KnowledgeBoat Logo
|
OPEN IN APP

Chapter 7

Logarithms

Class - 9 RS Aggarwal Mathematics Solutions



Exercise 7A

Question 1

Convert each of the following to logarithmic form:

(i) 52 = 25

(ii) 3-3 = 127\dfrac{1}{27}

(iii) (64)13(64)^\dfrac{1}{3} = 4

(iv) 60 = 1

(v) 10-2 = 0.01

(vi) 4-1 = 14\dfrac{1}{4}

Answer

(i) Given,

⇒ 52 = 25

⇒ log5 (25) = 2.

Hence, logarithmic form is log5 (25) = 2.

(ii) Given,

⇒ 3-3 = 127\dfrac{1}{27}

⇒ log3 (127)\Big(\dfrac{1}{27}\Big) = -3.

Hence, logarithmic form is log3 (127)\Big(\dfrac{1}{27}\Big) = -3.

(iii) Given,

(64)13(64)^\dfrac{1}{3} = 4

⇒ log64 4 = 13\dfrac{1}{3}.

Hence, logarithmic form is log64 4 = 13\dfrac{1}{3}.

(iv) Given,

⇒ 60 = 1

⇒ log6 1 = 0.

Hence, logarithmic form is log6 1 = 0.

(v) Given,

⇒ 10-2 = 0.01

⇒ log10 (0.01) = -2.

Hence, logarithmic form is log10 (0.01) = -2.

(vi) Given,

⇒ 4-1 = 14\dfrac{1}{4}

⇒ log4 14\dfrac{1}{4} = -1.

Hence, logarithmic form is log4 14\dfrac{1}{4} = -1.

Question 2

Convert each of the following to exponential form:

(i) log3 81 = 4

(ii) log8 4 = 23\dfrac{2}{3}

(iii) log2 18\dfrac{1}{8} = -3

(iv) log10 (0.01) = -2

(v) log5 (15)\Big(\dfrac{1}{5}\Big) = -1

(vi) loga 1 = 0

Answer

(i) Given,

⇒ log3 81 = 4

⇒ 34 = 81.

Hence, exponential form is 34 = 81.

(ii) Given,

⇒ log8 4 = 23\dfrac{2}{3}

(8)23(8)^\dfrac{2}{3} = 4.

Hence, exponential form is (8)23(8)^\dfrac{2}{3} = 4.

(iii) Given,

⇒ log2 18\dfrac{1}{8} = -3

⇒ 2-3 = 18\dfrac{1}{8}.

Hence, exponential form is 2-3 = 18\dfrac{1}{8}.

(iv) Given,

⇒ log10 (0.01) = -2

⇒ 10-2 = 0.01.

Hence, exponential form is 10-2 = 0.01.

(v) Given,

⇒ log5 (15)\Big(\dfrac{1}{5}\Big) = -1

⇒ 5-1 = (15)\Big(\dfrac{1}{5}\Big).

Hence, exponential form is 5-1 = (15)\Big(\dfrac{1}{5}\Big).

(vi) Given,

⇒ loga 1 = 0

⇒ a0 = 1.

Hence, exponential form is a0 = 1.

Question 3

By converting to exponential form, find the value of each of the following:

(i) log2 64

(ii) log8 32

(iii) log3 19\dfrac{1}{9}

(iv) log0.5 (16)

(v) log2 (0.125)

(vi) log7 7

Answer

(i) Let,

⇒ log2 64 = x

⇒ 64 = 2x

⇒ 26 = (2)x

Equating the exponents,

⇒ x = 6

Hence, log2 64 = 6.

(ii) Let,

⇒ log8 32 = x

⇒ 32 = 8x

⇒ 25 = (23)x

⇒ 25 = (2)3x

Equating the exponents,

⇒ 3x = 5

⇒ x = 53\dfrac{5}{3}.

Hence, log8 32 = 53\dfrac{5}{3}.

(iii) Let,

log3 19=x19=3x132=3x32=3x\Rightarrow \log_{3} \space {\dfrac{1}{9}} = x \\[1em] \Rightarrow \dfrac{1}{9} = 3^x \\[1em] \Rightarrow \dfrac{1}{3^2} = 3^x \\[1em] \Rightarrow 3^{-2} = 3^x \\[1em]

Equating the exponents,

⇒ x = -2.

Hence, log3 19\log_{3} \space {\dfrac{1}{9}} = -2.

(iv) Let,

⇒ log0.5 (16) = x

⇒ 16 = 0.5x

⇒ 24 = (12)x\Big(\dfrac{1}{2}\Big)^x

⇒ 24 = (2-1)x

⇒ 24 = (2)-x

Equating the exponents,

⇒ -x = 4

⇒ x = -4.

Hence, log0.5 (16) = -4.

(v) Let,

⇒ log2 (0.125) = x

⇒ 0.125 = 2x

1251000\dfrac{125}{1000} = 2x

18\dfrac{1}{8} = 2x

123\dfrac{1}{2^3} = 2x

⇒ 2-3 = 2x

Equating the exponents,

⇒ x = -3.

Hence, log2 (0.125) = -3.

(vi) Let,

⇒ log7 7 = x

⇒ 7 = 7x

⇒ 71 = 7x

Equating the exponents,

⇒ x = 1.

Hence, log7 7 = 1.

Question 4

Find the value of x, when:

(i) log2 x = -2

(ii) logx 9 = 1

(iii) log9 243 = x

(iv) log3 x = 0

(v) log3\log _{\sqrt{3}} (x − 1) = 2

(vi) log5 (x2 − 19) = 3

(vii) logx 64 = 32\dfrac{3}{2}

(viii) log2 (x2 − 9) = 4

(ix) logx (0.008) = −3

Answer

(i) Given,

⇒ log2 x = -2

⇒ x = 2-2

⇒ x = 122\dfrac{1}{2^2}

⇒ x = 14\dfrac{1}{4}

Hence, x = 14\dfrac{1}{4}.

(ii) Given,

⇒ logx 9 = 1

⇒ 9 = x1

⇒ x = 9.

Hence, x = 9.

(iii) Given,

⇒ log9 243 = x

⇒ 243 = 9x

⇒ 35 = (32)x

⇒ 35 = 32x

Equating the exponents,

⇒ 2x = 5

⇒ x = 52\dfrac{5}{2}.

Hence, x = 52\dfrac{5}{2}.

(iv) Given,

⇒ log3 x = 0

⇒ x = 30

⇒ x = 1.

Hence, x = 1.

(v) Given,

log3 (x1)=2(x1)=(3)2(x1)=3x=3+1x=4\Rightarrow \log_{\sqrt{3}} \space (x − 1) = 2 \\[1em] \Rightarrow (x − 1) = (\sqrt{3})^2 \\[1em] \Rightarrow (x − 1) = 3 \\[1em] \Rightarrow x = 3 + 1 \\[1em] \Rightarrow x = 4

Hence, x = 4.

(vi) Given,

⇒ log5 (x2 − 19) = 3

⇒ (x2 − 19) = 53

⇒ x2 − 19 = 125

⇒ x2 = 125 + 19

⇒ x2 = 144

⇒ x = 144\sqrt{144}

⇒ x = ±12.

Hence, x = ± 12.

(vii) Given,

logx 64=3264=x326423=x(32×23)x=6423x=(43)23x=42x=16.\Rightarrow \log_x \space 64 = \dfrac{3}{2} \\[1em] \Rightarrow 64 = x ^ \dfrac{3}{2} \\[1em] \Rightarrow 64^{\dfrac{2}{3}} = x ^{\Big(\dfrac{3}{2} \times \dfrac{2}{3} \Big)} \\[1em] \Rightarrow x = 64^{\dfrac{2}{3}} \\[1em] \Rightarrow x = (4^3)^\dfrac{2}{3} \\[1em] \Rightarrow x = 4^2 \\[1em] \Rightarrow x = 16.

Hence, x = 16.

(viii) Given,

⇒ log2 (x2 − 9) = 4

⇒ (x2 − 9) = 24

⇒ x2 − 9 = 16

⇒ x2 = 16 + 9

⇒ x2 = 25

⇒ x = 25\sqrt{25}

⇒ x = ±5

Hence, x = ±5.

