KnowledgeBoat Logo
|
OPEN IN APP

Chapter 21

Trigonometrical Ratios

Class - 9 Concise Mathematics Selina



Exercise 21(A)

Question 1(a)

If sin A=513A = \dfrac{5}{13} the value of tan A is :

  1. 512\dfrac{5}{12}

  2. 1213\dfrac{12}{13}

  3. 125\dfrac{12}{5}

  4. 1312\dfrac{13}{12}

Answer

Given:

sin A=513A = \dfrac{5}{13}

i.e., PerpendicularHypotenuse=513\dfrac{\text{Perpendicular}}{\text{Hypotenuse}} = \dfrac{5}{13}

∴ If length of BC = 5x unit, length of AC = 13x unit.

If sin A = 5/13 the value of tan A is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ (13x)2 = (5x)2 + BC2

⇒ 169x2 = 25x2 + BC2

⇒ BC2 = 169x2 - 25x2

⇒ BC2 = 144x2

⇒ BC = 144x2\sqrt{144x^2}

⇒ BC = 12x

tan A = PerpendicularBase\dfrac{\text{Perpendicular}}{\text{Base}}

= BCAB\dfrac{BC}{AB} = 5x12x\dfrac{5x}{12x} = 512\dfrac{5}{12}

Hence, option 1 is the correct option.

Question 1(b)

If tan A=35A = \dfrac{3}{5}, the value of sin2 A + cos2 A is :

  1. 925\dfrac{9}{25}

  2. 1

  3. 916\dfrac{9}{16}

  4. 169\dfrac{16}{9}

Answer

Given:

tan A=35A = \dfrac{3}{5}

i.e. PerpendicularBase=35\dfrac{Perpendicular}{Base} = \dfrac{3}{5}

∴ If length of BC = 3x unit, length of AB = 5x unit.

If tan A = 3/5, the value of sin2 A + cos2 A is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = (5x)2 + (3x)2

⇒ AC2 = 25x2 + 9x2

⇒ AC2 = 34x2

⇒ AC = 34x2\sqrt{34\text{x}^2}

⇒ AC = 34\sqrt{34} x

sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse} =

=BCAC=3x34x=334= \dfrac{BC}{AC} = \dfrac{3x}{\sqrt{34}x} = \dfrac{3}{\sqrt{34}}

cos A=BaseHypotenuseA = \dfrac{Base}{Hypotenuse}

=ABAC=5x34x=534= \dfrac{AB}{AC} = \dfrac{5x}{\sqrt{34}x} = \dfrac{5}{\sqrt{34}}

Now, sin2 A + cos2 A

=(334)2+(534)2=(934)+(2534)=(9+2534)=(3434)=1= \Big(\dfrac{3}{\sqrt{34}}\Big)^2 + \Big(\dfrac{5}{\sqrt{34}}\Big)^2\\[1em] = \Big(\dfrac{9}{34}\Big) + \Big(\dfrac{25}{34}\Big)\\[1em] = \Big(\dfrac{9 + 25}{34}\Big)\\[1em] = \Big(\dfrac{34}{34}\Big)\\[1em] = 1

Hence, option 2 is the correct option.

Question 1(c)

If cot A=512A = \dfrac{5}{12}, the value of cot2 A - cosec2 A is :

  1. 1

  2. 2

  3. -2

  4. -1

Answer

Given:

cot A=512A = \dfrac{5}{12}

i.e. BasePerpendicular=512\dfrac{Base}{Perpendicular} = \dfrac{5}{12}

∴ If length of AB = 5x unit, length of BC = 12x unit.

If cot A = 5/12, the value of cot2 A - cosec2 A is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = (5x)2 + (12x)2

⇒ AC2 = 25x2 + 144x2

⇒ AC2 = 1692

⇒ AC = 169x2\sqrt{169\text{x}^2}

⇒ AC = 13x

cosec A=HypotenusePerpendicularA = \dfrac{Hypotenuse}{Perpendicular}

ACBC=13x12x=1312\dfrac{AC}{BC} = \dfrac{13x}{12x} = \dfrac{13}{12}

Now, cot2 A - cosec2 A

=(512)2(1312)2=(25144)(169144)=(25169144)=(144144)=1= \Big(\dfrac{5}{12}\Big)^2 - \Big(\dfrac{13}{12}\Big)^2\\[1em] = \Big(\dfrac{25}{144}\Big) - \Big(\dfrac{169}{144}\Big)\\[1em] = \Big(\dfrac{25 - 169}{144}\Big)\\[1em] = \Big(\dfrac{- 144}{144}\Big)\\[1em] = - 1

Hence, option 4 is the correct option.

Question 1(d)

In the given figure (each observation is in cm) tan C is :

  1. 35\dfrac{3}{5}

  2. 43\dfrac{4}{3}

  3. 34\dfrac{3}{4}

  4. 45\dfrac{4}{5}

In the given figure (each observation is in cm) tan C is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

In Δ ABD,

AB2 = AD2 + BD2

⇒ (26)2 = AD2 + (10)2

⇒ 676 = AD2 + 100

⇒ AD2 = 676 - 100

⇒ AD2 = 576

⇒ AD = 576\sqrt{576}

⇒ AD = 24 cm

In the given figure (each observation is in cm) tan C is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ADC,

AC2 = AD2 + DC2

⇒ AC2 = (24)2 + (32)2

⇒ AC2 = 576 + 1,024

⇒ AC2 = 1,600

⇒ AC = 1,600\sqrt{1,600}

⇒ AC = 40 cm

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

= 2432\dfrac{24}{32}

= 34\dfrac{3}{4}

Hence, option 3 is the correct option.

Question 1(e)

If 5 cos A = 3, the value of sec2 A - tan2 A is :

  1. 1

  2. -1

  3. 34\dfrac{3}{4}

  4. 43\dfrac{4}{3}

Answer

Given:

5 cos A = 3

⇒ cos A = 35\dfrac{3}{5}

i.e., BaseHypotenuse=35\dfrac{\text{Base}}{\text{Hypotenuse}} = \dfrac{3}{5}

∴ If length of AB = 3x unit, length of AC = 5x unit.

If 5 cos A = 3, the value of sec2 A - tan2 A is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

AC2 = BC2 + AB2

⇒ (5x)2 = BC2 + (3x)2

⇒ 25x2 = BC2 + 9x2

⇒ BC2 = 25x2 - 9x2

⇒ BC2 = 16x2

⇒ BC = 16x2\sqrt{16\text{x}^2}

⇒ BC = 4x

sec A = HypotenuseBase\dfrac{Hypotenuse}{Base}

= ACBA=5x3x=53\dfrac{AC}{BA} = \dfrac{5x}{3x} = \dfrac{5}{3}

tan A = PerpendicularBase\dfrac{Perpendicular}{Base}

= BCBA=4x3x=43\dfrac{BC}{BA} = \dfrac{4x}{3x} = \dfrac{4}{3}

Now, sec2 A - tan2 A

=(53)2(43)2=259169=25169=99=1= \Big(\dfrac{5}{3}\Big)^2 - \Big(\dfrac{4}{3}\Big)^2\\[1em] = \dfrac{25}{9} - \dfrac{16}{9}\\[1em] = \dfrac{25 - 16}{9}\\[1em] = \dfrac{9}{9}\\[1em] = 1

Hence, option 1 is the correct option.

Question 2

From the following figure, find the values of :

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) sin A

(ii) cos A

(iii) cot A

(iv) sec C

(v) cosec C

(vi) tan C.

Answer

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = 32 + 42

⇒ AC2 = 9 + 16

⇒ AC2 = 25

⇒ AC = 25\sqrt{25}

⇒ AC = 5

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=CBAC=45= \dfrac{CB}{AC}\\[1em] = \dfrac{4}{5}\\[1em]

Hence, sin A=45A = \dfrac{4}{5}.

(ii) cos A=BaseHypotenuseA = \dfrac{Base}{Hypotenuse}

=ABAC=35= \dfrac{AB}{AC}\\[1em] = \dfrac{3}{5}\\[1em]

Hence, cos A=35A = \dfrac{3}{5}.

(iii) cot A=BasePerpendicularA = \dfrac{Base}{Perpendicular}

=ABBC=34= \dfrac{AB}{BC}\\[1em] = \dfrac{3}{4}\\[1em]

Hence, cot A=34A = \dfrac{3}{4}.

(iv) sec C=HypotenuseBaseC = \dfrac{Hypotenuse}{Base}

=ACAB=54=114= \dfrac{AC}{AB}\\[1em] = \dfrac{5}{4}\\[1em] = 1\dfrac{1}{4}\\[1em]

Hence, sec A=54=114A = \dfrac{5}{4} = 1\dfrac{1}{4}.

(v) cosec C=HypotenusePerpendicularC = \dfrac{Hypotenuse}{Perpendicular}

=ACAB=53=123= \dfrac{AC}{AB}\\[1em] = \dfrac{5}{3}\\[1em] = 1\dfrac{2}{3}\\[1em]

Hence, cosec C=53=123C = \dfrac{5}{3} = 1\dfrac{2}{3}.

(vi) tan C=PerpendicularBaseC = \dfrac{Perpendicular}{Base}

=ABBC=34= \dfrac{AB}{BC}\\[1em] = \dfrac{3}{4}\\[1em]

Hence, tan C=34C = \dfrac{3}{4}.

Question 3

From the following figure, find the values of :

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) cos B

(ii) tan C

(iii) sin2B + cos2B

(iv) sin B.cos C + cos B.sin C

Answer

In Δ BAC,

⇒ BC2 = AB2 + AC2 (∵ BC is hypotenuse)

⇒ (17)2 = (8)2 + AC2

⇒ 289 = 64 + AC2

⇒ AC2 = 289 - 64

⇒ AC2 = 225

⇒ AC = 225\sqrt{225}

⇒ AC = 15

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) cos B=BaseHypotenuseB = \dfrac{Base}{Hypotenuse}

=ABBC=817= \dfrac{AB}{BC}\\[1em] = \dfrac{8}{17}

Hence, cos B=817B = \dfrac{8}{17}.

(ii) tan C=PerpendicularBaseC = \dfrac{Perpendicular}{Base}

=ABAC=815= \dfrac{AB}{AC}\\[1em] = \dfrac{8}{15}\\[1em]

Hence, tan C=815C = \dfrac{8}{15}.

(iii) sin2B + cos2B

=(PerpendicularHypotenuse)2+(BaseHypotenuse)2=(ACBC)2+(ABBC)2=(1517)2+(817)2=225289+64289=225+64289=289289=1= \Big(\dfrac{Perpendicular}{Hypotenuse}\Big)^2 + \Big(\dfrac{Base}{Hypotenuse}\Big)^2\\[1em] = \Big(\dfrac{AC}{BC}\Big)^2 + \Big(\dfrac{AB}{BC}\Big)^2\\[1em] = \Big(\dfrac{15}{17}\Big)^2 + \Big(\dfrac{8}{17}\Big)^2\\[1em] = \dfrac{225}{289} + \dfrac{64}{289}\\[1em] = \dfrac{225 + 64}{289}\\[1em] = \dfrac{289}{289}\\[1em] = 1

Hence, sin2B + cos2B = 1.

(iv) sin B.cos C + cos B.sin C

=PerpendicularHypotenuse.BaseHypotenuse+BaseHypotenuse.PerpendicularHypotenuse=ACBC.ACBC+ABBC.ABBC=(ACBC)2+(ABBC)2=(1517)2+(817)2=225289+64289=225+64289=289289=1= \dfrac{Perpendicular}{Hypotenuse} .\dfrac{Base}{Hypotenuse} + \dfrac{Base}{Hypotenuse} . \dfrac{Perpendicular}{Hypotenuse}\\[1em] = \dfrac{AC}{BC} .\dfrac{AC}{BC} + \dfrac{AB}{BC} . \dfrac{AB}{BC}\\[1em] = \Big(\dfrac{AC}{BC}\Big)^2 + \Big(\dfrac{AB}{BC}\Big)^2\\[1em] = \Big(\dfrac{15}{17}\Big)^2 + \Big(\dfrac{8}{17}\Big)^2\\[1em] = \dfrac{225}{289} + \dfrac{64}{289}\\[1em] = \dfrac{225 + 64}{289}\\[1em] = \dfrac{289}{289}\\[1em] = 1

Hence, sin B.cos C + cos B.sin C = 1.

Question 4

From the following figure, find the values of :

(i) cos A

(ii) cosec A

(iii) tan2A – sec2A

(iv) sin C

(v) sec C

(v) cot2C - 1sin2 C\dfrac{1}{\text{sin}^2 \text{ C}}

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

In Δ ADB,

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

⇒ AB2 = AD2 + BD2 (∵ AB is hypotenuse)

⇒ AB2 = (3)2 + (4)2

⇒ AB2 = 9 + 16

⇒ AB2 = 25

⇒ AB = 25\sqrt{25}

⇒ AB = 5

In Δ CDB,

⇒ BC2 = BD2 + DC2 (∵ BC is hypotenuse)

⇒ (12)2 = (4)2 + DC2

⇒ 144 = 16 + DC2

⇒ DC2 = 144 - 16

⇒ DC2 = 128

⇒ DC = 128\sqrt{128}

⇒ DC = 828\sqrt{2}

(i) cos A=BaseHypotenuseA = \dfrac{Base}{Hypotenuse}

=ADAB=35= \dfrac{AD}{AB}\\[1em] = \dfrac{3}{5}

Hence, cos A=35A = \dfrac{3}{5}.

(ii) cosec A=HypotenusePerpendicularA = \dfrac{Hypotenuse}{Perpendicular}

=ADBD=54= \dfrac{AD}{BD}\\[1em] = \dfrac{5}{4}

Hence, cosec A=54A = \dfrac{5}{4}.

(iii) tan2A – sec2A

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

=BDAD=43= \dfrac{BD}{AD}\\[1em] = \dfrac{4}{3}

sec A=HypotenuseBaseA = \dfrac{Hypotenuse}{Base}

=ABAD=53= \dfrac{AB}{AD}\\[1em] = \dfrac{5}{3}

tan2A – sec2A

=(43)2(53)2=(169)(259)=(16259)=(99)=1= \Big(\dfrac{4}{3}\Big)^2 - \Big(\dfrac{5}{3}\Big)^2\\[1em] = \Big(\dfrac{16}{9}\Big) - \Big(\dfrac{25}{9}\Big)\\[1em] = \Big(\dfrac{16 - 25}{9}\Big)\\[1em] = \Big(\dfrac{-9}{9}\Big)\\[1em] = -1

Hence, tan2A – sec2A = -1.

(iv) sin C=PerpendicularHypotenuseC = \dfrac{Perpendicular}{Hypotenuse}

=BDBC=412=13= \dfrac{BD}{BC}\\[1em] = \dfrac{4}{12}\\[1em] = \dfrac{1}{3}\\[1em]

Hence, sin C=13C = \dfrac{1}{3}.

(v) sec C=HypotenuseBaseC = \dfrac{Hypotenuse}{Base}

=BCDC=1282=322=3×222×2=322×2=324= \dfrac{BC}{DC}\\[1em] = \dfrac{12}{8 \sqrt{2}}\\[1em] = \dfrac{3}{2 \sqrt{2}}\\[1em] = \dfrac{3 \times \sqrt{2}}{2 \sqrt{2} \times \sqrt{2}}\\[1em] = \dfrac{3 \sqrt{2}}{2 \times 2}\\[1em] = \dfrac{3 \sqrt{2}}{4}

Hence, sec C=324C = \dfrac{3 \sqrt{2}}{4}.

(vi) cot2C - 1sin2 C\dfrac{1}{\text{sin}^2 \text{ C}}

cot C=BasePerpendicularC = \dfrac{Base}{Perpendicular}

=BasePerpendicular=824=22= \dfrac{Base}{Perpendicular}\\[1em] = \dfrac{8 \sqrt{2}}{4}\\[1em] = 2 \sqrt{2}

sin C=PerpendicularHypotenuseC = \dfrac{Perpendicular}{Hypotenuse}

=412=13= \dfrac{4}{12}\\[1em] = \dfrac{1}{3}

Now, cot2C - 1sin2 C\dfrac{1}{\text{sin}^2 \text{ C}}

=(22)21(13)2=(22)291=4×29=89=1= (2 \sqrt{2})^2 - \dfrac{1}{\Big(\dfrac{1}{3}\Big)^2}\\[1em] = (2 \sqrt{2})^2 - \dfrac{9}{1}\\[1em] = 4 \times 2 - 9\\[1em] = 8 - 9\\[1em] = -1

Hence, cot2C - 1sin2 C=1\dfrac{1}{\text{sin}^2 \text{ C}} = -1.

Question 5

From the following figure, find the values of :

(i) sin B

(ii) tan C

(iii) sec2 B – tan2 B

(iv) sin2 C + cos2 C

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

In Δ ABD,

⇒ AB2 = BD2 + DA2 (∵ AB is hypotenuse)

⇒ 132 = 52 + DA2

⇒ 169 = 25 + DA2

⇒ DA2 = 169 - 25

⇒ DA2 = 144

⇒ DA = 144\sqrt{144}

⇒ DA = 12

In Δ ADC,

⇒ AC2 = AD2 + DC2 (∵ AB is hypotenuse)

⇒ AC2 = 122 + 162

⇒ AC2 = 144 + 256

⇒ AC2 = 400

⇒ AC = 400\sqrt{400}

⇒ AC = 20

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) sin B=PerpendicularHypotenuseB = \dfrac{Perpendicular}{Hypotenuse}

=ADAB=1213= \dfrac{AD}{AB}\\[1em] = \dfrac{12}{13}

Hence, sin B=1213B = \dfrac{12}{13}.

(ii) tan C=PerpendicularBaseC = \dfrac{Perpendicular}{Base}

=ADDC=1216=34= \dfrac{AD}{DC}\\[1em] = \dfrac{12}{16}\\[1em] = \dfrac{3}{4}

Hence, tan C=34C = \dfrac{3}{4}.

(iii) sec2 B – tan2 B

sec B=HypotenuseBaseB = \dfrac{Hypotenuse}{Base}

=ABBD=135= \dfrac{AB}{BD}\\[1em] = \dfrac{13}{5}

tan B=PerpendicularBaseB = \dfrac{Perpendicular}{Base}

=ADBD=125= \dfrac{AD}{BD}\\[1em] = \dfrac{12}{5}

sec2 B – tan2 B

=(135)2(125)2=(16925)(14425)=(16914425)=(2525)=1= \Big(\dfrac{13}{5}\Big)^2 - \Big(\dfrac{12}{5}\Big)^2\\[1em] = \Big(\dfrac{169}{25}\Big) - \Big(\dfrac{144}{25}\Big)\\[1em] = \Big(\dfrac{169 - 144}{25}\Big)\\[1em] = \Big(\dfrac{25}{25}\Big)\\[1em] = 1

Hence, sec2 B – tan2 B = 1.

(iv) sin2 C + cos2 C

sin C=PerpendicularHypotenuseC = \dfrac{Perpendicular}{Hypotenuse}

=ADAC=1220=35= \dfrac{AD}{AC}\\[1em] = \dfrac{12}{20}\\[1em] = \dfrac{3}{5}

cos C=BaseHypotenuseC = \dfrac{Base}{Hypotenuse}

=DCAC=1620=45= \dfrac{DC}{AC}\\[1em] = \dfrac{16}{20}\\[1em] = \dfrac{4}{5}

Now,

sin2 C + cos2 C

=(35)2+(45)2=(925)+(1625)=(9+1625)=(2525)=1= \Big(\dfrac{3}{5}\Big)^2 + \Big(\dfrac{4}{5}\Big)^2\\[1em] = \Big(\dfrac{9}{25}\Big) + \Big(\dfrac{16}{25}\Big)\\[1em] = \Big(\dfrac{9 + 16}{25}\Big)\\[1em] = \Big(\dfrac{25}{25}\Big)\\[1em] = 1

Hence, sin2 C + cos2 C = 1.

Question 6

Given : sin A=35\text{sin A} = \dfrac{3}{5}, find :

(i) tan A

(ii) cos A

Answer

(i) Given:

sin A=35A = \dfrac{3}{5}

i.e., PerpendicularHypotenuse=35\dfrac{Perpendicular}{Hypotenuse} = \dfrac{3}{5}

∴ If length of BC = 3x unit, length of AC = 5x unit.

Given : sin A = 3/5, find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ (5x)2 = AB2 + (3x)2

⇒ 25x2 = AB2 + 9x2

⇒ AB2 = 25x2 - 9x2

⇒ AB2 = 16x2

⇒ AB = 16x2\sqrt{16\text{x}^2}

⇒ AB = 4x

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

= BCBA=3x4x=34\dfrac{BC}{BA} = \dfrac{3x}{4x} = \dfrac{3}{4}

Hence, tan A=34A = \dfrac{3}{4}.

(ii) cos A=BaseHypotenuseA = \dfrac{Base}{Hypotenuse}

=BAAC=4x5x=45= \dfrac{BA}{AC} =\dfrac{4x}{5x} = \dfrac{4}{5}

Hence, cos A=45A = \dfrac{4}{5}.

Question 7

From the following figure, find the values of :

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) sin A

(ii) sec A

(iii) cos2 A + sin2 A

Answer

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = a2 + a2

⇒ AC2 = 2a2

⇒ AC = 2a2\sqrt{2a^2}

⇒ AC = a2a \sqrt{2}

From the following figure, find the values of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=CBAC=aa2=a×2a2×2=a2a×2=a2a×2=22= \dfrac{CB}{AC}\\[1em] = \dfrac{a}{a \sqrt{2}}\\[1em] = \dfrac{a \times \sqrt{2}}{a \sqrt{2} \times \sqrt{2}}\\[1em] = \dfrac{a \sqrt{2}}{a \times 2}\\[1em] = \dfrac{\cancel{a} \sqrt{2}}{\cancel{a} \times 2}\\[1em] = \dfrac{\sqrt{2}}{2}\\[1em]

Hence, sin A=12=22A = \dfrac{1}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}.

(ii) sec A=HypotenuseBaseA = \dfrac{Hypotenuse}{Base}

=ACAB=a2a=a2a=2= \dfrac{AC}{AB}\\[1em] = \dfrac{a \sqrt{2}}{a}\\[1em] = \dfrac{\cancel{a} \sqrt{2}}{\cancel{a}}\\[1em] = \sqrt{2}

Hence, sec A=2A = \sqrt{2}.

(iii) cos2 A + sin2 A

cos A=BaseHypotenuseA = \dfrac{Base}{Hypotenuse}

=ABAC=aa2=a×2a2×2=a2a×2=a2a×2=22= \dfrac{AB}{AC}\\[1em] = \dfrac{a}{a \sqrt{2}}\\[1em] = \dfrac{a \times \sqrt{2}}{a \sqrt{2} \times \sqrt{2}}\\[1em] = \dfrac{a \sqrt{2}}{a \times 2}\\[1em] = \dfrac{\cancel{a} \sqrt{2}}{\cancel{a} \times 2}\\[1em] = \dfrac{\sqrt{2}}{2}\\[1em]

sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=CBAC=aa2=a×2a2×2=a2a×2=a2a×2=22= \dfrac{CB}{AC}\\[1em] = \dfrac{a}{a \sqrt{2}}\\[1em] = \dfrac{a \times \sqrt{2}}{a \sqrt{2} \times \sqrt{2}}\\[1em] = \dfrac{a \sqrt{2}}{a \times 2}\\[1em] = \dfrac{\cancel{a} \sqrt{2}}{\cancel{a} \times 2}\\[1em] = \dfrac{\sqrt{2}}{2}\\[1em]

Now, cos2 A + sin2 A

=(22)2+(22)2=24+24=2+24=44=1= \Big(\dfrac{\sqrt{2}}{2}\Big)^2 + \Big(\dfrac{\sqrt{2}}{2}\Big)^2\\[1em] = \dfrac{2}{4} + \dfrac{2}{4}\\[1em] = \dfrac{2 + 2}{4}\\[1em] = \dfrac{4}{4}\\[1em] = 1

Hence, cos2 A + sin2 A = 1.

Question 8

Given : cos A=513\text{cos A} = \dfrac{5}{13}

evaluate :

(i) sin Acot A2 tan A\dfrac{\text{sin A} - \text{cot A}}{2 \text{ tan A}}

(ii) cot A+1cos A\text{cot A} + \dfrac{1}{\text{cos A}}

Answer

Given:

cos A=513A = \dfrac{5}{13}

i.e. BaseHypotenuse=513\dfrac{\text{Base}}{\text{Hypotenuse}} = \dfrac{5}{13}

∴ If length of BA = 5x unit, length of AC = 13x unit.

Given : cos A = 5/13. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ (13x)2 = (5x)2 + BC2

⇒ 169x2 = 25x2 + BC2

⇒ BC2 = 169x2 - 25x2

⇒ BC2 = 144x2

⇒ BC = 144x2\sqrt{144\text{x}^2}

⇒ BC = 12x

(i) sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=BCAC=12x13x=1213= \dfrac{BC}{AC} = \dfrac{12x}{13x} = \dfrac{12}{13}

cot A=BasePerpendicularA = \dfrac{Base}{Perpendicular}

=ABBC=5x12x=512= \dfrac{AB}{BC} = \dfrac{5x}{12x} = \dfrac{5}{12}

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

=BCAB=12x5x=125= \dfrac{BC}{AB} = \dfrac{12x}{5x} = \dfrac{12}{5}

Now,

=sin Acot A2 tan A=12135122×125=12×1213×125×1312×13245=14415665156245=14465156245=79156245=79×5156×24=3953,744= \dfrac{\text{sin A} - \text{cot A}}{2 \text{ tan A}}\\[1em] = \dfrac{\dfrac{12}{13} - \dfrac{5}{12}}{2 \times \dfrac{12}{5}}\\[1em] = \dfrac{\dfrac{12 \times 12}{13 \times 12} - \dfrac{5 \times 13}{12 \times 13}}{\dfrac{24}{5}}\\[1em] = \dfrac{\dfrac{144}{156} - \dfrac{65}{156}}{\dfrac{24}{5}}\\[1em] = \dfrac{\dfrac{144 - 65}{156}}{\dfrac{24}{5}}\\[1em] = \dfrac{\dfrac{79}{156}}{\dfrac{24}{5}}\\[1em] = \dfrac{79 \times 5}{156 \times 24}\\[1em] = \dfrac{395}{3,744}

Hence, sin Acot A2 tan A=3953,744\dfrac{\text{sin A} - \text{cot A}}{2 \text{ tan A}} = \dfrac{395}{3,744}.

