The given figure, shows an isosceles triangle with angle ABC = 90°, the measure of angle BAC is :
30°
45°
60°
40°
Answer
Given that Δ ABC is isosceles, ∠ BAC = ∠ BCA.
Let ∠BAC = ∠BCA = x.
Using the angle sum property of a triangle, which states that the sum of all angles in a triangle is 180°:
⇒ ∠BAC + ∠BCA + ∠ABC = 180°
⇒ x + x + 90° = 180°
⇒ 2x + 90° = 180°
⇒ 2x = 180° - 90°
⇒ 2x = 90°
⇒ x = 90 ° 2 \dfrac{90°}{2} 2 90°
⇒ x = 45°
Hence, ∠BAC = 45°.
Hence, option 2 is the correct option.
In the given triangle, ∠ACB = 90° and angle CAB = 60°, the value of cot ∠ABC is :
2
1
3 {\sqrt3} 3
1 3 \dfrac{1}{\sqrt3} 3 1
Answer
Let ∠ABC be x.
Using the angle sum property of a triangle, which states that the sum of all angles in a triangle is 180°:
⇒ ∠CAB + ∠ ACB + ∠ ABC = 180°
⇒ 60° + 90° + x = 180°
⇒ 150° + x = 180°
⇒ x = 180° - 150°
⇒ x = 30°
Now, cot ∠ABC = cot 30°
= 3 \sqrt3 3
Hence, option 3 is the correct option.
In the given triangle, the length of AB is :
4 2 4{\sqrt2} 4 2
4 m
8 m
6 m
Answer
Let ∠BAC be x.
Using the angle sum property of a triangle, which states that the sum of all angles in a triangle is 180°:
⇒ ∠BAC + ∠BCA + ∠ABC = 180°
⇒ x + 45° + 90° = 180°
⇒ x + 135° = 180°
⇒ x = 180° - 135°
⇒ x = 45°
Thus, ∠BAC = ∠BCA = 45°. Therefore, Δ ABC is an isosceles triangle, meaning AB = BC = 8 m.
Hence, option 3 is the correct option.
From the information given in the triangle shown below, the length of CD is :
(take 3 {\sqrt3} 3 = 1.732)
(i) 7.32 m
(ii) 27.32 m
(iii) 10 m
(iv) 17.32 m
Answer
In Δ ABD,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A B B D ⇒ 1 = 10 B D ⇒ B D = 10 m \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AB}{BD}\\[1em] ⇒ 1 = \dfrac{10}{BD}\\[1em] ⇒ BD = 10 m tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = B D A B ⇒ 1 = B D 10 ⇒ B D = 10 m
In Δ ABC,
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = A B B C ⇒ 1 1.732 = 10 B C ⇒ B C = 10 × 1.732 m ⇒ B C = 17.32 m \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{BC}\\[1em] ⇒ \dfrac{1}{1.732} = \dfrac{10}{BC}\\[1em] ⇒ BC = 10 \times 1.732 m\\[1em] ⇒ BC = 17.32 m tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = BC A B ⇒ 1.732 1 = BC 10 ⇒ BC = 10 × 1.732 m ⇒ BC = 17.32 m
As, BC = BD + CD
⇒ 17.32 = 10 + CD
⇒ CD = 17.32 - 10
⇒ CD = 7.32
Hence, option 1 is the correct option.
In the given triangle, the length of AB is :
160 cm
120 cm
60 cm
40 cm
Answer
Let AC = x. Therefore, DC = x.
In Δ ABC,
cos 60° = B a s e H y p o t e n u s e ⇒ 1 2 = B C x ⇒ B C = x 2 \text{cos 60°} = \dfrac{Base}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{BC}{x}\\[1em] ⇒ BC = \dfrac{x}{2} cos 60° = Hy p o t e n u se B a se ⇒ 2 1 = x BC ⇒ BC = 2 x
sin 60° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 3 2 = A B x ⇒ A B = x 3 2 \text{sin 60°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{AB}{x}\\[1em] ⇒ AB = \dfrac{x\sqrt3}{2} sin 60° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 3 = x A B ⇒ A B = 2 x 3
B D = B C + C D ⇒ B D = x 2 + x ⇒ B D = x + 2 x 2 ⇒ B D = 3 x 2 BD = BC + CD\\[1em] ⇒ BD = \dfrac{x}{2} + x\\[1em] ⇒ BD = \dfrac{x + 2x}{2}\\[1em] ⇒ BD = \dfrac{3x}{2} B D = BC + C D ⇒ B D = 2 x + x ⇒ B D = 2 x + 2 x ⇒ B D = 2 3 x
In Δ ABD, according to Pythagoras theorem,
⇒ AD2 = BD2 + AB2 (∵ AD is hypotenuse)
⇒ 80 2 = ( 3 x 2 ) 2 + ( 3 x 2 ) 2 ⇒ 6400 = 9 x 2 4 + 3 x 2 4 ⇒ 6400 = 9 x 2 + 3 x 2 4 ⇒ 6400 = 12 x 2 4 ⇒ 6400 = 3 x 2 ⇒ x 2 = 6400 3 ⇒ x = 6400 3 ⇒ x = 80 3 ⇒ 80^2 = \Big(\dfrac{3x}{2}\Big)^2 + \Big(\dfrac{\sqrt3x}{2}\Big)^2 \\[1em] ⇒ 6400 = \dfrac{9x^2}{4} + \dfrac{3x^2}{4} \\[1em] ⇒ 6400 = \dfrac{9x^2 + 3x^2}{4}\\[1em] ⇒ 6400 = \dfrac{12x^2}{4}\\[1em] ⇒ 6400 = 3x^2\\[1em] ⇒ x^2 = \dfrac{6400}{3}\\[1em] ⇒ x = \sqrt\dfrac{6400}{3}\\[1em] ⇒ x = \dfrac{80}{\sqrt3} ⇒ 8 0 2 = ( 2 3 x ) 2 + ( 2 3 x ) 2 ⇒ 6400 = 4 9 x 2 + 4 3 x 2 ⇒ 6400 = 4 9 x 2 + 3 x 2 ⇒ 6400 = 4 12 x 2 ⇒ 6400 = 3 x 2 ⇒ x 2 = 3 6400 ⇒ x = 3 6400 ⇒ x = 3 80
Substituting the value of x in AB,
A B = x 3 2 ⇒ A B = 80 3 × 3 2 ⇒ A B = 80 3 × 3 2 ⇒ A B = 40 m AB = \dfrac{x\sqrt3}{2}\\[1em] ⇒ AB = \dfrac{\dfrac{80}{\sqrt3} \times \sqrt3}{2}\\[1em] ⇒ AB = \dfrac{\dfrac{80}{\cancel {\sqrt3}} \times \cancel {\sqrt3}}{2}\\[1em] ⇒ AB = 40 m A B = 2 x 3 ⇒ A B = 2 3 80 × 3 ⇒ A B = 2 3 80 × 3 ⇒ A B = 40 m
Hence, option 4 is the correct option.
Find 'x', if :
Answer
sin 60° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 3 2 = 20 x ⇒ x = 20 × 2 3 ⇒ x = 40 3 ⇒ x = 23.1 \text{sin 60°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{20}{x}\\[1em] ⇒ x = \dfrac{20 \times 2}{\sqrt3}\\[1em] ⇒ x = \dfrac{40}{\sqrt3} \\[1em] ⇒ x = 23.1 sin 60° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 3 = x 20 ⇒ x = 3 20 × 2 ⇒ x = 3 40 ⇒ x = 23.1
Hence, x = 23.1.
Find 'x', if :
Answer
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = 20 x ⇒ x = 20 × 3 ⇒ x = 34.64 \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{20}{x}\\[1em] ⇒ x = 20 \times \sqrt3\\[1em] ⇒ x = 34.64 tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = x 20 ⇒ x = 20 × 3 ⇒ x = 34.64
Hence, x = 34.64.
