KnowledgeBoat Logo
|

Mathematics

Shahrukh opened a Recurring Deposit Account in a bank and deposited ₹800 per month for 1½ years. If he received ₹15084 at the time of maturity, find the rate of interest per annum.

Banking

115 Likes

Answer

Here,
P = money deposited per month = ₹800,
n = number of months for which the money is deposited = 1 x 12 + 6 = 18

Let the rate of interest be r% per annum, then by using the formula:

I=P×n(n+1)2×12×r100, we getI=(800×18×192×12×r100)=114rI = P \times \dfrac{n(n+1)}{2 \times 12} \times \dfrac{r}{100} \text{, we get} \\[0.7em] I = \Big( 800 \times \dfrac{18 \times 19}{2 \times 12} \times \dfrac{r}{100} \Big) \\[0.5em] \enspace\medspace = 114r

Total money deposited by Shahrukh = ₹800 x 18 = ₹14400

∴ The amount of maturity = total money deposited + interest
= 14400 + 114r

According to the given,

14400+114r=15084114r=1508414400114r=684r=684114r=614400 + 114r = 15084 \\[0.5em] \Rightarrow 114r = 15084 - 14400 \\[0.5em] \Rightarrow 114r = 684 \\[0.5em] \Rightarrow r = \dfrac{684}{114} \\[0.5em] \Rightarrow r = 6

∴ Rate of (simple) interest = 6% p.a.

Answered By

56 Likes


Related Questions