KnowledgeBoat Logo
|

Mathematics

A man invests ₹ 36,000 in 15% ₹ 100 shares at ₹ 120, when the market value of this shares rose to ₹ 200, he sold some shares to purchase a laptop worth ₹ 40,000. Calculate :

(i) the number of shares he still holds

(ii) the dividend he will get on these remaining shares.

Shares & Dividends

21 Likes

Answer

(i) Given,

Investment amount = ₹ 36,000

Face value per share = ₹ 100

Market value per share = ₹ 120

Dividend = 15%

By formula,

Number of shares = Total investmentMarket value per share=36000120\dfrac{\text{Total investment}}{\text{Market value per share}} = \dfrac{36000}{120} = 300

Given,

The man sold some shares to purchase a laptop worth ₹ 40,000, when the shares price rose to ₹ 200. Let no. of shares sold be x.

⇒ x × 200 = 40000

⇒ x = 40000200\dfrac{40000}{200} = 200.

Remaining shares = Total shares - sold shares

= 300 - 200 = 100.

Hence, the number of shares he still holds = 100.

(ii) By formula,

Annual dividend = Number of shares x Dividend rate x face value of share

= 100 x 15100\dfrac{15}{100} x 100

= ₹ 1,500

Hence, the dividend the man will get on the remaining shares = ₹ 1,500.

Answered By

8 Likes


Related Questions