KnowledgeBoat Logo
|
OPEN IN APP

Chapter 1

Rational and Irrational Numbers

Class - 9 ML Aggarwal Understanding ICSE Mathematics



Exercise 1.1

Question 1

Insert a rational number between 29\dfrac{2}{9} and 38\dfrac{3}{8} arrange in descending order.

Answer

The L.C.M of 9 and 8 is 72.

29=2×89×8=167238=3×98×9=2772Since 16<27,29<38\dfrac{2}{9} = \dfrac{2 \times 8}{9 \times 8} = \dfrac{16}{72} \\[0.5em] \dfrac{3}{8} = \dfrac{3 \times 9}{8 \times 9} = \dfrac{27}{72} \\[0.5em] \text{Since } 16 \lt 27, \dfrac{2}{9} \lt \dfrac{3}{8}

A rational number between 29\dfrac{2}{9} and 38\dfrac{3}{8}

=29+382=16+27722=43144= \dfrac{\dfrac{2}{9} + \dfrac{3}{8}}{2} \\[0.5em] = \dfrac{\dfrac{16 + 27}{72}}{2} \\[0.5em] = \bold{\dfrac{43}{144}} \\[0.5em]

Numbers in descending order are:

38,43144,29\bold{\dfrac{3}{8}}, \bold{\dfrac{43}{144}}, \bold{\dfrac{2}{9}}

Question 2

Insert two rational numbers between 13\dfrac{1}{3} and 14\dfrac{1}{4} and arrange in ascending order.

Answer

The L.C.M of 3 and 4 is 12.

13=1×43×4=41214=1×34×3=312Since 3<4,14<13\dfrac{1}{3} = \dfrac{1 \times 4}{3 \times 4} = \dfrac{4}{12} \\[0.5em] \dfrac{1}{4} = \dfrac{1 \times 3}{4 \times 3} = \dfrac{3}{12} \\[0.5em] \text{Since } 3 \lt 4, \dfrac{1}{4} \lt \dfrac{1}{3}

A rational number between 14\dfrac{1}{4} and 13\dfrac{1}{3}

=14+132=4+3122=724= \dfrac{\dfrac{1}{4} + \dfrac{1}{3}}{2} \\[0.5em] = \dfrac{\dfrac{4 + 3}{12}}{2} \\[0.5em] = \bold{\dfrac{7}{24}} \\[0.5em]

A rational number between 14\dfrac{1}{4} and 724\dfrac{7}{24}

=14+7242=6+7242=1348= \dfrac{\dfrac{1}{4} + \dfrac{7}{24}}{2} \\[0.5em] = \dfrac{\dfrac{6 + 7}{24}}{2} \\[0.5em] = \bold{\dfrac{13}{48}} \\[0.5em]

Numbers in ascending order are:

14,1348,724,13\bold{\dfrac{1}{4}}, \bold{\dfrac{13}{48}}, \bold{\dfrac{7}{24}}, \bold{\dfrac{1}{3}}

Question 3

Insert two rational numbers between 13-\dfrac{1}{3} and 12-\dfrac{1}{2} and arrange in ascending order.

Answer

The L.C.M of 2 and 3 is 6.

13=1×23×2=2612=1×32×3=36Since 3<2,12<13-\dfrac{1}{3} = -\dfrac{1 \times 2}{3 \times 2} = -\dfrac{2}{6} \\[0.5em] -\dfrac{1}{2} = -\dfrac{1 \times 3}{2 \times 3} = -\dfrac{3}{6} \\[0.5em] \text{Since } -3 \lt -2, -\dfrac{1}{2} \lt -\dfrac{1}{3}

A rational number between -12\dfrac{1}{2} and -13\dfrac{1}{3}

=12+(13)2=3+(2)62=3262=512= \dfrac{-\dfrac{1}{2} + \Big(-\dfrac{1}{3}\Big)}{2} \\[0.5em] = \dfrac{\dfrac{-3 + (-2)}{6}}{2} \\[0.5em] = \dfrac{\dfrac{-3 -2}{6}}{2} \\[0.5em] = \bold{-\dfrac{5}{12}} \\[0.5em]

A rational number between -12\dfrac{1}{2} and -512\dfrac{5}{12}

=12+(512)2=6+(5)122=65122=1124= \dfrac{-\dfrac{1}{2} + \Big(-\dfrac{5}{12}\Big)}{2} \\[0.5em] = \dfrac{\dfrac{-6 + (-5)}{12}}{2} \\[0.5em] = \dfrac{\dfrac{-6 -5}{12}}{2} \\[0.5em] = \bold{-\dfrac{11}{24}} \\[0.5em]

Numbers in ascending order are:

12,1124,512,13\bold{-\dfrac{1}{2}}, \bold{-\dfrac{11}{24}}, \bold{-\dfrac{5}{12}}, \bold{-\dfrac{1}{3}}

Question 4

Insert three rational numbers between 13\dfrac{1}{3} and 45\dfrac{4}{5}, and arrange in descending order.

Answer

The L.C.M of 3 and 5 is 15.

13=1×53×5=51545=4×35×3=1215Since 5<12,13<45\dfrac{1}{3} = \dfrac{1 \times 5}{3 \times 5} = \dfrac{5}{15} \\[0.5em] \dfrac{4}{5} = \dfrac{4 \times 3}{5 \times 3} = \dfrac{12}{15} \\[0.5em] \text{Since } 5 \lt 12, \dfrac{1}{3} \lt \dfrac{4}{5}

A rational number between 13\dfrac{1}{3} and 45\dfrac{4}{5}

=13+452=5+12152=1730= \dfrac{\dfrac{1}{3} + \dfrac{4}{5}}{2} \\[0.5em] = \dfrac{\dfrac{5 + 12}{15}}{2} \\[0.5em] = \bold{\dfrac{17}{30}} \\[0.5em]

A rational number between 13\dfrac{1}{3} and 1730\dfrac{17}{30}

=13+17302=10+17302=2760= \dfrac{\dfrac{1}{3} + \dfrac{17}{30}}{2} \\[0.5em] = \dfrac{\dfrac{10 + 17}{30}}{2} \\[0.5em] = \bold{\dfrac{27}{60}} \\[0.5em]

A rational number between 1730\dfrac{17}{30} and 45\dfrac{4}{5}

=1730+452=17+24302=4160= \dfrac{\dfrac{17}{30} + \dfrac{4}{5}}{2} \\[0.5em] = \dfrac{\dfrac{17 + 24}{30}}{2} \\[0.5em] = \bold{\dfrac{41}{60}} \\[0.5em]

Numbers in descending order are:

45,4160,1730,2760,13\bold{\dfrac{4}{5}}, \bold{\dfrac{41}{60}}, \bold{\dfrac{17}{30}}, \bold{\dfrac{27}{60}}, \bold{\dfrac{1}{3}}

Question 5

Using concept of decimals, insert

(i) three rational numbers between 3 and 3.5

(ii) four rational numbers between 14\dfrac{1}{4} and 25\dfrac{2}{5}.

(iii) five rational numbers between 1121\dfrac{1}{2} and 1341\dfrac{3}{4}.

Answer

(i) We want three rational numbers between 3 and 3.5.

We know that,

Terminating decimals are rational numbers.

Let us take 3.1, 3.2, 3.3

Thus, we have :

⇒ 3 < 3.1 < 3.2 < 3.3 <3.5

Hence, three rational numbers between 3 and 3.5 are 3.1, 3.2 and 3.3.

(ii) Converting fraction in decimal form,

14\dfrac{1}{4} = 0.25

25\dfrac{2}{5} = 0.40

We know that,

Terminating decimals are rational numbers.

Let us take 0.28, 0.30, 0.32, 0.34

Thus, we have :

⇒ 0.25 < 0.28 < 0.30 < 0.32 < 0.34 < 0.40

Hence, four rational numbers between 14 and 25\dfrac{1}{4} \text{ and } \dfrac{2}{5} = 0.28, 0.30, 0.32 and 0.34

(iii) We want five rational numbers between 1121\dfrac{1}{2} and 1341\dfrac{3}{4}.

Numbers : 112=32=1.501\dfrac{1}{2} = \dfrac{3}{2} = 1.50 and 134=74=1.751\dfrac{3}{4} = \dfrac{7}{4} = 1.75

We know that,

Terminating decimals are rational numbers.

Let us take 1.61, 1.62, 1.63, 1.64, 1.65

Thus, we have :

⇒ 1.50 < 1.61 < 1.62 < 1.63 <1.64 < 1.65 <1.75

Hence, five rational numbers between 112 and 1341\dfrac{1}{2} \text{ and } 1\dfrac{3}{4} = 1.61, 1.62, 1.63, 1.64 and 1.65.

Question 6

Find six rational numbers between 3 and 4.

Answer

The numbers 3 and 4 can be written as 31\dfrac{3}{1} and 41\dfrac{4}{1}.

Since we want to find six rational numbers between the given numbers, multiplying the numerator and denominator of the above numbers by 6 + 1 i.e. by 7, we get 217\dfrac{21}{7} and 287\dfrac{28}{7}, which are equivalent to the given numbers.

As 21<22<23<24<25<26<27<28,217<227<237<247<257<267<277<287\text{As } 21 \lt 22 \lt 23 \lt 24 \lt 25 \lt 26 \lt 27 \lt 28, \\[0.7em] \dfrac{21}{7} \lt \dfrac{22}{7} \lt \dfrac{23}{7} \lt \dfrac{24}{7} \lt \dfrac{25}{7} \lt \dfrac{26}{7} \lt \dfrac{27}{7} \lt \dfrac{28}{7}

Therefore, six rational numbers between 3 and 4 are:

227,237,247,257,267,277\bold{\dfrac{22}{7}}, \bold{\dfrac{23}{7}}, \bold{\dfrac{24}{7}}, \bold{\dfrac{25}{7}}, \bold{\dfrac{26}{7}}, \bold{\dfrac{27}{7}}

Question 7

Find five rational numbers between 35\dfrac{3}{5} and 45\dfrac{4}{5}.

Answer

Since we want to find five rational numbers between the given numbers, multiplying the numerator and denominator of the above numbers by 5 + 1 i.e. by 6, we get 1830\dfrac{18}{30} and 2430\dfrac{24}{30}, which are equivalent to the given numbers.

As 18<19<20<21<22<23<24,1830<1930<2030<2130<2230<2330<243035<1930<23<710<1115<2330<45\text{As } 18 \lt 19 \lt 20 \lt 21 \lt 22 \lt 23 \lt 24, \\[0.7em] \dfrac{18}{30} \lt \dfrac{19}{30} \lt \dfrac{20}{30} \lt \dfrac{21}{30} \lt \dfrac{22}{30} \lt \dfrac{23}{30} \lt \dfrac{24}{30} \\[0.7em] \Rightarrow \dfrac{3}{5} \lt \dfrac{19}{30} \lt \dfrac{2}{3} \lt \dfrac{7}{10} \lt \dfrac{11}{15} \lt \dfrac{23}{30} \lt \dfrac{4}{5}

Therefore, six rational numbers between 35\dfrac{3}{5} and 45\dfrac{4}{5} are:

1930,23,710,1115,2330\bold{\dfrac{19}{30}}, \bold{\dfrac{2}{3}}, \bold{\dfrac{7}{10}}, \bold{\dfrac{11}{15}}, \bold{\dfrac{23}{30}}

Question 8

Find ten rational numbers between 25-\dfrac{2}{5} and 17\dfrac{1}{7}.

Answer

Writing the given numbers with same denominator 35 (L.C.M. of 5 and 7), we get:

25=143517=535-\dfrac{2}{5} = -\dfrac{14}{35} \\[0.5em] \dfrac{1}{7} = \dfrac{5}{35}

As 14<13<12<11<10<9<8<7<0<1<2<5,1435<1335<1235<1135<1035<935<835<735<0<135<235<53525<1335<1235<1135<27<935<835<15<0<135<235<535\text{As } -14 \lt -13 \lt -12 \lt -11 \lt -10 \lt -9 \lt -8 \lt -7 \lt 0 \lt 1 \lt 2 \lt 5, \\[0.7em] -\dfrac{14}{35} \lt -\dfrac{13}{35} \lt -\dfrac{12}{35} \lt -\dfrac{11}{35} \lt -\dfrac{10}{35} \lt -\dfrac{9}{35} \lt -\dfrac{8}{35} \lt -\dfrac{7}{35} \lt 0 \lt \dfrac{1}{35} \lt \dfrac{2}{35} \lt \dfrac{5}{35} \\[0.7em] \Rightarrow -\dfrac{2}{5} \lt -\dfrac{13}{35} \lt -\dfrac{12}{35} \lt -\dfrac{11}{35} \lt -\dfrac{2}{7} \lt -\dfrac{9}{35} \lt -\dfrac{8}{35} \lt -\dfrac{1}{5} \lt 0 \lt \dfrac{1}{35} \lt \dfrac{2}{35} \lt \dfrac{5}{35}

Therefore, ten rational numbers between 25-\dfrac{2}{5} and 17\dfrac{1}{7} are:

1335,1235,1135,27,935,835,15,0,135,235\bold{-\dfrac{13}{35}}, \bold{-\dfrac{12}{35}}, \bold{-\dfrac{11}{35}}, \bold{-\dfrac{2}{7}}, \bold{-\dfrac{9}{35}}, \\[0.5em] \bold{-\dfrac{8}{35}}, \bold{-\dfrac{1}{5}}, 0, \bold{\dfrac{1}{35}}, \bold{\dfrac{2}{35}}

Question 9

Find six rational numbers between 12\dfrac{1}{2} and 23\dfrac{2}{3}.

Answer

Writing the given numbers with same denominator 6 (L.C.M. of 2 and 3), we get:

12=3623=46\dfrac{1}{2} = \dfrac{3}{6} \\[0.5em] \dfrac{2}{3} = \dfrac{4}{6}

Since we want to find six rational numbers between the given numbers, multiplying the numerator and denominator of the above numbers by 6 + 1 i.e. by 7, we get 2142\dfrac{21}{42} and 2842\dfrac{28}{42}, which are equivalent to the given numbers.

As 21<22<23<24<25<26<27<28,2142<2242<2342<2442<2542<2642<2742<284212<1121<2342<47<2542<1321<914<23\text{As } 21 \lt 22 \lt 23 \lt 24 \lt 25 \lt 26 \lt 27 \lt 28, \\[0.7em] \dfrac{21}{42} \lt \dfrac{22}{42} \lt \dfrac{23}{42} \lt \dfrac{24}{42} \lt \dfrac{25}{42} \lt \dfrac{26}{42} \lt \dfrac{27}{42} \lt \dfrac{28}{42} \\[0.7em] \Rightarrow \dfrac{1}{2} \lt \dfrac{11}{21} \lt \dfrac{23}{42} \lt \dfrac{4}{7} \lt \dfrac{25}{42} \lt \dfrac{13}{21} \lt \dfrac{9}{14} \lt \dfrac{2}{3}

Therefore, six rational numbers between 12\dfrac{1}{2} and 23\dfrac{2}{3} are:

1121,2342,47,2542,1321,914\bold{\dfrac{11}{21}}, \bold{\dfrac{23}{42}}, \bold{\dfrac{4}{7}}, \bold{\dfrac{25}{42}}, \bold{\dfrac{13}{21}}, \bold{\dfrac{9}{14}}

Exercise 1.2

Question 1

Prove that 5\sqrt{5} is an irrational number.

Answer

Let 5\sqrt{5} be a rational number, then

5=pq,\sqrt{5} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

5=p2q2p2=5q2....(i)\Rightarrow 5 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 5q^2 \qquad \text{....(i)}

As 5 divides 5q2, so 5 divides p2 but 5 is prime

5 divides p(Theorem 1)\Rightarrow 5 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 5m, where m is an integer.

Substituting this value of p in (i), we get

(5m)2=5q225m2=5q25m2=q2(5m)^2 = 5q^2 \\[0.5em] \Rightarrow 25m^2 = 5q^2 \\[0.5em] \Rightarrow 5m^2 = q^2 \\[0.5em]

As 5 divides 5m2, so 5 divides q2 but 5 is prime

5 divides q(Theorem 1)\Rightarrow 5 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 5. This contradicts that p and q have no common factors (except 1).

Hence, 5\sqrt{5} is not a rational number. So, we conclude that 5\sqrt{5} is an irrational number.

Question 2

Prove that 7\sqrt{7} is an irrational number.

Answer

Let 7\sqrt{7} be a rational number, then

7=pq,\sqrt{7} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

7=p2q2p2=7q2....(i)\Rightarrow 7 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 7q^2 \qquad \text{....(i)}

As 7 divides 7q2, so 7 divides p2 but 7 is prime

7 divides p(Theorem 1)\Rightarrow 7 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 7m, where m is an integer.

Substituting this value of p in (i), we get

(7m)2=7q249m2=7q27m2=q2(7m)^2 = 7q^2 \\[0.5em] \Rightarrow 49m^2 = 7q^2 \\[0.5em] \Rightarrow 7m^2 = q^2 \\[0.5em]

As 7 divides 7m2, so 7 divides q2 but 7 is prime

7 divides q(Theorem 1)\Rightarrow 7 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 7. This contradicts that p and q have no common factors (except 1).

Hence, 7\sqrt{7} is not a rational number. So, we conclude that 7\sqrt{7} is an irrational number.

Question 3

Prove that 6\sqrt{6} is an irrational number.

Answer

Suppose that 6\sqrt{6} is a rational number, then

6=pq,\sqrt{6} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

6=p2q2p2=6q2....(i)\Rightarrow 6 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 6q^2 \qquad \text{....(i)}

As 2 divides 6q2, so 2 divides p2 but 2 is prime

2 divides p(Theorem 1)\Rightarrow 2 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 2k, where k is some integer.

Substituting this value of p in (i), we get

(2k)2=6q24k2=6q22k2=3q2(2k)^2 = 6q^2 \\[0.5em] \Rightarrow 4k^2 = 6q^2 \\[0.5em] \Rightarrow 2k^2 = 3q^2 \\[0.5em]

As 2 divides 2k2, so 2 divides 3q2

\Rightarrow 2 divides 3 or 2 divides q2

But 2 does not divide 3, therefore, 2 divides q2

\Rightarrow 2 divides q      (Theorem 1)

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, our supposition is wrong. Therefore, 6\sqrt{6} is not a rational number. So, we conclude that 6\sqrt{6} is an irrational number.

Question 4

Prove that 111\dfrac{1}{\sqrt{11}} is an irrational number.

Answer

Let 111\dfrac{1}{\sqrt{11}} be a rational number, then

111=pq,\dfrac{1}{\sqrt{11}} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

111=p2q2q2=11p2....(i)\Rightarrow \dfrac{1}{11} = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow q^2 = 11p^2 \qquad \text{....(i)}

As 11 divides 11p2, so 11 divides q2 but 11 is prime

11 divides q(Theorem 1)\Rightarrow 11 \text{ divides } q \qquad \text{(Theorem 1)}

Let q = 11m, where m is an integer.

Substituting this value of q in (i), we get

(11m)2=11p2121m2=11p211m2=p2(11m)^2 = 11p^2 \\[0.5em] \Rightarrow 121m^2 = 11p^2 \\[0.5em] \Rightarrow 11m^2 = p^2 \\[0.5em]

As 11 divides 11m2, so 11 divides p2 but 11 is prime

11 divides p(Theorem 1)\Rightarrow 11 \text{ divides } p \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 11. This contradicts that p and q have no common factors (except 1).

Hence, 111\dfrac{1}{\sqrt{11}} is not a rational number. So, we conclude that 111\dfrac{1}{\sqrt{11}} is an irrational number.

Question 5

Prove that 2\sqrt{2} is an irrational number. Hence, show that 323 - \sqrt{2} is an irrational number.

Answer

Let 2\sqrt{2} be a rational number, then

2=pq,\sqrt{2} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

2=p2q2p2=2q2....(i)\Rightarrow 2 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 2q^2 \qquad \text{....(i)}

As 2 divides 2q2, so 2 divides p2 but 2 is prime

2 divides p(Theorem 1)\Rightarrow 2 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 2m, where m is an integer.

Substituting this value of p in (i), we get

(2m)2=2q24m2=2q22m2=q2(2m)^2 = 2q^2 \\[0.5em] \Rightarrow 4m^2 = 2q^2 \\[0.5em] \Rightarrow 2m^2 = q^2 \\[0.5em]

As 2 divides 2m2, so 2 divides q2 but 2 is prime

2 divides q(Theorem 1)\Rightarrow 2 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, 2\sqrt{2} is not a rational number. So, we conclude that 2\sqrt{2} is an irrational number.

Suppose that 323 - \sqrt{2} is a rational number, say r.

Then, 323 - \sqrt{2} = r (note that r ≠ 0)

2=r32=3r\Rightarrow - \sqrt{2} = r - 3 \\[0.5em] \Rightarrow \sqrt{2} = 3 - r \\[0.5em]

As r is rational and r ≠ 0, so 3 - r is rational

2\Rightarrow \sqrt{2} is rational

But this contradicts that 2\sqrt{2} is irrational. Hence, our supposition is wrong.

323 - \sqrt{2} is an irrational number.

Question 6

Prove that 3\sqrt{3} is an irrational number. Hence, show that 253\dfrac{2}{5}\sqrt{3} is an irrational number.

Answer

Let 3\sqrt{3} be a rational number, then

3=pq,\sqrt{3} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

3=p2q2p2=3q2....(i)\Rightarrow 3 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 3q^2 \qquad \text{....(i)}

As 3 divides 3q2, so 3 divides p2 but 3 is prime

3 divides p(Theorem 1)\Rightarrow 3 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 3m, where m is an integer.

Substituting this value of p in (i), we get

(3m)2=3q29m2=3q23m2=q2(3m)^2 = 3q^2 \\[0.5em] \Rightarrow 9m^2 = 3q^2 \\[0.5em] \Rightarrow 3m^2 = q^2 \\[0.5em]

As 3 divides 3m2, so 3 divides q2 but 3 is prime

3 divides q(Theorem 1)\Rightarrow 3 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 3. This contradicts that p and q have no common factors (except 1).

Hence, 3\sqrt{3} is not a rational number. So, we conclude that 3\sqrt{3} is an irrational number.

Suppose that 253\dfrac{2}{5}\sqrt{3} is a rational number, say r.

Then, 253\dfrac{2}{5}\sqrt{3} = r (note that r ≠ 0)

3=52r\Rightarrow \sqrt{3} = \dfrac{5}{2}r \\[0.5em]

As r is rational and r ≠ 0, so 52r\dfrac{5}{2}r is rational
[∵ System of rational numbers is closed under all four fundamental arithmetic operations (except division by zero)]

3\Rightarrow \sqrt{3} is rational

But this contradicts that 3\sqrt{3} is irrational. Hence, our supposition is wrong.

253\dfrac{2}{5}\sqrt{3} is an irrational number.

Question 7

Prove that 5\sqrt{5} is an irrational number. Hence, show that 3+25-3 + 2\sqrt{5} is an irrational number.

Answer

Let 5\sqrt{5} be a rational number, then

5=pq,\sqrt{5} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

5=p2q2p2=5q2\Rightarrow 5 = \dfrac{p^2}{q^2} \\[0.5em] \Rightarrow p^2 = 5q^2

As 5 divides 5q2, so 5 divides p2 but 5 is prime

5 divides p(Theorem 1)\Rightarrow 5 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 5m, where m is an integer.

Substituting this value of p in (i), we get

(5m)2=5q225m2=5q25m2=q2(5m)^2 = 5q^2 \\[0.5em] \Rightarrow 25m^2 = 5q^2 \\[0.5em] \Rightarrow 5m^2 = q^2 \\[0.5em]

As 5 divides 5m2, so 5 divides q2 but 5 is prime

5 divides q(Theorem 1)\Rightarrow 5 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 5. This contradicts that p and q have no common factors (except 1).

Hence, 5\sqrt{5} is not a rational number. So, we conclude that 5\sqrt{5} is an irrational number.

Suppose that 3+25-3 + 2\sqrt{5} is a rational number, say r.

Then, 3+25-3 + 2\sqrt{5} = r (note that r ≠ 0)

25=r+35=r+32\Rightarrow 2\sqrt{5} = r + 3 \\[0.5em] \Rightarrow \sqrt{5} = \dfrac{r + 3}{2} \\[0.5em]

As r is rational and r ≠ 0, so r+32\dfrac{r + 3}{2} is rational

5\Rightarrow \sqrt{5} is rational

But this contradicts that 5\sqrt{5} is irrational. Hence, our supposition is wrong.

