Mathematics
3rd term of a G.P. is 27 and its 6th term is 729; find the product of its first and 7th terms.
AP GP
27 Likes
Answer
Let first term of G.P. be a and common ratio be r.
We know that,
nth term of G.P. = arn - 1
Given,
3rd term of a G.P. = 27
∴ ar2 = 27 ……….(1)
Given,
6th term of a G.P. = 729
∴ ar5 = 729 ……….(2)
Dividing equation (2) by (1), we get :
Substituting value of r in equation (1), we get :
⇒ a(3)2 = 27
⇒ 9a = 27
⇒ a =
⇒ a = 3.
7th term = ar6
= 3(3)6
= 3 × 729
= 2187.
Product of first and seventh term = 3 x 2187
= 6561.
Hence, product of first and seventh term = 6561.
Answered By
5 Likes
Related Questions
Daya gets pocket money from his father every day. Out of the pocket money, he saves ₹ 2.75 on first day, ₹ 3.00 on second day, ₹ 3.25 on third day and so on. Find :
(i) the amount saved by Daya on 14th day
(ii) the amount saved by Daya on 30th day
(iii) the total amount saved by him in 30 days.
If the sum of first m terms of an A.P. is n and sum of first n terms of the same A.P. is m, show that sum of first (m + n) terms of it is -(m + n).
Find 5 geometric means between 1 and 27.
Find the sum of the sequence 96 - 48 + 24 ……… upto 10 terms.