KnowledgeBoat Logo
|
OPEN IN APP

Chapter 5

Simultaneous Linear Equations

Class - 9 ML Aggarwal Understanding ICSE Mathematics



Exercise 5.1

Question 1(i)

Solve the following system of simultaneous linear equations by the substitution method:

x + y = 14

x - y = 4

Answer

Given,

x + y = 14 ......(i)

x - y = 4 .........(ii)

From eqn. (ii) we get,

x = 4 + y.

Substituting above value of x in eqn. (i) we get,

⟹ (4 + y) + y = 14
⟹ 4 + 2y = 14
⟹ 2y = 14 - 4
⟹ 2y = 10
⟹ y = 5.

∴ x = y + 4 = 5 + 4 = 9.

Hence, x = 9 and y = 5.

Question 1(ii)

Solve the following system of simultaneous linear equations by the substitution method:

s - t = 3

s3+t2=6\dfrac{s}{3} + \dfrac{t}{2} = 6

Answer

Given,

s - t = 3 ........(i)

s3+t2=6\dfrac{s}{3} + \dfrac{t}{2} = 6 ........(ii)

From eqn. (i) we get,

s = 3 + t.

Substituting above value of s in eqn. (ii) we get,

s3+t2=63+t3+t2=62(3+t)+3t6=66+2t+3t=365t=3665t=30t=6.\Rightarrow \dfrac{s}{3} + \dfrac{t}{2} = 6 \\[1em] \Rightarrow \dfrac{3 + t}{3} + \dfrac{t}{2} = 6 \\[1em] \Rightarrow \dfrac{2(3 + t) + 3t}{6} = 6 \\[1em] \Rightarrow 6 + 2t + 3t = 36 \\[1em] \Rightarrow 5t = 36 - 6 \\[1em] \Rightarrow 5t = 30 \\[1em] \Rightarrow t = 6.

∴ s = 3 + t = 3 + 6 = 9.

Hence, t = 6 and s = 9.

Question 1(iii)

Solve the following system of simultaneous linear equations by the substitution method:

2x + 3y = 9

3x + 4y = 5

Answer

Given,

2x + 3y = 9 ......(i)

3x + 4y = 5 .......(ii)

Solving eqn. (i) we get,

⟹ 2x + 3y = 9

⟹ 2x = 9 - 3y

⟹ x = 93y2\dfrac{9 - 3y}{2}

Substituting above value of x in eqn. (ii) we get,

3(93y2)+4y=5279y2+4y=5279y+8y2=527y=10y=2710=17.\Rightarrow 3\Big(\dfrac{9 - 3y}{2}\Big) + 4y = 5 \\[1em] \Rightarrow \dfrac{27 - 9y}{2} + 4y = 5 \\[1em] \Rightarrow \dfrac{27 - 9y + 8y}{2} = 5 \\[1em] \Rightarrow 27 - y = 10 \\[1em] \Rightarrow y = 27 - 10 = 17.

Solving for x,

x=93y2=93(17)2=9512=422=21.x = \dfrac{9 - 3y}{2} = \dfrac{9 - 3(17)}{2} \\[1em] = \dfrac{9 - 51}{2} \\[1em] = \dfrac{-42}{2} \\[1em] = -21.

Hence, x = -21 and y = 17.

Question 1(iv)

Solve the following system of simultaneous linear equations by the substitution method:

3x - 5y = 4

9x - 2y = 7

Answer

Given,

3x - 5y = 4 .......(i)

9x - 2y = 7 .......(ii)

Solving eqn. (i) we get,

⟹ 3x - 5y = 4

⟹ 3x = 4 + 5y

⟹ x = 4+5y3\dfrac{4 + 5y}{3}.

Substituting above value of x in eqn. (ii) we get,

9x2y=79(4+5y3)2y=73(4+5y)2y=712+15y2y=712+13y=713y=71213y=5y=513.\Rightarrow 9x - 2y = 7 \\[1em] \Rightarrow 9\Big(\dfrac{4 + 5y}{3}\Big) - 2y = 7 \\[1em] \Rightarrow 3(4 + 5y) - 2y = 7 \\[1em] \Rightarrow 12 + 15y - 2y = 7 \\[1em] \Rightarrow 12 + 13y = 7 \\[1em] \Rightarrow 13y = 7 - 12 \\[1em] \Rightarrow 13y = -5 \\[1em] \Rightarrow y = -\dfrac{5}{13}.

Solving for x by substituting value of y,

x=4+5y3=4+5×5133=425133=5225133=2739=913.\Rightarrow x = \dfrac{4 + 5y}{3} \\[1em] = \dfrac{4 + 5 \times \dfrac{-5}{13}}{3} \\[1em] = \dfrac{4 - \dfrac{25}{13}}{3} \\[1em] = \dfrac{\dfrac{52 - 25}{13}}{3} \\[1em] = \dfrac{27}{39} \\[1em] = \dfrac{9}{13}.

Hence, x = 913 and y =513.\dfrac{9}{13}\text{ and y } = -\dfrac{5}{13}.

Question 2(i)

Solve the following system of simultaneous linear equations by substitution method:

3x - 5y = -2

7x - 3y = -9

Answer

Given,

3x - 5y = -2 ......................(1)

7x - 3y = -9 ......................(2)

Solving equation (1), we get :

⇒ 3x - 5y = -2

⇒ 3x = -2 + 5y

⇒ x = 2+5y3\dfrac{-2 + 5y}{3}

Substituting above value of x in equation (2), we get :

7(2+5y3)3y=97(2+5y)3y×33=97(2+5y)9y3=97(2+5y)9y=2714+35y9y=2714+26y=2726y=27+1426y=13y=1326y=12.\Rightarrow 7\Big(\dfrac{-2 + 5y}{3}\Big) - 3y = -9\\[1em] \Rightarrow \dfrac{7(-2 + 5y) - 3y \times 3}{3} = -9\\[1em] \Rightarrow \dfrac{7(-2 + 5y) - 9y}{3} = -9\\[1em] \Rightarrow 7({-2 + 5y}) - 9y = -27\\[1em] \Rightarrow -14 + 35y - 9y = -27\\[1em] \Rightarrow -14 + 26y = -27\\[1em] \Rightarrow 26y = -27 + 14\\[1em] \Rightarrow 26y = -13\\[1em] \Rightarrow y = -\dfrac{13}{26}\\[1em] \Rightarrow y = -\dfrac{1}{2}.

Substituting value of y in x = 2+5y3\dfrac{-2 + 5y}{3}, we get :

x=2+5×123x=2523x=4523x=456x=96x=32.\Rightarrow x = \dfrac{-2 + 5 \times \dfrac{-1}{2}}{3}\\[1em] \Rightarrow x = \dfrac{-2 - \dfrac{5}{2}}{3} \\[1em] \Rightarrow x = \dfrac{\dfrac{-4 - 5}{2}}{3} \\[1em] \Rightarrow x = \dfrac{-4 - 5}{6}\\[1em] \Rightarrow x = \dfrac{-9}{6}\\[1em] \Rightarrow x = -\dfrac{3}{2}.

Hence, x = 32-\dfrac{3}{2} and y = 12-\dfrac{1}{2}.

Question 2(ii)

Solve the following system of simultaneous linear equations by the substitution method:

5x + 4y - 4 = 0

x - 20 = 12y

Answer

Given,

5x + 4y - 4 = 0 ......(i)

x - 20 = 12y ........(ii)

From eqn. (ii) we get,

x = 12y + 20 .......(iii)

Substituting value of x from eqn. (iii) in eqn. (i) we get,

⟹ 5(12y + 20) + 4y - 4 = 0

⟹ 60y + 100 + 4y - 4 = 0

⟹ 64y + 96 = 0

⟹ 64y = -96

⟹ y = 9664=32-\dfrac{96}{64} = -\dfrac{3}{2}.

Substituting value of y in eqn. (iii) we get,

x=12×32+20=6×3+20=18+20=2.x = 12 \times \dfrac{-3}{2} + 20 \\[1em] = 6 \times -3 + 20 \\[1em] = -18 + 20 \\[1em] = 2.

Hence, x = 2 and y = 32.-\dfrac{3}{2}.

Question 3(i)

Solve the following system of simultaneous linear equations by the substitution method:

2x3y4=32x - \dfrac{3y}{4} = 3

5x - 2y - 7 = 0

Answer

Given,

2x3y4=32x - \dfrac{3y}{4} = 3 .......(i)

5x - 2y - 7 = 0 .......(ii)

Multiplying eqn. (i) by 4 we get,

4(2x3y4)=3×48x3y=128x=12+3yx=12+3y8......(iii)\Rightarrow 4\Big(2x - \dfrac{3y}{4}\Big) = 3 \times 4 \\[1em] \Rightarrow 8x - 3y = 12 \\[1em] \Rightarrow 8x = 12 + 3y \\[1em] \Rightarrow x = \dfrac{12 + 3y}{8} ......(iii)

Putting value of x from eqn. (iii) in eqn. (ii),

5(12+3y8)2y7=060+15y82y7=060+15y16y568=04y=0y=4.\Rightarrow 5\Big(\dfrac{12 + 3y}{8}\Big) - 2y - 7 = 0 \\[1em] \Rightarrow \dfrac{60 + 15y}{8} - 2y - 7 = 0 \\[1em] \Rightarrow \dfrac{60 + 15y - 16y - 56}{8} = 0 \\[1em] \Rightarrow 4 - y = 0 \\[1em] \Rightarrow y = 4.