3+25-3 + 2\sqrt{5} is an irrational number.

Question 8

Prove that the following numbers are irrational:

(i)5+2(ii)353(iii)237(iv)2+5\begin{matrix} \text{(i)} & 5 + \sqrt{2} \\[0.5em] \text{(ii)} & 3 - 5\sqrt{3} \\[0.5em] \text{(iii)} & 2\sqrt{3} - 7 \\[0.5em] \text{(iv)} & \sqrt{2} + \sqrt{5} \end{matrix}

Answer

(i) 5+2\text{(i) } 5 + \sqrt{2}

Let us assume that 5+25 + \sqrt{2} is a rational number, say r.

Then,

5+2=r2=r55 + \sqrt{2} = r \\[0.5em] \Rightarrow \sqrt{2} = r - 5

As r is rational, r - 5 is rational

2\Rightarrow \sqrt{2} is rational

But this contradicts the fact that 2\sqrt{2} is irrational.

Hence, our assumption is wrong.

5+25 + \sqrt{2} is an irrational number.

(ii) 353\text{(ii) } 3 - 5\sqrt{3}

Let us assume that 3533 - 5\sqrt{3} is a rational number, say r.

Then,

353=r53=3r3=3r53 - 5\sqrt{3} = r \\[0.5em] \Rightarrow 5\sqrt{3} = 3 - r \\[0.5em] \Rightarrow \sqrt{3} = \dfrac{3 - r}{5} \\[0.5em]

As r is rational, 3 - r is rational

3r5\Rightarrow \dfrac{3 - r}{5} is rational

3\Rightarrow \sqrt{3} is rational

But this contradicts the fact that 3\sqrt{3} is irrational.

Hence, our assumption is wrong.

3533 - 5\sqrt{3} is an irrational number.

(iii) 237\text{(iii) } 2\sqrt{3} - 7

Let us assume that 2372\sqrt{3} - 7 is a rational number, say r.

Then,

237=r23=r+73=r+722\sqrt{3} - 7 = r \\[0.5em] \Rightarrow 2\sqrt{3} = r + 7 \\[0.5em] \Rightarrow \sqrt{3} = \dfrac{r + 7}{2} \\[0.5em]

As r is rational, r + 7 is rational

r+72\Rightarrow \dfrac{r + 7}{2} is rational

3\Rightarrow \sqrt{3} is rational

But this contradicts the fact that 3\sqrt{3} is irrational.

Hence, our assumption is wrong.

2372\sqrt{3} - 7 is an irrational number.

(iv) 2+5\text{(iv) } \sqrt{2} + \sqrt{5}

Let us assume that 2+5\sqrt{2} + \sqrt{5} is a rational number, say r.

Then,

2+5=r5=r2(5)2=(r2)25=r2+222r22r=r2+2522r=r232=r232r\sqrt{2} + \sqrt{5} = r \\[0.5em] \Rightarrow \sqrt{5} = r - \sqrt{2} \\[0.5em] \Rightarrow (\sqrt{5})^2 = (r - \sqrt{2})^2 \\[0.5em] \Rightarrow 5 = r^2 + 2 - 2\sqrt{2}r \\[0.5em] \Rightarrow 2\sqrt{2}r = r^2 + 2 - 5 \\[0.5em] \Rightarrow 2\sqrt{2}r = r^2 - 3 \\[0.5em] \Rightarrow \sqrt{2} = \dfrac{r^2 - 3}{2r} \\[0.5em]

As r is rational,

r232r\Rightarrow \dfrac{r^2 - 3}{2r} is rational

2\Rightarrow \sqrt{2} is rational

But this contradicts the fact that 2\sqrt{2} is irrational.

Hence, our assumption is wrong.

2+5\sqrt{2} + \sqrt{5} is an irrational number.

Exercise 1.3

Question 1

Locate 10\sqrt{10} and 17\sqrt{17} on the number line.

Answer

Locating 10\sqrt{10}:

Representing 10 as the sum of squares of two natural numbers:

10 = 9 + 1 = 32 + 12

Let l be the number line. If point O represents number 0 and point A represents number 3, then draw a line segment OA = 3 units.

At A, draw AC ⟂ OA. From AC, cut off AB = 1 unit.

We observe that OAB is a right angled triangle at A. By Pythagoras theorem, we get:

OB2=OA2+AB2OB2=32+12OB2=9+1OB2=10OB=10 unitsOB^2 = OA^2 + AB^2 \\[0.5em] \Rightarrow OB^2 = 3^2 + 1^2 \\[0.5em] \Rightarrow OB^2 = 9 + 1 \\[0.5em] \Rightarrow OB^2 = 10 \\[0.5em] \Rightarrow OB = \sqrt{10} \text{ units} \\[0.5em]

With O as centre and radius = OB, we draw an arc of a circle to meet the number line l at point P.

As OP = OB = 10\sqrt{10} units, the point P will represent the number 10\sqrt{10} on the number line as shown in the figure below:

Locate √10 and √17 on the number line. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

Locating 17\sqrt{17}:

Representing 17 as the sum of squares of two natural numbers:

17 = 16 + 1 = 42 + 12

Let l be the number line. If point O represents number 0 and point A represents number 4, then draw a line segment OA = 4 units.

At A, draw AC ⟂ OA. From AC, cut off AB = 1 unit.

We observe that OAB is a right angled triangle at A. By Pythagoras theorem, we get:

OB2=OA2+AB2OB2=42+12OB2=16+1OB2=17OB=17unitsOB^2 = OA^2 + AB^2 \\[0.5em] \Rightarrow OB^2 = 4^2 + 1^2 \\[0.5em] \Rightarrow OB^2 = 16 + 1 \\[0.5em] \Rightarrow OB^2 = 17 \\[0.5em] \Rightarrow OB = \sqrt{17} \text{units} \\[0.5em]

With O as centre and radius = OB, we draw an arc of a circle to meet the number line l at point P.

As OP = OB = 17\sqrt{17} units, the point P will represent the number 17\sqrt{17} on the number line as shown in the figure below:

Locate √10 and √17 on the number line. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

Question 2

Write the decimal expansion of each of the following numbers and say what kind of decimal expansion each has:

(i)36100(ii)418(iii)29(iv)211(v)313(vi)329400\begin{matrix} \text{(i)} & \dfrac{36}{100} \\[1.5em] \text{(ii)} & 4\dfrac{1}{8} \\[1.5em] \text{(iii)} & \dfrac{2}{9} \\[1.5em] \text{(iv)} & \dfrac{2}{11} \\[1.5em] \text{(v)} & \dfrac{3}{13} \\[1.5em] \text{(vi)} & \dfrac{329}{400} \\[1.5em] \end{matrix}

Answer

(i) 36100\text{(i) } \dfrac{36}{100}

Write the decimal expansion of 36/100 say what kind of decimal expansion it is. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

36100=0.36\therefore \dfrac{36}{100} = 0.36

Remainder becomes zero.

Decimal expansion of 36100\bold{\dfrac{36}{100}} is terminating.

(ii) 418\text{(ii) } 4\dfrac{1}{8}

Write the decimal expansion of 4(1/8) say what kind of decimal expansion it is. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

418=4.125\therefore 4\dfrac{1}{8} = 4.125

Remainder becomes zero.

Decimal expansion of 418\bold{4\dfrac{1}{8}} is terminating.

(iii) 29\text{(iii) } \dfrac{2}{9}

Write the decimal expansion of 2/9 say what kind of decimal expansion it is. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

29=0.2222.....=0.2\therefore \dfrac{2}{9} = 0.2222..... = 0.\overline{2}

Remainder is repeating.

Decimal expansion of 29\bold{\dfrac{2}{9}} is non-terminating repeating.

(iv) 211\text{(iv) } \dfrac{2}{11}

Write the decimal expansion of 2/11 say what kind of decimal expansion it is. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

211=0.1818.....=0.18\therefore \dfrac{2}{11} = 0.1818..... = 0.\overline{18}

Remainder is repeating.

Decimal expansion of 211\bold{\dfrac{2}{11}} is non-terminating repeating.

(v) 313\text{(v) } \dfrac{3}{13}

Write the decimal expansion of 3/13 say what kind of decimal expansion it is. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

313=0.2307692307.....=0.230769\therefore \dfrac{3}{13} = 0.2307692307..... = 0.\overline{230769}

Remainder is repeating.

Decimal expansion of 313\bold{\dfrac{3}{13}} is non-terminating repeating.

(vi) 329400\text{(vi) } \dfrac{329}{400}

Write the decimal expansion of 329/400 say what kind of decimal expansion it is. Rational and Irrational Numbers, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

329400=0.8225\therefore \dfrac{329}{400} = 0.8225

Remainder becomes zero.

Decimal expansion of 329400\bold{\dfrac{329}{400}} is terminating.

Question 3

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(i)133125(ii)178(iii)2375(iv)615(v)1258625(vi)77210\begin{matrix} \text{(i)} & \dfrac{13}{3125} \\[1.5em] \text{(ii)} & \dfrac{17}{8} \\[1.5em] \text{(iii)} & \dfrac{23}{75} \\[1.5em] \text{(iv)} & \dfrac{6}{15} \\[1.5em] \text{(v)} & \dfrac{1258}{625} \\[1.5em] \text{(vi)} & \dfrac{77}{210} \\[1.5em] \end{matrix}

Answer

(i) 133125\text{(i) } \dfrac{13}{3125}

The given number 133125\dfrac{13}{3125} is in its lowest form.

Prime factorization of denominator 3125:

5312556255125525551\begin{array}{l|l} 5 & 3125 \\ \hline 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

3125 = 5 x 5 x 5 x 5 x 5 x 1
= 55 x 1
= 1 x 55
= 20 x 55    [∵ 20 = 1]

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 133125\dfrac{13}{3125} has a terminating decimal expansion.

(ii) 178\text{(ii) } \dfrac{17}{8}

The given number 178\dfrac{17}{8} is in its lowest form.

Prime factorization of denominator 8:

2824221\begin{array}{l|l} 2 & 8 \\ \hline 2 & 4 \\ \hline 2 & 2 \\ \hline & 1 \end{array}

8 = 2 x 2 x 2 x 1
= 23 x 1
= 23 x 50    [∵ 50 = 1]

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 178\dfrac{17}{8} has a terminating decimal expansion.

(iii) 2375\text{(iii) } \dfrac{23}{75}

The given number 2375\dfrac{23}{75} is in its lowest form.

Prime factorization of denominator 75:

375525551\begin{array}{l|l} 3 & 75 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

75 = 3 x 5 x 5 x 1
= 3 x 52 x 1
= 3 x 52 x 20    [∵ 20 = 1]

Denominator has a prime factor 3 other than 2 or 5.

∴ The given number 2375\dfrac{23}{75} has a non-terminating repeating decimal expansion.

(iv) 615\text{(iv) } \dfrac{6}{15}

Both numerator and denominator contain common factor 3. Reducing the number to its lowest form:

615=3×23×5=25\dfrac{6}{15} = \dfrac{\cancel{3} \times 2}{\cancel{3} \times 5} \\[0.5em] = \dfrac{2}{5}

The Denominator 5 = 20 x 51

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 615\dfrac{6}{15} has a terminating decimal expansion.

(v) 1258625\text{(v) } \dfrac{1258}{625}

The given number 1258625\dfrac{1258}{625} is in its lowest form.

Prime factorization of denominator 625:

56255125525551\begin{array}{l|l} 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

625 = 5 x 5 x 5 x 5 x 1
= 54 x 1
= 1 x 54
= 20 x 54    [∵ 20 = 1]

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 1258625\dfrac{1258}{625} has a terminating decimal expansion.

(vi) 77210\text{(vi) } \dfrac{77}{210}

Both numerator and denominator contain common factor 7. Reducing the number to its lowest form:

77210=7×117×30=1130\dfrac{77}{210} = \dfrac{\cancel{7} \times 11}{\cancel{7} \times 30} \\[0.5em] = \dfrac{11}{30}

Prime factorization of denominator 30:

230315551\begin{array}{l|l} 2 & 30 \\ \hline 3 & 15 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

30 = 2 x 3 x 5

Denominator has a prime factor 3 other than 2 or 5.

∴ The given number 77210\dfrac{77}{210} has a non-terminating repeating decimal expansion.

Question 4

Without actually performing the long division, find if 98710500\dfrac{987}{10500} will have terminating or non-terminating repeating decimal expansion. Give reasons for your answer.

Answer

GCD of numerator and denominator is 21. Reducing the number to its lowest form:

98710500=21×4721×500=47500\dfrac{987}{10500} = \dfrac{\cancel{21} \times 47}{\cancel{21} \times 500} \\[0.5em] = \dfrac{47}{500}

Prime factorization of denominator 500:

250022505125525551\begin{array}{l|l} 2 & 500 \\ \hline 2 & 250 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

500 = 2 x 2 x 5 x 5 x 5 = 22 x 53

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 98710500\dfrac{987}{10500} has a terminating decimal expansion.

Question 5

Write the decimal expansions of the following numbers which have terminating decimal expansions:

(i)178(ii)133125(iii)780(iv)615(v)22×754(vi)2371500\begin{matrix} \text{(i)} & \dfrac{17}{8} \\[1.5em] \text{(ii)} & \dfrac{13}{3125} \\[1.5em] \text{(iii)} & \dfrac{7}{80} \\[1.5em] \text{(iv)} & \dfrac{6}{15} \\[1.5em] \text{(v)} & \dfrac{2^2 \times 7}{5^4} \\[1.5em] \text{(vi)} & \dfrac{237}{1500} \\[1.5em] \end{matrix}

Answer

(i) 178\text{(i) } \dfrac{17}{8}

The given number 178\dfrac{17}{8} is in its lowest form.

Prime factorization of denominator 8:

2824221\begin{array}{l|l} 2 & 8 \\ \hline 2 & 4 \\ \hline 2 & 2 \\ \hline & 1 \end{array}

8 = 2 x 2 x 2 x 1
= 23 x 50    [∵ 50 = 1]

178=1723=17×5323×53=17×125(2×5)3=2125103=2.125178=2.125\dfrac{17}{8} = \dfrac{17}{2^3} \\[0.5em] = \dfrac{17 \times 5^3}{2^3 \times 5^3} \\[0.5em] = \dfrac{17 \times 125}{(2 \times 5)^3} \\[0.5em] = \dfrac{2125}{10^3} \\[0.5em] = 2.125 \\[0.5em] \bold{\therefore \dfrac{17}{8} = 2.125}

(ii) 133125\text{(ii) } \dfrac{13}{3125}

The given number 133125\dfrac{13}{3125} is in its lowest form.

Prime factorization of denominator 3125:

5312556255125525551\begin{array}{l|l} 5 & 3125 \\ \hline 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

3125 = 5 x 5 x 5 x 5 x 5 x 1
= 55 x 1
= 1 x 55
= 20 x 55    [∵ 20 = 1]

133125=1355=13×2525×55=13×32(2×5)5=416105=0.00416133125=0.00416\dfrac{13}{3125} = \dfrac{13}{5^5} \\[0.5em] = \dfrac{13 \times 2^5}{2^5 \times 5^5} \\[0.5em] = \dfrac{13 \times 32}{(2 \times 5)^5} \\[0.5em] = \dfrac{416}{10^5} \\[0.5em] = 0.00416 \\[0.5em] \bold{\therefore \dfrac{13}{3125} = 0.00416}

(iii) 780\text{(iii) } \dfrac{7}{80}

The given number 780\dfrac{7}{80} is in its lowest form.

Prime factorization of denominator 80:

280240220210551\begin{array}{l|l} 2 & 80 \\ \hline 2 & 40 \\ \hline 2 & 20 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

80 = 2 x 2 x 2 x 2 x 5
= 24 x 5
= 24 x 51

780=724×51=7×5324×51×53=7×12524×54=7×125(2×5)4=875104=0.0875780=0.0875\dfrac{7}{80} = \dfrac{7}{2^4 \times 5^1} \\[0.5em] = \dfrac{7 \times 5^3}{2^4 \times 5^1 \times 5^3} \\[0.5em] = \dfrac{7 \times 125}{2^4 \times 5^4} \\[0.5em] = \dfrac{7 \times 125}{(2 \times 5)^4} \\[0.5em] = \dfrac{875}{10^4} \\[0.5em] = 0.0875 \\[0.5em] \bold{\therefore \dfrac{7}{80} = 0.0875}

(iv) 615\text{(iv) } \dfrac{6}{15}

GCD of numerator and denominator is 3. Reducing the number to its lowest form:

615=3×23×5=25\dfrac{6}{15} = \dfrac{\cancel{3} \times 2}{\cancel{3} \times 5} \\[0.5em] = \dfrac{2}{5}

615=25=2×22×5=410=0.4615=0.4\dfrac{6}{15} = \dfrac{2}{5} \\[0.5em] = \dfrac{2 \times 2}{2 \times 5} \\[0.5em] = \dfrac{4}{10} \\[0.5em] = 0.4 \\[0.5em] \bold{\therefore \dfrac{6}{15} = 0.4}

(v) 22×754\text{(v) } \dfrac{2^2 \times 7}{5^4}

22×754=22×7×2454×24=4×7×16(2×5)4=448104=0.044822×754=0.0448\dfrac{2^2 \times 7}{5^4} = \dfrac{2^2 \times 7 \times 2^4}{5^4 \times 2^4} \\[0.5em] = \dfrac{4 \times 7 \times 16}{(2 \times 5)^4} \\[0.5em] = \dfrac{448}{10^4} \\[0.5em] = 0.0448 \\[0.5em] \bold{\therefore \dfrac{2^2 \times 7}{5^4} = 0.0448}

(vi) 2371500\text{(vi) } \dfrac{237}{1500}

GCD of numerator and denominator is 3. Reducing the number to its lowest form:

2371500=3×793×500=79500\dfrac{237}{1500} = \dfrac{\cancel{3} \times 79}{\cancel{3} \times 500} \\[0.5em] = \dfrac{79}{500}

2371500=79500=79×2500×2=158103=0.1582371500=0.158\dfrac{237}{1500} = \dfrac{79}{500} \\[0.5em] = \dfrac{79 \times 2}{500 \times 2} \\[0.5em] = \dfrac{158}{10^3} \\[0.5em] = 0.158 \\[0.5em] \bold{\therefore \dfrac{237}{1500} = 0.158}

Question 6

Write the denominator of the rational number 2575000\dfrac{257}{5000} in the form 2m × 5n where m, n are non-negative integers. Hence, write its decimal expansion without actual division.

Answer

The given number 2575000\dfrac{257}{5000} is in its lowest form.

Prime factorization of denominator 5000:

25000225002125056255125525551\begin{array}{l|l} 2 & 5000 \\ \hline 2 & 2500 \\ \hline 2 & 1250 \\ \hline 5 & 625 \\ \hline 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

5000 = 2 x 2 x 2 x 5 x 5 x 5 x 5
= 23 x 54

Hence, denominator of rational number 2575000\dfrac{257}{5000} in the form 2m × 5n is 23 x 54 where m = 3 and n = 4.

2575000=25723×54=257×223×54×2=51424×54=514(2×5)4=514104=0.05142575000=0.0514\dfrac{257}{5000} = \dfrac{257}{2^3 \times 5^4} \\[0.5em] = \dfrac{257 \times 2}{2^3 \times 5^4 \times 2} \\[0.5em] = \dfrac{514}{2^4 \times 5^4} \\[0.5em] = \dfrac{514}{(2 \times 5)^4} \\[0.5em] = \dfrac{514}{10^4} \\[0.5em] = 0.0514 \\[0.5em] \bold{\therefore \dfrac{257}{5000} = 0.0514}

Question 7

Write the decimal expansion of 17\dfrac{1}{7}. Hence, write the decimal expansions of 27\dfrac{2}{7}, 37\dfrac{3}{7}, 47\dfrac{4}{7}, 57\dfrac{5}{7} and 67\dfrac{6}{7}.

Answer

The fraction : 17\dfrac{1}{7}

Decimal expansion of 17\dfrac{1}{7} = 0.142857\bold{0.\overline{142857}}

Since, it is recurring

27=2×17=2×0.142857=0.285714\dfrac{2}{7}=2\times\dfrac{1}{7}=2\times0.\overline{142857}=\bold{0.\overline{285714}}

37=3×17=3×0.142857=0.428571\dfrac{3}{7}=3\times\dfrac{1}{7}=3\times0.\overline{142857}=\bold{0.\overline{428571}}

47=4×17=4×0.142857=0.571428\dfrac{4}{7}=4\times\dfrac{1}{7}=4\times0.\overline{142857}=\bold{0.\overline{571428}}

57=5×17=5×0.142857=0.714285\dfrac{5}{7}=5\times\dfrac{1}{7}=5\times0.\overline{142857}=\bold{0.\overline{714285}}

67=6×17=6×0.142857=0.857142\dfrac{6}{7}=6\times\dfrac{1}{7}=6\times0.\overline{142857}=\bold{0.\overline{857142}}

Question 8

Express the following numbers in the form pq\dfrac{p}{q}, where p and q are both integers and q ≠ 0.

(i)0.3(ii)5.2(iii)0.404040...(iv)0.47(v)0.134(vi)0.001\begin{matrix} \text{(i)} & 0.\overline{3} \\[1.5em] \text{(ii)} & 5.\overline{2} \\[1.5em] \text{(iii)} & 0.404040... \\[1.5em] \text{(iv)} & 0.4\overline{7} \\[1.5em] \text{(v)} & 0.1\overline{34} \\[1.5em] \text{(vi)} & 0.\overline{001} \\[1.5em] \end{matrix}

Answer

(i) Let x = 0.30.\overline{3} = 0.333333... ....(i)\qquad \text{....(i)}

As there is one repeating digit after decimal point,

So multiplying both sides of (i) by 10

we get,

10x = 3.3333.......(ii)\qquad \text{....(ii)}

Subtracting (i) from (ii), we get

9x = 3

x = 39\dfrac{3}{9} = 13\bold{\dfrac{1}{3}},

which is in the form of pq\dfrac{p}{q}, q ≠ 0.

(ii) Let x = 5.25.\overline{2} = 5.2222... ....(i)\qquad \text{....(i)}

As there is one repeating digit after decimal point,

So multiplying both sides of (i) by 10

we get,

10x = 52.2222.......(ii)\qquad \text{....(ii)}

Subtracting (i) from (ii), we get

9x = 47

x = 479\bold{\dfrac{47}{9}},

Which is in the form of pq\dfrac{p}{q}, q ≠ 0.

(iii) Let x = 0.400.\overline{40} = 0.4040... ....(i)\qquad \text{....(i)}

As there are two repeating digit after decimal point,

So multiplying both sides of (i) by 100

we get,

100x = 40.4040.......(ii)\qquad \text{....(ii)}

Subtracting (i) from (ii), we get

99x = 40

x = 4099\bold{\dfrac{40}{99}},

Which is in the form of pq\dfrac{p}{q}, q ≠ 0

(iv) Let x = 0.470.4\overline{7} = 0.477777... ....(i)\qquad \text{....(i)}

As there is one repeating digit after decimal point ,

So multiplying both sides of (i) by 10

we get,

10x=4.7777.......(ii)\qquad \text{....(ii)}

Multiply by 100 on both sides

100x=47.77777.........(iii)\qquad \text{....(iii)}

subtracting (ii) from (iii), we get

100x-10x=47.7777.. -4.777...

90x= 43

x = 4390\bold{\dfrac{43}{90}}

Which is in the form of pq\dfrac{p}{q}, q ≠ 0

(v) Let x = 0.1340.1\overline{34} = 0.13434 ... ....(i)\qquad \text{....(i)}

So multiplying both sides of (i) by 10

we get,

10x=1.343434.......(ii)\qquad \text{....(ii)}

Again multiply by 100 on both sides ,

1000x =134.3434.........(iii)\qquad \text{....(iii)}

Subtracting (ii) from (iii), we get

1000x - 10x = 134.3434... - 1.3434...

990x = 133

x = 133990\bold{\dfrac{133}{990}}

which is in the form of pq\dfrac{p}{q}, q ≠ 0

(vi) Let x = 0.0010.\overline{001} = 0.001001001... ....(i)\qquad \text{....(i)}

So multiplying both sides of (i) by 1000,

we get,

1000x = 1.001001.......(ii)\qquad \text{....(ii)}

Subtracting (i) from (ii), we get

1000x - x = 1.001001... - 0.001001...

