Convert each of the following to logarithmic form:
(i) 52 = 25
(ii) 3-3 = 1 27 \dfrac{1}{27} 27 1
(iii) ( 64 ) 1 3 (64)^\dfrac{1}{3} ( 64 ) 3 1 = 4
(iv) 60 = 1
(v) 10-2 = 0.01
(vi) 4-1 = 1 4 \dfrac{1}{4} 4 1
Answer
(i) Given,
⇒ 52 = 25
⇒ log5 (25) = 2.
Hence, logarithmic form is log5 (25) = 2.
(ii) Given,
⇒ 3-3 = 1 27 \dfrac{1}{27} 27 1
⇒ log3 ( 1 27 ) \Big(\dfrac{1}{27}\Big) ( 27 1 ) = -3.
Hence, logarithmic form is log3 ( 1 27 ) \Big(\dfrac{1}{27}\Big) ( 27 1 ) = -3.
(iii) Given,
⇒ ( 64 ) 1 3 (64)^\dfrac{1}{3} ( 64 ) 3 1 = 4
⇒ log64 4 = 1 3 \dfrac{1}{3} 3 1 .
Hence, logarithmic form is log64 4 = 1 3 \dfrac{1}{3} 3 1 .
(iv) Given,
⇒ 60 = 1
⇒ log6 1 = 0.
Hence, logarithmic form is log6 1 = 0.
(v) Given,
⇒ 10-2 = 0.01
⇒ log10 (0.01) = -2.
Hence, logarithmic form is log10 (0.01) = -2.
(vi) Given,
⇒ 4-1 = 1 4 \dfrac{1}{4} 4 1
⇒ log4 1 4 \dfrac{1}{4} 4 1 = -1.
Hence, logarithmic form is log4 1 4 \dfrac{1}{4} 4 1 = -1.
Convert each of the following to exponential form:
(i) log3 81 = 4
(ii) log8 4 = 2 3 \dfrac{2}{3} 3 2
(iii) log2 1 8 \dfrac{1}{8} 8 1 = -3
(iv) log10 (0.01) = -2
(v) log5 ( 1 5 ) \Big(\dfrac{1}{5}\Big) ( 5 1 ) = -1
(vi) loga 1 = 0
Answer
(i) Given,
⇒ log3 81 = 4
⇒ 34 = 81.
Hence, exponential form is 34 = 81.
(ii) Given,
⇒ log8 4 = 2 3 \dfrac{2}{3} 3 2
⇒ ( 8 ) 2 3 (8)^\dfrac{2}{3} ( 8 ) 3 2 = 4.
Hence, exponential form is ( 8 ) 2 3 (8)^\dfrac{2}{3} ( 8 ) 3 2 = 4.
(iii) Given,
⇒ log2 1 8 \dfrac{1}{8} 8 1 = -3
⇒ 2-3 = 1 8 \dfrac{1}{8} 8 1 .
Hence, exponential form is 2-3 = 1 8 \dfrac{1}{8} 8 1 .
(iv) Given,
⇒ log10 (0.01) = -2
⇒ 10-2 = 0.01.
Hence, exponential form is 10-2 = 0.01.
(v) Given,
⇒ log5 ( 1 5 ) \Big(\dfrac{1}{5}\Big) ( 5 1 ) = -1
⇒ 5-1 = ( 1 5 ) \Big(\dfrac{1}{5}\Big) ( 5 1 ) .
Hence, exponential form is 5-1 = ( 1 5 ) \Big(\dfrac{1}{5}\Big) ( 5 1 ) .
(vi) Given,
⇒ loga 1 = 0
⇒ a0 = 1.
Hence, exponential form is a0 = 1.
By converting to exponential form, find the value of each of the following:
(i) log2 64
(ii) log8 32
(iii) log3 1 9 \dfrac{1}{9} 9 1
(iv) log0.5 (16)
(v) log2 (0.125)
(vi) log7 7
Answer
(i) Let,
⇒ log2 64 = x
⇒ 64 = 2x
⇒ 26 = (2)x
Equating the exponents,
⇒ x = 6
Hence, log2 64 = 6.
(ii) Let,
⇒ log8 32 = x
⇒ 32 = 8x
⇒ 25 = (23 )x
⇒ 25 = (2)3x
Equating the exponents,
⇒ 3x = 5
⇒ x = 5 3 \dfrac{5}{3} 3 5 .
Hence, log8 32 = 5 3 \dfrac{5}{3} 3 5 .
(iii) Let,
⇒ log 3 1 9 = x ⇒ 1 9 = 3 x ⇒ 1 3 2 = 3 x ⇒ 3 − 2 = 3 x \Rightarrow \log_{3} \space {\dfrac{1}{9}} = x \\[1em] \Rightarrow \dfrac{1}{9} = 3^x \\[1em] \Rightarrow \dfrac{1}{3^2} = 3^x \\[1em] \Rightarrow 3^{-2} = 3^x \\[1em] ⇒ log 3 9 1 = x ⇒ 9 1 = 3 x ⇒ 3 2 1 = 3 x ⇒ 3 − 2 = 3 x
Equating the exponents,
⇒ x = -2.
Hence, log 3 1 9 \log_{3} \space {\dfrac{1}{9}} log 3 9 1 = -2.
(iv) Let,
⇒ log0.5 (16) = x
⇒ 16 = 0.5x
⇒ 24 = ( 1 2 ) x \Big(\dfrac{1}{2}\Big)^x ( 2 1 ) x
⇒ 24 = (2-1 )x
⇒ 24 = (2)-x
Equating the exponents,
⇒ -x = 4
⇒ x = -4.
Hence, log0.5 (16) = -4.
(v) Let,
⇒ log2 (0.125) = x
⇒ 0.125 = 2x
⇒ 125 1000 \dfrac{125}{1000} 1000 125 = 2x
⇒ 1 8 \dfrac{1}{8} 8 1 = 2x
⇒ 1 2 3 \dfrac{1}{2^3} 2 3 1 = 2x
⇒ 2-3 = 2x
Equating the exponents,
⇒ x = -3.
Hence, log2 (0.125) = -3.
(vi) Let,
⇒ log7 7 = x
⇒ 7 = 7x
⇒ 71 = 7x
Equating the exponents,
⇒ x = 1.
Hence, log7 7 = 1.
Find the value of x, when:
(i) log2 x = -2
(ii) logx 9 = 1
(iii) log9 243 = x
(iv) log3 x = 0
(v) log 3 \log _{\sqrt{3}} log 3 (x − 1) = 2
(vi) log5 (x2 − 19) = 3
(vii) logx 64 = 3 2 \dfrac{3}{2} 2 3
(viii) log2 (x2 − 9) = 4
(ix) logx (0.008) = −3
Answer
(i) Given,
⇒ log2 x = -2
⇒ x = 2-2
⇒ x = 1 2 2 \dfrac{1}{2^2} 2 2 1
⇒ x = 1 4 \dfrac{1}{4} 4 1
Hence, x = 1 4 \dfrac{1}{4} 4 1 .
(ii) Given,
⇒ logx 9 = 1
⇒ 9 = x1
⇒ x = 9.
Hence, x = 9.
(iii) Given,
⇒ log9 243 = x
⇒ 243 = 9x
⇒ 35 = (32 )x
⇒ 35 = 32x
Equating the exponents,
⇒ 2x = 5
⇒ x = 5 2 \dfrac{5}{2} 2 5 .
Hence, x = 5 2 \dfrac{5}{2} 2 5 .
(iv) Given,
⇒ log3 x = 0
⇒ x = 30
⇒ x = 1.
Hence, x = 1.
(v) Given,
⇒ log 3 ( x − 1 ) = 2 ⇒ ( x − 1 ) = ( 3 ) 2 ⇒ ( x − 1 ) = 3 ⇒ x = 3 + 1 ⇒ x = 4 \Rightarrow \log_{\sqrt{3}} \space (x − 1) = 2 \\[1em] \Rightarrow (x − 1) = (\sqrt{3})^2 \\[1em] \Rightarrow (x − 1) = 3 \\[1em] \Rightarrow x = 3 + 1 \\[1em] \Rightarrow x = 4 ⇒ log 3 ( x − 1 ) = 2 ⇒ ( x − 1 ) = ( 3 ) 2 ⇒ ( x − 1 ) = 3 ⇒ x = 3 + 1 ⇒ x = 4
Hence, x = 4.
(vi) Given,
⇒ log5 (x2 − 19) = 3
⇒ (x2 − 19) = 53
⇒ x2 − 19 = 125
⇒ x2 = 125 + 19
⇒ x2 = 144
⇒ x = 144 \sqrt{144} 144
⇒ x = ±12.
Hence, x = ± 12.
(vii) Given,
⇒ log x 64 = 3 2 ⇒ 64 = x 3 2 ⇒ 64 2 3 = x ( 3 2 × 2 3 ) ⇒ x = 64 2 3 ⇒ x = ( 4 3 ) 2 3 ⇒ x = 4 2 ⇒ x = 16. \Rightarrow \log_x \space 64 = \dfrac{3}{2} \\[1em] \Rightarrow 64 = x ^ \dfrac{3}{2} \\[1em] \Rightarrow 64^{\dfrac{2}{3}} = x ^{\Big(\dfrac{3}{2} \times \dfrac{2}{3} \Big)} \\[1em] \Rightarrow x = 64^{\dfrac{2}{3}} \\[1em] \Rightarrow x = (4^3)^\dfrac{2}{3} \\[1em] \Rightarrow x = 4^2 \\[1em] \Rightarrow x = 16. ⇒ log x 64 = 2 3 ⇒ 64 = x 2 3 ⇒ 6 4 3 2 = x ( 2 3 × 3 2 ) ⇒ x = 6 4 3 2 ⇒ x = ( 4 3 ) 3 2 ⇒ x = 4 2 ⇒ x = 16.