(ii) cos A=513A = \dfrac{5}{13}

cot A=512A = \dfrac{5}{12}

To find,

cot A+1cos A\text{cot A} + \dfrac{1}{\text{cos A}}

cot A+1cos A=512+1513=512+135=5×512×5+13×125×12=2560+15660=25+15660=18160\text{cot A} + \dfrac{1}{\text{cos A}} = \dfrac{5}{12} + \dfrac{1}{\dfrac{5}{13}}\\[1em] = \dfrac{5}{12} + \dfrac{13}{5}\\[1em] = \dfrac{5 \times 5}{12 \times 5} + \dfrac{13 \times 12}{5 \times 12}\\[1em] = \dfrac{25}{60} + \dfrac{156}{60}\\[1em] = \dfrac{25 + 156}{60}\\[1em] = \dfrac{181}{60}

Hence, cot A+1cos A=18160\text{cot A} + \dfrac{1}{\text{cos A}} = \dfrac{181}{60}.

Question 9

Given : sec A=2921\text{sec A} =\dfrac{29}{21}, evaluate : sin A1tan A\text{sin A} - \dfrac{1}{\text{tan A}}

Answer

Given:

sec A=2921A = \dfrac{29}{21}

i.e. HypotenuseBase=2921\dfrac{\text{Hypotenuse}}{\text{Base}} = \dfrac{29}{21}

∴ If length of AB = 21x unit, length of AC = 29x unit.

Given : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ (29x)2 = (21x)2 + BC2

⇒ 841x2 = 441x2 + BC2

⇒ BC2 = 841x2 - 441x2

⇒ BC2 = 400x2

⇒ BC = 400x2\sqrt{400\text{x}^2}

⇒ BC = 20x

sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=BCAC=20x29x=2029= \dfrac{BC}{AC} = \dfrac{20x}{29x} = \dfrac{20}{29}

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

=BCAB=20x21x=2021= \dfrac{BC}{AB} = \dfrac{20x}{21x} = \dfrac{20}{21}

Now,

sin A1tan A=202912021=20292120=20×2029×2021×2920×29=400580609580=400609580=209580\text{sin A} - \dfrac{1}{\text{tan A}}\\[1em] = \dfrac{20}{29} - \dfrac{1}{\dfrac{20}{21}}\\[1em] = \dfrac{20}{29} - \dfrac{21}{20}\\[1em] = \dfrac{20 \times 20}{29 \times 20} - \dfrac{21 \times 29}{20 \times 29}\\[1em] = \dfrac{400}{580} - \dfrac{609}{580}\\[1em] = \dfrac{400 - 609}{580}\\[1em] = \dfrac{- 209}{580}\\[1em]

Hence, sin A1tan A=209580\text{sin A} - \dfrac{1}{\text{tan A}} = \dfrac{- 209}{580}.

Question 10

Given : tan A=43\text{tan A} = \dfrac{4}{3}, find : cosec Acot Asec A\dfrac{\text{cosec A}}{\text{cot A} - \text{sec A}}

Answer

Given:

tan A=43A = \dfrac{4}{3}

i.e., PerpendicularBase=43\dfrac{\text{Perpendicular}}{\text{Base}} = \dfrac{4}{3}

∴ If length of AB = 3x unit, length of BC = 4x unit.

Given : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = (3x)2 + (4x)2

⇒ AC2 = 9x2 + 16x2

⇒ AC2 = 25x2

⇒ AC = 25x2\sqrt{25\text{x}^2}

⇒ AC = 5x

cosec A=HypotenusePerpendicularA = \dfrac{Hypotenuse}{Perpendicular}

=ACBC=5x4x=54= \dfrac{AC}{BC} = \dfrac{5x}{4x} = \dfrac{5}{4}

cot A=BasePerpendicularA = \dfrac{Base}{Perpendicular}

=ABBC=3x4x=34= \dfrac{AB}{BC} = \dfrac{3x}{4x} = \dfrac{3}{4}

sec A=HypotenuseBaseA = \dfrac{Hypotenuse}{Base}

=ACAB=5x3x=53= \dfrac{AC}{AB} = \dfrac{5x}{3x} = \dfrac{5}{3}

Now,

cosec Acot Asec A=543453=543×34×35×43×4=549122012=5492012=541112=5×1211×4=6044=1511\dfrac{\text{cosec A}}{\text{cot A} - \text{sec A}}\\[1em] = \dfrac{\dfrac{5}{4}}{\dfrac{3}{4} - \dfrac{5}{3}}\\[1em] = \dfrac{\dfrac{5}{4}}{\dfrac{3 \times 3}{4 \times 3} - \dfrac{5 \times 4}{3 \times 4}}\\[1em] = \dfrac{\dfrac{5}{4}}{\dfrac{9}{12} - \dfrac{20}{12}}\\[1em] = \dfrac{\dfrac{5}{4}}{\dfrac{9 - 20}{12}}\\[1em] = \dfrac{\dfrac{5}{4}}{\dfrac{- 11}{12}}\\[1em] = \dfrac{5 \times 12}{- 11 \times 4}\\[1em] = \dfrac{- 60}{44}\\[1em] = \dfrac{- 15}{11}

Hence, cosec Acot Asec A=1511\dfrac{\text{cosec A}}{\text{cot A} - \text{sec A}} = \dfrac{- 15}{11}.

Question 11

Given : 4 cot A = 3, find :

(i) sin A

(ii) sec A

(iii) cosec2 A - cot2 A

Answer

Given:

4 cot A = 3

cot A=34A = \dfrac{3}{4}

i.e., BasePerpendicular=34\dfrac{\text{Base}}{\text{Perpendicular}} = \dfrac{3}{4}

∴ If length of AB = 3x unit, length of BC = 4x unit.

Given : 4 cot A = 3, find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = (3x)2 + (4x)2

⇒ AC2 = 9x2 + 16x2

⇒ AC2 = 25x2

⇒ AC = 25x2\sqrt{25\text{x}^2}

⇒ AC = 5x

(i) sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=BCAC=4x5x=45= \dfrac{BC}{AC} = \dfrac{4x}{5x} = \dfrac{4}{5}

Hence, sin A=45A = \dfrac{4}{5}.

(ii) sec A=HypotenuseBaseA = \dfrac{Hypotenuse}{Base}

=ACAB=5x3x=53=123= \dfrac{AC}{AB} = \dfrac{5x}{3x} = \dfrac{5}{3} = 1\dfrac{2}{3}

Hence, sec A=53=123A = \dfrac{5}{3} = 1\dfrac{2}{3}.

(iii) cosec2 A - cot2 A

cosec A=HypotenusePerpendicularA = \dfrac{Hypotenuse}{Perpendicular}

=ACBC=5x4x=54= \dfrac{AC}{BC} = \dfrac{5x}{4x} = \dfrac{5}{4}

cot A=BasePerpendicularA = \dfrac{Base}{Perpendicular}

=ABBC=3x4x=34= \dfrac{AB}{BC} = \dfrac{3x}{4x} = \dfrac{3}{4}

Now,

cosec2Acot2A=(54)2(34)2=2516916=25916=1616=1\text{cosec}^2 A - \text{cot}^2 A\\[1em] = \Big(\dfrac{5}{4}\Big)^2 - \Big(\dfrac{3}{4}\Big)^2\\[1em] = \dfrac{25}{16} - \dfrac{9}{16}\\[1em] = \dfrac{25 - 9}{16}\\[1em] = \dfrac{16}{16}\\[1em] = 1

Hence, cosec2 A - cot2 A = 1.

Question 12

Given : cos A = 0.6; find all other trigonometrical ratios for angle A.

Answer

Given:

cos A = 0.6

cos A=610A = \dfrac{6}{10}

cos A=35A = \dfrac{3}{5}

i.e. BaseHypotenuse=35\dfrac{\text{Base}}{\text{Hypotenuse}} = \dfrac{3}{5}

∴ If length of AB = 3x unit, length of AC = 5x unit.

Given : cos A = 0.6; find all other trigonometrical ratios for angle A. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ (5x)2 = (3x)2 + BC2

⇒ 25x2 = 9x2 + BC2

⇒ BC2 = 25x2 - 9x2

⇒ BC2 = 16x2

⇒ BC = 16x2\sqrt{16\text{x}^2}

⇒ BC = 4x

sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=BCAC=4x5x=45= \dfrac{BC}{AC} = \dfrac{4x}{5x} = \dfrac{4}{5}

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

=BCAB=4x3x=43=113= \dfrac{BC}{AB} = \dfrac{4x}{3x} = \dfrac{4}{3} = 1\dfrac{1}{3}

cot A=BasePerpendicularA = \dfrac{Base}{Perpendicular}

=ABBC=3x4x=34= \dfrac{AB}{BC} = \dfrac{3x}{4x} = \dfrac{3}{4}

cosec A=HypotenusePerpendicularA = \dfrac{Hypotenuse}{Perpendicular}

=ACBC=5x4x=54=114= \dfrac{AC}{BC} = \dfrac{5x}{4x} = \dfrac{5}{4} = 1\dfrac{1}{4}

sec A=HypotenuseBaseA = \dfrac{Hypotenuse}{Base}

=ACAB=5x3x=53=123= \dfrac{AC}{AB} = \dfrac{5x}{3x} = \dfrac{5}{3} = 1\dfrac{2}{3}

Hence, sin A=45A = \dfrac{4}{5}, tan A=113A = 1\dfrac{1}{3}, cot A=34A = \dfrac{3}{4}, cosec A=114A = 1\dfrac{1}{4} and sec A=123A = 1\dfrac{2}{3}.

Question 13

In a right-angled triangle, it is given that A is an acute angle and tan A=512\text{tan A} = \dfrac{5}{12}.

Find the values of :

(i) cos A

(ii) sin A

(iii) cos A+sin Acos Asin A\dfrac{\text{cos A} + \text{sin A}}{\text{cos A} - \text{sin A}}

Answer

Given:

tan A=512A = \dfrac{5}{12}

i.e., PerpendicularBase=512\dfrac{\text{Perpendicular}}{\text{Base}} = \dfrac{5}{12}

∴ If length of BC = 5x unit, length of AB = 12x unit.

In a right-angled triangle, it is given that A is an acute angle and tan A = 5/12. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∵ AC is hypotenuse)

⇒ AC2 = (5x)2 + (12x)2

⇒ AC2 = 25x2 + 144x2

⇒ AC2 = 169x2

⇒ AC = 169x2\sqrt{169\text{x}^2}

⇒ AC = 13x

(i) cos A=BaseHypotenuseA = \dfrac{Base}{Hypotenuse}

=ABAC=12x13x=1213= \dfrac{AB}{AC} = \dfrac{12x}{13x} = \dfrac{12}{13}

Hence, cos A=1213A = \dfrac{12}{13}.

(ii) sin A=PerpendicularHypotenuseA = \dfrac{Perpendicular}{Hypotenuse}

=BCAC=5x13x=513= \dfrac{BC}{AC} = \dfrac{5x}{13x} = \dfrac{5}{13}

Hence, sin A=513A = \dfrac{5}{13}.

(iii) cos A+sin Acos Asin A\dfrac{\text{cos A} + \text{sin A}}{\text{cos A} - \text{sin A}}

=1213+5131213513=12+51312513=1713713=177=237= \dfrac{\dfrac{12}{13} + \dfrac{5}{13}}{\dfrac{12}{13} - \dfrac{5}{13}}\\[1em] = \dfrac{\dfrac{12 + 5}{13}}{\dfrac{12 - 5}{13}}\\[1em] = \dfrac{\dfrac{17}{\cancel{13}}}{\dfrac{7}{\cancel{13}}}\\[1em] = \dfrac{17}{7}\\[1em] = 2\dfrac{3}{7}

Hence, cos A+sin Acos Asin A=237\dfrac{\text{cos A} + \text{sin A}}{\text{cos A} - \text{sin A}} = 2\dfrac{3}{7}.

Question 14

Given : sin θ=pq\text{sin θ} = \dfrac{p}{q}, find cos θ + sin θ in terms of p and q.

Answer

Given:

sin θ = pq\dfrac{p}{q}

i.e. PerpendicularHypotenuse=pq\dfrac{\text{Perpendicular}}{\text{Hypotenuse}} = \dfrac{p}{q}

∴ If length of BC = px unit, length of AC = qx unit.

Given : sin θ = p/q, find cos θ + sin θ in terms of p and q. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∵ AC is hypotenuse)

⇒ (qx)2 = (px)2 + AB2

⇒ AB2 = q2x2 - p2x2

⇒ AB = q2x2p2x2\sqrt{q^2\text{x}^2 - p^2\text{x}^2}

⇒ AB = (q2p2\sqrt{q^2 - p^2}) x

cos θ = BaseHypotenuse\dfrac{Base}{Hypotenuse}

=ABAC=(q2p2)xqx=q2p2q= \dfrac{AB}{AC} = \dfrac{\sqrt{(q^2 - p^2)}x}{qx} = \dfrac{\sqrt{q^2 - p^2}}{q}

Now,

cos θ+sin θ=q2p2q+pq=q2p2+pq\text{cos θ} + \text{sin θ} = \dfrac{\sqrt{q^2 - p^2}}{q} + \dfrac{p}{q}\\[1em] = \dfrac{\sqrt{q^2 - p^2} + p}{q}

Hence, cos θ + sin θ = q2p2+pq\dfrac{\sqrt{q^2 - p^2} + p}{q}.

Question 15

If cos A=12\text{cos A} = \dfrac{1}{2} and sin B=12\text{sin B} = \dfrac{1}{\sqrt2}, find the value of : tan Atan B1+tan A tan B\dfrac{\text{tan A} - \text{tan B}}{1 + \text{tan A } \text{tan B}}. Here angles A and B are from different right triangles.

Answer

Given:

cos A=12A = \dfrac{1}{2}

i.e., BaseHypotenuse=12\dfrac{\text{Base}}{\text{Hypotenuse}} = \dfrac{1}{2}

∴ If length of AM = 1x unit, length of AO = 2x unit.

Here angles A and B are from different right triangles. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ AMO,

⇒ AO2 = AM2 + MO2 (∵ AC is hypotenuse)

⇒ (2x)2 = (1x)2 + MO2

⇒ 4x2 = 1x2 + MO2

⇒ MO2 = 4x2 - 1x2

⇒ MO2 = 3x2

⇒ MO = 3x2\sqrt{3\text{x}^2}

⇒ MO = 3\sqrt{3} x

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

=OMMA=3x1x=31=3= \dfrac{OM}{MA} = \dfrac{\sqrt{3} x}{1x} = \dfrac{\sqrt{3}}{1} = \sqrt{3}

And,

sin B=12B = \dfrac{1}{\sqrt{2}}

i.e., PerpendicularHypotenuse=12\dfrac{\text{Perpendicular}}{\text{Hypotenuse}} = \dfrac{1}{\sqrt{2}}

∴ If length of XY = y unit, length of YB = y 2\sqrt{2} unit.

Here angles A and B are from different right triangles. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ BXY,

⇒ YB2 = YX2 + BX2 (∵ AC is hypotenuse)

⇒ (2\sqrt{2}y)2 = (y)2 + BX2

⇒ 2y2 = y2 + BX2

⇒ BX2 = 2y2 - y2

⇒ BX2 = y2

⇒ BX = y2\sqrt{\text{y}^2}

⇒ BX = y

tan B=PerpendicularBaseB = \dfrac{Perpendicular}{Base}

=YXXB=yy=1= \dfrac{YX}{XB} = \dfrac{y}{y}= 1

Now,

tan Atan B1+tan A tan B=311+3=(31)×(13)(1+3)×(13)=(331+3)1232=23413=2(32)2=2(32)2=3+2=23\dfrac{\text{tan A} - \text{tan B}}{1 + \text{tan A } \text{tan B}}\\[1em] = \dfrac{{\sqrt{3} - 1}}{1 + {\sqrt{3}}}\\[1em] = \dfrac{(\sqrt{3} - 1) \times (1 - \sqrt{3})}{(1 + \sqrt{3}) \times (1 - \sqrt{3})}\\[1em] = \dfrac{(\sqrt{3} - 3 - 1 + \sqrt{3})}{1^2 - \sqrt{3}^2}\\[1em] = \dfrac{2 \sqrt{3} - 4}{1 - 3}\\[1em] = \dfrac{2 (\sqrt{3} - 2)}{-2}\\[1em] = \dfrac{\cancel{2} (\sqrt{3} - 2)}{-\cancel{2}}\\[1em] = -\sqrt{3} + 2\\[1em] = 2 - \sqrt{3}

Hence, tan Atan B1+tan A tan B=23\dfrac{\text{tan A} - \text{tan B}}{1 + \text{tan A } \text{tan B}} = 2 - \sqrt{3}.

Exercise 21(B)

Question 1(a)

If cos A=12\text{cos A} = \dfrac{1}{\sqrt2} and sin B=32\text{sin B} = \dfrac{\sqrt3}{2}, the value of tan Btan A1+tan A tan B\dfrac{\text{tan B} - \text{tan A}}{1 + \text{tan A tan B}} is :

  1. 232 - {\sqrt3}
  2. 2+32 + {\sqrt3}
  3. 32{\sqrt3} - 2
  4. 3+2{\sqrt3} + 2

Answer

Given:

cos A=12A = \dfrac{1}{\sqrt2}

i.e., BaseHypotenuse=12\dfrac{\text{Base}}{\text{Hypotenuse}} = \dfrac{1}{\sqrt2}

∴ If length of AM = x unit, length of AO = x 2\sqrt{2} unit.

If cos A = 1/2 and sin B = 3/2, the value of tan B - tan A1 + tan A tan B is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ AMO,

⇒ AO2 = AM2 + MO2 (∵ AC is hypotenuse)

⇒ (2\sqrt{2}x)2 = (x)2 + MO2

⇒ 2x2 = x2 + MO2

⇒ MO2 = 2x2 - x2

⇒ MO2 = x2

⇒ MO = x2\sqrt{\text{x}^2}

⇒ MO = x

tan A=PerpendicularBaseA = \dfrac{Perpendicular}{Base}

=OMMA=xx=1= \dfrac{OM}{MA} = \dfrac{x}{x} = 1

And,

sin B=32B = \dfrac{\sqrt3}{2}

i.e. PerpendicularHypotenuse=32\dfrac{\text{Perpendicular}}{\text{Hypotenuse}} = \dfrac{\sqrt3}{2}

∴ If length of XY = 3\sqrt{3} y unit, length of YB = 2y unit.

If cos A = 1/2 and sin B = 3/2, the value of tan B - tan A1 + tan A tan B is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ BXY,

⇒ YB2 = YX2 + BX2 (∵ AC is hypotenuse)

⇒ (2y)2 = (3\sqrt{3}y)2 + BX2

⇒ 4y2 = 3y2 + BX2

⇒ BX2 = 4y2 - 3y2

⇒ BX2 = y2

⇒ BX = y2\sqrt{\text{y}^2}

⇒ BX = y

tan B=PerpendicularBaseB = \dfrac{Perpendicular}{Base}

=XYBX=3yy=31= \dfrac{XY}{BX} = \dfrac{\sqrt{3}y}{y} = \dfrac{\sqrt{3}}{1}

Now,

tan Btan A1+tan A tan B=3111+31×1=311+3=(31)×(13)(1+3)×(13)=(331+3)1232=23413=2(32)2=2(32)2=3+2=23\dfrac{\text{tan B} - \text{tan A}}{1 + \text{tan A } \text{tan B}}\\[1em] = \dfrac{\dfrac{\sqrt{3}}{1} - 1}{1 + \dfrac{\sqrt{3}}{1} \times 1}\\[1em] = \dfrac{\sqrt{3} - 1}{1 + \sqrt{3}}\\[1em] = \dfrac{(\sqrt{3} - 1) \times (1 - \sqrt{3})}{(1 + \sqrt{3}) \times (1 - \sqrt{3})}\\[1em] = \dfrac{(\sqrt{3} - 3 - 1 + \sqrt{3})}{1^2 - \sqrt{3}^2}\\[1em] = \dfrac{2 \sqrt{3} - 4}{1 - 3}\\[1em] = \dfrac{2 (\sqrt{3} - 2)}{-2}\\[1em] = \dfrac{\cancel{2} (\sqrt{3} - 2)}{-\cancel{2}}\\[1em] = -\sqrt{3} + 2\\[1em] = 2 - \sqrt{3}

Hence, option 1 is the correct option.

Question 1(b)

From the given figure, the value of cos y is :

  1. 13\dfrac{1}{3}
  2. 14\dfrac{1}{4}
  3. 1213\dfrac{12}{13}
  4. 11121\dfrac{1}{12}
From the given figure, the value of cos y is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

In Δ ABC,

From the given figure, the value of cos y is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = 42 + 32

⇒ AC2 = 16 + 9

⇒ AC2 = 25

⇒ AC = 25\sqrt{25}

⇒ AC = 5

In Δ ADC,

⇒ DC2 = AC2 + DA2 (∵ DC is hypotenuse)

⇒ DC2 = 52 + 122

⇒ DC2 = 25 + 144

⇒ DC2 = 169

⇒ DC = 169\sqrt{169}

⇒ DC = 13

cos y = BaseHypotenuse\dfrac{Base}{Hypotenuse}

=DADC=1213= \dfrac{DA}{DC}\\[1em] = \dfrac{12}{13}

Hence, option 3 is the correct option.

Question 1(c)

ABCD is a rhombus with diagonals BD and AC equal to 12 cm and 16 cm respectively. The value of cosec x is :

  1. 1231\dfrac{2}{3}
  2. 3133\dfrac{1}{3}
  3. 12\dfrac{1}{2}
  4. 1131\dfrac{1}{3}
ABCD is a rhombus with diagonals BD and AC equal to 12 cm and 16 cm respectively. The value of cosec x is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

The diagonals of a rhombus bisect each other at right angles.

ABCD is a rhombus with diagonals BD and AC equal to 12 cm and 16 cm respectively. The value of cosec x is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

∴ ∠AOB = 90°

In Δ AOB,

⇒ AB2 = BO2 + OA2 (∵ AB is hypotenuse)

⇒ AB2 = 62 + 82

⇒ AB2 = 36 + 64

⇒ AB2 = 100

⇒ AB = 100\sqrt{100}

⇒ AB = 10 cm

cosec x=HypotenusePerpendicularx = \dfrac{Hypotenuse}{Perpendicular}

=ABOB=106=53=123= \dfrac{AB}{OB}\\[1em] = \dfrac{10}{6}\\[1em] = \dfrac{5}{3}\\[1em] = 1\dfrac{2}{3}

Hence, option 1 is the correct option.

Question 1(d)

If sin A - cosec A = 2, the value of sin2 A + cosec2 A is :

  1. 2
  2. 0
  3. 4
  4. 6

Answer

Given:

sin A - cosec A = 2

Squaring both sides,

⇒ (sin A - cosec A)2 = (2)2

⇒ (sin A)2 + (cosec A)2 - 2 x sin A x cosec A = 4

⇒ sin2 A + cosec2 A - 2 x sin A\text{sin A} x 1sin A\dfrac{1}{\text{sin A}} = 4

⇒ sin2 A + cosec2 A - 2 x sin A\cancel{\text{sin A}}x 1sin A\dfrac{1}{\cancel{\text{sin A}}} = 4

⇒ sin2 A + cosec2 A - 2 = 4

⇒ sin2 A + cosec2 A = 4 + 2

⇒ sin2 A + cosec2 A = 6

Hence, option 4 is the correct option.

Question 1(e)

If cot A=5\text{cot A} = {\sqrt5}, the value of cosec2 A - sec2 A is :

  1. 524\dfrac{5}{24}
  2. 4454\dfrac{4}{5}
  3. 5
  4. 24

Answer

Given:

cot A=5cot A=BasePerpendicular=51\text{cot A} = {\sqrt5}\\[1em] \text{cot A} = \dfrac{\text{Base}}{\text{Perpendicular}} = \dfrac{\sqrt5}{1}\\[1em]

∴ If length of AB = 5\sqrt{5} x unit, length of BC = x unit.

If cot A = 5, the value of cosec2 A - sec2 A is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = (5(\sqrt{5} x)2 + (x)2

⇒ AC2 = 5x2 + x2

⇒ AC2 = 6x2

⇒ AC = 6x2\sqrt{6\text{x}^2}

⇒ AC = 6\sqrt{6} x

cosec A=HypotenusePerpendicularA = \dfrac{Hypotenuse}{Perpendicular}

=ACBC=6xx=61= \dfrac{AC}{BC} = \dfrac{\sqrt{6}\text{x}}{\text{x}} = \dfrac{\sqrt{6}}{1}

sec A=HypotenuseBaseA = \dfrac{Hypotenuse}{Base}

=ACAB=6x5x=65= \dfrac{AC}{AB} = \dfrac{\sqrt{6}\text{x}}{\sqrt{5}\text{x}} = \dfrac{\sqrt{6}}{\sqrt{5}}

Now, cosec2 A - sec2 A

=(61)2(65)2=6165=6×51×56×15×1=30565=3065=245=445= \Big(\dfrac{\sqrt{6}}{1}\Big)^2 - \Big(\dfrac{\sqrt{6}}{\sqrt{5}}\Big)^2\\[1em] = \dfrac{6}{1} - \dfrac{6}{5}\\[1em] = \dfrac{6 \times 5}{1 \times 5} - \dfrac{6 \times 1}{5 \times 1}\\[1em] = \dfrac{30}{5} - \dfrac{6}{5}\\[1em] = \dfrac{30 - 6}{5}\\[1em] = \dfrac{24}{5}\\[1em] = 4\dfrac{4}{5}

Hence, option 2 is the correct option.

Question 2

From the following figure, find :

From the following figure, find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) y

(ii) sin x°

(iii) (sec x° - tan x°)(sec x° + tan x°)

Answer

(i) In Δ ABC,

From the following figure, find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ 22 = y2 + 12

⇒ 4 = y2 + 1

⇒ y2 = 4 - 1

⇒ y2 = 3

⇒ y = 3\sqrt{3}

Hence, the value of y = 3\sqrt{3}.

(ii) sin x°=PerpendicularHypotenusex° = \dfrac{Perpendicular}{Hypotenuse}

=ABAC=32= \dfrac{AB}{AC}\\[1em] = \dfrac{\sqrt{3}}{2}

Hence, sin x°=32x° = \dfrac{\sqrt{3}}{2}.