999x = 1

x = 1999\bold{\dfrac{1}{999}}

which is in the form of pq\dfrac{p}{q}, q ≠ 0.

Question 9

Classify the following numbers as rational or irrational:

(i)23(ii)225(iii)0.3796(iv)7.478478...(v)1.101001000100001...(vi)345.0456\begin{matrix} \text{(i)} & \sqrt{23} \\[1.5em] \text{(ii)} & \sqrt{225} \\[1.5em] \text{(iii)} & 0.3796 \\[1.5em] \text{(iv)} & 7.478478... \\[1.5em] \text{(v)} & 1.101001000100001... \\[1.5em] \text{(vi)} & 345.0\overline{456} \\[1.5em] \end{matrix}

Answer

Rational numbers are in the form c, q ≠ 0, and p and q are integers.

(i) 23\bold{\sqrt{23}} is an irrational number , as it is not a perfect square so it cannot be written in the form pq\dfrac{p}{q} , q ≠ 0.

(ii) 225\sqrt{225} = 15×15\sqrt{15×15} = 15 = 151\dfrac{15}{1},

As it can be written in the form pq\dfrac{p}{q} , q ≠ 0.

225\bold{\sqrt{225}} is a rational number .

(iii) 0.3796 = 37961000\dfrac{3796}{1000}

Since, the decimal expansion is terminating decimal.

∴ 0.3796 is a rational number .

(iv) 7.478478

Let x = 7.478478 ....(i)\text{....(i)}

Since there is three repeating digit after decimal point,

Multiplying both sides by 1000, we get

1000x = 7478.478478... ....(ii)\text{....(ii)}

Subtracting (i) from (ii) we get,

999x = 7471

x = 7471999\bold{\dfrac{7471}{999}}

∴ It is non terminating , repeating rational number .

(v) 1.101001000100001...

Since number of 0's are increasing between two consecutive terms as we move further , So it is non terminating, non repeating decimal.

∴ 1.101001000100001... is an irrational number.

(vi) 345.0456345.0\overline{456}

345.0456345.0\overline{456} = 345.0456456...

Let x = 345.0456456...

Multiply both sides by 10, we get

10x = 3450.456456.. ....(i)\text{....(i)}

Since, after decimal there are three repeating digit:

Multiply both sides by 1000, we get

10000x = 3450456.456456... ....(ii)\text{....(ii)}

Subtracting (i) from (ii) ,

9990x = 3447006

x = 34470069990\bold{\dfrac{3447006}{9990}}

since, it is non-terminating , repeating decimal.

345.0456\bold{345.0\overline{456}} is a Rational number .

Question 10

The following real numbers have decimal expansions as given below. In each case, state whether they are rational or not. If they are rational and expressed in the form pq\dfrac{p}{q}, where p, q are integers, q ≠ 0 and p, q are co-prime, then what can you say about the prime factors of q ?

(i)37.09158(ii)423.04567(iii)8.9010010001...(iv)2.3476817681...\begin{matrix} \text{(i)} & 37.09158 \\[1.5em] \text{(ii)} & 423.\overline{04567}\\[1.5em] \text{(iii)} & 8.9010010001... \\[1.5em] \text{(iv)} & 2.3476817681... \\[1.5em] \end{matrix}

Answer

(i) 37.07158

This can be written as 37.09158 = 3709158100000\dfrac{3709158}{100000}

Since , it is terminating decimal

It is Rational number and the prime factors of its denominator q will be 2 or 5 or both .

(ii) 423.04567423.\overline{04567}

since it has non-terminating recurring decimal,

423.04567423.\overline{04567} = 423.0456704567...

It is a rational number which is non-terminating and repeating. Its denominator q will have prime factors other than 2 or 5.

(iii) 8.9010010001...

Since, it is non-terminating non-repeating decimal number

∴ It is not a Rational number.

(iv) 2.3476817681... = 2.3476812.34\overline{7681}

Since, it is a non-terminating repeating decimal number,

∴ It is a Rational number and its denominator q will have prime factors other than 2 or 5.

Question 11

Insert an irrational number between the following :

(i) 13\dfrac{1}{3} and 12\dfrac{1}{2}

(ii) 25-\dfrac{2}{5} and 12\dfrac{1}{2}

(iii) 0 and 0.1

Answer

(i) One irrational number between 13\dfrac{1}{3} and 12\dfrac{1}{2}

13\dfrac{1}{3} = 0.333...

12\dfrac{1}{2} = 0.5

So there are infinite irrational number between 13\dfrac{1}{3} and 12\dfrac{1}{2}

One irrational number among them can be 0.4040040004...\bold{0.4040040004...}

(ii) One irrational number between 25-\dfrac{2}{5} and 12\dfrac{1}{2}

25-\dfrac{2}{5} = -0.4

12\dfrac{1}{2} = 0.5

So, there are infinite irrational numbers between 25-\dfrac{2}{5} and 12\dfrac{1}{2}

One irrational number among them can be 0.2020020002...\bold{0.2020020002...}

(iii) One irrational number among 0 and 0.1 , can be 0.050050005...\bold{0.050050005...}

Question 12

Insert two irrational number between 2 and 3.

Answer

Consider, the squares (2)2(2)^2 = 4 and (3)2(3)^2 = 9

Two irrational numbers can be te squares root of any natural number between 4 and 9.

As, As, 4<5<6<94 \lt 5 \lt 6\lt 9 , it follows that

4<5<6<9\sqrt{4} \lt \sqrt{5} \lt \sqrt{6} \lt \sqrt{9}

therefore , 5\sqrt{5} and 6\sqrt{6} lie between 2 and 3

2<5<6<32 \lt \sqrt{5} \lt \sqrt{6} \lt \\ 3

Hence, two irrational number between 2 and 3 or 4\sqrt{4} and 9\sqrt{9} are 5\sqrt{5} , 6\sqrt{6} .

Question 13

Write two irrational numbers between 49\dfrac{4}{9} and 711\dfrac{7}{11}.

Answer

49\dfrac{4}{9} is expressed as 0.4444...

711\dfrac{7}{11} is expressed as 0.636363..

So, two irrational number between 49\dfrac{4}{9} and 711\dfrac{7}{11} are 0.5050050005... and 0.6060060006...

Question 14

Find a rational number between 2\sqrt{2} and 3\sqrt{3}.

Answer

Consider the squares of 2\sqrt{2} and 3\sqrt{3}

(2)2{(\sqrt2)^2} = 2 and (3)2{(\sqrt3)^2} = 3

Take any rational number between 2 and 3 which is a perfect squares of a rational number,

One such number is 2.25 and

2.25 = (1.5)2(1.5)^2

2.25\sqrt{2.25} = 1.5

As, 2<2.25<32 \lt 2.25 \lt 3 , it follows that

2<2.25<3\sqrt{2} \lt \sqrt{2.25} \lt \sqrt{3}

2<1.5<3\sqrt{2} \lt 1.5 \lt \sqrt{3}

Hence , one rational number between 2\sqrt{2} and 3\sqrt{3} is 1.5 .

Question 15

Find two rational numbers between 232\sqrt{3} and 15\sqrt{15}.

Answer

232\sqrt{3} = 4×3\sqrt{4 × 3} = 12\sqrt{12}

So, we need to find two irrational number between 12\sqrt{12} and 15\sqrt{15}

Since,12<12.25<12.96<1512<12.25<12.96<15\text{Since}, 12 \lt 12.25 \lt 12.96 \lt 15 \\[0.5em] \Rightarrow \sqrt{12} \lt \sqrt{12.25} \lt \sqrt{12.96} \lt \sqrt{15}

Hence, two rational number between 12\sqrt{12} and 15\sqrt{15} are 12.25\bold{\sqrt{12.25}} and 12.96\bold{\sqrt{12.96}} .

Question 16

Insert an irrational number between 5\sqrt{5} and 7\sqrt{7}.

Answer

consider the squares of 5\sqrt{5} and 7\sqrt{7}

(5)2{(\sqrt5)^2} = 5 and (7)2{(\sqrt7)^2} = 7

As, 5<6<75 \lt 6\lt 7 , it follows that

5<6<7\sqrt{5} \lt \sqrt{6} \lt \sqrt{7} therefore , 6\sqrt{6} lie between 5\sqrt{5} and 7\sqrt{7}

Hence, irrational number between 5\sqrt{5} and 7\sqrt{7} is 6\bold{\sqrt{6}} .

Question 17

Insert two irrational numbers between 3\sqrt{3} and 7\sqrt{7}.

Answer

consider the squares of 3\sqrt{3} and 7\sqrt{7}

(3)2{(\sqrt3)^2} = 3 and (7)2{(\sqrt7)^2} = 7

As, 3<5<6<73 \lt 5 \lt 6\lt 7 , it follows that

3<5<6<7\sqrt{3} \lt \sqrt{5} \lt \sqrt{6} \lt \sqrt{7} therefore , 5\sqrt{5} and 6\sqrt{6} lie between 3\sqrt{3} and 7\sqrt{7}

Hence, two irrational number between 3\sqrt{3} and 7\sqrt{7} is 5\bold{\sqrt{5}} and 6\bold{\sqrt{6}} .

Exercise 1.4

Question 1

Simplify the following:

(i)45320+45(ii)33+227+73(iii)65×25(iv)815÷23(v)248+549(vi)38+12\begin{matrix} \text{(i)} & \sqrt{45} - 3\sqrt{20} + 4\sqrt{5} \\[1.5em] \text{(ii)} & 3\sqrt{3} + 2\sqrt{27} + \dfrac{7}{\sqrt{3}} \\[1.5em] \text{(iii)} & 6\sqrt{5} × 2\sqrt{5} \\[1.5em] \text{(iv)} & 8\sqrt{15} ÷ 2\sqrt{3} \\[1.5em] \text{(v)} & \dfrac{\sqrt{24}}{8} + \dfrac{\sqrt{54}}{9} \\[1.5em] \text{(vi)} & \dfrac{3}{\sqrt{8}} + \dfrac{1}{\sqrt{2}} \\[1.5em] \end{matrix}

Answer

(i) 45320+45=3×3×535×4+45=353×25+45=3565+45=5(36+4)=5\text{(i) } \sqrt{45} - 3\sqrt{20} + 4\sqrt{5} \\[1.5em] =\sqrt{3 × 3 × 5} - 3\sqrt{5 × 4} + 4\sqrt{5} \\[1.5em] = 3\sqrt{5} - 3 × 2\sqrt{5} + 4\sqrt5 \\[1.5em] = 3\sqrt{5} - 6\sqrt{5} + 4\sqrt5 \\[1.5em] = \sqrt{5}(3 - 6 + 4) \\[1.5em] = \bold{\sqrt{5}}

(ii) 33+227+73=33+23×3×3+73=33+2×33+73=33+63+73×33=3×(3+6+73)=3433\text{(ii) } 3\sqrt{3} + 2\sqrt{27} + \dfrac{7}{\sqrt{3}} \\[1.5em] = 3\sqrt{3} + 2\sqrt{3 × 3 × 3} + \dfrac{7}{\sqrt{3}} \\[1.5em] = 3\sqrt{3} + 2 × 3\sqrt{3} + \dfrac{7}{\sqrt{3}} \\[1.5em] = 3\sqrt{3} + 6\sqrt{3} + \dfrac{7}{\sqrt{3}} × \dfrac{\sqrt3}{\sqrt3} \\[1.5em] = \sqrt{3} × (3 + 6 + \dfrac{7}{3}) = \bold{\dfrac{34}{3}{\sqrt{3}}} \\[1.5em]

(iii) 65×25=12×(5×5)=12×(5)2=12×5=60\text{(iii) } 6\sqrt{5} × 2\sqrt{5} \\[1.5em] = 12 × (\sqrt{5} × \sqrt{5}) \\[1.5em] = 12 × (\sqrt{5})^2 \\[1.5em] = 12 × 5 \\[1.5em] = \bold{60} \\[1.5em]

(iv) 815÷23=81523=83×523=83523=852=45\text{(iv) } 8\sqrt{15} ÷ 2\sqrt{3} \\[1.5em] = \dfrac{8\sqrt{15}}{2\sqrt{3}} \\[1.5em] = \dfrac{8\sqrt{3×5}}{2\sqrt{3}} \\[1.5em] = \dfrac{8\sqrt{3}\sqrt{5}}{2\sqrt{3}} \\[1.5em] = \dfrac{8\sqrt{5}}{2} \\[1.5em] = \bold{4\sqrt{5}} \\[1.5em]

(v) 248+549=2×2×68+3×3×69=268+369=64+63=6×(14+13)=6×(3+412)=7126\text{(v) } \dfrac{\sqrt{24}}{8} + \dfrac{\sqrt{54}}{9} \\[1.5em] = \dfrac{\sqrt{2 × 2 × 6}}{8} + \dfrac{\sqrt{3 × 3 × 6}}{9} \\[1.5em] = \dfrac{2\sqrt{6}}{8} + \dfrac{3\sqrt6}{9}\\[1.5em] = \dfrac{\sqrt{6}}{4} + \dfrac{\sqrt6}{3} \\[1.5em] = \sqrt{6} × {(\dfrac{1}{4} + \dfrac{1}{3})} \\[1.5em] = \sqrt{6} × (\dfrac{3 + 4}{12}) \\[1.5em] = \bold{\dfrac{7}{12}{\sqrt{6}}}

(vi) 38+12=32×2×2+12=322+12=12×(32+1)=12×(3+22)=12×52=12×22×52=524\text{(vi) } \dfrac{3}{\sqrt{8}} + \dfrac{1}{\sqrt{2}} \\[1.5em] = \dfrac{3}{\sqrt{2 × 2 × 2}} + \dfrac{1}{\sqrt{2}} \\[1.5em] = \dfrac{3}{2\sqrt{2}} + \dfrac{1}{\sqrt2} \\[1.5em] = \dfrac{1}{\sqrt2} × (\dfrac{3}{2} + 1) \\[1.5em] = \dfrac{1}{\sqrt2} × (\dfrac{3 + 2}{2}) \\[1.5em] = \dfrac{1}{\sqrt2} × \dfrac{5}{2} \\[1.5em] = \dfrac{1}{\sqrt2} × \dfrac{\sqrt{2}}{\sqrt{2}} × \dfrac{5}{2} \\[1.5em] = \bold{\dfrac{5\sqrt{2}}{4}} \\[1.5em]

Question 2

Simplify the following:

(i)(5+7)(2+5)(ii)(5+5)(55)(iii)(5+2)2(iv)(37)2(v)(2+3)(5+7)(vi)(4+5)(37)\begin{matrix} \text{(i)} & (5 + \sqrt{7})(2 + \sqrt{5}) \\[1.5em] \text{(ii)} & (5 + \sqrt{5})(5 - \sqrt{5}) \\[1.5em] \text{(iii)} & (\sqrt{5} + \sqrt{2})^2 \\[1.5em] \text{(iv)} & (\sqrt{3} - \sqrt{7})^2 \\[1.5em] \text{(v)} & (\sqrt{2} + \sqrt{3})(\sqrt{5} + \sqrt{7}) \\[1.5em] \text{(vi)} & (4 + \sqrt{5})(\sqrt{3} - \sqrt{7}) \\[1.5em] \end{matrix}

Answer

(i) (5+7)(2+5)=10+55+27+75=10+55+27+35\text{(i) } (5 + \sqrt{7})(2 + \sqrt{5}) \\[1.5em] = 10 + 5\sqrt{5} + 2\sqrt{7} + \sqrt{7}\sqrt{5} \\[1.5em] = \bold{10 + 5\sqrt{5} + 2\sqrt{7} + \sqrt{35}} \\[1.5em]

(ii) (5+5)(55)Using identity:(a+b)(ab)=a2b2=52(5)2=255=20\text{(ii) } (5 + \sqrt{5})(5 - \sqrt{5}) \\[1.5em] \text{Using identity} : (a + b)(a - b) = a^2 - b^2 \\[1.5em] = 5^2 - (\sqrt{5})^2 \\[1.5em] = \bold{25 - 5 = 20} \\[1.5em]

(iii) (5+2)2Using identity:(a+b)2=a2+2ab+b2=(5+2)2=(5)2+2×5×2+(2)2=5+210+2=7+210\text{(iii) } (\sqrt{5} + \sqrt{2})^2 \\[1.5em] \text{Using identity} : (a + b)^2 = a^2 + 2ab + b^2 \\[1.5em] = (\sqrt{5} + \sqrt{2})^2 = {(\sqrt{5})}^2 + 2 × \sqrt{5} ×\sqrt{2} + {(\sqrt{2})}^2 \\[1.5em] = 5 + 2\sqrt{10} + 2 \\[1.5em] = \bold{7 + 2\sqrt{10}} \\[1.5em]

(iv) (37)2Using identity:(ab)2=a22ab+b2=(37)2=(3)22×3×7+(7)2=3221+7=10221\text{(iv) } (\sqrt{3} - \sqrt{7})^2 \\[1.5em] \text{Using identity} : (a - b)^2 = a^2 - 2ab + b^2 \\[1.5em] = (\sqrt{3} - \sqrt{7})^2 = {(\sqrt{3})}^2 - 2 × \sqrt{3} ×\sqrt{7} + {(\sqrt{7})}^2 \\[1.5em] = 3 - 2\sqrt{21} + 7 \\[1.5em] = \bold{10 - 2\sqrt{21}} \\[1.5em]

(v) (2+3)(5+7)=2×5+2×7+3×5+3×7=10+14+15+21\text{(v) } (\sqrt{2} + \sqrt{3})(\sqrt{5} + \sqrt{7}) \\[1.5em] = \sqrt{2} × \sqrt{5} + \sqrt{2} × \sqrt{7} + \sqrt{3} × \sqrt{5} + \sqrt{3} × \sqrt{7} \\[1.5em] = \bold{\sqrt{10} + \sqrt{14} + \sqrt{15} + \sqrt{21}} \\[1.5em]

(vi) (4+5)(37)=4347+5×35×7=4347+1535\text{(vi) } (4 + \sqrt{5})(\sqrt{3} - \sqrt{7}) \\[1.5em] = 4\sqrt{3} - 4\sqrt{7} + \sqrt{5} × \sqrt{3} - \sqrt{5} × \sqrt{7} \\[1.5em] = \bold{4\sqrt{3} - 4\sqrt{7} + \sqrt{15} - \sqrt{35}} \\[1.5em]

Question 3

If 2\sqrt{2}=1.414, then find the value of :

(i)8+50+72+98(ii)332250+41282018\begin{matrix} \text{(i)} & \sqrt{8} + \sqrt{50} + \sqrt{72} + \sqrt{98} \\[1.5em] \text{(ii)} & 3\sqrt{32} - 2\sqrt{50} + 4\sqrt{128} - 20\sqrt{18} \\[1.5em] \end{matrix}

Answer

(i) 8+50+72+98=2×2×2+5×5×2+6×6×2+2×7×7=22+52+62+72=(2+5+6+7)×2=(20)×2=20×1.414=28.28\text{(i) } \sqrt{8} + \sqrt{50} + \sqrt{72} + \sqrt{98} \\[1.5em] = \sqrt{2 × 2 × 2} + \sqrt{5 × 5 × 2} + \sqrt{6 × 6 × 2} + \sqrt{2 × 7 × 7} \\[1.5em] = 2\sqrt{2} + 5\sqrt{2} + 6\sqrt{2} + 7\sqrt{2} \\[1.5em] = (2 + 5 + 6 + 7) × \sqrt{2} \\[1.5em] = (20) × \sqrt{2} \\[1.5em] = \bold{20 × 1.414 = 28.28 } \\[1.5em]

(ii) 332250+41282018=32×4×425×5×2+48×8×2202×3×3=122102+322602=(1210+3260)×2=(4470)×2=(26)×2=26×1.414=36.764\text{(ii) } 3\sqrt{32} - 2\sqrt{50} + 4\sqrt{128} - 20\sqrt{18} \\[1.5em] = 3\sqrt{2 × 4 × 4 } - 2\sqrt{5 × 5 × 2} + 4\sqrt{8 × 8 × 2} - 20\sqrt{2 × 3 × 3} \\[1.5em] = 12\sqrt{2} - 10\sqrt{2} + 32\sqrt{2} - 60\sqrt{2} \\[1.5em] = (12 - 10 + 32 - 60) × \sqrt{2} \\[1.5em] = (44 - 70) × \sqrt{2} \\[1.5em] = (-26) × \sqrt{2} \\[1.5em] = \bold{-26 × 1.414 = -36.764 } \\[1.5em]

Question 4

If 3\sqrt{3} = 1.732, then find the value of :

(i)27+75+108243(ii)512348+675+7108\begin{matrix} \text{(i)} & \sqrt{27} + \sqrt{75} + \sqrt{108} - \sqrt{243} \\[1.5em] \text{(ii)} & 5\sqrt{12} - 3\sqrt{48} + 6\sqrt{75} + 7\sqrt{108} \\[1.5em] \end{matrix}

Answer

(i) 27+75+108243=3×3×3+3×5×5+2×2×3×3×33×3×3×3×3=33+53+6393=(3+5+69)×3=(149)×3=5×1.732=8.660\text{(i) } \sqrt{27} + \sqrt{75} + \sqrt{108} - \sqrt{243} \\[1.5em] = \sqrt{3 × 3 × 3 } + \sqrt{3 × 5 × 5} + \sqrt{2 × 2 × 3 × 3 ×3 } - \sqrt{3 × 3 × 3 × 3 × 3} \\[1.5em] = 3\sqrt{3} + 5\sqrt{3} + 6\sqrt{3} - 9\sqrt{3} \\[1.5em] = (3 + 5 + 6 - 9) × \sqrt{3} \\[1.5em] = (14 - 9) × \sqrt{3} \\[1.5em] = \bold{5 × 1.732 = 8.660} \\[1.5em]

(ii) 512348+675+7108=52×2×332×2×2×2×3+65×5×3+72×2×3×3×3=5×234×33+6×53+7×63=103123+303+423=(1012+30+42)×3=(8212)×3=70×1.732=121.24\text{(ii) } 5\sqrt{12} - 3\sqrt{48} + 6\sqrt{75} + 7\sqrt{108} \\[1.5em] = 5\sqrt{2 × 2 × 3 } - 3\sqrt{2 × 2 × 2 × 2 × 3} + 6\sqrt{5 × 5 × 3 } + 7\sqrt{2 × 2 × 3 × 3 × 3} \\[1.5em] = 5 × 2\sqrt{3} - 4 × 3\sqrt{3} + 6 × 5\sqrt{3} + 7 × 6\sqrt{3} \\[1.5em] = 10\sqrt{3} - 12\sqrt{3} + 30\sqrt{3} + 42\sqrt{3} \\[1.5em] = (10 - 12 + 30 +42) × \sqrt{3} \\[1.5em] = (82 - 12) × \sqrt{3} \\[1.5em] = \bold{70 × 1.732 = 121.24} \\[1.5em]

Question 5

State which of the following numbers are irrational :

(i)49,370,725,165(ii)249,3200,253,4916\begin{matrix} \text{(i)} & \sqrt{\dfrac{4}{9}}, -{\dfrac{3}{70}},\sqrt{\dfrac{7}{25}},\sqrt{\dfrac{16}{5}} \\[1.5em] \text{(ii)} & -{\sqrt{\dfrac{2}{49}}}, {\dfrac{3}{200}},\sqrt{\dfrac{25}{3}},-{\sqrt{\dfrac{49}{16}}} \\[1.5em] \end{matrix}

Answer

(i) 49=23370=370725=75165=45\text{(i) } \sqrt{\dfrac{4}{9}} = \dfrac{2}{3} \\[1.5em] -\dfrac{3}{70} = -\dfrac{3}{70} \\[1.5em] \sqrt{\dfrac{7}{25}} = \dfrac{\sqrt{7}}{5} \\[1.5em] \sqrt{\dfrac{16}{5}} = \dfrac{4}{\sqrt{5}} \\[1.5em]

725\bold{\sqrt{\dfrac{7}{25}}} and 165\bold{\sqrt{\dfrac{16}{5}}} are irrational numbers as they cannot be written in the form pq\dfrac{{p}}{q} where p and q are integers.

49\bold{\sqrt{\dfrac{4}{9}}} and 370\bold{- \dfrac{3}{70}} are rational numbers and they can be written in the form pq\dfrac{{p}}{q} where p and q are integers .

