the x-axis, so its co-ordinates are (x, 0).
The ordinate of point P is 0.
(ii) The point Q lies on the y-axis, so its co-ordinates are (0, y).
The abscissa of point Q is 0.
(iii) If the abscissa of point P is -12, then P = (-12, 0).
And if the ordinate of point Q is -16. So, then Q = (0, -16).
The length of the line segment PQ
= ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 0 − ( − 12 ) ) 2 + ( ( − 16 ) − 0 ) 2 = ( − 12 ) 2 + ( − 16 ) 2 = 144 + 256 = 400 = 20 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] = \sqrt{(0 - (-12))^2 + ((-16) - 0)^2}\\[1em] = \sqrt{(-12)^2 + (-16)^2}\\[1em] = \sqrt{144 + 256}\\[1em] = \sqrt{400}\\[1em] = 20 = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = ( 0 − ( − 12 ) ) 2 + (( − 16 ) − 0 ) 2 = ( − 12 ) 2 + ( − 16 ) 2 = 144 + 256 = 400 = 20
Hence, the length of PQ = 20.
Show that the points P (0, 5), Q (5, 10) and R (6, 3) are the vertices of an isosceles triangle.
Answer
Distance between the points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
The length of PQ
= ( 5 − 0 ) 2 + ( 10 − 5 ) 2 = 5 2 + 5 2 = 25 + 25 = 50 = 5 2 = \sqrt{(5 - 0)^2 + (10 - 5)^2}\\[1em] = \sqrt{5^2 + 5^2}\\[1em] = \sqrt{25 + 25}\\[1em] = \sqrt{50}\\[1em] = 5\sqrt{2}\\[1em] = ( 5 − 0 ) 2 + ( 10 − 5 ) 2 = 5 2 + 5 2 = 25 + 25 = 50 = 5 2
The length of QR
= ( 6 − 5 ) 2 + ( 3 − 10 ) 2 = 1 2 + ( − 7 ) 2 = 1 + 49 = 50 = 5 2 = \sqrt{(6 - 5)^2 + (3 - 10)^2}\\[1em] = \sqrt{1^2 + (-7)^2}\\[1em] = \sqrt{1 + 49}\\[1em] = \sqrt{50}\\[1em] = 5\sqrt{2}\\[1em] = ( 6 − 5 ) 2 + ( 3 − 10 ) 2 = 1 2 + ( − 7 ) 2 = 1 + 49 = 50 = 5 2
The length of RP
= ( 6 − 0 ) 2 + ( 3 − 5 ) 2 = 6 2 + ( − 2 ) 2 = 36 + 4 = 40 = 2 10 = \sqrt{(6 - 0)^2 + (3 - 5)^2}\\[1em] = \sqrt{6^2 + (-2)^2}\\[1em] = \sqrt{36 + 4}\\[1em] = \sqrt{40}\\[1em] = 2\sqrt{10}\\[1em] = ( 6 − 0 ) 2 + ( 3 − 5 ) 2 = 6 2 + ( − 2 ) 2 = 36 + 4 = 40 = 2 10
PQ = QR ⇒ the triangle is isosceles triangle
Hence, the triangle PQR is an isosceles triangle.
Prove that the points P (0, -4), Q (6, 2), R (3, 5) and S (-3, -1) are the vertices of a rectangle PQRS.
Answer
Distance between the points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
The length of PQ
= ( 6 − 0 ) 2 + ( 2 − ( − 4 ) ) 2 = 6 2 + 6 2 = 36 + 36 = 72 = 6 2 = \sqrt{(6 - 0)^2 + (2 - (-4))^2}\\[1em] = \sqrt{6^2 + 6^2}\\[1em] = \sqrt{36 + 36}\\[1em] = \sqrt{72}\\[1em] = 6\sqrt{2}\\[1em] = ( 6 − 0 ) 2 + ( 2 − ( − 4 ) ) 2 = 6 2 + 6 2 = 36 + 36 = 72 = 6 2
The length of RS
= ( − 3 − 3 ) 2 + ( − 1 − 5 ) 2 = − 6 2 + ( − 6 ) 2 = 36 + 36 = 72 = 6 2 = \sqrt{(-3 - 3)^2 + (-1 - 5)^2}\\[1em] = \sqrt{-6^2 + (-6)^2}\\[1em] = \sqrt{36 + 36}\\[1em] = \sqrt{72}\\[1em] = 6\sqrt{2}\\[1em] = ( − 3 − 3 ) 2 + ( − 1 − 5 ) 2 = − 6 2 + ( − 6 ) 2 = 36 + 36 = 72 = 6 2
The length of QR
= ( 3 − 6 ) 2 + ( 5 − 2 ) 2 = ( − 3 ) 2 + ( − 3 ) 2 = 9 + 9 = 18 = 3 2 = \sqrt{(3 - 6)^2 + (5 - 2)^2}\\[1em] = \sqrt{(-3)^2 + (-3)^2}\\[1em] = \sqrt{9 + 9}\\[1em] = \sqrt{18}\\[1em] = 3\sqrt{2}\\[1em] = ( 3 − 6 ) 2 + ( 5 − 2 ) 2 = ( − 3 ) 2 + ( − 3 ) 2 = 9 + 9 = 18 = 3 2
The length of SP
= ( − 3 − 0 ) 2 + ( − 1 − ( − 4 ) ) 2 = − 3 2 + ( − 3 ) 2 = 9 + 9 = 18 = 3 2 = \sqrt{(-3 - 0)^2 + (-1 - (-4))^2}\\[1em] = \sqrt{-3^2 + (-3)^2}\\[1em] = \sqrt{9 + 9}\\[1em] = \sqrt{18}\\[1em] = 3\sqrt{2}\\[1em] = ( − 3 − 0 ) 2 + ( − 1 − ( − 4 ) ) 2 = − 3 2 + ( − 3 ) 2 = 9 + 9 = 18 = 3 2
PQ = RS QR = SP
The length of diagonal QS =
= ( − 3 − 6 ) 2 + ( − 1 − 2 ) 2 = ( − 9 ) 2 + ( − 3 ) 2 = 81 + 9 = 90 = 3 10 = \sqrt{(-3 - 6)^2 + (-1 - 2)^2}\\[1em] = \sqrt{(-9)^2 + (-3)^2}\\[1em] = \sqrt{81 + 9}\\[1em] = \sqrt{90}\\[1em] = 3\sqrt{10}\\[1em] = ( − 3 − 6 ) 2 + ( − 1 − 2 ) 2 = ( − 9 ) 2 + ( − 3 ) 2 = 81 + 9 = 90 = 3 10
The length of diagonal PR =
= ( 3 − 0 ) 2 + ( 5 − ( − 4 ) ) 2 = 3 2 + 9 2 = 9 + 81 = 90 = 3 10 = \sqrt{(3 - 0)^2 + (5 - (-4))^2}\\[1em] = \sqrt{3^2 + 9^2}\\[1em] = \sqrt{9 + 81}\\[1em] = \sqrt{90}\\[1em] = 3\sqrt{10}\\[1em] = ( 3 − 0 ) 2 + ( 5 − ( − 4 ) ) 2 = 3 2 + 9 2 = 9 + 81 = 90 = 3 10
So, QS = PR
Since opposite sides are equal, and the diagonals are equal, we can conclude that the quadrilateral PQRS is a rectangle.
Hence, the points P (0, -4), Q (6, 2), R (3, 5) and S (-3, -1) are the vertices of a rectangle PQRS.
Prove that the points A (1, -3), B (-3, 0) and C (4, 1) are the vertices of an isosceles right-angled triangle. Find the area of the triangle.
Answer
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
The length of AB
= ( − 3 − 1 ) 2 + ( 0 − ( − 3 ) ) 2 = ( − 4 ) 2 + 3 2 = 16 + 9 = 25 = 5 = \sqrt{(-3 - 1)^2 + (0 - (-3))^2}\\[1em] = \sqrt{(-4)^2 + 3^2}\\[1em] = \sqrt{16 + 9}\\[1em] = \sqrt{25}\\[1em] = 5 = ( − 3 − 1 ) 2 + ( 0 − ( − 3 ) ) 2 = ( − 4 ) 2 + 3 2 = 16 + 9 = 25 = 5
The length of BC
= ( 4 − ( − 3 ) ) 2 + ( 1 − 0 ) 2 = ( − 7 ) 2 + 1 2 = 49 + 1 = 50 = 5 2 = \sqrt{(4 - (-3))^2 + (1 - 0)^2}\\[1em] = \sqrt{(-7)^2 + 1^2}\\[1em] = \sqrt{49 + 1}\\[1em] = \sqrt{50}\\[1em] = 5\sqrt{2}\\[1em] = ( 4 − ( − 3 ) ) 2 + ( 1 − 0 ) 2 = ( − 7 ) 2 + 1 2 = 49 + 1 = 50 = 5 2
The length of CA
= ( 4 − 1 ) 2 + ( 1 − ( − 3 ) ) 2 = 3 2 + 4 2 = 9 + 16 = 25 = 5 = \sqrt{(4 - 1)^2 + (1 - (-3))^2}\\[1em] = \sqrt{3^2 + 4^2}\\[1em] = \sqrt{9 + 16}\\[1em] = \sqrt{25}\\[1em] = 5 = ( 4 − 1 ) 2 + ( 1 − ( − 3 ) ) 2 = 3 2 + 4 2 = 9 + 16 = 25 = 5
If ABC is an right angled triangle,
AB2 + CA2 = ( 2 5 ) (2\sqrt5) ( 2 5 ) 2 = 52 + 52 = 25 + 25 = 50 ⇒ BC2
BC2 = AB2 + CA2 ⇒ the triangle is right angled triangle.
and,
AB = CA ⇒ the triangle is isosceles triangle.