Substituting value of y in eqn. (iii) we get,

x=12+3y8=12+3(4)8=12+128=248=3.\Rightarrow x = \dfrac{12 + 3y}{8} \\[1em] = \dfrac{12 + 3(4)}{8} \\[1em] = \dfrac{12 + 12}{8} \\[1em] = \dfrac{24}{8} \\[1em] = 3.

Hence, x = 3 and y = 4.

Question 3(ii)

Solve the following system of simultaneous linear equations by the substitution method:

2x + 3y = 23

5x - 20 = 8y

Answer

Given,

2x + 3y = 23 ......(i)

5x - 20 = 8y ......(ii)

Solving (i) we get,

⟹ 2x + 3y = 23

⟹ 2x = 23 - 3y

⟹ x = 233y2\dfrac{23 - 3y}{2} .....(iii)

Substituting value of x from eqn. (iii) in eqn. (ii) we get,

5(233y2)20=8y11515y220=8y11515y402=8y11515y40=16y7515y=16y31y=75y=7531=21331.\Rightarrow 5\Big(\dfrac{23 - 3y}{2}\Big) - 20 = 8y \\[1em] \Rightarrow \dfrac{115 - 15y}{2} - 20 = 8y \\[1em] \Rightarrow \dfrac{115 - 15y - 40}{2} = 8y \\[1em] \Rightarrow 115 - 15y - 40 = 16y \\[1em] \Rightarrow 75 - 15y = 16y \\[1em] \Rightarrow 31y = 75 \\[1em] \Rightarrow y = \dfrac{75}{31} = 2\dfrac{13}{31}.

Substituting value of y in eqn.(iii) we get,

x=233y2=233×75312=23×313×75312=71322531×2=48862=24431=72731.\Rightarrow x = \dfrac{23 - 3y}{2} \\[1em] = \dfrac{23 - 3 \times \dfrac{75}{31}}{2} \\[1em] = \dfrac{\dfrac{23 \times 31 - 3 \times 75}{31}}{2} \\[1em] = \dfrac{713 - 225}{31 \times 2} \\[1em] = \dfrac{488}{62} \\[1em] = \dfrac{244}{31} = 7\dfrac{27}{31}.

Hence, x = 72731 and y =213317\dfrac{27}{31}\text{ and y =} 2\dfrac{13}{31}.

Question 4(i)

Solve the following system of simultaneous linear equations by the substitution method:

mx - ny = m2 + n2

x + y = 2m

Answer

Given,

mx - ny = m2 + n2 ......(i)

x + y = 2m .......(ii)

From eqn. (ii) we get,

x = 2m - y .......(iii)

Substituting value of x from eqn. (iii) in eqn. (i) we get,

⟹ m(2m - y) - ny = m2 + n2

⟹ 2m2 - my - ny = m2 + n2

⟹ 2m2 - m2 - n2 = my + ny

⟹ m2 - n2 = y(m + n)

⟹ y = m2n2m+n=(mn)(m+n)m+n\dfrac{\text{m}^2 - \text{n}^2}{\text{m} + \text{n}} = \dfrac{(\text{m} - \text{n})(\text{m} + \text{n})}{\text{m} + \text{n}} = (m - n).

Substituting value of y in eqn. (iii) we get,

x = 2m - y = 2m - (m - n) = 2m - m + n = m + n.

Hence, x = m + n and y = m - n.

Question 4(ii)

Solve the following system of simultaneous linear equations by the substitution method:

2xa+yb=2\dfrac{2x}{a} + \dfrac{y}{b} = 2

xayb=4\dfrac{x}{a} - \dfrac{y}{b} = 4

Answer

Given,

2xa+yb=2\dfrac{2x}{a} + \dfrac{y}{b} = 2 .......(i)

xayb=4\dfrac{x}{a} - \dfrac{y}{b} = 4 ........(ii)

Multiplying both side of eqn (i) by ab we get,

ab(2xa+yb)=2ab2bx+ay=2ab......(iii)\Rightarrow ab\Big(\dfrac{2x}{a} + \dfrac{y}{b}\Big) = 2ab \\[1em] \Rightarrow 2bx + ay = 2ab ......(iii)

Multiplying both side of eqn (ii) by ab we get,

ab(xayb)=4abbxay=4abbx=4ab+ay......(iv)\Rightarrow ab\Big(\dfrac{x}{a} - \dfrac{y}{b}\Big) = 4ab \\[1em] \Rightarrow bx - ay = 4ab \\[1em] \Rightarrow bx = 4ab + ay ......(iv)

Substituting value of bx in eq. (iii) we get,

⟹ 2(4ab + ay) + ay = 2ab

⟹ 8ab + 2ay + ay = 2ab

⟹ 8ab + 3ay = 2ab

⟹ 3ay = 2ab - 8ab

⟹ 3ay = -6ab

⟹ y = 6ab3a\dfrac{-6ab}{3a} = -2b.

Substituting value of y in eqn. (iv) we get,

⟹ bx = 4ab - 2ab

⟹ bx = 2ab

⟹ x = 2a.

Hence, x = 2a and y = -2b.

Question 5

Solve 2x + y = 35, 3x + 4y = 65. Hence, find the value of xy.\dfrac{x}{y}.

Answer

Given,

2x + y = 35 ......(i)

3x + 4y = 65 ......(ii)

From (i) we get,

y = 35 - 2x ......(iii)

Substituting value of y from eqn. (iii) in eqn. (ii) we get,

⟹ 3x + 4(35 - 2x) = 65

⟹ 3x + 140 - 8x = 65

⟹ 140 - 5x = 65

⟹ 5x = 140 - 65

⟹ 5x = 75

⟹ x = 15.

Substituting value of x in eqn. (iii) we get,

⟹ y = 35 - 2x = 35 - 2(15) = 35 - 30 = 5.

xy=155=3.\dfrac{x}{y} = \dfrac{15}{5} = 3.

Hence, x = 15, y = 5 and xy=3.\dfrac{x}{y} = 3.

Question 6

Solve the simultaneous equations 3x - y = 5, 4x - 3y = -1. Hence, find p, if y = px - 3.

Answer

Given,

3x - y = 5 ......(i)

4x - 3y = -1 .....(ii)

Solving (i) we get,

⟹ y = 3x - 5 .....(iii)

Substituting value of y from eqn. (iii) in eqn. (ii) we get,

⟹ 4x - 3(3x - 5) = -1

⟹ 4x - 9x + 15 = -1

⟹ -5x = -1 - 15

⟹ -5x = -16

⟹ x = 165\dfrac{16}{5}.

Substituting value of x in eqn. (iii) we get,

y=3×1655=4855=48255=235\Rightarrow y = 3 \times \dfrac{16}{5} - 5 \\[1em] = \dfrac{48}{5} - 5 \\[1em] = \dfrac{48 - 25}{5} \\[1em] = \dfrac{23}{5}

Given, y = px - 3. Substituting value of x and y in equation,

235=165p3235=16p15523=16p1516p=38p=3816=198.\Rightarrow \dfrac{23}{5} = \dfrac{16}{5}p - 3 \\[1em] \Rightarrow \dfrac{23}{5} = \dfrac{16p - 15}{5} \\[1em] \Rightarrow 23 = 16p - 15 \\[1em] \Rightarrow 16p = 38 \\[1em] \Rightarrow p = \dfrac{38}{16} = \dfrac{19}{8}.

Hence, x =165, y =235 and p=198.\dfrac{16}{5},\text{ y }= \dfrac{23}{5}\text{ and p} = \dfrac{19}{8}.

Exercise 5.2

Question 1(i)

Solve the following systems of simultaneous linear equations by the elimination method

3x + 4y = 10

2x - 2y = 2

Answer

Given,

3x + 4y = 10 ......(i)

2x - 2y = 2 .......(ii)

Multiplying eq. (ii) by 2 we get,

4x - 4y = 4 ......(iii)

Adding eq. (i) and (iii) we get,

⇒ 3x + 4y + 4x - 4y = 10 + 4

⇒ 7x = 14

⇒ x = 2.

Substituting value of x in eq. (ii) we get,

⇒ 2(2) - 2y = 2

⇒ 4 - 2y = 2

⇒ 2y = 4 - 2

⇒ 2y = 2

⇒ y = 1.