(ix) Given,

⇒ logx (0.008) = −3

⇒ 0.008 = x−3

81000\dfrac{8}{1000} = x−3

1125\dfrac{1}{125} = x−3

153\dfrac{1}{5^3} = x−3

⇒ 5−3 = x−3

Equating the bases,

⇒ x = 5.

Hence, x = 5.

Question 5

If log10 x = p and log10 y = q, show that xy = (10)p + q.

Answer

Given,

⇒ log10 x = p and log10 y = q

⇒ x = 10p and y = 10q

⇒ x × y = 10p × 10q

⇒ xy = (10)p + q.

Hence, proved that xy = (10)p + q.

Question 6

Given log10 x = a, log10 y = b,

(i) Write down 10a + 1 in terms of x.

(ii) Write down 102b in terms of y.

(iii) If log10 P = 2a − b, express P in terms of x and y.

Answer

Given,

⇒ log10 x = a and log10 y = b

⇒ x = 10a and y = 10b

(i) Given,

⇒ 10a + 1

⇒ 10a × 101

⇒ x × 10

⇒ 10x.

Hence, 10a + 1 = 10x.

(ii) Given,

⇒ 102b

⇒ (10b)2

⇒ y2.

Hence, 102b = y2.

(iii) Given,

⇒ log10 P = 2a − b

⇒ P = 10(2a − b)

⇒ P = 102a × 10−b

⇒ P = (10a)2 × (10b)-1

⇒ P = (x)2 × (y)-1

⇒ P = x2y\dfrac{x^2}{y}.

Hence, P = x2y\dfrac{x^2}{y}.

Exercise 7B

Question 1(i)

Evaluate the following without using log tables :

2 log 5 + log 8 − 12\dfrac{1}{2} log 4

Answer

Given,

⇒ 2 log 5 + log 8 − 12\dfrac{1}{2} log 4

2log 5+log 812 log4log (5)2+log 8log (4)12log 25+log 8log 4log 25+log 8log 2log (25×8)log 2log (200)log 2log (2002)log 100log 1022log 102×12.\Rightarrow 2 \log \space 5 + \log \space 8 − \dfrac{1}{2} \text{ log} 4 \\[1em] \Rightarrow \log \space (5)^2 + \log \space 8 − \log \space(4)^{\dfrac{1}{2}} \\[1em] \Rightarrow \log \space 25 + \log \space 8 − \log \space \sqrt{4} \\[1em] \Rightarrow \log \space 25 + \log \space 8 − \log \space 2 \\[1em] \Rightarrow \log \space (25 × 8) − \log \space 2 \\[1em] \Rightarrow \log \space (200) − \log \space 2 \\[1em] \Rightarrow \log \space \Big(\dfrac{200}{2}\Big) \\[1em] \Rightarrow \log \space 100 \\[1em] \Rightarrow \log \space 10^2 \\[1em] \Rightarrow 2\log \space 10 \\[1em] \Rightarrow 2 \times 1 \\[1em] \Rightarrow 2.

Hence, 2 log 5 + log 8 − 12\dfrac{1}{2} log 4 = 2.

Question 1(ii)

Evaluate the following without using log tables :

log 8 + log 25 + 2 log 3 − log 18

Answer

Given,

⇒ log 8 + log 25 + 2 log 3 − log 18

⇒ log (8 × 25) + log 32 - log 18

⇒ log (200) + log 9 - log 18

⇒ log (200 × 9) - log 18

⇒ log (1800) - log 18

⇒ log (180018)\Big(\dfrac{1800}{18}\Big)

⇒ log 100

⇒ log 102

⇒ 2 log 10

⇒ 2 × 1

⇒ 2.

Hence, log 8 + log 25 + 2 log 3 − log 18 = 2.

Question 1(iii)

Evaluate the following without using log tables :

5 log 2 + 32\dfrac{3}{2} log 25 + 12\dfrac{1}{2} log 49 − log 28

Answer

Given,

⇒ 5 log 2 + 32\dfrac{3}{2} log 25 + 12\dfrac{1}{2} log 49 − log 28

5log 2+32log 25+12log 49log 28log 25+log 2532+log 4912log 28log 32+log (52)32+log 49log 28log 32+log 53+log 7log 28log 32+log 125+log 7log 28log (32×125×7)log 28log 28000log 28log (2800028)log 1000log 1033log 103×13.\Rightarrow 5 \log \space 2 + \dfrac{3}{2} \log \space 25 + \dfrac{1}{2} \log \space 49 − \log \space 28 \\[1em] \Rightarrow \log \space 2^5 + \log \space 25^\dfrac{3}{2} + \log \space 49^\dfrac{1}{2} − \log \space 28 \\[1em] \Rightarrow \log \space 32 + \log \space (5^2)^{\dfrac{3}{2}} + \log \space \sqrt{49} − \log \space 28 \\[1em] \Rightarrow \log \space 32 + \log \space 5^3 + \log \space 7 − \log \space 28 \\[1em] \Rightarrow \log \space 32 + \log \space 125 + \log \space 7 − \log \space 28 \\[1em] \Rightarrow \log \space (32 × 125 × 7) − \log \space 28 \\[1em] \Rightarrow \log \space 28000 − \log \space 28 \\[1em] \Rightarrow \log \space \Big(\dfrac{28000}{28}\Big) \\[1em] \Rightarrow \log \space 1000 \\[1em] \Rightarrow \log \space 10^3 \\[1em] \Rightarrow 3 \log \space 10 \\[1em] \Rightarrow 3 \times 1 \\[1em] \Rightarrow 3.

Hence, 5 log 2 + 32\dfrac{3}{2} log 25 + 12\dfrac{1}{2} log 49 − log 28 = 3.

Question 1(iv)

Evaluate the following without using log tables :

2 log 2 + log 5 − 12\dfrac{1}{2} log 36 − log 130\dfrac{1}{30}

Answer

Given,

2log2+log512log36log130log 22+log 5log 3612log 130log 4+log 5log 36(log 1log 30)log (4×5)log 6(0log 30)log 20+log 30log 6log (20×30)log 6log (6006)log 100log 1022log 102×12.2 \log 2 + \log 5 − \dfrac{1}{2} \log 36 − \log \dfrac{1}{30}\\[1em] \Rightarrow \log \space 2^2 + \log \space 5 − \log \space 36^{\dfrac{1}{2}} − \log \space \dfrac{1}{30} \\[1em] \Rightarrow \log \space 4 + \log \space 5 − \log \space \sqrt{36} − (\log \space 1 - \log \space 30) \\[1em] \Rightarrow \log \space (4 \times 5) − \log \space 6 - (0 - \log \space 30) \\[1em] \Rightarrow \log \space 20 + \log \space 30 − \log \space 6 \\[1em] \Rightarrow \log \space (20 \times 30) − \log \space 6 \\[1em] \Rightarrow \log \space \Big(\dfrac{600}{6}\Big) \\[1em] \Rightarrow \log \space 100 \\[1em] \Rightarrow \log \space 10^2 \\[1em] \Rightarrow 2\log \space 10 \\[1em] \Rightarrow 2 \times 1 \\[1em] \Rightarrow 2.

Hence, 2 log 2 + log 5 − 12\dfrac{1}{2} log 36 − log 130\dfrac{1}{30} = 2.

Question 1(v)

Evaluate the following without using log tables :

log (1.2) + 2 log (0.75) − log (6.75)

Answer

Given,

⇒ log (1.2) + 2 log (0.75) − log (6.75)

⇒ log (1.2) + log (0.75)2 − log (6.75)

⇒ log (1.2) + log (0.5625) − log (6.75)

⇒ log (1.2 × 0.5625) − log (6.75)

⇒ log (0.675) − log (6.75)

⇒ log (0.6756.75)\Big(\dfrac{0.675}{6.75}\Big)

⇒ log (0.1)

⇒ log (110)\Big(\dfrac{1}{10}\Big)

⇒ log10 10-1

⇒ -1 log10 10

⇒ -1 × 1

⇒ -1.

Hence, log (1.2) + 2 log (0.75) − log (6.75) = -1.