Base of triangle = Height of the triangle = 5 units.
Area of triangle ABC = 1 2 \dfrac{1}{2} 2 1 x base x height
= 1 2 × 5 × 5 = 25 2 = 12.5 sq. units = \dfrac{1}{2} \times 5 \times 5\\[1em] = \dfrac{25}{2}\\[1em] = 12.5 \text{ sq. units} = 2 1 × 5 × 5 = 2 25 = 12.5 sq. units
Hence, the triangle ABC is an isosceles right-angled triangle and area of the triangle = 12.5 sq. units.
Show that the points A (5, 6), B (1, 5), C (2, 1) and D (6, 2) are the vertices of a square ABCD.
Answer
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
The length of AB
= ( 1 − 5 ) 2 + ( 5 − 6 ) 2 = ( − 4 ) 2 + ( − 1 ) 2 = 16 + 1 = 17 = \sqrt{(1 - 5)^2 + (5 - 6)^2}\\[1em] = \sqrt{(-4)^2 + (-1)^2}\\[1em] = \sqrt{16 + 1}\\[1em] = \sqrt{17} = ( 1 − 5 ) 2 + ( 5 − 6 ) 2 = ( − 4 ) 2 + ( − 1 ) 2 = 16 + 1 = 17
The length of BC
= ( 2 − 1 ) 2 + ( 1 − 5 ) 2 = 1 2 + ( − 4 ) 2 = 1 + 16 = 17 = \sqrt{(2 - 1)^2 + (1 - 5)^2}\\[1em] = \sqrt{1^2 + (-4)^2}\\[1em] = \sqrt{1 + 16}\\[1em] = \sqrt{17} = ( 2 − 1 ) 2 + ( 1 − 5 ) 2 = 1 2 + ( − 4 ) 2 = 1 + 16 = 17
The length of CD
= ( 6 − 2 ) 2 + ( 2 − 1 ) 2 = 4 2 + 1 2 = 16 + 1 = 17 = \sqrt{(6 - 2)^2 + (2 - 1)^2}\\[1em] = \sqrt{4^2 + 1^2}\\[1em] = \sqrt{16 + 1}\\[1em] = \sqrt{17} = ( 6 − 2 ) 2 + ( 2 − 1 ) 2 = 4 2 + 1 2 = 16 + 1 = 17
The length of DA
= ( 6 − 5 ) 2 + ( 2 − 6 ) 2 = 1 2 + 4 2 = 1 + 16 = 17 = \sqrt{(6 - 5)^2 + (2 - 6)^2}\\[1em] = \sqrt{1^2 + 4^2}\\[1em] = \sqrt{1 + 16}\\[1em] = \sqrt{17} = ( 6 − 5 ) 2 + ( 2 − 6 ) 2 = 1 2 + 4 2 = 1 + 16 = 17
AB = BC = CD = DA = 17 \sqrt{17} 17
The length of diagonal AC =
= ( 2 − 5 ) 2 + ( 1 − 6 ) 2 = ( − 3 ) 2 + ( − 5 ) 2 = 9 + 25 = 34 = \sqrt{(2 - 5)^2 + (1 - 6)^2}\\[1em] = \sqrt{(-3)^2 + (-5)^2}\\[1em] = \sqrt{9 + 25}\\[1em] = \sqrt{34} = ( 2 − 5 ) 2 + ( 1 − 6 ) 2 = ( − 3 ) 2 + ( − 5 ) 2 = 9 + 25 = 34
The length of diagonal BD =
= ( 6 − 1 ) 2 + ( 2 − 5 ) 2 = ( − 5 ) 2 + ( − 3 ) 2 = 25 + 9 = 34 = \sqrt{(6 - 1)^2 + (2 - 5)^2}\\[1em] = \sqrt{(-5)^2 + (-3)^2}\\[1em] = \sqrt{25 + 9}\\[1em] = \sqrt{34} = ( 6 − 1 ) 2 + ( 2 − 5 ) 2 = ( − 5 ) 2 + ( − 3 ) 2 = 25 + 9 = 34
So, AC = BD
Since all sides and diagonals are equal, the points form a square.
Hence, the points A (5, 6), B (1, 5), C (2, 1) and D (6, 2) are the vertices of a square ABCD.
The distance of point (-8, 6) from x-axis is:
8
6
10
none of these
Answer
Plot the point P(-8, 6) on the graph paper.
Draw a perpendicular line from the point P to the x-axis.
From graph, it is clear that the distance between the point (-8, 6) and the x-axis is 6 units.
Hence, option 2 is the correct option.
The distance of point (-4, -3) from the origin is:
-10 unit
10 unit
4 2 − 3 2 \sqrt{4^2 - 3^2} 4 2 − 3 2
none of these
Answer
Origin (O) = (0, 0) and P = (-4, -3).
By distance formula,
Distance between two points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
O P = ( − 4 − 0 ) 2 + ( − 3 − 0 ) 2 = ( − 4 ) 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units . OP = \sqrt{(-4 - 0)^2 + (-3 - 0)^2}\\[1em] = \sqrt{(-4)^2 + (-3)^2}\\[1em] = \sqrt{16 + 9}\\[1em] = \sqrt{25}\\[1em] = \text{5 units}. OP = ( − 4 − 0 ) 2 + ( − 3 − 0 ) 2 = ( − 4 ) 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units .
Hence, option 4 is the correct option.
The co-ordinates of point P are:
(0, 5)
(5, 0)
(4, 3)
(3, 4)
Answer
Since, OPQ is right angled triangle. Using pythagoras theorem,
⇒ Hypotenuse2 = Base2 + Height2
⇒ OP2 = OQ2 + QP2
⇒ 52 = 32 + QP2
⇒ 25 = 9 + QP2
⇒ QP2 = 25 - 9
⇒ QP2 = 16
⇒ QP = 16 \sqrt{16} 16
⇒ QP = 4 units
Since, OQ = 3 units and QP = 4 units.
The co-ordinates of point P are (3, 4).
Hence, option 4 is the correct option.
AB (= 10 unit) is diameter of a circle with center at point P = (x, 0) and point B = (0, y). The relation between x and y is:
x + y = 10
x + y = 25
x2 + y2 = 5
x2 + y2 = 25
Answer
Given, AB is diameter of a circle with center at point P = (x, 0) and point B = (0, y).
By distance formula,
Distance between two points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
From figure,
AB (Diameter) = 2 x PB (Radius)
⇒ 10 = 2 × ( x − 0 ) 2 + ( 0 − y ) 2 ⇒ 10 2 = x 2 + ( − y ) 2 ⇒ 5 = x 2 + y 2 ⇒ 5 2 = x 2 + y 2 ⇒ x 2 + y 2 = 25. \Rightarrow 10 = 2 \times \sqrt{(x - 0)^2 + (0 - y)^2}\\[1em] \Rightarrow \dfrac{10}{2} = \sqrt{x^2 + (-y)^2}\\[1em] \Rightarrow 5 = \sqrt{x^2 + y^2}\\[1em] \Rightarrow 5^2 = x^2 + y^2\\[1em] \Rightarrow x^2 + y^2 = 25. ⇒ 10 = 2 × ( x − 0 ) 2 + ( 0 − y ) 2 ⇒ 2 10 = x 2 + ( − y ) 2 ⇒ 5 = x 2 + y 2 ⇒ 5 2 = x 2 + y 2 ⇒ x 2 + y 2 = 25.
Hence, option 4 is the correct option.
Statement 1: For the point P, x = -4 and y = 3, the distance of P from origin is 3 + 4 = 7.
Statement 2: P = (-4, 3) and its distance from origin = ( − 4 ) 2 + ( 3 ) 2 \sqrt{(-4)^2 + (3)^2} ( − 4 ) 2 + ( 3 ) 2 .
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given, point P, x = -4 and y = 3.
Using distance formula,
Distance between points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance of P(-4, 3) from origin (0, 0)
= ( 0 − ( − 4 ) ) 2 + ( 0 − 3 ) 2 = 4 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units . = \sqrt{(0 - (-4))^2 + (0 - 3)^2}\\[1em] = \sqrt{4^2 + (-3)^2}\\[1em] = \sqrt{16 + 9}\\[1em] = \sqrt{25}\\[1em] = 5 \text{ units}. = ( 0 − ( − 4 ) ) 2 + ( 0 − 3 ) 2 = 4 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units .
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is the correct option.
Statement 1: The point P(x, y) is at a distance of 6 unit from origin, then P lies in the first quadrant.
Statement 2: Point P can lie in any quadrant.
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
Given, the point P(x, y) is at a distance of 6 unit from origin.