Hence, x = 2 and y = 1.

Question 1(ii)

Solve the following systems of simultaneous linear equations by the elimination method

2x = 5y + 4

3x - 2y + 16 = 0

Answer

Given,

2x = 5y + 4 or 2x - 5y - 4 = 0 ........(i)

3x - 2y + 16 = 0 ......(ii)

Multiplying eq. (i) by 3 and eq. (ii) by 2 we get,

6x - 15y - 12 = 0 .......(iii)

6x - 4y + 32 = 0 .......(iv)

Subtracting eq. (iii) from (iv) we get,

⇒ 6x - 4y + 32 - (6x - 15y - 12) = 0

⇒ 6x - 6x - 4y + 15y + 32 + 12 = 0

⇒ 11y + 44 = 0

⇒ 11y = -44

⇒ y = -4.

Substituting value of y in eq. (ii) we get,

⇒ 3x - 2(-4) + 16 = 0

⇒ 3x + 8 + 16 = 0

⇒ 3x + 24 = 0

⇒ 3x = -24

⇒ x = -8.

Hence, x = -8 and y = -4.

Question 2(i)

Solve the following systems of simultaneous linear equations by the elimination method

34x23y=1\dfrac{3}{4}x - \dfrac{2}{3}y = 1

38x16y=1\dfrac{3}{8}x - \dfrac{1}{6}y = 1

Answer

Given,

34x23y=1\dfrac{3}{4}x - \dfrac{2}{3}y = 1 ........(i)

38x16y=1\dfrac{3}{8}x - \dfrac{1}{6}y = 1 .........(ii)

Multiplying eq. (ii) by 2 we get,

34x13y=2\dfrac{3}{4}x - \dfrac{1}{3}y = 2 ........(iii)

Subtracting eq. (i) from (iii) we get,

34x13y(34x23y)=2134x34x13y+23y=113y=1y=3.\Rightarrow \dfrac{3}{4}x - \dfrac{1}{3}y - \Big(\dfrac{3}{4}x - \dfrac{2}{3}y\Big) = 2 - 1 \\[1em] \Rightarrow \dfrac{3}{4}x - \dfrac{3}{4}x - \dfrac{1}{3}y + \dfrac{2}{3}y = 1 \\[1em] \Rightarrow \dfrac{1}{3}y = 1 \\[1em] \Rightarrow y = 3.

Substituting value of y in eq. (i) we get,

34x23×3=134x2=134x=3x=3×43x=4.\Rightarrow \dfrac{3}{4}x - \dfrac{2}{3} \times 3 = 1 \\[1em] \Rightarrow \dfrac{3}{4}x - 2 = 1 \\[1em] \Rightarrow \dfrac{3}{4}x = 3 \\[1em] \Rightarrow x = \dfrac{3 \times 4}{3} \\[1em] \Rightarrow x = 4.

Hence, x = 4 and y = 3.

Question 2(ii)

Solve the following systems of simultaneous linear equations by the elimination method

2x - 3y - 3 = 0

2x3+4y+12=0\dfrac{2x}{3} + 4y + \dfrac{1}{2} = 0

Answer

Given,

2x - 3y - 3 = 0 ...........(i)

2x3+4y+12=0\dfrac{2x}{3} + 4y + \dfrac{1}{2} = 0 ........(ii)

Multiplying eq. (ii) by 3 we get,

2x+12y+32=02x + 12y + \dfrac{3}{2} = 0 .........(iii)

Subtracting eq. (i) from (iii) we get,

2x+12y+32(2x3y3)=02x2x+12y+3y+32+3=015y+92=015y=92y=92×15y=310.\Rightarrow 2x + 12y + \dfrac{3}{2} - (2x - 3y - 3) = 0 \\[1em] \Rightarrow 2x - 2x + 12y + 3y + \dfrac{3}{2} + 3 = 0 \\[1em] \Rightarrow 15y + \dfrac{9}{2} = 0 \\[1em] \Rightarrow 15y = -\dfrac{9}{2} \\[1em] \Rightarrow y = \dfrac{-9}{2 \times 15} \\[1em] \Rightarrow y = -\dfrac{3}{10}.

Substituting value of y in eq. (i) we get,

2x3y3=02x3×3103=02x+9103=02x+93010=02x2110=0x=2120.\Rightarrow 2x - 3y - 3 = 0 \\[1em] \Rightarrow 2x - 3 \times -\dfrac{3}{10} - 3 = 0 \\[1em] \Rightarrow 2x + \dfrac{9}{10} - 3 = 0 \\[1em] \Rightarrow 2x + \dfrac{9 - 30}{10} = 0 \\[1em] \Rightarrow 2x - \dfrac{21}{10} = 0 \\[1em] \Rightarrow x = \dfrac{21}{20}.

Hence, x=2120and y=310.x = \dfrac{21}{20} \text{and y} = -\dfrac{3}{10}.

Question 3(i)

Solve the following systems of simultaneous linear equations by the elimination method

15x - 14y = 117

14x - 15y = 115

Answer

Given,

15x - 14y = 117 .......(i)

14x - 15y = 115 .......(ii)

Multiplying eq. (i) by 14 and eq. (ii) by 15 we get,

210x - 196y = 1638 .......(iii)

210x - 225y = 1725 .......(iv)

Subtracting eq. (iii) from (iv) we get,

⇒ 210x - 225y - (210x - 196y) = 1725 - 1638

⇒ 210x - 210x - 225y + 196y = 87

⇒ -29y = 87

⇒ y = -3.

Substituting value of y in eq. (ii) we get,

⇒ 14x - 15(-3) = 115

⇒ 14x + 45 = 115

⇒ 14x = 115 - 45

⇒ 14x = 70

⇒ x = 5.

Hence, x = 5 and y = -3.

Question 3(ii)

Solve the following systems of simultaneous linear equations by the elimination method

41x + 53y = 135

53x + 41y = 147

Answer

Given,

41x + 53y = 135 ......(i)

53x + 41y = 147 .......(ii)

Multiplying eq. (i) by 53 and eq. (ii) by 41 we get,

2173x + 2809y = 7155 ......(iii)

2173x + 1681y = 6027 ......(iv)

Subtracting eq. (iv) from (iii) we get,

⇒ 2173x + 2809y - (2173x + 1681y) = 7155 - 6027

⇒ 2173x - 2173x + 2809y - 1681y = 1128

⇒ 1128y = 1128

⇒ y = 1.

Substituting value of y in eq. (i) we get,

⇒ 41x + 53(1) = 135

⇒ 41x = 135 - 53

⇒ 41x = 82

⇒ x = 2.

Hence, x = 2 and y = 1.

Question 4(i)

Solve the following systems of simultaneous linear equations by the elimination method

x6=y6\dfrac{x}{6} = y - 6

3x4=1+y\dfrac{3x}{4} = 1 + y

Answer

Given,

x6=y6\dfrac{x}{6} = y - 6 .......(i)

3x4=1+y\dfrac{3x}{4} = 1 + y ......(ii)

Subtracting eq. (i) from (ii) we get,

3x4x6=1+y(y6)9x2x12=77x12=7x=7×127x=12.\Rightarrow \dfrac{3x}{4} - \dfrac{x}{6} = 1 + y - (y - 6) \\[1em] \Rightarrow \dfrac{9x - 2x}{12} = 7 \\[1em] \Rightarrow \dfrac{7x}{12} = 7 \\[1em] \Rightarrow x = \dfrac{7 \times 12}{7} \\[1em] \Rightarrow x = 12.

Substituting value of x in eq. (i) we get,

126=y62=y6y=2+6=8.\Rightarrow \dfrac{12}{6} = y - 6 \\[1em] \Rightarrow 2 = y - 6 \\[1em] \Rightarrow y = 2 + 6 = 8.

Hence, x = 12 and y = 8.

Question 4(ii)

Solve the following systems of simultaneous linear equations by the elimination method

x23y=83x - \dfrac{2}{3}y = \dfrac{8}{3}

2x5y=75\dfrac{2x}{5} - y = \dfrac{7}{5}

Answer

Given,

x23y=83x - \dfrac{2}{3}y = \dfrac{8}{3} ........(i)

2x5y=75\dfrac{2x}{5} - y = \dfrac{7}{5} ........(ii)

Multiplying eq. (i) by 6 and eq. (ii) by 15 we get,

6x - 4y = 16 .......(iii)

6x - 15y = 21 ......(iv)

Subtracting eq. (iv) from (iii) we get,

⇒ 6x - 4y - (6x - 15y) = 16 - 21

⇒ 6x - 6x - 4y + 15y = -5

⇒ 11y = -5

⇒ y = 511-\dfrac{5}{11}.