Question 2(i)

Evaluate:

log 5+16log (6256)+12log (4375)+7log (811250)\log \space 5 + 16 \log \space \Big(\dfrac{625}{6}\Big) + 12 \log \space \Big(\dfrac{4}{375}\Big) + 7 \log \space \Big(\dfrac{81}{1250}\Big)

Answer

Given,

log 5+16log (6256)+12log (4375)+7log (811250)log 5+log (6256)16+log (4375)12+log (811250)7log 5+log (542×3)16+log (223×53)12+log (342×54)7log 5+log (5(4×16)216×316)+log (22×12312×53×12)+log (34×727×54×7)log 5+log (564216×316)+log (224312×536)+log (32827×528)log [5×564×224×328216×316×312×536×27×528]log [564+1×224×328216+7×316+12×536+28]log [565×224×328223×328×564]log [56564×22423×32828]log [51×21×30]log [5×2×1]log 101.\Rightarrow \log \space 5 + 16 \log \space \Big(\dfrac{625}{6}\Big) + 12 \log \space \Big(\dfrac{4}{375}\Big) + 7 \log \space \Big(\dfrac{81}{1250}\Big) \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{625}{6}\Big)^{16} + \log \space \Big(\dfrac{4}{375}\Big)^{12} + \log \space \Big(\dfrac{81}{1250}\Big)^{7} \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{5^4}{2 \times 3}\Big)^{16} + \log \space \Big(\dfrac{2^2}{3 \times 5^3 }\Big)^{12} + \log \space \Big(\dfrac{3^4}{2 \times 5^4}\Big)^{7} \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{5^{(4 \times 16)}}{2^{16} \times 3^{16}}\Big) + \log \space \Big(\dfrac{2^{2 \times 12}}{3^{12} \times 5^{3 \times 12}}\Big) + \log \space \Big(\dfrac{3^{4 \times 7}}{2^7 \times 5^{4 \times 7}}\Big) \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{5^{64}}{2^{16} \times 3^{16}}\Big) + \log \space \Big(\dfrac{2^{24}}{3^{12} \times 5^{36} }\Big) + \log \space \Big(\dfrac{3^{28}}{2^{7} \times 5^{28}}\Big) \\[1em] \Rightarrow \log \space \Big[\dfrac{5 \times 5^{64} \times 2^{24} \times 3^{28} }{2^{16} \times 3^{16} \times 3^{12} \times 5^{36} \times 2^{7} \times 5^{28}}\Big] \\[1em] \Rightarrow \log \space \Big[\dfrac{5^{64 + 1} \times 2^{24} \times 3^{28} }{2^{16 + 7} \times 3^{16 + 12} \times 5^{36 + 28}}\Big] \\[1em] \Rightarrow \log \space \Big[\dfrac{5^{65} \times 2^{24} \times 3^{28} }{2^{23} \times 3^{28} \times 5^{64}}\Big] \\[1em] \Rightarrow \log \space [5^{65 - 64} \times 2^{24 - 23} \times 3^{28 - 28} ] \\[1em] \Rightarrow \log \space [5^1 \times 2^1 \times 3^0] \\[1em] \Rightarrow \log \space [5 \times 2 \times 1] \\[1em] \Rightarrow \log \space 10 \\[1em] \Rightarrow 1.

Hence, log (818)+2log 233log 32+log 34\log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \dfrac{2}{3} − 3 \log \space \dfrac{3}{2} + \log \space \dfrac{3}{4} = 1.

Question 2(ii)

Evaluate:

3log 213log 27+log 12log 4+3log 53 \log \space 2 − \dfrac{1}{3} \log \space 27 + \log \space 12 − \log \space 4 + 3 \log \space 5

Answer

Given,

3log 213log 27+log 12log 4+3log 5log 23log 2713+log 12log 4+log 53log 8log 273+log 12log 4+log 125log 8log 3+log 12log 4+log 125log 8+log 12+log 125log 4log 3(log 8+log 12+log 125)(log 4+log 3)log (8×12×125)log (4×3)log (12000)log (12)log (1200012)log 1000log 1033log 103×13.\Rightarrow 3 \log \space 2 − \dfrac{1}{3} \log \space 27 + \log \space 12 − \log \space 4 + 3 \log \space 5 \\[1em] \Rightarrow \log \space 2^3 − \log \space 27^{\dfrac{1}{3}} + \log \space 12 − \log \space 4 + \log \space 5 ^{3} \\[1em] \Rightarrow \log \space 8 − \log \space \sqrt[3]{27} + \log \space 12 − \log \space 4 + \log \space 125 \\[1em] \Rightarrow \log \space 8 − \log \space 3 + \log \space 12 − \log \space 4 + \log \space 125 \\[1em] \Rightarrow \log \space 8 + \log \space 12 + \log \space 125 − \log \space 4 − \log \space 3 \\[1em] \Rightarrow (\log \space 8 + \log \space 12 + \log \space 125) − (\log \space 4 + \log \space 3) \\[1em] \Rightarrow \log \space (8 \times 12 \times 125) - \log \space (4 \times 3) \\[1em] \Rightarrow \log \space (12000) - \log \space (12) \\[1em] \Rightarrow \log \space \Big(\dfrac{12000}{12}\Big) \\[1em] \Rightarrow \log \space 1000 \\[1em] \Rightarrow \log \space 10^3 \\[1em] \Rightarrow 3\log \space 10 \\[1em] \Rightarrow 3 \times 1 \\[1em] \Rightarrow 3.

Hence, 3log 213log 27+log 12log 4+3log 53 \log \space 2 − \dfrac{1}{3} \log \space 27 + \log \space 12 − \log \space 4 + 3 \log \space 5 = 3.

Question 2(iii)

Evaluate:

log (818)+2log (23)3log (32)+log (34)\log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \Big(\dfrac{2}{3}\Big) − 3 \log \space \Big(\dfrac{3}{2}\Big) + \log \space \Big(\dfrac{3}{4}\Big)

Answer

Given,

log (818)+2log (23)3log (32)+log (34)\Rightarrow \log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \Big(\dfrac{2}{3}\Big) − 3 \log \space \Big(\dfrac{3}{2}\Big) + \log \space \Big(\dfrac{3}{4}\Big)

⇒ log 81 - log 8 + 2(log 2 - log 3) - 3 (log 3 - log2) + (log 3 - log 4)

⇒ log 81 - log 8 + 2log 2 - 2log 3 - 3log 3 + 3log 2 + log 3 - log 4

⇒ log 81 - log 8 + log 22 - log 32 - log 33 + log 23 + log 3 - log 4

⇒ log 81 - log 8 + log 4 - log 9 - log 27 + log 8 + log 3 - log 4

⇒ log 81 + log 4 + log 8 + log 3 - log 4 - log 8 - log 9 - log 27

⇒ (log 81 + log 4 + log 8 + log 3) - (log 4 + log 8 + log 9 + log 27)

⇒ log (81 × 4 × 8 × 3) - log (8 × 9 × 27 × 4)

⇒ log (7776) - log (7776)

⇒ 0.

Hence, log (818)+2log (23)3log (32)+log (34)\log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \Big(\dfrac{2}{3}\Big) − 3 \log \space \Big(\dfrac{3}{2}\Big) + \log \space \Big(\dfrac{3}{4}\Big) = 0.

Question 3

Express log10 (x2y3z)\log_{10} \space \Big(\dfrac{x^2y^3}{z}\Big) in terms of log10x, log10y and log10z.

Answer

Given,

log10 (x2y3z)\log_{10} \space \Big(\dfrac{x^2y^3}{z}\Big)

⇒ log10 x2 y3 - log10 z

⇒ log10 x2 + log10 y3 - log10 z

⇒ 2 log10 x + 3 log10 y - log10 z.

Hence, log10 (x2y3z)\Big(\dfrac{x^2y^3}{z}\Big) = 2 log10 x + 3 log10 y - log10 z.

Question 4

Express log10 (pq3r2s)\log_{10} \space \Big(\dfrac{\sqrt{pq^3}}{r^2s}\Big) in terms of log10p, log10q, log10r and log10s.