By distance formula,
Distance between two points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
⇒ 6 = ( x − 0 ) 2 + ( y − 0 ) 2 ⇒ 6 = ( x ) 2 + ( y ) 2 ⇒ 6 2 = x 2 + y 2 ⇒ x 2 + y 2 = 36. \Rightarrow 6 = \sqrt{(x - 0)^2 + (y - 0)^2}\\[1em] \Rightarrow 6 = \sqrt{(x)^2 + (y)^2}\\[1em] \Rightarrow 6^2 = x^2 + y^2\\[1em] \Rightarrow x^2 + y^2 = 36. ⇒ 6 = ( x − 0 ) 2 + ( y − 0 ) 2 ⇒ 6 = ( x ) 2 + ( y ) 2 ⇒ 6 2 = x 2 + y 2 ⇒ x 2 + y 2 = 36.
The above equation defines a circle centered at the origin with radius 6. That circle covers all four quadrants, so P can lie anywhere on that circle, not necessarily in the first quadrant.
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is the correct option.
Assertion (A): If A = (2x, y), B(x, 2y) and AB = 5 unit, then x + y = 5.
Reason (R): ( x − 2 x ) 2 + ( 2 y − y ) 2 \sqrt{(x - 2x)^2 + (2y - y)^2} ( x − 2 x ) 2 + ( 2 y − y ) 2 = 5
⇒ x2 + y2 = 25
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Given, A = (2x, y), B = (x, 2y).
By distance formula,
Distance between two points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Since, AB = 5 unit.
Substituting the values, we get :
⇒ 5 = ( x − 2 x ) 2 + ( 2 y − y ) 2 ⇒ 5 = ( − x ) 2 + y 2 ⇒ 5 2 = x 2 + y 2 ⇒ x 2 + y 2 = 25. \Rightarrow 5 = \sqrt{(x - 2x)^2 + (2y - y)^2}\\[1em] \Rightarrow 5 = \sqrt{(-x)^2 + y^2}\\[1em] \Rightarrow 5^2 = x^2 + y^2\\[1em] \Rightarrow x^2 + y^2 = 25. ⇒ 5 = ( x − 2 x ) 2 + ( 2 y − y ) 2 ⇒ 5 = ( − x ) 2 + y 2 ⇒ 5 2 = x 2 + y 2 ⇒ x 2 + y 2 = 25.
∴ A is false, but R is true.
Hence, option 2 is the correct option.
Assertion (A): The distance between the points A(x, 2x) and B(x, 0) is 4 unit, the point B is (2, 0).
Reason (R): ( x − x ) 2 + ( 2 x − 0 ) 2 \sqrt{(x - x)^2 + (2x - 0)^2} ( x − x ) 2 + ( 2 x − 0 ) 2 = 2
⇒ x2 = 4 and x = ± 2
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Given, the distance between the points A(x, 2x) and B(x, 0) is 4 unit.
By distance formula,
Distance between two points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Substituting the values, we get :
⇒ 4 = ( x − x ) 2 + ( 2 x − 0 ) 2 ⇒ 4 = 0 2 + ( 2 x ) 2 ⇒ 4 = 4 x 2 ⇒ 4 2 = 4 x 2 ⇒ 16 = 4 x 2 ⇒ x 2 = 16 4 ⇒ x 2 = 4 ⇒ x = 4 ⇒ x = ± 2. \Rightarrow 4 = \sqrt{(x - x)^2 + (2x - 0)^2}\\[1em] \Rightarrow 4 = \sqrt{0^2 + (2x)^2}\\[1em] \Rightarrow 4 = \sqrt{4x^2}\\[1em] \Rightarrow 4^2 = 4x^2\\[1em] \Rightarrow 16 = 4x^2\\[1em] \Rightarrow x^2 = \dfrac{16}{4}\\[1em] \Rightarrow x^2 = 4\\[1em] \Rightarrow x = \sqrt{4}\\[1em] \Rightarrow x = \pm 2. ⇒ 4 = ( x − x ) 2 + ( 2 x − 0 ) 2 ⇒ 4 = 0 2 + ( 2 x ) 2 ⇒ 4 = 4 x 2 ⇒ 4 2 = 4 x 2 ⇒ 16 = 4 x 2 ⇒ x 2 = 4 16 ⇒ x 2 = 4 ⇒ x = 4 ⇒ x = ± 2.
The coordinates of B = (x, 0) = (2, 0) or (-2, 0)
∴ A is false, but R is true.
Hence, option 2 is the correct option.
Find the points on the y-axis which are at a distance of 2 5 2{\sqrt5} 2 5 units from the point (-4, 7).
Answer
Let the point on y-axis be (0, y).
Let (0, y) = (x1 , y1 ) and (-4, 7) = (x2 , y2 )
⇒ Distance between the given points =
( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 2 5 = ( − 4 − 0 ) 2 + ( 7 − y ) 2 ⇒ 2 5 = ( − 4 ) 2 + ( 7 − y ) 2 ⇒ ( 2 5 ) 2 = ( − 4 ) 2 + ( 7 − y ) 2 ⇒ 20 = 16 + 49 + y 2 − 14 y ⇒ 20 = 65 + y 2 − 14 y ⇒ 65 + y 2 − 14 y − 20 = 0 ⇒ y 2 − 14 y + 45 = 0 ⇒ y 2 − ( 9 y + 5 y ) + 45 = 0 ⇒ y 2 − 9 y − 5 y + 45 = 0 ⇒ ( y 2 − 9 y ) − ( 5 y − 45 ) = 0 ⇒ y ( y − 9 ) − 5 ( y − 9 ) = 0 ⇒ ( y − 9 ) ( y − 5 ) = 0 ⇒ y = 9 or 5 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\\[1em] ⇒ 2 \sqrt5 = \sqrt{(-4 - 0)^2 + (7 - y)^2}\\[1em] ⇒ 2 \sqrt5 = \sqrt{(-4)^2 + (7 - y)^2}\\[1em] ⇒ (2 \sqrt5)^2 = (-4)^2 + (7 - y)^2\\[1em] ⇒ 20 = 16 + 49 + y^2 - 14y\\[1em] ⇒ 20 = 65 + y^2 - 14y\\[1em] ⇒ 65 + y^2 - 14y - 20 = 0\\[1em] ⇒ y^2 - 14y + 45 = 0\\[1em] ⇒ y^2 - (9y + 5y) + 45 = 0\\[1em] ⇒ y^2 - 9y - 5y + 45 = 0\\[1em] ⇒ (y^2 - 9y) - (5y - 45) = 0\\[1em] ⇒ y(y - 9) - 5(y - 9) = 0\\[1em] ⇒ (y - 9)(y - 5) = 0\\[1em] ⇒ y = 9 \text{ or } 5 ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 ⇒ 2 5 = ( − 4 − 0 ) 2 + ( 7 − y ) 2 ⇒ 2 5 = ( − 4 ) 2 + ( 7 − y ) 2 ⇒ ( 2 5 ) 2 = ( − 4 ) 2 + ( 7 − y ) 2 ⇒ 20 = 16 + 49 + y 2 − 14 y ⇒ 20 = 65 + y 2 − 14 y ⇒ 65 + y 2 − 14 y − 20 = 0 ⇒ y 2 − 14 y + 45 = 0 ⇒ y 2 − ( 9 y + 5 y ) + 45 = 0 ⇒ y 2 − 9 y − 5 y + 45 = 0 ⇒ ( y 2 − 9 y ) − ( 5 y − 45 ) = 0 ⇒ y ( y − 9 ) − 5 ( y − 9 ) = 0 ⇒ ( y − 9 ) ( y − 5 ) = 0 ⇒ y = 9 or 5
Hence, the the points on the y-axis are (0, 9) or (0, 5).
Find the value of k, if the points (5, k) and (k, 7) are equidistant from point (2, 4).
Answer
Given (2, 4) is equidistant from (5, k) and (k, 7).
i.e. distance between (2, 4) and (5, k) = distance between (2, 4) and (k, 7)
( 2 − 5 ) 2 + ( 4 − k ) 2 = ( 2 − k ) 2 + ( 4 − 7 ) 2 ⇒ ( 2 − 5 ) 2 + ( 4 − k ) 2 = ( 2 − k ) 2 + ( 4 − 7 ) 2 ⇒ ( − 3 ) 2 + ( 4 − k ) 2 = ( 2 − k ) 2 + ( − 3 ) 2 ⇒ 9 + 16 + k 2 − 8 k = 4 + k 2 − 4 k + 9 ⇒ 25 + k 2 − 8 k = 13 + k 2 − 4 k ⇒ 13 + k 2 − 4 k − 25 − k 2 + 8 k = 0 ⇒ − 12 + 4 k = 0 ⇒ 4 k = 12 ⇒ k = 12 4 ⇒ k = 3 \sqrt{(2 - 5)^2 + (4 - k)^2} = \sqrt{(2 - k)^2 + (4 - 7)^2}\\[1em] ⇒ (2 - 5)^2 + (4 - k)^2 = (2 - k)^2 + (4 - 7)^2\\[1em] ⇒ (- 3)^2 + (4 - k)^2 = (2 - k)^2 + (- 3)^2\\[1em] ⇒ 9 + 16 + k^2 - 8k = 4 + k^2 - 4k + 9\\[1em] ⇒ 25 + k^2 - 8k = 13 + k^2 - 4k\\[1em] ⇒ 13 + k^2 - 4k - 25 - k^2 + 8k = 0\\[1em] ⇒ - 12 + 4k = 0\\[1em] ⇒ 4k = 12\\[1em] ⇒ k = \dfrac{12}{4}\\[1em] ⇒ k = 3 ( 2 − 5 ) 2 + ( 4 − k ) 2 = ( 2 − k ) 2 + ( 4 − 7 ) 2 ⇒ ( 2 − 5 ) 2 + ( 4 − k ) 2 = ( 2 − k ) 2 + ( 4 − 7 ) 2 ⇒ ( − 3 ) 2 + ( 4 − k ) 2 = ( 2 − k ) 2 + ( − 3 ) 2 ⇒ 9 + 16 + k 2 − 8 k = 4 + k 2 − 4 k + 9 ⇒ 25 + k 2 − 8 k = 13 + k 2 − 4 k ⇒ 13 + k 2 − 4 k − 25 − k 2 + 8 k = 0 ⇒ − 12 + 4 k = 0 ⇒ 4 k = 12 ⇒ k = 4 12 ⇒ k = 3
Hence, the value of k = 3.