(iii) (sec x° - tan x°)(sec x° + tan x°)

sec x°=HypotenuseBasex° = \dfrac{Hypotenuse}{Base}

=ACCB=21=2= \dfrac{AC}{CB}\\[1em] = \dfrac{2}{1} = 2

tan x°=PerpendicularBasex° = \dfrac{Perpendicular}{Base}

=ABCB=31=3= \dfrac{AB}{CB}\\[1em] = \dfrac{\sqrt{3}}{1} = 3

Now, (sec x° - tan x°)(sec x° + tan x°)

=(23)(2+3)=(2)2(3)2=43=1= (2 - \sqrt{3})(2 + \sqrt{3}) \\[1em] = (2)^2 - (\sqrt{3})^2 \\[1em] = 4 - 3 \\[1em] = 1

Hence, (sec x° - tan x°)(sec x° + tan x°) = 1.

Question 3

Use the given figure to find :

Use the given figure to find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

(i) sin x°

(ii) cos y°

(iii) 3 tan x° - 2 sin y° + 4 cos y°

Answer

In Δ BCD,

Use the given figure to find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

⇒ BD2 = BC2 + CD2 (∵ BD is hypotenuse)

⇒ BD2 = 62 + 82

⇒ BD2 = 36 + 64

⇒ BD2 = 100

⇒ BD = 100\sqrt{100}

⇒ BD = 10

In Δ ACD,

⇒ AD2 = AC2 + CD2 (∵ AD is hypotenuse)

⇒ 172 = AC2 + 82

⇒ 289 = AC2 + 64

⇒ AC2 = 289 - 64

⇒ AC2 = 225

⇒ AC = 225\sqrt{225}

⇒ AC = 15

(i) sin x°=PerpendicularHypotenusex° = \dfrac{Perpendicular}{Hypotenuse}

=DCAD=817= \dfrac{DC}{AD}\\[1em] = \dfrac{8}{17}

Hence, sin x°=817x° = \dfrac{8}{17}.

(ii) cos y°=BaseHypotenusey° = \dfrac{Base}{Hypotenuse}

=BCBD=610=35= \dfrac{BC}{BD}\\[1em] = \dfrac{6}{10}\\[1em] = \dfrac{3}{5}

Hence, cos y°=35y° = \dfrac{3}{5}.

(iii) 3 tan x° - 2 sin y° + 4 cos y°

tan x°=PerpendicularBasex° = \dfrac{Perpendicular}{Base}

=DCAC=815= \dfrac{DC}{AC}\\[1em] = \dfrac{8}{15}

sin y°=PerpendicularHypotenusey° = \dfrac{Perpendicular}{Hypotenuse}

=CDBD=810=45= \dfrac{CD}{BD}\\[1em] = \dfrac{8}{10}\\[1em] = \dfrac{4}{5}

cos y°=BaseHypotenusey° = \dfrac{Base}{Hypotenuse}

=BCBD=610=35= \dfrac{BC}{BD}\\[1em] = \dfrac{6}{10}\\[1em] = \dfrac{3}{5}

Now, 3 tan x° - 2 sin y° + 4 cos y°

=3×8152×45+4×35=241585+125=2415+8+125=2415+45=2415+4×35×3=2415+1215=24+1215=3615=125=225= 3 \times \dfrac{8}{15} - 2 \times \dfrac{4}{5} + 4 \times \dfrac{3}{5}\\[1em] = \dfrac{24}{15} - \dfrac{8}{5} + \dfrac{12}{5}\\[1em] = \dfrac{24}{15} + \dfrac{- 8 + 12}{5}\\[1em] = \dfrac{24}{15} + \dfrac{4}{5}\\[1em] = \dfrac{24}{15} + \dfrac{4 \times 3}{5 \times 3}\\[1em] = \dfrac{24}{15} + \dfrac{12}{15}\\[1em] = \dfrac{24 + 12}{15}\\[1em] = \dfrac{36}{15}\\[1em] = \dfrac{12}{5}\\[1em] = 2\dfrac{2}{5}

Hence, 3 tan x° - 2 sin y° + 4 cos y° = 2252\dfrac{2}{5}.

Question 4

In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find :

(i) cos ∠DBC

(ii) cot ∠DBA

In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = 122 + 52

⇒ AC2 = 144 + 25

⇒ AC2 = 169

⇒ AC = 169\sqrt{169}

⇒ AC = 13

In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Let ∠CBD be .

So, ∠DBA = 90° - x°.

In Δ DAB, according to angle sum property

⇒ ∠ DAB + ∠ADB + ∠DBA = 180°

⇒ ∠ DAB + 90° + (90° - x°) = 180°

⇒ ∠ DAB + 180° - x° = 180°

⇒ ∠ DAB - x° = 0

⇒ ∠ DAB = x°

From figure,

∠ DAB = ∠ CAB = x°

∴ ∠ CBD = ∠ CAB = x°

(i) cos ∠DBC = cos ∠CAB = BaseHypotenuse\dfrac{Base}{Hypotenuse}

=ABAC=1213= \dfrac{AB}{AC}\\[1em] = \dfrac{12}{13}

Hence, cos ∠DBC = 1213\dfrac{12}{13}.

(ii) In Δ BCD, according to angle sum property

⇒ ∠ DBC + ∠DCB + ∠CDB = 180°

⇒ ∠ DCB + x° + 90° = 180°

⇒ ∠ DCB = 180° - 90° - x°

⇒ ∠ DCB = 90° - x°

From figure,

∠ DCB = ∠ ACB = 90° - x°

∴ ∠ DBA = ∠ ACB = 90° - x°

cot ∠DBA = cot ∠ACB = BasePerpendicular\dfrac{Base}{Perpendicular}

=BCAB=512= \dfrac{BC}{AB}\\[1em] = \dfrac{5}{12}

Hence, cot ∠DBA = 512\dfrac{5}{12}.

Question 5

In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. Find :

(i) tan ∠DBC

(ii) sin ∠DBA

In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. Find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = 42 + 32

⇒ AC2 = 16 + 9

⇒ AC2 = 25

⇒ AC = 25\sqrt{25}

⇒ AC = 5

Let CD = y and BD = x

In Δ BCD,

⇒ BC2 = CD2 + BD2 (∵ BC is hypotenuse)

⇒ 32 = y2 + x2

⇒ 9 = y2 + x2 ................(1)

In Δ ABD,

⇒ AB2 = AD2 + BD2 (∵ BC is hypotenuse)

⇒ 42 = (5 - y)2 + x2

⇒ 16 = 25 + y2 - 10y + x2 ................(2)

Subtracting (1) from (2), we get

⇒ 16 - 9 = (25 + y2 - 10y + x2) - (y2 + x2)

⇒ 7 = 25 + y2 - 10y + x2 - y2 - x2

⇒ 7 = 25 - 10y

⇒ 7 - 25 = -10y

⇒ -10y = -18

⇒ y = 1810\dfrac{18}{10} = 1.8

AD = 5 - 1.8 = 3.2

Using equation (1),

⇒ 9 = (1.8)2 + x2

⇒ x2 = 9 - 3.24

⇒ x2 = 5.76

⇒ x = 5.76\sqrt{5.76}

⇒ x = 2.4

(i) cos ∠DBC = PerpendicularBase\dfrac{Perpendicular}{Base}

=CDBD=1.82.4=34= \dfrac{CD}{BD}\\[1em] = \dfrac{1.8}{2.4}\\[1em] = \dfrac{3}{4}

Hence, tan ∠DBC = 34\dfrac{3}{4}.

(ii) sin ∠DBA = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

=ADAB=3.24=45= \dfrac{AD}{AB}\\[1em] = \dfrac{3.2}{4}\\[1em] = \dfrac{4}{5}

Hence, sin ∠DBA = 45\dfrac{4}{5}.

Question 6

In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.

Answer

In isosceles triangle ABC, the perpendicular drawn from angle A to the side BC divides BC into 2 equal parts.

In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

BD = DC = 182\dfrac{18}{2} = 9

cos ∠ABC = BaseHypotenuse\dfrac{Base}{Hypotenuse}

=BDAB=915=35= \dfrac{BD}{AB}\\[1em] = \dfrac{9}{15}\\[1em] = \dfrac{3}{5}

Hence, cos ∠ABC = 35\dfrac{3}{5}.

Question 7

In the figure, given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find :

(i) sin B

(ii) tan C.

(iii) sin2 B + cos2 B

(iv) tan C - cot B

In the figure, given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

In isosceles Δ ABC, the perpendicular drawn from angle A to the side BC divides BC into 2 equal parts.

BD = DC = 82\dfrac{8}{2} = 4

In the figure, given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABD,

⇒ AB2 = BD2 + AD2 (∵ AB is hypotenuse)

⇒ 52 = 42 + AD2

⇒ 25 = 16 + AD2

⇒ AD2 = 25 - 16

⇒ AD2 = 9

⇒ AD = 9\sqrt{9}

⇒ AD = 3

(i) sin B = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

ADAB=35\dfrac{AD}{AB} = \dfrac{3}{5}

Hence, sin B = 35\dfrac{3}{5}

(ii) tan C = PerpendicularBase\dfrac{Perpendicular}{Base}

ADDC=34\dfrac{AD}{DC} = \dfrac{3}{4}

Hence, tan C = 34\dfrac{3}{4}

(iii) sin2 B + cos2 B

sin B = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

ADAB=35\dfrac{AD}{AB} = \dfrac{3}{5}

cos B = BaseHypotenuse\dfrac{Base}{Hypotenuse}

BDAB=45\dfrac{BD}{AB} = \dfrac{4}{5}

Now, sin2 B + cos2 B

=(35)2+(45)2=925+1625=9+1625=2525=1= \Big(\dfrac{3}{5}\Big)^2 + \Big(\dfrac{4}{5}\Big)^2\\[1em] = \dfrac{9}{25} + \dfrac{16}{25}\\[1em] = \dfrac{9 + 16}{25}\\[1em] = \dfrac{25}{25}\\[1em] = 1

Hence, sin2 B + cos2 B = 1.

(iv) tan C - cot B

tan C = PerpendicularBase\dfrac{Perpendicular}{Base}

=ADDC=34= \dfrac{AD}{DC} = \dfrac{3}{4}

cot B = BasePerpendicular\dfrac{Base}{Perpendicular}

=BDAD=43= \dfrac{BD}{AD} = \dfrac{4}{3}

Now, tan C - cot B

=3443=3×34×34×43×4=9121612=91612=712= \dfrac{3}{4} - \dfrac{4}{3}\\[1em] = \dfrac{3 \times 3}{4 \times 3}- \dfrac{4 \times 4}{3 \times 4}\\[1em] = \dfrac{9}{12} - \dfrac{16}{12}\\[1em] = \dfrac{9 - 16}{12}\\[1em] = \dfrac{-7}{12}

Hence, tan C - cot B = 712\dfrac{-7}{12}.

Question 8

In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x°=34\text{tan x°} = \dfrac{3}{4} and BC = 15 cm. Find the measures of AB and AC.

Answer

Given:

tan x°=34tan x°=PerpendicularBase=34BCAB=34\text{tan x°} = \dfrac{3}{4}\\[1em] \text{tan x°} = \dfrac{Perpendicular}{Base} = \dfrac{3}{4} \\[1em] \Rightarrow \dfrac{BC}{AB} = \dfrac{3}{4}

In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = 3/4 and BC = 15 cm. Find the measures of AB and AC. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

∴ If length of AB = 4x unit, length of BC = 3x unit.

BC = 15 cm (∵ Given)

∴ 3x = 15

⇒ x = 153\dfrac{15}{3} = 5 cm

∴ AB = 4x = 4 x 5 = 20 cm

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∵ AB is hypotenuse)

⇒ AC2 = (15)2 + (20)2

⇒ AC2 = 225 + 400

⇒ AC2 = 625

⇒ AC = 625\sqrt{625}

⇒ AC = 25 cm

Hence, AB = 20 cm and AC = 25 cm.

Question 9

Using the measurements given in the following figure :

(i) Find the value of sin Φ and tan θ.

(ii) Write an expression for AD in terms of θ.

Using the measurements given in the following figure : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

(i) In Δ BCD,

⇒ BD2 = BC2 + CD2 (∵ BD is hypotenuse)

⇒ 132 = 122 + CD2

⇒ 169 = 144 + CD2

⇒ CD2 = 169 - 144

⇒ CD2 = 25

⇒ CD = 25\sqrt{25}

⇒ CD = 5

sin Φ = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

=CDBD=513= \dfrac{CD}{BD} = \dfrac{5}{13}

Draw a line parallel to BC from point D such that it meets AB at point E. This line DE will be ⊥ to AB.

Using the measurements given in the following figure : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

From figure,

DE = BC = 12

In Δ BED,

⇒ BD2 = BE2 + DE2 (∵ BD is hypotenuse)

⇒ 132 = BE2 + 122

⇒ 169 = BE2 + 144

⇒ BE2 = 169 - 144

⇒ BE2 = 25

⇒ BE = 25\sqrt{25}

⇒ BE = 5

And, AE = AB - BE = 14 - 5 = 9

tan θ = BasePerpendicular\dfrac{Base}{Perpendicular}

=DEAE=129=43= \dfrac{DE}{AE} = \dfrac{12}{9} = \dfrac{4}{3}

Hence, sin Φ = 513\dfrac{5}{13} and tan θ = 43\dfrac{4}{3}

(ii) sin θ = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

sin θ = DEAD=12AD\dfrac{DE}{AD} = \dfrac{12}{AD}

AD = 12sin θ\dfrac{12}{\text{sin θ}} = 12 cosec θ

cos θ = BaseHypotenuse\dfrac{Base}{Hypotenuse}

cos θ = AEAD=9AD\dfrac{AE}{AD} = \dfrac{9}{AD}

AD = 9cos θ\dfrac{9}{\text{cos θ}} = 9 sec θ

Hence, AD = 12 cosec θ or 9 sec θ.

Question 10

In the given figure; BC = 15 cm and sin B=45\text{sin B} = \dfrac{4}{5}.

(i) Calculate the measures of AB and AC.

(ii) Now, if tan ∠ADC = 1; calculate the measures of CD and AD.

In the given figure; BC = 15 cm and sin B = 4/5. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

(i) Given:

sin B=45sin B=PerpendicularHypotenuse=45\text{sin B} = \dfrac{4}{5}\\[1em] \text{sin B} = \dfrac{Perpendicular}{Hypotenuse} = \dfrac{4}{5}

∴ If length of AC = 4x cm, length of AB = 5x cm.

In Δ ABC,

⇒ AB2= BC2 + AC2 (∵ AB is hypotenuse)

⇒ (5x)2 = BC2 + (4x)2

⇒ 25x2 = BC2 + 16x2

⇒ BC2 = 25x2 - 16x2

⇒ BC2 = 9x2

⇒ BC = 9x2\sqrt{9\text{x}^2}

⇒ BC = 3x

It is given that BC = 15 cm

3x = 15

x = 153\dfrac{15}{3}

x = 5 cm

AB = 5x = 5 x 5 cm = 25 cm

AC = 4x = 4 x 5 cm = 20 cm

Hence, AB = 25 cm and AC = 20 cm.

(ii) tan ∠ADC = 1

tan ∠ADC=PerpendicularBase=1\text{tan ∠ADC} = \dfrac{Perpendicular}{Base} = 1

∴ If length of AC = x unit, length of CD = x unit.

From (i), we know AC = 20 cm

∴ x = 20 cm

So, AC = CD = 20 cm

In Δ ACD,

⇒ AD2 = AC2 + CD2 (∵ AD is hypotenuse)

⇒ AD2 = 202 + 202

⇒ AD2 = 400 + 400

⇒ AD2 = 800

⇒ AD = 800\sqrt{800}

⇒ AD = 20220\sqrt{2}

Hence, CD = 20 cm and AD = 20 2\sqrt{2} cm.

Question 11

If sin A + cosec A = 2; find the value of sin2 A + cosec2 A.

Answer

sin A + cosec A = 2

Squaring both sides,

(sin A + cosec A)2 = 22

⇒ sin2 A + cosec2 A + 2 x sin A x cosec A = 4

⇒ sin2 A + cosec2 A + 2 x sin A x 1sin A\dfrac{1}{\text{sin A}} = 4

⇒ sin2 A + cosec2 A + 2 x sin A{\cancel{\text{sin A}}}x 1sin A\dfrac{1}{\cancel{\text{sin A}}} = 4

⇒ sin2 A + cosec2 A + 2 = 4

⇒ sin2 A + cosec2 A = 4 - 2

⇒ sin2 A + cosec2 A = 2

Hence, sin2 A + cosec2 A = 2.

Question 12

If tan A + cot A = 5; find the value of tan2 A + cot2 A.

Answer

tan A + cot A = 5

Squaring both sides,

(tan A + cot A)2 = 52

⇒ tan2 A + cot2 A + 2 x tan A x cot A = 25

⇒ tan2 A + cot2 A + 2 x tan A x 1tan A\dfrac{1}{\text{tan A}} = 25

⇒ tan2 A + cot2 A + 2 x tan A{\cancel{\text{tan A}}}x 1tan A\dfrac{1}{\cancel{\text{tan A}}} = 25

⇒ tan2 A + cot2 A + 2 = 25

⇒ tan2 A + cot2 A = 25 - 2

⇒ tan2 A + cot2 A = 23

Hence, tan2 A + cot2 A = 23.

Question 13

Given : 4 sin θ = 3 cos θ; find the value of :

(i) sin θ

(ii) cos θ

(iii) cot2 θ - cosec2 θ

(iv) 4 cos2 θ - 3 sin2 θ + 2

Answer

Given:

4 sin θ = 3 cos θ

sin θcos θ=34tan θ=34tan θ=PerpendicularBasePerpendicularBase=34⇒ \dfrac{\text{sin θ}}{\text{cos θ}} = \dfrac{3}{4}\\[1em] ⇒ \text{tan θ} = \dfrac{3}{4}\\[1em] ⇒ \text{tan θ} = \dfrac{\text{Perpendicular}}{\text{Base}}\\[1em] ⇒ \dfrac{\text{Perpendicular}}{\text{Base}} = \dfrac{3}{4}\\[1em]

∴ If length of BC = 3x unit, length of AB = 4x unit.

Given : 4 sin θ = 3 cos θ; find the value of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∵ AC is hypotenuse)

⇒ AC2 = (3x)2 + (4x)2

⇒ AC2 = 9x2 + 16x2

⇒ AC2 = 25x2

⇒ AC = 25x2\sqrt{25 \text{x}^2}

⇒ AC = 5x

(i) sin θ = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

CBAC=3x5x=35\dfrac{CB}{AC} = \dfrac{3x}{5x} = \dfrac{3}{5}

Hence, sin θ = 35\dfrac{3}{5}.

(ii) cos θ = BaseHypotenuse\dfrac{Base}{Hypotenuse}

ABAC=4x5x=45\dfrac{AB}{AC} = \dfrac{4x}{5x} = \dfrac{4}{5}

Hence, cos θ = 45\dfrac{4}{5}.

(iii) cot2 θ - cosec2 θ + 2

cot θ = BasePerpendicular\dfrac{Base}{Perpendicular}

ABBC=4x3x=43\dfrac{AB}{BC} = \dfrac{4x}{3x} = \dfrac{4}{3}

cosec θ = HypotenusePerpendicular\dfrac{Hypotenuse}{Perpendicular}

ACCB=5x3x=53\dfrac{AC}{CB} = \dfrac{5x}{3x} = \dfrac{5}{3}

Now, cot2 θ - cosec2 θ

=(43)2(53)2=169259=16259=99=1= \Big(\dfrac{4}{3}\Big)^2 - \Big(\dfrac{5}{3}\Big)^2 \\[1em] = \dfrac{16}{9} - \dfrac{25}{9} \\[1em] = \dfrac{16 - 25}{9} \\[1em] = \dfrac{- 9}{9} \\[1em] = -1

Hence, cot2 θ - cosec2 θ + 2 = -1.

(iv) 4 cos2 θ - 3 sin2 θ + 2

cos θ = BaseHypotenuse\dfrac{Base}{Hypotenuse}

ABAC=4x5x=45\dfrac{AB}{AC} = \dfrac{4x}{5x} = \dfrac{4}{5}

sin θ = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

CBAC=3x5x=35\dfrac{CB}{AC} = \dfrac{3x}{5x} = \dfrac{3}{5}

Now, 4 cos2 θ - 3 sin2 θ + 2

=4×(45)23×(35)2+2=4×16253×925+2=64252725+2=642725+2=3725+2=3725+2×2525=3725+5025=37+5025=8725=31225= 4 \times \Big(\dfrac{4}{5}\Big)^2 - 3 \times \Big(\dfrac{3}{5}\Big)^2 + 2\\[1em] = 4 \times \dfrac{16}{25} - 3 \times \dfrac{9}{25} + 2\\[1em] = \dfrac{64}{25} - \dfrac{27}{25} + 2\\[1em] = \dfrac{64 - 27}{25} + 2\\[1em] = \dfrac{37}{25} + 2\\[1em] = \dfrac{37}{25} + \dfrac{2 \times 25}{25}\\[1em] = \dfrac{37}{25} + \dfrac{50}{25}\\[1em] = \dfrac{37 + 50}{25}\\[1em] = \dfrac{87}{25}\\[1em] = 3\dfrac{12}{25}

Hence, 4 cos2 θ - 3 sin2 θ + 2 =312253\dfrac{12}{25}.

Question 14

Given : 17 cos θ = 15; find the value of tan θ + 2 sec θ.

Answer

Given:

17 cos θ = 15

cos θ = 1517\dfrac{15}{17}

cos θ=BaseHypotenuse=1517\Rightarrow \text{cos θ} = \dfrac{Base}{Hypotenuse} = \dfrac{15}{17}\\[1em]

Given : 17 cos θ = 15; find the value of tan θ + 2 sec θ. Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

∴ If length of AC = 17x unit, length of AB = 15x unit.

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∵ AC is hypotenuse)

⇒ (17x)2 = BC2 + (15x)2

⇒ 289x2 = BC2 + 225x2

⇒ BC2 = 289x2 - 225x2

⇒ BC = 64x2\sqrt{64 \text{x}^2}

⇒ BC = 8x

tan θ = PerpendicularBase\dfrac{Perpendicular}{Base}

=CBAB=8x15x=815= \dfrac{CB}{AB} = \dfrac{8x}{15x} = \dfrac{8}{15}

sec θ = HypotenuseBase\dfrac{Hypotenuse}{Base}

=ACAB=17x15x=1715= \dfrac{AC}{AB} = \dfrac{17x}{15x} = \dfrac{17}{15}

Now, tan θ + 2 sec θ

=815+2×1715=815+3415=8+3415=4215=145=245= \dfrac{8}{15} + 2 \times \dfrac{17}{15}\\[1em] = \dfrac{8}{15} + \dfrac{34}{15}\\[1em] = \dfrac{8 + 34}{15}\\[1em] = \dfrac{42}{15}\\[1em] = \dfrac{14}{5}\\[1em] = 2\dfrac{4}{5}

Hence, tan θ + 2 sec θ = 2452\dfrac{4}{5}.

Question 15

Given: 5 cos A - 12 sin A = 0; evaluate :

sin A+cos A 2 cos A sin A\dfrac{\text{sin A} + \text{cos A }}{2\text{ cos A } - \text{sin A}}

Answer

Given:

5 cos A - 12 sin A = 0

⇒ 5 cos A = 12 sin A

sin Acos A=512\dfrac{\text{sin A}}{\text{cos A}} = \dfrac{5}{12}

tan A=512\text{tan A} = \dfrac{5}{12}

tan A=PerpendicularBase=512⇒ \text{tan A} = \dfrac{Perpendicular}{Base} = \dfrac{5}{12} \\[1em]

Given: 5 cos A - 12 sin A = 0; evaluate : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

∴ If length of BC = 5x unit, length of AB = 12x unit.

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∵ AC is hypotenuse)

⇒ AC2 = (5x)2 + (12x)2

⇒ AC2 = 25x2 + 144x2

⇒ AC2 = 169x2

⇒ AC = 169x2\sqrt{169 \text{x}^2}

⇒ AC = 13x

sin A = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

CBAC=5x13x=513\dfrac{CB}{AC} = \dfrac{5x}{13x} = \dfrac{5}{13}

cos A = BaseHypotenuse\dfrac{Base}{Hypotenuse}

ABAC=12x13x=1213\dfrac{AB}{AC} = \dfrac{12x}{13x} = \dfrac{12}{13}

Now,

sin A+cos A 2 cos A sin A=513+12132×1213513=5+12132413513=171324513=17131913=17131913=1719\dfrac{\text{sin A} + \text{cos A }}{2\text{ cos A } - \text{sin A}}\\[1em] = \dfrac{\dfrac{5}{13} + \dfrac{12}{13}}{2 \times \dfrac{12}{13} - \dfrac{5}{13}}\\[1em] = \dfrac{\dfrac{5 + 12}{13}}{\dfrac{24}{13} - \dfrac{5}{13}}\\[1em] = \dfrac{\dfrac{17}{13}}{\dfrac{24 - 5}{13}}\\[1em] = \dfrac{\dfrac{17}{13}}{\dfrac{19}{13}}\\[1em] = \dfrac{\dfrac{17}{\cancel{13}}}{\dfrac{19}{\cancel{13}}}\\[1em] = \dfrac{17}{19}

Hence, sin A+cos A 2 cos A sin A=1719\dfrac{\text{sin A} + \text{cos A }}{2\text{ cos A } - \text{sin A}} = \dfrac{17}{19}.

Exercise 21(C)

Question 1(a)

2 tan 30°1+tan2 30°\dfrac{\text{2 tan 30°}}{1 + \text{tan}^2 \text{ 30°}} is equal to :

  1. sin 60°

  2. cos 60°

  3. sec 60°

  4. cosec 60°

Answer

2 tan 30°1+tan2 30°=2×131+(13)2=231+13=233+13=2×34×3=643=323=32=sin60°\dfrac{\text{2 tan 30°}}{1 + \text{tan}^2 \text{ 30°}} = \dfrac{2 \times \dfrac{1}{\sqrt{3}}}{1 + \Big(\dfrac{1}{\sqrt{3}}\Big)^2}\\[1em] = \dfrac{\dfrac{2}{\sqrt{3}}}{1 + \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{3 + 1}{3}}\\[1em] = \dfrac{2 \times 3}{4 \times {\sqrt{3}}}\\[1em] = \dfrac{6}{4{\sqrt{3}}}\\[1em] = \dfrac{3}{2{\sqrt{3}}}\\[1em] = \dfrac{{\sqrt{3}}}{2}\\[1em] = \text{sin} 60°

Hence, option 1 is the correct option.