Substituting value of y in eq. (iv) we get,

6x15×511=216x+7511=216x=2175116x=23175116x=15611x=15666x=2611.\Rightarrow 6x - 15 \times -\dfrac{5}{11} = 21 \\[1em] \Rightarrow 6x + \dfrac{75}{11} = 21 \\[1em] \Rightarrow 6x = 21 - \dfrac{75}{11} \\[1em] \Rightarrow 6x = \dfrac{231 - 75}{11} \\[1em] \Rightarrow 6x = \dfrac{156}{11} \\[1em] \Rightarrow x = \dfrac{156}{66} \\[1em] \Rightarrow x = \dfrac{26}{11}.

Hence, x=2611 and y=511.x = \dfrac{26}{11} \text{ and } y = -\dfrac{5}{11}.

Question 5(i)

Solve the following systems of simultaneous linear equations by the elimination method

9 - (x - 4) = y + 7

2(x + y) = 4 - 3y

Answer

Given,

9 - (x - 4) = y + 7

⇒ 9 - x + 4 = y + 7

⇒ x + y = 13 - 7

⇒ x + y = 6 .......(i)

2(x + y) = 4 - 3y

⇒ 2x + 2y = 4 - 3y

⇒ 2x + 5y = 4 .........(ii)

Multiplying eq. (i) by 2 we get,

⇒ 2x + 2y = 12 ........(iii)

Subtracting eq. (iii) from (ii) we get,

⇒ 2x + 5y - (2x + 2y) = 4 - 12

⇒ 5y - 2y = -8

⇒ 3y = -8

⇒ y = 83-\dfrac{8}{3}.

Substituting value of y in eq. (i) we get,

x+(83)=6x=6+83x=263.\Rightarrow x + \Big(-\dfrac{8}{3}\Big) = 6 \\[1em] \Rightarrow x = 6 + \dfrac{8}{3} \\[1em] \Rightarrow x = \dfrac{26}{3}.

Hence, x=263 and y=83x = \dfrac{26}{3} \text{ and } y = -\dfrac{8}{3}.

Question 5(ii)

Solve the following systems of simultaneous linear equations by the elimination method

2x+xy6=22x + \dfrac{x - y}{6} = 2

x2x+y3=1x - \dfrac{2x + y}{3} = 1

Answer

Solving 1st equation,

2x+xy6=212x+xy6=213xy=12.......(i)\Rightarrow 2x + \dfrac{x - y}{6} = 2 \\[1em] \Rightarrow \dfrac{12x + x - y}{6} = 2 \\[1em] \Rightarrow 13x - y = 12 .......(i)

Solving 2nd equation,

x2x+y3=13x2xy3=1xy=3........(ii)\Rightarrow x - \dfrac{2x + y}{3} = 1 \\[1em] \Rightarrow \dfrac{3x - 2x - y}{3} = 1 \\[1em] \Rightarrow x - y = 3 ........(ii)

Multiplying eq. (ii) by 13 we get,

⇒ 13x - 13y = 39 .........(iii)

Subtracting eq. (iii) from (i) we get,

⇒ 13x - y - (13x - 13y) = 12 - 39

⇒ 13x - 13x - y + 13y = -27

⇒ 12y = -27

⇒ y = 94-\dfrac{9}{4}.

Substituting value of y in eq (ii) we get,

x(94)=3x+94=3x=394x=1294x=34.\Rightarrow x - \Big(-\dfrac{9}{4}\Big) = 3 \\[1em] \Rightarrow x + \dfrac{9}{4} = 3 \\[1em] \Rightarrow x = 3 - \dfrac{9}{4} \\[1em] \Rightarrow x = \dfrac{12 - 9}{4} \\[1em] \Rightarrow x = \dfrac{3}{4}.

Hence, x=34 and y=94.x = \dfrac{3}{4} \text{ and } y = -\dfrac{9}{4}.

Question 6

Solve the following systems of simultaneous linear equations by the elimination method

x - 3y = 3x - 1 = 2x - y.

Answer

x - 3y = 3x - 1

⇒ 3x - x + 3y = 1

⇒ 2x + 3y = 1 .......(i)

3x - 1 = 2x - y

⇒ 3x - 2x + y = 1

⇒ x + y = 1 .......(ii)

Multiplying eq. (ii) by 2 we get,

2x + 2y = 2 ........(iii)

Subtracting eq. (iii) from (i) we get,

⇒ 2x + 3y - (2x + 2y) = 1 - 2

⇒ 2x - 2x + 3y - 2y = -1

⇒ y = -1.

Substituting value of y in eq. (ii) we get,

⇒ x + (-1) = 1

⇒ x = 1 + 1

⇒ x = 2.

Hence, x = 2 and y = -1.

Question 7(i)

Solve the following systems of simultaneous linear equations by the elimination method

4x+xy84x + \dfrac{x - y}{8} = 17

2y+x5y+23=22y + x - \dfrac{5y + 2}{3} = 2

Answer

Solving 1st equation,

4x+xy8=1732x+xy8=1733xy=136.......(i)\Rightarrow 4x + \dfrac{x - y}{8} = 17 \\[1em] \Rightarrow \dfrac{32x + x - y}{8} = 17 \\[1em] \Rightarrow 33x - y = 136 .......(i)

Solving 2nd equation,

2y+x5y+23=26y+3x5y23=2y+3x23=2y+3x2=6y+3x=8........(ii)\Rightarrow 2y + x - \dfrac{5y + 2}{3} = 2 \\[1em] \Rightarrow \dfrac{6y + 3x - 5y - 2}{3} = 2 \\[1em] \Rightarrow \dfrac{y + 3x - 2}{3} = 2 \\[1em] \Rightarrow y + 3x - 2 = 6 \\[1em] \Rightarrow y + 3x = 8 ........(ii)

Adding equation (i) and (ii) we get,

⇒ 33x - y + y + 3x = 136 + 8

⇒ 36x = 144

⇒ x = 4.

Substituting value of x in equation (ii) we get,

⇒ y + 3(4) = 8

⇒ y + 12 = 8

⇒ y = -4.

Hence, x = 4 and y = -4.

Question 7(ii)

Solve the following systems of simultaneous linear equations by the elimination method

x+12+y13=8\dfrac{x + 1}{2} + \dfrac{y - 1}{3} = 8

x13+y+12=9\dfrac{x - 1}{3} + \dfrac{y + 1}{2} = 9

Answer

Solving 1st equation,

x+12+y13=83(x+1)+2(y1)6=83x+3+2y26=83x+2y+16=83x+2y+1=483x+2y=47......(i)\Rightarrow \dfrac{x + 1}{2} + \dfrac{y - 1}{3} = 8 \\[1em] \Rightarrow \dfrac{3(x + 1) + 2(y - 1)}{6} = 8 \\[1em] \Rightarrow \dfrac{3x + 3 + 2y - 2}{6} = 8 \\[1em] \Rightarrow \dfrac{3x + 2y + 1}{6} = 8 \\[1em] \Rightarrow 3x + 2y + 1 = 48 \\[1em] \Rightarrow 3x + 2y = 47 ......(i)

Solving 2nd equation,

x13+y+12=92(x1)+3(y+1)6=92x2+3y+36=92x+3y+16=92x+3y+1=542x+3y=53.......(ii)\Rightarrow \dfrac{x - 1}{3} + \dfrac{y + 1}{2} = 9 \\[1em] \Rightarrow \dfrac{2(x - 1) + 3(y + 1)}{6} = 9 \\[1em] \Rightarrow \dfrac{2x - 2 + 3y + 3}{6} = 9 \\[1em] \Rightarrow \dfrac{2x + 3y + 1}{6} = 9 \\[1em] \Rightarrow 2x + 3y + 1 = 54 \\[1em] \Rightarrow 2x + 3y = 53 .......(ii)

Multiplying eq. (i) by 2 and eq. (ii) by 3 we get,

6x + 4y = 94 ......(iii)

6x + 9y = 159 .......(iv)

Subtracting eq. (iii) from (iv) we get,

⇒ 6x + 9y - (6x + 4y) = 159 - 94

⇒ 5y = 65

⇒ y = 13.

Substituting value of y in eq. (iii) we get,

⇒ 6x + 4(13) = 94

⇒ 6x + 52 = 94

⇒ 6x = 42

⇒ x = 7.

Hence, x = 7 and y = 13.

Question 8(i)

Solve the following systems of simultaneous linear equations by the elimination method

3x+4y=7\dfrac{3}{x} + 4y = 7

5x+6y=13\dfrac{5}{x} + 6y = 13

Answer

Given,

3x+4y=7\dfrac{3}{x} + 4y = 7 .......(i)

5x+6y=13\dfrac{5}{x} + 6y = 13 .......(ii)

Multiplying eq. (i) by 3 and eq. (ii) by 2 we get,

9x+12y=21\dfrac{9}{x} + 12y = 21 ......(iii)

10x+12y=26\dfrac{10}{x} + 12y = 26 .......(iv)

Subtracting eq. (iii) from (iv) we get,

10x9x+12y12y=26211x=5x=15.\Rightarrow \dfrac{10}{x} - \dfrac{9}{x} + 12y - 12y = 26 - 21 \\[1em] \Rightarrow \dfrac{1}{x} = 5 \\[1em] \Rightarrow x = \dfrac{1}{5}.