Find 'x', if :
Answer
sin 45° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 1 2 = 20 x ⇒ x = 20 × 2 ⇒ x = 28.28 \text{sin 45°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{\sqrt2} = \dfrac{20}{x}\\[1em] ⇒ x = 20 \times \sqrt2\\[1em] ⇒ x = 28.28 sin 45° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 1 = x 20 ⇒ x = 20 × 2 ⇒ x = 28.28
Hence, x = 28.28.
Find angle 'A' if :
Answer
cos A = B a s e H y p o t e n u s e ⇒ cos A = 10 20 ⇒ cos A = 1 2 ⇒ cos A = cos 60° \text{cos A} = \dfrac{Base}{Hypotenuse}\\[1em] ⇒ \text{cos A} = \dfrac{10}{20}\\[1em] ⇒ \text{cos A} = \dfrac{1}{2}\\[1em] ⇒ \text{cos A} = \text{cos 60°} cos A = Hy p o t e n u se B a se ⇒ cos A = 20 10 ⇒ cos A = 2 1 ⇒ cos A = cos 60°
Hence, A = 60°.
Find angle 'A' if :
Answer
sin A = P e r p e n d i c u l a r H y p o t e n u s e ⇒ sin A = 10 2 10 ⇒ sin A = 1 2 ⇒ sin A = sin 45° \text{sin A} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \text{sin A} = \dfrac{\dfrac{10}{\sqrt2}}{10}\\[1em] ⇒ \text{sin A} = \dfrac{1}{\sqrt2}\\[1em] ⇒ \text{sin A} = \text{sin 45°} sin A = Hy p o t e n u se P er p e n d i c u l a r ⇒ sin A = 10 2 10 ⇒ sin A = 2 1 ⇒ sin A = sin 45°
Hence, A = 45°.
Find angle 'A' if :
Answer
tan A = P e r p e n d i c u l a r B a s e ⇒ tan A = 10 3 10 ⇒ tan A = 3 ⇒ tan A = tan 60° \text{tan A} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \text{tan A} = \dfrac{10\sqrt3}{10}\\[1em] ⇒ \text{tan A} = \sqrt3\\[1em] ⇒ \text{tan A} = \text{tan 60°} tan A = B a se P er p e n d i c u l a r ⇒ tan A = 10 10 3 ⇒ tan A = 3 ⇒ tan A = tan 60°
Hence, A = 60°.
Find angle 'x' if :
Answer
In Δ ABC,
tan 60° = P e r p e n d i c u l a r B a s e ⇒ 3 = C B A C ⇒ 3 = 30 A C ⇒ A C = 30 3 ⇒ A C = 30 × 3 3 ⇒ A C = 10 3 \text{tan 60°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \sqrt3 = \dfrac{CB}{AC}\\[1em] ⇒ \sqrt3 = \dfrac{30}{AC}\\[1em] ⇒ AC = \dfrac{30}{\sqrt3}\\[1em] ⇒ AC = \dfrac{30 \times \sqrt3}{3}\\[1em] ⇒ AC = 10\sqrt3 tan 60° = B a se P er p e n d i c u l a r ⇒ 3 = A C CB ⇒ 3 = A C 30 ⇒ A C = 3 30 ⇒ A C = 3 30 × 3 ⇒ A C = 10 3
In Δ ADC,
sin x = P e r p e n d i c u l a r H y p o t e n u s e ⇒ sin x = A C A D ⇒ sin x = 10 3 20 ⇒ sin x = 3 2 ⇒ sin x = sin 60° \text{sin x} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \text{sin x} = \dfrac{AC}{AD}\\[1em] ⇒ \text{sin x} = \dfrac{10\sqrt3}{20}\\[1em] ⇒ \text{sin x} = \dfrac{\sqrt3}{2}\\[1em] ⇒ \text{sin x} = \text {sin 60°} sin x = Hy p o t e n u se P er p e n d i c u l a r ⇒ sin x = A D A C ⇒ sin x = 20 10 3 ⇒ sin x = 2 3 ⇒ sin x = sin 60°
Hence, x = 60°.
Find AD, if :
Answer
BE = CD = 50 m
ED = BC = 10 m
In Δ ABE,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A E B E ⇒ 1 = A E 50 ⇒ A E = 50 \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AE}{BE}\\[1em] ⇒ 1 = \dfrac{AE}{50}\\[1em] ⇒ AE = 50 tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = BE A E ⇒ 1 = 50 A E ⇒ A E = 50
AD = AE + ED
⇒ AD = 50 + 10 m
⇒ AD = 60 m
Hence, AD = 60 m.
Find AD, if :
Answer
Let AC = x. Therefore, BC = x.
In Δ ADC,
cos 60° = B a s e H y p o t e n u s e ⇒ 1 2 = C D x ⇒ C D = x 2 \text{cos 60°} = \dfrac{Base}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{CD}{x}\\[1em] ⇒ CD = \dfrac{x}{2}\\[1em] cos 60° = Hy p o t e n u se B a se ⇒ 2 1 = x C D ⇒ C D = 2 x
And,
sin 60° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 3 2 = A D x ⇒ A D = x 3 2 \text{sin 60°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{AD}{x}\\[1em] ⇒ AD = \dfrac{x\sqrt3}{2}\\[1em] sin 60° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 3 = x A D ⇒ A D = 2 x 3
BD = BC + CD ⇒ B D = x + x 2 ⇒ B D = 2 x + x 2 ⇒ B D = 3 x 2 \text{BD = BC + CD}\\[1em] ⇒ BD = x + \dfrac{x}{2}\\[1em] ⇒ BD = \dfrac{2x + x}{2}\\[1em] ⇒ BD = \dfrac{3x}{2} BD = BC + CD ⇒ B D = x + 2 x ⇒ B D = 2 2 x + x ⇒ B D = 2 3 x
In Δ ABD, according to Pythagoras theorem,
⇒ AB2 = BD2 + AD2 (∵ AB is hypotenuse)
⇒ 100 2 = ( 3 x 2 ) 2 + ( 3 x 2 ) 2 ⇒ 10000 = 9 x 2 4 + 3 x 2 4 ⇒ 10000 = 9 x 2 + 3 x 2 4 ⇒ 10000 = 12 x 2 4 ⇒ 10000 = 3 x 2 ⇒ x 2 = 10000 3 ⇒ x = 10000 3 ⇒ x = 100 3 ⇒ 100^2 = \Big(\dfrac{3x}{2}\Big)^2 + \Big(\dfrac{\sqrt3x}{2}\Big)^2 \\[1em] ⇒ 10000 = \dfrac{9x^2}{4} + \dfrac{3x^2}{4} \\[1em] ⇒ 10000 = \dfrac{9x^2 + 3x^2}{4}\\[1em] ⇒ 10000 = \dfrac{12x^2}{4}\\[1em] ⇒ 10000 = 3x^2\\[1em] ⇒ x^2 = \dfrac{10000}{3}\\[1em] ⇒ x = \sqrt\dfrac{10000}{3}\\[1em] ⇒ x = \dfrac{100}{\sqrt3} ⇒ 10 0 2 = ( 2 3 x ) 2 + ( 2 3 x ) 2 ⇒ 10000 = 4 9 x 2 + 4 3 x 2 ⇒ 10000 = 4 9 x 2 + 3 x 2 ⇒ 10000 = 4 12 x 2 ⇒ 10000 = 3 x 2 ⇒ x 2 = 3 10000 ⇒ x = 3 10000 ⇒ x = 3 100
Substituting the value of x in AD,
A D = x 3 2 ⇒ A D = 100 3 × 3 2 ⇒ A D = 100 3 × 3 2 ⇒ A D = 50 m AD = \dfrac{x\sqrt3}{2}\\[1em] ⇒ AD = \dfrac{\dfrac{100}{\sqrt3} \times \sqrt3}{2}\\[1em] ⇒ AD = \dfrac{\dfrac{100}{\cancel {\sqrt3}} \times \cancel {\sqrt3}}{2}\\[1em] ⇒ AD = 50 m A D = 2 x 3 ⇒ A D = 2 3 100 × 3 ⇒ A D = 2 3 100 × 3 ⇒ A D = 50 m
Hence, AD = 50 m.