Question 1(b)

If tan 3A - 3{\sqrt3} = 0 and 0 ≤ 3A ≤ 90° ; the measure of angle A is :

  1. 15°

  2. 20°

  3. 30°

  4. 10°

Answer

tan 3A - 3{\sqrt3} = 0

tan 3A = 3{\sqrt3}

tan 3A = tan 60°

So, 3A = 60°

A = 60°3\dfrac{60°}{3}

A = 20°

Hence, option 2 is the correct option.

Question 1(c)

If cot A = tan A and 0 ≤ A ≤ 90°, the measure of angle A is :

  1. 30°

  2. 60°

  3. 45°

  4. 90°

Answer

cot A = tan A

1tan A\dfrac{1}{\text{tan A}} = tan A

⇒ tan2 A = 1

⇒ tan A = 1

⇒ tan A = tan 45°

Hence, A = 45°

Hence, option 3 is the correct option.

Question 1(d)

The value of :

cos2 60° - 2 sin3 30° + 3 cot4 45° is :

  1. 1

  2. -2

  3. 3

  4. 2

Answer

cos260°2sin330°+3cot445°=(12)22×(12)3+3×(1)2=142×18+3=1414+3=3\text{cos}^2 60° - 2 \text{sin}^3 30° + 3 \text{cot}^4 45° = \Big(\dfrac{1}{2}\Big)^2 - 2 \times \Big(\dfrac{1}{2}\Big)^3 + 3 \times (1)^2\\[1em] = \dfrac{1}{4} - 2 \times \dfrac{1}{8} + 3\\[1em] = \dfrac{1}{4} - \dfrac{1}{4} + 3\\[1em] = 3

Hence, option 3 is the correct option.

Question 1(e)

The value of cos 60° - cos 0°+2 sin 90° cot 60°× cot 30°\dfrac{\text{cos 60° - cos 0°} + \text{2 sin 90°}}{\text{ cot 60°}\times \text{ cot 30°}} is :

  1. 1121\dfrac{1}{2}

  2. 23\dfrac{2}{3}

  3. -2

  4. 1

Answer

cos 60° - cos 0°+2 sin 90° cot 60°× cot 30°=121+2×113×3=121+21=12+1=1+22=32=112\dfrac{\text{cos 60° - cos 0°} + \text{2 sin 90°}}{\text{ cot 60°}\times \text{ cot 30°}} = \dfrac{\dfrac{1}{2} - 1 + 2 \times 1}{\dfrac{1}{\sqrt3}\times \sqrt3}\\[1em] = \dfrac{\dfrac{1}{2} - 1 + 2}{1}\\[1em] = \dfrac{1}{2} + 1\\[1em] = \dfrac{1 + 2}{2}\\[1em] = \dfrac{3}{2}\\[1em] = 1\dfrac{1}{2}

Hence, option 1 is the correct option.

Question 2(i)

Find the value of:

sin 30° cos 30°

Answer

sin 30° cos 30°=12×32=34\text{sin 30° cos 30°} = \dfrac{1}{2} \times \dfrac{\sqrt3}{2}\\[1em] = \dfrac{\sqrt3}{4}\\[1em]

Hence, sin 30° cos 30° = 34\dfrac{\sqrt3}{4}.

Question 2(ii)

Find the value of:

tan 30° tan 60°

Answer

tan 30° tan 60°=13×3=13×3=1\text{tan 30° tan 60°} = \dfrac{1}{\sqrt3} \times \sqrt3\\[1em] = \dfrac{1}{\cancel{\sqrt3}} \times \cancel{\sqrt3}\\[1em] = 1

Hence, tan 30° tan 60° = 1.

Question 2(iii)

Find the value of:

cos2 60° + sin2 30°

Answer

cos260°+sin230°=(12)2+(12)2=14+14=1+14=24=12\text{cos}^2 60° + \text{sin}^2 30° = \Big(\dfrac{1}{2}\Big)^2 + \Big(\dfrac{1}{2}\Big)^2\\[1em] = \dfrac{1}{4} + \dfrac{1}{4}\\[1em] = \dfrac{1 + 1}{4}\\[1em] = \dfrac{2}{4}\\[1em] = \dfrac{1}{2}

Hence, cos2 60° + sin2 30° = 12\dfrac{1}{2}.

Question 2(iv)

Find the value of:

cosec2 60° - tan2 30°

Answer

cosec260°tan230°=(23)2(13)2=4313=413=33=1\text{cosec}^2 60° - \text{tan}^2 30° = \Big(\dfrac{2}{\sqrt3}\Big)^2 - \Big(\dfrac{1}{\sqrt3}\Big)^2\\[1em] = \dfrac{4}{3} - \dfrac{1}{3}\\[1em] = \dfrac{4 - 1}{3}\\[1em] = \dfrac{3}{3}\\[1em] = 1

Hence, cosec2 60° - tan2 30° = 1.

Question 2(v)

Find the value of:

sin2 30° + cos2 30° + cot2 45°

Answer

sin230°+cos230°+cot245°=(12)2+(32)2+(1)2=14+34+1=1+34+1=44+1=1+1=2\text{sin}^2 30° + \text{cos}^2 30° + \text{cot}^2 45° = \Big(\dfrac{1}{2}\Big)^2 + \Big(\dfrac{\sqrt3}{2}\Big)^2 + (1)^2\\[1em] = \dfrac{1}{4} + \dfrac{3}{4} + 1\\[1em] = \dfrac{1 + 3}{4} + 1\\[1em] = \dfrac{4}{4} + 1\\[1em] = 1 + 1\\[1em] = 2

Hence, sin2 30° + cos2 30° + cot2 45° = 2.

Question 2(vi)

Find the value of:

cos2 60° + sec2 30° + tan2 45°

Answer

cos260°+sec230°+tan245°=(12)2+(23)2+(1)2=14+43+1=1×34×3+4×43×4+1×1212=312+1612+1212=3+16+1212=3112=2712\text{cos}^2 60° + \text{sec}^2 30° + \text{tan}^2 45° = \Big(\dfrac{1}{2}\Big)^2 + \Big(\dfrac{2}{\sqrt3}\Big)^2 + (1)^2\\[1em] = \dfrac{1}{4} + \dfrac{4}{3} + 1\\[1em] = \dfrac{1 \times 3}{4 \times 3} + \dfrac{4 \times 4}{3 \times 4} + \dfrac{1 \times 12}{12}\\[1em] = \dfrac{3}{12} + \dfrac{16}{12} + \dfrac{12}{12}\\[1em] = \dfrac{3 + 16 + 12}{12}\\[1em] = \dfrac{31}{12}\\[1em] = 2\dfrac{7}{12}

Hence, cos2 60° + sec2 30° + tan2 45° = 27122\dfrac{7}{12}.

Question 3(i)

Find the value of :

tan2 30° + tan2 45° + tan2 60°

Answer

tan2 30° + tan2 45° + tan2 60°

=(13)2+(1)2+(3)2=13+1+3=13+1×33+3×33=13+33+93=1+3+93=133=413= \Big(\dfrac{1}{\sqrt3}\Big)^2 + (1)^2 + (\sqrt3)^2\\[1em] = \dfrac{1}{3} + 1 + 3\\[1em] = \dfrac{1}{3} + \dfrac{1 \times 3}{3} + \dfrac{3 \times 3}{3}\\[1em] = \dfrac{1}{3} + \dfrac{3}{3} + \dfrac{9}{3}\\[1em] = \dfrac{1 + 3 + 9}{3}\\[1em] = \dfrac{13}{3}\\[1em] = 4\dfrac{1}{3}

Hence, tan2 30° + tan2 45° + tan2 60° = 4134\dfrac{1}{3}.

Question 3(ii)

Find the value of :

tan 45°cosec 30°+sec 60°cot 45°5 sin 90°2 cos 0°\dfrac{\text{tan 45°}}{\text{cosec 30°}} + \dfrac{\text{sec 60°}}{\text{cot 45°}} - \dfrac{\text{5 sin 90°}}{\text{2 cos 0°}}

Answer

tan 45°cosec 30°+sec 60°cot 45°5 sin 90°2 cos 0°\dfrac{\text{tan 45°}}{\text{cosec 30°}} + \dfrac{\text{sec 60°}}{\text{cot 45°}} - \dfrac{\text{5 sin 90°}}{\text{2 cos 0°}}

=12+215×12×1=12+2×21×252=12+4252=1+452=0= \dfrac{1}{2} + \dfrac{2}{1} - \dfrac{5 \times 1}{2 \times 1}\\[1em] = \dfrac{1}{2} + \dfrac{2 \times 2}{1 \times 2} - \dfrac{5}{2}\\[1em] = \dfrac{1}{2} + \dfrac{4}{2} - \dfrac{5}{2}\\[1em] = \dfrac{1 + 4 - 5}{2}\\[1em] = 0

Hence, tan 45°cosec 30°+sec 60°cot 45°5 sin 90°2 cos 0°=0\dfrac{\text{tan 45°}}{\text{cosec 30°}} + \dfrac{\text{sec 60°}}{\text{cot 45°}} - \dfrac{\text{5 sin 90°}}{\text{2 cos 0°}} = 0

Question 3(iii)

Find the value of :

3 sin2 30° + 2 tan2 60° - 5 cos2 45°

Answer

3 sin2 30° + 2 tan2 60° - 5 cos2 45°

=3×(12)2+2×(3)25×(12)2=3×14+2×35×12=34+652=34+6×445×22×2=34+244104=3+24104=174=414= 3 \times \Big(\dfrac{1}{2}\Big)^2 + 2 \times (\sqrt3)^2 - 5 \times \Big(\dfrac{1}{\sqrt2}\Big)^2\\[1em] = 3 \times \dfrac{1}{4} + 2 \times 3 - 5 \times \dfrac{1}{2}\\[1em] = \dfrac{3}{4} + 6 - \dfrac{5}{2}\\[1em] = \dfrac{3}{4} + \dfrac{6 \times 4}{4} - \dfrac{5 \times 2}{2 \times 2}\\[1em] = \dfrac{3}{4} + \dfrac{24}{4} - \dfrac{10}{4}\\[1em] = \dfrac{3 + 24 - 10}{4}\\[1em] = \dfrac{17}{4}\\[1em] = 4\dfrac{1}{4}

Hence, 3 sin2 30° + 2 tan2 60° - 5 cos2 45° = 4144\dfrac{1}{4}.

Question 4(i)

Prove that :

sin 60° cos 30° + cos 60°. sin 30° = 1

Answer

sin 60° cos 30° + cos 60°. sin 30° = 1

L.H.S = sin 60° cos 30° + cos 60°. sin 30°

=32×32+12×12=34+14=3+14=44=1= \dfrac{\sqrt3}{2} \times \dfrac{\sqrt3}{2} + \dfrac{1}{2} \times \dfrac{1}{2} \\[1em] = \dfrac{3}{4} + \dfrac{1}{4}\\[1em] = \dfrac{3 + 1}{4}\\[1em] = \dfrac{4}{4}\\[1em] = 1

R.H.S = 1

∴ L.H.S = R.H.S

Hence proved, sin 60° cos 30° + cos 60°. sin 30° = 1.

Question 4(ii)

Prove that :

cos 30°. cos 60° - sin 30°. sin 60° = 0

Answer

cos 30°. cos 60° - sin 30°. sin 60° = 0

L.H.S. = cos 30°. cos 60° - sin 30°. sin 60°

=32×1212×32=3434=0= \dfrac{\sqrt3}{2} \times \dfrac{1}{2} - \dfrac{1}{2} \times \dfrac{\sqrt3}{2} \\[1em] = \dfrac{\sqrt3}{4} - \dfrac{\sqrt3}{4}\\[1em] = 0

R.H.S. = 0

∴ L.H.S. = R.H.S.

Hence proved, cos 30°. cos 60° - sin 30°. sin 60° = 0.

Question 4(iii)

Prove that :

cosec2 45° - cot2 45° = 1

Answer

cosec2 45° - cot2 45° = 1

L.H.S. = cosec2 45° - cot2 45°

=(2)2(1)2=21=1= (\sqrt2)^2 - (1)^2 \\[1em] = 2 - 1\\[1em] = 1

R.H.S. = 1

∴ L.H.S. = R.H.S.

Hence proved, cosec2 45° - cot2 45° = 1.

Question 4(iv)

Prove that :

cos2 30° - sin2 30° = cos 60°

Answer

cos2 30° - sin2 30° = cos 60°

L.H.S. = cos2 30° - sin2 30°

=(34)2(14)2=3414=314=24=12= \Big(\dfrac{\sqrt3}{4}\Big)^2 - \Big(\dfrac{1}{4}\Big)^2 \\[1em] = \dfrac{3}{4} - \dfrac{1}{4}\\[1em] = \dfrac{3 - 1}{4}\\[1em] = \dfrac{2}{4}\\[1em] = \dfrac{1}{2}

R.H.S.. = cos 60° = 12\dfrac{1}{2}

∴ L.H.S. = R.H.S.

Hence proved, cos2 30° - sin2 30° = cos 60°.

Question 4(v)

Prove that :

(tan 60° + 1tan 60° - 1)2=1 + cos 30°1 - cos 30°\Big(\dfrac{\text{tan 60° + 1}}{\text{tan 60° - 1}}\Big)^2 = \dfrac{\text{1 + cos 30°}}{\text{1 - cos 30°}}

Answer

(tan 60° + 1tan 60° - 1)2=1 + cos 30°1 - cos 30°\Big(\dfrac{\text{tan 60° + 1}}{\text{tan 60° - 1}}\Big)^2 = \dfrac{\text{1 + cos 30°}}{\text{1 - cos 30°}}

L.H.S.=(tan 60° + 1tan 60° - 1)2=(3+131)2=((3+1)×(3+1)(31)×(3+1))2=((3+1)2(3)2(1)2)2=(3+1+2×1×331)2=(4+232)2=(2+3)2=4+3+2×2×3=7+43\text{L.H.S.} = \Big(\dfrac{\text{tan 60° + 1}}{\text{tan 60° - 1}}\Big)^2\\[1em] = \Big(\dfrac{\sqrt3 + 1}{\sqrt3 - 1}\Big)^2\\[1em] = \Big(\dfrac{(\sqrt3 + 1) \times (\sqrt3 + 1)}{(\sqrt3 - 1) \times (\sqrt3 + 1)}\Big)^2\\[1em] = \Big(\dfrac{(\sqrt3 + 1)^2}{(\sqrt3)^2 - (1)^2}\Big)^2\\[1em] = \Big(\dfrac{3 + 1 + 2 \times 1 \times \sqrt3}{3 - 1}\Big)^2\\[1em] = \Big(\dfrac{4 + 2\sqrt3}{2}\Big)^2\\[1em] = (2 + \sqrt3)^2\\[1em] = 4 + 3 + 2 \times 2 \times \sqrt3\\[1em] = 7 + 4\sqrt3

R.H.S.=1 + cos 30°1 - cos 30°=1+32132=2+32232=2+32232=2+323=(2+3)×(2+3)(23)×(2+3)=(2+3)2(2)2(3)2=4+3+2×2×343=7+43\text{R.H.S.} = \dfrac{\text{1 + cos 30°}}{\text{1 - cos 30°}}\\[1em] = \dfrac{1 + \dfrac{\sqrt3}{2}}{1 - \dfrac{\sqrt3}{2}}\\[1em] = \dfrac{\dfrac{2 + \sqrt3}{2}}{\dfrac{2 - \sqrt3}{2}}\\[1em] = \dfrac{\dfrac{2 + \sqrt3}{\cancel{2}}}{\dfrac{2 - \sqrt3}{\cancel{2}}}\\[1em] = \dfrac{2 + \sqrt3}{2 - \sqrt3}\\[1em] = \dfrac{(2 + \sqrt3) \times (2 + \sqrt3)}{(2 - \sqrt3) \times (2 + \sqrt3)}\\[1em] = \dfrac{(2 + \sqrt3)^2}{(2)^2 - (\sqrt3)^2}\\[1em] = \dfrac{4 + 3 + 2 \times 2 \times \sqrt3}{4 - 3}\\[1em] = 7 + 4\sqrt3\\[1em]

∴ L.H.S. = R.H.S.

Hence, (tan 60° + 1tan 60° - 1)2=1 + cos 30°1 - cos 30°\Big(\dfrac{\text{tan 60° + 1}}{\text{tan 60° - 1}}\Big)^2 = \dfrac{\text{1 + cos 30°}}{\text{1 - cos 30°}}

Question 4(vi)

Prove that :

3 cosec2 60° - 2 cot2 30° + sec2 45° = 0.

Answer

3 cosec2 60° - 2 cot2 30° + sec2 45° = 0.

L.H.S. = 3 cosec2 60° - 2 cot2 30° + sec2 45°

=3×(23)22×(3)2+(2)2=3×(43)2×3+2=46+2=0= 3 \times \Big(\dfrac{2}{\sqrt3}\Big)^2 - 2 \times ({\sqrt3})^2 + ({\sqrt2})^2\\[1em] = 3 \times \Big(\dfrac{4}{3}\Big) - 2 \times 3 + 2\\[1em] = 4 - 6 + 2\\[1em] = 0

R.H.S. = 0

∴ L.H.S. = R.H.S.

Hence, 3 cosec2 60° - 2 cot2 30° + sec2 45° = 0.

Question 5(i)

Prove that :

sin (2×30°)=2 tan 30°1+tan2 30°\text{sin }(2 \times 30°) = \dfrac{2 \text{ tan 30°}}{1 + \text{tan}^2 \text{ 30°}}

Answer

sin (2×30°)=2 tan 30°1+tan2 30°\text{sin }(2 \times 30°) = \dfrac{2 \text{ tan 30°}}{1 + \text{tan}^2 \text{ 30°}}

L.H.S. = sin (2 x 30°) = sin 60° = 32\dfrac{\sqrt3}{2}

R.H.S.

=2 tan 30°1+tan2 30°=2×131+(13)2=231+13=233+13=2343=2×34×3=32= \dfrac{2 \text{ tan 30°}}{1 + \text{tan}^2 \text{ 30°}}\\[1em] = \dfrac{2 \times \dfrac{1}{\sqrt3}}{1 + \Big(\dfrac{1}{\sqrt3}\Big)^2}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{1 + \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{3 + 1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{4}{3}}\\[1em] = \dfrac{2 \times 3}{4 \times \sqrt3}\\[1em] = \dfrac{\sqrt3}{2}\\[1em]

∴ L.H.S. = R.H.S.

Hence, sin (2×30°)=2 tan 30°1+tan2 30°\text{sin }(2 \times 30°) = \dfrac{2 \text{ tan 30°}}{1 + \text{tan}^2 \text{ 30°}}

Question 5(ii)

Prove that :

cos (2×30°)=1tan2 30°1+tan2 30°\text{cos }(2 \times 30°) = \dfrac{1 - \text{tan}^2 \text{ 30°}}{1 + \text{tan}^2 \text{ 30°}}

Answer

cos (2×30°)=1tan2 30°1+tan2 30°\text{cos }(2 \times 30°) = \dfrac{1 - \text{tan}^2 \text{ 30°}}{1 + \text{tan}^2 \text{ 30°}}

L.H.S. = cos (2 x 30°) = cos 60° = 12\dfrac{1}{2}

R.H.S.

=1tan2 30°1+tan2 30°=1(13)21+(13)2=1131+13=331333+13=3133+13=2343=2343=24=12= \dfrac{1 - \text{tan}^2 \text{ 30°}}{1 + \text{tan}^2 \text{ 30°}}\\[1em] = \dfrac{1 - \Big(\dfrac{1}{\sqrt3}\Big)^2}{1 + \Big(\dfrac{1}{\sqrt3}\Big)^2}\\[1em] = \dfrac{1 - \dfrac{1}{3}}{1 + \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{3}{3} - \dfrac{1}{3}}{\dfrac{3}{3} + \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{3 - 1}{3}}{\dfrac{3 + 1}{3}}\\[1em] = \dfrac{\dfrac{2}{3}}{\dfrac{4}{3}}\\[1em] = \dfrac{\dfrac{2}{\cancel{3}}}{\dfrac{4}{\cancel{3}}}\\[1em] = \dfrac{2}{4}\\[1em] = \dfrac{1}{2}

∴ L.H.S. = R.H.S.

Hence, cos (2×30°)=1tan2 30°1+tan2 30°\text{cos }(2 \times 30°) = \dfrac{1 - \text{tan}^2 \text{ 30°}}{1 + \text{tan}^2 \text{ 30°}}

Question 5(iii)

Prove that :

tan(2×30°)=2 tan 30°1tan2 30°\text{tan} (2 \times 30°) = \dfrac{\text{2 tan 30°}}{1 - \text{tan}^2 \text{ 30°}}

Answer

tan(2×30°)=2 tan 30°1tan2 30°\text{tan} (2 \times 30°) = \dfrac{\text{2 tan 30°}}{1 - \text{tan}^2 \text{ 30°}}

L.H.S. = tan 2 x 30° = tan 60° = 3\sqrt3

R.H.S.

=2 tan 30°1tan2 30°=2×131(13)2=23113=233313=23313=2323=2×32×3=3= \dfrac{\text{2 tan 30°}}{1 - \text{tan}^2 \text{ 30°}}\\[1em] = \dfrac{2 \times \dfrac{1}{\sqrt3}}{1 - \Big(\dfrac{1}{\sqrt3}\Big)^2}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{1 - \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{3}{3} - \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{3 - 1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{2}{3}}\\[1em] = \dfrac{2 \times 3}{2 \times \sqrt3}\\[1em] = \sqrt3

∴ L.H.S. = R.H.S.

Hence, tan(2×30°)=2 tan 30°1tan2 30°\text{tan} (2 \times 30°) = \dfrac{\text{2 tan 30°}}{1 - \text{tan}^2 \text{ 30°}}

Question 6

ABC is an isosceles right-angled triangle. Assuming AB = BC = x, find the value of each of the following trigonometric ratios :

(i) sin 45°

(ii) cos 45°

(iii) tan 45°

ABC is an isosceles right-angled triangle. Assuming AB = BC = x, find the value of each of the following trigonometric ratios : Trigonometrical Ratios of Standard Angles, Concise Mathematics Solutions ICSE Class 9.

Answer

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∴ AC is hypotenuse)

⇒ AC2 = x2 + x2

⇒ AC2 = 2x2

⇒ AC = 2x2\sqrt{2\text{x}^2}

⇒ AC = 2\sqrt{2} x

As Δ ABC is isosceles right angled triangle, ∠BAC = ∠BCA = 90°2\dfrac{90°}{2} = 45°

(i) sin 45°

sin 45° = sin A = sin C

sin A = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

= BCAC=x2x=12\dfrac{BC}{AC} = \dfrac{x}{\sqrt2x} = \dfrac{1}{\sqrt2}

Hence, sin 45° = 12\dfrac{1}{\sqrt2}.

(ii) cos 45°

cos 45° = cos A = cos C

cos A = BaseHypotenuse\dfrac{Base}{Hypotenuse}

= ABAC=x2x=12\dfrac{AB}{AC} = \dfrac{x}{\sqrt2x} = \dfrac{1}{\sqrt2}

Hence, cos 45° = 12\dfrac{1}{\sqrt2}.

(iii) tan 45°

tan 45° = tan A = tan C

tan A = PerpendicularBase\dfrac{Perpendicular}{Base}

= BCAB=xx\dfrac{BC}{AB} = \dfrac{x}{x} = 1

Hence, tan 45° = 1.

Question 7(i)

Prove that :

sin 60° = 2 sin 30° cos 30°.

Answer

sin 60° = 2 sin 30° cos 30°.

L.H.S. = sin 60° = 32\dfrac{\sqrt3}{2}

R.H.S.= 2 sin 30° cos 30°

=2×12×32=2×12×32=32= 2 \times \dfrac{1}{2} \times \dfrac{\sqrt3}{2}\\[1em] = \cancel{2} \times \dfrac{1}{\cancel{2}} \times \dfrac{\sqrt3}{2}\\[1em] = \dfrac{\sqrt3}{2}

∴ L.H.S. = R.H.S.

Hence proved, sin 60° = 2 sin 30° cos 30°.

Question 7(ii)

Prove that :

4 (sin4 30° + cos4 60°) - 3 (cos2 45° - sin2 90°) = 2

Answer

4 (sin4 30° + cos4 60°) - 3 (cos2 45° - sin2 90°) = 2

L.H.S. = 4 (sin4 30° + cos4 60°) - 3 (cos2 45° - sin2 90°)

=4×((12)4+(12)4)3×((12)2(1)2)=4×(116+116)3×(121)=4×(1+116)3×(1222)=4×(216)3×(122)=4×(18)3×(12)=12+32=1+32=42=2= 4 \times \Big(\Big(\dfrac{1}{2}\Big)^4 + \Big(\dfrac{1}{2}\Big)^4\Big) - 3 \times \Big(\Big(\dfrac{1}{\sqrt2}\Big)^2 - (1)^2\Big)\\[1em] = 4 \times \Big(\dfrac{1}{16} + \dfrac{1}{16}\Big) - 3 \times \Big(\dfrac{1}{2} - 1\Big)\\[1em] = 4 \times \Big(\dfrac{1 + 1}{16}\Big) - 3 \times \Big(\dfrac{1}{2} - \dfrac{2}{2}\Big)\\[1em] = 4 \times \Big(\dfrac{2}{16}\Big) - 3 \times \Big(\dfrac{1 - 2}{2}\Big)\\[1em] = 4 \times \Big(\dfrac{1}{8}\Big) - 3 \times \Big(\dfrac{-1}{2}\Big)\\[1em] = \dfrac{1}{2} + \dfrac{3}{2}\\[1em] = \dfrac{1 + 3}{2}\\[1em] = \dfrac{ 4}{2}\\[1em] = 2

R.H.S. = 2

∴ L.H.S. = R.H.S.

Hence, 4 (sin4 30° + cos4 60°) - 3 (cos2 45° - sin2 90°) = 2.

Question 8(i)

If sin x = cos x and x is acute, state the value of x.

Answer

sin x = cos x

As we know that sin2 x + cos2 x = 1

⇒ sin2 x + sin2 x = 1

⇒ 2sin2 x = 1

⇒ sin2 x = 12\dfrac{1}{2}

⇒ sin x = 12\dfrac{1}{\sqrt2}

⇒ sin x = sin 45°

⇒ x = 45°

Hence, the value of x = 45°.