Hence, x = 16.
(viii) Given,
⇒ log2 (x2 − 9) = 4
⇒ (x2 − 9) = 24
⇒ x2 − 9 = 16
⇒ x2 = 16 + 9
⇒ x2 = 25
⇒ x = 25 \sqrt{25} 25
⇒ x = ±5
Hence, x = ±5.
(ix) Given,
⇒ logx (0.008) = −3
⇒ 0.008 = x−3
⇒ 8 1000 \dfrac{8}{1000} 1000 8 = x−3
⇒ 1 125 \dfrac{1}{125} 125 1 = x−3
⇒ 1 5 3 \dfrac{1}{5^3} 5 3 1 = x−3
⇒ 5−3 = x−3
Equating the bases,
⇒ x = 5.
Hence, x = 5.
If log10 x = p and log10 y = q, show that xy = (10)p + q .
Answer
Given,
⇒ log10 x = p and log10 y = q
⇒ x = 10p and y = 10q
⇒ x × y = 10p × 10q
⇒ xy = (10)p + q .
Hence, proved that xy = (10)p + q .
Given log10 x = a, log10 y = b,
(i) Write down 10a + 1 in terms of x.
(ii) Write down 102b in terms of y.
(iii) If log10 P = 2a − b, express P in terms of x and y.
Answer
Given,
⇒ log10 x = a and log10 y = b
⇒ x = 10a and y = 10b
(i) Given,
⇒ 10a + 1
⇒ 10a × 101
⇒ x × 10
⇒ 10x.
Hence, 10a + 1 = 10x.
(ii) Given,
⇒ 102b
⇒ (10b )2
⇒ y2 .
Hence, 102b = y2 .
(iii) Given,
⇒ log10 P = 2a − b
⇒ P = 10(2a − b)
⇒ P = 102a × 10−b
⇒ P = (10a )2 × (10b )-1
⇒ P = (x)2 × (y)-1
⇒ P = x 2 y \dfrac{x^2}{y} y x 2 .
Hence, P = x 2 y \dfrac{x^2}{y} y x 2 .
Evaluate the following without using log tables :
2 log 5 + log 8 − 1 2 \dfrac{1}{2} 2 1 log 4
Answer
Given,
⇒ 2 log 5 + log 8 − 1 2 \dfrac{1}{2} 2 1 log 4
⇒ 2 log 5 + log 8 − 1 2 log 4 ⇒ log ( 5 ) 2 + log 8 − log ( 4 ) 1 2 ⇒ log 25 + log 8 − log 4 ⇒ log 25 + log 8 − log 2 ⇒ log ( 25 × 8 ) − log 2 ⇒ log ( 200 ) − log 2 ⇒ log ( 200 2 ) ⇒ log 100 ⇒ log 10 2 ⇒ 2 log 10 ⇒ 2 × 1 ⇒ 2. \Rightarrow 2 \log \space 5 + \log \space 8 − \dfrac{1}{2} \text{ log} 4 \\[1em] \Rightarrow \log \space (5)^2 + \log \space 8 − \log \space(4)^{\dfrac{1}{2}} \\[1em] \Rightarrow \log \space 25 + \log \space 8 − \log \space \sqrt{4} \\[1em] \Rightarrow \log \space 25 + \log \space 8 − \log \space 2 \\[1em] \Rightarrow \log \space (25 × 8) − \log \space 2 \\[1em] \Rightarrow \log \space (200) − \log \space 2 \\[1em] \Rightarrow \log \space \Big(\dfrac{200}{2}\Big) \\[1em] \Rightarrow \log \space 100 \\[1em] \Rightarrow \log \space 10^2 \\[1em] \Rightarrow 2\log \space 10 \\[1em] \Rightarrow 2 \times 1 \\[1em] \Rightarrow 2. ⇒ 2 log 5 + log 8 − 2 1 log 4 ⇒ log ( 5 ) 2 + log 8 − log ( 4 ) 2 1 ⇒ log 25 + log 8 − log 4 ⇒ log 25 + log 8 − log 2 ⇒ log ( 25 × 8 ) − log 2 ⇒ log ( 200 ) − log 2 ⇒ log ( 2 200 ) ⇒ log 100 ⇒ log 1 0 2 ⇒ 2 log 10 ⇒ 2 × 1 ⇒ 2.
Hence, 2 log 5 + log 8 − 1 2 \dfrac{1}{2} 2 1 log 4 = 2.
Evaluate the following without using log tables :
log 8 + log 25 + 2 log 3 − log 18
Answer
Given,
⇒ log 8 + log 25 + 2 log 3 − log 18
⇒ log (8 × 25) + log 32 - log 18
⇒ log (200) + log 9 - log 18
⇒ log (200 × 9) - log 18
⇒ log (1800) - log 18
⇒ log ( 1800 18 ) \Big(\dfrac{1800}{18}\Big) ( 18 1800 )
⇒ log 100
⇒ log 102
⇒ 2 log 10
⇒ 2 × 1
⇒ 2.
Hence, log 8 + log 25 + 2 log 3 − log 18 = 2.
Evaluate the following without using log tables :
5 log 2 + 3 2 \dfrac{3}{2} 2 3 log 25 + 1 2 \dfrac{1}{2} 2 1 log 49 − log 28
Answer
Given,
⇒ 5 log 2 + 3 2 \dfrac{3}{2} 2 3 log 25 + 1 2 \dfrac{1}{2} 2 1 log 49 − log 28
⇒ 5 log 2 + 3 2 log 25 + 1 2 log 49 − log 28 ⇒ log 2 5 + log 25 3 2 + log 49 1 2 − log 28 ⇒ log 32 + log ( 5 2 ) 3 2 + log 49 − log 28 ⇒ log 32 + log 5 3 + log 7 − log 28 ⇒ log 32 + log 125 + log 7 − log 28 ⇒ log ( 32 × 125 × 7 ) − log 28 ⇒ log 28000 − log 28 ⇒ log ( 28000 28 ) ⇒ log 1000 ⇒ log 10 3 ⇒ 3 log 10 ⇒ 3 × 1 ⇒ 3. \Rightarrow 5 \log \space 2 + \dfrac{3}{2} \log \space 25 + \dfrac{1}{2} \log \space 49 − \log \space 28 \\[1em] \Rightarrow \log \space 2^5 + \log \space 25^\dfrac{3}{2} + \log \space 49^\dfrac{1}{2} − \log \space 28 \\[1em] \Rightarrow \log \space 32 + \log \space (5^2)^{\dfrac{3}{2}} + \log \space \sqrt{49} − \log \space 28 \\[1em] \Rightarrow \log \space 32 + \log \space 5^3 + \log \space 7 − \log \space 28 \\[1em] \Rightarrow \log \space 32 + \log \space 125 + \log \space 7 − \log \space 28 \\[1em] \Rightarrow \log \space (32 × 125 × 7) − \log \space 28 \\[1em] \Rightarrow \log \space 28000 − \log \space 28 \\[1em] \Rightarrow \log \space \Big(\dfrac{28000}{28}\Big) \\[1em] \Rightarrow \log \space 1000 \\[1em] \Rightarrow \log \space 10^3 \\[1em] \Rightarrow 3 \log \space 10 \\[1em] \Rightarrow 3 \times 1 \\[1em] \Rightarrow 3. ⇒ 5 log 2 + 2 3 log 25 + 2 1 log 49 − log 28 ⇒ log 2 5 + log 2 5 2 3 + log 4 9 2 1 − log 28 ⇒ log 32 + log ( 5 2 ) 2 3 + log 49 − log 28 ⇒ log 32 + log 5 3 + log 7 − log 28 ⇒ log 32 + log 125 + log 7 − log 28 ⇒ log ( 32 × 125 × 7 ) − log 28 ⇒ log 28000 − log 28 ⇒ log ( 28 28000 ) ⇒ log 1000 ⇒ log 1 0 3 ⇒ 3 log 10 ⇒ 3 × 1 ⇒ 3.
Hence, 5 log 2 + 3 2 \dfrac{3}{2} 2 3 log 25 + 1 2 \dfrac{1}{2} 2 1 log 49 − log 28 = 3.