Find the length of AD.
Given :
∠ABC = 60°, ∠DBC = 45° and BC = 40 cm.
Answer
In Δ BDC,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = D C B C ⇒ 1 = D C 40 ⇒ D C = 40 \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{DC}{BC}\\[1em] ⇒ 1 = \dfrac{DC}{40}\\[1em] ⇒ DC = 40 tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = BC D C ⇒ 1 = 40 D C ⇒ D C = 40
In Δ ABC,
tan 60° = P e r p e n d i c u l a r B a s e ⇒ 3 = A C B C ⇒ 3 = A C 40 ⇒ A C = 40 3 = 69.28 \text{tan 60°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \sqrt3 = \dfrac{AC}{BC}\\[1em] ⇒ \sqrt3 = \dfrac{AC}{40}\\[1em] ⇒ AC = 40\sqrt3 = 69.28 tan 60° = B a se P er p e n d i c u l a r ⇒ 3 = BC A C ⇒ 3 = 40 A C ⇒ A C = 40 3 = 69.28
AD = AC - DC
⇒ AD = 69.28 - 40 = 29.28 cm
Hence, AD = 29.28 cm.
Find lengths of diagonals AC and BD.
Given AB = 60 cm and ∠BAD = 60°.
Answer
ABCD is a rhombus as AB = BC = CD = DA and ∠ BAD = 60°.
Now in Δ ABD,
AB = AD (Sides of rhombus)
⇒ ∠ ABD = ∠ ADB (Angles opposite to equal side of Δ)
Let ∠ ABD = x.
According to the angle sum property,
∠ ABD + ∠ ADB + ∠ BAD = 180°
⇒ x + x + 60° = 180°
⇒ 2x + 60° = 180°
⇒ 2x = 180° - 60°
⇒ 2x = 120°
⇒ x = 120 ° 2 \dfrac{120°}{2} 2 120°
⇒ x = 60°
ABCD is a rhombus. So, diagonals AC and BD bisect each other at 90°.
AO = OC and BO = OD
In Δ AOD,
cos 60° = B a s e H y p o t e n u s e ⇒ 1 2 = O D 60 ⇒ O D = 60 2 = 30 \text{cos 60°} = \dfrac{Base}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{OD}{60}\\[1em] ⇒ OD = \dfrac{60}{2} = 30 cos 60° = Hy p o t e n u se B a se ⇒ 2 1 = 60 O D ⇒ O D = 2 60 = 30
And,
sin 60° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 3 2 = A O 60 ⇒ A O = 60 3 2 = 51.96 \text{sin 60°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{AO}{60}\\[1em] ⇒ AO = \dfrac{60\sqrt3}{2} = 51.96 sin 60° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 3 = 60 A O ⇒ A O = 2 60 3 = 51.96
AC = 2 x AO = 2 x 51.96 = 103.92 cm
BD = 2 x BO = 2 x 30 = 60 cm
Hence, AC = 103.92 cm and BD = 60 cm.
Find AB.
Answer
Draw a line FP parallel to CD such that FP = CD and FC = PD.
In Δ ACF,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = 20 A C ⇒ A C = 20 \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{20}{AC}\\[1em] ⇒ AC = 20 tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = A C 20 ⇒ A C = 20
In Δ DEB,
tan 60° = P e r p e n d i c u l a r B a s e ⇒ 3 = 30 B D ⇒ B D = 30 3 ⇒ B D = 30 × 3 3 × 3 ⇒ B D = 30 3 3 ⇒ B D = 10 3 = 17.32 \text{tan 60°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \sqrt3 = \dfrac{30}{BD}\\[1em] ⇒ BD = \dfrac{30}{\sqrt3}\\[1em] ⇒ BD = \dfrac{30 \times \sqrt3}{\sqrt3 \times \sqrt3}\\[1em] ⇒ BD = \dfrac{30\sqrt3}{3}\\[1em] ⇒ BD = 10\sqrt3 = 17.32 tan 60° = B a se P er p e n d i c u l a r ⇒ 3 = B D 30 ⇒ B D = 3 30 ⇒ B D = 3 × 3 30 × 3 ⇒ B D = 3 30 3 ⇒ B D = 10 3 = 17.32
As, FC = 20 and ED = 30
EP = ED - PD = ED - FC = 30 - 20 = 10 cm
In Δ EFP,
tan 60° = P e r p e n d i c u l a r B a s e ⇒ 3 = F P 10 ⇒ F P = 10 3 = 17.32 \text{tan 60°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \sqrt3 = \dfrac{FP}{10}\\[1em] ⇒ FP = 10 \sqrt3 = 17.32 tan 60° = B a se P er p e n d i c u l a r ⇒ 3 = 10 FP ⇒ FP = 10 3 = 17.32
Thus AB = AC + CD + BD
= 20 + 17.32 + 17.32
= 54.64
Hence, AB = 54.64.
In trapezium ABCD, as shown, AB // DC, AD = DC = BC = 20 cm and ∠A = 60°.
Find :
(i) length of AB
(ii) distance between AB and DC.
Answer
(i) Draw two perpendicular lines, DP and CM, from points D and C to AB, respectively. Since AB is parallel to CD, PMCD will form a rectangle.
In Δ APD,
cos 60° = B a s e H y p o t e n u s e \dfrac{Base}{Hypotenuse} Hy p o t e n u se B a se
⇒ 1 2 = A P A D \dfrac{1}{2} = \dfrac{AP}{AD} 2 1 = A D A P
⇒ 1 2 = A P 20 \dfrac{1}{2} = \dfrac{AP}{20} 2 1 = 20 A P
⇒ AP = 10
Now, Δ APD and Δ BMC,
DP = CM (Height of same quadrilateral)
AD = CB (Both are 20 cm)
∠ DPA = ∠ CMB
So, Δ APD ≅ Δ BMC (∵ RHS congruency)
And, by using corresponding sides of congruent triangle,
AP = MB = 10 cm
PM = DC = 20 cm
AB = AP + PM + MB
= 10 + 20 + 10 cm
= 40 cm
Hence, AB = 40 cm.
(ii) In Δ APD,
sin 60° = P e r p e n d i c u l a r H y p o t e n u s e \dfrac{Perpendicular}{Hypotenuse} Hy p o t e n u se P er p e n d i c u l a r
⇒ 3 2 = P D A D \dfrac{\sqrt3}{2} = \dfrac{PD}{AD} 2 3 = A D P D
⇒ 3 2 = P D 20 \dfrac{\sqrt3}{2} = \dfrac{PD}{20} 2 3 = 20 P D
⇒ PD = 10 3 \sqrt3 3 = 17.32 cm
Hence, PD = 17.32 cm.
Use the information given to find the length of AB.
Answer
In Δ APQ,
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = A Q A P ⇒ 1 3 = 10 A P ⇒ A P = 10 3 = 17.32 c m \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AQ}{AP}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{10}{AP}\\[1em] ⇒ AP = 10 \sqrt3 = 17.32 cm tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = A P A Q ⇒ 3 1 = A P 10 ⇒ A P = 10 3 = 17.32 c m
In Δ PBR,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = P B B R ⇒ 1 = P B 8 ⇒ P B = 8 c m \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{PB}{BR}\\[1em] ⇒ 1 = \dfrac{PB}{8}\\[1em] ⇒ PB = 8 cm tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = BR PB ⇒ 1 = 8 PB ⇒ PB = 8 c m
AB = AP + PB
= 17.32 + 8 cm
= 25.32 cm
Hence, AB = 25.32 cm.