Question 8(ii)

If sec A = cosec A and 0° ≤ A ≤ 90°, state the value of A.

Answer

sec A = cosec A

1cos A=1sin A\dfrac{1}{\text{cos A}} = \dfrac{1}{\text{sin A}}

sin A = cos A

As we know that sin2 A + cos2 A = 1

⇒ sin2 A + sin2 A = 1

⇒ 2sin2 A = 1

⇒ sin2 A = 12\dfrac{1}{2}

⇒ sin A = 12\dfrac{1}{\sqrt2}

⇒ sin A = sin 45°

⇒ A = 45°

Hence, the value of A = 45°.

Question 8(iii)

If tan θ = cot θ and 0° ≤ θ ≤ 90°, state the value of θ.

Answer

tan θ = cot θ

sin θcos θ=cos θsin θ\dfrac{\text{sin θ}}{\text{cos θ}} = \dfrac{\text{cos θ}}{\text{sin θ}}

sin2θ=cos2θ\text{sin}^2 \text{θ} = \text{cos}^2 \text{θ}

As we know that sin2 θ + cos2 θ = 1

⇒ sin2 θ + sin2 θ = 1

⇒ 2sin2 θ = 1

⇒ sin2 θ = 12\dfrac{1}{2}

⇒ sin θ = 12\dfrac{1}{\sqrt2}

⇒ sin θ = sin 45°

⇒ θ = 45°

Hence, the value of θ = 45°.

Question 8(iv)

If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.

Answer

sin x = cos y

cos y = sin (90° - y)

So, sin x = sin (90° - y)

⇒ x = 90° - y

⇒ x + y = 90°

Hence, the relation between x and y is x + y = 90°.

Question 9(i)

If sin x = cos y, then x + y = 45°; write true or false.

Answer

False

Reason:

sin x = cos y

It is only possible only when x = y = 45°.

sin 45° = cos 45° = 1

Question 9(ii)

sec θ. cot θ = cosec θ write true or false.

Answer

True

Reason:

sec θ. cot θ = cosec θ

L.H.S. = sec θ. cot θ

=1cos θ×cos θsin θ=1cos θ×cos θsin θ=1sin θ=cosec θ= \dfrac{1}{\text{cos θ}} \times \dfrac{\text{cos θ}}{\text{sin θ}}\\[1em] = \dfrac{1}{\cancel{\text{cos θ}}} \times \dfrac{\cancel{\text{cos θ}}}{\text{sin θ}}\\[1em] = \dfrac{1}{\text{sin θ}}\\[1em] = \text{cosec θ}

R.H.S. = cosec θ

∴ L.H.S. = R.H.S.

Question 9(iii)

For any angle θ, state the value of :

sin2 θ + cos2 θ.

Answer

1

Reason:

sin2 θ + cos2 θ = 1

Let take θ = 30°

sin2 30° = (12)2=14\Big(\dfrac{1}{2}\Big)^2 = \dfrac{1}{4}

cos2 30° = (32)2=34\Big(\dfrac{\sqrt3}{2}\Big)^2 = \dfrac{3}{4}

Now, sin2 30° + cos2 30°

=14+34=1+34=44=1= \dfrac{1}{4} + \dfrac{3}{4}\\[1em] = \dfrac{1 + 3}{4}\\[1em] = \dfrac{4}{4}\\[1em] = 1

Question 10(i)

State for any acute angle θ whether :

sin θ increases or decreases as θ increases.

Answer

sin θ increases as θ increases

Reason — As we know,

sin 0° = 0

sin 30° = 12\dfrac{1}{2} = 0.5

sin 45° = 12\dfrac{1}{\sqrt2} = 0.70

sin 60° = 32\dfrac{\sqrt3}{2} = 0.87

sin 90° = 1

Question 10(ii)

State for any acute angle θ whether :

cos θ increases or decreases as θ increases.

Answer

cos θ decreases as θ increases

Reason — As we know,

cos 0° = 1

cos 30° = 32\dfrac{\sqrt3}{2} = 0.87

cos 45° = 12\dfrac{1}{\sqrt2} = 0.70

cos 60° = 12\dfrac{1}{2} = 0.5

cos 90° = 0

Question 10(iii)

State for any acute angle θ whether :

tan θ increases or decreases as θ decreases.

Answer

tan θ decreases as θ decreases.

Reason — As we know,

tan 90° = not defined

tan 60° = 3\sqrt3 = 1.73

tan 45° = 1

tan 30° = 13\dfrac{1}{\sqrt3} = 0.58

tan 0° = 0

Exercise 21(D)

Question 1(a)

If A = 30°, then sin 2 A1 - cos 2 A\dfrac{\text{sin 2 A}}{\text{1 - cos 2 A}} is equal to :

  1. cot A

  2. tan A

  3. sec A

  4. cosec A

Answer

sin 2 A1 - cos 2 A=sin (2 x 30°)1 - cos (2 x 30°)=sin 60°1 - cos 60°=32112=322212=32212=3212=3212=31=cot A\dfrac{\text{sin 2 A}}{\text{1 - cos 2 A}}\\[1em] = \dfrac{\text{sin (2 x 30°)}}{\text{1 - cos (2 x 30°)}}\\[1em] = \dfrac{\text{sin 60°}}{\text{1 - cos 60°}}\\[1em] = \dfrac{\dfrac{\sqrt3}{2}}{1 - \dfrac{1}{2}}\\[1em] = \dfrac{\dfrac{\sqrt3}{2}}{\dfrac{2}{2} - \dfrac{1}{2}}\\[1em] = \dfrac{\dfrac{\sqrt3}{2}}{\dfrac{2 - 1}{2}}\\[1em] = \dfrac{\dfrac{\sqrt3}{2}}{\dfrac{1}{2}}\\[1em] = \dfrac{\dfrac{\sqrt3}{\cancel{2}}}{\dfrac{1}{\cancel{2}}}\\[1em] = \dfrac{\sqrt3}{1}\\[1em] = \text {cot A}

Hence, option 1 is the correct option.

Question 1(b)

If A = 60° and B = 30°; the value of sin A cos B + cos A sin B is equal to :

  1. 12\dfrac{1}{2}

  2. 1

  3. 2

  4. 2{\sqrt2}

Answer

sin A cos B + cos A sin B = sin 60°. cos 30° + cos 60°. sin 30°

=32×32+12×12=34+14=3+14=44=1= \dfrac{\sqrt3}{2} \times \dfrac{\sqrt3}{2} + \dfrac{1}{2} \times \dfrac{1}{2}\\[1em] = \dfrac{3}{4} + \dfrac{1}{4}\\[1em] = \dfrac{3 + 1}{4} \\[1em] = \dfrac{4}{4} \\[1em] = 1

Hence, option 2 is the correct option.

Question 1(c)

If A = 30° ; 3 sin A - 4 sin3 A is equal to:

  1. cos 3A

  2. tan 3A

  3. sin 3A

  4. cot 3A

Answer

3 sin A - 4 sin3 A = 3 sin 30° - 4 sin3 30°

=3×124×(12)2=324×18=3212=312=22=1=sin 90°=sin 3 x 30°=sin 3A= 3 \times \dfrac{1}{2} - 4 \times \Big(\dfrac{1}{2}\Big)^2\\[1em] = \dfrac{3}{2} - 4 \times \dfrac{1}{8}\\[1em] = \dfrac{3}{2} - \dfrac{1}{2}\\[1em] = \dfrac{3 - 1}{2} \\[1em] = \dfrac{2}{2} \\[1em] = 1\\[1em] = \text{sin 90°}\\[1em] = \text{sin 3 x 30°}\\[1em] = \text{sin 3A}\\[1em]

Hence, option 3 is the correct option.

Question 1(d)

If A = 30°, then cos4 A - sin4 A is equal to :

  1. sin 60°

  2. tan 60°

  3. cot 60°

  4. cos 60°

Answer

cos4 A - sin4 A = cos4 30° - sin4 30°

=(32)4(12)4=916116=9116=816=12=cos 60°= \Big(\dfrac{\sqrt3}{2}\Big)^4 - \Big(\dfrac{1}{2}\Big)^4\\[1em] = \dfrac{9}{16} - \dfrac{1}{16}\\[1em] = \dfrac{9 - 1}{16}\\[1em] = \dfrac{8}{16}\\[1em] = \dfrac{1}{2}\\[1em] = \text {cos 60°}

Hence, option 4 is the correct option.

Question 1(e)

If A = 45° ; then 2 sin A cos A is equal to :

  1. 1

  2. 0

  3. -1

  4. 2

Answer

2 sin A cos A = 2 sin 45°. cos 45°

=2×12×12=2×12=2×12=1= 2 \times \dfrac{1}{\sqrt2} \times \dfrac{1}{\sqrt2}\\[1em] = 2 \times \dfrac{1}{2}\\[1em] = \cancel{2} \times \dfrac{1}{\cancel{2}}\\[1em] = 1

Hence, option 1 is the correct option.

Question 2(i)

Given A = 60° and B = 30°, prove that :

sin (A + B) = sin A cos B + cos A sin B

Answer

sin (A + B) = sin A cos B + cos A sin B

L.H.S. = sin (A + B) = sin (60° + 30°)

= sin 90° = 1

R.H.S. = sin A cos B + cos A sin B

= sin 60° cos 30° + cos 60° sin 30°

=32×32+12×12=34+14=3+14=44=1= \dfrac{\sqrt3}{2} \times \dfrac{\sqrt3}{2} + \dfrac{1}{2} \times \dfrac{1}{2}\\[1em] = \dfrac{3}{4} + \dfrac{1}{4}\\[1em] = \dfrac{3 + 1}{4}\\[1em] = \dfrac{4}{4}\\[1em] = 1

∴ L.H.S. = R.H.S.

Hence, sin (A + B) = sin A cos B + cos A sin B.

Question 2(ii)

Given A = 60° and B = 30°, prove that :

cos (A + B) = cos A cos B - sin A sin B

Answer

cos (A + B) = cos A cos B - sin A sin B

L.H.S. = cos (A + B) = cos (60° + 30°)

= cos 90° = 0

R.H.S. = cos A cos B - sin A sin B

= cos 60° cos 30° - sin 60° sin 30°

=12×3232×12=3434=0= \dfrac{1}{2} \times \dfrac{\sqrt3}{2} - \dfrac{\sqrt3}{2} \times \dfrac{1}{2}\\[1em] = \dfrac{\sqrt3}{4} - \dfrac{\sqrt3}{4}\\[1em] = 0

∴ L.H.S. = R.H.S.

Hence, cos (A + B) = cos A cos B - sin A sin B.

Question 2(iii)

Given A = 60° and B = 30°, prove that :

cos (A - B) = cos A cos B + sin A sin B

Answer

cos (A - B) = cos A cos B + sin A sin B

L.H.S. = cos (A - B) = cos (60° - 30°)

= cos 30° = 32\dfrac{\sqrt3}{2}

R.H.S. = cos A cos B + sin A sin B

= cos 60° cos 30° + sin 60° sin 30°

=12×32+32×12=34+34=2×34=32= \dfrac{1}{2} \times \dfrac{\sqrt3}{2} + \dfrac{\sqrt3}{2} \times \dfrac{1}{2}\\[1em] = \dfrac{\sqrt3}{4} + \dfrac{\sqrt3}{4}\\[1em] = 2 \times \dfrac{\sqrt3}{4}\\[1em] = \dfrac{\sqrt3}{2}\\[1em]

∴ L.H.S. = R.H.S.

Hence, cos (A - B) = cos A cos B + sin A sin B.

Question 2(iv)

Given A = 60° and B = 30°, prove that :

tan (A - B)=tan A - tan B1 +  tan A . tan B\text{tan (A - B)} = \dfrac{\text{tan A - tan B}}{\text{1 + \text{ tan A }} . \text{ tan B}}

Answer

tan (A - B)=tan A - tan B1 + tan A . tan B\text{tan (A - B)} = \dfrac{\text{tan A - tan B}}{\text{1 + tan} \text{ A } . \text{ tan B}}

L.H.S. = tan (A - B) = tan (60° - 30°)

= tan 30° = 13\dfrac{1}{\sqrt3}

R.H.S.=tan A - tan B1 + tan A . tan B=tan 60° - tan 30°1 + tan 60° . tan 30°=3131+3×13=3×33131+3×13=33131+1=3131+1=232=232=13\text{R.H.S.} = \dfrac{\text{tan A - tan B}}{\text{1 + tan} \text{ A } . \text{ tan B}}\\[1em] = \dfrac{\text{tan 60° - tan 30°}}{\text{1 + tan} \text{ 60° } . \text{ tan 30°}}\\[1em] = \dfrac{\sqrt3 - \dfrac{1}{\sqrt3}}{1 + \sqrt3 \times \dfrac{1}{\sqrt3}}\\[1em] = \dfrac{\dfrac{\sqrt3 \times \sqrt3}{\sqrt3} - \dfrac{1}{\sqrt3}}{1 + \cancel{\sqrt3} \times \dfrac{1}{\cancel{\sqrt3}}}\\[1em] = \dfrac{\dfrac{3}{\sqrt3} - \dfrac{1}{\sqrt3}}{1 + 1}\\[1em] = \dfrac{\dfrac{3 - 1}{\sqrt3}}{1 + 1}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{2}\\[1em] = \dfrac{\dfrac{\cancel{2}}{\sqrt3}}{\cancel{2}}\\[1em] = \dfrac{1}{\sqrt3}

∴ L.H.S. = R.H.S.

Hence, tan (A - B)=tan A - tan B1 + tan A . tan B\text{tan (A - B)} = \dfrac{\text{tan A - tan B}}{\text{1 + tan} \text{ A } . \text{ tan B}}.

Question 3(i)

If A = 30°, then prove that :

sin 2 A=2 sin A cos A=2 tan A1+tan2 A\text{sin 2 A} = \text{2 sin A cos A} = \dfrac{\text{2 tan A}}{1 + \text{tan}^2 \text{ A}}

Answer

sin 2 A=2 sin A cos A=2 tan A1+tan2 A\text{sin 2 A} = \text{2 sin A cos A} = \dfrac{\text{2 tan A}}{1 + \text{tan}^2 \text{ A}}

1st term=sin 2 A=sin (2 x 30°)=sin 60°=32\text{1st term} = \text{sin 2 A} = \text{sin (2 x 30°)} = \text{sin 60°} = \dfrac{\sqrt3}{2}

2nd term=2 sin A cos A=2×sin 30°×cos 30°=2×12×32=2×12×32=32\text{2nd term} = \text{2 sin A cos A}\\[1em] = 2 \times \text{sin 30°} \times \text{cos 30°}\\[1em] = 2 \times \dfrac{1}{2} \times \dfrac{\sqrt3}{2}\\[1em] = \cancel{2} \times \dfrac{1}{\cancel{2}} \times \dfrac{\sqrt3}{2}\\[1em] = \dfrac{\sqrt3}{2}

3rd term=2 tan A1+tan2 A=2 tan 30°1+tan2 30°=2×131+(13)2=231+13=2333+13=233+13=2343=2×34×3=32\text{3rd term} = \dfrac{\text{2 tan A}}{1 + \text{tan}^2 \text{ A}}\\[1em] = \dfrac{\text{2 tan 30°}}{1 + \text{tan}^2 \text{ 30°}}\\[1em] = \dfrac{2 \times \dfrac{1}{\sqrt3}}{1 + \Big(\dfrac{1}{\sqrt3}\Big)^2}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{1 + \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{3}{3} + \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{3 + 1}{3}}\\[1em] = \dfrac{\dfrac{2}{\sqrt3}}{\dfrac{4}{3}}\\[1em] = \dfrac{2 \times 3}{4 \times \sqrt3}\\[1em] = \dfrac{\sqrt3}{2}

∴ 1st term = 2nd term = 3rd term

Hence, sin 2 A=2 sin A cos A=2 tan A1+tan2 A\text{sin 2 A} = \text{2 sin A cos A} = \dfrac{\text{2 tan A}}{1 + \text{tan}^2 \text{ A}}.

Question 3(ii)

If A = 30°, then prove that :

cos 2 A=cos2 Asin2 A=1tan2 A1+tan2 A\text{cos 2 A} = \text{cos}^2 \text{ A} - \text{sin}^2 \text{ A} = \dfrac{1 - \text{tan}^2 \text{ A}}{1 + \text{tan}^2 \text{ A}}

Answer

cos 2 A=cos2 Asin2 A=1tan2 A1+tan2 A\text{cos 2 A} = \text{cos}^2 \text{ A} - \text{sin}^2 \text{ A} = \dfrac{1 - \text{tan}^2 \text{ A}}{1 + \text{tan}^2 \text{ A}}

1st term=cos 2 A=cos (2 x 30°)=cos 60°=12\text{1st term} = \text{cos 2 A} = \text{cos (2 x 30°)} = \text{cos 60°} = \dfrac{1}{2}

2nd term=cos2 Asin2 A=cos2 30°sin2 30°=(32)2(12)2=3414=314=24=12\text{2nd term} = \text{cos}^2 \text{ A} - \text{sin}^2 \text{ A}\\[1em] = \text{cos}^2 \text{ 30°} - \text{sin}^2 \text{ 30°}\\[1em] = \Big(\dfrac{\sqrt3}{2}\Big)^2 - \Big(\dfrac{1}{2}\Big)^2\\[1em] = \dfrac{3}{4} - \dfrac{1}{4}\\[1em] = \dfrac{3 - 1}{4}\\[1em] = \dfrac{2}{4}\\[1em] = \dfrac{1}{2}

3rd term=1tan2 A1+tan2 A=1tan2 30°1+tan2 30°=1(13)21+(13)2=331333+13=3133+13=2343=2343=24=12\text{3rd term} = \dfrac{1 - \text{tan}^2 \text{ A}}{1 + \text{tan}^2 \text{ A}}\\[1em] = \dfrac{1 - \text{tan}^2 \text{ 30°}}{1 + \text{tan}^2 \text{ 30°}}\\[1em] = \dfrac{1 - \Big(\dfrac{1}{\sqrt3}\Big)^2}{1 + \Big(\dfrac{1}{\sqrt3}\Big)^2}\\[1em] = \dfrac{\dfrac{3}{3} - \dfrac{1}{3}}{\dfrac{3}{3} + \dfrac{1}{3}}\\[1em] = \dfrac{\dfrac{3 - 1}{3}}{\dfrac{3 + 1}{3}}\\[1em] = \dfrac{\dfrac{2}{3}}{\dfrac{4}{3}}\\[1em] = \dfrac{\dfrac{2}{\cancel{3}}}{\dfrac{4}{\cancel{3}}}\\[1em] = \dfrac{2}{4}\\[1em] = \dfrac{1}{2}

∴ 1st term = 2nd term = 3rd term

Hence, cos 2 A=cos2 Asin2 A=1tan2 A1+tan2 A\text{cos 2 A} = \text{cos}^2 \text{ A} - \text{sin}^2 \text{ A} = \dfrac{1 - \text{tan}^2 \text{ A}}{1 + \text{tan}^2 \text{ A}}

Question 3(iii)

If A = 30°, then prove that :

2 cos2 A - 1 = 1 - 2 sin2 A

Answer

2 cos2 A - 1 = 1 - 2 sin2 A

L.H.S.=2cos2A1=2cos230°1=2×(32)21=2×341=3222=322=12\text{L.H.S.} = 2 \text{cos}^2 A - 1\\[1em] = 2 \text{cos}^2 30° - 1\\[1em] = 2 \times \Big(\dfrac{\sqrt3}{2}\Big)^2 - 1\\[1em] = 2 \times \dfrac{3}{4} - 1\\[1em] = \dfrac{3}{2} - \dfrac{2}{2}\\[1em] = \dfrac{3 - 2}{2}\\[1em] = \dfrac{1}{2}

R.H.S.=12sin2A=12sin230°=12×(12)2=12×14=2212=212=12\text{R.H.S.} = 1 - 2 \text{sin}^2 A \\[1em] = 1 - 2 \text{sin}^2 30°\\[1em] = 1 - 2 \times \Big(\dfrac{1}{2}\Big)^2\\[1em] = 1 - 2 \times \dfrac{1}{4}\\[1em] = \dfrac{2}{2} - \dfrac{1}{2}\\[1em] = \dfrac{2 - 1}{2}\\[1em] = \dfrac{1}{2}

∴ L.H.S. = R.H.S.

Hence, 2 cos2 A - 1 = 1 - 2 sin2 A.

Question 3(iv)

If A = 30°, then prove that :

sin 3A = 3 sin A - 4 sin3 A

Answer

sin 3A = 3 sin A - 4 sin3 A

L.H.S. = sin 3A

= sin (3 x 30°)

= sin 90°

= 1

R.H.S.=3sin A4sin3A=3sin 30°4sin330°=3×124×(12)3=324×18=3212=312=22=1\text{R.H.S.} = 3 \text{sin A} - 4 \text{sin}^3 A\\[1em] = 3 \text{sin 30°} - 4 \text{sin}^3 30°\\[1em] = 3 \times \dfrac{1}{2} - 4 \times \Big(\dfrac{1}{2}\Big)^3\\[1em] = \dfrac{3}{2} - 4 \times \dfrac{1}{8}\\[1em] = \dfrac{3}{2} - \dfrac{1}{2}\\[1em] = \dfrac{3 - 1}{2}\\[1em] = \dfrac{2}{2}\\[1em] = 1

∴ L.H.S. = R.H.S.

Hence, sin 3A = 3 sin A - 4 sin3 A.

Question 4(i)

If A = B = 45°, show that :

sin (A - B) = sin A cos B - cos A sin B

Answer

sin (A - B) = sin A cos B - cos A sin B

L.H.S. = sin (A - B)

= sin (45° - 45°)

= sin 0°

= 0

R.H.S. = sin A cos B - cos A sin B

= sin 45° . cos 45° - cos 45°. sin 45°

=12×1212×12=1212=0= \dfrac {1}{\sqrt2} \times \dfrac {1}{\sqrt2} - \dfrac {1}{\sqrt2} \times \dfrac {1}{\sqrt2}\\[1em] = \dfrac {1}{2} - \dfrac {1}{2}\\[1em] = 0

∴ L.H.S. = R.H.S.

Hence, sin (A - B) = sin A cos B - cos A sin B.

Question 4(ii)

If A = B = 45°, show that :

cos (A + B) = cos A cos B - sin A sin B

Answer

cos (A + B) = cos A cos B - sin A sin B

L.H.S. = cos (A + B)

= cos (45° + 45°)

= cos 90°

= 0

R.H.S. = cos A cos B - sin A sin B

= cos 45° . cos 45° - sin 45°. sin 45°

=12×1212×12=1212=0= \dfrac {1}{\sqrt2} \times \dfrac {1}{\sqrt2} - \dfrac {1}{\sqrt2} \times \dfrac {1}{\sqrt2}\\[1em] = \dfrac {1}{2} - \dfrac {1}{2}\\[1em] = 0

∴ L.H.S. = R.H.S.

Hence, cos (A + B) = cos A cos B - sin A sin B.

Exercise 21(E)

Question 1(a)

If 2sin A - 1 = 0 and A is an acute angle, the measure of angle A is :

  1. 30°

  2. 45°

  3. 60°

  4. 90°

Answer

2sin A - 1 = 0

⇒ 2sin A = 1

⇒ sin A = 12\dfrac{1}{2}

⇒ sin A = sin 30°

⇒ A = 30°

Hence, option 1 is the correct option.

Question 1(b)

If cos A (cos A - 1) = 0; the measure of angle A is :

  1. 90° or 0°

  2. 90° and 0°

  3. 45° or 90°

  4. 45° and 90°

Answer

cos A (cos A - 1) = 0

⇒ cos A = 0 or cos A = 1

⇒ cos A = cos 90° or cos A = cos 0°

The measure of angle A is 90° or 0°.

Hence, option 1 is the correct option.

Question 1(c)

If tan4 A - 1 = 0 and angle A is acute, then A is :

  1. 30°

  2. 45°

  3. ± 45°

  4. ± 30°

Answer

tan4 A - 1 = 0

⇒ tan4A = 1

⇒ (tan A)4 = 1

⇒ tan A = tan 45°

⇒ A = 45°

Hence, option 2 is the correct option.

Question 1(d)

If 2sin 3A - 1 = 0 ; the value of angle A is :

  1. 20°

  2. 60°

  3. 10°

  4. 30°

Answer

2sin 3A - 1 = 0

⇒ 2sin 3A = 1

⇒ sin 3A = 12\dfrac{1}{2}

⇒ sin 3A = sin 30°

So, 3A = 30°

⇒ A = 30°3\dfrac{30°}{3}

⇒ A = 10°

Hence, option 3 is the correct option.

Question 1(e)

If 3tan2 A - 1 = 0 and angle A is acute, the measure of angle A is :

  1. 20°

  2. 45°

  3. 60°

  4. 30°

Answer

3tan2 A - 1 = 0

⇒ 3tan2 A = 1

⇒ tan2 A = 13\dfrac{1}{3}

⇒ tan A = 13\sqrt{\dfrac{1}{3}}

⇒ tan A = 13\dfrac{1}{\sqrt3}

⇒ tan A = tan 30°

⇒ A = 30°

Hence, option 4 is the correct option.

Question 2(i)

Solve the following equations for A, if :

2 sin A = 1

Answer

2 sin A = 1

⇒ sin A = 12\dfrac{1}{2}

⇒ sin A = sin 30°

Hence, A = 30°.

Question 2(ii)

Solve the following equations for A, if :

2 cos 2 A = 1

Answer

2 cos 2 A = 1

⇒ cos 2A = 12\dfrac{1}{2}

⇒ cos 2A = cos 60°

So, 2A = 60°

⇒ A = 60°2\dfrac{60°}{2}

⇒ A = 30°

Hence, A = 30°.

Question 2(iii)

Solve the following equations for A, if :

sin 3 A = 32\dfrac{\sqrt3}{2}

Answer

sin 3 A = 32\dfrac{\sqrt3}{2}

⇒ sin 3A = sin 60°

So, 3A = 60°

⇒ A = 60°3\dfrac{60°}{3}

⇒ A = 20°

Hence, A = 20°.

Question 2(iv)

Solve the following equations for A, if :

sec 2 A = 2

Answer

sec 2 A = 2

⇒ sec 2A = sec 60°

So, 2A = 60°

⇒ A = 60°2\dfrac{60°}{2}

⇒ A = 30°

Hence, A = 30°.