Evaluate the following without using log tables :
2 log 2 + log 5 − 1 2 \dfrac{1}{2} 2 1 log 36 − log 1 30 \dfrac{1}{30} 30 1
Answer
Given,
2 log 2 + log 5 − 1 2 log 36 − log 1 30 ⇒ log 2 2 + log 5 − log 36 1 2 − log 1 30 ⇒ log 4 + log 5 − log 36 − ( log 1 − log 30 ) ⇒ log ( 4 × 5 ) − log 6 − ( 0 − log 30 ) ⇒ log 20 + log 30 − log 6 ⇒ log ( 20 × 30 ) − log 6 ⇒ log ( 600 6 ) ⇒ log 100 ⇒ log 10 2 ⇒ 2 log 10 ⇒ 2 × 1 ⇒ 2. 2 \log 2 + \log 5 − \dfrac{1}{2} \log 36 − \log \dfrac{1}{30}\\[1em] \Rightarrow \log \space 2^2 + \log \space 5 − \log \space 36^{\dfrac{1}{2}} − \log \space \dfrac{1}{30} \\[1em] \Rightarrow \log \space 4 + \log \space 5 − \log \space \sqrt{36} − (\log \space 1 - \log \space 30) \\[1em] \Rightarrow \log \space (4 \times 5) − \log \space 6 - (0 - \log \space 30) \\[1em] \Rightarrow \log \space 20 + \log \space 30 − \log \space 6 \\[1em] \Rightarrow \log \space (20 \times 30) − \log \space 6 \\[1em] \Rightarrow \log \space \Big(\dfrac{600}{6}\Big) \\[1em] \Rightarrow \log \space 100 \\[1em] \Rightarrow \log \space 10^2 \\[1em] \Rightarrow 2\log \space 10 \\[1em] \Rightarrow 2 \times 1 \\[1em] \Rightarrow 2. 2 log 2 + log 5 − 2 1 log 36 − log 30 1 ⇒ log 2 2 + log 5 − log 3 6 2 1 − log 30 1 ⇒ log 4 + log 5 − log 36 − ( log 1 − log 30 ) ⇒ log ( 4 × 5 ) − log 6 − ( 0 − log 30 ) ⇒ log 20 + log 30 − log 6 ⇒ log ( 20 × 30 ) − log 6 ⇒ log ( 6 600 ) ⇒ log 100 ⇒ log 1 0 2 ⇒ 2 log 10 ⇒ 2 × 1 ⇒ 2.
Hence, 2 log 2 + log 5 − 1 2 \dfrac{1}{2} 2 1 log 36 − log 1 30 \dfrac{1}{30} 30 1 = 2.
Evaluate the following without using log tables :
log (1.2) + 2 log (0.75) − log (6.75)
Answer
Given,
⇒ log (1.2) + 2 log (0.75) − log (6.75)
⇒ log (1.2) + log (0.75)2 − log (6.75)
⇒ log (1.2) + log (0.5625) − log (6.75)
⇒ log (1.2 × 0.5625) − log (6.75)
⇒ log (0.675) − log (6.75)
⇒ log ( 0.675 6.75 ) \Big(\dfrac{0.675}{6.75}\Big) ( 6.75 0.675 )
⇒ log (0.1)
⇒ log ( 1 10 ) \Big(\dfrac{1}{10}\Big) ( 10 1 )
⇒ log10 10-1
⇒ -1 log10 10
⇒ -1 × 1
⇒ -1.
Hence, log (1.2) + 2 log (0.75) − log (6.75) = -1.
Evaluate:
log 5 + 16 log ( 625 6 ) + 12 log ( 4 375 ) + 7 log ( 81 1250 ) \log \space 5 + 16 \log \space \Big(\dfrac{625}{6}\Big) + 12 \log \space \Big(\dfrac{4}{375}\Big) + 7 \log \space \Big(\dfrac{81}{1250}\Big) log 5 + 16 log ( 6 625 ) + 12 log ( 375 4 ) + 7 log ( 1250 81 )
Answer
Given,
⇒ log 5 + 16 log ( 625 6 ) + 12 log ( 4 375 ) + 7 log ( 81 1250 ) ⇒ log 5 + log ( 625 6 ) 16 + log ( 4 375 ) 12 + log ( 81 1250 ) 7 ⇒ log 5 + log ( 5 4 2 × 3 ) 16 + log ( 2 2 3 × 5 3 ) 12 + log ( 3 4 2 × 5 4 ) 7 ⇒ log 5 + log ( 5 ( 4 × 16 ) 2 16 × 3 16 ) + log ( 2 2 × 12 3 12 × 5 3 × 12 ) + log ( 3 4 × 7 2 7 × 5 4 × 7 ) ⇒ log 5 + log ( 5 64 2 16 × 3 16 ) + log ( 2 24 3 12 × 5 36 ) + log ( 3 28 2 7 × 5 28 ) ⇒ log [ 5 × 5 64 × 2 24 × 3 28 2 16 × 3 16 × 3 12 × 5 36 × 2 7 × 5 28 ] ⇒ log [ 5 64 + 1 × 2 24 × 3 28 2 16 + 7 × 3 16 + 12 × 5 36 + 28 ] ⇒ log [ 5 65 × 2 24 × 3 28 2 23 × 3 28 × 5 64 ] ⇒ log [ 5 65 − 64 × 2 24 − 23 × 3 28 − 28 ] ⇒ log [ 5 1 × 2 1 × 3 0 ] ⇒ log [ 5 × 2 × 1 ] ⇒ log 10 ⇒ 1. \Rightarrow \log \space 5 + 16 \log \space \Big(\dfrac{625}{6}\Big) + 12 \log \space \Big(\dfrac{4}{375}\Big) + 7 \log \space \Big(\dfrac{81}{1250}\Big) \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{625}{6}\Big)^{16} + \log \space \Big(\dfrac{4}{375}\Big)^{12} + \log \space \Big(\dfrac{81}{1250}\Big)^{7} \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{5^4}{2 \times 3}\Big)^{16} + \log \space \Big(\dfrac{2^2}{3 \times 5^3 }\Big)^{12} + \log \space \Big(\dfrac{3^4}{2 \times 5^4}\Big)^{7} \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{5^{(4 \times 16)}}{2^{16} \times 3^{16}}\Big) + \log \space \Big(\dfrac{2^{2 \times 12}}{3^{12} \times 5^{3 \times 12}}\Big) + \log \space \Big(\dfrac{3^{4 \times 7}}{2^7 \times 5^{4 \times 7}}\Big) \\[1em] \Rightarrow \log \space 5 + \log \space \Big(\dfrac{5^{64}}{2^{16} \times 3^{16}}\Big) + \log \space \Big(\dfrac{2^{24}}{3^{12} \times 5^{36} }\Big) + \log \space \Big(\dfrac{3^{28}}{2^{7} \times 5^{28}}\Big) \\[1em] \Rightarrow \log \space \Big[\dfrac{5 \times 5^{64} \times 2^{24} \times 3^{28} }{2^{16} \times 3^{16} \times 3^{12} \times 5^{36} \times 2^{7} \times 5^{28}}\Big] \\[1em] \Rightarrow \log \space \Big[\dfrac{5^{64 + 1} \times 2^{24} \times 3^{28} }{2^{16 + 7} \times 3^{16 + 12} \times 5^{36 + 28}}\Big] \\[1em] \Rightarrow \log \space \Big[\dfrac{5^{65} \times 2^{24} \times 3^{28} }{2^{23} \times 3^{28} \times 5^{64}}\Big] \\[1em] \Rightarrow \log \space [5^{65 - 64} \times 2^{24 - 23} \times 3^{28 - 28} ] \\[1em] \Rightarrow \log \space [5^1 \times 2^1 \times 3^0] \\[1em] \Rightarrow \log \space [5 \times 2 \times 1] \\[1em] \Rightarrow \log \space 10 \\[1em] \Rightarrow 1. ⇒ log 5 + 16 log ( 6 625 ) + 12 log ( 375 4 ) + 7 log ( 1250 81 ) ⇒ log 5 + log ( 6 625 ) 16 + log ( 375 4 ) 12 + log ( 1250 81 ) 7 ⇒ log 5 + log ( 2 × 3 5 4 ) 16 + log ( 3 × 5 3 2 2 ) 12 + log ( 2 × 5 4 3 4 ) 7 ⇒ log 5 + log ( 2 16 × 3 16 5 ( 4 × 16 ) ) + log ( 3 12 × 5 3 × 12 2 2 × 12 ) + log ( 2 7 × 5 4 × 7 3 4 × 7 ) ⇒ log 5 + log ( 2 16 × 3 16 5 64 ) + log ( 3 12 × 5 36 2 24 ) + log ( 2 7 × 5 28 3 28 ) ⇒ log [ 2 16 × 3 16 × 3 12 × 5 36 × 2 7 × 5 28 5 × 5 64 × 2 24 × 3 28 ] ⇒ log [ 2 16 + 7 × 3 16 + 12 × 5 36 + 28 5 64 + 1 × 2 24 × 3 28 ] ⇒ log [ 2 23 × 3 28 × 5 64 5 65 × 2 24 × 3 28 ] ⇒ log [ 5 65 − 64 × 2 24 − 23 × 3 28 − 28 ] ⇒ log [ 5 1 × 2 1 × 3 0 ] ⇒ log [ 5 × 2 × 1 ] ⇒ log 10 ⇒ 1.
Hence, log ( 81 8 ) + 2 log 2 3 − 3 log 3 2 + log 3 4 \log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \dfrac{2}{3} − 3 \log \space \dfrac{3}{2} + \log \space \dfrac{3}{4} log ( 8 81 ) + 2 log 3 2 − 3 log 2 3 + log 4 3 = 1.
