Mathematics
Given f(x) = 16x3 - 8x2 + 4x + 7
Assertion (A): When we subtract 1 from f(x), the resulting polynomial is divisible by (2x + 1).
Reason (R): = 1.
Assertion (A) is true, but Reason (R) is false.
Assertion (A) is false, but Reason (R) is true.
Both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Both Assertion (A) and Reason (R) are correct, and Reason (R) is incorrect reason for Assertion (A).
Factorisation
3 Likes
Answer
Given f(x) = 16x3 - 8x2 + 4x + 7
Subtract 1 from f(x), we get :
g(x) = 16x3 - 8x2 + 4x + 6
By Factor Theorem,
(x - r) is a factor of f(x) if and only if f(r) = 0.
(2x + 1) is a factor of g(x) if and only if = 0.
So, assertion (A) is true.
So, reason (R) is true.
Thus, both Assertion (A) and Reason (R) are correct, and Reason (R) is the correct reason for Assertion (A).
Hence, option 3 is the correct option.
Answered By
1 Like
Related Questions
If a polynomial f(x) = x4 - 2x3 + 3x2 - ax - b leaves remainders 5 and 19 when divided by (x - 1) and (x + 1) respectively, find the values of a and b. Hence, determine the remainder when f(x) is divided by (x - 2).
When a polynomial f(x) is divided by (x - 1), the remainder is 5 and when it is, divided by (x - 2), the remainder is 7. Find the remainder when it is divided by (x - 1)(x - 2).
The polynomial 3x3 + 8x2 - 15x + k has (x - 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.
While factorizing a given polynomial, using remainder and factor theorem, a student finds that (2x + 1) is a factor of 2x3 + 7x2 + 2x - 3.
(a) Is the student's solution correct stating that (2x + 1) is a factor of the given polynomial ? Given a valid reason for your answer.
(b) Factorize the given polynomial completely.