Answer

Given,

log10 (pq3r2s)log10 pq3log10 r2slog10 (pq3)12(log10 r2+log10 s)12log10 pq3(2log10 r+log10 s)12(log10 p+log10 q3)2log10 rlog10 s12(log10 p+3log10 q)2log10 rlog10 s\Rightarrow \log_{10} \space \Big(\dfrac{\sqrt{pq^3}}{r^2s}\Big) \\[1em] \Rightarrow \log_{10} \space \sqrt{pq^3} - \log_{10} \space {r^2s} \\[1em] \Rightarrow \log_{10} \space ({pq^3})^{\dfrac{1}{2}} - (\log_{10} \space {r^2} + \log_{10} \space {s}) \\[1em] \Rightarrow \dfrac{1}{2}\log_{10} \space {pq^3} - (2\log_{10} \space {r} + \log_{10} \space {s}) \\[1em] \Rightarrow \dfrac{1}{2}(\log_{10} \space {p} + \log_{10} \space {q^3}) - 2\log_{10} \space {r} - \log_{10} \space {s} \\[1em] \Rightarrow \dfrac{1}{2}(\log_{10} \space {p} + 3\log_{10} \space {q}) - 2\log_{10} \space {r} - \log_{10} \space {s} \\[1em]

Hence, log10 (pq3r2s)=12(log10 p+3log10 q)2log10 rlog10 s\log_{10} \space \Big(\dfrac{\sqrt{pq^3}}{r^2s}\Big) = \dfrac{1}{2}(\log_{10} \space {p} + 3\log_{10} \space {q}) - 2\log_{10} \space {r} - \log_{10} \space {s}.

Question 5(i)

Express the following as a single logarithm :

2 log10 8 + log10 36 − log10 (1.5) − 3 log10 2

Answer

Given,

⇒ 2 log10 8 + log10 36 − log10 (1.5) − 3 log10 2

⇒ log10 82 + log10 36 − log10 (1.5) − log10 23

⇒ log10 64 + log10 36 − log10 (1.5) − log10 8

⇒ log10 64 + log10 36 − (log10 (1.5) + log10 8)

⇒ log10 (64 × 36) - log10(1.5 × 8)

⇒ log10 (2304) - log10(12)

log10 (230412)\log_{10} \space {\Big(\dfrac{2304}{12}\Big)}

⇒ log10 192

Hence, 2 log10 8 + log10 36 − log10 (1.5) − 3 log10 2 = log10 192.

Question 5(ii)

Express the following as a single logarithm :

2 log10 5 + 2 log10 3 − log10 2 + 1

Answer

Given,

⇒ 2 log10 5 + 2 log10 3 − log10 2 + 1

⇒ log10 52 + log10 32 − log10 2 + 1

⇒ log10 25 + log10 9 − log10 2 + log10 10

⇒ log10 25 + log10 9 + log10 10 - log10 2

⇒ log10 (25 × 9 × 10) − log10 2

⇒ log10 (2250) − log10 2

log10 (22502)\log_{10} \space {\Big(\dfrac{2250}{2}\Big)}

⇒ log10 1125.

Hence, 2 log10 5 + 2 log10 3 − log10 2 + 1 = log10 1125.

Question 5(iii)

Express the following as a single logarithm :

2+12log10 92log10 52 + \dfrac{1}{2} \log_{10} \space 9 - 2 \log_{10} \space 5

Answer

Given,

2+12log10 92log10 52log10 10+log10 912log10 52log10 102+log10 (32)12log10 25log10 100+log10 3log10 25log10 (100×3)log10 25log10 300log10 25log10 (30025)log10 12.\Rightarrow 2 + \dfrac{1}{2} \log_{10} \space 9 − 2 \log_{10} \space 5 \\[1em] \Rightarrow 2\log_{10} \space 10 + \log_{10} \space 9^{\dfrac{1}{2}} − \log_{10} \space 5^2 \\[1em] \Rightarrow \log_{10} \space 10^2 + \log_{10} \space (3^2)^{\dfrac{1}{2}} − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space100 + \log_{10} \space 3 − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space {{(100 \times 3)}} − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space {300} − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space {\Big(\dfrac{300}{25}\Big)} \\[1em] \Rightarrow \log_{10} \space 12.

Hence, 2+12log10 92log10 52 + \dfrac{1}{2} \log_{10} \space 9 − 2 \log_{10} \space 5 = log10 12.

Question 5(iv)

Express the following as a single logarithm :

12log109+14log1081+2log106log1012\dfrac{1}{2} \log_{10} 9 + \dfrac{1}{4} \log_{10} 81 + 2 \log_{10} 6 - \log_{10} 12

Answer

Given,

12log10 9+14log10 81+2log10 6log10 12log10912+log10 8114+log10 62log10 12log109+log10 (34)14+log10 36log10 12log10 3+log10 3+log10 36log10 12log10 (3×3×36)log10 12log10324log1012log1032412log1027.\Rightarrow \dfrac{1}{2} \log_{10} \space 9 + \dfrac{1}{4} \log_{10} \space 81 + 2 \log_{10} \space 6 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} 9^{\dfrac{1}{2}} + \log_{10} \space 81^{\dfrac{1}{4}} + \log_{10} \space6^2 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} \sqrt{9} + \log_{10} \space (3^4)^{\dfrac{1}{4}} + \log_{10} \space 36 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} \space 3 + \log_{10} \space 3 + \log_{10} \space 36 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} \space {(3 \times 3 \times 36)} − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} 324 − \log_{10} 12 \\[1em] \Rightarrow \log_{10} \dfrac{324}{12} \\[1em] \Rightarrow \log_{10} 27.

Hence, 12log109+14log1081+2log106log1012\dfrac{1}{2} \log_{10} 9 + \dfrac{1}{4} \log_{10} 81 + 2 \log_{10} 6 − \log_{10} 12 = log10 27.

Question 5(v)

Express the following as a single logarithm :

2log10 (1113)+log10 (13077)log10 (5591)2 \log_{10} \space \Big(\dfrac{11}{13}\Big) + \log_{10} \space \Big(\dfrac{130}{77}\Big) − \log_{10} \space \Big(\dfrac{55}{91}\Big)

Answer

Given,

2log10 (1113)+log10 (13077)log10 (5591)\Rightarrow 2 \log_{10} \space \Big(\dfrac{11}{13}\Big) + \log_{10} \space \Big(\dfrac{130}{77}\Big) − \log_{10} \space \Big(\dfrac{55}{91}\Big)

⇒ 2(log10 11 - log10 13) + (log10 130 - log1077) - (log10 55 - log10 91)

⇒ 2log10 11 - 2log10 13 + log10 130 - log1077 - log10 55 + log10 91

⇒ log10 112 - log10 132 + log10 130 - log1077 - log10 55 + log10 91

⇒ log10 121 - log10 169 + log10 130 - log1077 - log10 55 + log10 91

⇒ log10 121 + log10 130 + log10 91 - log10 169 - log1077 - log10 55

⇒ log10 (121 × 130 × 91) - log10 (169 × 77 × 55)

log10 121×130×91169×77×55\log_{10} \space {\dfrac{121 \times 130 \times 91}{169 \times 77 \times 55}}

log10 2613\log_{10} \space {\dfrac{26}{13}}

⇒ log10 2.

Hence, 2log10 (1113)+log10 (13077)log10 (5591)2 \log_{10} \space \Big(\dfrac{11}{13}\Big) + \log_{10} \space \Big(\dfrac{130}{77}\Big) − \log_{10} \space \Big(\dfrac{55}{91}\Big) = log10 2.