Evaluate:
3 log 2 − 1 3 log 27 + log 12 − log 4 + 3 log 5 3 \log \space 2 − \dfrac{1}{3} \log \space 27 + \log \space 12 − \log \space 4 + 3 \log \space 5 3 log 2 − 3 1 log 27 + log 12 − log 4 + 3 log 5
Answer
Given,
⇒ 3 log 2 − 1 3 log 27 + log 12 − log 4 + 3 log 5 ⇒ log 2 3 − log 27 1 3 + log 12 − log 4 + log 5 3 ⇒ log 8 − log 27 3 + log 12 − log 4 + log 125 ⇒ log 8 − log 3 + log 12 − log 4 + log 125 ⇒ log 8 + log 12 + log 125 − log 4 − log 3 ⇒ ( log 8 + log 12 + log 125 ) − ( log 4 + log 3 ) ⇒ log ( 8 × 12 × 125 ) − log ( 4 × 3 ) ⇒ log ( 12000 ) − log ( 12 ) ⇒ log ( 12000 12 ) ⇒ log 1000 ⇒ log 10 3 ⇒ 3 log 10 ⇒ 3 × 1 ⇒ 3. \Rightarrow 3 \log \space 2 − \dfrac{1}{3} \log \space 27 + \log \space 12 − \log \space 4 + 3 \log \space 5 \\[1em] \Rightarrow \log \space 2^3 − \log \space 27^{\dfrac{1}{3}} + \log \space 12 − \log \space 4 + \log \space 5 ^{3} \\[1em] \Rightarrow \log \space 8 − \log \space \sqrt[3]{27} + \log \space 12 − \log \space 4 + \log \space 125 \\[1em] \Rightarrow \log \space 8 − \log \space 3 + \log \space 12 − \log \space 4 + \log \space 125 \\[1em] \Rightarrow \log \space 8 + \log \space 12 + \log \space 125 − \log \space 4 − \log \space 3 \\[1em] \Rightarrow (\log \space 8 + \log \space 12 + \log \space 125) − (\log \space 4 + \log \space 3) \\[1em] \Rightarrow \log \space (8 \times 12 \times 125) - \log \space (4 \times 3) \\[1em] \Rightarrow \log \space (12000) - \log \space (12) \\[1em] \Rightarrow \log \space \Big(\dfrac{12000}{12}\Big) \\[1em] \Rightarrow \log \space 1000 \\[1em] \Rightarrow \log \space 10^3 \\[1em] \Rightarrow 3\log \space 10 \\[1em] \Rightarrow 3 \times 1 \\[1em] \Rightarrow 3. ⇒ 3 log 2 − 3 1 log 27 + log 12 − log 4 + 3 log 5 ⇒ log 2 3 − log 2 7 3 1 + log 12 − log 4 + log 5 3 ⇒ log 8 − log 3 27 + log 12 − log 4 + log 125 ⇒ log 8 − log 3 + log 12 − log 4 + log 125 ⇒ log 8 + log 12 + log 125 − log 4 − log 3 ⇒ ( log 8 + log 12 + log 125 ) − ( log 4 + log 3 ) ⇒ log ( 8 × 12 × 125 ) − log ( 4 × 3 ) ⇒ log ( 12000 ) − log ( 12 ) ⇒ log ( 12 12000 ) ⇒ log 1000 ⇒ log 1 0 3 ⇒ 3 log 10 ⇒ 3 × 1 ⇒ 3.
Hence, 3 log 2 − 1 3 log 27 + log 12 − log 4 + 3 log 5 3 \log \space 2 − \dfrac{1}{3} \log \space 27 + \log \space 12 − \log \space 4 + 3 \log \space 5 3 log 2 − 3 1 log 27 + log 12 − log 4 + 3 log 5 = 3.
Evaluate:
log ( 81 8 ) + 2 log ( 2 3 ) − 3 log ( 3 2 ) + log ( 3 4 ) \log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \Big(\dfrac{2}{3}\Big) − 3 \log \space \Big(\dfrac{3}{2}\Big) + \log \space \Big(\dfrac{3}{4}\Big) log ( 8 81 ) + 2 log ( 3 2 ) − 3 log ( 2 3 ) + log ( 4 3 )
Answer
Given,
⇒ log ( 81 8 ) + 2 log ( 2 3 ) − 3 log ( 3 2 ) + log ( 3 4 ) \Rightarrow \log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \Big(\dfrac{2}{3}\Big) − 3 \log \space \Big(\dfrac{3}{2}\Big) + \log \space \Big(\dfrac{3}{4}\Big) ⇒ log ( 8 81 ) + 2 log ( 3 2 ) − 3 log ( 2 3 ) + log ( 4 3 )
⇒ log 81 - log 8 + 2(log 2 - log 3) - 3 (log 3 - log2) + (log 3 - log 4)
⇒ log 81 - log 8 + 2log 2 - 2log 3 - 3log 3 + 3log 2 + log 3 - log 4
⇒ log 81 - log 8 + log 22 - log 32 - log 33 + log 23 + log 3 - log 4
⇒ log 81 - log 8 + log 4 - log 9 - log 27 + log 8 + log 3 - log 4
⇒ log 81 + log 4 + log 8 + log 3 - log 4 - log 8 - log 9 - log 27
⇒ (log 81 + log 4 + log 8 + log 3) - (log 4 + log 8 + log 9 + log 27)
⇒ log (81 × 4 × 8 × 3) - log (8 × 9 × 27 × 4)
⇒ log (7776) - log (7776)
⇒ 0.
Hence, log ( 81 8 ) + 2 log ( 2 3 ) − 3 log ( 3 2 ) + log ( 3 4 ) \log \space \Big(\dfrac{81}{8}\Big) + 2 \log \space \Big(\dfrac{2}{3}\Big) − 3 \log \space \Big(\dfrac{3}{2}\Big) + \log \space \Big(\dfrac{3}{4}\Big) log ( 8 81 ) + 2 log ( 3 2 ) − 3 log ( 2 3 ) + log ( 4 3 ) = 0.
Express log 10 ( x 2 y 3 z ) \log_{10} \space \Big(\dfrac{x^2y^3}{z}\Big) log 10 ( z x 2 y 3 ) in terms of log10 x, log10 y and log10 z.
Answer
Given,
log 10 ( x 2 y 3 z ) \log_{10} \space \Big(\dfrac{x^2y^3}{z}\Big) log 10 ( z x 2 y 3 )
⇒ log10 x2 y3 - log10 z
⇒ log10 x2 + log10 y3 - log10 z
⇒ 2 log10 x + 3 log10 y - log10 z.
Hence, log10 ( x 2 y 3 z ) \Big(\dfrac{x^2y^3}{z}\Big) ( z x 2 y 3 ) = 2 log10 x + 3 log10 y - log10 z.
Express log 10 ( p q 3 r 2 s ) \log_{10} \space \Big(\dfrac{\sqrt{pq^3}}{r^2s}\Big) log 10 ( r 2 s p q 3 ) in terms of log10 p, log10 q, log10 r and log10 s.
Answer
Given,
⇒ log 10 ( p q 3 r 2 s ) ⇒ log 10 p q 3 − log 10 r 2 s ⇒ log 10 ( p q 3 ) 1 2 − ( log 10 r 2 + log 10 s ) ⇒ 1 2 log 10 p q 3 − ( 2 log 10 r + log 10 s ) ⇒ 1 2 ( log 10 p + log 10 q 3 ) − 2 log 10 r − log 10 s ⇒ 1 2 ( log 10 p + 3 log 10 q ) − 2 log 10 r − log 10 s \Rightarrow \log_{10} \space \Big(\dfrac{\sqrt{pq^3}}{r^2s}\Big) \\[1em] \Rightarrow \log_{10} \space \sqrt{pq^3} - \log_{10} \space {r^2s} \\[1em] \Rightarrow \log_{10} \space ({pq^3})^{\dfrac{1}{2}} - (\log_{10} \space {r^2} + \log_{10} \space {s}) \\[1em] \Rightarrow \dfrac{1}{2}\log_{10} \space {pq^3} - (2\log_{10} \space {r} + \log_{10} \space {s}) \\[1em] \Rightarrow \dfrac{1}{2}(\log_{10} \space {p} + \log_{10} \space {q^3}) - 2\log_{10} \space {r} - \log_{10} \space {s} \\[1em] \Rightarrow \dfrac{1}{2}(\log_{10} \space {p} + 3\log_{10} \space {q}) - 2\log_{10} \space {r} - \log_{10} \space {s} \\[1em] ⇒ log 10 ( r 2 s p q 3 ) ⇒ log 10 p q 3 − log 10 r 2 s ⇒ log 10 ( p q 3 ) 2 1 − ( log 10 r 2 + log 10 s ) ⇒ 2 1 log 10 p q 3 − ( 2 log 10 r + log 10 s ) ⇒ 2 1 ( log 10 p + log 10 q 3 ) − 2 log 10 r − log 10 s ⇒ 2 1 ( log 10 p + 3 log 10 q ) − 2 log 10 r − log 10 s
Hence, log 10 ( p q 3 r 2 s ) = 1 2 ( log 10 p + 3 log 10 q ) − 2 log 10 r − log 10 s \log_{10} \space \Big(\dfrac{\sqrt{pq^3}}{r^2s}\Big) = \dfrac{1}{2}(\log_{10} \space {p} + 3\log_{10} \space {q}) - 2\log_{10} \space {r} - \log_{10} \space {s} log 10 ( r 2 s p q 3 ) = 2 1 ( log 10 p + 3 log 10 q ) − 2 log 10 r − log 10 s .
Express the following as a single logarithm :
2 log10 8 + log10 36 − log10 (1.5) − 3 log10 2
Answer
Given,
⇒ 2 log10 8 + log10 36 − log10 (1.5) − 3 log10 2
⇒ log10 82 + log10 36 − log10 (1.5) − log10 23
⇒ log10 64 + log10 36 − log10 (1.5) − log10 8
⇒ log10 64 + log10 36 − (log10 (1.5) + log10 8)
⇒ log10 (64 × 36) - log10 (1.5 × 8)
⇒ log10 (2304) - log10 (12)
⇒ log 10 ( 2304 12 ) \log_{10} \space {\Big(\dfrac{2304}{12}\Big)} log 10 ( 12 2304 )
⇒ log10 192
Hence, 2 log10 8 + log10 36 − log10 (1.5) − 3 log10 2 = log10 192.