(ii) 249=273200=3200253=534916=74\text{(ii) } - \sqrt{\dfrac{2}{49}} = - \dfrac{\sqrt{2}}{7} \\[1.5em] \dfrac{3}{200} = \dfrac{3}{200} \\[1.5em] \sqrt{\dfrac{25}{3}} = \dfrac{5}{\sqrt{3}} \\[1.5em] -\sqrt{\dfrac{49}{16}} = -\dfrac{7}{{4}} \\[1.5em]

249\bold{- \sqrt{\dfrac{2}{49}}} and 253\bold{\sqrt{\dfrac{25}{3}}} are irrational numbers as they cannot be written in the form pq\dfrac{{p}}{q} where p and q are integers.

4916-\bold{\sqrt{\dfrac{49}{16}}} and 3200\bold{\dfrac{3}{200}} are rational numbers and they can be written in the form pq\dfrac{{p}}{q} where p and q are integers.

Question 6

State which of the following numbers will change into non-terminating, non-recurring decimals :

(i)32(ii)25681(iii)27×16(iv)536\begin{matrix} \text{(i)} & - 3\sqrt{2} \\[1.5em] \text{(ii)} & \sqrt{\dfrac{256}{81}} \\[1.5em] \text{(iii)} & \sqrt{27 × 16} \\[1.5em] \text{(iv)} & \sqrt{\dfrac{5}{36}} \\[1.5em] \end{matrix}

Answer (i) 32\text{(i) } -3\sqrt{2}

it is an irrational number.

We know that 2\sqrt2 is a non-terminating, non-recurring decimal.
So, 32\bold{-3\sqrt{2}} is also non-terminating, non-recurring decimal .

(ii) 25681\text{(ii) } \sqrt{\dfrac{256}{81}}

Here, 25681=169\sqrt{\dfrac{256}{81}} = \dfrac{16}{9} it is a rational number.

(iii) (27×16)=27×16=33×4=123\text{(iii) } \sqrt{(27 × 16)} = \sqrt{27} × \sqrt{16} = 3\sqrt{3} × 4 = 12\sqrt{3}

It is an irrational number.

We know that 3\sqrt{3} is a non-terminating, non-recurring decimal.

So , 12312\sqrt{3} is non-terminating, non-recurring decimal.

Hence, 27×16\bold{\sqrt{27 × 16}} is also non-terminating, non-recurring decimal .

(iv) 536\text{(iv) }\sqrt{\dfrac{5}{36}}

Here, 536\sqrt{\dfrac{5}{36}} = 56\dfrac{\sqrt{5}}{6} , It is an irrational number.

As, 56\dfrac{\sqrt{5}}{6} is non-terminating , non-recurring decimal So , 536\sqrt{\dfrac{5}{36}} is also non-terminating, non-recurring decimal .

Question 7

State which of the following numbers are irrational:

(i)3725(ii)23+23(iii)33(iv)2753(v)(23)(2+3)(vi)(3+5)2(vii)(257)2(viii)(36)2\begin{matrix} \text{(i)} & 3-\sqrt{\dfrac{7}{25}}\\[1.5em] \text{(ii)} & -\dfrac{2}{3}+\sqrt[3]{2} \\[1.5em] \text{(iii)} & \dfrac{3}{\sqrt{3}} \\[1.5em] \text{(iv)} & -\dfrac{2}{7}\sqrt[3]{5} \\[1.5em] \text{(v)} & (2-\sqrt{3})(2+\sqrt{3}) \\[1.5em] \text{(vi)} & (3+\sqrt{5})^2 \\[1.5em] \text{(vii)} &(\dfrac{2}{5}\sqrt{7})^2 \\[1.5em] \text{(viii)} & (3-\sqrt{6})^2 \\[1.5em] \end{matrix}

Answer

(i) 3725=37(5×5)=375\text{(i) } 3 - \sqrt{\dfrac{7}{25}} = 3 - \dfrac{\sqrt7}{(\sqrt{5 × 5})} = 3 - \dfrac{\sqrt7}{5}

As , 3753 - \dfrac{\sqrt{7}}{5} is an irrational number,

3725\bold{3 - \sqrt{\dfrac{7}{25}}} is also an irrational number .

(ii) 23+23\text{(ii) } -\dfrac{2}{3} + \sqrt[3]{2}

Here, 2 is not perfect cube

23+23-\dfrac{2}{3} + \sqrt[3]{2} is an irrational number .

(iii) 33=33×33=333=3\text{(iii) } \dfrac{3}{\sqrt{3}} = \dfrac{3}{\sqrt{3}} × \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{3\sqrt{3}}{3} = \sqrt{3}

As, 3\sqrt{3} is an irrational number.

33\dfrac{3}{\sqrt{3}} is an irrational number .

(iv) 2753\text{(iv) } -\dfrac{2}{7}\sqrt[3]{5}

Here, 5 is not perfect cube

2753-\dfrac{2}{7}\sqrt[3]{5} is an irrational number .

(v) (23)(2+3)\text{(v) } (2-\sqrt{3})(2+\sqrt{3})

Using identity : (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2

(23)(2+3)=22(3)2=43=1(2-\sqrt{3})(2+\sqrt{3}) = 2^2 - (\sqrt3)^2 = 4 - 3 = 1

Hence , (23)(2+3)(2-\sqrt{3})(2+\sqrt{3}) is a rational number .

(vi) (3+5)2\text{(vi) }(3 + \sqrt{5})^2

Using identity : (a + b)2 = a2 + 2ab + b2

(3+5)2=32+2×3×5+(5)2=9+65+5=9+5+65=14+65(3 + \sqrt{5})^2 = 3^2 + 2 × 3 × \sqrt{5} + (\sqrt{5})^2 \\[1.5em] = 9 + 6\sqrt{5} + 5 \\[1.5em] = 9 + 5 + 6\sqrt{5} \\[1.5em] = 14 + 6\sqrt{5}

As, 14 + 656\sqrt{5} is an irrational number

(3+5)2(3+\sqrt{5})^2 is an irrational number.

(vii) (257)2\text{(vii) } \Big(\dfrac{2}{5}\sqrt{7}\Big)^2

(257)2=257×257=425×(7)2=425×7=2825\Big(\dfrac{2}{5}\sqrt{7}\Big)^2 = \dfrac{2}{5}\sqrt{7} × \dfrac{2}{5}\sqrt{7} \\[1.5em] = \dfrac{4}{25} × (\sqrt7)^2 \\[1.5em] = \dfrac{4}{25} × 7 \\[1.5em] = \dfrac{28}{25}

As, 2825\dfrac{28}{25} is a rational number,

(257)2(\dfrac{2}{5}\sqrt{7})^2 is a rational number.

(viii) (36)2\text{(viii) } (3 - \sqrt{6})^2

Using identity : (a + b)2 = a2 + 2ab + b2

(36)2=322×3×6+(6)2=966+6=9+666=1566(3 - \sqrt{6})^2 = 3^2 - 2 × 3 × \sqrt{6} + (\sqrt{6})^2 \\[1.5em] = 9 - 6\sqrt{6} + 6 \\[1.5em] = 9 + 6 - 6\sqrt{6} \\[1.5em] = 15 - 6\sqrt{6}

As, 15 - 666\sqrt{6} is an irrational number.

(36)2(3 - \sqrt{6})^2 is an irrational number .

Question 8

Prove that the following numbers are irrational:

(i)23(ii)33(iii)54\begin{matrix} \text{(i)} & \sqrt[3]{2} \\[1.5em] \text{(ii)} & \sqrt[3]{3} \\[1.5em] \text{(iii)} & \sqrt[4]{5} \\[1.5em] \end{matrix}

Answer

(i) Suppose that 23\sqrt[3]{2} = pq\dfrac{p}{q}, where p, q are integers , q ≠ 0 , p and q have no common factors (except 1)

2=(pq)3p3=2q3....(i)\Rightarrow 2 = \Big(\dfrac{p}{q}\Big)^3 \\[1.5em] \Rightarrow p^3 = 2q^3 \qquad \text{....(i)}

As 2 divides 2q3 \Rightarrow 2 divides p3
\Rightarrow 2 divides p    (using generalisation of theorem 1)

Let p = 2k , where k is an integer.

Substituting this value of p in (i), we get

\phantom{\Rightarrow}(2k)3 = 2q3
\Rightarrow 8k3 = 2q3
\Rightarrow 4k3 = q3

As 2 divides 4k3 \Rightarrow 2 divides q3

\Rightarrow 2 divides q    (using generalisation of theorem 1)

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, our supposition is wrong. It follows that 23\sqrt[3]{2} cannot be expressed as pq\dfrac{p}{q}, where p, q are integers, q > 0, p and q have no common factors (except 1).

23\bold{\sqrt[3]{2}} is an irrational number.

(ii) Suppose that 33\sqrt[3]{3} = pq\dfrac{p}{q}, where p, q are integers, q ≠ 0, p and q have no common factors (except 1)

3=(pq)3p3=3q3....(i)\Rightarrow 3 = \Big(\dfrac{p}{q}\Big)^3 \\[1.5em] \Rightarrow p^3 = 3q^3 \qquad \text{....(i)}

As 3 divides 3q3 \Rightarrow 3 divides p3
\Rightarrow 3 divides p    (using generalisation of theorem 1)

Let p = 3k, where k is an integer.

Substituting this value of p in (i), we get

\phantom{\Rightarrow}(3k)3 = 3q3
\Rightarrow 27k3 = 3q3
\Rightarrow 9k3 = q3

As 3 divides 9k3 \Rightarrow 3 divides q3
\Rightarrow 3 divides q    (using generalisation of theorem 1)

Thus, p and q have a common factor 3. This contradicts that p and q have no common factors (except 1).

Hence, our supposition is wrong . It follows that 33\sqrt[3]{3} cannot be expressed as pq\dfrac{p}{q}, where p, q are integers, q > 0, p and q have no common factors (except 1).

Therefore, 33\bold{\sqrt[3]{3}} is an irrational number.

(iii) Suppose that 54\sqrt[4]{5} = pq\dfrac{p}{q}, where p, q are integers, q ≠ 0, p and q have no common factors (except 1)

5=(pq)4p4=5q4....(i)\Rightarrow 5 = \Big(\dfrac{p}{q}\Big)^4 \\[1.5em] \Rightarrow p^4 = 5q^4 \qquad \text{....(i)}

As 5 divides 5q4 \Rightarrow 5 divides p4
\Rightarrow 5 divides p    (using generalisation of theorem 1)

Let p= 5k, where k is an integer.

Substituting this value of p in (i), we get

\phantom{\Rightarrow}(5k)4 = 5q4
\Rightarrow 625k4 = 5q4
\Rightarrow 125k4 = q4

As 5 divides 125k4 \Rightarrow 5 divides q4
\Rightarrow 5 divides q    (using generalisation of theorem 1)

Thus, p and q have a common factor 5. This contradicts that p and q have no common factors (except 1).

Hence, our supposition is wrong . It follows that 54\sqrt[4]{5} cannot be expressed as pq\dfrac{p}{q}, where p, q are integers, q > 0, p and q have no common factors (except 1).

Therefore, 54\bold{\sqrt[4]{5}} is an irrational number .

Question 9

Find the greatest and the smallest real numbers among the following real numbers :

(i)23,32,7,15(ii)32,95,4,435,323\begin{matrix} \text{(i)} & 2\sqrt{3},\dfrac{3}{\sqrt{2}},-\sqrt{7},\sqrt{15} \\[1.5em] \text{(ii)} & -3\sqrt{2},\dfrac{9}{\sqrt{5}},-4,{\dfrac{4}{3}}{\sqrt{5}},{\dfrac{3}{2}}{\sqrt{3}} \\[1.5em] \end{matrix}

Answer

(i) We will write all the numbers as square roots under one radical.

23=4×3=1232=92=4.57152\sqrt{3}=\sqrt{4 × 3} = \sqrt{12} \\[1.5em] \dfrac{3}{\sqrt{2}} = \sqrt{\dfrac{9}{2}} = \sqrt{4.5} \\[1.5em] -\sqrt{7} \\[1.5em] \sqrt{15} \\[1.5em]

∴ The greatest real number is 15\bold{\sqrt{15}} and smallest real number is 7\bold{-\sqrt{7}} .

(ii) We will write all the numbers as square roots under one radical.

32=(9×2)=1895=815=16.24=16435=16×59=809=8.88323=9×34=274=6.75-3\sqrt{2}=-\sqrt{(9×2)} = -\sqrt{18} \\[1.5em] \dfrac{9}{\sqrt{5}} = \sqrt{\dfrac{81}{5}} = \sqrt{16.2} \\[1.5em] -4 = -\sqrt{16} \\[1.5em] {\dfrac{4}{3}}\sqrt{5} = \dfrac{\sqrt{16}×\sqrt{5}}{\sqrt{9}} = \sqrt{\dfrac{80}{9}} = \sqrt{8.88} \\[1.5em] {\dfrac{3}{2}}\sqrt{3} = \dfrac{\sqrt{9} × \sqrt{3}}{\sqrt{4}} = \sqrt{\dfrac{27}{4}} = \sqrt{6.75} \\[1.5em]

Here, 16.2\sqrt{16.2} is the greatest and 18-\sqrt{18} is the smallest.

∴ The greatest real number is 95\bold{\dfrac{9}{\sqrt{5}}} and smallest real number is 32.\bold{-3\sqrt{2}}.

Question 10

Write the following numbers in ascending order:

(i)32,23,15,4(ii)32,28,4,50,43\begin{matrix} \text{(i)} & 3\sqrt{2} , 2\sqrt{3} , \sqrt{15} , 4 \\[1.5em] \text{(ii)} & 3\sqrt{2} , 2\sqrt{8} , 4, \sqrt{50} ,4\sqrt{3} \\[1.5em] \end{matrix}

Answer

(i) Write all the numbers as square root under one radical :

32=9×2=9×2=1823=4×3=4×3=1215=154=16Since,12<15<16<1812<15<16<1823<15<4<323\sqrt{2} = \sqrt{9} × \sqrt{2} = \sqrt{9 × 2} = \sqrt{18} \\[1.5em] 2\sqrt{3} = \sqrt{4} × \sqrt{3} = \sqrt{4 × 3} = \sqrt{12} \\[1.5em] \sqrt{15} = \sqrt{15} \\[1.5em] 4 = \sqrt{16} \\[1.5em] \text{Since} , 12 \lt 15 \lt 16 \lt 18 \\[1.5em] \Rightarrow \sqrt{12} \lt \sqrt{15} \lt \sqrt{16} \lt \sqrt{18} \\[1.5em] \Rightarrow 2\sqrt3 \lt \sqrt{15} \lt 4 \lt 3\sqrt{2}

Hence, the given numbers in ascending order are, 23,15,4,322\bold{\sqrt{3}} , \bold{\sqrt{15}} , \bold{4} , \bold{3\sqrt{2}}.

(ii) Write all the numbers as square root under one radical :

32=9×2=9×2=1828=4×8=4×8=324=1650=5043=16×3=16×3=48Since,16<18<32<48<5016<18<32<48<504<32<28<43<503\sqrt{2} = \sqrt{9} × \sqrt{2} = \sqrt{9 × 2} = \sqrt{18} \\[1.5em] 2\sqrt{8} = \sqrt{4} × \sqrt{8} = \sqrt{4 × 8} = \sqrt{32} \\[1.5em] 4 = \sqrt{16} \\[1.5em] \sqrt{50} = \sqrt{50} \\[1.5em] 4\sqrt{3} = \sqrt{16} × \sqrt{3} = \sqrt{16 × 3} = \sqrt{48} \\[1.5em] \text{Since} , 16 \lt 18 \lt 32 \lt 48 \lt 50 \\[1.5em] \sqrt{16} \lt \sqrt{18} \lt \sqrt{32} \lt \sqrt{48} \lt \sqrt{50} \\[1.5em] \Rightarrow 4 \lt 3\sqrt2 \lt 2\sqrt{8} \lt 4\sqrt{3} \lt \sqrt{50}

Hence , 32,28,43,4503\bold{\sqrt{2}} , 2\bold{\sqrt{8}} , 4\bold{\sqrt{3}} , 4\bold{\sqrt{50}} are in ascending order .

Question 11

Write the following real numbers in descending order:

(i)92,325,43,365(ii)53,732,3,35,27.\begin{matrix} \text{(i)} & \dfrac{9}{\sqrt{2}} , {\dfrac{3}{2}}\sqrt{5} , 4\sqrt{3} , 3\sqrt{\dfrac{6}{5}} \\[1.5em] \text{(ii)} & \dfrac{5}{\sqrt{3}} , {\dfrac{7}{3}}{\sqrt{2}} , -\sqrt{3} , 3\sqrt{5} , 2\sqrt{7}. \\[1.5em] \end{matrix}

Answer

(i) Write all the numbers as square root under one radical :

92=812=812=40.5325=94×5=9×54=454=11.2543=16×3=16×3=48365=9×65=9×65=545=10.8Since,48>40.5>11.25>10.848>40.5>11.25>10.843>92>325>365\dfrac{9}{\sqrt{2}} = \dfrac{\sqrt{81}}{\sqrt{2}} = \sqrt{\dfrac{81}{2}} = \sqrt{40.5} \\[1.5em] {\dfrac{3}{2}}{\sqrt{5}} = \sqrt{\dfrac{9}{4}}×{\sqrt{5}} = \sqrt{\dfrac{9 × 5}{4}} = \sqrt{\dfrac{45}{4}} = \sqrt{11.25} \\[1.5em] 4\sqrt{3} = \sqrt{16} × \sqrt{3} = \sqrt{16 × 3} = \sqrt{48} \\[1.5em] 3\sqrt{\dfrac{6}{5}} = \sqrt{9} × \sqrt{\dfrac{6}{5}} = \sqrt{\dfrac{9 × 6}{5}} = \sqrt{\dfrac{54}{5}} = \sqrt{10.8} \\[1.5em] \text{Since} , 48 \gt 40.5 \gt 11.25 \gt 10.8 \\[1.5em] \Rightarrow \sqrt{48} \gt \sqrt{40.5} \gt \sqrt{11.25} \gt \sqrt{10.8} \\[1.5em] \Rightarrow 4\sqrt3 \gt \dfrac{9}{\sqrt{2}} \gt {\dfrac{3}{2}}{\sqrt{5}} \gt 3\sqrt{\dfrac{6}{5}}

Hence, the given numbers in descending order are 43,92,325,365\bold{4\sqrt{3}} , \bold{\dfrac{9}{\sqrt{2}}} , \bold{{\dfrac{3}{2}}{\sqrt{5}}} , \bold{3\sqrt{\dfrac{6}{5}}}.

(ii) Write all the numbers as square root under one radical :

53=253=253=8.33732=499×2=49×29=989=10.883=335=9×5=4527=4×7=28Since,45>28>10.88>8.33>345>28>10.88>8.33>335>27>732>53>3\dfrac{5}{\sqrt{3}} = \dfrac{\sqrt{25}}{\sqrt{3}} = \sqrt{\dfrac{25}{3}} = \sqrt{8.33} \\[1.5em] {\dfrac{7}{3}}{\sqrt{2}} = \sqrt{\dfrac{49}{9}} ×{\sqrt{2}} = \sqrt{\dfrac{49 × 2}{9}} = \sqrt{\dfrac{98}{9}} = \sqrt{10.88} \\[1.5em] -\sqrt{3} = -\sqrt{3} \\[1.5em] 3\sqrt{5} = \sqrt{9 × 5} = \sqrt{45} \\[1.5em] 2\sqrt{7} = \sqrt{4 × 7} = \sqrt{28} \\[1.5em] \text{Since} , 45 \gt 28 \gt 10.88 \gt 8.33 \gt -3 \\[1.5em] \sqrt{45} \gt \sqrt{28} \gt \sqrt{10.88} \gt \sqrt{8.33} \gt -\sqrt{3} \\[1.5em] \Rightarrow 3\sqrt{5} \gt 2\sqrt{7} \gt {\dfrac{7}{3}}{\sqrt{2}} \gt \dfrac{5}{\sqrt{3}} \gt -\sqrt{3}

Hence, 35,27,732,53,3\bold{3\sqrt{5}}, \bold{2\sqrt{7}}, \bold{{{\dfrac{7}{3}}{\sqrt{2}}}}, \bold{\dfrac{5}{\sqrt{3}}}, -\bold{\sqrt{3}} are in descending order.

Question 12

Arrange the following numbers in ascending order : 23,3,56\sqrt[3]{2} , \sqrt3 , \sqrt[6]{5}.

Answer

L.C.M of 3, 2, 6 is 6 :

23=213=(22)16=(4)163=312=(33)16=(27)1656=(5)16As, 4<5<27(4)16<(5)16<(27)1623<56<3\sqrt[3]{2} = 2^\dfrac{1}{3} = (2^2)^\dfrac{1}{6} = (4)^\dfrac{1}{6} \\[1.5em] \sqrt{3} = 3^\dfrac{1}{2} = (3^3)^\dfrac{1}{6} = (27)^\dfrac{1}{6} \\[1.5em] \sqrt[6]{5} = (5)^\dfrac{1}{6} \\[1.5em] \text{As, } 4 \lt 5 \lt 27 \\[1.5em] \Rightarrow (4)^\dfrac{1}{6} \lt (5)^\dfrac{1}{6} \lt (27)^\dfrac{1}{6} \\[1.5em] \Rightarrow \sqrt[3]{2} \lt \sqrt[6]{5} \lt \sqrt3 \\[1.5em]

Hence , the given number in ascending order are 23,56,3\sqrt[3]{2} , \sqrt[6]{5} , \sqrt{3} .