Question 2(v)

Solve the following equations for A, if :

3{\sqrt3} tan A = 1

Answer

3{\sqrt3} tan A = 1

⇒ tan A = 13\dfrac{1}{\sqrt3}

⇒ tan A = tan 30°

So, A = 30°

Hence, A = 30°.

Question 2(vi)

Solve the following equations for A, if :

tan 3 A = 1

Answer

tan 3 A = 1

⇒ tan 3A = tan 45°

So, 3A = 45°

⇒ A = 45°3\dfrac{45°}{3}

⇒ A = 15°

Hence, A = 15°.

Question 2(vii)

Solve the following equations for A, if :

2 sin 3 A = 1

Answer

2 sin 3 A = 1

⇒ sin 3A = 12\dfrac{1}{2}

⇒ sin 3A = sin 30°

So, 3A = 30°

⇒ A = 30°3\dfrac{30°}{3}

⇒ A = 10°

Hence, A = 10°.

Question 2(viii)

Solve the following equations for A, if :

3{\sqrt3} cot 2 A = 1

Answer

3{\sqrt3} cot 2 A = 1

⇒ cot 2A = 13\dfrac{1}{\sqrt3}

⇒ cot 2A = cot 60°

So, 2A = 60°

⇒ A = 60°2\dfrac{60°}{2}

⇒ A = 30°

Hence, A = 30°.

Question 3(i)

Calculate the value of A, if :

(sin A - 1) (2 cos A - 1) = 0

Answer

(sin A - 1) (2 cos A - 1) = 0

⇒ (sin A - 1) = 0 and (2 cos A - 1) = 0

⇒ sin A = 1 and cos A = 12\dfrac{1}{2}

⇒ sin A = sin 90° and cos A = cos 60°

Hence, A = 90° and 60°.

Question 3(ii)

Calculate the value of A, if :

(tan A - 1) (cosec 3A - 1) = 0

Answer

(tan A - 1) (cosec 3A - 1) = 0

⇒ (tan A - 1) = 0 and (cosec 3A - 1) = 0

⇒ tan A = 1 and cosec 3A = 1

⇒ tan A = tan 45° and cosec 3A = cosec 90°

So, A = 45° and 3A = 90°

⇒ A = 45° and A = 30°

Hence, A = 45° and 30°.

Question 3(iii)

Calculate the value of A, if :

(sec 2A - 1) (cosec 3A - 1) = 0

Answer

(sec 2A - 1) (cosec 3A - 1) = 0

⇒ sec 2A - 1 = 0 and cosec 3A - 1 = 0

⇒ sec 2A = 1 and cosec 3A = 1

⇒ sec 2A = sec 0° and cosec 3A = cosec 90°

So, 2A = 0° and 3A = 90°

⇒ A = 0° and A = 90°3=30°\dfrac{90°}{3} = 30°

Hence, A = 0° and 30°.

Question 3(iv)

Calculate the value of A, if :

cos 3A (2 sin 2A - 1) = 0

Answer

cos 3A. (2 sin 2A - 1) = 0

⇒ cos 3A = 0 and 2sin 2A - 1 = 0

⇒ cos 3A = 0 and 2sin 2A = 1

⇒ cos 3A = 0 and sin 2A = 12\dfrac{1}{2}

⇒ cos 3A = cos 90° and sin 2A = sin 30°

So, 3A = 90° and 2A = 30°

⇒ A = 90°3=30°\dfrac{90°}{3} = 30° and A = 30°2=15°\dfrac{30°}{2} = 15°

Hence, A = 30° and 15°.

Question 3(v)

Calculate the value of A, if :

(cosec 2A - 2) (cot 3A - 1) = 0

Answer

(cosec 2A - 2) (cot 3A - 1) = 0

⇒ cosec 2A - 2 = 0 and cot 3A - 1 = 0

⇒ cosec 2A = 2 and cot 3A = 1

⇒ cosec 2A = cosec 30° and cot 3A = cot 45°

So, 2A = 30° and 3A = 45°

⇒ A = 30°2=15°\dfrac{30°}{2} = 15° and A = 45°3=15°\dfrac{45°}{3} = 15°

Hence, A = 15°.

Question 4

If 2 sin x° - 1 = 0 and x° is an acute angle; find:

(i) sin x°

(ii) x°

(iii) cos x° and

(iv) tan x°.

Answer

(i) 2 sin x° - 1 = 0

⇒ 2 sin x° = 1

⇒ sin x° = 12\dfrac{1}{2}

Hence, sin x° = 12\dfrac{1}{2}.

(ii) x°

⇒ sin x° = 12\dfrac{1}{2}

⇒ sin x° = sin 30°

Hence, x° = 30°.

(iii) cos x°

⇒ cos 30° = 32\dfrac{\sqrt3}{2}

Hence, cos x° = 32\dfrac{\sqrt3}{2}.

(iv) tan x°.

⇒ tan 30° = 13\dfrac{1}{\sqrt3}

Hence, tan x° = 13\dfrac{1}{\sqrt3}.

Question 5

If 4 cos2 x° - 1 = 0 and 0 ≤ x° ≤ 90°, find:

(i) x°

(ii) sin2 x° + cos2

(iii) 1cos2 x°tan2 x°\dfrac{1}{\text{cos}^2 \text{ x°}} - \text{tan}^2 \text{ x°}

Answer

(i) 4 cos2 x° - 1 = 0

⇒ 4 cos2 x° = 1

⇒ cos2 x° = 14\dfrac{1}{4}

⇒ cos x° = 14\sqrt{\dfrac{1}{4}}

⇒ cos x° = 12\dfrac{1}{2}

⇒ cos x° = cos 60°

Hence, x° = 60°.

(ii) sin2 x° + cos2

⇒ sin2 60° + cos2 60°

=(32)2+(12)2=34+14=3+14=44=1= \Big(\dfrac{\sqrt3}{2}\Big)^2 + \Big(\dfrac{1}{2}\Big)^2 \\[1em] = \dfrac{3}{4} + \dfrac{1}{4} \\[1em] = \dfrac{3 + 1}{4}\\[1em] = \dfrac{4}{4}\\[1em] = 1

Hence, sin2 x° + cos2 x° = 1.

(iii) 1cos2 x°tan2 x°\dfrac{1}{\text{cos}^2 \text{ x°}} - \text{tan}^2 \text{ x°}

=1cos2 60°tan2 60°=1(12)2(3)2=413=43=1= \dfrac{1}{\text{cos}^2 \text{ 60°}} - \text{tan}^2 \text{ 60°}\\[1em] = \dfrac{1}{\Big(\dfrac{1}{2}\Big)^2} - (\sqrt3)^2\\[1em] = \dfrac{4}{1} - 3\\[1em] = 4 - 3\\[1em] = 1

Hence, 1cos2 x°tan2 x°=1\dfrac{1}{\text{cos}^2 \text{ x°}} - \text{tan}^2 \text{ x°} = 1.

Question 6

If 4 sin2 θ - 1 = 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2 θ.

Answer

4 sin2 θ - 1 = 0

⇒ 4 sin2 θ = 1

⇒ sin2 θ = 14\dfrac{1}{4}

⇒ sin θ = 14\sqrt{\dfrac{1}{4}}

⇒ sin θ = 12\dfrac{1}{2}

⇒ sin θ = sin 30°

So, θ = 30°

Now, cos2 θ + tan2 θ

= cos2 30° + tan2 30°

=(32)2+(13)2=34+13=3×34×3+1×43×4=912+412=9+412=1312=1112= \Big(\dfrac{\sqrt3}{2}\Big)^2 + \Big(\dfrac{1}{\sqrt3}\Big)^2\\[1em] = \dfrac{3}{4} + \dfrac{1}{3}\\[1em] = \dfrac{3 \times 3}{4 \times 3} + \dfrac{1 \times 4}{3 \times 4}\\[1em] = \dfrac{9}{12} + \dfrac{4}{12}\\[1em] = \dfrac{9 + 4}{12}\\[1em] = \dfrac{13}{12}\\[1em] = 1\dfrac{1}{12}

Hence, θ = 30° and cos2 30° + tan2 30° = 1312\dfrac{13}{12} = 11121\dfrac{1}{12}.

Question 7

If sin 3A = 1 and 0 ≤ A ≤ 90°, find :

(i) sin A

(ii) cos 2 A

(iii) tan2 A - 1cos2 A\dfrac{1}{\text{cos}^2 \text{ A}}

Answer

sin 3A = 1

⇒ sin 3A = sin 90°

So, 3A = 90°

⇒ A = 90°3=30°\dfrac{90°}{3} = 30°

(i) sin A = sin 30° = 12\dfrac{1}{2}

Hence, sin A = 12\dfrac{1}{2}.

(ii) cos 2 A

= cos (2 x 30°)

= cos 60°

= 12\dfrac{1}{2}

Hence, cos 2A = 12\dfrac{1}{2}.

(iii) tan2 A - 1cos2 A\dfrac{1}{\text{cos}^2 \text{ A}}

=tan230°1cos230°=(13)21(32)2=13134=1343=143=33=1= \text{tan}^2 \text{30°} - \dfrac{1}{\text{cos}^2 \text{30°}}\\[1em] = \Big(\dfrac{1}{\sqrt3}\Big)^2 - \dfrac{1}{\Big(\dfrac{\sqrt3}{2}\Big)^2}\\[1em] = \dfrac{1}{3} - \dfrac{1}{\dfrac{3}{4}}\\[1em] = \dfrac{1}{3} - \dfrac{4}{3}\\[1em] = \dfrac{1 - 4}{3}\\[1em] = \dfrac{- 3}{3}\\[1em] = - 1

Hence, tan2 A - 1cos2 A\dfrac{1}{\text{cos}^2 \text{ A}} = -1.

Question 8

If 2 cos 2A = 3{\sqrt3} and A is acute, find :

(i) A

(ii) sin 3A

(iii) sin2 (75° - A) + cos2 (45° + A)

Answer

(i) 2 cos 2A = 3{\sqrt3}

⇒ cos 2A = 32\dfrac{\sqrt3}{2}

⇒ cos 2A = cos 30°

So, 2A = 30°

⇒ A = 30°2=15°\dfrac{30°}{2} = 15°

Hence, A = 15°.

(ii) sin 3A

= sin (3 x 15°)

= sin 45°

= 12\dfrac{1}{\sqrt2}

Hence, sin 3A = 12\dfrac{1}{\sqrt2}.

(iii) sin2 (75° - A) + cos2 (45° + A)

= sin2 (75° - 15°) + cos2 (45° + 15°)

= sin2 60° + cos2 60°

=(32)2+(12)2=34+14=3+14=44=1= \Big(\dfrac{\sqrt3}{2}\Big)^2 + \Big(\dfrac{1}{2}\Big)^2\\[1em] = \dfrac{3}{4} + \dfrac{1}{4}\\[1em] = \dfrac{3 + 1}{4} \\[1em] = \dfrac{4}{4} \\[1em] = 1

Hence, sin2 (75° - A) + cos2 (45° + A) = 1.

Exercise 21(F)

Question 1(a)

If sin A = cos A, the measurement of angle A is :

  1. 30°

  2. 45°

  3. 60°

Answer

Given:

sin A = cos A

⇒ sin A = sin (90° - A)

So, A = 90° - A

⇒ A + A = 90°

⇒ 2A = 90°

⇒ A = 90°2\dfrac{90°}{2}

⇒ A = 45°

Hence, option 3 is the correct option.

Question 1(b)

If sin A = cos B and A ≠ B then the relation between angles A and B is :

  1. A + B = 180°

  2. A - B = 90°

  3. B - A = 90°

  4. A + B = 90°

Answer

Given:

sin A = cos B

⇒ sin A = sin (90° - B)

So, A = 90° - B

⇒ A + B = 90°

Hence, option 4 is the correct option.

Question 1(c)

If A + B = 90°, the value of

cos Asin B×tan Bcot A\dfrac{\text{cos A}}{\text{sin B}}\times \dfrac{\text{tan B}}{\text{cot A}} is :

  1. 1

  2. 2

  3. sin A

  4. cos B

Answer

Given:

cos Asin B×tan Bcot Acos Asin (90° - A)×tan (90° - A)cot Acos Acos A×cot Acot AcosAcosA×cotAcotA1\dfrac{\text{cos A}}{\text{sin B}}\times \dfrac{\text{tan B}}{\text{cot A}}\\[1em] ⇒ \dfrac{\text{cos A}}{\text{sin (90° - A)}}\times \dfrac{\text{tan (90° - A)}}{\text{cot A}}\\[1em] ⇒ \dfrac{\text{cos A}}{\text{cos A}}\times \dfrac{\text{cot A}}{\text{cot A}}\\[1em] ⇒ \dfrac{\cancel{cos A}}{\cancel{cos A}}\times \dfrac{\cancel{cot A}}{\cancel{cot A}}\\[1em] ⇒ 1

Hence, option 1 is the correct option.

Question 1(d)

The value of :

cosec 40° cos 50° + sin 50° sec 40° is:

  1. 1

  2. 2

  3. 3

  4. 0

Answer

Given:

cosec 40° cos 50° + sin 50° sec 40°

= cosec 40° cos (90° - 40°) + sin (90° - 40°) sec 40°

= cosec 40° sin 40° + cos 40° sec 40°

= 1sin 40°×sin 40°+cos 40°×1cos 40°\dfrac{1}{\text{sin 40°}} \times \text{sin 40°} + \text{cos 40°} \times \dfrac{1}{\text{cos 40°}}

= 1 + 1

= 2

Hence, option 2 is the correct option.

Question 1(e)

In a triangle ABC, secA+C2\text{sec}\dfrac{A + C}{2} is equal to:

  1. 0

  2. secB2\text{sec}\dfrac{B}{2}

  3. cosec B

  4. cosecB2\text{cosec}\dfrac{B}{2}

Answer

Given:

In Δ ABC,

A+B+C=180°A+C=180°BA+C2=180°B2A+C2=90°B2secA+C2=sec(90°B2)secA+C2=cosecB2⇒ ∠ A + ∠ B + ∠ C = 180°\\[1em] ⇒ ∠ A + ∠ C = 180° - ∠ B\\[1em] ⇒ \dfrac{A + C}{2} = \dfrac{180° - B}{2}\\[1em] ⇒ \dfrac{A + C}{2} = 90° - \dfrac{B}{2}\\[1em] ⇒ \text{sec}\dfrac{A + C}{2} = \text{sec}{\Big(90° - \dfrac{B}{2}\Big)}\\[1em] ⇒ \text{sec}\dfrac{A + C}{2} = \text{cosec}\dfrac{B}{2}\\[1em]

Hence, option 4 is the correct option.

Question 2(i)

Evaluate:

cos 22°sin 68°\dfrac{\text{cos 22°}}{\text{sin 68°}}

Answer

cos 22°sin 68°=cos (90° - 68°)sin 68°=sin 68°sin 68°=sin68°sin68°=1\dfrac{\text{cos 22°}}{\text{sin 68°}} = \dfrac{\text{cos (90° - 68°)}}{\text{sin 68°}}\\[1em] = \dfrac{\text{sin 68°}}{\text{sin 68°}}\\[1em] = \dfrac{\cancel{sin 68°}}{\cancel{sin 68°}}\\[1em] = 1

Hence, cos 22°sin 68°\dfrac{\text{cos 22°}}{\text{sin 68°}} = 1.

Question 2(ii)

Evaluate:

tan 47°cot 43°\dfrac{\text{tan 47°}}{\text{cot 43°}}

Answer

tan 47°cot 43°=tan (90° - 43°)cot 43°=cot 43°cot 43°=cot43°cot43°=1\dfrac{\text{tan 47°}}{\text{cot 43°}} = \dfrac{\text{tan (90° - 43°)}}{\text{cot 43°}}\\[1em] = \dfrac{\text{cot 43°}}{\text{cot 43°}}\\[1em] = \dfrac{\cancel{cot 43°}}{\cancel{cot 43°}}\\[1em] = 1

Hence, tan 47°cot 43°\dfrac{\text{tan 47°}}{\text{cot 43°}} = 1.

Question 2(iii)

Evaluate:

sec 75°cosec 15°\dfrac{\text{sec 75°}}{\text{cosec 15°}}

Answer

sec 75°cosec 15°=sec (90° - 15°)cosec 15°=cosec 15°cosec 15°=cosec15°cosec15°=1\dfrac{\text{sec 75°}}{\text{cosec 15°}} = \dfrac{\text{sec (90° - 15°)}}{\text{cosec 15°}}\\[1em] = \dfrac{\text{cosec 15°}}{\text{cosec 15°}}\\[1em] = \dfrac{\cancel{cosec 15°}}{\cancel{cosec 15°}}\\[1em] = 1

Hence, sec 75°cosec 15°\dfrac{\text{sec 75°}}{\text{cosec 15°}} = 1.

Question 2(iv)

Evaluate:

cos 55°sin 35°\dfrac{\text{cos 55°}}{\text{sin 35°}} + cot 35°tan 55°\dfrac{\text{cot 35°}}{\text{tan 55°}}

Answer

cos 55°sin 35°+cot 35°tan 55°=cos (90° - 45°)sin 35°+cot (90° - 55°)tan 55°=sin 45°sin 35°+tan 55°tan 55°=sin45°sin35°+tan55°tan55°=1+1=2\dfrac{\text{cos 55°}}{\text{sin 35°}} + \dfrac{\text{cot 35°}}{\text{tan 55°}}\\[1em] = \dfrac{\text{cos (90° - 45°)}}{\text{sin 35°}} + \dfrac{\text{cot (90° - 55°)}}{\text{tan 55°}}\\[1em] = \dfrac{\text{sin 45°}}{\text{sin 35°}} + \dfrac{\text{tan 55°}}{\text{tan 55°}}\\[1em] = \dfrac{\cancel{sin 45°}}{\cancel{sin 35°}} + \dfrac{\cancel{tan 55°}}{\cancel{tan 55°}}\\[1em] = 1 + 1\\[1em] = 2

Hence, cos 55°sin 35°+cot 35°tan 55°\dfrac{\text{cos 55°}}{\text{sin 35°}} + \dfrac{\text{cot 35°}}{\text{tan 55°}} = 2.

Question 2(v)

Evaluate:

sin2 40° - cos2 50°

Answer

sin2 40° - cos2 50°

= sin2 (90° - 50°) - cos2 50°

= cos2 50° - cos2 50°

= 0

Hence, sin2 40° - cos2 50° = 0.

Question 2(vi)

Evaluate:

sec2 18° - cosec2 72°

Answer

sec2 18° - cosec2 72°

= sec2 (90° - 72°) - cosec2 72°

= cosec2 72° - cosec2 72°

= 0

Hence, sec2 18° - cosec2 72° = 0.

Question 2(vii)

Evaluate:

sin 15° cos 15° - cos 75° sin 75°

Answer

sin 15° cos 15° - cos 75° sin 75°

= sin (90° - 75°) cos (90° - 75°) - cos (90° - 15°) sin 75°

= cos 75° sin 75° - cos 75° sin 75°

= 0

Hence, sin 15° cos 15° - cos 75° sin 75° = 0.

Question 2(viii)

Evaluate:

sin 42° sin 48° - cos 42° cos 48°

Answer

sin 42° sin 48° - cos 42° cos 48°

= sin (90° - 48°) sin 48° - cos (90° - 48°) cos 48°

= cos 48° sin 48° - sin 48° cos 48°

= 0

Hence, sin 42° sin 48° - cos 42° cos 48° = 0.

Question 3(i)

Evaluate :

sin (90° - A) sin A - cos (90° - A) cos A

Answer

sin (90° - A) sin A - cos (90° - A) cos A

= cos A sin A - sin A cos A

= 0

Hence, sin (90° - A) sin A - cos (90° - A) cos A = 0.

Question 3(ii)

Evaluate :

sin2 35° - cos2 55°

Answer

sin2 35° - cos2 55°

= sin2 (90° - 55°) - cos2 55°

= cos2 55° - cos2 55°

= 0

Hence, sin2 35° - cos2 55° = 0.

Question 3(iii)

Evaluate :

cot 54°tan 36°\dfrac{\text{cot 54°}}{\text{tan 36°}} + tan 20°cot 70°\dfrac{\text{tan 20°}}{\text{cot 70°}} - 2

Answer

cot 54°tan 36°+tan 20°cot 70°2=cot (90° - 36°)tan 36°+tan (90° - 70°)cot 70°2=tan 36°tan 36°+cot 70°cot 70°2=tan36°tan36°+cot70°cot70°2=1+12=22=0\dfrac{\text{cot 54°}}{\text{tan 36°}} + \dfrac{\text{tan 20°}}{\text{cot 70°}} - 2\\[1em] = \dfrac{\text{cot (90° - 36°)}}{\text{tan 36°}} + \dfrac{\text{tan (90° - 70°)}}{\text{cot 70°}} - 2\\[1em] = \dfrac{\text{tan 36°}}{\text{tan 36°}} + \dfrac{\text{cot 70°}}{\text{cot 70°}} - 2\\[1em] = \dfrac{\cancel{tan 36°}}{\cancel{tan 36°}} + \dfrac{\cancel{cot 70°}}{\cancel{cot 70°}} - 2\\[1em] = 1 + 1 - 2\\[1em] = 2 - 2\\[1em] = 0

Hence, cot 54°tan 36°+tan 20°cot 70°2=0\dfrac{\text{cot 54°}}{\text{tan 36°}} + \dfrac{\text{tan 20°}}{\text{cot 70°}} - 2 = 0.

Question 3(iv)

Evaluate :

cos2 25° - sin2 65° - tan2 45°

Answer

cos2 25° - sin2 65° - tan2 45°

= cos2 (90° - 65°) - sin2 65° - tan2 45°

= sin2 65° - sin2 65° - tan2 45°

= - tan2 45°

= - 1

Hence, cos2 25° - sin2 65° - tan2 45° = -1.

Question 3(v)

Evaluate :

(sin 77°cos 13°)2\Big(\dfrac{\text{sin 77°}}{\text{cos 13°}}\Big)^2 + (cos 77°sin 13°)2\Big(\dfrac{\text{cos 77°}}{\text{sin 13°}}\Big)^2 - 2 cos2 45°

Answer

(sin 77°cos 13°)2+(cos 77°sin 13°)22 cos245°=(sin (90° - 13°)cos 13°)2+(cos (90° - 13°)sin 13°)22 cos245°=(cos 13°cos 13°)2+(sin 13°sin 13°)22 cos245°=(cos13°cos13°)2+(sin13°sin13°)22 cos245°=12+122×(12)2=1+12×(12)=21=1\Big(\dfrac{\text{sin 77°}}{\text{cos 13°}}\Big)^2 + \Big(\dfrac{\text{cos 77°}}{\text{sin 13°}}\Big)^2 - \text{2 cos}^2 45°\\[1em] = \Big(\dfrac{\text{sin (90° - 13°)}}{\text{cos 13°}}\Big)^2 + \Big(\dfrac{\text{cos (90° - 13°)}}{\text{sin 13°}}\Big)^2 - \text{2 cos}^2 45°\\[1em] = \Big(\dfrac{\text{cos 13°}}{\text{cos 13°}}\Big)^2 + \Big(\dfrac{\text{sin 13°}}{\text{sin 13°}}\Big)^2 - \text{2 cos}^2 45°\\[1em] = \Big(\dfrac{\cancel{cos 13°}}{\cancel{cos 13°}}\Big)^2 + \Big(\dfrac{\cancel{sin 13°}}{\cancel{sin 13°}}\Big)^2 - \text{2 cos}^2 45°\\[1em] = 1^2 + 1^2 - 2 \times \Big(\dfrac{1}{\sqrt2}\Big)^2\\[1em] = 1 + 1 - 2 \times \Big(\dfrac{1}{2}\Big)\\[1em] = 2 - 1\\[1em] = 1

Hence, (sin 77°cos 13°)2+(cos 77°sin 13°)2 cos245°=1\Big(\dfrac{\text{sin 77°}}{\text{cos 13°}}\Big)^2 + \Big(\dfrac{\text{cos 77°}}{\text{sin 13°}}\Big) - \text{2 cos}^2 45° = 1.

Question 4(i)

Show that :

tan 10° tan 15° tan 75° tan 80° = 1

Answer

tan 10° tan 15° tan 75° tan 80° = 1

L.H.S. = tan 10° tan 15° tan 75° tan 80°

= tan (90° - 80°) tan (90° - 75°) tan 75° tan 80°

= cot 80° cot 75° tan 75° tan 80°

= 1tan 80°×1tan 75°×tan 75°×tan 80°\dfrac{1}{\text{tan 80°}} \times \dfrac{1}{\text{tan 75°}} \times \text{tan 75°} \times \text{tan 80°}

= 1tan80°×1tan75°×tan75°×tan80°\dfrac{1}{\cancel{tan 80°}} \times \dfrac{1}{\cancel{tan 75°}} \times \cancel{tan 75°} \times \cancel{tan 80°}

= 1

R.H.S. = 1

∴ L.H.S. = R.H.S.

Hence, tan 10° tan 15° tan 75° tan 80° = 1.

Question 4(ii)

Show that :

sin 42° sec 48° + cos 42° cosec 48° = 2

Answer

sin 42° sec 48° + cos 42° cosec 48° = 2

L.H.S. = sin 42° sec 48° + cos 42° cosec 48°

= sin (90° - 48°) sec 48° + cos (90° - 48°) cosec 48°

= cos 48° sec 48° + sin 48° cosec 48°

= cos 48°1cos 48°+sin 48°1sin 48°\text{cos 48°} \dfrac{1}{\text{cos 48°}} + \text{sin 48°} \dfrac{1}{\text{sin 48°}}

= cos48°1cos48°+sin48°1sin48°\cancel{cos 48°} \dfrac{1}{\cancel{cos 48°}} + \cancel{sin 48°} \dfrac{1}{\cancel{sin 48°}}

= 1 + 1

= 2

R.H.S. = 2

∴ L.H.S. = R.H.S.

Hence, sin 42° sec 48° + cos 42° cosec 48° = 2.

Question 5(i)

Express the following in terms of angles between 0° and 45° :

sin 59° + tan 63°

Answer

sin 59° + tan 63°

= sin (90° - 31°) + tan (90° - 27°)

= cos 31° + cot 27°

Hence, sin 59° + tan 63° = cos 31° + cot 27°.

Question 5(ii)

Express the following in terms of angles between 0° and 45° :

cosec 68° + cot 72°

Answer

cosec 68°+ cot 72°

= cosec (90° - 22°) + cot (90° - 18°)

= sec 22° + tan 18°

Hence, cosec 68°+ cot 72° = sec 22° + tan 18°.