Express the following as a single logarithm :
2 log10 5 + 2 log10 3 − log10 2 + 1
Answer
Given,
⇒ 2 log10 5 + 2 log10 3 − log10 2 + 1
⇒ log10 52 + log10 32 − log10 2 + 1
⇒ log10 25 + log10 9 − log10 2 + log10 10
⇒ log10 25 + log10 9 + log10 10 - log10 2
⇒ log10 (25 × 9 × 10) − log10 2
⇒ log10 (2250) − log10 2
⇒ log 10 ( 2250 2 ) \log_{10} \space {\Big(\dfrac{2250}{2}\Big)} log 10 ( 2 2250 )
⇒ log10 1125.
Hence, 2 log10 5 + 2 log10 3 − log10 2 + 1 = log10 1125.
Express the following as a single logarithm :
2 + 1 2 log 10 9 − 2 log 10 5 2 + \dfrac{1}{2} \log_{10} \space 9 - 2 \log_{10} \space 5 2 + 2 1 log 10 9 − 2 log 10 5
Answer
Given,
⇒ 2 + 1 2 log 10 9 − 2 log 10 5 ⇒ 2 log 10 10 + log 10 9 1 2 − log 10 5 2 ⇒ log 10 10 2 + log 10 ( 3 2 ) 1 2 − log 10 25 ⇒ log 10 100 + log 10 3 − log 10 25 ⇒ log 10 ( 100 × 3 ) − log 10 25 ⇒ log 10 300 − log 10 25 ⇒ log 10 ( 300 25 ) ⇒ log 10 12. \Rightarrow 2 + \dfrac{1}{2} \log_{10} \space 9 − 2 \log_{10} \space 5 \\[1em] \Rightarrow 2\log_{10} \space 10 + \log_{10} \space 9^{\dfrac{1}{2}} − \log_{10} \space 5^2 \\[1em] \Rightarrow \log_{10} \space 10^2 + \log_{10} \space (3^2)^{\dfrac{1}{2}} − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space100 + \log_{10} \space 3 − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space {{(100 \times 3)}} − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space {300} − \log_{10} \space 25 \\[1em] \Rightarrow \log_{10} \space {\Big(\dfrac{300}{25}\Big)} \\[1em] \Rightarrow \log_{10} \space 12. ⇒ 2 + 2 1 log 10 9 − 2 log 10 5 ⇒ 2 log 10 10 + log 10 9 2 1 − log 10 5 2 ⇒ log 10 1 0 2 + log 10 ( 3 2 ) 2 1 − log 10 25 ⇒ log 10 100 + log 10 3 − log 10 25 ⇒ log 10 ( 100 × 3 ) − log 10 25 ⇒ log 10 300 − log 10 25 ⇒ log 10 ( 25 300 ) ⇒ log 10 12.
Hence, 2 + 1 2 log 10 9 − 2 log 10 5 2 + \dfrac{1}{2} \log_{10} \space 9 − 2 \log_{10} \space 5 2 + 2 1 log 10 9 − 2 log 10 5 = log10 12.
Express the following as a single logarithm :
1 2 log 10 9 + 1 4 log 10 81 + 2 log 10 6 − log 10 12 \dfrac{1}{2} \log_{10} 9 + \dfrac{1}{4} \log_{10} 81 + 2 \log_{10} 6 - \log_{10} 12 2 1 log 10 9 + 4 1 log 10 81 + 2 log 10 6 − log 10 12
Answer
Given,
⇒ 1 2 log 10 9 + 1 4 log 10 81 + 2 log 10 6 − log 10 12 ⇒ log 10 9 1 2 + log 10 81 1 4 + log 10 6 2 − log 10 12 ⇒ log 10 9 + log 10 ( 3 4 ) 1 4 + log 10 36 − log 10 12 ⇒ log 10 3 + log 10 3 + log 10 36 − log 10 12 ⇒ log 10 ( 3 × 3 × 36 ) − log 10 12 ⇒ log 10 324 − log 10 12 ⇒ log 10 324 12 ⇒ log 10 27. \Rightarrow \dfrac{1}{2} \log_{10} \space 9 + \dfrac{1}{4} \log_{10} \space 81 + 2 \log_{10} \space 6 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} 9^{\dfrac{1}{2}} + \log_{10} \space 81^{\dfrac{1}{4}} + \log_{10} \space6^2 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} \sqrt{9} + \log_{10} \space (3^4)^{\dfrac{1}{4}} + \log_{10} \space 36 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} \space 3 + \log_{10} \space 3 + \log_{10} \space 36 − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} \space {(3 \times 3 \times 36)} − \log_{10} \space 12 \\[1em] \Rightarrow \log_{10} 324 − \log_{10} 12 \\[1em] \Rightarrow \log_{10} \dfrac{324}{12} \\[1em] \Rightarrow \log_{10} 27. ⇒ 2 1 log 10 9 + 4 1 log 10 81 + 2 log 10 6 − log 10 12 ⇒ log 10 9 2 1 + log 10 8 1 4 1 + log 10 6 2 − log 10 12 ⇒ log 10 9 + log 10 ( 3 4 ) 4 1 + log 10 36 − log 10 12 ⇒ log 10 3 + log 10 3 + log 10 36 − log 10 12 ⇒ log 10 ( 3 × 3 × 36 ) − log 10 12 ⇒ log 10 324 − log 10 12 ⇒ log 10 12 324 ⇒ log 10 27.
Hence, 1 2 log 10 9 + 1 4 log 10 81 + 2 log 10 6 − log 10 12 \dfrac{1}{2} \log_{10} 9 + \dfrac{1}{4} \log_{10} 81 + 2 \log_{10} 6 − \log_{10} 12 2 1 log 10 9 + 4 1 log 10 81 + 2 log 10 6 − log 10 12 = log10 27.
Express the following as a single logarithm :
2 log 10 ( 11 13 ) + log 10 ( 130 77 ) − log 10 ( 55 91 ) 2 \log_{10} \space \Big(\dfrac{11}{13}\Big) + \log_{10} \space \Big(\dfrac{130}{77}\Big) − \log_{10} \space \Big(\dfrac{55}{91}\Big) 2 log 10 ( 13 11 ) + log 10 ( 77 130 ) − log 10 ( 91 55 )
Answer
Given,
⇒ 2 log 10 ( 11 13 ) + log 10 ( 130 77 ) − log 10 ( 55 91 ) \Rightarrow 2 \log_{10} \space \Big(\dfrac{11}{13}\Big) + \log_{10} \space \Big(\dfrac{130}{77}\Big) − \log_{10} \space \Big(\dfrac{55}{91}\Big) ⇒ 2 log 10 ( 13 11 ) + log 10 ( 77 130 ) − log 10 ( 91 55 )
⇒ 2(log10 11 - log10 13) + (log10 130 - log10 77) - (log10 55 - log10 91)
⇒ 2log10 11 - 2log10 13 + log10 130 - log10 77 - log10 55 + log10 91
⇒ log10 112 - log10 132 + log10 130 - log10 77 - log10 55 + log10 91
⇒ log10 121 - log10 169 + log10 130 - log10 77 - log10 55 + log10 91
⇒ log10 121 + log10 130 + log10 91 - log10 169 - log10 77 - log10 55
⇒ log10 (121 × 130 × 91) - log10 (169 × 77 × 55)
⇒ log 10 121 × 130 × 91 169 × 77 × 55 \log_{10} \space {\dfrac{121 \times 130 \times 91}{169 \times 77 \times 55}} log 10 169 × 77 × 55 121 × 130 × 91
⇒ log 10 26 13 \log_{10} \space {\dfrac{26}{13}} log 10 13 26
⇒ log10 2.
Hence, 2 log 10 ( 11 13 ) + log 10 ( 130 77 ) − log 10 ( 55 91 ) 2 \log_{10} \space \Big(\dfrac{11}{13}\Big) + \log_{10} \space \Big(\dfrac{130}{77}\Big) − \log_{10} \space \Big(\dfrac{55}{91}\Big) 2 log 10 ( 13 11 ) + log 10 ( 77 130 ) − log 10 ( 91 55 ) = log10 2.
Express the following as a single logarithm :
1 − 1 3 log 10 64 1 − \dfrac{1}{3} \log_{10} \space 64 1 − 3 1 log 10 64
Answer
Given,
⇒ 1 − 1 3 log 10 64 ⇒ log 10 10 − log 10 64 1 3 ⇒ log 10 10 − log 10 64 3 ⇒ log 10 10 − log 10 4 ⇒ log 10 10 4 ⇒ log 10 5 2 ⇒ log 10 2.5 \Rightarrow 1 - \dfrac{1}{3} \log_{10} 64 \\[1em] \Rightarrow \log_{10} 10 − \log_{10} 64^{\dfrac{1}{3}} \\[1em] \Rightarrow \log_{10} 10 − \log_{10} \sqrt[3]{64} \\[1em] \Rightarrow \log_{10} 10 − \log_{10} 4 \\[1em] \Rightarrow \log_{10} \dfrac{10}{4} \\[1em] \Rightarrow \log_{10} \dfrac{5}{2} \\[1em] \Rightarrow \log_{10} \space 2.5 ⇒ 1 − 3 1 log 10 64 ⇒ log 10 10 − log 10 6 4 3 1 ⇒ log 10 10 − log 10 3 64 ⇒ log 10 10 − log 10 4 ⇒ log 10 4 10 ⇒ log 10 2 5 ⇒ log 10 2.5
Hence, 1 − 1 3 log 10 64 1 − \dfrac{1}{3} \log_{10} 64 1 − 3 1 log 10 64 = log10 2.5
Evaluate the following without using log tables :
log 81 log 27 \dfrac{\log \space 81}{\log \space 27} log 27 log 81
Answer
Given,
⇒ log 81 log 27 ⇒ log 3 4 log 3 3 ⇒ 4 log 3 3 log 3 ⇒ 4 3 . \Rightarrow \dfrac{\log \space 81}{\log \space 27} \\[1em] \Rightarrow \dfrac{\log \space 3^4}{\log \space 3^3} \\[1em] \Rightarrow \dfrac{4\log \space 3}{3\log \space 3} \\[1em] \Rightarrow \dfrac{4}{3}. ⇒ log 27 log 81 ⇒ log 3 3 log 3 4 ⇒ 3 log 3 4 log 3 ⇒ 3 4 .