Substituting value of x in eq. (i) we get,

3x+4y=7315+4y=715+4y=74y=8y=2.\Rightarrow \dfrac{3}{x} + 4y = 7 \\[1em] \Rightarrow \dfrac{3}{\dfrac{1}{5}} + 4y = 7 \\[1em] \Rightarrow 15 + 4y = 7 \\[1em] \Rightarrow 4y = -8 \\[1em] \Rightarrow y = -2.

Hence, x = 15\dfrac{1}{5} and y = -2.

Question 8(ii)

Solve the following systems of simultaneous linear equations by the elimination method

5x9=1y5x - 9 = \dfrac{1}{y}

x+1y=3x + \dfrac{1}{y} = 3

Answer

5x9=1y or 5x1y=95x - 9 = \dfrac{1}{y} \text{ or } 5x - \dfrac{1}{y} = 9 ........(i)

x+1y=3x + \dfrac{1}{y} = 3 .......(ii)

Adding eq. (i) and (ii) we get,

5x1y+x+1y=9+36x=12x=2.\Rightarrow 5x - \dfrac{1}{y} + x + \dfrac{1}{y} = 9 + 3 \\[1em] \Rightarrow 6x = 12 \\[1em] \Rightarrow x = 2.

Substituting value of x in eq. (ii) we get,

x+1y=32+1y=31y=1y=1.\Rightarrow x + \dfrac{1}{y} = 3 \\[1em] \Rightarrow 2 + \dfrac{1}{y} = 3 \\[1em] \Rightarrow \dfrac{1}{y} = 1 \\[1em] \Rightarrow y = 1.

Hence, x = 2 and y = 1.

Question 9(i)

Solve the following systems of simultaneous linear equations by the elimination method

px + qy = p - q

qx - py = p + q

Answer

Given,

px + qy = p - q .......(i)

qx - py = p + q .......(ii)

Multiplying eq. (i) by q and eq. (ii) by p we get,

pqx + q2y = pq - q2 .......(iii)

pqx - p2y = p2 + pq .......(iv)

Subtracting eq. (iv) from (iii) we get,

⇒ pqx + q2y - (pqx - p2y) = pq - q2 - (p2 + pq)

⇒ pqx - pqx + q2y + p2y = pq - pq - q2 - p2

⇒ q2y + p2y = -q2 - p2

⇒ y(q2 + p2) = -(q2 + p2)

⇒ y = (q2+p2)q2+p2\dfrac{-(\text{q}^2 + \text{p}^2)}{\text{q}^2 + \text{p}^2} = -1.

Substituting value of y in eq. (i) we get,

⇒ px + q(-1) = p - q

⇒ px - q = p - q

⇒ px = p - q + q

⇒ px = p

⇒ x = 1.

Hence, x = 1 and y = -1.

Question 9(ii)

Solve the following systems of simultaneous linear equations by the elimination method

xayb=0\dfrac{x}{a} - \dfrac{y}{b} = 0

ax + by = a2 + b2

Answer

xayb=0bxayab=0bxay=0.\phantom{\Rightarrow} \dfrac{x}{a} - \dfrac{y}{b} = 0 \\[1em] \Rightarrow \dfrac{bx - ay}{ab} = 0 \\[1em] \Rightarrow bx - ay = 0.

Given equations can be written as,

bx - ay = 0 .......(i)

ax + by = (a2 + b2) .......(ii)

Multiplying eq. (i) by a and (ii) by b we get,

abx - a2y = 0 .........(iii)

abx + b2y = b(a2 + b2) .......(iv)

Subtracting eq. (iii) from (iv) we get,

⇒ abx + b2y - (abx - a2y) = b(a2 + b2)

⇒ abx - abx + b2y + a2y = b(a2 + b2)

⇒ y(b2 + a2) = b(a2 + b2)

⇒ y = b.

Substituting value of y in eq. (i) we get,

⇒ bx - ay = 0

⇒ bx - ab = 0

⇒ bx = ab

⇒ x = a.

Hence, x = a and y = b.

Question 10

Solve 2x + y = 23, 4x - y = 19. Hence, find the values of x - 3y and 5y - 2x.

Answer

Given,

2x + y = 23 .......(i)

4x - y = 19 .......(ii)

Multiplying eq. (i) by 2 we get,

4x + 2y = 46 ......(iii)

Subtracting eq. (ii) from (iii) we get,

⇒ 4x + 2y - (4x - y) = 46 - 19

⇒ 4x - 4x + 2y + y = 27

⇒ 3y = 27

⇒ y = 9.

Substituting value of y in eq. (ii) we get,

⇒ 4x - 9 = 19

⇒ 4x = 28

⇒ x = 7.

Substituting value of x and y in x - 3y,

⇒ x - 3y = 7 - 3(9) = 7 - 27 = -20.

Substituting value of x and y in 5y - 2x,

⇒ 5y - 2x = 5(9) - 2(7) = 45 - 14 = 31.

Hence, x = 7, y = 9, x - 3y = -20 and 5y - 2x = 31.

Question 11

The expression ax + by has value 7 when x = 2 and y = 1. When x = -1, y = 1, it has value 1, find a and b.

Answer

Given,

ax + by = 7, when x = 2, y = 1.

⇒ 2a + b = 7 ......(i)

ax + by = 1 when x = -1, y = 1.

⇒ -a + b = 1 .......(ii)

Multiplying eq. (ii) by 2 we get,

⇒ -2a + 2b = 2 .......(iii)

Adding eq. (i) and (iii) we get,

⇒ 2a + b + (-2a + 2b) = 7 + 2

⇒ 2a - 2a + b + 2b = 9

⇒ 3b = 9

⇒ b = 3.

Substituting value of b in eq. (ii) we get,

⇒ -a + 3 = 1

⇒ -a = -2

⇒ a = 2.

Hence, a = 2 and b = 3.

Question 12

Can the following equations hold simultaneously?

3x - 7y = 7

11x + 5y = 87

5x + 4y = 43.

If so, find x and y.

Answer

Given,

3x - 7y = 7 ........(i)

11x + 5y = 87 .......(ii)

5x + 4y = 43 .......(iii)

Solving first two equations simultaneously,

Multiplying eq. (i) by 11 and eq. (ii) by 3 we get,

33x - 77y = 77 ......(iv)

33x + 15y = 261 ......(v)

Subtracting eq. (iv) from (v) we get,

⇒ 33x + 15y - (33x - 77y) = 261 - 77

⇒ 33x - 33x + 15y + 77y = 184

⇒ 92y = 184

⇒ y = 2.

Substituting value of y in eq. (i) we get,

⇒ 3x - 7y = 7

⇒ 3x - 7(2) = 7

⇒ 3x - 14 = 7

⇒ 3x = 21

⇒ x = 7.

Substituting x = 7 and y = 2 in L.H.S. of eq. (iii),

5x + 4y = 43 .......(iii)

⇒ 5(7) + 4(2) = 35 + 8 = 43.

Since, L.H.S. = R.H.S. hence following equations can be held simultaneously.

Hence, x = 7 and y = 2.

Exercise 5.3

Question 1(i)

Solve the following systems of simultaneous linear equations by cross-multiplication method :

3x + 2y = 4

8x + 5y = 9

Answer

Given equations can be written as,

3x + 2y - 4 = 0

8x + 5y - 9 = 0

By cross multiplication method,

Solve by cross-multiplication 3x + 2y = 4 and 8x + 5y = 9. Simultaneous Linear Equations, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

x2×(9)5×(4)=y(4)×8(9)×3=13×58×2x18+20=y32+27=11516x2=y5=11x2=11 and y5=11x=2 and y=5.\therefore \dfrac{x}{2 \times (-9) - 5 \times (-4)} = \dfrac{y}{(-4) \times 8 - (-9) \times 3} = \dfrac{1}{3 \times 5 - 8 \times 2} \\[1em] \Rightarrow \dfrac{x}{-18 + 20} = \dfrac{y}{-32 + 27} = \dfrac{1}{15 - 16} \\[1em] \Rightarrow \dfrac{x}{2} = \dfrac{y}{-5} = \dfrac{1}{-1} \\[1em] \therefore \dfrac{x}{2} = \dfrac{1}{-1} \text{ and } \dfrac{y}{-5} = \dfrac{1}{-1} \\[1em] \Rightarrow x = -2 \text{ and } y = 5.

Hence, x = -2 and y = 5.