Question 5(vi)

Express the following as a single logarithm :

113log10 641 − \dfrac{1}{3} \log_{10} \space 64

Answer

Given,

113log1064log1010log106413log1010log10643log1010log104log10104log1052log10 2.5\Rightarrow 1 - \dfrac{1}{3} \log_{10} 64 \\[1em] \Rightarrow \log_{10} 10 − \log_{10} 64^{\dfrac{1}{3}} \\[1em] \Rightarrow \log_{10} 10 − \log_{10} \sqrt[3]{64} \\[1em] \Rightarrow \log_{10} 10 − \log_{10} 4 \\[1em] \Rightarrow \log_{10} \dfrac{10}{4} \\[1em] \Rightarrow \log_{10} \dfrac{5}{2} \\[1em] \Rightarrow \log_{10} \space 2.5

Hence, 113log10641 − \dfrac{1}{3} \log_{10} 64 = log10 2.5

Question 6(i)

Evaluate the following without using log tables :

log 81log 27\dfrac{\log \space 81}{\log \space 27}

Answer

Given,

log 81log 27log 34log 334log 33log 343.\Rightarrow \dfrac{\log \space 81}{\log \space 27} \\[1em] \Rightarrow \dfrac{\log \space 3^4}{\log \space 3^3} \\[1em] \Rightarrow \dfrac{4\log \space 3}{3\log \space 3} \\[1em] \Rightarrow \dfrac{4}{3}.

Hence, log 81log 27=43\dfrac{\log \space 81}{\log \space 27} = \dfrac{4}{3}.

Question 6(ii)

Evaluate the following without using log tables :

log 128log 32\dfrac{\log \space 128}{\log \space 32}

Answer

Given,

log 128log 32log 27log 257log 25log 275.\Rightarrow \dfrac{\log \space 128}{\log \space 32} \\[1em] \Rightarrow \dfrac{\log \space 2^7}{\log \space 2^5} \\[1em] \Rightarrow \dfrac{7\log \space 2}{5\log \space 2} \\[1em] \Rightarrow \dfrac{7}{5}.

Hence, log 128log 32=75\dfrac{\log \space 128}{\log \space 32} = \dfrac{7}{5}.

Question 6(iii)

Evaluate the following without using log tables :

log 27log 3\dfrac{\log \space 27}{\log \space \sqrt{3}}

Answer

Given,

log 27log 3log 33log 3123log 312log 33123×26.\Rightarrow \dfrac{\log \space 27}{\log \space \sqrt{3}} \\[1em] \Rightarrow \dfrac{\log \space 3^3}{\log \space {3}^{\dfrac{1}{2}}} \\[1em] \Rightarrow \dfrac{3\log \space 3}{{\dfrac{1}{2}}\log \space 3} \\[1em] \Rightarrow \dfrac{3}{{\dfrac{1}{2}}} \\[1em] \Rightarrow 3 \times 2 \\[1em] \Rightarrow 6.

Hence, log 27log 3\dfrac{\log \space 27}{\log \space \sqrt{3}} = 6.

Question 6(iv)

Evaluate the following without using log tables :

log 9log 3log 27\dfrac{\log \space 9 - \log \space 3}{\log \space 27}

Answer

Given,

log 9log 3log 27log 93log 33log 33log 313.\Rightarrow \dfrac{\log \space 9 - \log \space 3}{\log \space 27} \\[1em] \Rightarrow \dfrac{\log \space {\dfrac{9}{3}}}{\log \space 3^3} \\[1em] \Rightarrow \dfrac{\log \space 3}{3\log \space 3} \\[1em] \Rightarrow \dfrac{1}{3}.

Hence, log 9log 3log 27=13\dfrac{\log \space 9 - \log \space 3}{\log \space 27} = \dfrac{1}{3}.

Question 7

Given : log 2 = 0.3010 and log 3 = 0.4771, find the value of :

(i) log 12

(ii) log 25

(iii) log 18\log \space \sqrt{18}

(iv) log (94)\log \space \Big(\dfrac{9}{4}\Big)

Answer

(i) Given,

⇒ log 12

⇒ log (3 × 2 × 2)

⇒ log 3 + log 2 + log 2

⇒ 0.4771 + 0.3010 + 0.3010

⇒ 0.4771 + 0.3010 + 0.3010

⇒ 1.0791

Hence, log 12 = 1.0791.

(ii) Given,

⇒ log 25

⇒ log 52

⇒ 2 log 5

2 log 1022\text{ log }\dfrac{10}{2}

⇒ 2(log 10 - log 2)

⇒ 2(1 - 0.3010)

⇒ 2(0.699)

⇒ 1.398

Hence, log 25 = 1.398

(iii) Given,

log 18log 181212log 1812log (3×3×2)12(log 3+log 3+log 2)12(0.4771+0.4771+0.3010)12(1.2552)0.6276\Rightarrow \log \space \sqrt{18} \\[1em] \Rightarrow \log \space {18}^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{1}{2}\log \space 18 \\[1em] \Rightarrow \dfrac{1}{2}\log \space (3 \times 3 \times 2) \\[1em] \Rightarrow \dfrac{1}{2}(\log \space 3 + \log \space 3 + \log \space 2) \\[1em] \Rightarrow \dfrac{1}{2}(0.4771 + 0.4771 + 0.3010) \\[1em] \Rightarrow \dfrac{1}{2}(1.2552) \\[1em] \Rightarrow 0.6276

Hence, log18\log \sqrt{18} =0.6276.

(iv) Given,

log (94)\Rightarrow \log \space \Big(\dfrac{9}{4}\Big)

⇒ log 9 - log 4

⇒ log 32 - log 22

⇒ 2 log 3 - 2 log 2

⇒ 2 × 0.4771 - 2 × 0.3010

⇒ 0.9542 - 0.6020

⇒ 0.3522

Hence, log(94)\log \Big(\dfrac{9}{4}\Big) value is 0.3522.

Question 8

If log 2 = 0.3010, find the value of (log 75162log 59+log 32243)\Big(\log \space \dfrac{75}{16} - 2 \log \space \dfrac{5}{9} + \log \space \dfrac{32}{243}\Big)

Answer

Given,

(log 75162log 59+log 32243)\Rightarrow \Big(\log \space \dfrac{75}{16} - 2 \log \space \dfrac{5}{9} + \log \space \dfrac{32}{243}\Big)

⇒ log 75 - log 16 - 2 (log 5 - log 9) + log 32 - log 243

⇒ log (25 × 3) - log 16 - 2 (log 5 - log 9) + log 25 - log 35

⇒ log 25 + log 3 - log 24 - 2log 5 + 2log 9 + 5log 2 - 5log 3

⇒ log 25 + log 3 - 4log 2 - log 52 + 2log 32 + 5log 2 - 5log 3

⇒ log 25 + log 3 - 4log 2 - log 25 + 4log 3 + 5log 2 - 5log 3

⇒ log 25 - log 25 - 4log 2 + 5log 2 + log 3 + 4log 3 - 5log 3

⇒ log 2 + log 3 + 5log 3 - 5log 3

⇒ log 2

⇒ 0.3010

Hence, (log 75162log 59+log 32243)\Big(\log \space \dfrac{75}{16} - 2 \log \space \dfrac{5}{9} + \log \space \dfrac{32}{243}\Big) = 0.3010.

Question 9

If log 8 = 0.9030, find the value of :

(i) log 4

(ii) log32\log \sqrt{32}

(iii) log (0.125)

Answer

Given,

⇒ log 8 = 0.9030

⇒ log 23 = 0.9030

⇒ 3log 2 = 0.9030

⇒ log 2 = 0.90303\dfrac{0.9030}{3}

⇒ log 2 = 0.3010

(i) Given,

⇒ log 4

⇒ log 22

⇒ 2log 2

⇒ 2 × (0.3010)

⇒ 0.6020

Hence, log 4 = 0.6020.

(ii) Given,

log 32log 321212log 3212log (8×4)12(log 8+log 4)12(0.9030+log 22)12(0.9030+2log 2)12[0.9030+2×(0.3010)]12(0.9030+0.6020)12×1.50500.7525\Rightarrow \log \space \sqrt{32} \\[1em] \Rightarrow \log \space {32}^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{1}{2}\log \space {32} \\[1em] \Rightarrow \dfrac{1}{2}\log \space {(8 \times 4)} \\[1em] \Rightarrow \dfrac{1}{2}(\log \space {8} + \log \space {4}) \\[1em] \Rightarrow \dfrac{1}{2}(0.9030 + \log \space {2^2}) \\[1em] \Rightarrow \dfrac{1}{2}(0.9030 + 2\log \space {2}) \\[1em] \Rightarrow \dfrac{1}{2}[0.9030 + 2 \times (0.3010)] \\[1em] \Rightarrow \dfrac{1}{2}(0.9030 + 0.6020) \\[1em] \Rightarrow \dfrac{1}{2} \times 1.5050 \\[1em] \Rightarrow 0.7525

Hence, log32\log \sqrt{32} = 0.7525.

