Mathematics
A die is thrown twice. What is the probability that
(i) 5 will not come up either time?
(ii) 5 will come up at least once?
Probability
2 Likes
Answer
On throwing a dice twice.
Sample space = {(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)}.
No. of possible outcomes = 36
(i) Favourable outcomes for 5 to not come up either time are {(1,1) (1,2) (1,3) (1,4) (1,6) (2,1) (2,2) (2,3) (2,4) (2,6) (3,1) (3,2) (3,3) (3,4) (3,6) (4,1) (4,2) (4,3) (4,4) (4,6) (6,1) (6,2) (6,3) (6,4) (6,6)}
No. of favourable outcomes = 25
P(that 5 will not come up either time)
= .
Hence, the probability that 5 will not come up either time is .
(ii) Favourable outcomes for 5 to come up at least once are {(1,5) (2,5) (3,5) (4,5) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,5)}
No. of favourable outcomes = 11
P(that 5 will come up at least once)
= .
Hence, the probability that 5 will come up at least once is .
Answered By
1 Like
Related Questions
A lot consists of 144 ball pens of which 20 are defective and the others are good. Nuri will buy a pen if it is good, but will not buy if it is defective. The shopkeeper draws one pen at random and gives it to her. What is the probability that
(i) She will buy it ?
(ii) She will not buy it ?
Complete the following table :
Event : 'Sum on two dice' Probability 2 1/36 3 4 5 6 7 8 5/36 9 10 11 12 1/36 (ii) A student argues that there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability . Do you agree with this argument? Justify your answer.
A game consists of tossing a one rupee coin 3 times and noting its outcome each time. Hanif wins if all the tosses give the same result i.e., three heads or three tails, and loses otherwise. Calculate the probability that Hanif will lose the game.
Which of the following arguments are correct and which are not correct? Give reasons for your answer.
(i) If two coins are tossed simultaneously there are three possible outcomes—two heads, two tails or one of each. Therefore, for each of these outcomes, the probability is .
(ii) If a die is thrown, there are two possible outcomes—an odd number or an even number. Therefore, the probability of getting an odd number is .