Exercise 1.5

Question 1

Rationalise the denominator of the following :

(i)345(ii)573(iii)347(iv)1732+1(v)16415(vi)176(vii)15+2(viii)2+323\begin{matrix} \text{(i)} & \dfrac{3}{4\sqrt{5}} \\[1.5em] \text{(ii)} & \dfrac{5\sqrt{7}}{\sqrt{3}} \\[1.5em] \text{(iii)} & \dfrac{3}{4 - \sqrt{7}} \\[1.5em] \text{(iv)} & \dfrac{17}{3\sqrt{2} + 1} \\[1.5em] \text{(v)} & \dfrac{16}{\sqrt{41}-5} \\[1.5em] \text{(vi)} & \dfrac{1}{\sqrt{7} - \sqrt{6}} \\[1.5em] \text{(vii)} & \dfrac{1}{\sqrt{5} + \sqrt{2}} \\[1.5em] \text{(viii)} & \dfrac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} \\[1.5em] \end{matrix}

Answer

(i)\text{(i)}

345\dfrac{3}{4\sqrt{5}}

Let us rationalise the denominator,

Then,

345=3×545×5354×53520\dfrac{3}{4\sqrt{5}} = \dfrac{3×\sqrt{5}}{4\sqrt{5} × \sqrt{5}} \\[1.5em] \Rightarrow\dfrac{3\sqrt{5}}{4 × 5} \\[1.5em] \bold{\Rightarrow\dfrac{3\sqrt{5}}{20}}

(ii)\text{(ii)}

573\dfrac{5\sqrt{7}}{\sqrt{3}}

Let us rationalise the denominator,

Then,

573=57×33×35213\dfrac{5\sqrt{7}}{\sqrt{3}} = \dfrac{5\sqrt{7}×\sqrt{3}}{\sqrt{3} × \sqrt{3}} \\[1.5em] \bold{\Rightarrow\dfrac{5\sqrt{21}}{3}}

(iii)\text{(iii)}

347\dfrac{3}{4 - \sqrt{7}}

Let us rationalise the denominator,

Then,

347=347×4+74+73(4+7)(4)2(7)23(4+7)(16)(7)3(4+7)9(4+7)3\dfrac{3}{4 - \sqrt{7}} = \dfrac{3}{4 - \sqrt{7}} × \dfrac{4 + \sqrt{7}}{4 + \sqrt{7}} \\[1.5em] \Rightarrow\dfrac{3(4 + \sqrt{7})}{(4)^2 - (\sqrt{7})^2} \\[1.5em] \Rightarrow\dfrac{3(4 + \sqrt{7})}{(16) - (7)} \\[1.5em] \Rightarrow\dfrac{3(4 + \sqrt{7})}{9} \\[1.5em] \bold{\Rightarrow\dfrac{(4 + \sqrt{7})}{3}} \\[1.5em]

(iv)\text{(iv)}

1732+1\dfrac{17}{3\sqrt{2}+1}

Let us rationalise the denominator,

Then,

1732+1=1732+1×32132117(321)(32)2117(321)17(321)\dfrac{17}{3\sqrt{2} + 1} = \dfrac{17}{3\sqrt{2} + 1}×\dfrac{3\sqrt{2} - 1}{3\sqrt{2} - 1} \\[1.5em] \Rightarrow\dfrac{17(3\sqrt{2} - 1)}{(3\sqrt{2})^2 - 1} \\[1.5em] \Rightarrow\dfrac{17(3\sqrt{2} - 1)}{17} \\[1.5em] \bold{\Rightarrow(3\sqrt{2} - 1)} \\[1.5em]

(v)\text{(v)}

16415\dfrac{16}{\sqrt{41}-5}

Let us rationalise the denominator,

Then,

16415=16415×41+541+516(41+5)(41)25216(41+5)412516(41+5)1641+5\dfrac{16}{\sqrt{41} - 5} = \dfrac{16}{\sqrt{41} - 5}×\dfrac{\sqrt{41} + 5}{\sqrt{41} + 5} \\[1.5em] \Rightarrow\dfrac{16({\sqrt{41} + 5})}{(\sqrt{41})^2 - 5^2} \\[1.5em] \Rightarrow\dfrac{16({\sqrt{41} + 5})}{41 - 25} \\[1.5em] {\Rightarrow\dfrac{16({\sqrt{41} + 5})}{16}} \\[1.5em] \bold{\sqrt{41} + 5}

(vi)\text{(vi)}

176\dfrac{1}{\sqrt{7} - \sqrt{6}}

Let us rationalise the denominator,

Then,

176=176×7+67+6(7+6)(7)2(6)27+6767+6\dfrac{1}{\sqrt{7} - \sqrt{6}} = \dfrac{1}{\sqrt{7} - \sqrt{6}} × \dfrac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}} \\[1.5em] \Rightarrow\dfrac{({\sqrt{7} + \sqrt{6}})}{(\sqrt{7})^2 - (\sqrt{6})^2} \\[1.5em] \Rightarrow\dfrac{\sqrt{7} + \sqrt{6}}{7 - 6 } \\[1.5em] \bold{{\Rightarrow\sqrt{7} + \sqrt{6}}} \\[1.5em]

(vii)\text{(vii)}

15+2\dfrac{1}{\sqrt{5}+\sqrt{2}}

Let us rationalise the denominator,

Then,

15+2=15+2×525252(5)2(2)2523\dfrac{1}{\sqrt{5} + \sqrt{2}} = \dfrac{1}{\sqrt{5} +\sqrt{2}} × \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} \\[1.5em] \Rightarrow\dfrac{{\sqrt{5} - \sqrt{2}}}{(\sqrt{5})^2 - (\sqrt{2})^2} \\[1.5em] \bold{\Rightarrow\dfrac{{\sqrt{5} - \sqrt{2}}}{3}} \\[1.5em]

(viii)\text{(viii)}

2+323\dfrac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}

Let us rationalise the denominator,

Then,

2+323=2+323×2+32+3=(2+3)2(2)2(3)2=(2)2+(3)2+2×2×3(2)2(3)2=2+3+22323=(5+26)\dfrac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} = \dfrac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} × \dfrac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}} \\[1.5em] = \dfrac{{(\sqrt{2} + \sqrt{3})^2}}{(\sqrt{2})^2 - (\sqrt{3})^2} \\[1.5em] = \dfrac{{(\sqrt{2})^2 + (\sqrt{3})^2} + 2 × \sqrt{2} × \sqrt{3}}{(\sqrt{2})^2 - (\sqrt{3})^2} \\[1.5em] = \dfrac{2 + 3 + 2\sqrt{2}\sqrt{3}}{2 - 3} \\[1.5em] = \bold{-(5 + 2\sqrt{6})} \\[1.5em]

Question 2

Simplify each of the following by rationalising the denominator:

(i)7+35735(ii)3223+22(iii)53147+214\begin{matrix} \text{(i)} & \dfrac{7 + 3\sqrt{5}}{7 - 3\sqrt{5}} \\[1.5em] \text{(ii)} & \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}} \\[1.5em] \text{(iii)} & \dfrac{5 - 3\sqrt{14}}{7 + 2\sqrt{14}} \\[1.5em] \end{matrix}

Answer

(i)\text(i)

7+35735\dfrac{7 + 3\sqrt{5}}{7 - 3\sqrt{5}}

Let us rationalise the denominator,

Then,

7+35735=7+35735×7+357+35(7+35)272(35)272+(35)2+2×7×35494549+45+425494594+42549452×(47+215)4(47+215)2\dfrac{7 + 3\sqrt{5}}{7 - 3\sqrt{5}} = \dfrac{7 + 3\sqrt{5}}{7 - 3\sqrt{5}} × \dfrac{7 + 3\sqrt{5}}{7 + 3\sqrt{5}} \\[1.5em] \Rightarrow\dfrac{(7 + 3\sqrt{5})^2}{7^2 - (3\sqrt{5})^2} \\[1.5em] \Rightarrow\dfrac{7^2 + (3\sqrt{5})^2 + 2 × 7 × 3\sqrt{5}}{49 - 45} \\[1.5em] \Rightarrow\dfrac{49 + 45 + 42\sqrt{5}}{49 - 45} \\[1.5em] \Rightarrow\dfrac{94 + 42\sqrt{5}}{49 - 45} \\[1.5em] \Rightarrow\dfrac{2 × (47 + 21\sqrt{5})}{4} \\[1.5em] \bold{\Rightarrow\dfrac{(47 + 21\sqrt{5})}{2}} \\[1.5em]

(ii)\text(ii)

3223+22\dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}}

3223+22=3223+22×322322(322)232(22)232+(22)22×3×22989+81221(17122)117122\dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}} = \dfrac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}} × \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\[1.5em] \Rightarrow\dfrac{(3 - 2\sqrt{2})^2}{3^2 - (2\sqrt{2})^2} \\[1.5em] \Rightarrow\dfrac{3^2 + (2\sqrt{2})^2 - 2 × 3 × 2\sqrt{2}}{9-8} \\[1.5em] \Rightarrow\dfrac{9 + 8 - 12\sqrt{2}}{1} \\[1.5em] \Rightarrow\dfrac{(17 - 12\sqrt{2})}{1} \\[1.5em] \bold{\Rightarrow{17 - 12\sqrt{2}}} \\[1.5em]

(iii)\text(iii)

53147+214\dfrac{5 - 3\sqrt{14}}{7 + 2\sqrt{14}}

53147+214=53147+214×72147214(5314)(7214)72(214)23510142114+(6×14)495611931147119+31147\dfrac{5 - 3\sqrt{14}}{7 + 2\sqrt{14}} = \dfrac{5 - 3\sqrt{14}}{7 + 2\sqrt{14}} × \dfrac{7 - 2\sqrt{14}}{7 - 2\sqrt{14}} \\[1.5em] \Rightarrow\dfrac{(5 - 3\sqrt{14})(7 - 2\sqrt{14})}{7^2 - (2\sqrt{14})^2} \\[1.5em] \Rightarrow\dfrac{35 - 10\sqrt{14} - 21\sqrt{14} + (6 × 14)}{49 - 56} \\[1.5em] \Rightarrow\dfrac{119 - 31\sqrt{14}}{-7} \\[1.5em] \bold{\Rightarrow\dfrac{-119+31\sqrt{14}}{7}} \\[1.5em]

Question 3

Simplify : 7310+3256+53215+32\dfrac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \dfrac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \dfrac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}

Answer

7310+3256+53215+32\dfrac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \dfrac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \dfrac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}} ....(i)\qquad \text{....(i)}

Simplifying each term individually,

7310+3\dfrac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}}

Let us rationalize its denominator,

7310+3=7310+3×103103(73)(103)(10)2(3)273×1073×3(10)2(3)273×1073×3(10)2(3)2730(7×3)103(730(7×3)7)7×(3037)303....(ii)\dfrac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} = \dfrac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} × \dfrac{\sqrt{10} - \sqrt{3}}{\sqrt{10} - \sqrt{3}} \\[1.5em] \Rightarrow\dfrac{(7\sqrt{3})(\sqrt{10} - \sqrt{3}) }{(\sqrt{10})^2 - (\sqrt{3})^2} \\[1.5em]\Rightarrow\dfrac{7\sqrt{3} × \sqrt{10} - 7\sqrt{3} × \sqrt{3} }{(\sqrt{10})^2 - (\sqrt{3})^2} \\[1.5em] \Rightarrow\dfrac{7\sqrt{3 × 10} - 7\sqrt{3 × 3} }{(\sqrt{10})^2 - (\sqrt{3})^2} \\[1.5em] \Rightarrow\dfrac{7\sqrt{30}-(7×3)}{10-3} \\[1.5em] \Rightarrow\Big(\dfrac{7\sqrt{30}-(7×3)}{7}\Big) \\[1.5em] \Rightarrow 7 ×\Big(\dfrac{\sqrt{30} - 3}{7}\Big) \\[1.5em] \bold{\Rightarrow{\sqrt{30}-3}} \qquad \text{....(ii)} \\[1.5em]

256+5\dfrac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}}

Let us rationalize its denominator,

256+5=256+5×6565(25)(65)(6)2(5)225×625×5(6)2(5)225×625×56523010123010....(iii)\dfrac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} = \dfrac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} × \dfrac{\sqrt6 - \sqrt{5}}{\sqrt{6} - \sqrt{5}} \\[1.5em] \Rightarrow\dfrac{(2\sqrt{5})(\sqrt{6} - \sqrt{5}) }{(\sqrt{6})^2 - (\sqrt{5})^2} \\[1.5em] \Rightarrow\dfrac{2\sqrt{5} × \sqrt{6} - 2\sqrt{5} ×\sqrt{5} }{(\sqrt{6})^2 - (\sqrt{5})^2} \\[1.5em] \Rightarrow\dfrac{2\sqrt{5 × 6} - 2\sqrt{5 × 5} }{6 - 5} \\[1.5em] \Rightarrow\dfrac{2\sqrt{30} - 10}{1} \\[1.5em] \bold{\Rightarrow{2\sqrt{30} - 10}} \qquad \text{....(iii)} \\[1.5em]

3215+32\dfrac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}

Let us rationalize its denominator,

3215+32=3215+32×15321532(32)(1532)(15)2(32)232×1532×32(15)2(32)2330181518330183[3(30+6)3](30+61)630....(iv)\dfrac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}} = \dfrac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}} × \dfrac{\sqrt{15} - 3\sqrt{2}}{\sqrt{15} - 3\sqrt{2}} \\[1.5em] \Rightarrow\dfrac{(3\sqrt{2})(\sqrt{15} - 3\sqrt{2}) }{(\sqrt{15})^2 - (3\sqrt{2})^2} \\[1.5em] \Rightarrow\dfrac{3\sqrt{2} × \sqrt{15} - 3\sqrt{2} × 3\sqrt{2} }{(\sqrt{15})^2 - (3\sqrt{2})^2} \\[1.5em] \Rightarrow\dfrac{3\sqrt{30} - 18}{15 - 18} \\[1.5em] \Rightarrow\dfrac{3\sqrt{30} - 18}{-3} \\[1.5em] \Rightarrow\Big[\dfrac{-3(-\sqrt{30} + 6)}{-3}\Big] \\[1.5em] \Rightarrow-\Big(\dfrac{-\sqrt{30} + 6}{1}\Big) \\[1.5em] \bold{\Rightarrow{6 - \sqrt{30}}} \qquad \text{....(iv)} \\[1.5em]

Using (ii) , (iii) , (iv) in equation (i):

7310+3256+53215+32=(303)(23010)(630)\dfrac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \dfrac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \dfrac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}} =(\sqrt{30} - 3)-(2\sqrt{30} - 10) - (6 -\sqrt{30}) \\[1.5em] 303230+106+30\Rightarrow \sqrt{30} - 3 - 2\sqrt{30} + 10 - 6 + \sqrt{30} \\[1.5em] 2302303+106\Rightarrow 2\sqrt{30} - 2\sqrt{30} -3 + 10 - 6 \\[1.5em] 1\bold{\Rightarrow 1}

Question 4

Simplify : 14+5+15+6+16+7+17+8+18+9\dfrac{1}{\sqrt{4} + \sqrt{5}} + \dfrac{1}{\sqrt{5} + \sqrt{6}} + \dfrac{1}{\sqrt{6} + \sqrt{7}} + \dfrac{1}{\sqrt{7} + \sqrt{8}} +\dfrac{1}{\sqrt{8} + \sqrt{9}}.

Answer

14+5+15+6+16+7+17+8+18+9....(i)\dfrac{1}{\sqrt{4} + \sqrt{5}} + \dfrac{1}{\sqrt{5} + \sqrt{6}} + \dfrac{1}{\sqrt{6} + \sqrt{7}} + \dfrac{1}{\sqrt{7} + \sqrt{8}} +\dfrac{1}{\sqrt{8} + \sqrt{9}} \qquad \text{....(i)}

Simplifying each term individually,

14+5\dfrac{1}{\sqrt{4} + \sqrt{5}}

Let us rationalise its denominator,

Then,

14+5=14+5×454545(4)2(5)24545(45)(54)....(ii)\dfrac{1}{\sqrt{4} + \sqrt{5}} = \dfrac{1}{\sqrt{4} + \sqrt{5}} × \dfrac{\sqrt{4} - \sqrt{5}}{\sqrt{4} - \sqrt{5}} \\[1.5em] \Rightarrow\dfrac{{\sqrt{4} - \sqrt{5}}}{(\sqrt{4})^2 - (\sqrt{5})^2} \\[1.5em] \Rightarrow\dfrac{{\sqrt{4} - \sqrt{5}}}{4 - 5} \\[1.5em] \Rightarrow{-(\sqrt{4} - \sqrt{5})} \\[1.5em] \Rightarrow{(\sqrt{5} - \sqrt{4})} \qquad \text{....(ii)} \\[1.5em]

15+6\dfrac{1}{\sqrt{5} + \sqrt{6}}

Let us rationalise its denominator,

Then,

15+6=15+6×565656(5)2(6)25656(56)(65)....(iii)\dfrac{1}{\sqrt{5} + \sqrt{6}} = \dfrac{1}{\sqrt{5}+\sqrt{6}}×\dfrac{\sqrt{5} - \sqrt{6}}{\sqrt{5} - \sqrt{6}} \\[1.5em] \Rightarrow\dfrac{{\sqrt{5} - \sqrt{6}}}{(\sqrt{5})^2 - (\sqrt{6})^2} \\[1.5em] \Rightarrow\dfrac{{\sqrt{5} - \sqrt{6}}}{5 - 6} \\[1.5em] \Rightarrow{-(\sqrt{5} - \sqrt{6})} \\[1.5em] \Rightarrow{(\sqrt{6} - \sqrt{5})} \qquad \text{....(iii)} \\[1.5em]

16+7\dfrac{1}{\sqrt{6} + \sqrt{7}}

Let us rationalise its denominator,

Then,

16+7=16+7×676767(6)2(7)26767(67)(76)....(iv)\dfrac{1}{\sqrt{6} + \sqrt{7}} = \dfrac{1}{\sqrt{6}+ \sqrt{7}} × \dfrac{\sqrt{6} - \sqrt{7}}{\sqrt{6} - \sqrt{7}} \\[1.5em] \Rightarrow\dfrac{{\sqrt{6} - \sqrt{7}}}{(\sqrt{6})^2 - (\sqrt{7})^2} \\[1.5em] \Rightarrow\dfrac{{\sqrt{6} - \sqrt{7}}}{6-7} \\[1.5em] \Rightarrow{-(\sqrt{6} - \sqrt{7})} \\[1.5em] \Rightarrow{(\sqrt{7} - \sqrt{6})} \qquad \text{....(iv)} \\[1.5em]

17+8\dfrac{1}{\sqrt7+\sqrt8}

Let us rationalise its denominator,

Then,

17+8=17+8×787878(7)2(8)27878(78)(87)....(v)\dfrac{1}{\sqrt{7} + \sqrt{8}} = \dfrac{1}{\sqrt{7}+ \sqrt{8}} × \dfrac{\sqrt{7} - \sqrt{8}}{\sqrt{7} - \sqrt{8}} \\[1.5em] \Rightarrow\dfrac{{\sqrt{7} - \sqrt{8}}}{(\sqrt{7})^2 - (\sqrt{8})^2} \\[1.5em] \Rightarrow\dfrac{{\sqrt{7} - \sqrt{8}}}{7-8} \\[1.5em] \Rightarrow{-(\sqrt{7} - \sqrt{8})} \\[1.5em] \Rightarrow{(\sqrt{8} - \sqrt{7})} \qquad \text{....(v)} \\[1.5em]

14+5\dfrac{1}{\sqrt{4} + \sqrt{5}}

Let us rationalise its denominator,

Then,

18+9=18+9×898989(8)2(9)28989(89)(98)....(vi)\dfrac{1}{\sqrt{8} + \sqrt{9}} = \dfrac{1}{\sqrt{8}+ \sqrt{9}} × \dfrac{\sqrt{8} - \sqrt{9}}{\sqrt{8} - \sqrt{9}} \\[1.5em] \Rightarrow\dfrac{{\sqrt {8} - \sqrt{9}}}{(\sqrt{8})^2 - (\sqrt{9})^2} \\[1.5em] \Rightarrow\dfrac{{\sqrt{8} - \sqrt{9}}}{8 - 9} \\[1.5em] \Rightarrow{-(\sqrt{8} - \sqrt{9})} \\[1.5em] \Rightarrow{(\sqrt{9}-\sqrt{8})} \qquad \text{....(vi)} \\[1.5em]

Using (ii) , (iii) , (iv) , (v) , (vi) in equation (i):

14+5+15+6+16+7+17+8+18+9=54+65+76+87+98=94=32=1\dfrac{1}{\sqrt4+\sqrt5} + \dfrac{1}{\sqrt5+\sqrt6} + \dfrac{1}{\sqrt6+\sqrt7} + \dfrac{1}{\sqrt7+\sqrt8} +\dfrac{1}{\sqrt8+\sqrt9} \\[1.5em] = \sqrt{5} - \sqrt{4} + \sqrt{6} - \sqrt{5} + \sqrt{7} - \sqrt{6} + \sqrt{8} - \sqrt{7} + \sqrt{9} - \sqrt{8} \\[1.5em] = \sqrt{9} - \sqrt{4} \\[1.5em] = \bold{3 - 2 = 1 } \\[1.5em]

Question 5

Given a and b are rational numbers. Find a and b if :

(i)353+25=1911+a5(ii)2+33223=ab6(iii)7+575757+5=a+711b5(iv)22322+23=a+b24\begin{matrix} \text{(i)} & \dfrac{3 - \sqrt{5}}{3 + 2\sqrt{5}} = -\dfrac{19}{11} + a\sqrt{5} \\[1.5em] \text{(ii)} & \dfrac{\sqrt{2} + \sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = a - b\sqrt{6} \\[1.5em] \text{(iii)} & \dfrac{7 + \sqrt{5}}{7 - \sqrt{5}} - \dfrac{7 - \sqrt{5}}{7 + \sqrt{5}} = a + \dfrac{7}{11}b\sqrt{5} \\[1.5em] \text{(iv)} & \dfrac{2\sqrt{2} - \sqrt{3}}{2\sqrt{2} + 2\sqrt{3}} = a + b\sqrt{24} \end{matrix}

Answer

(i) Since, it is given that

353+25\dfrac{3 - \sqrt{5}}{3 + 2\sqrt{5}} = 1911+a5-\dfrac{19}{11} + a\sqrt{5}

On solving,

(35)(3+25)×(325)(325)96535+1032(25)2199592095+19111911+95111911+9511=1911+a5\dfrac{(3 - \sqrt{5})}{(3 + 2\sqrt{5})} × \dfrac{(3-2\sqrt{5})}{(3-2\sqrt{5})} \\[1.5em] \Rightarrow \dfrac{9 - 6\sqrt{5} - 3\sqrt{5} + 10 }{3^2 - (2\sqrt{5})^2} \\[1.5em] \Rightarrow \dfrac{19 - 9{\sqrt{5}}}{9 - 20} \\[1.5em] \Rightarrow \dfrac{-9{\sqrt{5}} + 19}{-11} \\[1.5em] \Rightarrow -\dfrac{19}{11} + \dfrac{9\sqrt{5}}{11} \\[1.5em] \therefore -\dfrac{19}{11} + \dfrac{9\sqrt5}{11} = -\dfrac{19}{11} + a\sqrt{5}

Hence, a = 911\dfrac{9}{11}.

(ii) Since, it is given that

2+33223=ab6\dfrac{\sqrt{2} + \sqrt{3}}{3\sqrt{2} - 2\sqrt{3}} = a - b\sqrt6

On solving,

2+33223×(32+23)(32+23)6+26+36+6(32)2(23)212+56181212+566126+5662+5662(56)6=ab6\dfrac{\sqrt{2} + \sqrt3}{3\sqrt{2} - 2\sqrt{3}} × \dfrac{(3\sqrt{2} + 2\sqrt{3})}{(3\sqrt{2} + 2\sqrt{3})} \\[1.5em] \Rightarrow \dfrac{6 + 2\sqrt{6} + 3\sqrt6 + 6 }{(3\sqrt{2})^2 -(2\sqrt{3})^2} \\[1.5em] \Rightarrow \dfrac{12 + 5{\sqrt6}}{18-12} \\[1.5em] \Rightarrow \dfrac{12 + 5{\sqrt{6}}}{6} \\[1.5em] \Rightarrow \dfrac{12}{6} + \dfrac{5\sqrt{6}}{6} \\[1.5em] \Rightarrow 2 + \dfrac{5\sqrt{6}}{6} \\[1.5em] \therefore 2 - \dfrac{(-5\sqrt{6})}{6} = a - b\sqrt{6}

Hence, a = 2 and b = 56\dfrac{-5}{6}.

(iii) Since, it is given that

(7+5)(75)(75)(7+5)=a+711b5\dfrac{(7 + \sqrt5)}{(7 - \sqrt{5})} - \dfrac{(7 - \sqrt5)}{(7 + \sqrt{5})} = a+\dfrac{7}{11}b\sqrt{5}

On solving,

(7+5)(7+5)(75)(75)(75)(7+5)(7+5)2(75)2(75)(7+5)(72+2×7×5+(5)2)(722×7×5+(5)2)72(5)2(49+2×75+5)(492×75+5)72(5)249+145+549+145572(5)2285495285447511a+711b5=7511a+711b5=0+711×1×5\dfrac{(7 + \sqrt{5})(7 + \sqrt{5}) - (7-\sqrt{5})(7 - \sqrt{5})}{(7 - \sqrt{5})(7 + \sqrt{5})} \\[1.5em] \dfrac{(7 + \sqrt{5})^2 - (7 - \sqrt{5})^2}{(7 - \sqrt{5})(7+\sqrt{5})} \\[1.5em] \Rightarrow \dfrac{(7^2 + 2 × 7 × \sqrt5 + (\sqrt{5})^2)-(7^2 - 2 × 7 × \sqrt5 + (\sqrt{5})^2)}{7^2-(\sqrt5)^2} \\[1.5em] \Rightarrow \dfrac{(49 + 2 × 7\sqrt{5} + 5)-(49 - 2 × 7\sqrt{5}+ 5)}{7^2 - (\sqrt{5})^2} \\[1.5em] \Rightarrow \dfrac{49+14\sqrt{5} + 5 - 49 + 14\sqrt{5} - 5}{7^2 - (\sqrt5)^2} \\[1.5em] \Rightarrow \dfrac{28{\sqrt{5}}}{49 - 5} \\[1.5em] \Rightarrow \dfrac{28{\sqrt{5}}}{44} \\[1.5em] \Rightarrow \dfrac{7{\sqrt{5}}}{11} \\[1.5em] \therefore a+\dfrac{7}{11}b\sqrt{5} = \dfrac{7{\sqrt5}}{11} \\[1.5em] \Rightarrow a + \dfrac{7}{11}b\sqrt{5} = 0 + \dfrac{7}{11} × 1 × \sqrt{5}

Hence, value of a = 0 and b = 1.