Hence, log 81 log 27 = 4 3 \dfrac{\log \space 81}{\log \space 27} = \dfrac{4}{3} log 27 log 81 = 3 4 .
Evaluate the following without using log tables :
log 128 log 32 \dfrac{\log \space 128}{\log \space 32} log 32 log 128
Answer
Given,
⇒ log 128 log 32 ⇒ log 2 7 log 2 5 ⇒ 7 log 2 5 log 2 ⇒ 7 5 . \Rightarrow \dfrac{\log \space 128}{\log \space 32} \\[1em] \Rightarrow \dfrac{\log \space 2^7}{\log \space 2^5} \\[1em] \Rightarrow \dfrac{7\log \space 2}{5\log \space 2} \\[1em] \Rightarrow \dfrac{7}{5}. ⇒ log 32 log 128 ⇒ log 2 5 log 2 7 ⇒ 5 log 2 7 log 2 ⇒ 5 7 .
Hence, log 128 log 32 = 7 5 \dfrac{\log \space 128}{\log \space 32} = \dfrac{7}{5} log 32 log 128 = 5 7 .
Evaluate the following without using log tables :
log 27 log 3 \dfrac{\log \space 27}{\log \space \sqrt{3}} log 3 log 27
Answer
Given,
⇒ log 27 log 3 ⇒ log 3 3 log 3 1 2 ⇒ 3 log 3 1 2 log 3 ⇒ 3 1 2 ⇒ 3 × 2 ⇒ 6. \Rightarrow \dfrac{\log \space 27}{\log \space \sqrt{3}} \\[1em] \Rightarrow \dfrac{\log \space 3^3}{\log \space {3}^{\dfrac{1}{2}}} \\[1em] \Rightarrow \dfrac{3\log \space 3}{{\dfrac{1}{2}}\log \space 3} \\[1em] \Rightarrow \dfrac{3}{{\dfrac{1}{2}}} \\[1em] \Rightarrow 3 \times 2 \\[1em] \Rightarrow 6. ⇒ log 3 log 27 ⇒ log 3 2 1 log 3 3 ⇒ 2 1 log 3 3 log 3 ⇒ 2 1 3 ⇒ 3 × 2 ⇒ 6.
Hence, log 27 log 3 \dfrac{\log \space 27}{\log \space \sqrt{3}} log 3 log 27 = 6.
Evaluate the following without using log tables :
log 9 − log 3 log 27 \dfrac{\log \space 9 - \log \space 3}{\log \space 27} log 27 log 9 − log 3
Answer
Given,
⇒ log 9 − log 3 log 27 ⇒ log 9 3 log 3 3 ⇒ log 3 3 log 3 ⇒ 1 3 . \Rightarrow \dfrac{\log \space 9 - \log \space 3}{\log \space 27} \\[1em] \Rightarrow \dfrac{\log \space {\dfrac{9}{3}}}{\log \space 3^3} \\[1em] \Rightarrow \dfrac{\log \space 3}{3\log \space 3} \\[1em] \Rightarrow \dfrac{1}{3}. ⇒ log 27 log 9 − log 3 ⇒ log 3 3 log 3 9 ⇒ 3 log 3 log 3 ⇒ 3 1 .
Hence, log 9 − log 3 log 27 = 1 3 \dfrac{\log \space 9 - \log \space 3}{\log \space 27} = \dfrac{1}{3} log 27 log 9 − log 3 = 3 1 .
Given : log 2 = 0.3010 and log 3 = 0.4771, find the value of :
(i) log 12
(ii) log 25
(iii) log 18 \log \space \sqrt{18} log 18
(iv) log ( 9 4 ) \log \space \Big(\dfrac{9}{4}\Big) log ( 4 9 )
Answer
(i) Given,
⇒ log 12
⇒ log (3 × 2 × 2)
⇒ log 3 + log 2 + log 2
⇒ 0.4771 + 0.3010 + 0.3010
⇒ 0.4771 + 0.3010 + 0.3010
⇒ 1.0791
Hence, log 12 = 1.0791.
(ii) Given,
⇒ log 25
⇒ log 52
⇒ 2 log 5
⇒ 2 log 10 2 2\text{ log }\dfrac{10}{2} 2 log 2 10
⇒ 2(log 10 - log 2)
⇒ 2(1 - 0.3010)
⇒ 2(0.699)
⇒ 1.398
Hence, log 25 = 1.398
(iii) Given,
⇒ log 18 ⇒ log 18 1 2 ⇒ 1 2 log 18 ⇒ 1 2 log ( 3 × 3 × 2 ) ⇒ 1 2 ( log 3 + log 3 + log 2 ) ⇒ 1 2 ( 0.4771 + 0.4771 + 0.3010 ) ⇒ 1 2 ( 1.2552 ) ⇒ 0.6276 \Rightarrow \log \space \sqrt{18} \\[1em] \Rightarrow \log \space {18}^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{1}{2}\log \space 18 \\[1em] \Rightarrow \dfrac{1}{2}\log \space (3 \times 3 \times 2) \\[1em] \Rightarrow \dfrac{1}{2}(\log \space 3 + \log \space 3 + \log \space 2) \\[1em] \Rightarrow \dfrac{1}{2}(0.4771 + 0.4771 + 0.3010) \\[1em] \Rightarrow \dfrac{1}{2}(1.2552) \\[1em] \Rightarrow 0.6276 ⇒ log 18 ⇒ log 18 2 1 ⇒ 2 1 log 18 ⇒ 2 1 log ( 3 × 3 × 2 ) ⇒ 2 1 ( log 3 + log 3 + log 2 ) ⇒ 2 1 ( 0.4771 + 0.4771 + 0.3010 ) ⇒ 2 1 ( 1.2552 ) ⇒ 0.6276
Hence, log 18 \log \sqrt{18} log 18 =0.6276.
(iv) Given,
⇒ log ( 9 4 ) \Rightarrow \log \space \Big(\dfrac{9}{4}\Big) ⇒ log ( 4 9 )
⇒ log 9 - log 4
⇒ log 32 - log 22
⇒ 2 log 3 - 2 log 2
⇒ 2 × 0.4771 - 2 × 0.3010
⇒ 0.9542 - 0.6020
⇒ 0.3522
Hence, log ( 9 4 ) \log \Big(\dfrac{9}{4}\Big) log ( 4 9 ) value is 0.3522.
If log 2 = 0.3010, find the value of ( log 75 16 − 2 log 5 9 + log 32 243 ) \Big(\log \space \dfrac{75}{16} - 2 \log \space \dfrac{5}{9} + \log \space \dfrac{32}{243}\Big) ( log 16 75 − 2 log 9 5 + log 243 32 )
Answer
Given,
⇒ ( log 75 16 − 2 log 5 9 + log 32 243 ) \Rightarrow \Big(\log \space \dfrac{75}{16} - 2 \log \space \dfrac{5}{9} + \log \space \dfrac{32}{243}\Big) ⇒ ( log 16 75 − 2 log 9 5 + log 243 32 )
⇒ log 75 - log 16 - 2 (log 5 - log 9) + log 32 - log 243
⇒ log (25 × 3) - log 16 - 2 (log 5 - log 9) + log 25 - log 35
⇒ log 25 + log 3 - log 24 - 2log 5 + 2log 9 + 5log 2 - 5log 3
⇒ log 25 + log 3 - 4log 2 - log 52 + 2log 32 + 5log 2 - 5log 3
⇒ log 25 + log 3 - 4log 2 - log 25 + 4log 3 + 5log 2 - 5log 3
⇒ log 25 - log 25 - 4log 2 + 5log 2 + log 3 + 4log 3 - 5log 3
⇒ log 2 + log 3 + 5log 3 - 5log 3
⇒ log 2
⇒ 0.3010
Hence, ( log 75 16 − 2 log 5 9 + log 32 243 ) \Big(\log \space \dfrac{75}{16} - 2 \log \space \dfrac{5}{9} + \log \space \dfrac{32}{243}\Big) ( log 16 75 − 2 log 9 5 + log 243 32 ) = 0.3010.
If log 8 = 0.9030, find the value of :
(i) log 4
(ii) log 32 \log \sqrt{32} log 32
(iii) log (0.125)
Answer
Given,
⇒ log 8 = 0.9030
⇒ log 23 = 0.9030
⇒ 3log 2 = 0.9030
⇒ log 2 = 0.9030 3 \dfrac{0.9030}{3} 3 0.9030
⇒ log 2 = 0.3010
(i) Given,
⇒ log 4
⇒ log 22
⇒ 2log 2
⇒ 2 × (0.3010)
⇒ 0.6020
Hence, log 4 = 0.6020.