The value of angle A is :
45°
30°
60°
none of these
Answer
From figure,
AB = BC ....................(1)
By formula,
tan θ = Perpendicular Base \dfrac{\text{Perpendicular}}{\text{Base}} Base Perpendicular
From figure,
⇒ tan A = B C A B \dfrac{BC}{AB} A B BC
⇒ tan A = A B A B \dfrac{AB}{AB} A B A B [from equation (1)]
⇒ tan A = 1
⇒ tan A = tan 45°
⇒ A = 45°.
Hence, option 1 is the correct option.
The length of AB is:
20 cm
10 (3 \sqrt{3} 3 - 1) cm
10 3 10\sqrt{3} 10 3 cm
10 ( 3 + 1 ) 10(\sqrt{3} + 1) 10 ( 3 + 1 ) cm
Answer
Since CD is perpendicular on AB.
By formula,
tan θ = Perpendicular Base \dfrac{\text{Perpendicular}}{\text{Base}} Base Perpendicular
From figure,
⇒ tan B = C D D B ⇒ tan 30° = 10 D B ⇒ 1 3 = 10 D B ⇒ D B = 10 3 . \Rightarrow \text{tan B} = \dfrac{CD}{DB}\\[1em] \Rightarrow \text{tan 30°} = \dfrac{10}{DB}\\[1em] \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{10}{DB}\\[1em] \Rightarrow DB = 10\sqrt{3}. ⇒ tan B = D B C D ⇒ tan 30° = D B 10 ⇒ 3 1 = D B 10 ⇒ D B = 10 3 .
As ΔACD is a right angled triangle,
⇒ tan A = C D A D ⇒ tan 45° = 10 A D ⇒ 1 = 10 A D ⇒ A D = 10. \Rightarrow \text{tan A} = \dfrac{CD}{AD} \\[1em] \Rightarrow \text{tan 45°} = \dfrac{10}{AD} \\[1em] \Rightarrow 1 = \dfrac{10}{AD} \\[1em] \Rightarrow AD = 10. ⇒ tan A = A D C D ⇒ tan 45° = A D 10 ⇒ 1 = A D 10 ⇒ A D = 10.
From figure,
AB = AD + DB = 10 + 10 3 = 10 ( 1 + 3 ) 10\sqrt{3} = 10(1 + \sqrt{3}) 10 3 = 10 ( 1 + 3 ) cm.
Hence, option 4 is the correct option.
The length of AB is:
(10 - 3 \sqrt{3} 3 ) cm
10(3 \sqrt{3} 3 - 1) cm
10 3 \sqrt{3} 3 cm
10(3 \sqrt{3} 3 + 1) cm
Answer
By formula,
tan θ = Perpendicular Base \dfrac{\text{Perpendicular}}{\text{Base}} Base Perpendicular
In triangle BCD,
⇒ tan B = C D B C ⇒ tan 45° = 10 B C ⇒ 1 = 10 B C ⇒ B C = 10. \Rightarrow \text{tan B} = \dfrac{CD}{BC}\\[1em] \Rightarrow \text{tan 45°} = \dfrac{10}{BC}\\[1em] \Rightarrow 1 = \dfrac{10}{BC}\\[1em] \Rightarrow BC = 10. ⇒ tan B = BC C D ⇒ tan 45° = BC 10 ⇒ 1 = BC 10 ⇒ BC = 10.
In triangle ACD,
⇒ tan A = C D A C ⇒ tan 30° = 10 A C ⇒ 1 3 = 10 A C ⇒ A C = 10 3 . \Rightarrow \text{tan A} = \dfrac{CD}{AC}\\[1em] \Rightarrow \text{tan 30°} = \dfrac{10}{AC}\\[1em] \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{10}{AC}\\[1em] \Rightarrow AC = 10\sqrt{3}. ⇒ tan A = A C C D ⇒ tan 30° = A C 10 ⇒ 3 1 = A C 10 ⇒ A C = 10 3 .
From figure,
⇒ AB = AC - BC
⇒ AB = 10 3 10\sqrt{3} 10 3 - 10 cm
⇒ AB = 10(3 \sqrt{3} 3 - 1) cm.
Hence, option 2 is the correct option.
Length of AB is equal to:
20 3 20\sqrt{3} 20 3 cm
20 3 \dfrac{20}{\sqrt{3}} 3 20 cm
20 cm
none of these
Answer
From figure,
DC = CA = x (let)
By formula,
tan θ = Perpendicular Base \dfrac{\text{Perpendicular}}{\text{Base}} Base Perpendicular
In triangle ABD,
⇒ tan D = A B D B ⇒ tan 30° = A B D C + C B ⇒ 1 3 = A B x + 20 ⇒ A B = x + 20 3 . \Rightarrow \text{tan D} = \dfrac{AB}{DB} \\[1em] \Rightarrow \text{tan 30°} = \dfrac{AB}{DC + CB} \\[1em] \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{AB}{x + 20} \\[1em] \Rightarrow AB = \dfrac{x + 20}{\sqrt{3}}. ⇒ tan D = D B A B ⇒ tan 30° = D C + CB A B ⇒ 3 1 = x + 20 A B ⇒ A B = 3 x + 20 .
Since ΔABC is a right angled triangle, using pythagoras theorem,
⇒ Hypotenuse2 = Base2 + Height2
⇒ AC2 = CB2 + AB2
⇒ x 2 = 20 2 + ( x + 20 3 ) 2 ⇒ x 2 = 400 + ( x 2 + 400 + 40 x 3 ) ⇒ x 2 = ( 1200 + x 2 + 400 + 40 x 3 ) ⇒ 3 x 2 = 1200 + x 2 + 400 + 40 x ⇒ 3 x 2 = 1600 + x 2 + 40 x ⇒ 3 x 2 − 1600 − x 2 − 40 x = 0 ⇒ 2 x 2 − 40 x − 1600 = 0 ⇒ 2 ( x 2 − 20 x − 800 ) = 0 ⇒ x 2 − 20 x − 800 = 0 ⇒ x 2 − 40 x + 20 x − 800 = 0 ⇒ x ( x − 40 ) + 20 ( x − 40 ) = 0 ⇒ ( x − 40 ) ( x + 20 ) = 0 ⇒ ( x − 40 ) = 0 or ( x + 20 ) = 0 ⇒ x = 40 or x = − 20. \Rightarrow x^2 = 20^2 + \Big(\dfrac{x + 20}{\sqrt{3}}\Big)^2\\[1em] \Rightarrow x^2 = 400 + \Big(\dfrac{x^2 + 400 + 40x}{3}\Big)\\[1em] \Rightarrow x^2 = \Big(\dfrac{1200 + x^2 + 400 + 40x}{3}\Big)\\[1em] \Rightarrow 3x^2 = 1200 + x^2 + 400 + 40x\\[1em] \Rightarrow 3x^2 = 1600 + x^2 + 40x\\[1em] \Rightarrow 3x^2 - 1600 - x^2 - 40x = 0\\[1em] \Rightarrow 2x^2 - 40x - 1600 = 0\\[1em] \Rightarrow 2(x^2 - 20x - 800) = 0 \\[1em] \Rightarrow x^2 - 20x - 800 = 0\\[1em] \Rightarrow x^2 - 40x + 20x - 800 = 0\\[1em] \Rightarrow x(x - 40) + 20(x - 40) = 0\\[1em] \Rightarrow (x - 40)(x + 20) = 0\\[1em] \Rightarrow (x - 40) = 0 \text{ or } (x + 20) = 0\\[1em] \Rightarrow x = 40 \text{ or } x = -20. ⇒ x 2 = 2 0 2 + ( 3 x + 20 ) 2 ⇒ x 2 = 400 + ( 3 x 2 + 400 + 40 x ) ⇒ x 2 = ( 3 1200 + x 2 + 400 + 40 x ) ⇒ 3 x 2 = 1200 + x 2 + 400 + 40 x ⇒ 3 x 2 = 1600 + x 2 + 40 x ⇒ 3 x 2 − 1600 − x 2 − 40 x = 0 ⇒ 2 x 2 − 40 x − 1600 = 0 ⇒ 2 ( x 2 − 20 x − 800 ) = 0 ⇒ x 2 − 20 x − 800 = 0 ⇒ x 2 − 40 x + 20 x − 800 = 0 ⇒ x ( x − 40 ) + 20 ( x − 40 ) = 0 ⇒ ( x − 40 ) ( x + 20 ) = 0 ⇒ ( x − 40 ) = 0 or ( x + 20 ) = 0 ⇒ x = 40 or x = − 20.