(iii) Given,

⇒ log (0.125)

log (1251000)\log \space {\Big(\dfrac{125}{1000}\Big)}

log (18)\log \space {\Big(\dfrac{1}{8}\Big)}

⇒ log 1 - log 8

⇒ 0 - 0.9030

⇒ -0.9030

Hence, log (0.125) = -0.9030.

Question 10

If log 27 = 1.4313, find the value of :

(i) log 9

(ii) log 30

Answer

Given,

⇒ log 27 = 1.4313

⇒ log 33 = 1.4313

⇒ 3log 3 = 1.4313

⇒ log 3 = 1.43133\dfrac{1.4313}{3}

⇒ log 3 = 0.4771

(i) Given,

⇒ log 9

⇒ log 32

⇒ 2log 3

⇒ 2 × (0.4771)

⇒ 0.9542

Hence, log 9 = 0.9542.

(ii) Given,

⇒ log 30

⇒ log (3 × 10)

⇒ log 3 + log 10

⇒ log 3 + 1

⇒ 0.4771 + 1

⇒ 1.4771.

Hence, log 30 = 1.4771.

Question 11

Show that log (1 + 2 + 3) = log 1 + log 2 + log 3.

Answer

Given,

⇒ log (1 + 2 + 3) = log 1 + log 2 + log 3

Solving the R.H.S,

⇒ log 1 + log 2 + log 3

⇒ log (1 × 2 × 3)

⇒ log 6

⇒ log (1 + 2 + 3)

Since,

L.H.S = R.H.S.

Hence, proved that log (1 + 2 + 3) = log 1 + log 2 + log 3.

Question 12(i)

If log (m + n) = log m + log n, show that m=nn1m = \dfrac{n}{n - 1}.

Answer

Given,

⇒ log (m + n) = log m + log n

⇒ log (m + n) = log (mn)

⇒ (m + n) = (mn)

⇒ m - mn + n = 0

⇒ m(1 - n) + n = 0

⇒ m(1 - n) = - n

⇒ m = n(1n)\dfrac{-n}{(1 - n)}

⇒ m = n(n1)\dfrac{-n}{-(n - 1)}

⇒ m = n(n1)\dfrac{n}{(n - 1)}.

Hence, proved that m=nn1m = \dfrac{n}{n - 1}.

Question 12(ii)

If log (a+b2)=12(log a+log b) , show that 12(a+b)=ab\log \space \Big(\dfrac{a + b}{2}\Big) = \dfrac{1}{2} (\log \space a + \log \space b)\text{ , show that }\dfrac{1}{2} (a + b) = \sqrt{ab}.

Answer

Given,

log (a+b2)=12(log a+log b)log (a+b2)=12log ablog (a+b2)=log ab12(a+b2)=ab1212(a+b)=ab.\Rightarrow \log \space \Big(\dfrac{a + b}{2}\Big) = \dfrac{1}{2} (\log \space a + \log \space b) \\[1em] \Rightarrow \log \space \Big(\dfrac{a + b}{2}\Big) = \dfrac{1}{2} \log \space ab \\[1em] \Rightarrow \log \space \Big(\dfrac{a + b}{2}\Big) = \log \space {ab} ^{\dfrac{1}{2}} \\[1em] \Rightarrow \Big(\dfrac{a + b}{2}\Big) = {ab} ^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{1}{2} (a + b) = \sqrt{ab}.

Hence, proved that 12(a+b)=ab\dfrac{1}{2} (a + b) = \sqrt{ab}.

Question 13(i)

Solve for x :

log (x + 2) + log (x − 2) = log 5

Answer

Given,

⇒ log (x + 2) + log (x − 2) = log 5

⇒ log [(x + 2) × (x − 2)] = log 5

⇒ log [(x2 - 22)] = log 5

⇒ log [(x2 - 4)] = log 5

⇒ (x2 - 4) = 5

⇒ x2 = 5 + 4

⇒ x2 = 9

⇒ x = 9\sqrt{9}

⇒ x = ± 3.     

x cannot be equal to -3 as that will make x + 2 = -3 + 2 = -1, that is negative, and argument of a logarithm cannot be negative.

Hence, the value of x = 3.

Question 13(ii)

Solve for x :

log (x + 4) − log (x − 4) = log 2

Answer

Given,

log (x+4)log (x4)=log 2log (x+4)(x4)=log 2(x+4)(x4)=2(x+4)=(x4)×2x+4=2x82xx=8+4x=12.\Rightarrow \log \space (x + 4) - \log \space (x - 4) = \log \space 2 \\[1em] \Rightarrow \log \space \dfrac{(x + 4)}{(x - 4)} = \log \space 2 \\[1em] \Rightarrow \dfrac{(x + 4)}{(x - 4)} = 2 \\[1em] \Rightarrow (x + 4) = (x - 4) \times 2 \\[1em] \Rightarrow x + 4 = 2x - 8 \\[1em] \Rightarrow 2x - x = 8 + 4 \\[1em] \Rightarrow x = 12 .

Hence, the value of x = 12.

Question 13(iii)

Solve for x :

log (x + 3) − log (x − 3) = 1

Answer

Given,

log (x+3)log (x3)=1log (x+3)(x3)=log 10(x+3)(x3)=10(x+3)=(x3)×10x+3=10x3010xx=3+309x=33x=339x=113.\Rightarrow \log \space (x + 3) − \log \space (x − 3) = 1 \\[1em] \Rightarrow \log \space \dfrac{(x + 3)} {(x − 3)} = \log \space 10 \\[1em] \Rightarrow \dfrac{(x + 3)} {(x − 3)} = 10 \\[1em] \Rightarrow (x + 3) = (x − 3) \times 10 \\[1em] \Rightarrow x + 3 = 10x − 30 \\[1em] \Rightarrow 10x - x = 3 + 30 \\[1em] \Rightarrow 9x = 33 \\[1em] \Rightarrow x = \dfrac{33}{9} \\[1em] \Rightarrow x = \dfrac{11}{3}.

Hence, the value of x = 113\dfrac{11}{3}.

Question 13(iv)

Solve for x :

log (x2 − 21) = 2

Answer

Given,

⇒ log (x2 − 21) = 2

⇒ log (x2 − 21) = 2 log 10

⇒ log (x2 − 21) = log 100

⇒ (x2 − 21) = 100

⇒ x2 = 100 + 21

⇒ x2 = 121

⇒ x = 121\sqrt{121}

⇒ x = ±11.

Hence, the value of x = ±11.

Question 13(v)

Solve for x :

2 log x + 1 = log 250

Answer

Given,

⇒ 2 log x + 1 = log 250

⇒ log x2 + log 10 = log 250

⇒ log (10 × x2) = log 250

⇒ (10 × x2) = 250

⇒ x2 = 25010\dfrac{250}{10}

⇒ x2 = 25

⇒ x = 25\sqrt{25}

⇒ x = ±5.

x cannot be equal to -5 as the argument of a logarithm cannot be negative.

Hence, the value of x = 5.

Question 13(vi)

Solve for x :

log xlog 5=log 9log (13)\dfrac{\log \space x}{\log \space 5} = \dfrac{\log \space 9}{\log \space \Big(\dfrac{1}{3}\Big)}

Answer

Given,

log xlog 5=log 9log (13)log xlog 5=log 32log 31log xlog 5=2log 31log 3log xlog 5=2log x=2×log 5log x=log 52log x=log (125)x=125.\Rightarrow \dfrac{\log \space x}{\log \space 5} = \dfrac{\log \space 9}{\log \space \Big(\dfrac{1}{3}\Big)} \\[1em] \Rightarrow \dfrac{\log \space x}{\log \space 5} = \dfrac{\log \space 3^2}{\log \space 3 ^{-1}} \\[1em] \Rightarrow \dfrac{\log \space x}{\log \space 5} = \dfrac{2\log \space 3}{-1\log \space 3} \\[1em] \Rightarrow \dfrac{\log \space x}{\log \space 5} = -2 \\[1em] \Rightarrow \log \space x = -2 \times \log \space 5 \\[1em] \Rightarrow \log \space x = \log \space 5 ^{-2} \\[1em] \Rightarrow \log \space x = \log \space \Big(\dfrac{1}{25}\Big) \\[1em] \Rightarrow x = \dfrac{1}{25}.