(ii) Given,
⇒ log 32 ⇒ log 32 1 2 ⇒ 1 2 log 32 ⇒ 1 2 log ( 8 × 4 ) ⇒ 1 2 ( log 8 + log 4 ) ⇒ 1 2 ( 0.9030 + log 2 2 ) ⇒ 1 2 ( 0.9030 + 2 log 2 ) ⇒ 1 2 [ 0.9030 + 2 × ( 0.3010 ) ] ⇒ 1 2 ( 0.9030 + 0.6020 ) ⇒ 1 2 × 1.5050 ⇒ 0.7525 \Rightarrow \log \space \sqrt{32} \\[1em] \Rightarrow \log \space {32}^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{1}{2}\log \space {32} \\[1em] \Rightarrow \dfrac{1}{2}\log \space {(8 \times 4)} \\[1em] \Rightarrow \dfrac{1}{2}(\log \space {8} + \log \space {4}) \\[1em] \Rightarrow \dfrac{1}{2}(0.9030 + \log \space {2^2}) \\[1em] \Rightarrow \dfrac{1}{2}(0.9030 + 2\log \space {2}) \\[1em] \Rightarrow \dfrac{1}{2}[0.9030 + 2 \times (0.3010)] \\[1em] \Rightarrow \dfrac{1}{2}(0.9030 + 0.6020) \\[1em] \Rightarrow \dfrac{1}{2} \times 1.5050 \\[1em] \Rightarrow 0.7525 ⇒ log 32 ⇒ log 32 2 1 ⇒ 2 1 log 32 ⇒ 2 1 log ( 8 × 4 ) ⇒ 2 1 ( log 8 + log 4 ) ⇒ 2 1 ( 0.9030 + log 2 2 ) ⇒ 2 1 ( 0.9030 + 2 log 2 ) ⇒ 2 1 [ 0.9030 + 2 × ( 0.3010 )] ⇒ 2 1 ( 0.9030 + 0.6020 ) ⇒ 2 1 × 1.5050 ⇒ 0.7525
Hence, log 32 \log \sqrt{32} log 32 = 0.7525.
(iii) Given,
⇒ log (0.125)
⇒ log ( 125 1000 ) \log \space {\Big(\dfrac{125}{1000}\Big)} log ( 1000 125 )
⇒ log ( 1 8 ) \log \space {\Big(\dfrac{1}{8}\Big)} log ( 8 1 )
⇒ log 1 - log 8
⇒ 0 - 0.9030
⇒ -0.9030
Hence, log (0.125) = -0.9030.
If log 27 = 1.4313, find the value of :
(i) log 9
(ii) log 30
Answer
Given,
⇒ log 27 = 1.4313
⇒ log 33 = 1.4313
⇒ 3log 3 = 1.4313
⇒ log 3 = 1.4313 3 \dfrac{1.4313}{3} 3 1.4313
⇒ log 3 = 0.4771
(i) Given,
⇒ log 9
⇒ log 32
⇒ 2log 3
⇒ 2 × (0.4771)
⇒ 0.9542
Hence, log 9 = 0.9542.
(ii) Given,
⇒ log 30
⇒ log (3 × 10)
⇒ log 3 + log 10
⇒ log 3 + 1
⇒ 0.4771 + 1
⇒ 1.4771.
Hence, log 30 = 1.4771.
Show that log (1 + 2 + 3) = log 1 + log 2 + log 3.
Answer
Given,
⇒ log (1 + 2 + 3) = log 1 + log 2 + log 3
Solving the R.H.S,
⇒ log 1 + log 2 + log 3
⇒ log (1 × 2 × 3)
⇒ log 6
⇒ log (1 + 2 + 3)
Since,
L.H.S = R.H.S.
Hence, proved that log (1 + 2 + 3) = log 1 + log 2 + log 3.
If log (m + n) = log m + log n, show that m = n n − 1 m = \dfrac{n}{n - 1} m = n − 1 n .
Answer
Given,
⇒ log (m + n) = log m + log n
⇒ log (m + n) = log (mn)
⇒ (m + n) = (mn)
⇒ m - mn + n = 0
⇒ m(1 - n) + n = 0
⇒ m(1 - n) = - n
⇒ m = − n ( 1 − n ) \dfrac{-n}{(1 - n)} ( 1 − n ) − n
⇒ m = − n − ( n − 1 ) \dfrac{-n}{-(n - 1)} − ( n − 1 ) − n
⇒ m = n ( n − 1 ) \dfrac{n}{(n - 1)} ( n − 1 ) n .
Hence, proved that m = n n − 1 m = \dfrac{n}{n - 1} m = n − 1 n .
If log ( a + b 2 ) = 1 2 ( log a + log b ) , show that 1 2 ( a + b ) = a b \log \space \Big(\dfrac{a + b}{2}\Big) = \dfrac{1}{2} (\log \space a + \log \space b)\text{ , show that }\dfrac{1}{2} (a + b) = \sqrt{ab} log ( 2 a + b ) = 2 1 ( log a + log b ) , show that 2 1 ( a + b ) = ab .
Answer
Given,
⇒ log ( a + b 2 ) = 1 2 ( log a + log b ) ⇒ log ( a + b 2 ) = 1 2 log a b ⇒ log ( a + b 2 ) = log a b 1 2 ⇒ ( a + b 2 ) = a b 1 2 ⇒ 1 2 ( a + b ) = a b . \Rightarrow \log \space \Big(\dfrac{a + b}{2}\Big) = \dfrac{1}{2} (\log \space a + \log \space b) \\[1em] \Rightarrow \log \space \Big(\dfrac{a + b}{2}\Big) = \dfrac{1}{2} \log \space ab \\[1em] \Rightarrow \log \space \Big(\dfrac{a + b}{2}\Big) = \log \space {ab} ^{\dfrac{1}{2}} \\[1em] \Rightarrow \Big(\dfrac{a + b}{2}\Big) = {ab} ^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{1}{2} (a + b) = \sqrt{ab}. ⇒ log ( 2 a + b ) = 2 1 ( log a + log b ) ⇒ log ( 2 a + b ) = 2 1 log ab ⇒ log ( 2 a + b ) = log ab 2 1 ⇒ ( 2 a + b ) = ab 2 1 ⇒ 2 1 ( a + b ) = ab .
Hence, proved that 1 2 ( a + b ) = a b \dfrac{1}{2} (a + b) = \sqrt{ab} 2 1 ( a + b ) = ab .
Solve for x :
log (x + 2) + log (x − 2) = log 5
Answer
Given,
⇒ log (x + 2) + log (x − 2) = log 5
⇒ log [(x + 2) × (x − 2)] = log 5
⇒ log [(x2 - 22 )] = log 5
⇒ log [(x2 - 4)] = log 5
⇒ (x2 - 4) = 5
⇒ x2 = 5 + 4
⇒ x2 = 9
⇒ x = 9 \sqrt{9} 9
⇒ x = ± 3.
x cannot be equal to -3 as that will make x + 2 = -3 + 2 = -1, that is negative, and argument of a logarithm cannot be negative.
Hence, the value of x = 3.
Solve for x :
log (x + 4) − log (x − 4) = log 2
Answer
Given,
⇒ log ( x + 4 ) − log ( x − 4 ) = log 2 ⇒ log ( x + 4 ) ( x − 4 ) = log 2 ⇒ ( x + 4 ) ( x − 4 ) = 2 ⇒ ( x + 4 ) = ( x − 4 ) × 2 ⇒ x + 4 = 2 x − 8 ⇒ 2 x − x = 8 + 4 ⇒ x = 12. \Rightarrow \log \space (x + 4) - \log \space (x - 4) = \log \space 2 \\[1em] \Rightarrow \log \space \dfrac{(x + 4)}{(x - 4)} = \log \space 2 \\[1em] \Rightarrow \dfrac{(x + 4)}{(x - 4)} = 2 \\[1em] \Rightarrow (x + 4) = (x - 4) \times 2 \\[1em] \Rightarrow x + 4 = 2x - 8 \\[1em] \Rightarrow 2x - x = 8 + 4 \\[1em] \Rightarrow x = 12 . ⇒ log ( x + 4 ) − log ( x − 4 ) = log 2 ⇒ log ( x − 4 ) ( x + 4 ) = log 2 ⇒ ( x − 4 ) ( x + 4 ) = 2 ⇒ ( x + 4 ) = ( x − 4 ) × 2 ⇒ x + 4 = 2 x − 8 ⇒ 2 x − x = 8 + 4 ⇒ x = 12.
Hence, the value of x = 12.
Solve for x :
log (x + 3) − log (x − 3) = 1
Answer
Given,
⇒ log ( x + 3 ) − log ( x − 3 ) = 1 ⇒ log ( x + 3 ) ( x − 3 ) = log 10 ⇒ ( x + 3 ) ( x − 3 ) = 10 ⇒ ( x + 3 ) = ( x − 3 ) × 10 ⇒ x + 3 = 10 x − 30 ⇒ 10 x − x = 3 + 30 ⇒ 9 x = 33 ⇒ x = 33 9 ⇒ x = 11 3 . \Rightarrow \log \space (x + 3) − \log \space (x − 3) = 1 \\[1em] \Rightarrow \log \space \dfrac{(x + 3)} {(x − 3)} = \log \space 10 \\[1em] \Rightarrow \dfrac{(x + 3)} {(x − 3)} = 10 \\[1em] \Rightarrow (x + 3) = (x − 3) \times 10 \\[1em] \Rightarrow x + 3 = 10x − 30 \\[1em] \Rightarrow 10x - x = 3 + 30 \\[1em] \Rightarrow 9x = 33 \\[1em] \Rightarrow x = \dfrac{33}{9} \\[1em] \Rightarrow x = \dfrac{11}{3}. ⇒ log ( x + 3 ) − log ( x − 3 ) = 1 ⇒ log ( x − 3 ) ( x + 3 ) = log 10 ⇒ ( x − 3 ) ( x + 3 ) = 10 ⇒ ( x + 3 ) = ( x − 3 ) × 10 ⇒ x + 3 = 10 x − 30 ⇒ 10 x − x = 3 + 30 ⇒ 9 x = 33 ⇒ x = 9 33 ⇒ x = 3 11 .
