Mathematics
A box contains 20 balls bearing numbers 1, 2, 3, 4, ……, 20. A ball is drawn at random from the box. What is the probability that the number on the ball is
(i) an odd number
(ii) divisible by 2 or 3
(iii) prime number
(iv) not divisible by 10?
Probability
19 Likes
Answer
A ball is drawn at random from the box it means that all outcomes are equally likely.
Sample space = {1, 2, 3, ……, 20}, which has 20 equally likely outcomes.
(i) Let A be the event 'the number on the ball is odd', then
A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}.
∴ The number of favourable outcomes to the event A = 10.
∴ P(odd number) =
Hence, the probability that the ball drawn has an odd number is
(ii) Let B be the event 'the number on the ball is divisible by 2 or 3', then
B = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20}.
∴ The number of favourable outcomes to the event B = 13.
∴ P(number is divisible by 2 or 3) =
Hence, the probability that the ball drawn has a number that is divisible by 2 or 3 is
(iii) Let C be the event 'the number on the ball is prime', then
C = {2, 3, 5, 7, 11, 13, 17, 19}.
∴ The number of favourable outcomes to the event C = 8.
∴ P(prime number) =
Hence, the probability that the ball drawn has a prime number is
(iv) Let D be the event 'the number on the ball is not divisible by 10', then
D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19}.
∴ The number of favourable outcomes to the event D = 18.
∴ P(number is not divisible by 10) =
Hence, the probability that the ball drawn has a number that is not divisible by 10 is
Answered By
6 Likes
Related Questions
A bag contains 5 red, 8 white and 7 black balls. A ball is drawn from the bag at random. Find the probability that the drawn ball is
(i) red or white
(ii) not black
(iii) neither white nor black.
A bag contains 5 white balls, 7 red balls, 4 black balls and 2 blue balls. One ball is drawn at random from the bag. What is the probability that the ball drawn is :
(i) white or blue
(ii) red or black
(iii) not white
(iv) neither white nor black?
Find the probability that a number selected at random from the numbers 1, 2, 3, ……, 35 is a
(i) prime number
(ii) multiple of 7
(iii) multiple of 3 or 5
Cards marked with numbers 13, 14, 15, …., 60 are placed in a box and mixed thoroughly. One card is drawn at random from the box. Find the probability that the number on the card is
(i) divisible by 5
(ii) a number which is a perfect square.