Hence, the value of x = 125\dfrac{1}{25}.

Question 14

If (log 7log 2+log 162log 3log 745)=1+log n\Big(\log \space 7 - \log \space 2 + \log \space 16 - 2 \log \space 3 - \log \space \dfrac{7}{45}\Big) = 1 + \log \space n, find the value of n.

Answer

Given,

log 7log 2+log 162log 3log 745=1+log n\Rightarrow \log \space 7 - \log \space 2 + \log \space 16 - 2 \log \space 3 - \log \space \dfrac{7}{45} = 1 + \log \space n

⇒ log 7 - log 2 + log 24 - 2log 3 - (log 7 - log 45) = log 10 + log n

⇒ log 7 - log 2 + 4log 2 - 2log 3 - log 7 + log 45 = log 10n

⇒ log 7 - log 7- log 2 + 4log 2 - 2log 3 + log 45 = log 10n

⇒ 3log 2 - 2log 3 + log (9 × 5) = log 10n

⇒ 3log 2 - 2log 3 + log 9 + log 5 = log 10n

⇒ log 23 - 2log 3 + log 32 + log 5 = log 10n

⇒ log 8 - 2log 3 + 2log 3 + log 5 = log 10n

⇒ log 8 + log 5 = log 10n

⇒ log (8 × 5) = log 10n

⇒ log 40 = log 10n

⇒ 10n = 40

⇒ n = 4010\dfrac{40}{10}

⇒ n = 4.

Hence, the value of n = 4.

Question 15(i)

Write the logarithmic equation for :

R=3VπhR = \dfrac{3V}{\sqrt{\pi h}}

Answer

Given,

R=3VπhTaking log on Both sides,log R=log 3Vπhlog R=log (3Vπh)12log R=12log (3Vπh)log R=12(log 3Vlog πh)log R=12[log 3+log V(log π+log h)]log R=12(log 3+log Vlog πlog h)\Rightarrow R = \sqrt {\dfrac{3V}{\pi h}} \\[1em] \text{Taking log on Both sides,} \\[1em] \Rightarrow \log \space R = \log \space {\sqrt{\dfrac{3V}{\pi h}}} \\[1em] \Rightarrow \log \space R = \log \space {\Big(\dfrac{3V}{\pi h}\Big)}^{\dfrac{1}{2}} \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} \log \space {\Big(\dfrac{3V}{\pi h}\Big)} \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} (\log \space {3V} - \log \space {\pi h}) \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} [\log \space {3} + \log \space {V} - (\log \space {\pi} + \log \space { h})] \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} (\log \space {3} + \log \space {V} - \log \space {\pi} - \log \space { h})

Hence, logarithmic equation is log R=12(log 3+log Vlog πlog h)\log \space R = \dfrac{1}{2} (\log \space {3} + \log \space {V} - \log \space {\pi} - \log \space { h}).

Question 15(ii)

Write the logarithmic equation for :

x=ababa+bx = ab \sqrt{\dfrac{a - b}{a + b}}

Answer

Given,

x=ababa+bTaking log on Both sides,log x=log (ababa+b)log x=log ab+log aba+blog x=log a+log b+log (aba+b)12log x=log a+log b+12log aba+blog x=log a+log b+12[log (ab)log (a+b)]\Rightarrow x = ab \sqrt{\dfrac{a - b}{a + b}} \\[1em] \text{Taking log on Both sides,} \\[1em] \Rightarrow \log \space x = \log \space \Big(ab \sqrt{\dfrac{a - b}{a + b}}\Big) \\[1em] \Rightarrow \log \space x = \log \space ab + \log \space\sqrt{\dfrac{a - b}{a + b}} \\[1em] \Rightarrow \log \space x = \log \space a + \log \space b + \log \space \Big({\dfrac{a - b}{a + b}}\Big)^{\dfrac{1}{2}} \\[1em] \Rightarrow \log \space x = \log \space a + \log \space b + \dfrac{1}{2} \log \space {\dfrac{a - b}{a + b}} \\[1em] \Rightarrow \log \space x = \log \space a + \log \space b + \dfrac{1}{2} [\log \space ({a - b}) - \log \space ({a + b})] \\[1em]

Hence, logarithmic equation is

log x=log a+log b+12[log (ab)log (a+b)]\log \space x = \log \space a + \log \space b + \dfrac{1}{2} [\log \space ({a - b}) - \log \space ({a + b})]

Multiple Choice Questions

Question 1

The relation 643=4\sqrt[3]{64} = 4 in logarithmic form is:

  1. log64 4 = 3

  2. log4 64=13\log_4 \space 64 = \dfrac{1}{3}

  3. log64 4=13\log_{64} \space 4 = \dfrac{1}{3}

  4. log64 13=4\log_{64} \space \dfrac{1}{3} = 4

Answer

Given,

643=4(64)13=4log64 4=13.\Rightarrow \sqrt[3]{64} = 4 \\[1em] \Rightarrow (64)^{\dfrac{1}{3}} = 4 \\[1em] \Rightarrow \log_{64} \space 4 = \dfrac{1}{3}.

Hence, option 3 is the correct option.

Question 2

The relation log3 243 = 5 in exponential form is:

  1. 53 = 243

  2. 35 = 243

  3. 24313=5243^{\dfrac{1}{3}} = 5

  4. 2433 = 5

Answer

Given,

⇒ log3 243 = 5

⇒ 243 = 35

⇒ 35 = 243.

Hence, option 2 is the correct option.

Question 3

log2 (42)=\log_{\sqrt{2}} \space \Big(4\sqrt{2}\Big) =

  1. 8

  2. 6

  3. 4

  4. 5

Answer

Given,

log2 (42)\Rightarrow \log_{\sqrt{2}} \space \Big(4\sqrt{2}\Big)

Let,

log2(42)=y(2)y=42[(2)12]y=22×212(2)y2=22+12(2)y2=24+12(2)y2=252y2=52y=52×2y=5.\Rightarrow \log_{\sqrt{2}} \Big(4\sqrt{2}\Big) = y \\[1em] \Rightarrow (\sqrt{2})^{y} = 4\sqrt{2} \\[1em] \Rightarrow [(2)^{\dfrac{1}{2}}]^{y} = 2^2 \times 2^{\dfrac{1}{2}} \\[1em] \Rightarrow (2)^{\dfrac{y}{2}} = 2^{2 + \dfrac{1}{2}} \\[1em] \Rightarrow (2)^{\dfrac{y}{2}} = 2^{\dfrac{4 + 1}{2}} \\[1em] \Rightarrow (2)^{\dfrac{y}{2}} = 2^{\dfrac{5}{2}} \\[1em] \Rightarrow \dfrac{y}{2} = \dfrac{5}{2} \\[1em] \Rightarrow y = \dfrac{5}{2} \times 2 \\[1em] \Rightarrow y = 5.

Hence, option 4 is the correct option.

Question 4

log3(127)=\log_3 \Big(\dfrac{1}{27}\Big) =

  1. 3

  2. 13\dfrac{1}{3}

  3. 13-\dfrac{1}{3}

  4. -3

Answer

Given,

log3 (127)\Rightarrow \log_3 \space \Big(\dfrac{1}{27}\Big)

Let,

log3 (127)=x(127)=3x33=3xx=3.\Rightarrow \log_3 \space \Big(\dfrac{1}{27}\Big) = x \\[1em] \Rightarrow \Big(\dfrac{1}{27}\Big) = 3^x \\[1em] \Rightarrow 3^{-3} = 3^x \\[1em] \Rightarrow x = -3.

Hence, option 4 is the correct option.

Question 5

log 5 + 2log 3 =

  1. log 11

  2. log 45

  3. log 30

  4. log 14

Answer

Given,

⇒ log 5 + 2log 3

⇒ log 5 + log 32

⇒ log 5 + log 9

⇒ log (5 × 9)

⇒ log 45.