Hence, the value of x = 11 3 \dfrac{11}{3} 3 11 .
Solve for x :
log (x2 − 21) = 2
Answer
Given,
⇒ log (x2 − 21) = 2
⇒ log (x2 − 21) = 2 log 10
⇒ log (x2 − 21) = log 100
⇒ (x2 − 21) = 100
⇒ x2 = 100 + 21
⇒ x2 = 121
⇒ x = 121 \sqrt{121} 121
⇒ x = ±11.
Hence, the value of x = ±11.
Solve for x :
2 log x + 1 = log 250
Answer
Given,
⇒ 2 log x + 1 = log 250
⇒ log x2 + log 10 = log 250
⇒ log (10 × x2 ) = log 250
⇒ (10 × x2 ) = 250
⇒ x2 = 250 10 \dfrac{250}{10} 10 250
⇒ x2 = 25
⇒ x = 25 \sqrt{25} 25
⇒ x = ±5.
x cannot be equal to -5 as the argument of a logarithm cannot be negative.
Hence, the value of x = 5.
Solve for x :
log x log 5 = log 9 log ( 1 3 ) \dfrac{\log \space x}{\log \space 5} = \dfrac{\log \space 9}{\log \space \Big(\dfrac{1}{3}\Big)} log 5 log x = log ( 3 1 ) log 9
Answer
Given,
⇒ log x log 5 = log 9 log ( 1 3 ) ⇒ log x log 5 = log 3 2 log 3 − 1 ⇒ log x log 5 = 2 log 3 − 1 log 3 ⇒ log x log 5 = − 2 ⇒ log x = − 2 × log 5 ⇒ log x = log 5 − 2 ⇒ log x = log ( 1 25 ) ⇒ x = 1 25 . \Rightarrow \dfrac{\log \space x}{\log \space 5} = \dfrac{\log \space 9}{\log \space \Big(\dfrac{1}{3}\Big)} \\[1em] \Rightarrow \dfrac{\log \space x}{\log \space 5} = \dfrac{\log \space 3^2}{\log \space 3 ^{-1}} \\[1em] \Rightarrow \dfrac{\log \space x}{\log \space 5} = \dfrac{2\log \space 3}{-1\log \space 3} \\[1em] \Rightarrow \dfrac{\log \space x}{\log \space 5} = -2 \\[1em] \Rightarrow \log \space x = -2 \times \log \space 5 \\[1em] \Rightarrow \log \space x = \log \space 5 ^{-2} \\[1em] \Rightarrow \log \space x = \log \space \Big(\dfrac{1}{25}\Big) \\[1em] \Rightarrow x = \dfrac{1}{25}. ⇒ log 5 log x = log ( 3 1 ) log 9 ⇒ log 5 log x = log 3 − 1 log 3 2 ⇒ log 5 log x = − 1 log 3 2 log 3 ⇒ log 5 log x = − 2 ⇒ log x = − 2 × log 5 ⇒ log x = log 5 − 2 ⇒ log x = log ( 25 1 ) ⇒ x = 25 1 .
Hence, the value of x = 1 25 \dfrac{1}{25} 25 1 .
If ( log 7 − log 2 + log 16 − 2 log 3 − log 7 45 ) = 1 + log n \Big(\log \space 7 - \log \space 2 + \log \space 16 - 2 \log \space 3 - \log \space \dfrac{7}{45}\Big) = 1 + \log \space n ( log 7 − log 2 + log 16 − 2 log 3 − log 45 7 ) = 1 + log n , find the value of n.
Answer
Given,
⇒ log 7 − log 2 + log 16 − 2 log 3 − log 7 45 = 1 + log n \Rightarrow \log \space 7 - \log \space 2 + \log \space 16 - 2 \log \space 3 - \log \space \dfrac{7}{45} = 1 + \log \space n ⇒ log 7 − log 2 + log 16 − 2 log 3 − log 45 7 = 1 + log n
⇒ log 7 - log 2 + log 24 - 2log 3 - (log 7 - log 45) = log 10 + log n
⇒ log 7 - log 2 + 4log 2 - 2log 3 - log 7 + log 45 = log 10n
⇒ log 7 - log 7- log 2 + 4log 2 - 2log 3 + log 45 = log 10n
⇒ 3log 2 - 2log 3 + log (9 × 5) = log 10n
⇒ 3log 2 - 2log 3 + log 9 + log 5 = log 10n
⇒ log 23 - 2log 3 + log 32 + log 5 = log 10n
⇒ log 8 - 2log 3 + 2log 3 + log 5 = log 10n
⇒ log 8 + log 5 = log 10n
⇒ log (8 × 5) = log 10n
⇒ log 40 = log 10n
⇒ 10n = 40
⇒ n = 40 10 \dfrac{40}{10} 10 40
⇒ n = 4.
Hence, the value of n = 4.
Write the logarithmic equation for :
R = 3 V π h R = \dfrac{3V}{\sqrt{\pi h}} R = πh 3 V
Answer
Given,
⇒ R = 3 V π h Taking log on Both sides, ⇒ log R = log 3 V π h ⇒ log R = log ( 3 V π h ) 1 2 ⇒ log R = 1 2 log ( 3 V π h ) ⇒ log R = 1 2 ( log 3 V − log π h ) ⇒ log R = 1 2 [ log 3 + log V − ( log π + log h ) ] ⇒ log R = 1 2 ( log 3 + log V − log π − log h ) \Rightarrow R = \sqrt {\dfrac{3V}{\pi h}} \\[1em] \text{Taking log on Both sides,} \\[1em] \Rightarrow \log \space R = \log \space {\sqrt{\dfrac{3V}{\pi h}}} \\[1em] \Rightarrow \log \space R = \log \space {\Big(\dfrac{3V}{\pi h}\Big)}^{\dfrac{1}{2}} \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} \log \space {\Big(\dfrac{3V}{\pi h}\Big)} \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} (\log \space {3V} - \log \space {\pi h}) \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} [\log \space {3} + \log \space {V} - (\log \space {\pi} + \log \space { h})] \\[1em] \Rightarrow \log \space R = \dfrac{1}{2} (\log \space {3} + \log \space {V} - \log \space {\pi} - \log \space { h}) ⇒ R = πh 3 V Taking log on Both sides, ⇒ log R = log πh 3 V ⇒ log R = log ( πh 3 V ) 2 1 ⇒ log R = 2 1 log ( πh 3 V ) ⇒ log R = 2 1 ( log 3 V − log πh ) ⇒ log R = 2 1 [ log 3 + log V − ( log π + log h )] ⇒ log R = 2 1 ( log 3 + log V − log π − log h )
Hence, logarithmic equation is log R = 1 2 ( log 3 + log V − log π − log h ) \log \space R = \dfrac{1}{2} (\log \space {3} + \log \space {V} - \log \space {\pi} - \log \space { h}) log R = 2 1 ( log 3 + log V − log π − log h ) .
Write the logarithmic equation for :
x = a b a − b a + b x = ab \sqrt{\dfrac{a - b}{a + b}} x = ab a + b a − b
Answer
Given,
⇒ x = a b a − b a + b Taking log on Both sides, ⇒ log x = log ( a b a − b a + b ) ⇒ log x = log a b + log a − b a + b ⇒ log x = log a + log b + log ( a − b a + b ) 1 2 ⇒ log x = log a + log b + 1 2 log a − b a + b ⇒ log x = log a + log b + 1 2 [ log ( a − b ) − log ( a + b ) ] \Rightarrow x = ab \sqrt{\dfrac{a - b}{a + b}} \\[1em] \text{Taking log on Both sides,} \\[1em] \Rightarrow \log \space x = \log \space \Big(ab \sqrt{\dfrac{a - b}{a + b}}\Big) \\[1em] \Rightarrow \log \space x = \log \space ab + \log \space\sqrt{\dfrac{a - b}{a + b}} \\[1em] \Rightarrow \log \space x = \log \space a + \log \space b + \log \space \Big({\dfrac{a - b}{a + b}}\Big)^{\dfrac{1}{2}} \\[1em] \Rightarrow \log \space x = \log \space a + \log \space b + \dfrac{1}{2} \log \space {\dfrac{a - b}{a + b}} \\[1em] \Rightarrow \log \space x = \log \space a + \log \space b + \dfrac{1}{2} [\log \space ({a - b}) - \log \space ({a + b})] \\[1em] ⇒ x = ab a + b a − b Taking log on Both sides, ⇒ log x = log ( ab a + b a − b ) ⇒ log x = log ab + log a + b a − b ⇒ log x = log a + log b + log ( a + b a − b ) 2 1 ⇒ log x = log a + log b + 2 1 log a + b a − b ⇒ log x = log a + log b + 2 1 [ log ( a − b ) − log ( a + b )]
Hence, logarithmic equation is
log x = log a + log b + 1 2 [ log ( a − b ) − log ( a + b ) ] \log \space x = \log \space a + \log \space b + \dfrac{1}{2} [\log \space ({a - b}) - \log \space ({a + b})] log x = log a + log b + 2 1 [ log ( a − b ) − log ( a + b )]