Mathematics
Assertion (A): The roots of the quadratic equation 3x2 + 7x + 8 = 0 are imaginary.
Reason (R): The discriminant of a quadratic equation is always positive.
A is true, R is false
A is false, R is true
Both A and R are true
Both A and R are false
Quadratic Equations
3 Likes
Answer
Given,
⇒ 3x2 + 7x + 8 = 0
Comparing 3x2 + 7x + 8 = 0 with ax2 + bx + c = 0 we get,
a = 3, b = 7 and c = 8.
We know that,
Discriminant (D) = b2 - 4ac
= (7)2 - 4 × (3) × (8)
= 49 - 96 = -47; which is negative.
Therefore, the equation has imaginary and unequal roots.
So, Assertion (A) is true.
The Discriminant of quadratic equation can be positive, negative or equal to zero.
So, Reason (R) is false.
A is true, R is false.
Hence, option 1 is the correct option.
Answered By
3 Likes
Related Questions
Case Study II
Raman Lal runs a stationery shop in Pune. The analysis of his sales, expenditures and profits showed that for x number of notebooks sold, the weekly profit (in ₹) was P(x) = - 2x2 + 88x - 680. Raman Lal found that:
- He has a loss if he does not sell any notebook in a week.
- There is no profit no loss for a certain value x0 of x.
- The profit goes on increasing with an increase in x i.e. the number of notebooks sold. But he gets a maximum profit at a sale of 22 notebooks in a week.
Now answer the following questions :
1. What will be Raman Lal’s profit if he sold 20 notebooks in a week?
- ₹ 144
- ₹ 280
- ₹ 340
- ₹ 560
2. What is the maximum profit that Raman Lal can earn in a week?
- ₹ 144
- ₹ 288
- ₹ 340
- ₹ 680
3. What is Raman Lal’s loss if he does not sell any notebooks in a particular week?
- ₹ 0
- ₹ 340
- ₹ 680
- ₹ 960
4. Write a quadratic equation for the condition when Raman Lal does not have any profit or loss during a week.
- 2x2 - 44x + 340 = 0
- x2 + 44x - 340 = 0
- x2 - 88x + 340 = 0
- x2 - 44x + 340 = 0
5. What is the minimum number of notebooks x0 that Raman Lal should sell in a week so that he does not incur any loss?
- 0
- 10
- 11
- 12
Assertion (A): The discriminant of the quadratic equation is less than zero.
Reason (R): The discriminant of the quadratic equation ax2 + bx + c = 0 is .
A is true, R is false
A is false, R is true
Both A and R are true
Both A and R are false
Assertion (A): The quadratic equation 3kx2 - 4kx + 4 = 0 has equal roots, if k = 3.
Reason (R): For equal roots of a quadratic equation, we must have D = 0.
A is true, R is false
A is false, R is true
Both A and R are true
Both A and R are false
Assertion (A): The roots of the quadratic equation 8x2 + 2x - 3 = 0 are - and .
Reason (R): The roots of the quadratic equation ax2 + bx + c = 0 are given by .
A is true, R is false
A is false, R is true
Both A and R are true
Both A and R are false