As length of side of triangles cannot be negative. So, x = 40 cm.
DC = AC = x = 40 cm.
A B = x + 20 3 = 40 + 20 3 = 60 3 = 20 3 AB = \dfrac{x + 20}{\sqrt{3}} = \dfrac{40 + 20}{\sqrt{3}} = \dfrac{60}{\sqrt{3}} = 20\sqrt{3} A B = 3 x + 20 = 3 40 + 20 = 3 60 = 20 3 cm.
Hence, option 1 is the correct option.
Statement 1: At a particular time, the length of the shadow of a 50 m tower is 50 3 50\sqrt{3} 50 3 m.
Statement 2: The sun's altitude is 30°.
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
In figure,
Let AB be the tower and BC be the shadow.
Join AC.
Given, AB = 50 m and BC = 50 3 \sqrt{3} 3 m.
As tower is perpendicular to its shadow, thus ΔABC is a right angled triangle,
By formula,
⇒ tan θ = Perpendicular Base ⇒ tan θ = 50 50 3 ⇒ tan θ = 1 3 ⇒ tan θ = tan 30° ⇒ θ = 30 ° . \Rightarrow \text{tan θ} = \dfrac{\text{Perpendicular}}{\text{Base}} \\[1em] \Rightarrow \text{tan θ} = \dfrac{50}{50\sqrt{3}} \\[1em] \Rightarrow \text{tan θ} = \dfrac{1}{\sqrt{3}} \\[1em] \Rightarrow \text{tan θ} = \text{tan 30°} \\[1em] \Rightarrow \text{θ} = 30°. ⇒ tan θ = Base Perpendicular ⇒ tan θ = 50 3 50 ⇒ tan θ = 3 1 ⇒ tan θ = tan 30° ⇒ θ = 30°.
∴ Both the statements are true.
Hence, option 1 is the correct option.
Statement 1: The distance between B and C = 5 m.
Statement 2: BC = 3 3 3\sqrt{3} 3 3 m.
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
By formula,
tan θ = Perpendicular Base \dfrac{\text{Perpendicular}}{\text{Base}} Base Perpendicular
In ΔABP,
⇒ tan P = A B B P ⇒ tan 60° = 3 B P ⇒ 3 = 3 B P ⇒ B P = 3 3 ⇒ B P = 3 cm . \Rightarrow \text{tan P} = \dfrac{AB}{BP}\\[1em] \Rightarrow \text{tan 60°} = \dfrac{3}{BP}\\[1em] \Rightarrow \sqrt{3} = \dfrac{3}{BP}\\[1em] \Rightarrow BP = \dfrac{3}{\sqrt{3}}\\[1em] \Rightarrow BP = \sqrt{3}\text{ cm}. ⇒ tan P = BP A B ⇒ tan 60° = BP 3 ⇒ 3 = BP 3 ⇒ BP = 3 3 ⇒ BP = 3 cm .
In ΔPCD,
⇒ tan P = D C P C ⇒ tan 30° = 2 P C ⇒ 1 3 = 2 P C ⇒ P C = 2 3 cm . \Rightarrow \text{tan P} = \dfrac{DC}{PC}\\[1em] \Rightarrow \text{tan 30°} = \dfrac{2}{PC}\\[1em] \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{2}{PC}\\[1em] \Rightarrow PC = 2 \sqrt{3}\text{ cm}. ⇒ tan P = PC D C ⇒ tan 30° = PC 2 ⇒ 3 1 = PC 2 ⇒ PC = 2 3 cm .
From figure,
BC = BP + PC = 3 + 2 3 = 3 3 = \sqrt{3} + 2\sqrt{3} = 3\sqrt{3} = 3 + 2 3 = 3 3 .
∴ Statement 1 is false, and statement 2 is true.
Hence, option 4 is the correct option.
Assertion (A): In rhombus ABCD, angle ABC = 120° and length of its each side is 20 cm. The length of diagonal BD = 20 cm.
Reason (R): In ΔAOB, cos 60° = OB 20 cm \dfrac{\text{OB}}{\text{20 cm}} 20 cm OB and BD = 2 x OB
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
Given, angle ABC = 120° and length of its each side = 20 cm.
As we know that, each diagonal divides the angles at its endpoints into two equal parts.
The diagonal BD bisects ∠ABC and ∠ADC.
⇒ ∠ABD = ∠CBD = 120 ° 2 \dfrac{120°}{2} 2 120° = 60°
By formula,
cos θ = Base Hypotenuse \dfrac{\text{Base}}{\text{Hypotenuse}} Hypotenuse Base
We know that,
Diagonals of rhombus are perpendicular to each other.
Thus, triangle AOB is a right angle triangle.
In ΔAOB,
⇒ cos B = OB AB ⇒ cos 60° = OB 20 ⇒ 1 2 = OB 20 ⇒ OB = 20 2 ⇒ OB = 10 \Rightarrow \text{cos B} = \dfrac{\text{OB}}{\text{AB}}\\[1em] \Rightarrow \text{cos 60°} = \dfrac{\text{OB}}{20}\\[1em] \Rightarrow \dfrac{1}{2} = \dfrac{\text{OB}}{20}\\[1em] \Rightarrow \text{OB} = \dfrac{20}{2}\\[1em] \Rightarrow \text{OB} = 10 ⇒ cos B = AB OB ⇒ cos 60° = 20 OB ⇒ 2 1 = 20 OB ⇒ OB = 2 20 ⇒ OB = 10
Since, diagonals of a rhombus bisect each other.
⇒ BD = 2 x OB
So, reason (R) is true.
⇒ BD = 2 x 10 cm = 20 cm
So, assertion (A) is true.
∴ Both A and R are true, and R is the correct reason for A.
Hence, option 3 is the correct option.
Assertion (A): The length of the line AB is 100 m.
Reason (R): tan 45° = 50 P B \dfrac{50}{PB} PB 50 ⇒ PB = 50 m and AB = 50 m + 50 m = 100 m
A is true, but R is false.
A is false, but R is true.
Both A and R are true, and R is the correct reason for A.
Both A and R are true, and R is the incorrect reason for A.
Answer
From figure,
⇒ BC = AP
⇒ AP = 50 m
By formula,
tan θ = Perpendicular Base \dfrac{\text{Perpendicular}}{\text{Base}} Base Perpendicular
In ΔPBC,
⇒ tan 45° = B C P B ⇒ 1 = 50 P B ⇒ P B = 50 m . \Rightarrow \text{tan 45°} = \dfrac{BC}{PB}\\[1em] \Rightarrow 1 = \dfrac{50}{PB}\\[1em] \Rightarrow PB = 50 \text{ m}. ⇒ tan 45° = PB BC ⇒ 1 = PB 50 ⇒ PB = 50 m .