Question 1(ii)

Solve the following systems of simultaneous linear equations by cross-multiplication method :

3x - 7y + 10 = 0

y - 2x = 3

Answer

Given equations can be written as,

3x - 7y + 10 = 0

-2x + y - 3 = 0

By cross multiplication method,

Solve by cross-multiplication 3x - 7y + 10 = 0 and y - 2x = 3. Simultaneous Linear Equations, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

x(7)×(3)1×10=y10×(2)(3)×3=13×1(2)×(7)x2110=y20+9=1314x11=y11=111x11=111 and y11=111x=1 and y=1.\therefore \dfrac{x}{(-7) \times (-3) - 1 \times 10} = \dfrac{y}{10 \times (-2) - (-3) \times 3} = \dfrac{1}{3 \times 1 - (-2) \times (-7)} \\[1em] \Rightarrow \dfrac{x}{21 - 10} = \dfrac{y}{-20 + 9} = \dfrac{1}{3 - 14} \\[1em] \Rightarrow \dfrac{x}{11} = \dfrac{y}{-11} = \dfrac{1}{-11} \\[1em] \therefore \dfrac{x}{11} = \dfrac{1}{-11} \text{ and } \dfrac{y}{-11} = \dfrac{1}{-11} \\[1em] \Rightarrow x = -1 \text{ and } y = 1.

Hence, x = -1 and y = 1.

Question 2(i)

Solve the following system of simultaneous linear equations by cross - multiplication method :

2x - 5y = -1

3x + y = 7

Answer

Given equations can be written as,

2x - 5y + 1 = 0

3x + y - 7 = 0

By cross multiplication method,

Solve the following system of simultaneous linear equations by cross - multiplication method. 2x - 5y = -1, 3x + y = 7. Simultaneous Linear Equations, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

x5×(7)1×1=y1×3(7)×2=12×13×5x351=y3(14)=12(15)x34=y3+14=12+15x34=y17=117x34=117 and y17=117x=3417 and y=1717x=2 and y=1.\therefore \dfrac{x}{-5 \times (-7) - 1 \times 1} = \dfrac{y}{1 \times 3 - (-7) \times 2} = \dfrac{1}{2 \times 1 - 3 \times -5}\\[1em] \Rightarrow \dfrac{x}{35 - 1} = \dfrac{y}{3 - (-14)} = \dfrac{1}{2 - (-15)}\\[1em] \Rightarrow \dfrac{x}{34} = \dfrac{y}{3 + 14} = \dfrac{1}{2 + 15}\\[1em] \Rightarrow \dfrac{x}{34} = \dfrac{y}{17} = \dfrac{1}{17}\\[1em] \Rightarrow \dfrac{x}{34} = \dfrac{1}{17} \text{ and } \dfrac{y}{17} = \dfrac{1}{17}\\[1em] \Rightarrow x = \dfrac{34}{17} \text{ and }y = \dfrac{17}{17}\\[1em] \Rightarrow x = 2 \text{ and }y = 1.

Hence, x = 2 and y = 1.

Question 2(ii)

Solve the following system of simultaneous linear equations by cross-multiplication method :

x + 3y + 4 = 0

3x - y = -2

Answer

Given equations can be written as,

x + 3y + 4 = 0

3x - y + 2 = 0

By cross multiplication method,

Solve the following system of simultaneous linear equations by cross-multiplication method: x + 3y + 4 = 0, 3x - y = -2. Simultaneous Linear Equations, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

x3×2(1)×4=y4×32×1=11×(1)3×3x6+4=y122=119x10=y10=110x10=110 and y10=110x=1010 and y=1010x=1 and y=1\therefore \dfrac{x}{3 \times 2 - (-1) \times 4} = \dfrac{y}{4 \times 3 - 2 \times 1} = \dfrac{1}{1 \times (-1) - 3 \times 3}\\[1em] \Rightarrow \dfrac{x}{6 + 4} = \dfrac{y}{12 - 2} = \dfrac{1}{-1 - 9}\\[1em] \Rightarrow \dfrac{x}{10} = \dfrac{y}{10} = \dfrac{1}{-10}\\[1em] \Rightarrow \dfrac{x}{10} = \dfrac{1}{-10} \text{ and }\dfrac{y}{10} = \dfrac{1}{-10}\\[1em] \Rightarrow x = -\dfrac{10}{10} \text{ and }y = -\dfrac{10}{10}\\[1em] \Rightarrow x = -1 \text{ and }y = -1

Hence, x = -1 and y = -1.

Question 3(i)

Solve the following pairs of linear equations by cross-multiplication method:

x - y = a + b

ax + by = a2 - b2

Answer

Given equations can be written as,

x - y - (a + b) = 0

ax + by - (a2 - b2) = 0

By cross multiplication method,

Solve by cross-multiplication x - y = a + b and ax + by = a^2 - b^2. Simultaneous Linear Equations, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

x(1)×[(a2b2)]b×[(a+b)]=y[(a+b)×a][(a2b2)×1]=11×ba×(1)xa2b2+ab+b2=ya2ab+a2b2=1b+axa2+ab=yabb2=1b+axa2+ab=1b+a and yb(a+b)=1b+axa(a+b)=1b+a and yb(a+b)=1b+ax=a(a+b)b+a and y=b(a+b)b+ax=a and y=b.\therefore \dfrac{x}{(-1) \times [-(a^2 - b^2)] - b \times [-(a + b)]} = \dfrac{y}{[-(a + b) \times a] - [-(a^2 - b^2) \times 1] } = \dfrac{1}{1 \times b - a \times (-1)} \\[1em] \Rightarrow \dfrac{x}{a^2 - b^2 + ab + b^2} = \dfrac{y}{-a^2 - ab + a^2 - b^2} = \dfrac{1}{b + a} \\[1em] \Rightarrow \dfrac{x}{a^2 + ab} = \dfrac{y}{-ab - b^2} = \dfrac{1}{b + a} \\[1em] \therefore \dfrac{x}{a^2 + ab} = \dfrac{1}{b + a} \text{ and } \dfrac{y}{-b(a + b)} = \dfrac{1}{b + a} \\[1em] \Rightarrow \dfrac{x}{a(a + b)} = \dfrac{1}{b + a} \text{ and } \dfrac{y}{-b(a + b)} = \dfrac{1}{b + a} \\[1em] \Rightarrow x = \dfrac{a(a + b)}{b + a} \text{ and } y = \dfrac{-b(a + b)}{b + a} \\[1em] \Rightarrow x = a \text{ and } y = -b.

Hence, x = a and y = -b.

Question 3(ii)

Solve the following pairs of linear equations by cross-multiplication method:

2bx + ay = 2ab

bx - ay = 4ab.

Answer

Given equations can be written as,

2bx + ay - 2ab = 0

bx - ay - 4ab = 0

By cross multiplication method,

Solve by cross-multiplication 2bx + ay = 2ab and bx - ay = 4ab. Simultaneous Linear Equations, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

xa×(4ab)(a)×[2ab]=y[(2ab)×b][(4ab)×2b]=12b×(a)b×ax4a2b2a2b=y2ab2+8ab2=12ababx6a2b=y6ab2=13abx6a2b=13ab and y6ab2=13abx=6a2b3ab and y=6ab23abx=2a and y=2b.\therefore \dfrac{x}{a \times -(4ab) - (-a) \times [-2ab]} = \dfrac{y}{[-(2ab) \times b] - [-(4ab) \times 2b] } = \dfrac{1}{2b \times (-a) - b \times a} \\[1em] \Rightarrow \dfrac{x}{-4a^2b - 2a^2b} = \dfrac{y}{-2ab^2 + 8ab^2} = \dfrac{1}{-2ab - ab} \\[1em] \Rightarrow -\dfrac{x}{6a^2b} = \dfrac{y}{6ab^2} = -\dfrac{1}{3ab} \\[1em] \therefore -\dfrac{x}{6a^2b} = -\dfrac{1}{3ab} \text{ and } \dfrac{y}{6ab^2} = -\dfrac{1}{3ab} \\[1em] \Rightarrow x = \dfrac{6a^2b}{3ab} \text{ and } y = -\dfrac{6ab^2}{3ab} \\[1em] \Rightarrow x = 2a \text{ and } y = -2b.

Hence, x = 2a and y = -2b.

Exercise 5.4

Question 1(i)

Solve the following pairs of linear equations:

2x+23y=16\dfrac{2}{x} + \dfrac{2}{3y} = \dfrac{1}{6}

2x1y=1\dfrac{2}{x} - \dfrac{1}{y} = 1

Answer

Substituting 1x=a and 1y=b\dfrac{1}{x} = a \text{ and } \dfrac{1}{y} = b in above equations we get,

2a+23b=162a + \dfrac{2}{3}b = \dfrac{1}{6} .......(i)

2a - b = 1 .......(ii)

Subtracting eq. (ii) from (i) we get,

2a+23b(2ab)=1612a2a+23b+b=1662b+3b3=565b3=56b=5×36×5b=121y=12y=2.\Rightarrow 2a + \dfrac{2}{3}b - (2a - b) = \dfrac{1}{6} - 1 \\[1em] \Rightarrow 2a - 2a + \dfrac{2}{3}b + b = \dfrac{1 - 6}{6} \\[1em] \Rightarrow \dfrac{2b + 3b}{3} = -\dfrac{5}{6} \\[1em] \Rightarrow \dfrac{5b}{3} = -\dfrac{5}{6} \\[1em] \Rightarrow b = -\dfrac{5 \times 3}{6 \times 5} \\[1em] \Rightarrow b = -\dfrac{1}{2} \\[1em] \therefore \dfrac{1}{y} = -\dfrac{1}{2} \\[1em] \Rightarrow y = -2.