Question 5(iii)

Express the following in terms of angles between 0° and 45° :

cos 74° + sec 67°

Answer

cos 74° + sec 67°

= cos (90° - 16°) + sec (90° - 23°)

= sin 16° + cosec 23°

Hence, cos 74° + sec 67° = sin 16° + cosec 23°.

Question 6

For triangle ABC, show that :

(i) sinA+B2=cosC2\text{sin}\dfrac{A+B}{2} = \text{cos}\dfrac{C}{2}

(ii) tanB+C2=cotA2\text{tan}\dfrac{B+C}{2} = \text{cot}\dfrac{A}{2}

Answer

(i) sinA+B2=cosC2\text{sin}\dfrac{A+B}{2} = \text{cos}\dfrac{C}{2}

According to angle sum property,

A+B+C=180°A+B=180°CA+B2=180°C2∠ A + ∠ B + ∠ C = 180°\\[1em] ∠ A + ∠ B = 180° - ∠ C\\[1em] ⇒ \dfrac{A + B}{2} = \dfrac{180° - C}{2}\\[1em]

L.H.S.=sinA+B2=sin180°C2=sin(90°C2)=cosC2\text{L.H.S.} = \text{sin}\dfrac{A+B}{2}\\[1em] = \text{sin}\dfrac{180° - C}{2}\\[1em] = \text{sin}\Big(90° - \dfrac{C}{2}\Big)\\[1em] = \text{cos}\dfrac{C}{2}

R.H.S. = cosC2\text{cos}\dfrac{C}{2}

∴ L.H.S. = R.H.S.

Hence, sinA+B2=cosC2\text{sin}\dfrac{A+B}{2} = \text{cos}\dfrac{C}{2}.

(ii) tanB+C2=cotA2\text{tan}\dfrac{B+C}{2} = \text{cot}\dfrac{A}{2}

According to angle sum property,

A+B+C=180°B+C=180°AB+C2=180°A2∠ A + ∠ B + ∠ C = 180°\\[1em] ∠ B + ∠ C = 180° - ∠ A\\[1em] ⇒ \dfrac{B + C}{2} = \dfrac{180° - A}{2}\\[1em]

L.H.S.=tanB+C2=tan(180°A2)=tan(90°A2)=cotA2\text{L.H.S.} = \text{tan}\dfrac{B+C}{2}\\[1em] = \text{tan}\Big(\dfrac{180° - A}{2}\Big)\\[1em] = \text{tan}\Big(90° - \dfrac{A}{2}\Big)\\[1em] = \text{cot}\dfrac{A}{2}

R.H.S. = cotA2\text{cot}\dfrac{A}{2}

∴ L.H.S. = R.H.S.

Hence, tanB+C2=cotA2\text{tan}\dfrac{B+C}{2} = \text{cot}\dfrac{A}{2}.

Question 7(i)

Evaluate :

3 sin 72° cos 18°\text{3}\dfrac{\text{ sin 72°}}{\text{ cos 18°}} - sec 32°cosec 58°\dfrac{\text{sec 32°}}{\text{cosec 58°}}

Answer

3 sin 72° cos 18°sec 32°cosec 58°=3 sin (90° - 18°) cos 18°sec (90° - 58°)cosec 58°=3 cos 18° cos 18°cosec 58°cosec 58°=3cos18°cos18°cosec58°cosec58°=31=2\text{3}\dfrac{\text{ sin 72°}}{\text{ cos 18°}} - \dfrac{\text{sec 32°}}{\text{cosec 58°}}\\[1em] = \text{3}\dfrac{\text{ sin (90° - 18°)}}{\text{ cos 18°}} - \dfrac{\text{sec (90° - 58°)}}{\text{cosec 58°}}\\[1em] = \text{3}\dfrac{\text{ cos 18°}}{\text{ cos 18°}} - \dfrac{\text{cosec 58°}}{\text{cosec 58°}}\\[1em] = \text{3}\dfrac{\cancel{ cos 18°}}{\cancel{ cos 18°}} - \dfrac{\cancel{cosec 58°}}{\cancel{cosec 58°}}\\[1em] = 3 - 1\\[1em] = 2

Hence, 3 sin 72° cos 18°sec 32°cosec 58°=2\text{3}\dfrac{\text{ sin 72°}}{\text{ cos 18°}} - \dfrac{\text{sec 32°}}{\text{cosec 58°}} = 2.

Question 7(ii)

Evaluate :

3 cos 80° cosec 10° + 2 sin 59° sec 31°

Answer

3 cos 80° cosec 10° + 2 sin 59° sec 31°

= 3 cos (90° - 10°) cosec 10° + 2 sin (90° - 31°) sec 31°

= 3 sin 10° cosec 10° + 2 cos 31° sec 31°

= 3sin 10°×1sin 10°+2cos 31°×1cos 31°3 \text{sin 10°} \times \dfrac{1}{\text{sin 10°}} + 2 \text{cos 31°} \times \dfrac{1}{\text{cos 31°}}

= 3sin10°×1sin10°+2cos31°×1cos31°3 \cancel{sin 10°} \times \dfrac{1}{\cancel{sin 10°}} + 2 \cancel{cos 31°} \times \dfrac{1}{\cancel{cos 31°}}

= 3 + 2

= 5

Hence, 3 cos 80° cosec 10° + 2 sin 59° sec 31° = 5.

Question 7(iii)

Evaluate :

sin 80°cos 10°\dfrac{\text{sin 80°}}{\text{cos 10°}} + sin 59° sec 31°

Answer

sin 80°cos 10°+sin 59° sec 31°=sin (90° - 10°)cos 10°+sin (90° - 31°) sec 31°=cos 10°cos 10°+cos 31° sec 31°=cos10°cos10°+cos 31°1cos 31°=1+cos31°1cos31°=1+1=2\dfrac{\text{sin 80°}}{\text{cos 10°}} + \text{sin 59° sec 31°}\\[1em] = \dfrac{\text{sin (90° - 10°)}}{\text{cos 10°}} + \text{sin (90° - 31°) sec 31°}\\[1em] = \dfrac{\text{cos 10°}}{\text{cos 10°}} + \text{cos 31° sec 31°}\\[1em] = \dfrac{\cancel{cos 10°}}{\cancel{cos 10°}} + \text{cos 31°}\dfrac{1}{\text{cos 31°}}\\[1em] = 1 + \cancel{cos 31°}\dfrac{1}{\cancel{cos 31°}}\\[1em] = 1 + 1\\[1em] = 2

Hence, sin 80°cos 10°+sin 59° sec 31°=2\dfrac{\text{sin 80°}}{\text{cos 10°}} + \text{sin 59° sec 31°} = 2.

Question 7(iv)

Evaluate :

tan (55° - A) - cot (35° + A)

Answer

tan (55° - A) - cot (35° + A)

= tan [(90° - 35°) - A] - cot (35° + A)

= tan [90° - (35° + A)] - cot (35° + A)

= cot (35° + A) - cot (35° + A)

= 0

Hence, tan (55° - A) - cot (35° + A) = 0.

Question 7(v)

Evaluate :

cosec (65° + A) - sec (25° - A)

Answer

cosec (65° + A) - sec (25° - A)

= cosec [(90° - 25°) + A] - sec (25° - A)

= cosec [90° - (25° - A)] - sec (25° - A)

= sec (25° - A) - sec (25° - A)

= 0

Hence, cosec (65° + A) - sec (25° - A) = 0.

Question 7(vi)

Evaluate :

2tan 57°cot 33°2\dfrac{\text{tan 57°}}{\text{cot 33°}} - cot 70°tan 20°\dfrac{\text{cot 70°}}{\text{tan 20°}} - 2cos 45°{\sqrt2} \text{cos 45°}

Answer

2tan 57°cot 33°cot 70°tan 20°2cos45°=2tan (90° - 33°)cot 33°cot (90° - 20°)tan 20°2cos45°=2cot 33°cot 33°tan 20°tan 20°212=2cot33°cot33°tan20°tan20°212=211=02\dfrac{\text{tan 57°}}{\text{cot 33°}} - \dfrac{\text{cot 70°}}{\text{tan 20°}} - {\sqrt2} \text{cos45°}\\[1em] = 2\dfrac{\text{tan (90° - 33°)}}{\text{cot 33°}} - \dfrac{\text{cot (90° - 20°)}}{\text{tan 20°}} - {\sqrt2} \text{cos45°}\\[1em] = 2\dfrac{\text{cot 33°}}{\text{cot 33°}} - \dfrac{\text{tan 20°}}{\text{tan 20°}} - {\sqrt2} \dfrac{1}{\sqrt2}\\[1em] = 2\dfrac{\cancel{cot 33°}}{\cancel{cot 33°}} - \dfrac{\cancel{tan 20°}}{\cancel{tan 20°}} - \cancel{\sqrt2} \dfrac{1}{\cancel{\sqrt2}}\\[1em] = 2 - 1 - 1\\[1em] = 0

Hence, 2tan 57°cot 33°cot 70°tan 20°2cos45°=02\dfrac{\text{tan 57°}}{\text{cot 33°}} - \dfrac{\text{cot 70°}}{\text{tan 20°}} - {\sqrt2} \text{cos45°} = 0.

Question 7(vii)

Evaluate :

cot2 41°tan2 49°\dfrac{\text{cot}^2 \text{ 41°}}{\text{tan}^2 \text{ 49°}} - 2 sin2 75° cos2 15°2\dfrac{\text{ sin}^2 \text{ 75°}}{\text{ cos}^2 \text{ 15°}}

Answer

cot2 41°tan2 49°2 sin2 75° cos2 15°=cot2 (90° - 49°)tan2 49°2 sin2 (90° - 15°) cos2 15°=tan249°tan2 49°2 cos215° cos2 15°=tan249°tan249°2cos215°cos215°=12=1\dfrac{\text{cot}^2 \text{ 41°}}{\text{tan}^2 \text{ 49°}} - 2\dfrac{\text{ sin}^2 \text{ 75°}}{\text{ cos}^2 \text{ 15°}}\\[1em] = \dfrac{\text{cot}^2 \text{ (90° - 49°)}}{\text{tan}^2 \text{ 49°}} - 2\dfrac{\text{ sin}^2 \text{ (90° - 15°)}}{\text{ cos}^2 \text{ 15°}}\\[1em] = \dfrac{\text{tan}^2 \text{49°}}{\text{tan}^2 \text{ 49°}} - 2\dfrac{\text{ cos}^2 \text{15°}}{\text{ cos}^2 \text{ 15°}}\\[1em] = \dfrac{\cancel{tan^2 49°}}{\cancel{tan^2 49°}} - 2\dfrac{\cancel{ cos^2 15°}}{\cancel{ cos^2 15°}}\\[1em] = 1 - 2\\[1em] = - 1

Hence, cot2 41°tan2 49°2 sin2 75° cos2 15°=1\dfrac{\text{cot}^2 \text{ 41°}}{\text{tan}^2 \text{ 49°}} - 2\dfrac{\text{ sin}^2 \text{ 75°}}{\text{ cos}^2 \text{ 15°}} = -1.

Question 7(viii)

Evaluate :

cos 70°sin 20°\dfrac{\text{cos 70°}}{\text{sin 20°}} + cos 59°sin 31°\dfrac{\text{cos 59°}}{\text{sin 31°}} - 8 sin2 30°

Answer

cos 70°sin 20°+cos 59°sin 31°8 sin230°=cos (90° - 70°)sin 20°+cos (90° - 31°)sin 31°8×(12)2=sin 70°sin 20°+sin 31°sin 31°8×(14)=sin70°sin20°+sin31°sin31°2=1+12=0\dfrac{\text{cos 70°}}{\text{sin 20°}} + \dfrac{\text{cos 59°}}{\text{sin 31°}} - \text{8 sin}^2 \text{30°}\\[1em] =\dfrac{\text{cos (90° - 70°)}}{\text{sin 20°}} + \dfrac{\text{cos (90° - 31°)}}{\text{sin 31°}} - 8 \times \Big(\dfrac{1}{2}\Big)^2\\[1em] =\dfrac{\text{sin 70°}}{\text{sin 20°}} + \dfrac{\text{sin 31°}}{\text{sin 31°}} - 8 \times \Big(\dfrac{1}{4}\Big)\\[1em] =\dfrac{\cancel{sin 70°}}{\cancel{sin 20°}} + \dfrac{\cancel{sin 31°}}{\cancel{sin 31°}} - 2\\[1em] = 1 + 1 - 2\\[1em] = 0

Hence, cos 70°sin 20°+cos 59°sin 31°8 sin230°=0\dfrac{\text{cos 70°}}{\text{sin 20°}} + \dfrac{\text{cos 59°}}{\text{sin 31°}} - \text{8 sin}^2 \text{30°} = 0.

Question 7(ix)

Evaluate :

14 sin 30° + 6 cos 60° - 5 tan 45°.

Answer

14 sin 30° + 6 cos 60° - 5 tan 45°

=14×12+6×125×1= 14 \times \dfrac{1}{2} + 6 \times \dfrac{1}{2} - 5 \times 1

= 7 + 3 - 5

= 10 - 5

= 5

Hence, 14 sin 30° + 6 cos 60° - 5 tan 45° = 5.

Question 8

A triangle ABC is right-angled at B; find the value of sec A . sin C - tan A . tan Csin B\dfrac{\text{sec A . sin C - tan A . tan C}}{\text{sin B}}.

Answer

Given:

ABC is right-angled triangle at B.

∠ A + ∠ B + ∠ C = 180°

⇒ ∠ A + 90° + ∠ C = 180°

⇒ ∠ A + ∠ C = 180° - 90°

⇒ ∠ A + ∠ C = 90°

⇒ ∠ A = 90° - ∠ C

Now,

sec A . sin C - tan A . tan Csin B=sec (90° - C) . sin C - tan (90° - C). tan Csin B=cosec C . sin C - cot C. tan Csin B=1sin C×sin C1tan C×tan Csin B=1sinC×sinC1tanC×tanCsin B=11sin B=0\dfrac{\text{sec A . sin C - tan A . tan C}}{\text{sin B}}\\[1em] = \dfrac{\text{sec (90° - C) . sin C - tan (90° - C). tan C}}{\text{sin B}}\\[1em] = \dfrac{\text{cosec C . sin C - cot C. tan C}}{\text{sin B}}\\[1em] = \dfrac{\dfrac{1}{\text{sin C}} \times \text{sin C} - \dfrac{1}{\text{tan C}} \times \text{tan C}}{\text{sin B}}\\[1em] = \dfrac{\dfrac{1}{\cancel{sin C}} \times \cancel{sin C} - \dfrac{1}{\cancel{tan C}} \times \cancel{tan C}}{\text{sin B}}\\[1em] = \dfrac{1 - 1}{\text{sin B}}\\[1em] = 0

Hence, sec A . sin C - tan A . tan Csin B=0\dfrac{\text{sec A . sin C - tan A . tan C}}{\text{sin B}} = 0.

Question 9

In each case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

(i) sin (90° - 3A) . cosec 42° = 1

(ii) cos (90° - A) . sec 77° = 1

Answer

(i) sin (90° - 3A) . cosec 42° = 1

⇒ cos 3A . cosec 42° = 1

⇒ cos 3A x 1sin 42°\dfrac{1}{\text{sin 42°}} = 1

⇒ cos 3A = sin 42°

⇒ cos 3A = sin (90° - 48°)

⇒ cos 3A = cos 48°

So, 3A = 48°

⇒ A = 48°3\dfrac{48°}{3}

⇒ A = 16°

Hence, A = 16°.

(ii) cos (90° - A) . sec 77° = 1

⇒ sin A . sec 77° = 1

⇒ sin A x 1cos 77°\dfrac{1}{\text{cos 77°}} = 1

⇒ sin A = cos 77°

⇒ sin A = cos (90° - 13°)

⇒ sin A = sin 13°

So, A = 13°

Hence, A = 13°.

Test Yourself

Question 1(a)

The value of tan A is :

The value of tan A is : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.
  1. 512\dfrac{5}{12}

  2. 1213\dfrac{12}{13}

  3. 513\dfrac{5}{13}

  4. 1312\dfrac{13}{12}

Answer

Since ΔPQR is a right angled triangle, using pythagoras theorem,

⇒ Hypotenuse2 = Base2 + Height2

⇒ PQ2 = QR2 + PR2

⇒ 132 = PR2 + 122

⇒ 169 = PR2 + 144

⇒ PR2 = 169 - 144

⇒ PR2 = 25

⇒ PR = 25\sqrt{25}

⇒ PR = 5 cm.

By formula, tan A = HeightBase\dfrac{\text{Height}}{\text{Base}}

From figure,

tan A=PRRQ=512.\text{tan A} = \dfrac{PR}{RQ} \\[1em] = \dfrac{5}{12}.

Hence, option 1 is the correct option.

Question 1(b)

The value of sin B - cos A is;

The value of sin B - cos A is; Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.
  1. 12\dfrac{1}{2}

  2. 1

  3. 0

  4. none of these

Answer

Since ΔABC is a right angled triangle.

By formula,

sin θ = PerpendicularHypotenuse\dfrac{\text{Perpendicular}}{\text{Hypotenuse}} and cos θ = BaseHypotenuse\dfrac{\text{Base}}{\text{Hypotenuse}}.

So, sin B = ACAB=35\dfrac{\text{AC}}{\text{AB}} = \dfrac{3}{5}

cos A = ACAB=35\dfrac{\text{AC}}{\text{AB}} = \dfrac{3}{5}

The value of sin B - cos A = 3535\dfrac{3}{5} - \dfrac{3}{5} = 0.

Hence, option 3 is the correct option.

Question 1(c)

The value of cos 60° - sin 90° + 2 cos 0° is :

  1. 12\dfrac{1}{2}

  2. 12-\dfrac{1}{2}

  3. 112-1\dfrac{1}{2}

  4. 1121\dfrac{1}{2}

Answer

Solving,

cos 60° - sin 90° + 2 cos 0° =121+2×1=121+2=12+1=1+22=32=112.\Rightarrow \text{cos 60° - sin 90° + 2 cos 0° } = \dfrac{1}{2} - 1 + 2 \times 1\\[1em] = \dfrac{1}{2} - 1 + 2\\[1em] = \dfrac{1}{2} + 1\\[1em] = \dfrac{1 + 2}{2}\\[1em] = \dfrac{3}{2}\\[1em] = 1\dfrac{1}{2}.

Hence, option 4 is the correct option.

Question 1(d)

The value of sin 23° - cos 67° is :

  1. 1

  2. 0

  3. cos 44°

  4. -cos 44°

Answer

Given,

⇒ sin 23° - cos 67°

⇒ sin 23° - cos (90° - 23°)

⇒ sin 23° - sin 23°

⇒ 0.

Hence, option 2 is the correct option.

Question 1(e)

Statement 1: The angle C of a right angled triangle is 90°, then tan A = cot B.

Statement 2: Since, angle C of triangle ABC = 90°.

∴ ∠A + ∠B = 90° ⇒ ∠A = 90° - ∠B

  1. Both the statements are true.

  2. Both the statements are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given, ∠C = 90°.

By angle sum property of triangle,

⇒ ∠A + ∠B + ∠C = 180°

⇒ ∠A + ∠B + 90° = 180°

⇒ ∠A + ∠B = 180° - 90°

⇒ ∠A + ∠B = 90°

⇒ ∠A = 90° - ∠B

So, statement 2 is true.

⇒ tan A = tan (90° - ∠B)

⇒ tan A = cot B

So, statement 1 is true.

∴ Both the statements are true.

Hence, option 1 is the correct option.

Question 1(f)

Statement 1: If 3 cos A = 4, sec A = 34\dfrac{3}{4}.

Statement 2: 3 cos A = 4 ⇒ cos A = 43\dfrac{4}{3} and sec A = 1cos A=34\dfrac{1}{\text{cos A}} = \dfrac{3}{4}.

  1. Both the statements are true.

  2. Both the statements are false.

  3. Statement 1 is true, and statement 2 is false.

  4. Statement 1 is false, and statement 2 is true.

Answer

Given,

⇒ 3 cos A = 4

⇒ cos A = 43\dfrac{4}{3}

1cos A=143\dfrac{1}{\text{cos A}} = \dfrac{1}{\dfrac{4}{3}}

⇒ sec A = 34\dfrac{3}{4}.

∴ Both the statements are true.

Hence, option 1 is the correct option.

Question 1(g)

Assertion (A): The value of sin2 30° - 2 cos3 60° + 2 tan4 45° is 2.

Reason (R): sin 30° = 12\dfrac{1}{2}, cos 60° = 12\dfrac{1}{2}, and tan 45° = 1

  1. A is true, but R is false.

  2. A is false, but R is true.

  3. Both A and R are true, and R is the correct reason for A.

  4. Both A and R are true, and R is the incorrect reason for A.

Answer

We know that,

sin 30° = 12\dfrac{1}{2}, cos 60° = 12\dfrac{1}{2}, and tan 45° = 1.

So, reason (R) is true.

sin230°2 cos360°+2 tan445°=(12)22×(12)3+2×14=142×18+2=1414+2=2.\text{sin}^2 30° - \text{2 cos}^3 60° + \text{2 tan}^4 45° = \Big(\dfrac{1}{2}\Big)^2 - 2 \times \Big(\dfrac{1}{2}\Big)^3 + 2 \times 1^4\\[1em] = \dfrac{1}{4} - 2 \times \dfrac{1}{8} + 2\\[1em] = \dfrac{1}{4} - \dfrac{1}{4} + 2\\[1em] = 2.

So, assertion (A) is true.

∴ Both A and R are true, and R is the correct reason for A.

Hence, option 3 is the correct option.

Question 1(h)

Assertion (A): If A = 30°, the value of 4 sin A sin (60° - A) sin (60° + A) = 1.

Reason (R): 60° - A = 30° and 60° + A = 90°.

  1. A is true, but R is false.

  2. A is false, but R is true.

  3. Both A and R are true, and R is the correct reason for A.

  4. Both A and R are true, and R is the incorrect reason for A.

Answer

If A = 30°,

60° - A = 60° - 30° = 30° and 60° + A = 60° + 30° = 90°.

So, reason (R) is true.

sin A = sin 30° = 12\dfrac{1}{2}

sin (60° - A) = sin 30° = 12\dfrac{1}{2}

sin (60° + A) = sin 90° = 1

Substituting values in 4 sin A sin (60° - A) sin (60° + A), we get :

4×12×12×14×141.\Rightarrow 4 \times \dfrac{1}{2} \times \dfrac{1}{2} \times 1\\[1em] \Rightarrow 4 \times \dfrac{1}{4}\\[1em] \Rightarrow 1.

∴ Both A and R are true, and R is the correct reason for A.

Hence, option 3 is the correct option.

Question 2

If cosec θ=5\text{cosec θ} = {\sqrt5} find the value of :

(i) 2 - sin2 θ - cos2 θ

(ii) 2+1sin2 θcos2 θsin2 θ2 + \dfrac{1}{\text{sin}^2 \text{ θ}} - \dfrac{\text{cos}^2 \text{ θ}}{\text{sin}^2 \text{ θ}}

Answer

Given:

cosec θ=5\text{cosec θ} = {\sqrt5}

cosec θ=HypotenusePerpendicular=5⇒ \text{cosec θ} = \dfrac{Hypotenuse}{Perpendicular} = {\sqrt5}\\[1em]

If cosec θ = 5 find the value of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

∴ If length of AC = 5\sqrt{5}x unit, length of BC = x unit.

In Δ ABC,

⇒ AC2 = BC2 + AB2 (∵ AC is hypotenuse)

⇒ (5\sqrt{5}x)2 = (x)2 + AB2

⇒ 5x2 = x2 + AB2

⇒ AB2 = 5x2 - x2

⇒ AB2 = 4x2

⇒ AB = 4x2\sqrt{4 \text{x}^2}

⇒ AB = 2x

(i) sin θ = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

=BCCA=x5x=15= \dfrac{BC}{CA} = \dfrac{x}{\sqrt{5}x} = \dfrac{1}{\sqrt{5}}

cos θ = BaseHypotenuse\dfrac{Base}{Hypotenuse}

=ABAC=2x5x=25= \dfrac{AB}{AC} = \dfrac{2x}{\sqrt{5}x} = \dfrac{2}{\sqrt{5}}

Now,

2 - sin2θ - cos2θ

=2(15)2(25)2=21545=2+145=2+55=21=1= 2 - \Big(\dfrac{1}{\sqrt{5}}\Big)^2 - \Big(\dfrac{2}{\sqrt{5}}\Big)^2\\[1em] = 2 - \dfrac{1}{5} - \dfrac{4}{5}\\[1em] = 2 + \dfrac{-1 - 4}{5}\\[1em] = 2 + \dfrac{-5}{5}\\[1em] = 2 - 1\\[1em] = 1

Hence, 2 - sin2θ - cos2θ = 1.

(ii) 2+1sin2 θcos2 θsin2 θ2 + \dfrac{1}{\text{sin}^2 \text{ θ}} - \dfrac{\text{cos}^2 \text{ θ}}{\text{sin}^2 \text{ θ}}

=2+1(15)2(25)2(15)2=2+1154515=2+514515=2+541=74=3= 2 + \dfrac{1}{\Big(\dfrac{1}{\sqrt{5}}\Big)^2} - \dfrac{\Big(\dfrac{2}{\sqrt{5}}\Big)^2}{\Big(\dfrac{1}{\sqrt{5}}\Big)^2}\\[1em] = 2 + \dfrac{1}{\dfrac{1}{5}} - \dfrac{\dfrac{4}{5}}{\dfrac{1}{5}}\\[1em] = 2 + \dfrac{5}{1} - \dfrac{\dfrac{4}{\cancel{5}}}{\dfrac{1}{\cancel{5}}}\\[1em] = 2 + 5 - \dfrac{4}{1}\\[1em] = 7 - 4\\[1em] = 3

Hence, 2+1sin2 θcos2 θsin2 θ2 + \dfrac{1}{\text{sin}^2 \text{ θ}} - \dfrac{\text{cos}^2 \text{ θ}}{\text{sin}^2 \text{ θ}} = 3.