Hence, option 2 is the correct option.

Question 6

log(1 × 2 × 3) =

  1. log 5

  2. log 1 × log 2 × log 3

  3. log 1 + log 2 + log 3

  4. log 9

Answer

Given,

⇒ log (1 × 2 × 3)

⇒ log 1 + log 2 + log 3.

Hence, option 3 is the correct option.

Question 7

The value of log 0.0001 to the base 0.1 is:

  1. 4

  2. 3

  3. 14\dfrac{1}{4}

  4. 13\dfrac{1}{3}

Answer

Let,

⇒ log0.1 (0.0001) = x

⇒ 0.0001 = 0.1x

110000=(110)x\dfrac{1}{10000} = \Big(\dfrac{1}{10}\Big)^x

1104=(110)x\dfrac{1}{10^4} = \Big(\dfrac{1}{10}\Big)^x

(110)4=(110)x\Big(\dfrac{1}{10}\Big)^4 = \Big(\dfrac{1}{10}\Big)^x

Equating the exponents,

⇒ x = 4.

Hence, option 1 is the correct option.

Question 8

If logx 243 = 5, then x =

  1. 5

  2. 3

  3. 13\dfrac{1}{3}

  4. 1

Answer

Given,

⇒ logx 243 = 5

⇒ 243 = x5

⇒ 35 = x5

⇒ x = 3.

Hence, option 2 is the correct option.

Question 9

If log5 (8x - 3) = 3, then x =

  1. 8

  2. 16

  3. 32

  4. 40

Answer

Given,

⇒ log5 (8x - 3) = 3

⇒ (8x - 3) = 53

⇒ 8x - 3 = 125

⇒ 8x = 125 + 3

⇒ 8x = 128

⇒ x = 1288\dfrac{128}{8}

⇒ x = 16.

Hence, option 2 is the correct option.

Question 10

log9 27 =

  1. 3

  2. 13\dfrac{1}{3}

  3. 23\dfrac{2}{3}

  4. 32\dfrac{3}{2}

Answer

Let,

⇒ log9 27 = x

⇒ 27 = 9x

⇒ 33 = (32)x

⇒ 33 = 32x

Equating the exponents,

⇒ 2x = 3

⇒ x = 32\dfrac{3}{2}.

Hence, option 4 is the correct option.

Question 11

log 27log 9=\dfrac{\log \space 27}{\log \space 9} =

  1. 32\dfrac{3}{2}

  2. 23\dfrac{2}{3}

  3. 3

  4. 2

Answer

Given,

log 27log 9log 33log 323log 32log 332.\Rightarrow \dfrac{\log \space 27}{\log \space 9} \\[1em] \Rightarrow \dfrac{\log \space 3^3}{\log \space 3^2} \\[1em] \Rightarrow \dfrac{3\log \space 3}{2\log \space 3} \\[1em] \Rightarrow \dfrac{3}{2}.

Hence, option 1 is the correct option.

Question 12

If logx 0.0016 = 4, then the value of x is:

  1. 2

  2. 0.2

  3. 0.1

  4. 4

Answer

Given,

⇒ logx 0.0016 = 4

⇒ 0.0016 = x4

⇒ (0.2)4 = x4

⇒ x = 0.2

Hence, option 2 is the correct option.

Question 13

If log10 2 = 0.3, then log10 8 =

  1. 0.9

  2. 0.6

  3. 1.2

  4. none of these

Answer

Given,

⇒ log10 8

⇒ log10 23

⇒ 3log10 2

⇒ 3 × 0.3

⇒ 0.9

Hence, option 1 is the correct option.

Question 14

log2 log2log381=\log_2 \space \log_{\sqrt{2}} \log_3 81 =

  1. 1

  2. 2

  3. 12\dfrac{1}{\sqrt{2}}

  4. 12\dfrac{1}{2}

Answer

Given,

log2 log2 log381log2 log2 log334log2 log2 4log33log2 (log2 4)log2 (log 4log 2)log2 (log 22log 2)log2 (2log 212log 2)log2 (212)log2 4log2 222log2 22.\Rightarrow \log_2 \space \log_{\sqrt{2}} \space \log_3 81 \\[1em] \Rightarrow \log_2 \space \log_{\sqrt{2}} \space \log_3 3^4 \\[1em] \Rightarrow \log_2 \space \log_{\sqrt{2}} \space 4\log_3 3 \\[1em] \Rightarrow \log_2 \space (\log_{\sqrt{2}} \space 4) \\[1em] \Rightarrow \log_2 \space \Big(\dfrac{\log \space 4}{\log \space \sqrt{2}}\Big) \\[1em] \Rightarrow \log_2 \space \Big(\dfrac{\log \space 2^2}{\log \space \sqrt{2}}\Big) \\[1em] \Rightarrow \log_2 \space \Big(\dfrac{2\log \space 2}{\dfrac{1}{2}\log \space 2}\Big) \\[1em] \Rightarrow \log_2 \space {\Big(\dfrac{2}{\dfrac{1}{2}}\Big)} \\[1em] \Rightarrow \log_2 \space 4 \\[1em] \Rightarrow \log_2 \space 2^2 \\[1em] \Rightarrow 2\log_2 \space 2 \\[1em] \Rightarrow 2.

Hence, option 2 is the correct option.

Question 15

If log10 2 = 0.3010 and log10 3 = 0.4771, then the value of log10 72 =

  1. 1.8572

  2. 0.8572

  3. 0.5872

  4. 1.5872

Answer

Given,

⇒ log10 72

⇒ log10 (9 × 8)

⇒ log10 9 + log10 8

⇒ log10 32 + log10 2 3

⇒ 2log10 3 + 3log10 2

⇒ 2(0.4771) + 3(0.3010)

⇒ 0.9542 + 0.9030

⇒ 1.8572

Hence, option 1 is the correct option.

Assertion Reason Questions

Question 1

Assertion (A): If logx 18=13\log_x \space \dfrac{1}{8} = -\dfrac{1}{3}, then the value of x is 2.

Reason (R): If nx = m, then logn m = x.

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

logx 18=13x13=18(1x)13=(18) Cubing on both sides, we get:[(1x)13]3=(18)3(1x)13×3=(1512)1x=1512x=512.\Rightarrow \log_x \space \dfrac{1}{8} = -\dfrac{1}{3} \\[1em] \Rightarrow x^{-\dfrac{1}{3}} = \dfrac{1}{8} \\[1em] \Rightarrow \Big(\dfrac{1}{x}\Big)^{\dfrac{1}{3}} = \Big(\dfrac{1}{8}\Big) \\[1em] \text{ Cubing on both sides, we get:} \\[1em] \Rightarrow \Big[\Big(\dfrac{1}{x}\Big)^{\dfrac{1}{3}}\Big]^3 = \Big(\dfrac{1}{8}\Big)^3 \\[1em] \Rightarrow \Big(\dfrac{1}{x}\Big)^{\dfrac{1}{3} \times 3} = \Big(\dfrac{1}{512}\Big) \\[1em] \Rightarrow \dfrac{1}{x} = \dfrac{1}{512} \\[1em] \Rightarrow x = 512.

So, Assertion (A) is false.

If nx = m, then logn m = x.

This is the fundamental definition of a logarithm.

So, Reason (R) is true.

A is false, R is true.

Hence, option 2 is the correct option.

Question 2

Assertion (A): log (2 + 3 + 4) = log 2 + log 3 + log 4

Reason (R): log x x = 0

  1. A is true, R is false

  2. A is false, R is true

  3. Both A and R are true

  4. Both A and R are false

Answer

Given,

log (2 + 3 + 4) = log 2 + log 3 + log 4

Simplifying L.H.S,

⇒ log (2 + 3 + 4) = log (9)

Simplifying R.H.S,

⇒ log 2 + log 3 + log 4 = log (2 × 3 × 4) = log (24)

Since, L.H.S ≠ R.H.S

So, Assertion (A) is false.

⇒ logx x = 1 and not zero.

So, Reason (R) is false.

Both A and R are false.

Hence, option 4 is the correct option.

PrevNext