The centre of a circle is (2a, a - 7). Find the value (values) of a, if the circle passes through the point (11, -9) and has diameter 10 2 10{\sqrt2} 10 2 units.
Answer
Radius of circle = Diameter 2 \dfrac{\text{Diameter}}{2} 2 Diameter
= 10 2 2 \dfrac{10 \sqrt2}{2} 2 10 2
= 5 2 5 \sqrt2 5 2
⇒ Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Radius of the circle = The distance between the center (2a, a - 7) and the point (11, -9), which lies on the circle
5 2 = ( 2 a − 11 ) 2 + ( ( a − 7 ) − ( − 9 ) ) 2 ⇒ ( 5 2 ) 2 = ( 2 a − 11 ) 2 + ( a − 7 + 9 ) 2 ⇒ ( 5 2 ) 2 = ( 2 a − 11 ) 2 + ( a + 2 ) 2 ⇒ 50 = 4 a 2 + 121 − 44 a + a 2 + 4 + 4 a ⇒ 50 = 5 a 2 + 125 − 40 a ⇒ 5 a 2 + 125 − 40 a − 50 = 0 ⇒ 5 a 2 − 40 a + 75 = 0 ⇒ a 2 − 8 a + 15 = 0 ⇒ a 2 − ( 3 a + 5 a ) + 15 = 0 ⇒ a 2 − 3 a − 5 a + 15 = 0 ⇒ a ( a − 3 ) − 5 ( a − 3 ) = 0 ⇒ ( a − 3 ) ( a − 5 ) = 0 ⇒ a = 3 or 5 5 \sqrt2 = \sqrt{(2a - 11)^2 + ((a - 7) - (-9))^2}\\[1em] ⇒ (5 \sqrt2)^2 = (2a - 11)^2 + (a - 7 + 9)^2\\[1em] ⇒ (5 \sqrt2)^2 = (2a - 11)^2 + (a + 2)^2\\[1em] ⇒ 50 = 4a^2 + 121 - 44a + a^2 + 4 + 4a\\[1em] ⇒ 50 = 5a^2 + 125 - 40a\\[1em] ⇒ 5a^2 + 125 - 40a - 50 = 0\\[1em] ⇒ 5a^2 - 40a + 75 = 0\\[1em] ⇒ a^2 - 8a + 15 = 0\\[1em] ⇒ a^2 - (3a + 5a) + 15 = 0\\[1em] ⇒ a^2 - 3a - 5a + 15 = 0\\[1em] ⇒ a(a - 3) - 5(a - 3) = 0\\[1em] ⇒ (a - 3)(a - 5) = 0\\[1em] ⇒ a = 3 \text{ or } 5 5 2 = ( 2 a − 11 ) 2 + (( a − 7 ) − ( − 9 ) ) 2 ⇒ ( 5 2 ) 2 = ( 2 a − 11 ) 2 + ( a − 7 + 9 ) 2 ⇒ ( 5 2 ) 2 = ( 2 a − 11 ) 2 + ( a + 2 ) 2 ⇒ 50 = 4 a 2 + 121 − 44 a + a 2 + 4 + 4 a ⇒ 50 = 5 a 2 + 125 − 40 a ⇒ 5 a 2 + 125 − 40 a − 50 = 0 ⇒ 5 a 2 − 40 a + 75 = 0 ⇒ a 2 − 8 a + 15 = 0 ⇒ a 2 − ( 3 a + 5 a ) + 15 = 0 ⇒ a 2 − 3 a − 5 a + 15 = 0 ⇒ a ( a − 3 ) − 5 ( a − 3 ) = 0 ⇒ ( a − 3 ) ( a − 5 ) = 0 ⇒ a = 3 or 5
Hence, the value of a = 3 or a = 5.
Show that (-3, 2), (-5, -5), (2, -3) and (4, 4) are the vertices of a rhombus.
Answer
The points A(-3, 2), B(-5, -5), C(2, -3) and D(4, 4) are the vertices of a quadrilateral. We need to show that this quadrilateral is a rhombus.
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between points A(-3, 2) and B(-5, -5):
= ( ( − 5 ) − ( − 3 ) ) 2 + ( ( − 5 ) − 2 ) 2 = ( − 2 ) 2 + ( − 7 ) 2 = 4 + 49 = 53 = \sqrt{((-5) - (-3))^2 + ((-5) - 2)^2}\\[1em] = \sqrt{(-2)^2 + (-7)^2}\\[1em] = \sqrt{4 + 49}\\[1em] = \sqrt{53} = (( − 5 ) − ( − 3 ) ) 2 + (( − 5 ) − 2 ) 2 = ( − 2 ) 2 + ( − 7 ) 2 = 4 + 49 = 53
Distance between points B(-5, -5) and C(2, -3):
= ( 2 − ( − 5 ) ) 2 + ( ( − 3 ) − ( − 5 ) ) 2 = 7 2 + 2 2 = 49 + 4 = 53 = \sqrt{(2 - (-5))^2 + ((-3) - (-5))^2}\\[1em] = \sqrt{7^2 + 2^2}\\[1em] = \sqrt{49 + 4}\\[1em] = \sqrt{53} = ( 2 − ( − 5 ) ) 2 + (( − 3 ) − ( − 5 ) ) 2 = 7 2 + 2 2 = 49 + 4 = 53
Distance between points C(2, -3) and D(4, 4):
= ( 4 − 2 ) 2 + ( 4 − ( − 3 ) ) 2 = 2 2 + 7 2 = 4 + 49 = 53 = \sqrt{(4 - 2)^2 + (4 - (-3))^2}\\[1em] = \sqrt{2^2 + 7^2}\\[1em] = \sqrt{4 + 49}\\[1em] = \sqrt{53} = ( 4 − 2 ) 2 + ( 4 − ( − 3 ) ) 2 = 2 2 + 7 2 = 4 + 49 = 53
Distance between points D(4, 4) and A(-3, 2):
= ( 4 − 2 ) 2 + ( 4 − ( − 3 ) ) 2 = 2 2 + 7 2 = 4 + 49 = 53 = \sqrt{(4 - 2)^2 + (4 - (-3))^2}\\[1em] = \sqrt{2^2 + 7^2}\\[1em] = \sqrt{4 + 49}\\[1em] = \sqrt{53} = ( 4 − 2 ) 2 + ( 4 − ( − 3 ) ) 2 = 2 2 + 7 2 = 4 + 49 = 53
AB = BC = CD = DA = 53 \sqrt{53} 53
Since all sides are equal, the quadrilateral is a rhombus.
Hence, the points (-3, 2), (-5, -5), (2, -3) and (4, 4) are the vertices of a rhombus.
Points A (-3, -2), B (-6, a), C (-3, -4) and D(0, -1) are the vertices of quadrilateral ABCD; find a if 'a' is negative and AB = CD.
Answer
Given:
Points A(-3, -2), B(-6, a), C(-3, -4) and D(0, -1) are the vertices of quadrilateral ABCD and AB = CD.