Question 3

In the given figure; ∠C = 90° and D is mid-point of AC. Find :

(i) tan ∠CABtan ∠CDB\dfrac{\text{tan ∠CAB}}{\text{tan ∠CDB}}

(ii) tan ∠ABCtan ∠DBC\dfrac{\text {tan ∠ABC}}{\text {tan ∠DBC}}

In the given figure; ∠C = 90° and D is mid-point of AC. Find : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

Since D is the mid-point of A. So, AC = 2DC

(i) tan ∠CAB=PerpendicularBase=BCAC\text{tan ∠CAB} = \dfrac{Perpendicular}{Base} = \dfrac{BC}{AC}

tan ∠CDB=PerpendicularBase=BCDC\text{tan ∠CDB} = \dfrac{Perpendicular}{Base} = \dfrac{BC}{DC}

Now,

tan ∠CABtan ∠CDB=BCACBCDC=BC×DCAC×BC=BC×DCAC×BC=DCAC=DC2×DC=DC2×DC=12\dfrac{\text{tan ∠CAB}}{\text{tan ∠CDB}}\\[1em] = \dfrac{\dfrac{BC}{AC}}{\dfrac{BC}{DC}}\\[1em] = \dfrac{BC \times DC}{AC \times BC}\\[1em] = \dfrac{\cancel{BC} \times DC}{AC \times \cancel{BC}}\\[1em] = \dfrac{DC}{AC}\\[1em] = \dfrac{DC}{2 \times DC}\\[1em] = \dfrac{\cancel{DC}}{2 \times \cancel{DC}}\\[1em] = \dfrac{1}{2}

Hence, tan ∠CABtan ∠CDB=12\dfrac{\text{tan ∠CAB}}{\text{tan ∠CDB}} = \dfrac{1}{2}

(ii) tan ∠ABC=PerpendicularBase=ACBC\text{tan ∠ABC} = \dfrac{Perpendicular}{Base} = \dfrac{AC}{BC}

tan ∠DBC=PerpendicularBase=DCBC\text{tan ∠DBC} = \dfrac{Perpendicular}{Base} = \dfrac{DC}{BC}

Now,

tan ∠ABCtan ∠DBC=ACBCDCBC=AC×BCBC×DC=AC×BCBC×DC=ACDC=2×DCDC=2×DCDC=2\dfrac{\text {tan ∠ABC}}{\text {tan ∠DBC}}\\[1em] = \dfrac{\dfrac{AC}{BC}}{\dfrac{DC}{BC}}\\[1em] = \dfrac{AC \times BC}{BC \times DC}\\[1em] = \dfrac{AC \times \cancel{BC}}{\cancel{BC} \times DC}\\[1em] = \dfrac{AC}{DC}\\[1em] = \dfrac{2 \times DC}{DC}\\[1em] = \dfrac{2 \times \cancel{DC}}{\cancel{DC}}\\[1em] = 2

Hence, tan ∠ABCtan ∠DBC=2\dfrac{\text {tan ∠ABC}}{\text {tan ∠DBC}} = 2

Question 4

If 3 cos A = 4 sin A, find the value of :

(i) cos A

(ii) 3 - cot2 A + cosec2 A

Answer

Given:

3 cos A = 4 sin A

cos Asin A=43\dfrac{\text{cos A}}{\text{sin A}} = \dfrac{4}{3}

cot A=43\text{cot A} = \dfrac{4}{3}

cot A=BasePerpendicular=43\text{cot A} = \dfrac{Base}{Perpendicular} = \dfrac{4}{3}

∴ If length of AB = 4x unit, length of BC = 3x unit.

If 3 cos A = 4 sin A, find the value of : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

In Δ ABC,

⇒ AC2 = AB2 + BC2 (∵ AC is hypotenuse)

⇒ AC2 = (4x)2 + (3x)2

⇒ AC2 = 16x2 + 9x2

⇒ AC2 = 25x2

⇒ AC = 25x2\sqrt{25\text{x}^2}

⇒ AC = 5x

(i) cos A=BaseHypotenuseA = \dfrac{Base}{Hypotenuse}

=ABAC=4x5x=45= \dfrac{AB}{AC} = \dfrac{4x}{5x} = \dfrac{4}{5}

Hence, cos A=45A = \dfrac{4}{5}.

(ii) 3 - cot2 A + cosec2 A

cot A=BasePerpendicularA = \dfrac{Base}{Perpendicular}

=ABBC=4x3x=43= \dfrac{AB}{BC} = \dfrac{4x}{3x} = \dfrac{4}{3}

cosec A=HypotenusePerpendicularA = \dfrac{Hypotenuse}{Perpendicular}

=ACBC=5x3x=53= \dfrac{AC}{BC} = \dfrac{5x}{3x} = \dfrac{5}{3}

Now,

3 - cot2 A + cosec2 A

=3(43)2+(53)2=3169+259=3+16+259=3+99=3+1=4= 3 - \Big(\dfrac{4}{3}\Big)^2 + \Big(\dfrac{5}{3}\Big)^2\\[1em] = 3 - \dfrac{16}{9} + \dfrac{25}{9}\\[1em] = 3 + \dfrac{-16 + 25}{9}\\[1em] = 3 + \dfrac{9}{9}\\[1em] = 3 + 1\\[1em] = 4

Hence, 3 - cot2 A + cosec2 A = 4.

Question 5

Use the information given in the following figure to evaluate :

10sin x+6sin y6 cot y\dfrac{10}{\text{sin x}} + \dfrac{6}{\text{sin y}} - \text{6 cot y}.

Use the information given in the following figure to evaluate : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

Answer

From the figure, in Δ ADC,

Use the information given in the following figure to evaluate : Trigonometrical Ratios, Concise Mathematics Solutions ICSE Class 9.

⇒ AC2 = DC2 + AD2 (∵ AC is hypotenuse)

⇒ 202 = DC2 + 122

⇒ 400 = DC2 + 144

⇒ DC2 = 400 - 144

⇒ DC2 = 256

⇒ DC = 256\sqrt{256}

⇒ DC = 16

BD = BC - DC

= 21 - 16 = 5

In Δ ABD,

⇒ AB2 = AD2 + BD2 (∵ AB is hypotenuse)

⇒ AB2 = 122 + 52

⇒ AB2 = 144 + 25

⇒ AB2 = 169

⇒ AB = 169\sqrt{169}

⇒ AB = 13

sin x = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

=BDAB=513= \dfrac{BD}{AB} = \dfrac{5}{13}

sin y = PerpendicularHypotenuse\dfrac{Perpendicular}{Hypotenuse}

=ADAC=1220=35= \dfrac{AD}{AC} = \dfrac{12}{20} = \dfrac{3}{5}

cot y = BasePerpendicular\dfrac{Base}{Perpendicular}

=DCAD=1612=43= \dfrac{DC}{AD} = \dfrac{16}{12} = \dfrac{4}{3}

Now,

10sin x+6sin y6 cot y=10513+6356×43=10×135+6×53243=1305+303243=26+108=28\dfrac{10}{\text{sin x}} + \dfrac{6}{\text{sin y}} - \text{6 cot y}\\[1em] = \dfrac{10}{\dfrac{5}{13}} + \dfrac{6}{\dfrac{3}{5}} - 6 \times \dfrac{4}{3}\\[1em] = \dfrac{10 \times 13}{5} + \dfrac{6 \times 5}{3} - \dfrac{24}{3}\\[1em] = \dfrac{130}{5} + \dfrac{30}{3} - \dfrac{24}{3}\\[1em] = 26 + 10 - 8\\[1em] = 28

Hence, 10sin x+6sin y6 cot y=28.\dfrac{10}{\text{sin x}} + \dfrac{6}{\text{sin y}} - \text{6 cot y} = 28.

Question 6(i)

Evaluate :

cos 3 A - 2 cos 4 Asin 3 A + 2 sin 4 A\dfrac{\text{cos 3 A - 2 cos 4 A}}{\text{sin 3 A + 2 sin 4 A}}, when A = 15°.

Answer

cos 3 A - 2 cos 4 Asin 3 A + 2 sin 4 A=cos (3 x 15°) - 2 cos (4 x 15°)sin (3 x 15°) + 2 sin (4 x 15°)=cos 45° - 2 cos 60°sin 45° + 2 sin 60°=(12)2×(12)(12)+2×(32)=12112+3=121×2212+3×22=122212+62=1221+62=1221+62=121+6=(12)×(16)(1+6)×(16)=126+1216=126+235=15(1+2+623)\dfrac{\text{cos 3 A - 2 cos 4 A}}{\text{sin 3 A + 2 sin 4 A}}\\[1em] = \dfrac{\text{cos (3 x 15°) - 2 cos (4 x 15°)}}{\text{sin (3 x 15°) + 2 sin (4 x 15°)}}\\[1em] = \dfrac{\text{cos 45° - 2 cos 60°}}{\text{sin 45° + 2 sin 60°}}\\[1em] = \dfrac{\Big(\dfrac{1}{\sqrt2}\Big) - 2 \times \Big(\dfrac{1}{2}\Big)}{\Big(\dfrac{1}{\sqrt2}\Big) + 2 \times \Big(\dfrac{\sqrt3}{2}\Big)}\\[1em] = \dfrac{\dfrac{1}{\sqrt2} - 1}{\dfrac{1}{\sqrt2} + \sqrt3}\\[1em] = \dfrac{\dfrac{1}{\sqrt2} - \dfrac{1 \times \sqrt2}{\sqrt2}}{\dfrac{1}{\sqrt2} + \dfrac{\sqrt3 \times \sqrt2}{\sqrt2}}\\[1em] = \dfrac{\dfrac{1}{\sqrt2} - \dfrac{\sqrt2}{\sqrt2}}{\dfrac{1}{\sqrt2} + \dfrac{\sqrt6}{\sqrt2}}\\[1em] = \dfrac{\dfrac{1 - \sqrt2}{\sqrt2}}{\dfrac{1 + \sqrt6}{\sqrt2}}\\[1em] = \dfrac{\dfrac{1 - \sqrt2}{\cancel{\sqrt2}}}{\dfrac{1 + \sqrt6}{\cancel{\sqrt2}}}\\[1em] = \dfrac{1 - \sqrt2}{1 + \sqrt6}\\[1em] = \dfrac{(1 - \sqrt2) \times (1 - \sqrt6)}{(1 + \sqrt6) \times (1 - \sqrt6)}\\[1em] = \dfrac{1 - \sqrt2 - \sqrt6 + \sqrt{12}}{1 - 6}\\[1em] = \dfrac{1 - \sqrt2 - \sqrt6 + 2\sqrt3}{-5}\\[1em] = \dfrac{1}{5}(- 1 + \sqrt2 + \sqrt6 - 2\sqrt3)

Hence, cos 3 A - 2 cos 4 Asin 3 A + 2 sin 4 A=15(1+2+623)\dfrac{\text{cos 3 A - 2 cos 4 A}}{\text{sin 3 A + 2 sin 4 A}} = \dfrac{1}{5}(- 1 + \sqrt2 + \sqrt6 - 2\sqrt3)

Question 6(ii)

Evaluate :

3 sin 3 B + 2 cos(2 B + 5°)2 cos 3 B - sin(2 B - 10°)\dfrac{\text{3 sin 3 B + 2 cos(2 B + 5°)}}{\text{2 cos 3 B - sin(2 B - 10°)}}; when B = 20°.

Answer

3 sin 3 B + 2 cos(2 B + 5°)2 cos 3 B - sin(2 B - 10°)=3 sin (3 x 20°) + 2 cos((2 x 20°) + 5°)2 cos (3 x 20°) - sin((2 x 20°) - 10°)=3 sin 60° + 2 cos(40° + 5°)2 cos 60° - sin(40° - 10°)=3 sin 60° + 2 cos 45°2 cos 60° - sin 30°=3×32+2×122×1212=332+222212=332+2×22×2212=332+22212=33+22212=33+22212=33+22\dfrac{\text{3 sin 3 B + 2 cos(2 B + 5°)}}{\text{2 cos 3 B - sin(2 B - 10°)}}\\[1em] = \dfrac{\text{3 sin (3 x 20°) + 2 cos((2 x 20°) + 5°)}}{\text{2 cos (3 x 20°) - sin((2 x 20°) - 10°)}}\\[1em] = \dfrac{\text{3 sin 60° + 2 cos(40° + 5°)}}{\text{2 cos 60° - sin(40° - 10°)}}\\[1em] = \dfrac{\text{3 sin 60° + 2 cos 45°}}{\text{2 cos 60° - sin 30°}}\\[1em] = \dfrac{3 \times \dfrac{\sqrt3}{2} + 2 \times \dfrac{1}{\sqrt2}}{2 \times \dfrac{1}{2} - \dfrac{1}{2}}\\[1em] = \dfrac{\dfrac{3\sqrt3}{2} + \dfrac{2}{\sqrt2}}{\dfrac{2}{2} - \dfrac{1}{2}}\\[1em] = \dfrac{\dfrac{3\sqrt3}{2} + \dfrac{2 \times \sqrt2}{\sqrt2 \times \sqrt2}}{\dfrac{2 - 1}{2}}\\[1em] = \dfrac{\dfrac{3\sqrt3}{2} + \dfrac{2\sqrt2}{2}}{\dfrac{1}{2}}\\[1em] = \dfrac{\dfrac{3\sqrt3 + 2\sqrt2}{2}}{\dfrac{1}{2}}\\[1em] = \dfrac{\dfrac{3\sqrt3 + 2\sqrt2}{\cancel2}}{\dfrac{1}{\cancel2}}\\[1em] = 3\sqrt3 + 2\sqrt2

Hence, 3 sin 3 B + 2 cos(2 B + 5°)2 cos 3 B - sin(2 B - 10°)=33+22.\dfrac{\text{3 sin 3 B + 2 cos(2 B + 5°)}}{\text{2 cos 3 B - sin(2 B - 10°)}} = 3\sqrt3 + 2\sqrt2.

Question 7(i)

Solve for x :

2 cos 3x - 1 = 0

Answer

2 cos 3x - 1 = 0

⇒ 2 cos 3x = 1

⇒ cos 3x = 12\dfrac{1}{2}

⇒ cos 3x = cos 60°

So, 3x = 60°

⇒ x = 60°3=20°\dfrac{60°}{3} = 20°

Hence, x = 20°.

Question 7(ii)

Solve for x :

cos x31=0\dfrac{x}{3} - 1 = 0

Answer

cos x31=0\text{cos }\dfrac{x}{3} - 1 = 0

cos x3=1cos x3=cos 0°⇒ \text{cos } \dfrac{x}{3} = 1\\[1em] ⇒ \text{cos } \dfrac{x}{3} = \text{cos 0°}

So,

x3=0°x=3×0°x=0°⇒ \dfrac{x}{3} = 0°\\[1em] ⇒ x = 3 \times 0°\\[1em] ⇒ x = 0°\\[1em]

Hence, x = 0°.

Question 7(iii)

Solve for x :

sin (x + 10°) = 12\dfrac{1}{2}

Answer

sin (x + 10°) = 12\dfrac{1}{2}

⇒ sin (x + 10°) = sin 30°

So, x + 10° = 30°

⇒ x = 30° - 10° = 20°

Hence, x = 20°.

Question 7(iv)

Solve for x :

cos (2x - 30°) = 0

Answer

cos (2x - 30°) = 0

⇒ cos (2x - 30°) = cos 90°

So, 2x - 30° = 90°

⇒ 2x = 90° + 30°

⇒ x = 120°2\dfrac{120°}{2}

⇒ x = 60°

Hence, x = 60°.

Question 7(v)

Solve for x :

2 cos (3x - 15°) = 1

Answer

2 cos (3x - 15°) = 1

⇒ cos (3x - 15°) = 12\dfrac{1}{2}

⇒ cos (3x - 15°) = cos 60°

So, 3x - 15° = 60°

⇒ 3x = 60° + 15°

⇒ x = 75°3\dfrac{75°}{3}

⇒ x = 25°

Hence, x = 25°.

Question 7(vi)

Solve for x :

tan2 (x - 5°) = 3

Answer

tan2 (x - 5°) = 3

⇒ tan (x - 5°) = 3\sqrt3

⇒ tan (x - 5°) = tan 60°

So, x - 5° = 60°

⇒ x = 60° + 5°

⇒ x = 65°

Hence, x = 65°.

Question 7(vii)

Solve for x :

3 tan2 (2x - 20°) = 1

Answer

3 tan2 (2x - 20°) = 1

⇒ tan2 (2x - 20°) = 13\dfrac{1}{3}

⇒ tan (2x - 20°) = 13\sqrt\dfrac{1}{3}

⇒ tan (2x - 20°) = 13\dfrac{1}{\sqrt3}

⇒ tan (2x - 20°) = tan 30°

So, 2x - 20° = 30°

⇒ 2x = 30° + 20°

⇒ 2x = 50°

⇒ x = 50°2\dfrac{50°}{2}

⇒ x = 25°

Hence, x = 25°.

Question 7(viii)

Solve for x :

cos(x2+10°)cos\Big(\dfrac{x}{2} + 10°\Big) = 32\dfrac{\sqrt3}{2}

Answer

cos(x2+10°)\text{cos}\Big(\dfrac{x}{2} + 10°\Big) = 32\dfrac{\sqrt3}{2}

cos (x2+10°)=cos 30°⇒ \text{cos } \Big(\dfrac{x}{2} + 10°\Big) = \text{cos 30°}

So,

(x2+10°)=30°x2=30°10°x=20°×2x=40°⇒ \Big(\dfrac{x}{2} + 10°\Big) = 30°\\[1em] ⇒ \dfrac{x}{2} = 30° - 10°\\[1em] ⇒ x = 20° \times 2\\[1em] ⇒ x = 40° \\[1em]

Hence, x = 40°.

Question 7(ix)

Solve for x :

sin2 x + sin2 30° = 1

Answer

sin2 x + sin2 30° = 1

sin 2x+(12)2=1sin 2x+(14)=1sin 2x=1(14)sin 2x=4414sin 2x=414sin 2x=34sin x=34sin x=32sin x=sin 60°⇒ \text{sin }^2 x + \Big(\dfrac{1}{2}\Big)^2 = 1\\[1em] ⇒ \text{sin }^2 x + \Big(\dfrac{1}{4}\Big) = 1\\[1em] ⇒ \text{sin }^2 x = 1 - \Big(\dfrac{1}{4}\Big)\\[1em] ⇒ \text{sin }^2 x = \dfrac{4}{4} - \dfrac{1}{4}\\[1em] ⇒ \text{sin }^2 x = \dfrac{4 - 1}{4}\\[1em] ⇒ \text{sin }^2 x = \dfrac{3}{4}\\[1em] ⇒ \text{sin } x = \sqrt\dfrac{3}{4}\\[1em] ⇒ \text{sin } x = \dfrac{\sqrt3}{2}\\[1em] ⇒ \text{sin } x = \text{sin } 60°\\[1em]

So, x = 60°

Hence, x = 60°.

Question 7(x)

Solve for x :

cos2 30° + cos2 x = 1

Answer

cos2 30° + cos2 x = 1

(12)2+cos 2x=1(14)+cos 2x=1cos 2x=1(14)cos 2x=4414cos 2x=414cos x=34cos x=32cos x=cos 60°⇒ \Big(\dfrac{1}{2}\Big)^2 + \text{cos }^2 x = 1\\[1em] ⇒ \Big(\dfrac{1}{4}\Big) + \text{cos }^2 x = 1\\[1em] ⇒ \text{cos }^2 x = 1 - \Big(\dfrac{1}{4}\Big)\\[1em] ⇒ \text{cos }^2 x = \dfrac{4}{4} - \dfrac{1}{4}\\[1em] ⇒ \text{cos }^2 x = \dfrac{4 - 1}{4}\\[1em] ⇒ \text{cos } x = \sqrt\dfrac{3}{4}\\[1em] ⇒ \text{cos } x = \dfrac{\sqrt3}{2}\\[1em] ⇒ \text{cos } x = \text{cos 60°} \\[1em]

So, x = 60°

Hence, x = 60°.

Question 7(xi)

Solve for x :

cos2 30° + sin2 2x = 1

Answer

cos2 30° + sin2 2x = 1

(32)2+sin 22x=1(34)+sin 22x=1sin22x=134sin22x=4434sin22x=434sin22x=14sin2x=14sin2x=12sin2x=sin 30°⇒ \Big(\dfrac{\sqrt3}{2}\Big)^2 + \text{sin }^2 2x = 1\\[1em] ⇒ \Big(\dfrac{3}{4}\Big) + \text{sin }^2 2x = 1\\[1em] ⇒ \text{sin}^2 2x = 1 - \dfrac{3}{4}\\[1em] ⇒ \text{sin}^2 2x = \dfrac{4}{4} - \dfrac{3}{4}\\[1em] ⇒ \text{sin}^2 2x = \dfrac{4 - 3}{4}\\[1em] ⇒ \text{sin}^2 2x = \dfrac{1}{4}\\[1em] ⇒ \text{sin} 2x = \sqrt\dfrac{1}{4}\\[1em] ⇒ \text{sin} 2x = \dfrac{1}{2}\\[1em] ⇒ \text{sin} 2x = \text{sin }30°

So, 2x = 30°

⇒ x = 30°2\dfrac{30°}{2}

⇒ x = 15°

Hence, x = 15°.

Question 7(xii)

Solve for x :

sin2 60° + cos2 (3x - 9°) = 1

Answer

sin2 60° + cos2 (3x - 9°) = 1

(32)2+cos 2(3x9°)=1(34)+cos 2(3x9°)=1cos2(3x9°)=134cos2(3x9°)=4434cos2(3x9°)=434cos2(3x9°)=14cos(3x9°)=14cos(3x9°)=12cos(3x9°)=cos 60°⇒ \Big(\dfrac{\sqrt3}{2}\Big)^2 + \text{cos }^2 (3x - 9°) = 1\\[1em] ⇒ \Big(\dfrac{3}{4}\Big) + \text{cos }^2 (3x - 9°) = 1\\[1em] ⇒ \text{cos}^2 (3x - 9°) = 1 - \dfrac{3}{4}\\[1em] ⇒ \text{cos}^2 (3x - 9°) = \dfrac{4}{4} - \dfrac{3}{4}\\[1em] ⇒ \text{cos}^2 (3x - 9°) = \dfrac{4 - 3}{4} \\[1em] ⇒ \text{cos}^2 (3x - 9°) = \dfrac{1}{4} \\[1em] ⇒ \text{cos} (3x - 9°) = \sqrt\dfrac{1}{4} \\[1em] ⇒ \text{cos} (3x - 9°) = \dfrac{1}{2} \\[1em] ⇒ \text{cos} (3x - 9°) = \text{cos } 60°

So, 3x - 9° = 60°

⇒ 3x = 60° + 9°

⇒ 3x = 69°

⇒ x = 69°3\dfrac{69°}{3}

⇒ x = 23°

Hence, x = 23°.

Question 8

If 2 cos (A + B) = 2 sin (A - B) = 1; find the values of A and B.

Answer

2 cos (A + B) = 1

⇒ cos (A + B) = 12\dfrac{1}{2}

⇒ cos (A + B) = cos 60°

So, A + B = 60° ...............(1)

2 sin (A - B) = 1

⇒ sin (A - B) = 12\dfrac{1}{2}

⇒ sin (A - B) = sin 30°

So, A - B = 30° ...............(2)

Adding equation (1) and (2), we get

(A + B) + (A - B) = 60° + 30°

⇒ A + B + A - B = 90°

⇒ 2A = 90°

⇒ A = 90°2\dfrac{90°}{2}

⇒ A = 45°

From equation (2), A - B = 30°

⇒ 45° - B = 30°

⇒ B = 45° - 30°

⇒ B = 15°

Hence, A = 45° and B = 15°.

Question 9

For the triangle ABC, show that

sin2A2\text{sin}^2\dfrac{A}{2} + sin2B+C2\text{sin}^2\dfrac{B+C}{2} = 1.

Answer

For triangle ABC,

∠ A + ∠ B + ∠ C = 180°

⇒ ∠ B + ∠ C = 180° - ∠ A

B+C2=180°A2\dfrac{B + C}{2} = \dfrac{180° - A}{2}

B+C2=90°A2\dfrac{B + C}{2} = 90° - \dfrac{A}{2}

L.H.S.=sin2A2+sin2B+C2=sin2A2+sin2(90°A2)=sin2A2+cos2A2=1\text{L.H.S.} = \text{sin}^2\dfrac{A}{2} + \text{sin}^2\dfrac{B+C}{2}\\[1em] = \text{sin}^2\dfrac{A}{2} + \text{sin}^2\Big(90° - \dfrac{A}{2}\Big)\\[1em] = \text{sin}^2\dfrac{A}{2} + \text{cos}^2\dfrac{A}{2}\\[1em] = 1

R.H.S. = 1

∴ L.H.S. = R.H.S.

Hence, sin2A2\text{sin}^2\dfrac{A}{2} + sin2B+C2\text{sin}^2\dfrac{B+C}{2} = 1.

Question 10

If sec (90° - 3A).cos 48° = 1 and 0 ≤ 3A ≤ 90°; find the value of angle A.

Answer

Given:

sec (90° - 3A) . cos 48° = 1

⇒ cosec 3A . cos 48° = 1

1sin 3A\dfrac{1}{\text{sin 3A}} . cos 48° = 1

⇒ sin 3A = cos 48°

⇒ sin 3A = cos (90° - 42°)

⇒ sin 3A = sin 42°

So, 3A = 42°

⇒ A = 42°3\dfrac{42°}{3}

⇒ A = 14°

Hence, A = 14°.

Question 11

In △ABC, angle C is 90° then find the value of sin (A + B).

Answer

In △ ABC,

∠ A + ∠ B + ∠ C = 180°

⇒ ∠ A + ∠ B + 90° = 180°

⇒ ∠ A + ∠ B = 180° - 90°

⇒ ∠ A + ∠ B = 90°

⇒ sin(A + B) = sin 90°

⇒ sin(A + B) = 1

Hence, sin (A + B) = 1.

Question 12

If sec A sin A = 0, find the value of cos A.

Answer

sec A sin A = 0

1cos A\dfrac{1}{\text{cos A}} sin A = 0

⇒ tan A = 0

⇒ tan A = tan 0°

Thus, A = 0°.

Now, cos A = cos 0° = 1

Hence, cos A = 1.

Question 13

Find angle A, if sec 2A = cosec (A + 48°).

Answer

We know that,

sec θ = cosec (90° - θ)

Solving,

⇒ sec 2A = cosec (A + 48°)

⇒ cosec (90° - 2A) = cosec (A + 48°)

⇒ 90° - 2A = A + 48°

⇒ A + 2A = 90° - 48°

⇒ 3A = 42°

⇒ A = 42°3\dfrac{42°}{3} = 14°.

Hence, A = 14°.

PrevNext