(iv) Since, it is given that

22322+23=a+b24\dfrac{2\sqrt{2} - \sqrt{3}}{2\sqrt{2} + 2\sqrt{3}} = a + b\sqrt{24}

Rationalizing, 22322+23\dfrac{2\sqrt{2} - \sqrt{3}}{2\sqrt{2} + 2\sqrt{3}}, we get :

22322+23×22232223(223)(2223)(22)2(23)284626+681214664144+66472+32672+362×2272+36×22472+3244.\Rightarrow \dfrac{2\sqrt{2} - \sqrt{3}}{2\sqrt{2} + 2\sqrt{3}} \times \dfrac{2\sqrt{2} - 2\sqrt{3}}{2\sqrt{2} - 2\sqrt{3}} \\[1em] \Rightarrow \dfrac{(2\sqrt{2} - \sqrt{3})(2\sqrt{2} - 2\sqrt{3})}{(2\sqrt{2})^2 - (2\sqrt{3})^2} \\[1em] \Rightarrow \dfrac{8 - 4\sqrt{6} - 2\sqrt{6} + 6}{8 - 12} \\[1em] \Rightarrow \dfrac{14 - 6\sqrt{6}}{-4} \\[1em] \Rightarrow -\dfrac{14}{4} + \dfrac{6\sqrt{6}}{4} \\[1em] \Rightarrow -\dfrac{7}{2} + \dfrac{3}{2}\sqrt{6} \\[1em] \Rightarrow -\dfrac{7}{2} + \dfrac{3\sqrt{6}}{2} \times \dfrac{2}{2} \\[1em] \Rightarrow -\dfrac{7}{2} + \dfrac{3\sqrt{6 \times 2^2}}{4} \\[1em] \Rightarrow -\dfrac{7}{2} + \dfrac{3\sqrt{24}}{4}.

Comparing 72+3244-\dfrac{7}{2} + \dfrac{3\sqrt{24}}{4} with a + b24b\sqrt{24}, we get :

a = 72,b=34-\dfrac{7}{2}, b = \dfrac{3}{4}.

Hence, a = 72,b=34-\dfrac{7}{2}, b = \dfrac{3}{4}.

Question 6

If 7+353+573535=p+q5\dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} = p + q\sqrt{5} , find the values of p and q where p and q are rational numbers.

Answer

Since, it is given that

(7+35)3+5\dfrac{(7 + 3\sqrt{5})}{3 + \sqrt{5}} - (735)(35)\dfrac{(7 - 3\sqrt{5})} {(3 - \sqrt{5})} = p + q5\sqrt{5}

On solving,

(7+35)(35)(735)(3+5)(3+5)(35)(2175+9515)(21+759515)32(5)2(2175+9515)(21+759515)952175+95152175+95+159518514544×54=55=p+q50+1×5=p+q5\dfrac{(7 + 3\sqrt{5})(3 - \sqrt{5}) - (7 - 3\sqrt{5})(3 + \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} \\[1.5em] \Rightarrow \dfrac{(21 - 7\sqrt{5} + 9\sqrt{5} - 15) - (21 + 7\sqrt{5} - 9\sqrt{5} - 15)}{3^2 - {(\sqrt{5})}^2} \\[1.5em] \Rightarrow \dfrac{(21 - 7\sqrt{5} + 9\sqrt{5} - 15) - (21 + 7\sqrt{5} - 9\sqrt{5} - 15)}{9-5} \\[1.5em] \Rightarrow \dfrac{21 - 7\sqrt{5} + 9\sqrt{5} - 15 - 21 - 7\sqrt{5} + 9\sqrt{5} + 15}{9-5} \\[1.5em] \Rightarrow \dfrac{18{\sqrt{5}} - 14{\sqrt{5}}}{4} \\[1.5em] \Rightarrow \dfrac{4 × {\sqrt{5}}}{4} = \sqrt{5} \\[1.5em] \therefore\sqrt{5} = p + q{\sqrt{5}} \\[1.5em] \Rightarrow 0 + 1 × \sqrt{5} = p + q{\sqrt{5}}

Hence, value of p = 0 and q = 1.

Question 7

Rationalise the denominator of the following and hence evaluate by taking 2\sqrt{2} = 1.414 and 3\sqrt{3} = 1.732 , upto three places of decimal:

(i)22+2(ii)13+2\begin{matrix} \text{(i)} & \dfrac{\sqrt2}{2+\sqrt2} \\[1.5em] \text{(ii)} & \dfrac{1}{\sqrt3+\sqrt2} \\[1.5em] \end{matrix}

Answer

(i) Rationalise the denominator ,

22+2=22+2×22222×(22)22(2)222242(21)\dfrac{\sqrt{2}}{2 + \sqrt{2}} = \dfrac{\sqrt{2}}{2+ \sqrt{2}} × \dfrac{2 - \sqrt{2}}{2 - \sqrt{2}} \\[1.5em] \Rightarrow \sqrt{2} × \dfrac{(2 - \sqrt{2})}{2^2 - (\sqrt{2})^2} \\[1.5em] \Rightarrow \dfrac{2{\sqrt{2}} - 2}{4 - 2} \\[1.5em] \Rightarrow (\sqrt{2} - 1) \\[1.5em]

Since, 2\sqrt{2} = 1.414

1.41410.414\Rightarrow {1.414 - 1} \\[1.5em] \Rightarrow\bold{ 0.414} \\[1.5em]

(ii)(\text{ii}) Rationalise the denominator ,

13+2=13+2×3232(32)(3)2(2)23232(32)\dfrac{1}{\sqrt{3} + \sqrt{2}} = \dfrac{1}{\sqrt{3} + \sqrt{2}} × \dfrac{{\sqrt{3} - \sqrt{2}}}{{\sqrt{3} - \sqrt{2}}} \\[1.5em] \Rightarrow \dfrac{(\sqrt{3} - \sqrt{2})}{(\sqrt{3})^2 -(\sqrt{2})^2} \\[1.5em] \Rightarrow \dfrac{\sqrt{3} - \sqrt{2}}{3-2} \\[1.5em] \Rightarrow (\sqrt{3} - \sqrt{2}) \\[1.5em]

Since, 3\sqrt{3} = 1.732

1.7321.4140.318\Rightarrow {1.732 - 1.414} \\[1.5em] \Rightarrow\bold{0.318} \\[1.5em]

Question 8

If a = 2 + 3\sqrt{3} , then find the value a1aa - \dfrac{1}{a}.

Answer

Given,

a=2+31a=12+3×23232322(3)22343(23)a1a=2+32+3a1a=23a = 2 + \sqrt{3} \\[1.5em] \therefore \dfrac{1}{a} = \dfrac{1}{2 + \sqrt{3}} ×\dfrac{2 - \sqrt{3}}{2 - \sqrt{3}} \\[1.5em] \Rightarrow \dfrac{2 - \sqrt{3}}{2^2 - (\sqrt{3})^2} \\[1.5em] \Rightarrow \dfrac{2 - \sqrt{3}}{4 - 3} \\[1.5em] \Rightarrow (2 - \sqrt{3}) \\[1.5em] \therefore a - \dfrac{1}{a} = 2 + \sqrt{3} - 2 + \sqrt{3} \\[1.5em] \Rightarrow\bold{ a - \dfrac{1}{a} = 2\sqrt{3}} \\[1.5em]

Question 9

If x=12x = 1-\sqrt{2}, find the value of (x1x)4{\Big(x-\dfrac{1}{x}\Big)}^4.

Answer

Given,

x=121x=112×1+21+21+21(2)21+212(1+2)x1x=12+1+2x1x=2(x1x)4=24=16x = 1 - \sqrt{2} \\[1.5em] \therefore \dfrac{1}{x} = \dfrac{1}{1 - \sqrt{2}} × \dfrac{1 + \sqrt{2}}{1 + \sqrt{2}} \\[1.5em] \Rightarrow \dfrac{1 + \sqrt{2}}{1 - (\sqrt{2})^2} \\[1.5em] \Rightarrow \dfrac{1 + \sqrt{2}}{1 - 2} \\[1.5em] \Rightarrow - (1 +\sqrt{2}) \\[1.5em] \therefore x - \dfrac{1}{x} = 1 - \sqrt{2} + 1 + \sqrt{2} \\[1.5em] \Rightarrow x - \dfrac{1}{x} = 2 \\[1.5em] \therefore \bold{{\Big(x-\dfrac{1}{x}\Big)}^4 = 2 ^4 = 16}

Question 10

If x = 5265 - 2\sqrt{6}, find the value of x2+1x2x^2 + \dfrac{1}{x^2}.

Answer

Given x = 5265 - 2\sqrt{6}

1x=1526=1526×5+265+265+26(5)2(26)25+262524=5+2611x=5+26(x+1x)=(526)+(5+26)=10....(i)\therefore \dfrac{1}{x} = \dfrac{1}{5 - 2\sqrt{6}} = \dfrac{1}{5 - 2\sqrt{6}} × \dfrac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}} \\[1.5em] \Rightarrow \dfrac{5 + 2\sqrt{6}}{(5)^2 - (2\sqrt{6})^2} \\[1.5em] \Rightarrow \dfrac{5 + 2\sqrt{6}}{25 - 24} = \dfrac{5 + 2\sqrt{6}}{1} \\[1.5em] \Rightarrow\dfrac{1}{x} = 5+2\sqrt6 \\[1.5em] \therefore (x + \dfrac{1}{x}) = (5 - 2\sqrt6) + (5 + 2\sqrt6) = 10 \qquad \text{....(i)}

We know that (x+1x)2=x2+1x2+2{\Big(x + \dfrac{1}{x}\Big)}^2 = x^2 + \dfrac{1}{x^2} + 2

x2+1x2=(x+1x)22x2+1x2=1022.....using(i)x2+1x2=1002x2+1x2=98\Rightarrow x^2 + \dfrac{1}{x^2} = {\Big(x + \dfrac{1}{x}\Big)}^2 -2 \\[1.5em] \Rightarrow x^2 + \dfrac{1}{x^2} = 10^2 - 2 ..... \text{using(i)} \\[1.5em] \Rightarrow x^2 + \dfrac{1}{x^2} = 100 - 2 \\[1.5em] \bold{x^2 + \dfrac{1}{x^2} = 98}

Question 11

If p = 252+5\dfrac{2-\sqrt{5}}{2+\sqrt{5}} and q = 2+525\dfrac{2+\sqrt{5}}{2-\sqrt{5}} find the values of :

(i) p + q

(ii) p - q

(iii) p2 + q2

(iv) p2 - q2

Answer

(i)

p+q=252+5+2+525(25)2+(2+5)2(25)(2+5)4+545+4+5+45(2)2(5)2p+q=18....(i)p+q = \dfrac{2-\sqrt{5}}{2+\sqrt{5}} +\dfrac{2+\sqrt{5}}{2-\sqrt{5}} \\[1.5em] \Rightarrow\dfrac{(2-\sqrt{5})^2 + (2+\sqrt{5})^2}{(2-\sqrt{5})(2+\sqrt{5})} \\[1.5em] \Rightarrow\dfrac{4 + 5 - 4\sqrt{5} + 4 + 5 + 4\sqrt{5}}{(2)^2 -(\sqrt{5})^2} \\[1.5em] \bold{p+q = -18} \qquad \text{....(i)} \\[1.5em]

(ii)(\text{ii})

pq=252+52+525(25)2(2+5)2(25)(2+5)4+5454545(2)2(5)2pq=85....(ii)p-q = \dfrac{2-\sqrt{5}}{2+\sqrt{5}} -\dfrac{2+\sqrt{5}}{2-\sqrt{5}} \\[1.5em] \Rightarrow\dfrac{(2-\sqrt{5})^2 - (2+\sqrt{5})^2}{(2-\sqrt{5})(2+\sqrt{5})} \\[1.5em] \Rightarrow\dfrac{4 + 5 - 4\sqrt{5} - 4 - 5 - 4\sqrt{5}}{(2)^2 - (\sqrt{5})^2} \\[1.5em] \Rightarrow\bold {p - q = 8\sqrt{5}} \qquad \text{....(ii)}

(iii)(\text{iii})

(p+q)2=(p)2+(q)2+2pq(p)2+(q)2=(p+q)22pq....(iii)pq=252+5×2+525=1....(iv)(p+q)^2 = (p)^2 + (q)^2 +2pq \\[1.5em] \Rightarrow(p)^2+(q)^2 =(p+q)^2 -2pq \qquad \text{....(iii)} \\[1.5em] \Rightarrow pq = \dfrac{2-\sqrt{5}}{2+\sqrt{5}} ×\dfrac{2+\sqrt{5}} {2-\sqrt{5}} = 1 \qquad \text{....(iv)} \\[1.5em]

substituting value of (i) and (iv) in (iii) :

p2+q2=(18)22=3242=322\bold{p^2+q^2 = (-18)^2 - 2 = 324-2 = 322}

(iv)(\text{iv})

(p)2(q)2=(p+q)(pq)....(v)(p)^2 - (q)^2 = (p+q)(p-q) \qquad \text{....(v)}

Using (i) and (ii) in (v) we get,

p2q2=18×85=1445\bold{p^2 - q^2 = -18 × 8\sqrt{5} = -144\sqrt{5}}

Multiple Choice Questions

Question 1

Choose the correct statement :

  1. Reciprocal of every rational number is a rational number.
  2. The square roots of all positive integers are irrational numbers.
  3. The product of a rational and an irrational number is an irrational number.
  4. The difference of a rational number and an irrational number is an irrational number.

Answer

The difference of a rational number and an irrational number is an irrational number.

For example, 2 is rational number, 3\sqrt{3} is irrational number and 2 - 3\sqrt{3} is an irrational number.

∴ Option 4, is the correct option.

Question 2

Every rational number is

  1. a natural number
  2. an integer
  3. a real number
  4. a whole number

Answer

Every rational number is a real number.

∴ Option 3, is the correct option.

Question 3

Between two rational numbers

  1. there is no rational number
  2. there is exactly one rational number
  3. there are infinitely many rational numbers
  4. there are only rational numbers and no irrational numbers.

Answer

Between two rational numbers there are infinitely many rational numbers.

∴ Option 3, is the correct option.

Question 4

Decimal representation of a rational number cannot be

  1. terminating
  2. non-terminating
  3. non-terminating repeating
  4. non-terminating non-repeating

Answer

Decimal representation of a rational number is terminating or non-terminating repeating but not non-terminating non-repeating.

∴ Option 4, is the correct option.

Question 5

The product of any two irrational numbers is

  1. always an irrational number
  2. always a rational number
  3. always an integer
  4. sometimes rational, sometimes irrational

Answer

The product of any two irrational numbers is sometimes rational, sometimes irrational

For example, 232\sqrt{3} and 333\sqrt{3} are two irrational number .

Their product 232\sqrt{3} × 333\sqrt{3} = 6 × (3)2(\sqrt{3})^2 = 6 × 3 = 18 which is rational number.

Again, let 222\sqrt{2} and 333\sqrt{3} be two irrational numbers.

Their product 222\sqrt{2} × 333\sqrt{3} = 6 × 2\sqrt{2} × 3\sqrt{3} = 666\sqrt{6} which is an irrational number.

∴ Option 4, is the correct option.

Question 6

The division of two irrational numbers is

  1. a rational number
  2. an irrational number
  3. either a rational number or an irrational number
  4. neither rational number nor irrational number

Answer

The division of two irrational numbers is either a rational number or an irrational number.

For example, let 232\sqrt{3} and 333\sqrt{3} be two irrational numbers.

2333\dfrac{2\sqrt{3}}{3\sqrt{3}} = 23\dfrac{2}{3} is rational number.

Let 232\sqrt{3} and 353\sqrt{5} be another two irrational numbers.

2335\dfrac{2\sqrt{3}}{3\sqrt{5}} is an irrational number.

∴ Option 3, is the correct option.

Question 7

Which of the following is an irrational number

  1. 49\sqrt{\dfrac{4}{9}}

  2. 123\dfrac{\sqrt{12}}{\sqrt{3}}

  3. 7\sqrt{7}

  4. 81\sqrt{81}

Answer

49\sqrt{\dfrac{4}{9}} = 49\dfrac{\sqrt{4}}{\sqrt{9}} = (2)2(3)2\dfrac{(\sqrt{2})^2}{(\sqrt{3})^2} = 23\dfrac{2}{3} is a rational number .

123\dfrac{\sqrt{12}}{\sqrt{3}} = 2×2×33\dfrac{\sqrt{2 × 2 × 3}}{\sqrt{3}} = 233\dfrac{2\sqrt{3}}{\sqrt{3}} = 2 is a rational number.

7\sqrt{7} is an irrational number.

81\sqrt{81} = 9×9\sqrt{9 × 9} = 9 is a rational number.

∴ Option 3, is the correct option.

Question 8

Which of the following numbers has terminating decimal representation ?

  1. 37\dfrac{3}{7}

  2. 35\dfrac{3}{5}

  3. 13\dfrac{1}{3}

  4. 311\dfrac{3}{11}

Answer

37\dfrac{3}{7} = 0.428571429.. non-terminating decimal representation.

35\dfrac{3}{5} = 0.6 is terminating decimal representation.

13\dfrac{1}{3} = 0.33333... non-terminating decimal representation.

311\dfrac{3}{11} = 0.272727273.. non-terminating decimal representation.

∴ Option 2, is the correct option.

Question 9

Which of the following is an irrational number ?

  1. 0.14
  2. 0.14160.14\overline{16}
  3. 0.14160.\overline{1416}
  4. 0.4014001400014...

Answer

0.14 is terminating decimal number hence, rational number.

0.14160.14\overline{16} = 0.14161616... is non-terminating repeating decimal number hence, rational number.

0.14160.\overline{1416} = 0.14161416... is non-terminating repeating decimal number hence, rational number.

0.4014001400014... is non-terminating, non-repeating decimal number hence, it is an irrational number.

∴ Option 4, is the correct option.

Question 10

Which of the following numbers has non-terminating repeating decimal expansion ?

  1. 1180\dfrac{11}{80}

  2. 17160\dfrac{17}{160}

  3. 63240\dfrac{63}{240}

  4. 93420\dfrac{93}{420}

Answer

1180\dfrac{11}{80} = 0.1375 has terminating decimal expansion.

17160\dfrac{17}{160} = 0.10625 has terminating decimal expansion.

63240\dfrac{63}{240} = 0.2625 has terminating decimal expansion.

93420\dfrac{93}{420} = 0.221428571..has non-terminating repeating decimal expansion.

∴ Option 4, is the correct option.

Question 11

A rational number between 2\sqrt{2} and 3\sqrt{3} is

  1. 2+32\dfrac{\sqrt{2} + \sqrt{3}}{2}

  2. 2×32\dfrac{\sqrt{2} × \sqrt{3}}{2}

  3. 1.5

  4. 1.8

Answer

Consider the squares of 2\sqrt{2} and 3\sqrt{3}

(2)2{(\sqrt2)^2} = 2 and (3)2{(\sqrt3)^2} = 3

Take any rational number between 2 and 3 which is a perfect square of a rational number,

One such number is 2.25 and

2.25 = (1.5)2(1.5)^2

2.25\sqrt{2.25} = 1.5

As, 2<2.25<32 \lt 2.25 \lt 3, it follows that

2<2.25<3\sqrt{2} \lt \sqrt{2.25} \lt \sqrt{3}

2<1.5<3\sqrt{2} \lt 1.5 \lt \sqrt{3}

Hence, one rational number between 2\sqrt{2} and 3\sqrt{3} is 1.5 .

∴ Option 3, is the correct option.

Question 12

The decimal expansion of 2 - 3\sqrt{3} is

  1. terminating and non-repeating
  2. terminating and repeating
  3. non-terminating and non-repeating
  4. non-terminating and repeating

Answer

The decimal expansion of 2 - 3\sqrt{3} is non-terminating, non-repeating as 3\sqrt{3} is an irrational number, 2 - 3\sqrt{3} is also an irrational number and decimal expansion of an irrational number is non-terminating, non-repeating.

∴ Option 3, is the correct option.

Question 13

The decimal expansion of the rational number 3322×5\dfrac{33}{2^2 × 5} will terminate after

  1. one decimal place
  2. two decimal places
  3. three decimal places
  4. four decimal places

Answer

3322×5\dfrac{33}{2^2 × 5} = 334×5\dfrac{33}{4 × 5} = 3320\dfrac{33}{20} = 1.65

Hence, decimal expansion of the rational number 3322×5\dfrac{33}{2^2 × 5} will terminate after two decimal place.

∴ Option 2, is the correct option.

Question 14

10×15\sqrt{10} × \sqrt{15} is equal to

  1. 656\sqrt{5}
  2. 565\sqrt{6}
  3. 25\sqrt{25}
  4. 10510\sqrt{5}

Answer

10×15\sqrt{10} × \sqrt{15} = 2×5×3×5\sqrt{2 × 5} × \sqrt{3 × 5} = 2×5×3×5\sqrt{2 × 5 × 3 × 5} = 565\sqrt{6}

∴ Option 2, is the correct option.

Question 15

23+32\sqrt{3} + \sqrt{3} is equal to

  1. 262\sqrt{6}
  2. 6
  3. 333\sqrt{3}
  4. 464\sqrt{6}

Answer

23+32\sqrt{3} + \sqrt{3} = 3(2+1)\sqrt{3}(2 + 1) = 333\sqrt{3}

∴ Option 3, is the correct option.

Question 16

The value of 8+18\sqrt{8} + \sqrt{18}

  1. 26\sqrt{26}
  2. 2(2+3)2(\sqrt{2} + \sqrt{3})
  3. 525\sqrt{2}
  4. 626\sqrt{2}

Answer

8+18\sqrt{8} + \sqrt{18} = 2×2×2+2×3×3\sqrt{2 × 2 × 2} + \sqrt{2 × 3 × 3} = 22+322\sqrt{2} + 3\sqrt{2} = (2+3)2(2 + 3)\sqrt{2} = 525\sqrt{2}

∴ Option 3, is the correct option.

Question 17

The number (23)2(2 - \sqrt{3})^2 is

  1. a natural number
  2. an integer
  3. a rational number
  4. an irrational number

Answer

(23)2(2 - \sqrt{3})^2 = (2)2+(3)22×2×3(2)^2 + (\sqrt{3})^2 - 2 × 2 × \sqrt{3} = 4 + 3 - 434\sqrt{3} = 7 - 434\sqrt{3}

Since, 7 - 434\sqrt{3} is an irrational number therefore, (23)2(2 - \sqrt{3})^2 is also an irrational number.

∴ Option 4, is the correct option.

Question 18

If x is a positive rational number which is not a perfect square, then 5x-5\sqrt{x} is

  1. a negative integer
  2. an integer
  3. a rational number
  4. an irrational number

Answer

x is a positive rational number and x is not a perfect square.

Then, x\sqrt{x} is an irrational number,

Therefore , 5x-5\sqrt{x} is also an irrational number.

∴ Option 4, is the correct option.

Question 19

If x, y are both positive rational numbers, then (x+y)(xy)(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) is

  1. a rational number
  2. an irrational number
  3. neither rational nor irrational number
  4. both rational as well as irrational number

Answer

(x+y)(xy)=x×xx×yx×yy×y(x)2xy+xy(y)2=xy(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) = \sqrt{x} × \sqrt{x} - \sqrt{x} × \sqrt{y} - \sqrt{x} × \sqrt{y} - \sqrt{y} × \sqrt{y} \\[1.5em] \Rightarrow (\sqrt{x})^2 - \sqrt{xy} + \sqrt{xy} -(\sqrt{y})^2 = x - y \\[1.5em]

Since, x, y are both positive rational numbers, so the difference of two positive rational numbers is also a rational number .

Therefore, xyx - y is also a rational number. Hence, (x+y)(xy)(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) is a rational number.

∴ Option 1, is the correct option.

Question 20

After rationalising the denominator of 73322\dfrac{7}{3\sqrt3 - 2\sqrt{2}} , we get the denominator as

  1. 13
  2. 19
  3. 5
  4. 35

Answer

73322\dfrac{7}{3\sqrt3 - 2\sqrt{2}}

Let us rationalise the denominator,

Then,

73322=73322×33+2233+227(33+22)(33)2(22)27×33+14×2278213+14219\dfrac{7}{3\sqrt3 - 2\sqrt{2}} = \dfrac{7}{3\sqrt{3} - 2\sqrt{2}} × \dfrac{3\sqrt{3} + 2\sqrt{2}}{3\sqrt{3} + 2\sqrt{2}} \\[1.5em] \Rightarrow \dfrac{7({3\sqrt{3} + 2\sqrt{2}})}{(3\sqrt{3})^2 - (2\sqrt{2})^2} \\[1.5em] \Rightarrow \dfrac{7 × 3\sqrt{3} + 14 × \sqrt{2}}{27 - 8} \\[1.5em] \Rightarrow \dfrac{21\sqrt{3}+ 14\sqrt{2}}{19} \\[1.5em]

∴ Option 2, is the correct option.