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between points A(-3, -2) and B(-6, a):
= ( ( − 6 ) − ( − 3 ) ) 2 + ( a − ( − 2 ) ) 2 = ( − 3 ) 2 + ( a − ( − 2 ) ) 2 = 9 + a 2 + 4 + 4 a = 13 + a 2 + 4 a = \sqrt{((-6) - (-3))^2 + (a - (-2))^2}\\[1em] = \sqrt{(-3)^2 + (a - (-2))^2}\\[1em] = \sqrt{9 + a^2 + 4 + 4a}\\[1em] = \sqrt{13 + a^2 + 4a} = (( − 6 ) − ( − 3 ) ) 2 + ( a − ( − 2 ) ) 2 = ( − 3 ) 2 + ( a − ( − 2 ) ) 2 = 9 + a 2 + 4 + 4 a = 13 + a 2 + 4 a
Distance between points C (-3, -4) and D(0, -1):
= ( 0 − ( − 3 ) ) 2 + ( ( − 1 ) − ( − 4 ) ) 2 = 3 2 + 3 2 = 9 + 9 = 18 = \sqrt{(0 - (-3))^2 + ((-1) - (-4))^2}\\[1em] = \sqrt{3^2 + 3^2}\\[1em] = \sqrt{9 + 9}\\[1em] = \sqrt{18} = ( 0 − ( − 3 ) ) 2 + (( − 1 ) − ( − 4 ) ) 2 = 3 2 + 3 2 = 9 + 9 = 18
Since AB = CD,
⇒ 13 + a 2 + 4 a = 18 ⇒ 13 + a 2 + 4 a = 18 ⇒ 13 + a 2 + 4 a − 18 = 0 ⇒ a 2 + 4 a − 5 = 0 ⇒ a 2 + 5 a − 1 a − 5 = 0 ⇒ ( a 2 + 5 a ) − ( 1 a + 5 ) = 0 ⇒ a ( a + 5 ) − 1 ( a + 5 ) = 0 ⇒ ( a + 5 ) ( a − 1 ) = 0 ⇒ a = − 5 or 1 ⇒ \sqrt{13 + a^2 + 4a} = \sqrt{18}\\[1em] ⇒ 13 + a^2 + 4a = 18\\[1em] ⇒ 13 + a^2 + 4a - 18 = 0\\[1em] ⇒ a^2 + 4a - 5 = 0\\[1em] ⇒ a^2 + 5a - 1a - 5 = 0\\[1em] ⇒ (a^2 + 5a) - (1a + 5) = 0\\[1em] ⇒ a(a + 5) - 1(a + 5) = 0\\[1em] ⇒ (a + 5)(a - 1) = 0\\[1em] ⇒ a = -5 \text{ or } 1 ⇒ 13 + a 2 + 4 a = 18 ⇒ 13 + a 2 + 4 a = 18 ⇒ 13 + a 2 + 4 a − 18 = 0 ⇒ a 2 + 4 a − 5 = 0 ⇒ a 2 + 5 a − 1 a − 5 = 0 ⇒ ( a 2 + 5 a ) − ( 1 a + 5 ) = 0 ⇒ a ( a + 5 ) − 1 ( a + 5 ) = 0 ⇒ ( a + 5 ) ( a − 1 ) = 0 ⇒ a = − 5 or 1
Since it is given that a is negative, we select a = -5.
Hence, the value of a = -5.
The vertices of a triangle are (5, 1), (11, 1) and (11, 9). Find the co-ordinates of the circumcentre of the triangle.
Answer
Let the circumcentre of the triangle be P(x, y).
The circumcentre is equidistant from all three vertices of the triangle.
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
The distance from P to A is equal to the distance from P to B, so:
⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 1 ) 2 ⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 1 ) 2 ⇒ x 2 + 25 − 10 x + y 2 + 1 − 2 y = x 2 + 121 − 22 x + y 2 + 1 − 2 y ⇒ x 2 + 26 − 10 x + y 2 − 2 y = x 2 + 122 − 22 x + y 2 − 2 y ⇒ 26 − 10 x = 122 − 22 x ⇒ 22 x − 10 x = 122 − 26 ⇒ 12 x = 96 ⇒ x = 96 12 ⇒ x = 8 ⇒ \sqrt{(x - 5)^2 + (y - 1)^2} = \sqrt{(x - 11)^2 + (y - 1)^2}\\[1em] ⇒ (x - 5)^2 + (y - 1)^2 = (x - 11)^2 + (y - 1)^2\\[1em] ⇒ x^2 + 25 - 10x + y^2 + 1 - 2y = x^2 + 121 - 22x + y^2 + 1 - 2y\\[1em] ⇒ x^2 + 26 - 10x + y^2 - 2y = x^2 + 122 - 22x + y^2 - 2y\\[1em] ⇒ 26 - 10x = 122 - 22x\\[1em] ⇒ 22x - 10x = 122 - 26\\[1em] ⇒ 12x = 96\\[1em] ⇒ x = \dfrac{96}{12}\\[1em] ⇒ x = 8 ⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 1 ) 2 ⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 1 ) 2 ⇒ x 2 + 25 − 10 x + y 2 + 1 − 2 y = x 2 + 121 − 22 x + y 2 + 1 − 2 y ⇒ x 2 + 26 − 10 x + y 2 − 2 y = x 2 + 122 − 22 x + y 2 − 2 y ⇒ 26 − 10 x = 122 − 22 x ⇒ 22 x − 10 x = 122 − 26 ⇒ 12 x = 96 ⇒ x = 12 96 ⇒ x = 8
The distance from P to A is equal to the distance from P to C, so:
⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 9 ) 2 ⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 9 ) 2 ⇒ x 2 + 25 − 10 x + y 2 + 1 − 2 y = x 2 + 121 − 22 x + y 2 + 81 − 18 y ⇒ x 2 + 26 − 10 x + y 2 − 2 y = x 2 + 202 − 22 x + y 2 − 18 y ⇒ 26 − 10 x − 2 y = 202 − 22 x − 18 y ⇒ 26 − 10 x − 2 y − 202 + 22 x + 18 y = 0 ⇒ 12 x + 16 y = 176 ⇒ 3 x + 4 y = 44 ⇒ \sqrt{(x - 5)^2 + (y - 1)^2} = \sqrt{(x - 11)^2 + (y - 9)^2}\\[1em] ⇒ (x - 5)^2 + (y - 1)^2 = (x - 11)^2 + (y - 9)^2\\[1em] ⇒ x^2 + 25 - 10x + y^2 + 1 - 2y = x^2 + 121 - 22x + y^2 + 81 - 18y\\[1em] ⇒ x^2 + 26 - 10x + y^2 - 2y = x^2 + 202 - 22x + y^2 - 18y\\[1em] ⇒ 26 - 10x - 2y = 202 - 22x - 18y\\[1em] ⇒ 26 - 10x - 2y - 202 + 22x + 18y = 0\\[1em] ⇒ 12x + 16y = 176\\[1em] ⇒ 3x + 4y = 44\\[1em] ⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 9 ) 2 ⇒ ( x − 5 ) 2 + ( y − 1 ) 2 = ( x − 11 ) 2 + ( y − 9 ) 2 ⇒ x 2 + 25 − 10 x + y 2 + 1 − 2 y = x 2 + 121 − 22 x + y 2 + 81 − 18 y ⇒ x 2 + 26 − 10 x + y 2 − 2 y = x 2 + 202 − 22 x + y 2 − 18 y ⇒ 26 − 10 x − 2 y = 202 − 22 x − 18 y ⇒ 26 − 10 x − 2 y − 202 + 22 x + 18 y = 0 ⇒ 12 x + 16 y = 176 ⇒ 3 x + 4 y = 44
Putting the value of x = 8 in the above equation,
⇒ 3 × 8 + 4 y = 44 ⇒ 24 + 4 y = 44 ⇒ 4 y = 44 − 24 ⇒ 4 y = 20 ⇒ y = 20 4 ⇒ y = 5 ⇒ 3 \times 8 + 4y = 44\\[1em] ⇒ 24 + 4y = 44\\[1em] ⇒ 4y = 44 - 24\\[1em] ⇒ 4y = 20\\[1em] ⇒ y = \dfrac{20}{4}\\[1em] ⇒ y = 5 ⇒ 3 × 8 + 4 y = 44 ⇒ 24 + 4 y = 44 ⇒ 4 y = 44 − 24 ⇒ 4 y = 20 ⇒ y = 4 20 ⇒ y = 5
Hence, the co-ordinates of the circumcentre of the triangle is (8, 5).
Given A = (3, 1) and B = (0, y - 1). Find y if AB = 5.
Answer
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between A(3, 1) and B(0, y - 1):
⇒ ( 0 − 3 ) 2 + ( ( y − 1 ) − 1 ) 2 = 5 ⇒ ( − 3 ) 2 + ( y − 1 − 1 ) 2 = 5 2 ⇒ 9 + ( y − 2 ) 2 = 25 ⇒ 9 + y 2 + 4 − 4 y = 25 ⇒ y 2 − 4 y + 13 = 25 ⇒ y 2 − 4 y − 25 + 13 = 0 ⇒ y 2 − 4 y − 12 = 0 ⇒ y 2 − 6 y + 2 y − 12 = 0 ⇒ ( y 2 − 6 y ) + ( 2 y − 12 ) = 0 ⇒ y ( y − 6 ) + 2 ( y − 6 ) = 0 ⇒ ( y − 6 ) ( y + 2 ) = 0 ⇒ y = 6 or − 2 ⇒ \sqrt{(0 - 3)^2 + ((y - 1) - 1)^2} = 5\\[1em] ⇒ (-3)^2 + (y - 1 - 1)^2 = 5^2\\[1em] ⇒ 9 + (y - 2)^2 = 25\\[1em] ⇒ 9 + y^2 + 4 - 4y = 25\\[1em] ⇒ y^2 - 4y + 13 = 25\\[1em] ⇒ y^2 - 4y - 25 + 13 = 0\\[1em] ⇒ y^2 - 4y - 12 = 0\\[1em] ⇒ y^2 - 6y + 2y - 12 = 0\\[1em] ⇒ (y^2 - 6y) + (2y - 12) = 0\\[1em] ⇒ y(y - 6) + 2(y - 6) = 0\\[1em] ⇒ (y - 6)(y + 2) = 0\\[1em] ⇒ y = 6 \text{ or } -2 ⇒ ( 0 − 3 ) 2 + (( y − 1 ) − 1 ) 2 = 5 ⇒ ( − 3 ) 2 + ( y − 1 − 1 ) 2 = 5 2 ⇒ 9 + ( y − 2 ) 2 = 25 ⇒ 9 + y 2 + 4 − 4 y = 25 ⇒ y 2 − 4 y + 13 = 25 ⇒ y 2 − 4 y − 25 + 13 = 0 ⇒ y 2 − 4 y − 12 = 0 ⇒ y 2 − 6 y + 2 y − 12 = 0 ⇒ ( y 2 − 6 y ) + ( 2 y − 12 ) = 0 ⇒ y ( y − 6 ) + 2 ( y − 6 ) = 0 ⇒ ( y − 6 ) ( y + 2 ) = 0 ⇒ y = 6 or − 2
Hence, the values of y are 6 and -2.