From figure,
AB = AP + PB = 50 m + 50 m = 100 m.
∴ Both A and R are true, and R is the correct reason for A.
Hence, option 3 is the correct option.
Find the value of cot x.
Answer
In Δ ABC, according to Pythagoras theorem,
⇒ AC2 = BC2 + AB2 (∵ AC is hypotenuse)
⇒ 22 = BC2 + (3 \sqrt3 3 )2
⇒ 4 = BC2 + 3
⇒ BC2 = 4 - 3
⇒ BC2 = 1
⇒ BC = 1 \sqrt1 1
⇒ BC = 1
cot x = B a s e P e r p e n d i c u l a r cot x = C B A B cot x = 1 3 \text{cot x} = \dfrac{Base}{Perpendicular}\\[1em] \text{cot x} = \dfrac{CB}{AB}\\[1em] \text{cot x} = \dfrac{1}{\sqrt3} cot x = P er p e n d i c u l a r B a se cot x = A B CB cot x = 3 1
Hence, cot x = 1 3 \dfrac{1}{\sqrt3} 3 1 .
Find the length of AB.
Answer
DE = CB = 30 cm
In Δ ADE,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A E D E ⇒ 1 = A E 30 ⇒ A E = 30 c m \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AE}{DE}\\[1em] ⇒ 1 = \dfrac{AE}{30}\\[1em] ⇒ AE = 30 cm tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = D E A E ⇒ 1 = 30 A E ⇒ A E = 30 c m
In Δ DEB,
tan 60° = P e r p e n d i c u l a r B a s e ⇒ 3 = E B D E ⇒ 3 = E B 30 ⇒ E B = 30 3 = 51.96 \text{tan 60°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \sqrt3 = \dfrac{EB}{DE}\\[1em] ⇒ \sqrt3 = \dfrac{EB}{30}\\[1em] ⇒ EB = 30\sqrt3 = 51.96 tan 60° = B a se P er p e n d i c u l a r ⇒ 3 = D E EB ⇒ 3 = 30 EB ⇒ EB = 30 3 = 51.96
AB = AE + EB
= 30 + 51.96 cm
= 81.96 cm
Hence, AB = 81.96 cm.
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 2 cm each and are perpendicular to AB.
Given that ∠AED = 60° and ∠ACD = 45°; calculate :
(i) AB
(ii) AC
(iii) AE
Answer
(i) In Δ ADC,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A D D C ⇒ 1 = 2 D C ⇒ D C = 2 \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AD}{DC}\\[1em] ⇒ 1 = \dfrac{2}{DC}\\[1em] ⇒ DC = 2 tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = D C A D ⇒ 1 = D C 2 ⇒ D C = 2
DC = AB = 2 cm
Hence, AB = 2 cm.
(ii) In Δ ADC,
sin 45° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 1 2 = A D A C ⇒ 1 2 = 2 A C ⇒ A C = 2 2 = 2.83 c m \text{sin 45°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{\sqrt2} = \dfrac{AD}{AC}\\[1em] ⇒ \dfrac{1}{\sqrt2} = \dfrac{2}{AC}\\[1em] ⇒ AC = 2\sqrt2 = 2.83 cm sin 45° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 1 = A C A D ⇒ 2 1 = A C 2 ⇒ A C = 2 2 = 2.83 c m
Hence, AC = 2.83 cm.
(iii) In Δ ADE,
sin 60° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 3 2 = A D A E ⇒ 3 2 = 2 A E ⇒ A E = 4 3 = 2.31 c m \text{sin 60°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{AD}{AE}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{2}{AE}\\[1em] ⇒ AE = \dfrac{4}{\sqrt3} = 2.31 cm sin 60° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 3 = A E A D ⇒ 2 3 = A E 2 ⇒ A E = 3 4 = 2.31 c m
Hence, AC = 2.31 cm.
In the given figure, ∠B = 60°, AB = 16 cm and BC = 23 cm. Calculate :
(i) BE
(ii) AC.
Answer
(i) In Δ ABE,
cos 60° = B a s e H y p o t e n u s e ⇒ 1 2 = B E A B ⇒ 1 2 = B E 16 ⇒ B E = 16 2 = 8 c m \text{cos 60°} = \dfrac{Base}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{BE}{AB}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{BE}{16}\\[1em] ⇒ BE = \dfrac{16}{2} = 8 cm cos 60° = Hy p o t e n u se B a se ⇒ 2 1 = A B BE ⇒ 2 1 = 16 BE ⇒ BE = 2 16 = 8 c m
Hence, BE = 8 cm.
(ii) In Δ ABE, according to Pythagoras theorem,
⇒ AB2 = BE2 + EA2 (∵ AB is hypotenuse)
⇒ 162 = 82 + EA2
⇒ 256 = 64 + EA2
⇒ EA2 = 256 - 64
⇒ EA2 = 192
⇒ EA = 192 \sqrt{192} 192
⇒ EA = 8 3 \sqrt{3} 3
EC = BC - BE
= 23 - 8 cm
= 15 cm
In Δ AEC, according to Pythagoras theorem,
⇒ AC2 = AE2 + EC2 (∵ AC is hypotenuse)
⇒ AC2 = (8 3 \sqrt{3} 3 )2 + 152
⇒ AC2 = 192 + 225
⇒ AC2 = 417
⇒ AC = 417 \sqrt{417} 417 = 20.42 cm
Hence, AC = 20.42 cm.
Find :
(i) BC
(ii) AD
(iii) AC
Answer
(i) In Δ ABC,
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = A B B C ⇒ 1 3 = 12 B C ⇒ B C = 12 3 ⇒ B C = 20.78 \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{BC}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{12}{BC}\\[1em] ⇒ BC = 12 \sqrt3\\[1em] ⇒ BC = 20.78 tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = BC A B ⇒ 3 1 = BC 12 ⇒ BC = 12 3 ⇒ BC = 20.78
Hence, BC = 20.78 cm.
(ii) In Δ ABC, according to angle sum property,
∠ ABC + ∠ BAC + ∠ ACB = 180°
⇒ 90° + ∠ BAC + 30° = 180°
⇒ 120° + ∠ BAC = 180°
⇒ ∠ BAC = 180° - 120°
⇒ ∠ BAC = 60° = ∠ BAD
In Δ ABD,
cos 60° = B a s e H y p o t e n u s e ⇒ 1 2 = A D A B ⇒ 1 2 = A D 12 ⇒ A D = 12 2 ⇒ A D = 6 \text{cos 60°} = \dfrac{Base}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{AD}{AB}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{AD}{12}\\[1em] ⇒ AD = \dfrac{12}{2}\\[1em] ⇒ AD = 6 cos 60° = Hy p o t e n u se B a se ⇒ 2 1 = A B A D ⇒ 2 1 = 12 A D ⇒ A D = 2 12 ⇒ A D = 6
Hence, AD = 6 cm.
(iii) In Δ ABC,
sin 30° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 1 2 = A B A C ⇒ 1 2 = 12 A C ⇒ A C = 12 × 2 ⇒ A C = 24 \text{sin 30°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{AB}{AC}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{12}{AC}\\[1em] ⇒ AC = 12 \times 2\\[1em] ⇒ AC = 24 sin 30° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 1 = A C A B ⇒ 2 1 = A C 12 ⇒ A C = 12 × 2 ⇒ A C = 24
Hence, AC = 24 cm.
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if :
(i) AB is 3 {\sqrt3} 3 times of BC.
(ii) BC is 3 {\sqrt3} 3 times of AB.