Question 21

The number obtained on rationalising the denominator of 172{\dfrac{1}{\sqrt{7} - 2}} is

  1. 7+23{\dfrac{\sqrt{7} + 2}{3}}

  2. 723{\dfrac{\sqrt{7} - 2}{3}}

  3. 7+25{\dfrac{\sqrt{7} + 2}{5}}

  4. 7+245{\dfrac{\sqrt{7} + 2}{45}}

Answer

Given,

172{\dfrac{1}{\sqrt{7} - 2}}

Let us rationalise the denominator,

Then,

172=172×7+27+27+2(7)2227+2747+23{\dfrac{1}{\sqrt{7} - 2}} = {\dfrac{1}{\sqrt{7} - 2}} × \dfrac{\sqrt{7} + 2}{\sqrt{7} + 2} \\[1.5em] \Rightarrow \dfrac{\sqrt{7} + 2}{(\sqrt{7})^2 - {2}^2} \\[1.5em] \Rightarrow \dfrac{\sqrt{7} + 2}{7 - 4} \\[1.5em] \Rightarrow \dfrac{\sqrt{7} + 2}{3} \\[1.5em]

∴ Option 1, is the correct option.

Question 22

The number 0.250.\overline{25} is equal to

  1. 6599\dfrac{65}{99}

  2. 3799\dfrac{37}{99}

  3. 59\dfrac{5}{9}

  4. 2599\dfrac{25}{99}

Answer

Let x = 0.250.\overline{25}

x = 0.252525.....      .........(1)

Multiplying both side by 100, we get

100x = 25.252525...     .........(2)

Subtracting equation (2) from equation (1), we get :

⇒ 100x - x = 25.252525..... - 0.252525......

⇒ 99x = 25

⇒ x = 2599\dfrac{25}{99}.

Hence, option 4 is the correct option.

Question 23

The value of 1.9991.99\overline{9} in the form of pq\dfrac{p}{q}, where p and q are integers and q ≠ 0, is

  1. 1920\dfrac{19}{20}

  2. 19991000\dfrac{1999}{1000}

  3. 2

  4. 19\dfrac{1}{9}

Answer

Let x = 1.9991.99\overline{9}

x = 1.999999.....      .........(1)

Multiplying both side with 10, we get

10x = 19.99999...     .........(2)

Subtracting equation (2) from equation (1), we get

⇒ 10x - x = 19.99999..... - 1.99999......

⇒ 9x = 18

⇒ x = 189\dfrac{18}{9} = 2.

Hence, option 3 is the correct option.

Question 24

Consider the following two statements:

Statement 1: 2m x 3n = (2 + 3)m + n, where m, n are positive integers.

Statement 2: If a is a rational number, and m, n are integers, then am.an = am + n

Which of the following is valid?

  1. Both the Statements are true.

  2. Both the Statements are false.

  3. Statement 1 is true, and Statement 2 is false.

  4. Statement 1 is false, and Statement 2 is true.

Answer

According to statement 1 :

2m x 3n = (2 + 3)m + n, where m, n are positive integers.

This statement does not reflect any general law of exponents.

∴ Statement 1 is false.

According to statement 2 :

If a is a rational number, and m, n are integers, then am.an = am + n

This is one of the fundamental laws of exponents. It holds for any rational base, and all integer exponents.

∴ Statement 2 is true.

Hence, option 4 is the correct option.

Assertion Reason Type Questions

Question 1

Assertion (A): 27-\dfrac{2}{7} is a rational number.

Reason (R): Any number that can be expressed in the form pq\dfrac{p}{q} is a rational number.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

Any number that can be expressed in the form pq\dfrac{p}{q} is a rational number.

The conditions are that p and q must be integers, and q must not be equal to zero.

∴ Reason (R) is false.

In the number 27-\dfrac{2}{7}, p = -2(which is an integer) and q = 7 (which is a non-zero integer).

Therefore, 27-\dfrac{2}{7} fits the definition of a rational number.

∴ Assertion (A) is true.

Hence, option 1 is the correct option.

Question 2

Assertion (A): -10 + π is an irrational number.

Reason (R): Sum of a non-zero rational number and an irrational number is an irrational number.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

Sum of a non-zero rational number and an irrational number is always an irrational number.

This is a fundamental property of irrational and rational numbers.

∴ Reason (R) is true.

π is an irrational number, -10 is a rational number.

So, their sum -10 + π, will be an irrational number.

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Question 3

Assertion (A): 0.360.\overline{36} is an irrational number.

Reason (R): Any real number that can be expressed in the form of pq\dfrac{p}{q} where p, q are integers, q ≠ 0 and p, q have no common factor except 1 is a rational number.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

Let x = 0.360.\overline{36}

x = 0.363636.....      .........(1)

Multiplying both side by 100, we get

100x = 36.363636...     .........(2)

Subtracting equation (1) from equation (2), we get

⇒ 100x - x = 36.363636..... - 0.363636......

⇒ 99x = 36

⇒ x = 3699=411\dfrac{36}{99} = \dfrac{4}{11}.

Thus, 0.360.\overline{36} is a rational number.

∴ Assertion (A) is false.

By definition,

Any real number that can be expressed in the form of pq\dfrac{p}{q} where p, q are integers, q ≠ 0 and p, q have no common factor except 1 is a rational number.

∴ Reason (R) is true.

∴ Assertion (A) is false, Reason (R) is true.

Hence, option 2 is the correct option.

Question 4

Assertion (A): All surds are irrational numbers.

Reason (R): All irrational numbers are surds.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

A surd is a number that cannot be expressed as a simple fraction and is the root of a rational number (like 2,53\sqrt{2}, \sqrt[3]{5}). These roots are always irrational.

∴ Assertion (A) is true.

While all surds are irrational, not all irrational numbers are surds.

For example, pi (π) is irrational number but are not roots of rational numbers and therefore are not surds.

∴ Reason (R) is false.

∴ Assertion (A) is true, Reason (R) is false.

Hence, option 1 is the correct option.

Question 5

Assertion (A): The rationalising factor of 2 + 3\sqrt{3} is 2 - 3\sqrt{3}.

Reason (R): Both 2 + 3\sqrt{3} and 2 - 3\sqrt{3} are surds.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

Multiplying 2 + 3\sqrt{3} and 2 - 3\sqrt{3}

(2+3)(23)2(23)+3(23)423+23(3)2431.\Rightarrow (2 + \sqrt{3})(2 - \sqrt{3}) \\[1em] \Rightarrow 2(2 - \sqrt{3}) + \sqrt{3}(2 - \sqrt{3}) \\[1em] \Rightarrow 4 - 2\sqrt{3} + 2\sqrt{3} - (\sqrt{3})^2 \\[1em] \Rightarrow 4 - 3 \\[1em] \Rightarrow 1.

Since, 1 is a rational number.

Thus, we can say that the rationalising factor of 2 + 3\sqrt{3} is 2 - 3\sqrt{3}.

∴ Assertion (A) is true.

A surd is an irrational root of a rational number.

Thus, 2 + 3\sqrt{3} and 2 - 3\sqrt{3} are irrational numbers containing surds (3)(\sqrt{3}), but not surd itself.

∴ Reason (R) is false.

Hence, option 1 is the correct option.

Chapter Test

Question 1

Without actual division, find whether the following rational numbers are terminating decimals or recurring decimals :

(i)1345(ii)556(iii)7125(iv)2380(v)1566\begin{matrix} \text{(i)} & \dfrac{13}{45} \\[1.5em] \text{(ii)} & -\dfrac{5}{56} \\[1.5em] \text{(iii)} & \dfrac{7}{125} \\[1.5em] \text{(iv)} & -\dfrac{23}{80} \\[1.5em] \text{(v)} & -\dfrac{15}{66} \\[1.5em] \end{matrix}

In case of terminating decimals, write their decimal expansions.

Answer

(i) 1345\text{(i) } \dfrac{13}{45}

The given number 1345\dfrac{13}{45} is in its lowest form.

Prime factorization of denominator 45:

345315551\begin{array}{l|l} 3 & 45 \\ \hline 3 & 15 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

45 = 3 x 3 x 5 x 1
= 32 x 5 x 1

Denominator is not of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 1345\dfrac{13}{45} is recurring decimal.

(ii) 556\text{(ii) } -\dfrac{5}{56}

The given number 556-\dfrac{5}{56} is in its lowest form.

Prime factorization of denominator 56:

256228214771\begin{array}{l|l} 2 & 56 \\ \hline 2 & 28 \\ \hline 2 & 14 \\ \hline 7 & 7 \\ \hline & 1 \end{array}

56 = 2 x 2 x 2 x 7 x 1
= 23 x 7 x 1

Denominator is not of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 556-\dfrac{5}{56} is recurring decimal.

(iii) 7125\text{(iii) } \dfrac{7}{125}

The given number 7125\dfrac{7}{125} is in its lowest form.

Prime factorization of denominator 125:

5125525551\begin{array}{l|l} 5 & 125 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

125= 5 x 5 x 5 x 1
= 53 x 1
= 53 x 20

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

7125=720×53=7×2323×53=56(2×5)3=56(10)3=561000=0.056\dfrac{7}{125} = \dfrac{7}{2^0 × 5^3} \\[1.5em] = \dfrac{7 × 2^3}{2^3 × 5^3} \\[1.5em] = \dfrac{56}{(2 × 5)^3} \\[1.5em] = \dfrac{56}{(10)^3} \\[1.5em] = \dfrac{56}{1000} \\[1.5em] = 0.056

∴ The given number 7125\dfrac{7}{125} is a terminating decimal and its decimal expansion is 0.056.

(iv) 2380\text{(iv) } \dfrac{-23}{80}

The given number 2380-\dfrac{23}{80} is in its lowest form.

Prime factorization of denominator 80:

280240220210551\begin{array}{l|l} 2 & 80 \\ \hline 2 & 40 \\ \hline 2 & 20 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline & 1 \end{array}

80 = 2 x 2 x 2 x 2 x 5 x 1
= 24 x 51

Denominator is of the form 2m x 5n, where m, n are non-negative integers.

2380=2324×51=23×5324×54=23×125(2×5)4=2875(10)4=287510000=0.2875-\dfrac{23}{80} = -\dfrac{23}{2^4 × 5^1} \\[1.5em] = -\dfrac{23 × 5^3} {2^4 × 5^4} \\[1.5em] = -\dfrac{23 × 125}{(2 × 5)^4} \\[1.5em] = -\dfrac{2875}{(10)^4} \\[1.5em] = -\dfrac{2875}{10000} = -0.2875

∴ The given number 2380-\dfrac{23}{80} is a terminating decimal and its decimal expansion is -0.2875.

(v) 1566\text{(v) } -\dfrac{15}{66}

The given number 1566-\dfrac{15}{66} is in its lowest form.

Prime factorization of denominator 66:

26633311111\begin{array}{l|l} 2 & 66 \\ \hline 3 & 33 \\ \hline 11 & 11 \\ \hline & 1 \end{array}

66 = 2 x 3 x 11 x 1
= 2 x 3 x 11

Denominator is not of the form 2m x 5n, where m, n are non-negative integers.

∴ The given number 1566-\dfrac{15}{66} is recurring decimal.

Question 2

Express the following recurring decimals as vulgar fractions :

(i) 1.3451.3\overline{45}

(ii) 2.3572.\overline{357}

Answer

(i) Let x = 1.3451.3\overline{45} = 1.3454545 ... ....(i)\qquad \text{....(i)}

So multiplying both sides of (i) by 10

we get,

10x = 13.4545.......(ii)\qquad \text{....(ii)}

Again multiply by 100 on both sides ,

1000x =1345.4545.........(iii)\qquad \text{....(iii)}

Subtracting (ii) from (iii), we get

1000x - 10x = 1345.4545... - 13.4545...

990x = 1332

x = 1332990\dfrac{1332}{990} = 7455\bold{\dfrac{74}{55}}

which is in the form of pq\dfrac{p}{q}, q ≠ 0

(ii) Let x = 2.3572.\overline{357} = 2.357357... ....(i)\qquad \text{....(i)}

So multiplying both sides of (i) by 1000,

we get,

1000x = 2357.357357.......(ii)\qquad \text{....(ii)}

Subtracting (i) from (ii), we get

1000x - x = 2357.357357... - 2.357357...

999x = 2355

x = 2355999\bold{\dfrac{2355}{999}}

which is in the form of pq\dfrac{p}{q}, q ≠ 0.

Question 3

Insert a rational number between 59\dfrac{5}{9} and 713\dfrac{7}{13}, and arrange in ascending order.

Answer

The L.C.M. of 9 and 13 is 117.

59=5×139×13=65117713=7×913×9=63117Since 9<13,113<19\dfrac{5}{9} = \dfrac{5 \times 13}{9 \times 13} = \dfrac{65}{117} \\[1.5em] \dfrac{7}{13} = \dfrac{7 \times 9}{13 \times 9} = \dfrac{63}{117} \\[1.5em] \text{Since } 9 \lt 13, \dfrac{1}{13} \lt \dfrac{1}{9}

A rational number between 59\dfrac{5}{9} and 713\dfrac{7}{13}

=59+7132=65+631172=128117×2=64117= \dfrac{\dfrac{5}{9} + \dfrac{7}{13}}{2} \\[1.5em] = \dfrac{\dfrac{65 + 63}{117}}{2} \\[1.5em] = \dfrac{128}{117 × 2} \\[1.5em] = \bold{\dfrac{64}{117}} \\[1.5em]

713<64117<59\therefore\dfrac{7}{13} \lt \dfrac{64}{117} \lt \dfrac{5}{9}

Hence, numbers in ascending order are:

713,64117,59\bold{\dfrac{7}{13}}, \bold{\dfrac{64}{117}}, \bold{\dfrac{5}{9}}

Question 4

Insert four rational numbers between 45\dfrac{4}{5} and 56\dfrac{5}{6}.

Answer

The L.C.M of 5 and 6 is 30.

45=4×65×6=243056=5×56×5=2530Since 24<25,45<56\dfrac{4}{5} = \dfrac{4 \times 6}{5 \times 6} = \dfrac{24}{30} \\[1.5em] \dfrac{5}{6} = \dfrac{5 \times 5}{6 \times 5} = \dfrac{25}{30} \\[1.5em] \text{Since } 24 \lt 25, \\[1.5em] \therefore \dfrac{4}{5} \lt \dfrac{5}{6}

To find four rational number between 45\dfrac{4}{5} and 56\dfrac{5}{6} multiply the numerator and denominator of 2430\dfrac{24}{30} and 2530\dfrac{25}{30} by 4 + 1 i.e. by 5 we get, 120150\dfrac{120}{150} and 125150\dfrac{125}{150}

Since,120<121<122<123<124<125120150<121150<122150<123150<124150<12515045<121150<6175<123150<6275<56\text{Since}, 120 \lt 121 \lt 122 \lt 123 \lt 124 \lt 125 \\[1.5em] \Rightarrow\dfrac{120}{150} \lt \dfrac{121}{150} \lt \dfrac{122}{150} \lt \dfrac{123}{150} \lt \dfrac{124}{150} \lt \dfrac{125}{150} \\[1.5em] \Rightarrow\dfrac{4}{5} \lt \dfrac{121}{150} \lt \dfrac{61}{75} \lt \dfrac{123}{150} \lt \dfrac{62}{75} \lt \dfrac{5}{6} \\[1.5em]

Four rational number between 45\dfrac{4}{5} and 56\dfrac{5}{6} are:

121150,6175,123150,6275\bold{\dfrac{121}{150}}, \bold{\dfrac{61}{75}}, \bold{\dfrac{123}{150}}, \bold{\dfrac{62}{75}}

Question 5

Prove that the reciprocal of an irrational number is irrational.

Answer

Let us consider, x as an irrational number.

Reciprocal of x is 1x\dfrac{1}{x}.

Let us consider 1x\dfrac{1}{x} to be a non-zero rational number.

Then, x×1xx × \dfrac{1}{x} will also be an irrational number as product of non-zero rational number and an irrational number is also an irrational number.

But x×1xx × \dfrac{1}{x} = 1 is a rational number.

Hence, our supposition is wrong. So, 1x\dfrac{1}{x} is an irrational number.

Question 6

Prove that the following numbers are irrational:

(i) 8\sqrt{8}

(ii) 14\sqrt{14}

(iii) 23\sqrt[3]{2}

Answer

(i) 8\sqrt{8} can be written as 222\sqrt{2}, now we are going to show that 2\sqrt{2} is an irrational number.

Let 2\sqrt{2} be a rational number, then

2=pq,\sqrt{2} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

2=p2q2p2=2q2....(i)\Rightarrow 2 = \dfrac{p^2}{q^2} \\[1.5em] \Rightarrow p^2 = 2q^2 \qquad \text{....(i)}

As 2 divides 2q2, so 2 divides p2 but 2 is prime

2 divides p(Theorem 1)\Rightarrow 2 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 2m, where m is an integer.

Substituting this value of p in (i), we get

(2m)2=2q24m2=2q22m2=q2(2m)^2 = 2q^2 \\[1.5em] \Rightarrow 4m^2 = 2q^2 \\[1.5em] \Rightarrow 2m^2 = q^2 \\[1.5em]

As 2 divides 2m2, so 2 divides q2 but 2 is prime

2 divides q(Theorem 1)\Rightarrow 2 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, 2\sqrt{2} is not a rational number. So, we conclude that 2\sqrt{2} is an irrational number.

Since, product of non-zero rational number and an irrational number is an irrational number.

And 2\sqrt{2} is an irrational number this implies that 222\sqrt{2} = 8\bold{\sqrt{8}} is an irrational number.

(ii) Suppose that 14\sqrt{14} is a rational number, then

14=pq,\sqrt{14} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

14=p2q2p2=14q2....(i)\Rightarrow 14 = \dfrac{p^2}{q^2} \\[1.5em] \Rightarrow p^2 = 14q^2 \qquad \text{....(i)}

As 2 divides 14q2, so 2 divides p2 but 2 is prime

2 divides p(Theorem 1)\Rightarrow 2 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 2k, where k is some integer.

Substituting this value of p in (i), we get

(2k)2=14q24k2=14q22k2=7q2(2k)^2 = 14q^2 \\[1.5em] \Rightarrow 4k^2 = 14q^2 \\[1.5em] \Rightarrow 2k^2 = 7q^2 \\[1.5em]

As 2 divides 2k2, so 2 divides 7q2

\Rightarrow 2 divides 7 or 2 divides q2

But 2 does not divide 7, therefore, 2 divides q2

\Rightarrow 2 divides q      (Theorem 1)

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, our supposition is wrong. Therefore, 14\sqrt{14} is not a rational number. So, we conclude that 14\bold{\sqrt{14}} is an irrational number.

(iii) Suppose that 23\sqrt[3]{2} = pq\dfrac{p}{q}, where p, q are integers , q ≠ 0 , p and q have no common factors (except 1)

2=(pq)3p3=2q3....(i)\Rightarrow 2 = \Big(\dfrac{p}{q}\Big)^3 \\[1.5em] \Rightarrow p^3 = 2q^3 \qquad \text{....(i)}

As 2 divides 2q3 \Rightarrow 2 divides p3

\Rightarrow 2 divides p    (using generalisation of theorem 1)

Let p = 2k , where k is an integer.

Substituting this value of p in (i), we get

\phantom{\Rightarrow}(2k)3 = 2q3
\Rightarrow 8k3 = 2q3
\Rightarrow 4k3 = q3

As 2 divides 4k3 \Rightarrow 2 divides q3

\Rightarrow 2 divides q    (using generalisation of theorem 1)

Thus, p and q have a common factor 2. This contradicts that p and q have no common factors (except 1).

Hence, our supposition is wrong. It follows that 23\sqrt[3]{2} cannot be expressed as pq\dfrac{p}{q}, where p, q are integers, q > 0, p and q have no common factors (except 1).

23\bold{\sqrt[3]{2}} is an irrational number.

Question 7

Prove that 3\sqrt{3} is an irrational number. Hence show that 5 - 3\sqrt{3} is an irrational number.

Answer

Let 3\sqrt{3} be a rational number, then

3=pq,\sqrt{3} = \dfrac{p}{q},

where p, q are integers, q ≠ 0 and p, q have no common factors (except 1)

3=p2q2p2=3q2....(i)\Rightarrow 3 = \dfrac{p^2}{q^2} \\[1.5em] \Rightarrow p^2 = 3q^2 \qquad \text{....(i)}

As 3 divides 3q2, so 3 divides p2 but 3 is prime

3 divides p(Theorem 1)\Rightarrow 3 \text{ divides } p \qquad \text{(Theorem 1)}

Let p = 3m, where m is an integer.

Substituting this value of p in (i), we get

(3m)2=3q29m2=3q23m2=q2(3m)^2 = 3q^2 \\[1.5em] \Rightarrow 9m^2 = 3q^2 \\[1.5em] \Rightarrow 3m^2 = q^2 \\[1.5em]

As 3 divides 3m2, so 3 divides q2 but 3 is prime

3 divides q(Theorem 1)\Rightarrow 3 \text{ divides } q \qquad \text{(Theorem 1)}

Thus, p and q have a common factor 3. This contradicts that p and q have no common factors (except 1).

Hence, 3\sqrt{3} is not a rational number. So, we conclude that 3\sqrt{3} is an irrational number.

Suppose that 535 - \sqrt{3} is a rational number, say r.

Then, 535 - \sqrt{3} = r (note that r ≠ 0)

3=r53=5r\Rightarrow - \sqrt{3} = r - 5 \\[1.5em] \Rightarrow \sqrt{3} = 5 - r \\[1.5em]

As r is rational and r ≠ 0, so 5 - r is rational

3\Rightarrow \sqrt{3} is rational

But this contradicts that 3\sqrt{3} is irrational. Hence, our supposition is wrong.

53\bold{5 - \sqrt{3}} is an irrational number.

Question 8

Prove that the following numbers are irrational:

(i) 3+53 + \sqrt{5}

(ii) 152715 - 2\sqrt{7}

(iii) 135\dfrac{1}{3 - \sqrt5}

Answer

(i) 3+5\text{(i) } 3 + \sqrt{5}

Let us assume that 3+53 + \sqrt{5} is a rational number, say r.

Then,

3+5=r5=r33 + \sqrt{5} = r \\[1.5em] \Rightarrow \sqrt{5} = r - 3

As r is rational, r - 3 is rational

5\Rightarrow \sqrt{5} is rational

But this contradicts the fact that 5\sqrt{5} is irrational.

Hence, our assumption is wrong.

3+5\bold{3 + \sqrt{5}} is an irrational number.

(ii) 1527\text{(ii) } 15 - 2\sqrt{7}

Let us assume that 152715 - 2\sqrt{7} is a rational number, say r.

Then,

1527=r27=15r7=15r215 - 2\sqrt{7} = r \\[1.5em] \Rightarrow 2\sqrt{7} = 15 - r \\[1.5em] \Rightarrow \sqrt{7} = \dfrac{15 - r}{2} \\[1.5em]

As r is rational, 15 - r is rational

15r2\Rightarrow \dfrac{15 - r}{2} is rational

7\Rightarrow \sqrt{7} is rational

But this contradicts the fact that 7\sqrt{7} is irrational.

Hence, our assumption is wrong.

1527\bold{15 - 2\sqrt{7}} is an irrational number.

(iii) 135\text{(iii) }\dfrac{1}{3 - \sqrt5}

Let us rationalise the denominator

135=135×3+53+5=3+5(3)2(5)2=3+595=3+54\dfrac{1}{3 - \sqrt5} = \dfrac{1}{3 - \sqrt5} × \dfrac{3 + \sqrt5}{3 + \sqrt5} \\[1.5em] = \dfrac{3 + \sqrt5}{(3)^2 - (\sqrt5)^2} \\[1.5em] = \dfrac{3 + \sqrt5}{9 - 5} \\[1.5em] = \dfrac{3 + \sqrt5}{4} \\[1.5em]

Let us assume that 3+54\dfrac{3 + \sqrt5}{4} is a rational number, say r.