Given A = (x + 2, -2) and B = (11, 6). Find x if AB = 17.
Answer
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between A(x + 2, -2) and B(11, 6):
⇒ ( 11 − ( x + 2 ) ) 2 + ( 6 − ( − 2 ) ) 2 = 17 ⇒ ( 11 − x − 2 ) 2 + ( 6 + 2 ) 2 = 17 2 ⇒ ( 9 − x ) 2 + 8 2 = 289 ⇒ 81 + x 2 − 18 x + 64 = 289 ⇒ x 2 − 18 x + 145 = 289 ⇒ x 2 − 18 x + 145 − 289 = 0 ⇒ x 2 − 18 x − 144 = 0 ⇒ x 2 − 24 x + 6 x − 144 = 0 ⇒ ( x 2 − 24 x ) + ( 6 x − 144 ) = 0 ⇒ x ( x − 24 ) + 6 ( x − 24 ) = 0 ⇒ ( x − 24 ) ( x + 6 ) = 0 ⇒ x = 24 and − 6 ⇒ \sqrt{(11 - (x + 2))^2 + (6 - (-2))^2} = 17\\[1em] ⇒ (11 - x - 2)^2 + (6 + 2)^2 = 17^2\\[1em] ⇒ (9 - x)^2 + 8^2 = 289\\[1em] ⇒ 81 + x^2 - 18x + 64 = 289\\[1em] ⇒ x^2 - 18x + 145 = 289\\[1em] ⇒ x^2 - 18x + 145 - 289 = 0\\[1em] ⇒ x^2 - 18x - 144 = 0\\[1em] ⇒ x^2 - 24x + 6x - 144 = 0\\[1em] ⇒ (x^2 - 24x) + (6x - 144) = 0\\[1em] ⇒ x(x - 24) + 6(x - 24) = 0\\[1em] ⇒ (x - 24)(x + 6) = 0\\[1em] ⇒ x = 24 \text{ and } -6 ⇒ ( 11 − ( x + 2 ) ) 2 + ( 6 − ( − 2 ) ) 2 = 17 ⇒ ( 11 − x − 2 ) 2 + ( 6 + 2 ) 2 = 1 7 2 ⇒ ( 9 − x ) 2 + 8 2 = 289 ⇒ 81 + x 2 − 18 x + 64 = 289 ⇒ x 2 − 18 x + 145 = 289 ⇒ x 2 − 18 x + 145 − 289 = 0 ⇒ x 2 − 18 x − 144 = 0 ⇒ x 2 − 24 x + 6 x − 144 = 0 ⇒ ( x 2 − 24 x ) + ( 6 x − 144 ) = 0 ⇒ x ( x − 24 ) + 6 ( x − 24 ) = 0 ⇒ ( x − 24 ) ( x + 6 ) = 0 ⇒ x = 24 and − 6
Hence, the values of x are 24 and -6.
The centre of a circle is (2x - 1, 3x + 1). Find x if the circle passes through (-3, -1) and the length of its diameter is 20 units.
Answer
The diameter of the circle is given as 20 units, so the radius is 10 units.
Distance between the centre A (2x - 1, 3x + 1) and point B (-3, -1) = Radius of circle AB = 10
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
⇒ AB2 = 100
Distance between B(-3, -1) and A(2x - 1, 3x + 1):
⇒ ( ( 2 x − 1 ) − ( − 3 ) ) 2 + ( ( 3 x + 1 ) − ( − 1 ) ) 2 = 100 ⇒ ( 2 x − 1 + 3 ) 2 + ( 3 x + 1 + 1 ) 2 = 100 ⇒ ( 2 x + 2 ) 2 + ( 3 x + 2 ) 2 = 100 ⇒ 4 x 2 + 4 + 8 x + 9 x 2 + 4 + 12 x = 100 ⇒ 13 x 2 + 8 + 20 x = 100 ⇒ 13 x 2 + 8 + 20 x − 100 = 0 ⇒ 13 x 2 + 20 x − 92 = 0 ⇒ x = − 20 + 400 + 4784 26 or − 20 − 400 + 4784 26 ⇒ x = − 20 + 5184 26 or − 20 − 5184 26 ⇒ x = − 20 + 72 26 or − 20 − 72 26 ⇒ x = 52 26 or − 92 26 ⇒ x = 2 or − 46 13 ⇒ ((2x - 1) - (-3))^2 + ((3x + 1) - (-1))^2 = 100\\[1em] ⇒ (2x - 1 + 3)^2 + (3x + 1 + 1)^2 = 100\\[1em] ⇒ (2x + 2)^2 + (3x + 2)^2 = 100\\[1em] ⇒ 4x^2 + 4 + 8x + 9x^2 + 4 + 12x = 100\\[1em] ⇒ 13x^2 + 8 + 20x = 100\\[1em] ⇒ 13x^2 + 8 + 20x - 100 = 0\\[1em] ⇒ 13x^2 + 20x - 92 = 0\\[1em] ⇒ x = \dfrac{-20 + \sqrt{400 + 4784}}{26} \text { or } \dfrac{-20 - \sqrt{400 + 4784}}{26}\\[1em] ⇒ x = \dfrac{-20 + \sqrt{5184}}{26} \text { or } \dfrac{-20 - \sqrt{5184}}{26}\\[1em] ⇒ x = \dfrac{-20 + 72}{26} \text { or } \dfrac{-20 - 72}{26}\\[1em] ⇒ x = \dfrac{52}{26} \text { or } \dfrac{-92}{26}\\[1em] ⇒ x = 2 \text { or } \dfrac{-46}{13}\\[1em] ⇒ (( 2 x − 1 ) − ( − 3 ) ) 2 + (( 3 x + 1 ) − ( − 1 ) ) 2 = 100 ⇒ ( 2 x − 1 + 3 ) 2 + ( 3 x + 1 + 1 ) 2 = 100 ⇒ ( 2 x + 2 ) 2 + ( 3 x + 2 ) 2 = 100 ⇒ 4 x 2 + 4 + 8 x + 9 x 2 + 4 + 12 x = 100 ⇒ 13 x 2 + 8 + 20 x = 100 ⇒ 13 x 2 + 8 + 20 x − 100 = 0 ⇒ 13 x 2 + 20 x − 92 = 0 ⇒ x = 26 − 20 + 400 + 4784 or 26 − 20 − 400 + 4784 ⇒ x = 26 − 20 + 5184 or 26 − 20 − 5184 ⇒ x = 26 − 20 + 72 or 26 − 20 − 72 ⇒ x = 26 52 or 26 − 92 ⇒ x = 2 or 13 − 46
Hence, the values of x are 2 and − 46 13 \dfrac{-46}{13} 13 − 46 .
The length of line PQ is 10 units and the co-ordinates of P are (2, -3); calculate the co-ordinates of point Q, if its abscissa is 10.
Answer
Let the co-ordinates of point Q be (10, y).
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between P(2, -3) and Q(10, y):
⇒ ( 10 − 2 ) 2 + ( y − ( − 3 ) ) 2 = 10 ⇒ ( 10 − 2 ) 2 + ( y − ( − 3 ) ) 2 = 100 ⇒ 8 2 + ( y + 3 ) 2 = 100 ⇒ 64 + y 2 + 9 + 6 y = 100 ⇒ y 2 + 6 y + 73 = 100 ⇒ y 2 + 6 y + 73 − 100 = 0 ⇒ y 2 + 6 y − 27 = 0 ⇒ y 2 + 9 y − 3 y − 27 = 0 ⇒ ( y 2 + 9 y ) − ( 3 y + 27 ) = 0 ⇒ y ( y + 9 ) − 3 ( y + 9 ) = 0 ⇒ ( y + 9 ) ( y − 3 ) = 0 ⇒ y = − 9 or 3 ⇒ \sqrt{(10 - 2)^2 + (y - (-3))^2} = 10\\[1em] ⇒ (10 - 2)^2 + (y - (-3))^2 = 100\\[1em] ⇒ 8^2 + (y + 3)^2 = 100\\[1em] ⇒ 64 + y^2 + 9 + 6y = 100\\[1em] ⇒ y^2 + 6y + 73 = 100\\[1em] ⇒ y^2 + 6y + 73 - 100 = 0\\[1em] ⇒ y^2 + 6y - 27 = 0\\[1em] ⇒ y^2 + 9y - 3y - 27 = 0\\[1em] ⇒ (y^2 + 9y) - (3y + 27) = 0\\[1em] ⇒ y(y + 9) - 3(y + 9) = 0\\[1em] ⇒ (y + 9)(y - 3) = 0\\[1em] ⇒ y = -9 \text{ or } 3 ⇒ ( 10 − 2 ) 2 + ( y − ( − 3 ) ) 2 = 10 ⇒ ( 10 − 2 ) 2 + ( y − ( − 3 ) ) 2 = 100 ⇒ 8 2 + ( y + 3 ) 2 = 100 ⇒ 64 + y 2 + 9 + 6 y = 100 ⇒ y 2 + 6 y + 73 = 100 ⇒ y 2 + 6 y + 73 − 100 = 0 ⇒ y 2 + 6 y − 27 = 0 ⇒ y 2 + 9 y − 3 y − 27 = 0 ⇒ ( y 2 + 9 y ) − ( 3 y + 27 ) = 0 ⇒ y ( y + 9 ) − 3 ( y + 9 ) = 0 ⇒ ( y + 9 ) ( y − 3 ) = 0 ⇒ y = − 9 or 3
Hence, the required co-ordinates of the point Q are (10, -9) and (10, 3).