Answer
(i) AB = 3 {\sqrt3} 3 BC
A B B C = 3 \dfrac{AB}{BC} = \sqrt3 BC A B = 3
cot θ = A B B C cot θ = 3 cot θ = cot 30° \text{cot θ} = \dfrac{AB}{BC}\\[1em] \text{cot θ} = \sqrt3\\[1em] \text{cot θ} = \text{cot 30°}\\[1em] cot θ = BC A B cot θ = 3 cot θ = cot 30°
So, θ = 30°
Hence, magnitude of angle A = 30°.
(ii) BC = 3 {\sqrt3} 3 AB
B C A B = 3 \dfrac{BC}{AB} = \sqrt3 A B BC = 3
tan θ = B C A B tan θ = 3 tan θ = tan 60° \text{tan θ} = \dfrac{BC}{AB}\\[1em] \text{tan θ} = \sqrt3\\[1em] \text{tan θ} = \text{tan 60°}\\[1em] tan θ = A B BC tan θ = 3 tan θ = tan 60°
So, θ = 60°
Hence, magnitude of angle A = 60°.
A ladder is placed against a vertical tower. If the ladder makes an angle of 30° with the ground and reaches upto a height of 15 m of the tower; find the length of the ladder.
Answer
AC is the ladder and BC is the tower.
In Δ ABC,
sin 30° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 1 2 = B C A C ⇒ 1 2 = 15 A C ⇒ A C = 15 × 2 ⇒ A C = 30 \text{sin 30°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{BC}{AC}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{15}{AC}\\[1em] ⇒ AC = 15 \times 2\\[1em] ⇒ AC = 30 sin 30° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 1 = A C BC ⇒ 2 1 = A C 15 ⇒ A C = 15 × 2 ⇒ A C = 30
Hence, length of the ladder = 30 m.
A kite is attached to a 100 m long string. Find the greatest height reached by the kite when its string makes an angle of 60° with the level ground.
Answer
AC is the string and BC is the height of kite.
In Δ ABC,
sin 60° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 3 2 = B C A C ⇒ 3 2 = B C 100 ⇒ B C = 3 × 100 2 ⇒ B C = 50 3 = 86.60 \text{sin 60°} = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{BC}{AC}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{BC}{100}\\[1em] ⇒ BC = \dfrac{\sqrt3 \times 100}{2}\\[1em] ⇒ BC = 50\sqrt3 = 86.60 sin 60° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 3 = A C BC ⇒ 2 3 = 100 BC ⇒ BC = 2 3 × 100 ⇒ BC = 50 3 = 86.60
Hence, the greatest height reached by the kite = 86.60 m.
Find AB and BC, if :
Answer
Let BC be x cm.
BD = BC + CD = (x + 20) cm
In Δ ABD,
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = A B B D ⇒ 1 3 = A B x + 20 ⇒ x + 20 = A B 3 . . . . . . . . . . . . . . ( 1 ) \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{BD}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{x + 20}\\[1em] ⇒ x + 20 = AB\sqrt3 ..............(1) tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = B D A B ⇒ 3 1 = x + 20 A B ⇒ x + 20 = A B 3 .............. ( 1 )
In Δ ABC,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A B B C ⇒ 1 = A B x ⇒ x = A B . . . . . . . . . . . . . . ( 2 ) \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AB}{BC}\\[1em] ⇒ 1 = \dfrac{AB}{x}\\[1em] ⇒ x = AB ..............(2) tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = BC A B ⇒ 1 = x A B ⇒ x = A B .............. ( 2 )
From equation (1),
AB + 20 = AB 3 \sqrt3 3
⇒ AB 3 \sqrt3 3 - AB = 20
⇒ AB(3 \sqrt3 3 - 1) = 20
⇒ AB(1.73 - 1) = 20
⇒ AB x (0.73) = 20
⇒ AB = 20 0.73 \dfrac{20}{0.73} 0.73 20
⇒ AB = 27.32 cm
And BC = x = AB = 27.32 cm
Hence, AB = BC = 27.32 cm.
Find AB and BC, if :
Answer
Let BC be x cm
BD = BC + CD = x + 20 cm
In Δ ABD,
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = A B B D ⇒ 1 3 = A B x + 20 ⇒ x + 20 = A B 3 . . . . . . . . . . . . . . ( 1 ) \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{BD}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{x + 20}\\[1em] ⇒ x + 20 = AB\sqrt3 ..............(1) tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = B D A B ⇒ 3 1 = x + 20 A B ⇒ x + 20 = A B 3 .............. ( 1 )
In Δ ABC,
tan 60° = P e r p e n d i c u l a r B a s e ⇒ 3 = A B B C ⇒ 3 = A B x ⇒ x = A B 3 . . . . . . . . . . . . . . ( 2 ) \text{tan 60°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \sqrt3 = \dfrac{AB}{BC}\\[1em] ⇒ \sqrt3 = \dfrac{AB}{x}\\[1em] ⇒ x = \dfrac{AB}{\sqrt3} ..............(2) tan 60° = B a se P er p e n d i c u l a r ⇒ 3 = BC A B ⇒ 3 = x A B ⇒ x = 3 A B .............. ( 2 )
From equation (1),
A B 3 + 20 = A B 3 ⇒ A B + 20 3 = 3 A B ⇒ 34.64 = 3 A B − A B ⇒ A B = 34.64 2 ⇒ A B = 17.32 \dfrac{AB}{\sqrt3} + 20 = AB\sqrt3\\[1em] ⇒ AB + 20\sqrt3 = 3AB\\[1em] ⇒ 34.64 = 3AB - AB\\[1em] ⇒ AB = \dfrac{34.64}{2}\\[1em] ⇒ AB = 17.32 3 A B + 20 = A B 3 ⇒ A B + 20 3 = 3 A B ⇒ 34.64 = 3 A B − A B ⇒ A B = 2 34.64 ⇒ A B = 17.32
From equation (2),
x = A B 3 \dfrac{AB}{\sqrt3} 3 A B
x = 17.32 3 \dfrac{17.32}{\sqrt3} 3 17.32
x = 10 cm
Hence, AB = 17.32 cm and BC = 10 cm.
Find AB and BC, if :
Answer
Let BC be x cm
BD = BC + CD = x + 20 cm
In Δ ABD,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A B B D ⇒ 1 = A B x + 20 ⇒ x + 20 = A B . . . . . . . . . . . . . . ( 2 ) \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AB}{BD}\\[1em] ⇒ 1 = \dfrac{AB}{x + 20}\\[1em] ⇒ x + 20 = AB ..............(2) tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = B D A B ⇒ 1 = x + 20 A B ⇒ x + 20 = A B .............. ( 2 )
In Δ ABC,
tan 60° = P e r p e n d i c u l a r B a s e ⇒ 3 = A B B C ⇒ 3 = A B x ⇒ x = A B 3 . . . . . . . . . . . . . . ( 2 ) \text{tan 60°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \sqrt3 = \dfrac{AB}{BC}\\[1em] ⇒ \sqrt3 = \dfrac{AB}{x}\\[1em] ⇒ x = \dfrac{AB}{\sqrt3} ..............(2) tan 60° = B a se P er p e n d i c u l a r ⇒ 3 = BC A B ⇒ 3 = x A B ⇒ x = 3 A B .............. ( 2 )
From equation (1),
A B 3 + 20 = A B ⇒ A B + 20 3 = 3 A B ⇒ 34.64 = 3 A B − A B ⇒ 34.64 = A B ( 1.73 − 1 ) ⇒ 34.64 = A B × ( 0.73 ) ⇒ A B = 34.64 0.73 ⇒ A B = 47.32 \dfrac{AB}{\sqrt3} + 20 = AB\\[1em] ⇒ AB + 20\sqrt3 = \sqrt3AB\\[1em] ⇒ 34.64 = \sqrt3AB - AB\\[1em] ⇒ 34.64 = AB(1.73 - 1)\\[1em] ⇒ 34.64 = AB \times (0.73)\\[1em] ⇒ AB = \dfrac{34.64}{0.73}\\[1em] ⇒ AB = 47.32 3 A B + 20 = A B ⇒ A B + 20 3 = 3 A B ⇒ 34.64 = 3 A B − A B ⇒ 34.64 = A B ( 1.73 − 1 ) ⇒ 34.64 = A B × ( 0.73 ) ⇒ A B = 0.73 34.64 ⇒ A B = 47.32
From equation (2),
x = A B 3 \dfrac{AB}{\sqrt3} 3 A B
x = 47.32 3 \dfrac{47.32}{\sqrt3} 3 47.32
x = 27.32 cm
Hence, AB = 47.32 cm and BC = 27.32 cm.