Then,

3+54=r3+5=4r5=4r3\dfrac{3 + \sqrt5}{4} = r \\[1.5em] \Rightarrow 3 +\sqrt{5} = 4r \\[1.5em] \Rightarrow \sqrt{5} = 4r - 3 \\[1.5em]

As r is rational, 4r is rational

\Rightarrow 4r - 3 is also rational

5\Rightarrow \sqrt{5} is rational

But this contradicts the fact that 5\sqrt{5} is irrational.

Hence, our assumption is wrong.

3+54\Rightarrow \dfrac{3 + \sqrt5}{4} is an irrational number.

135\bold{\dfrac{1}{3 - \sqrt5}} is an irrational number.

Question 9

Rationalise the denominator of the following :

(i)1022+3(ii)735248+18(iii)132+1\begin{matrix} \text{(i)} & \dfrac{10}{2\sqrt{2} + \sqrt{3}} \\[1.5em] \text{(ii)} & \dfrac{7\sqrt{3} - 5\sqrt{2}}{\sqrt{48} + \sqrt{18}} \\[1.5em] \text{(iii)} & \dfrac{1}{\sqrt{3} - \sqrt{2} + 1} \\[1.5em] \end{matrix}

Answer

(i)\text{(i)}

1022+3\dfrac{10}{2\sqrt{2} + \sqrt{3}}

Let us rationalise the denominator,

Then,

1022+3=1022+3×223223=10(223)(22)2(3)2=10×2210×3(22)2(3)2=10(223)83=10(223)5=2(223)\dfrac{10}{2\sqrt{2} + \sqrt{3}} = \dfrac{10}{2\sqrt{2} + \sqrt{3}} × \dfrac{2\sqrt{2} - \sqrt{3}}{2\sqrt{2} - \sqrt{3}} \\[1.5em] = \dfrac{10({2\sqrt{2} - \sqrt{3}})}{(2\sqrt{2})^2 - (\sqrt{3})^2} \\[1.5em] = \dfrac{10 × 2\sqrt{2} - 10 × \sqrt{3}}{(2\sqrt{2})^2 - (\sqrt{3})^2} \\[1.5em] = \dfrac{10(2\sqrt{2} - \sqrt{3})}{8 - 3} \\[1.5em] = \dfrac{10(2\sqrt{2} - \sqrt{3})}{5} \\[1.5em] \bold{= 2(2\sqrt{2} - \sqrt{3}) } \\[1.5em]

(ii)\text{(ii)} Since, it is given that

735248+18\dfrac{7\sqrt{3} - 5\sqrt{2}}{\sqrt{48} + \sqrt{18}}

Let us rationalise the denominator,

735248+18×48184818=73×4873×1852×48+52×18(48)2(18)2=7144754596+5364818=7×1272×3×3×352×2×2×2×2×3+52×2×3×330=84216206+3030=84216206+3030=11441630=1143041630=571541630\dfrac{7\sqrt{3} - 5\sqrt{2}}{\sqrt{48} + \sqrt{18}} × \dfrac{\sqrt{48} - \sqrt{18}}{\sqrt{48} - \sqrt{18}} \\[1.5em] = \dfrac{7\sqrt{3} × \sqrt{48} - 7\sqrt{3} × \sqrt{18} - 5\sqrt{2} × \sqrt{48} + 5\sqrt{2} × \sqrt{18} }{(\sqrt{48})^2 -(\sqrt{18})^2} \\[1.5em] = \dfrac{7\sqrt{144} - 7\sqrt{54} - 5\sqrt{96} +5\sqrt{36}}{48 - 18} \\[1.5em] = \dfrac{7 × 12 - 7\sqrt{2 × 3 × 3 × 3 } - 5\sqrt{2 × 2 × 2 × 2 × 2 × 3} +5\sqrt{2 × 2 × 3 × 3}}{30} \\[1.5em] = \dfrac{84 - 21\sqrt{6} - 20\sqrt{6} + 30}{30} \\[1.5em] = \dfrac{84 - 21\sqrt{6} - 20\sqrt{6} + 30}{30} \\[1.5em] = \dfrac{114 - 41{\sqrt6}}{30} \\[1.5em] = \dfrac{114}{30} - \dfrac{41\sqrt{6}}{30} \\[1.5em] = \bold{\dfrac{57}{15} - \dfrac{41\sqrt{6}}{30}} \\[1.5em]

(iii)\text{(iii)}

132+1\dfrac{1}{\sqrt{3} - \sqrt{2} + 1}

Let us rationalise the denominator,

Then,

132+1=13(21)×3+(21)3+(21)=3+21(3)2(21)2=3+21(3)2((2)22×2+1)=3+213(222+1)=3+2132+221=3+2122=3+2122×22=2(3+21)22×2=2×3+2×2222×2=6+224=2+624\dfrac{1}{\sqrt{3} - \sqrt{2} + 1} = \dfrac{1}{\sqrt{3} - (\sqrt{2} - 1)} × \dfrac{\sqrt{3} + (\sqrt{2} - 1)}{\sqrt{3} + (\sqrt{2} - 1)} \\[1.5em] =\dfrac{{\sqrt{3} + \sqrt{2}} - 1}{{(\sqrt{3})^2 }- (\sqrt{2} - 1)^2} \\[1.5em] =\dfrac{\sqrt{3} + \sqrt{2} - 1}{(\sqrt{3})^2 - ( (\sqrt{2})^2 - 2 × \sqrt{2} + 1)} \\[1.5em] =\dfrac{\sqrt{3} + \sqrt{2} - 1}{3 - (2 - 2\sqrt{2} + 1)} \\[1.5em] =\dfrac{\sqrt{3} + \sqrt{2} - 1}{3 - 2 + 2\sqrt{2} -1} \\[1.5em] =\dfrac{\sqrt{3} + \sqrt{2} - 1}{2\sqrt{2}} \\[1.5em] =\dfrac{\sqrt{3} + \sqrt{2} - 1}{2\sqrt{2}} × \dfrac{\sqrt{2}}{\sqrt{2}} \\[1.5em] =\dfrac{\sqrt{2}(\sqrt{3} + \sqrt{2} - 1)}{2\sqrt{2} × \sqrt{2}} \\[1.5em] =\dfrac{\sqrt{2} × \sqrt{3} + \sqrt{2} × \sqrt{2} - \sqrt{2}}{2\sqrt{2} × \sqrt{2}} \\[1.5em] = \dfrac{\sqrt{6} + 2 -\sqrt{2}}{4} \\[1.5em] \bold{{=} \dfrac{2 + \sqrt{6} -\sqrt{2}}{4}} \\[1.5em]

Question 10

If p, q are rational numbers and p15q=2354335p - \sqrt{15}q = \dfrac{2\sqrt{3} - \sqrt{5}}{4\sqrt{3} - 3\sqrt{5}}, find the values of p and q.

Answer

Since, it is given that

2354335=p15q\dfrac{2\sqrt{3} - \sqrt{5}}{4\sqrt{3} - 3\sqrt{5}} = p - \sqrt{15} q

On solving,

2354335×43+3543+35=23×43+23×355×435×35(43)2(35)2=24+61541515(43)2(35)2=2415+6154154845=9+2153=93+2153=3+23153(23)15=pq15\dfrac{2\sqrt{3} - \sqrt{5}}{4\sqrt{3} - 3\sqrt{5}} × \dfrac{4\sqrt{3} + 3\sqrt{5}}{4\sqrt{3} + 3\sqrt{5}} \\[1.5em] = \dfrac{2\sqrt{3} × 4\sqrt{3}+ 2\sqrt{3} × 3\sqrt{5} - \sqrt{5} × 4\sqrt{3} - \sqrt{5} × 3\sqrt{5} }{(4\sqrt{3})^2 -(3\sqrt{5})^2} \\[1.5em] = \dfrac{24 + 6\sqrt{15} - 4\sqrt{15} - 15 }{(4\sqrt{3})^2 -(3\sqrt{5})^2} \\[1.5em] = \dfrac{24 - 15 + 6\sqrt{15} - 4\sqrt{15} }{48 - 45} \\[1.5em] = \dfrac{9 + 2{\sqrt{15}}}{3} \\[1.5em] = \dfrac{9}{3} + \dfrac{2\sqrt{15}}{3} \\[1.5em] = 3 + \dfrac{2}{3}{\sqrt{15}} \\[1.5em] \therefore 3 - \Big(-\dfrac{2}{3}\Big){\sqrt{15}} = p - q\sqrt{15}

Hence, p = 3 and q = 23-\dfrac{2}{3}.

Question 11

If x = 13+22\dfrac{1}{3 + 2\sqrt2} , then find the value of x1xx - \dfrac{1}{x}.

Answer

Given,

x=13+22....(i)x =\dfrac{1}{3 + 2\sqrt{2}} \qquad \text{....(i)} \\[1.5em]

Let us rationalise the denominator,

x=13+22×322322=32232(22)2=32298=(322)x=(322)x = \dfrac{1}{3 + 2\sqrt{2}} ×\dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} \\[1.5em] = \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2} \\[1.5em] = \dfrac{3 - 2\sqrt{2}}{9 - 8} \\[1.5em] = (3 - 2\sqrt{2}) \\[1.5em] \therefore x = (3 - 2\sqrt{2})

From (i) we get,

1x=3+22x1x=(322)(3+22)=322322x1x=42\dfrac{1}{x} = 3 + 2\sqrt{2} \\[1.5em] \therefore x - \dfrac{1}{x} = (3 - 2\sqrt{2}) - (3 + 2\sqrt{2}) = 3 - 2\sqrt{2} - 3 - 2\sqrt{2}\\[1.5em] \Rightarrow\bold{ x - \dfrac{1}{x} = -4\sqrt{2}} \\[1.5em]

Question 12

(i) If x = 7+35735\dfrac{7 + 3\sqrt{5}}{7- 3\sqrt{5}} , find the value of x2+1x2x^2 + \dfrac{1}{x^2}

(ii) If x = 525+2\dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} and y = 5+252\dfrac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} , find the value of x2 + xy + y2

(iii) If x = 323+2\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} and y = 3+232\dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} , find the value of x3 + y3.

Answer

(i) Given x = 7+35735\dfrac{7 + 3\sqrt{5}}{7- 3\sqrt{5}}

Rationalising the denominator,

7+35735=7+35735×7+357+35=(7+35)2(7)2(35)2=72+2×7×35+(35)24945=49+425+454=94+4254=47+2152x=47+21521x=247+215\dfrac{7 + 3\sqrt{5}}{7- 3\sqrt{5}} = \dfrac{7 + 3\sqrt{5}}{7- 3\sqrt{5}} × \dfrac{7 + 3\sqrt{5}}{7 + 3\sqrt{5}} \\[1.5em] = \dfrac{({7 + 3\sqrt{5}})^2}{(7)^2 - (3\sqrt{5})^2} \\[1.5em] = \dfrac{7^2 + 2 × 7 × 3\sqrt{5} + (3\sqrt{5})^2}{49 - 45} = \dfrac{49 + 42\sqrt{5} + 45}{4} = \dfrac{94 + 42\sqrt{5}}{4} \\[1.5em] = \dfrac{47 + 21\sqrt{5}}{2} \\[1.5em] \therefore x = \dfrac{47 + 21\sqrt{5}}{2} \\[1.5em] \Rightarrow \dfrac{1}{x} = \dfrac{2}{47 + 21\sqrt{5}} \\[1.5em]

Rationalising denominator of 1x\dfrac{1}{x},

1x=247+215×4721547215=2(47215)(47)2(215)2=2(47215)22092205=2(47215)4=(47215)2\dfrac{1}{x} = \dfrac{2}{47 + 21\sqrt{5}} × \dfrac{47 - 21\sqrt{5}}{47 - 21\sqrt{5}} \\[1.5em] = \dfrac{{2}(47 - 21\sqrt{5})} {(47)^2 - (21\sqrt{5})^2} \\[1.5em] = \dfrac{{2}(47 - 21\sqrt{5})} {2209 - 2205} \\[1.5em] = \dfrac{{2}(47 - 21\sqrt{5})} {4} \\[1.5em] = \dfrac{(47 - 21\sqrt{5})} {2} \\[1.5em]

Now,

(x+1x)=47+2152+(47215)2=47+215+472152=942=47(x+1x)=47....(i){\Big(x + \dfrac{1}{x}\Big)} = \dfrac{47 + 21\sqrt{5}}{2} + \dfrac{(47 - 21\sqrt{5})}{2} \\[1.5em] = \dfrac{47 + 21\sqrt{5} + 47 -21\sqrt{5}}{2} \\[1.5em] = \dfrac{94}{2} = 47 \\[1.5em] \therefore {\Big(x + \dfrac{1}{x}\Big)} = 47 \qquad \text{....(i)}

We know that (x+1x)2=x2+1x2+2{\Big(x + \dfrac{1}{x}\Big)}^2 = x^2 + \dfrac{1}{x^2} + 2

x2+1x2=(x+1x)22x2+1x2=(47)22.....using(i)x2+1x2=22092=2207x2+1x2=2207\Rightarrow x^2 + \dfrac{1}{x^2} = {\Big(x + \dfrac{1}{x}\Big)}^2 -2 \\[1.5em] \Rightarrow x^2 + \dfrac{1}{x^2} = (47)^2 - 2 \qquad ..... \text{using(i)} \\[1.5em] \Rightarrow x^2 + \dfrac{1}{x^2} = 2209 - 2 = 2207 \\[1.5em] \bold{x^2 + \dfrac{1}{x^2} = 2207} \\[1.5em]

(ii) x=525+2 and y=5+252x+y=525+2+5+252(52)2+(5+2)2(5+2)(52)(5)22×2×5+(2)2+(5)2+2×2×5+(2)2(5)2(2)25210+2+5+210+252=143x+y=143....(i)Also xy=525+2×5+252=1....(ii)\text{(ii) } x = \dfrac{\sqrt{5} - \sqrt{2} }{\sqrt{5} + \sqrt{2}} \text{ and y} = \dfrac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \\[1.5em] \therefore x+y = \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} +\dfrac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} \\[1.5em] \Rightarrow\dfrac{(\sqrt{5} - \sqrt{2})^2 + (\sqrt{5} + \sqrt{2})^2}{(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})} \\[1.5em] \Rightarrow\dfrac{(\sqrt{5})^2 - 2 × \sqrt{2} × \sqrt{5} + (\sqrt{2})^2+ (\sqrt{5})^2 + 2 × \sqrt{2} × \sqrt{5} + (\sqrt{2})^2 }{(\sqrt{5})^2 - (\sqrt{2})^2 } \\[1.5em] \Rightarrow\dfrac{5 - 2\sqrt{10} + 2 + 5 + 2\sqrt{10} + 2}{5 - 2} = \dfrac{14}{3} \\[1.5em] \Rightarrow x + y = \dfrac{14}{3} \qquad \text{....(i)} \\[1.5em] \text{Also } xy = \dfrac{\sqrt{5} - \sqrt{2} }{\sqrt{5} + \sqrt{2}} ×\dfrac{\sqrt{5} + \sqrt{2} }{\sqrt{5} - \sqrt{2}} = 1 \qquad \text{....(ii)} \\[1.5em]

We need to find the value of x2+xy+y2{x^2 + xy + y^2} x2+xy+y2=x2+y2+2xyxyx2+xy+y2=(x+y)2xy....(iii){x^2 + xy + y^2} = x^2 + y^2 + 2xy - xy \\[1.5em] \Rightarrow {x^2 + xy + y^2} = (x+y)^2 - xy \qquad \text{....(iii)} \\[1.5em]

Substituting the values from (i) and (ii) in (iii),

x2+xy+y2=(143)21=19691=19699=1879x2+xy+y2=1879{x^2 + xy + y^2} = \Big(\dfrac{14}{3}\Big)^2 - 1 = \dfrac{196}{9} - 1 = \dfrac{196 - 9}{9} = \dfrac{187}{9} \\[1.5em] \therefore \bold{x^2 + xy + y^2} = \bold{\dfrac{187}{9}} \\[1.5em]

(iii) x=323+2 and y=3+232x+y=323+2+3+232=(32)2+(3+2)2(3+2)(32)=(3)22×2×3+(2)2+(3)2+2×2×3+(2)2(3)2(2)2=326+2+3+26+232=101=10x+y=10....(i)Also xy=323+2×3+232=1....(ii)\text{(iii) } x = \dfrac{\sqrt{3} - \sqrt{2} }{\sqrt{3} + \sqrt{2}} \text{ and y} = \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \\[1.5em] \therefore x+y = \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} +\dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \\[1.5em] = \dfrac{(\sqrt{3} - \sqrt{2})^2 + (\sqrt{3} + \sqrt{2})^2}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} \\[1.5em] = \dfrac{(\sqrt{3})^2 - 2 × \sqrt{2} × \sqrt{3} + (\sqrt{2})^2+ (\sqrt{3})^2 + 2 × \sqrt{2} × \sqrt{3} + (\sqrt{2})^2 }{(\sqrt{3})^2 - (\sqrt{2})^2 } \\[1.5em] = \dfrac{3 - 2\sqrt{6} + 2 + 3 + 2\sqrt{6} + 2}{3 - 2} = \dfrac{10}{1} = 10 \\[1.5em] \therefore x + y = 10 \qquad \text{....(i)} \\[1.5em] \text{Also } xy = \dfrac{\sqrt{3} - \sqrt{2} }{\sqrt{3} + \sqrt{2}} ×\dfrac{\sqrt{3} + \sqrt{2} }{\sqrt{3} - \sqrt{2}} = 1 \qquad \text{....(ii)} \\[1.5em]

We need to find the value of x3+y3{x^3 + y^3} x3+y3=(x+y)33xy(x+y)....(iii){x^3 + y^3} = (x+y)^3 - 3xy(x + y) \qquad \text{....(iii)} \\[1.5em]

Substituting the values from (i) and (ii) in (iii),

x3+y3=(10)33×1×10=100030=970x3+y3=970{x^3+ y^3} = (10)^3 - 3 × 1 × 10 \\[1.5em] = 1000 - 30 \\[1.5em] = 970 \\[1.5em] \therefore \bold{x^3+ y^3 = 970}

Question 13

Write the following real numbers in descending order :

2,3.5,10,52,523\sqrt{2}, 3.5, \sqrt{10}, -\dfrac{5}{\sqrt{2}}, {\dfrac{5}{2}}{\sqrt{3}}

Answer

Write all the numbers as square root under one radical :

2=23.5=12.2510=1052=252=12.5523=25×34=754=18.75Since,18.75>12.25>10>2>12.518.75>12.25>10>2>12.5523>3.5>10>2>52\sqrt{2} = \sqrt{2} \\[1.5em] 3.5 = \sqrt{12.25} \\[1.5em] \sqrt{10} = \sqrt{10} \\[1.5em] {-\dfrac{5}{\sqrt{2}}} = - \sqrt{\dfrac{25}{2}} = -\sqrt{12.5} \\[1.5em] {\dfrac{5}{2}}{\sqrt{3}} = \sqrt{\dfrac{25 × 3}{4}} = \sqrt{\dfrac{75}{4}} = \sqrt{18.75} \\[1.5em] \text{Since} , 18.75 \gt 12.25 \gt 10 \gt 2 \gt - 12.5 \\[1.5em] \Rightarrow \sqrt{18.75} \gt \sqrt{12.25} \gt \sqrt{10} \gt \sqrt{2} \gt -\sqrt{12.5} \\[1.5em] \Rightarrow {\dfrac{5}{2}}{\sqrt{3}}\gt 3.5 \gt \sqrt{10} \gt \sqrt{2} \gt -\dfrac{5}{\sqrt{2}}

Hence, the given numbers in descending order are 523,3.5,10,2,52\bold{\dfrac{5}{2}{\sqrt{3}}} , \bold{3.5} , \bold{\sqrt{10}} ,\bold{\sqrt{2}} , \bold{-\dfrac{5}{\sqrt{2}}}.

Question 14

Find a rational number and an irrational number between 3\sqrt{3} and 5\sqrt{5}.

Answer

Consider the squares of 3\sqrt{3} and 5\sqrt{5}

(3)2(\sqrt{3})^2 = 3 and (5)2(\sqrt{5})^2 = 5

Here, 4 is rational number between 3 and 5

4\sqrt{4} = 2 is rational number between 3\sqrt{3} and 5\sqrt{5}.

Irrational number between 3\sqrt{3} and 5\sqrt{5} = 3+52\dfrac{\sqrt{3} + \sqrt{5}}{2}

Question 15

Insert three irrational numbers between 232\sqrt{3} and 252\sqrt{5} , and arrange in descending order.

Answer

Consider the squares of 232\sqrt{3} and 252\sqrt{5}.

(23)2(2\sqrt{3})^2 = 4 × 3 = 12 and (25)2(2\sqrt{5})^2 = 4 × 5 = 20

As , 18>17>1518 \gt 17 \gt 15 it follows that

18>17>15\sqrt{18} \gt \sqrt{17} \gt \sqrt{15} , therefore

18\sqrt{18} , 17\sqrt{17} , 15\sqrt{15} lie between 12\sqrt{12} and 20\sqrt{20} i.e. 232\sqrt{3} and 252\sqrt{5}.

Hence, three irrational number between 232\sqrt{3} and 252\sqrt{5} in descending order are 18\sqrt{18} , 17\sqrt{17} , 15\sqrt{15}.

Question 16

Give an example each of two different irrational numbers , whose

(i) sum is an irrational number.

(ii) product is an irrational number.

Answer

Let a = 2\sqrt{2} and b = 3\sqrt{3} are two different irrational numbers :

(i) a + b = 2\sqrt{2} + 3\sqrt{3} is also an irrational number.

(ii) a × b = 2\sqrt{2} × 3\sqrt{3} = 6\sqrt{6} is also an irrational number.

Question 17

Give an example of two different irrational numbers , a and b where ab\dfrac{a}{b} is a rational number.

Answer

Let a = 232\sqrt{3} and b = 535\sqrt{3} be two different irrational numbers

Here, ab\dfrac{a}{b} = 2353\dfrac{2\sqrt{3}}{5\sqrt{3}} = 25\dfrac{2}{5}

25\therefore \bold{\dfrac{2}{5}} is a rational number.

Question 18

If 34.0356 is expressed in the form pq\dfrac{p}{q}, where p and q are coprime integers, then what can you say about the factorisation of q ?

Answer

34.0356 can be expressed in the form pq\dfrac{p}{q}

This can be written as 34.0356 = 34035610000\dfrac{340356}{10000} = 850892500\dfrac{85089}{2500}

Here, 85089 and 2500 are coprime integers .

Since , it is terminating decimal

It is Rational number and the prime factors of its denominator q will be 2 or 5 or both .

Question 19

In each case, state whether the following numbers are rational or irrational. If they are rational and expressed in the form pq\dfrac{p}{q}, where p and q are coprime integers, then what can you say about the prime factors of q?

(i)279.034(ii)76.17893(iii)3.010010001...(iv)39.546782(v)2.3476817681...(vi)59.120120012000...\begin{matrix} \text{(i)} & 279.034 \\[1.5em] \text{(ii)} & 76.\overline{17893} \\[1.5em] \text{(iii)} & 3.010010001... \\[1.5em] \text{(iv)} & 39.546782 \\[1.5em] \text{(v)} & 2.3476817681... \\[1.5em] \text{(vi)} & 59.120120012000... \\[1.5em] \end{matrix}

Answer

(i) 279.034

This can be written as 279.034 = 2790341000\dfrac{279034}{1000}

Since, it is terminating decimal

It is Rational number and the prime factors of its denominator q will be 2 or 5 or both .

(ii) 76.1789376.\overline{17893}

Since it is non-terminating recurring decimal,

76.1789376.\overline{17893} = 76.1789317893...

It is a rational number which is non-terminating and repeating. Its denominator q will have prime factors other than 2 or 5.

(iii) 3.010010001...

Since, it is non-terminating non-repeating decimal number

∴ It is an Irrational number.

(iv) 39.546782

This can be written as 39.546782 = 395467821000000\dfrac{39546782}{1000000}

Since , it is terminating decimal

It is Rational number and the prime factors of its denominator q will be 2 or 5 or both .

(v) 2.3476817681... = 2.3476812.34\overline{7681}

Since, it is a non-terminating repeating decimal number,

∴ It is a Rational number and its denominator q will have prime factors other than 2 or 5.

(vi) 59.120120012000...

Since, it is non-terminating non-repeating decimal number

∴ It is an Irrational number.

PrevNext