Mathematics
In quadrilateral ABCD, the diagonals AC and BD intersect each other at point O. If AO = 2CO and BO = 2DO; show that:
(i) ΔAOB is similar to ΔCOD.
(ii) OA x OD = OB x OC.
Similarity
7 Likes
Answer
Quadrilateral ABCD is shown in the figure below:

(i) Given,
AO = 2CO and BO = 2DO
⇒
From figure,
∠AOB = ∠DOC [Vertically opposite angles are equal].
∴ ∆AOB ~ ∆COD [By S.A.S.]
Hence, proved that ∆AOB ~ ∆COD.
(ii) Since,
[Proved above]
∴ OA x OD = OB x OC.
Hence, proved that OA x OD = OB x OC.
Answered By
3 Likes
Related Questions
In the given figure, ABC is a right angled triangle with ∠BAC = 90°.
(i) Prove that : △ADB ~ △CDA.
(ii) If BD = 18 cm and CD = 8 cm, find AD.
(iii) Find the ratio of the area of △ADB is to area of △CDA.

ABC is a right angled triangle with ∠ABC = 90°. D is any point on AB and DE is perpendicular to AC. Prove that :
(i) △ADE ~ △ACB
(ii) If AC = 13 cm, BC = 5 cm and AE = 4 cm. Find DE and AD.
(iii) Find, area of △ADE : area of quadrilateral BCED.

Given : AB || DE and BC || EF. Prove that :
(i)
(ii) △DFG ~ △ACG.

PQR is a triangle. S is a point on the side QR of △PQR such that ∠PSR = ∠QPR. Given QP = 8 cm, PR = 6 cm and SR = 3 cm.
(i) Prove △PQR ~ △SPR.
(ii) Find the lengths of QR and PS.
(iii)