Find PQ, if AB = 150 m, ∠P = 30° and ∠Q = 45°
Answer
In Δ APB,
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = A B P B ⇒ 1 3 = 150 P B ⇒ P B = 150 3 = 259.80 \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{PB}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{150}{PB}\\[1em] ⇒ PB = 150\sqrt3 = 259.80 tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = PB A B ⇒ 3 1 = PB 150 ⇒ PB = 150 3 = 259.80
And, in Δ ABQ,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A B B Q ⇒ 1 = 150 B Q ⇒ B Q = 150 \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AB}{BQ}\\[1em] ⇒ 1 = \dfrac{150}{BQ}\\[1em] ⇒ BQ = 150 tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = BQ A B ⇒ 1 = BQ 150 ⇒ BQ = 150
As, PQ = PB + BQ
= 259.80 + 150 m
= 409.80 m
Hence, PQ = 409.80 m.
Find PQ, if AB = 150 m, ∠P = 30° and ∠Q = 45°
Answer
In Δ APB,
tan 30° = P e r p e n d i c u l a r B a s e ⇒ 1 3 = A B P B ⇒ 1 3 = 150 P B ⇒ P B = 150 3 = 259.80 \text{tan 30°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{AB}{PB}\\[1em] ⇒ \dfrac{1}{\sqrt3} = \dfrac{150}{PB}\\[1em] ⇒ PB = 150\sqrt3 = 259.80 tan 30° = B a se P er p e n d i c u l a r ⇒ 3 1 = PB A B ⇒ 3 1 = PB 150 ⇒ PB = 150 3 = 259.80
And, in Δ ABQ,
tan 45° = P e r p e n d i c u l a r B a s e ⇒ 1 = A B B Q ⇒ 1 = 150 B Q ⇒ B Q = 150 \text{tan 45°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ 1 = \dfrac{AB}{BQ}\\[1em] ⇒ 1 = \dfrac{150}{BQ}\\[1em] ⇒ BQ = 150 tan 45° = B a se P er p e n d i c u l a r ⇒ 1 = BQ A B ⇒ 1 = BQ 150 ⇒ BQ = 150
As, PQ = PB - BQ
= 259.80 - 150 m
= 109.80 m
Hence, PQ = 109.80 m.
If tan x° = 5 12 \text{tan x°} = \dfrac{5}{12} tan x° = 12 5 , tan y° = 3 4 \text{tan y°} = \dfrac{3}{4} tan y° = 4 3 and AB = 48 m; find the length of CD.
Answer
Given:
tan x° = 5 12 \text{tan x°} = \dfrac{5}{12} tan x° = 12 5 , tan y° = 3 4 \text{tan y°} = \dfrac{3}{4} tan y° = 4 3 and AB = 48 m
Let BC be x m.
AC = AB + BC = (48 + x) m.
In Δ ADC,
tan x° = P e r p e n d i c u l a r B a s e ⇒ 5 12 = D C A C ⇒ 5 12 = D C 48 + x ⇒ 12 CD = 240 + 5x . . . . . . . . . . . . . . . . ( 1 ) \text{tan x°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{5}{12} = \dfrac{DC}{AC}\\[1em] ⇒ \dfrac{5}{12} = \dfrac{DC}{48 + x}\\[1em] ⇒ \text{12 CD = 240 + 5x} ................(1) tan x° = B a se P er p e n d i c u l a r ⇒ 12 5 = A C D C ⇒ 12 5 = 48 + x D C ⇒ 12 CD = 240 + 5x ................ ( 1 )
And, in Δ BDC,
tan y° = P e r p e n d i c u l a r B a s e ⇒ 3 4 = D C B C ⇒ 3 4 = D C x ⇒ 4 C D = 3 x ⇒ x = 4 C D 3 . . . . . . . . . . . . . . . . ( 2 ) \text{tan y°} = \dfrac{Perpendicular}{Base}\\[1em] ⇒ \dfrac{3}{4} = \dfrac{DC}{BC}\\[1em] ⇒ \dfrac{3}{4} = \dfrac{DC}{x}\\[1em] ⇒ 4 CD = 3x \\[1em] ⇒ x = \dfrac{4 CD}{3}................(2) tan y° = B a se P er p e n d i c u l a r ⇒ 4 3 = BC D C ⇒ 4 3 = x D C ⇒ 4 C D = 3 x ⇒ x = 3 4 C D ................ ( 2 )
From equation (1),
240 + 5 × 4 C D 3 \times \dfrac{4CD}{3} × 3 4 C D = 12 CD
⇒ 240 + 20 C D 3 \dfrac{20CD}{3} 3 20 C D = 12 CD
⇒ 720 + 20 CD = 36 CD
⇒ 720 = 36 CD - 20 CD
⇒ 16 CD = 720
⇒ CD = 720 16 \dfrac{720}{16} 16 720
⇒ CD = 45
Hence, CD = 45 m.
The perimeter of a rhombus is 96 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
Answer
ABCD is a rhombus.
Perimeter of rhombus = 4 x side
Hence, side AB = BC = CD = DA = 96 4 \dfrac{96}{4} 4 96 = 24 cm
∠ ABC = 120°
As we know that diagonal of a rhombus bisect each other at 90°.
In Δ ABO,
∠ ABO = 120 ° 2 \dfrac{120°}{2} 2 120° = 60°
s i n 60 ° = P e r p e n d i c u l a r H y p o t e n u s e ⇒ 3 2 = A O A B ⇒ 3 2 = A O 24 ⇒ A O = 24 3 2 ⇒ A O = 20.78 sin 60° = \dfrac{Perpendicular}{Hypotenuse}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{AO}{AB}\\[1em] ⇒ \dfrac{\sqrt3}{2} = \dfrac{AO}{24}\\[1em] ⇒ AO = \dfrac{24 \sqrt3}{2}\\[1em] ⇒ AO = 20.78 s in 60° = Hy p o t e n u se P er p e n d i c u l a r ⇒ 2 3 = A B A O ⇒ 2 3 = 24 A O ⇒ A O = 2 24 3 ⇒ A O = 20.78
∴ AC = 2 x AO = 2 x 20.78 = 41.56 cm
Similarly,
cos 60° = B a s e H y p o t e n u s e ⇒ 1 2 = B O A B ⇒ 1 2 = B O 24 ⇒ B O = 24 2 ⇒ B O = 12 \text{cos 60°} = \dfrac{Base}{Hypotenuse}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{BO}{AB}\\[1em] ⇒ \dfrac{1}{2} = \dfrac{BO}{24}\\[1em] ⇒ BO = \dfrac{24}{2}\\[1em] ⇒ BO = 12 cos 60° = Hy p o t e n u se B a se ⇒ 2 1 = A B BO ⇒ 2 1 = 24 BO ⇒ BO = 2 24 ⇒ BO = 12
∴ BD = 2 x BO = 2 x 12 = 24 cm
Hence, the lengths of the diagonals are: AC = 41.56 cm and BD = 24 cm.