Point P (2, -7) is the centre of a circle with radius 13 units, PT is perpendicular to chord AB and T = (-2, -4); Calculate the length of :
(i) AT
(ii) AB.
Answer
(i) Given:
Radius = PA = PB = 13 units
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between P(2, -7) and T(-2, -4):
= ( − 2 − 2 ) 2 + ( − 4 + 7 ) 2 = ( − 4 ) 2 + ( 3 ) 2 = 16 + 9 = 25 = 5 = \sqrt{(-2 - 2)^2 + (-4 + 7)^2}\\[1em] = \sqrt{(-4)^2 + (3)^2}\\[1em] = \sqrt{16 + 9}\\[1em] = \sqrt{25}\\[1em] = 5 = ( − 2 − 2 ) 2 + ( − 4 + 7 ) 2 = ( − 4 ) 2 + ( 3 ) 2 = 16 + 9 = 25 = 5
Using Pythagoras theorem in triangle PAT,
PA2 = PT2 + AT2
⇒ AT2 = PA2 - PT2
⇒ AT2 = 132 - 52
⇒ AT2 = 169 - 25
⇒ AT2 = 144
⇒ AT = 144 \sqrt{144} 144
⇒ AT = 12 units
Hence, the value of AT = 12 units.
(ii) We know that the perpendicular from the center of a circle to a chord bisects the chord.
AB = 2AT
= 2 x 12 units
= 24 units
Hence, the length of AB = 24 units.
Calculate the distance between the points P(2, 2) and Q(5, 4) correct to three significant figures.
Answer
∵ Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between P(2, 2) and Q(5, 4):
= ( 5 − 2 ) 2 + ( 4 − 2 ) 2 = 3 2 + 2 2 = 9 + 4 = 13 = 3.605 units = \sqrt{(5 - 2)^2 + (4 - 2)^2}\\[1em] = \sqrt{3^2 + 2^2}\\[1em] = \sqrt{9 + 4}\\[1em] = \sqrt{13}\\[1em] = 3.605 \text{ units} = ( 5 − 2 ) 2 + ( 4 − 2 ) 2 = 3 2 + 2 2 = 9 + 4 = 13 = 3.605 units
Hence, the distance between the points P(2, 2) and Q(5, 4) is 3.605 units.
Calculate the distance between A(7, 3) and B on the x-axis whose abscissa is 11.
Answer
We know that any point on x-axis has co-ordinates of the form (x, 0).
The abscissa of point B is 11.
So, the point B is (11, 0).
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between A(7, 3) and B(11, 0):
= ( 11 − 7 ) 2 + ( 0 − 3 ) 2 = 4 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units = \sqrt{(11 - 7)^2 + (0 - 3)^2}\\[1em] = \sqrt{4^2 + (- 3)^2}\\[1em] = \sqrt{16 + 9}\\[1em] = \sqrt{25}\\[1em] = 5 \text{ units} = ( 11 − 7 ) 2 + ( 0 − 3 ) 2 = 4 2 + ( − 3 ) 2 = 16 + 9 = 25 = 5 units
Hence, the distance between A(7, 3) and B(11, 0) is 5 units.
Calculate the distance between A(5, -3) and B on the y-axis whose ordinate is 9.
Answer
We know that any point on the y-axis has co-ordinates of the form (0, y).
The ordinate of point B is 9.
So, the point B is (0, 9).
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between A(5, -3) and B(0, 9):
= ( 0 − 5 ) 2 + ( 9 − ( − 3 ) ) 2 = ( − 5 ) 2 + 12 2 = 25 + 144 = 169 = 13 = \sqrt{(0 - 5)^2 + (9 - (-3))^2}\\[1em] = \sqrt{(-5)^2 + 12^2}\\[1em] = \sqrt{25 + 144}\\[1em] = \sqrt{169}\\[1em] = 13 = ( 0 − 5 ) 2 + ( 9 − ( − 3 ) ) 2 = ( − 5 ) 2 + 1 2 2 = 25 + 144 = 169 = 13
Hence, the distance between A(5, -3) and B(0, 9) is 13 units.
Find the point on y-axis whose distances from the points A(6, 7) and B(4, -3) are in the ratio 1 : 2.
Answer
Let the point on y-axis be P(0, y).
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between A(6, 7) and P(0, y):
= ( 0 − 6 ) 2 + ( y − 7 ) 2 = ( − 6 ) 2 + ( y − 7 ) 2 = 36 + y 2 + 49 − 14 y = y 2 − 14 y + 85 = \sqrt{(0 - 6)^2 + (y - 7)^2}\\[1em] = \sqrt{(- 6)^2 + (y - 7)^2}\\[1em] = \sqrt{36 + y^2 + 49 - 14y}\\[1em] = \sqrt{y^2 - 14y + 85}\\[1em] = ( 0 − 6 ) 2 + ( y − 7 ) 2 = ( − 6 ) 2 + ( y − 7 ) 2 = 36 + y 2 + 49 − 14 y = y 2 − 14 y + 85
Distance between B(4, -3) and P(0, y):
= ( 0 − 4 ) 2 + ( y − ( − 3 ) ) 2 = ( − 4 ) 2 + ( y + 3 ) 2 = 16 + y 2 + 9 + 6 y = y 2 + 6 y + 25 = \sqrt{(0 - 4)^2 + (y - (-3))^2}\\[1em] = \sqrt{(- 4)^2 + (y + 3)^2}\\[1em] = \sqrt{16 + y^2 + 9 + 6y}\\[1em] = \sqrt{y^2 + 6y + 25}\\[1em] = ( 0 − 4 ) 2 + ( y − ( − 3 ) ) 2 = ( − 4 ) 2 + ( y + 3 ) 2 = 16 + y 2 + 9 + 6 y = y 2 + 6 y + 25
It is given that the point on y-axis whose distances from the points A(6, 7) and B(4, -3) are in the ratio 1 : 2.
⇒ P A P B = 1 2 ⇒ y 2 − 14 y + 85 y 2 + 6 y + 25 = 1 2 ⇒ y 2 − 14 y + 85 y 2 + 6 y + 25 = 1 4 ⇒ 4 ( y 2 − 14 y + 85 ) = y 2 + 6 y + 25 ⇒ 4 y 2 − 56 y + 340 = y 2 + 6 y + 25 ⇒ 4 y 2 − 56 y + 340 − y 2 − 6 y − 25 = 0 ⇒ 3 y 2 − 62 y + 315 = 0 ⇒ y = 62 + 3844 − 3780 6 or 62 − 3844 − 3780 6 ⇒ y = 62 + 64 6 or 62 − 64 6 ⇒ y = 62 + 8 6 or 62 − 8 6 ⇒ y = 70 6 or 54 6 ⇒ y = 35 3 or 9 ⇒\dfrac{PA}{PB} = \dfrac{1}{2}\\[1em] ⇒\dfrac{\sqrt{y^2 - 14y + 85}}{\sqrt{y^2 + 6y + 25}} = \dfrac{1}{2}\\[1em] ⇒\dfrac{y^2 - 14y + 85}{y^2 + 6y + 25} = \dfrac{1}{4}\\[1em] ⇒4(y^2 - 14y + 85) = y^2 + 6y + 25\\[1em] ⇒ 4y^2 - 56y + 340 = y^2 + 6y + 25\\[1em] ⇒ 4y^2 - 56y + 340 - y^2 - 6y - 25 = 0\\[1em] ⇒ 3y^2 - 62y + 315 = 0\\[1em] ⇒ y = \dfrac{62 + \sqrt{3844 - 3780}}{6} \text { or } \dfrac{62 - \sqrt{3844 - 3780}}{6}\\[1em] ⇒ y = \dfrac{62 + \sqrt{64}}{6} \text { or } \dfrac{62 - \sqrt{64}}{6}\\[1em] ⇒ y = \dfrac{62 + 8}{6} \text { or } \dfrac{62 - 8}{6}\\[1em] ⇒ y = \dfrac{70}{6} \text { or } \dfrac{54}{6}\\[1em] ⇒ y = \dfrac{35}{3} \text { or } 9 \\[1em] ⇒ PB P A = 2 1 ⇒ y 2 + 6 y + 25 y 2 − 14 y + 85 = 2 1 ⇒ y 2 + 6 y + 25 y 2 − 14 y + 85 = 4 1 ⇒ 4 ( y 2 − 14 y + 85 ) = y 2 + 6 y + 25 ⇒ 4 y 2 − 56 y + 340 = y 2 + 6 y + 25 ⇒ 4 y 2 − 56 y + 340 − y 2 − 6 y − 25 = 0 ⇒ 3 y 2 − 62 y + 315 = 0 ⇒ y = 6 62 + 3844 − 3780 or 6 62 − 3844 − 3780 ⇒ y = 6 62 + 64 or 6 62 − 64 ⇒ y = 6 62 + 8 or 6 62 − 8 ⇒ y = 6 70 or 6 54 ⇒ y = 3 35 or 9
Hence, the required points on y-axis are (0, 9) and ( 0 , 35 3 ) \Big(0, \dfrac{35}{3}\Big) ( 0 , 3 35 ) .