Substituting value of b in eq (ii),

2a(12)=12a+12=12a=1122a=12a=141x=14x=4.\Rightarrow 2a - \Big(-\dfrac{1}{2}\Big) = 1 \\[1em] \Rightarrow 2a + \dfrac{1}{2} = 1 \\[1em] \Rightarrow 2a = 1 - \dfrac{1}{2} \\[1em] \Rightarrow 2a = \dfrac{1}{2} \\[1em] \Rightarrow a = \dfrac{1}{4} \\[1em] \therefore \dfrac{1}{x} = \dfrac{1}{4} \\[1em] \Rightarrow x = 4.

Hence, x = 4 and y = -2.

Question 1(ii)

Solve the following pairs of linear equations:

32x+23y=5\dfrac{3}{2x} + \dfrac{2}{3y} = 5

5x3y=1\dfrac{5}{x} - \dfrac{3}{y} = 1

Answer

Substituting 1x=a and 1y=b\dfrac{1}{x} = a \text{ and } \dfrac{1}{y} = b in above equations we get,

32a+23b=5\dfrac{3}{2}a + \dfrac{2}{3}b = 5 ......(i)

5a - 3b = 1 .......(ii)

Solving eq (i) we get,

32a+23b=59a+4b6=59a+4b=30.......(iii)\Rightarrow \dfrac{3}{2}a + \dfrac{2}{3}b = 5 \\[1em] \Rightarrow \dfrac{9a + 4b}{6} = 5 \\[1em] \Rightarrow 9a + 4b = 30 .......(iii)

Multiplying eq. (ii) by 4 we get,

20a - 12b = 4 .......(iv)

Multiplying eq. (iii) by 3 we get,

27a + 12b = 90 .......(v)

Adding eq. (iv) and (v) we get,

⇒ 20a - 12b + 27a + 12b = 4 + 90

⇒ 47a = 94

⇒ a = 2.

1x=2x=12.\therefore \dfrac{1}{x} = 2 \\[1em] \Rightarrow x = \dfrac{1}{2}.

Substituting value of a in eq. (ii) we get,

⇒ 5(2) - 3b = 1

⇒ 10 - 3b = 1

⇒ 3b = 10 - 1

⇒ 3b = 9

⇒ b = 3.

1y=3y=13.\therefore \dfrac{1}{y} = 3 \\[1em] \Rightarrow y = \dfrac{1}{3}.

Hence, x=12 and y=13.x = \dfrac{1}{2} \text{ and } y = \dfrac{1}{3}.

Question 2(i)

Solve the following pairs of linear equations:

7x2yxy=5\dfrac{7x - 2y}{xy} = 5

8x+7yxy=15\dfrac{8x + 7y}{xy} = 15

Answer

Given,

7x2yxy=5 or 7y2x=5\dfrac{7x - 2y}{xy} = 5 \text{ or } \dfrac{7}{y} - \dfrac{2}{x} = 5

8x+7yxy=15 or 8y+7x=15\dfrac{8x + 7y}{xy} = 15 \text{ or } \dfrac{8}{y} + \dfrac{7}{x} = 15

Substituting 1x=a and 1y=b\dfrac{1}{x} = a \text{ and } \dfrac{1}{y} = b in above equations we get,

7b - 2a = 5 ......(i)

8b + 7a = 15 ......(ii)

Multiplying eq. (i) by 7 and eq. (ii) by 2 we get,

49b - 14a = 35 ......(iii)

16b + 14a = 30 .......(iv)

Adding equations (iii) and (iv) we get,

⇒ 49b - 14a + 16b + 14a = 35 + 30

⇒ 65b = 65

⇒ b = 1.

1y=1y=1.\therefore \dfrac{1}{y} = 1 \\[1em] \Rightarrow y = 1.

Substituting value of b in eq (i) we get,

⇒ 7(1) - 2a = 5

⇒ 7 - 2a = 5

⇒ 2a = 7 - 5

⇒ 2a = 2

⇒ a = 1.

1x=1x=1.\therefore \dfrac{1}{x} = 1 \\[1em] \Rightarrow x = 1.

Hence, x = 1 and y = 1.

Question 2(ii)

Solve the following pairs of linear equations:

99x + 101y = 499xy

101x + 99y = 501xy

Answer

Given,

99x + 101y = 499xy

101x + 99y = 501xy

First we note that x = 0, y = 0 is a solution of equations.

Now when x ≠ 0 and y ≠ 0.

Dividing the above equations by xy we get,

99y+101x=499\dfrac{99}{y} + \dfrac{101}{x} = 499 .......(i)

101y+99x=501\dfrac{101}{y} + \dfrac{99}{x} = 501 .......(ii)

Substituting 1x=p and 1y=q\dfrac{1}{x} = p \text{ and } \dfrac{1}{y} = q in both equations and multiplying eq. (i) by 101 and (ii) by 99 we get,

9999q + 10201p = 50399 ......(iii)

9999q + 9801p = 49599 ......(iv)

Subtracting (iv) from (iii) we get,

⇒ 9999q + 10201p - (9999q + 9801p) = 50399 - 49599

⇒ 9999q - 9999q + 10201p - 9801p = 800

⇒ 400p = 800

⇒ p = 2.

1x=2 or x=12.\therefore \dfrac{1}{x} = 2 \text{ or } x = \dfrac{1}{2}.

Substituting value of p in (iii) we get,

⇒ 9999q + 10201(2) = 50399

⇒ 9999q + 20402 = 50399

⇒ 9999q = 29997

⇒ q = 3.

1y=3 or y=13\therefore \dfrac{1}{y} = 3 \text{ or } y = \dfrac{1}{3}.

Hence, x = 0, y = 0 and x = 12 and y=13.\dfrac{1}{2} \text{ and } y = \dfrac{1}{3}.

Question 3(i)

Solve the following pairs of linear equations:

3x + 14y = 5xy

21y - x = 2xy

Answer

Given,

3x + 14y = 5xy .......(i)

21y - x = 2xy ........(ii)

First we note that x = 0, y = 0 is a solution of the equations.

Now when x ≠ 0 and y ≠ 0.

Dividing eq. (i) by xy we get,

3x+14y=5xy3xxy+14yxy=5xyxy3y+14x=5......(iii)\Rightarrow 3x + 14y = 5xy \\[1em] \Rightarrow \dfrac{3x}{xy} + \dfrac{14y}{xy} = \dfrac{5xy}{xy} \\[1em] \Rightarrow \dfrac{3}{y} + \dfrac{14}{x} = 5 ......(iii)

Dividing eq. (ii) by xy we get,

21yx=2xy21yxyxxy=221x1y=2.......(iv)\Rightarrow 21y - x = 2xy \\[1em] \Rightarrow \dfrac{21y}{xy} - \dfrac{x}{xy} = 2 \\[1em] \Rightarrow \dfrac{21}{x} - \dfrac{1}{y} = 2 .......(iv)

Substituting 1x=a and 1y=b\dfrac{1}{x} = a \text{ and } \dfrac{1}{y} = b in eq. (iii) and (iv) we get,

3b + 14a = 5 ........(v)

21a - b = 2 .........(vi)

Multiplying eq. (vi) by 3 we get,

63a - 3b = 6 .......(vii)

Adding eq. (v) and (vii) we get,

⇒ 3b + 14a + (63a - 3b) = 5 + 6
⇒ 77a = 11
⇒ a = 1177=17\dfrac{11}{77} = \dfrac{1}{7}.

1x=17x=7.\therefore \dfrac{1}{x} = \dfrac{1}{7} \\[1em] \Rightarrow x = 7.

Substituting value of a in eq. (v) we get,

⇒ 3b + 14×1714\times \dfrac{1}{7} = 5

⇒ 3b + 2 = 5

⇒ 3b = 3

⇒ b = 1.

1y=1y=1.\therefore \dfrac{1}{y} = 1 \\[1em] \Rightarrow y = 1.

Hence, x = 0, y = 0 and x = 7, y = 1.

Question 3(ii)

Solve the following pairs of linear equations:

3x + 5y = 4xy

2y - x = xy.

Answer

Given,

3x + 5y = 4xy ........(i)

2y - x = xy .......(ii)

First we note that x = 0, y = 0 is a solution of equations.

Now when x ≠ 0 and y ≠ 0.

