Science
Akhtar, Kiran, and Rahul were riding in a motorcar that was moving with a high velocity on an expressway when an insect hit the windshield and got stuck on the windscreen. Akhtar and Kiran started pondering over the situation. Kiran suggested that the insect suffered a greater change in momentum as compared to the change in momentum of the motorcar (because the change in the velocity of the insect was much more than that of the motorcar). Akhtar said that since the motorcar was moving with a larger velocity, it exerted a larger force on the insect. And as a result the insect died. Rahul while putting an entirely new explanation said that both the motorcar and the insect experienced the same force and a change in their momentum. Comment on these suggestions.
Laws of Motion
18 Likes
Answer
Kiran's statement is false. The change in momentum of the insect and the motorcar is equal by conservation of momentum.
Akhtar's statement is false. Force exerted is directly proportional to the mass and change in momentum. It does not depend on velocity. Secondly, according to Newton's third law of motion car and insect would apply equal and opposite force on each other.
Rahul's statement is correct. As per the Newton's third law of motion, the force exerted by the insect on the car is equal and opposite to the force exerted by the car on the insect. Hence, insect and car experience same force.
The change in momentum, however, depends on the mass and resulting acceleration. The motorcar, with its larger mass, experiences less acceleration and, therefore, less change in velocity. On the other hand, the mass of the insect is very small compared to the motorcar, it suffers a huge change of velocity as compared to the motorcar. Due to this, insect dies.
Answered By
9 Likes
Related Questions
An object of mass 1 kg travelling in a straight line with a velocity of 10 ms-1 collides with, and sticks to, a stationary wooden block of mass 5 kg. Then they both move off together in the same straight line. Calculate the total momentum just before the impact and just after the impact. Also, calculate the velocity of the combined object.
An object of mass 100 kg is accelerated uniformly from a velocity of 5 ms-1 to 8 ms-1 in 6 s. Calculate the initial and final momentum of the object. Also, find the magnitude of the force exerted on the object.
How much momentum will a dumb-bell of mass 10 kg transfer to the floor if it falls from a height of 80 cm? Take its downward acceleration to be 10 ms-2.
The following is the distance-time table of an object in motion:
Time in seconds Distance in meters 0 0 1 1 2 8 3 27 4 64 5 125 6 216 7 343 (a) What conclusion can you draw about the acceleration? Is it constant, increasing, decreasing, or zero?
(b) What do you infer about the forces acting on the object?