The distances of point P(x, y) from the points A(1, -3) and B(-2, 2) are in the ratio 2 : 3.
Show that : 5x2 + 5y2 - 34x + 70y + 58 = 0.
Answer
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
Distance between A(1, -3) and P(x, y):
= ( x − 1 ) 2 + ( y − ( − 3 ) ) 2 = ( x − 1 ) 2 + ( y + 3 ) 2 = x 2 + 1 − 2 x + y 2 + 9 + 6 y = x 2 − 2 x + y 2 + 10 + 6 y = \sqrt{(x - 1)^2 + (y - (-3))^2}\\[1em] = \sqrt{(x - 1)^2 + (y + 3)^2}\\[1em] = \sqrt{x^2 + 1 - 2x + y^2 + 9 + 6y}\\[1em] = \sqrt{x^2 - 2x + y^2 + 10 + 6y}\\[1em] = ( x − 1 ) 2 + ( y − ( − 3 ) ) 2 = ( x − 1 ) 2 + ( y + 3 ) 2 = x 2 + 1 − 2 x + y 2 + 9 + 6 y = x 2 − 2 x + y 2 + 10 + 6 y
Distance between B(-2, 2) and P(x, y):
= ( x − ( − 2 ) ) 2 + ( y − 2 ) 2 = ( x + 2 ) 2 + ( y − 2 ) 2 = x 2 + 4 + 4 x + y 2 + 4 − 4 y = x 2 + 4 x + y 2 + 8 − 4 y = \sqrt{(x - (-2))^2 + (y - 2)^2}\\[1em] = \sqrt{(x + 2)^2 + (y - 2)^2}\\[1em] = \sqrt{x^2 + 4 + 4x + y^2 + 4 - 4y}\\[1em] = \sqrt{x^2 + 4x + y^2 + 8 - 4y}\\[1em] = ( x − ( − 2 ) ) 2 + ( y − 2 ) 2 = ( x + 2 ) 2 + ( y − 2 ) 2 = x 2 + 4 + 4 x + y 2 + 4 − 4 y = x 2 + 4 x + y 2 + 8 − 4 y
It is given that the distances of point P(x, y) from the points A(1, -3) and B(-2, 2) are in the ratio 2 : 3.
⇒ P A P B = 2 3 ⇒ x 2 − 2 x + y 2 + 10 + 6 y x 2 + 4 x + y 2 + 8 − 4 y = 2 3 ⇒ x 2 − 2 x + y 2 + 10 + 6 y x 2 + 4 x + y 2 + 8 − 4 y = 4 9 ⇒ 9 ( x 2 − 2 x + y 2 + 10 + 6 y ) = 4 ( x 2 + 4 x + y 2 + 8 − 4 y ) ⇒ 9 x 2 − 18 x + 9 y 2 + 90 + 54 y = 4 x 2 + 16 x + 4 y 2 + 32 − 16 y ⇒ 9 x 2 − 18 x + 9 y 2 + 90 + 54 y − 4 x 2 − 16 x − 4 y 2 − 32 + 16 y = 0 ⇒ 5 x 2 + 5 y 2 − 34 x + 70 y + 58 = 0 ⇒\dfrac{PA}{PB} = \dfrac{2}{3}\\[1em] ⇒\dfrac{\sqrt{x^2 - 2x + y^2 + 10 + 6y}}{\sqrt{x^2 + 4x + y^2 + 8 - 4y}} = \dfrac{2}{3}\\[1em] ⇒\dfrac{x^2 - 2x + y^2 + 10 + 6y}{x^2 + 4x + y^2 + 8 - 4y} = \dfrac{4}{9}\\[1em] ⇒9(x^2 - 2x + y^2 + 10 + 6y) = 4(x^2 + 4x + y^2 + 8 - 4y)\\[1em] ⇒9x^2 - 18x + 9y^2 + 90 + 54y = 4x^2 + 16x + 4y^2 + 32 - 16y\\[1em] ⇒9x^2 - 18x + 9y^2 + 90 + 54y - 4x^2 - 16x - 4y^2 - 32 + 16y = 0\\[1em] ⇒ 5x^2 + 5y^2 - 34x + 70y + 58 = 0\\[1em] ⇒ PB P A = 3 2 ⇒ x 2 + 4 x + y 2 + 8 − 4 y x 2 − 2 x + y 2 + 10 + 6 y = 3 2 ⇒ x 2 + 4 x + y 2 + 8 − 4 y x 2 − 2 x + y 2 + 10 + 6 y = 9 4 ⇒ 9 ( x 2 − 2 x + y 2 + 10 + 6 y ) = 4 ( x 2 + 4 x + y 2 + 8 − 4 y ) ⇒ 9 x 2 − 18 x + 9 y 2 + 90 + 54 y = 4 x 2 + 16 x + 4 y 2 + 32 − 16 y ⇒ 9 x 2 − 18 x + 9 y 2 + 90 + 54 y − 4 x 2 − 16 x − 4 y 2 − 32 + 16 y = 0 ⇒ 5 x 2 + 5 y 2 − 34 x + 70 y + 58 = 0
Hence, proved :- 5x2 + 5y2 - 34x + 70y + 58 = 0.
The points A(3, 0), B(a, -2) and C(4, -1) are the vertices of triangle ABC right-angled at vertex A. Find the value of a.
Answer
Distance between the given points = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2
The length of AC:
= ( 4 − 3 ) 2 + ( ( − 1 ) − 0 ) 2 = 1 2 + ( − 1 ) 2 = 1 + 1 = 2 = \sqrt{(4 - 3)^2 + ((-1) - 0)^2}\\[1em] = \sqrt{1^2 + (-1)^2}\\[1em] = \sqrt{1 + 1}\\[1em] = \sqrt{2} = ( 4 − 3 ) 2 + (( − 1 ) − 0 ) 2 = 1 2 + ( − 1 ) 2 = 1 + 1 = 2
The length of BC:
= ( a − 4 ) 2 + ( ( − 2 ) − ( − 1 ) ) 2 = ( a − 4 ) 2 + ( − 1 ) 2 = a 2 + 16 − 8 a + 1 = a 2 − 8 a + 17 = \sqrt{(a - 4)^2 + ((-2) - (-1))^2}\\[1em] = \sqrt{(a - 4)^2 + (-1)^2}\\[1em] = \sqrt{a^2 + 16 - 8a + 1}\\[1em] = \sqrt{a^2 - 8a + 17} = ( a − 4 ) 2 + (( − 2 ) − ( − 1 ) ) 2 = ( a − 4 ) 2 + ( − 1 ) 2 = a 2 + 16 − 8 a + 1 = a 2 − 8 a + 17
The length of AB:
= ( a − 3 ) 2 + ( ( − 2 ) − 0 ) 2 = ( a − 3 ) 2 + ( − 2 ) 2 = a 2 + 9 − 6 a + 4 = a 2 − 6 a + 13 = \sqrt{(a - 3)^2 + ((-2) - 0)^2}\\[1em] = \sqrt{(a - 3)^2 + (-2)^2}\\[1em] = \sqrt{a^2 + 9 - 6a + 4}\\[1em] = \sqrt{a^2 - 6a + 13} = ( a − 3 ) 2 + (( − 2 ) − 0 ) 2 = ( a − 3 ) 2 + ( − 2 ) 2 = a 2 + 9 − 6 a + 4 = a 2 − 6 a + 13
Using Pythagoras theorem in triangle ABC,
BC2 = AB2 + AC2
⇒ ( 2 ) 2 + ( a 2 − 6 a + 13 ) 2 = ( a 2 − 8 a + 17 ) 2 ⇒ 2 + a 2 − 6 a + 13 = a 2 − 8 a + 17 ⇒ a 2 − 6 a + 15 = a 2 − 8 a + 17 ⇒ − 6 a + 15 + 8 a − 17 = 0 ⇒ 2 a − 2 = 0 ⇒ 2 a = 2 ⇒ a = 2 2 ⇒ a = 1 ⇒ (\sqrt2)^2 + (\sqrt{a^2 - 6a + 13})^2 = (\sqrt{a^2 - 8a + 17})^2\\[1em] ⇒ 2 + a^2 - 6a + 13 = a^2 - 8a + 17\\[1em] ⇒ a^2 - 6a + 15 = a^2 - 8a + 17 \\[1em] ⇒ - 6a + 15 + 8a - 17 = 0\\[1em] ⇒ 2a - 2 = 0\\[1em] ⇒ 2a = 2 \\[1em] ⇒ a = \dfrac{2}{2} \\[1em] ⇒ a = 1 ⇒ ( 2 ) 2 + ( a 2 − 6 a + 13 ) 2 = ( a 2 − 8 a + 17 ) 2 ⇒ 2 + a 2 − 6 a + 13 = a 2 − 8 a + 17 ⇒ a 2 − 6 a + 15 = a 2 − 8 a + 17 ⇒ − 6 a + 15 + 8 a − 17 = 0 ⇒ 2 a − 2 = 0 ⇒ 2 a = 2 ⇒ a = 2 2 ⇒ a = 1
Hence, the value of a = 1.