KnowledgeBoat Logo
|

Mathematics

In an R.D., the maturity value is the sum of the total amount deposited and the interest. If P is the amount deposited every month for n months and R is the rate of interest, then interest I is equal to:

  1. P×n12×R100P \times \dfrac{n}{12} \times \dfrac{R}{100}

  2. P×n(n1)12×R100P \times \dfrac{n(n - 1)}{12} \times \dfrac{R}{100}

  3. P×n(n+1)2×12×R100P \times \dfrac{n(n + 1)}{2 \times 12} \times \dfrac{R}{100}

  4. P×n2×12×R100P \times \dfrac{n}{2 \times 12} \times \dfrac{R}{100}

Banking

1 Like

Answer

Given:

Monthly deposit = P

Rate = R

Time = n

I=P×n(n+1)2×12×R100\therefore I = P \times \dfrac{n(n + 1)}{2 \times 12} \times \dfrac{R}{100}

Hence, Option 3 is the correct option.

Answered By

2 Likes


Related Questions