Dividing above equations by xy we get,

3y+5x=4\dfrac{3}{y} + \dfrac{5}{x} = 4 .......(iii)

2x1y=1\dfrac{2}{x} - \dfrac{1}{y} = 1 .......(iv)

Substituting 1x=a and 1y=b\dfrac{1}{x} = a \text{ and } \dfrac{1}{y} = b in eq. (iii) and (iv) we get,

3b + 5a = 4 .......(v)

2a - b = 1 .......(vi)

Multiplying eq. (vi) by 3 we get,

6a - 3b = 3 ........(vii)

Adding eq. (v) and (vii) we get,

⇒ 3b + 5a + 6a - 3b = 4 + 3

⇒ 11a = 7

⇒ a = 711\dfrac{7}{11}.

1x=711x=117.\therefore \dfrac{1}{x} = \dfrac{7}{11} \\[1em] \Rightarrow x = \dfrac{11}{7}.

Substituting value of a in eq. (vi) we get,

2×711b=11411b=1b=14111b=3111y=311y=113.\Rightarrow 2 \times \dfrac{7}{11} - b = 1 \\[1em] \Rightarrow \dfrac{14}{11} - b = 1 \\[1em] \Rightarrow b = \dfrac{14}{11} - 1 \\[1em] \Rightarrow b = \dfrac{3}{11} \\[1em] \therefore \dfrac{1}{y} = \dfrac{3}{11} \\[1em] \Rightarrow y = \dfrac{11}{3}.

Hence, x = 0, y = 0 and x = 117,y=113.\dfrac{11}{7}, y = \dfrac{11}{3}.

Question 4(i)

Solve the following pairs of linear equations:

20x+1+4y1=5\dfrac{20}{x + 1} + \dfrac{4}{y - 1} = 5

10x+14y1=1\dfrac{10}{x + 1} - \dfrac{4}{y - 1} = 1

Answer

Substituting 1x+1=a and 1y1=b\dfrac{1}{x + 1} = a \text{ and } \dfrac{1}{y - 1} = b in above eq. we get,

20a + 4b = 5 .......(i)

10a - 4b = 1 .......(ii)

Multiplying equation (ii) by 2 we get,

20a - 8b = 2 .......(iii)

Subtracting eq. (iii) from (i) we get,

⇒ 20a + 4b - (20a - 8b) = 5 - 2

⇒ 12b = 3

⇒ b = 312=14\dfrac{3}{12} = \dfrac{1}{4}.

1y1=14y1=4y=5.\therefore \dfrac{1}{y - 1} = \dfrac{1}{4} \\[1em] \Rightarrow y - 1 = 4 \\[1em] \Rightarrow y = 5.

Substituting value of b in (iii) we get,

⇒ 20a - 8×148 \times \dfrac{1}{4} = 2

⇒ 20a - 2 = 2

⇒ 20a = 2 + 2

⇒ a = 420\dfrac{4}{20}

⇒ a = 15\dfrac{1}{5}

1x+1=15x+1=5x=4.\therefore \dfrac{1}{x + 1} = \dfrac{1}{5} \\[1em] \Rightarrow x + 1 = 5 \\[1em] \Rightarrow x = 4.

Hence, x = 4 and y = 5.

Question 4(ii)

Solve the following pairs of linear equations:

3x+y+2xy=3\dfrac{3}{x + y} + \dfrac{2}{x - y} = 3

2x+y+3xy=113\dfrac{2}{x + y} + \dfrac{3}{x - y} = \dfrac{11}{3}

Answer

Substituting 1x+y=a and 1xy=b\dfrac{1}{x + y} = a \text{ and } \dfrac{1}{x - y} = b in above eq. we get,

3a + 2b = 3 .......(i)

2a + 3b = 113\dfrac{11}{3} .......(ii)

Multiplying eq. (i) by 2 and (ii) by 3 we get,

6a + 4b = 6 .......(iii)

6a + 9b = 11 .......(iv)

Subtracting eq. (iii) from iv we get,

⇒ 6a + 9b - (6a + 4b) = 11 - 6

⇒ 6a + 9b - 6a - 4b = 5

⇒ 5b = 5

⇒ b = 1.

1xy=1xy=1.......(v)\therefore \dfrac{1}{x - y} = 1 \\[1em] \Rightarrow x - y = 1 .......(v)

Substituting value of b in eq. (iii) we get,

⇒ 6a + 4(1) = 6

⇒ 6a + 4 = 6

⇒ 6a = 2

⇒ a = 26=13.\dfrac{2}{6} = \dfrac{1}{3}.

1x+y=13\therefore \dfrac{1}{x + y} = \dfrac{1}{3}

⇒ x + y = 3

⇒ x = 3 - y.

Putting above value of x in eq. (v) we get,

⇒ (3 - y) - y = 1

⇒ 3 - 2y = 1

⇒ 2y = 3 - 1

⇒ 2y = 2

⇒ y = 1.

⇒ x = 3 - y = 3 - 1 = 2.

Hence, x = 2 and y = 1.

Question 5(i)

Solve the following pairs of linear equations:

12(2x+3y)+127(3x2y)=12\dfrac{1}{2(2x + 3y)} + \dfrac{12}{7(3x - 2y)} = \dfrac{1}{2}

72x+3y+43x2y=2\dfrac{7}{2x + 3y} + \dfrac{4}{3x - 2y} = 2

Answer

Substituting 12x+3y=a and 13x2y=b\dfrac{1}{2x + 3y} = a \text{ and } \dfrac{1}{3x - 2y} = b in above eq. we get,

12a+127b=12\dfrac{1}{2}a + \dfrac{12}{7}b = \dfrac{1}{2} .....(i)

7a + 4b = 2 .......(ii)

Multiplying eq. (i) by 14 we get,

7a + 24b = 7 ......(iii)

Subtracting eq. (ii) from (iii) we get,

⇒ 7a + 24b - (7a + 4b) = 7 - 2

⇒ 7a + 24b - 7a - 4b = 7 - 2

⇒ 20b = 5

⇒ b = 520=14\dfrac{5}{20} = \dfrac{1}{4}.

13x2y=14\therefore \dfrac{1}{3x - 2y} = \dfrac{1}{4}

⇒ 3x - 2y = 4 ........(iv)

Substituting value of b in eq. (iii) we get,

⇒ 7a + 24×1424 \times \dfrac{1}{4} = 7

⇒ 7a + 6 = 7

⇒ 7a = 1

⇒ a = 17\dfrac{1}{7}.

12x+3y=17\therefore \dfrac{1}{2x + 3y} = \dfrac{1}{7}

⇒ 2x + 3y = 7 .......(v)

Multiplying eq. (iv) by 2 and eq. (v) by 3 we get,

⇒ 6x - 4y = 8 .......(vi)

⇒ 6x + 9y = 21 .......(vii)

Subtracting eq. (vi) from (vii) we get,

⇒ (6x + 9y) - (6x - 4y) = 21 - 8

⇒ 13y = 13

⇒ y = 1.

Substituting value of y in eq. (vi) we get,

⇒ 6x - 4(1) = 8

⇒ 6x = 8 + 4

⇒ 6x = 12

⇒ x = 2.

Hence, x = 2 and y = 1.

Question 5(ii)

Solve the following pairs of linear equations:

12(x+2y)+53(3x2y)=32\dfrac{1}{2(x + 2y)} + \dfrac{5}{3(3x - 2y)} = -\dfrac{3}{2}

54(x+2y)35(3x2y)=6160\dfrac{5}{4(x + 2y)} - \dfrac{3}{5(3x - 2y)} = \dfrac{61}{60}

Answer

Substitute 1x+2y=p and 13x2y=q\dfrac{1}{x + 2y} = p \text{ and } \dfrac{1}{3x - 2y} = q in above equations,

12p+53q=32\dfrac{1}{2}p + \dfrac{5}{3}q = -\dfrac{3}{2} ........(i)

54p35q=6160\dfrac{5}{4}p - \dfrac{3}{5}q = \dfrac{61}{60} ........(ii)

Multiplying (i) by 35\dfrac{3}{5} and (ii) by 53\dfrac{5}{3} we get,

310p+q=910\dfrac{3}{10}p + q = -\dfrac{9}{10} .......(iii)

2512pq=6136\dfrac{25}{12}p - q = \dfrac{61}{36} .......(iv)

Adding (iii) and (iv) we get,

310p+q+2512pq=910+613618p+125p60=162+30518014360p=143180p=143×60180×143p=131x+2y=13x+2y=3.......(v)\Rightarrow \dfrac{3}{10}p + q + \dfrac{25}{12}p - q = -\dfrac{9}{10} + \dfrac{61}{36} \\[1em] \Rightarrow \dfrac{18p + 125p}{60} = \dfrac{-162 + 305}{180} \\[1em] \Rightarrow \dfrac{143}{60}p = \dfrac{143}{180} \\[1em] \Rightarrow p = \dfrac{143 \times 60}{180 \times 143} \\[1em] \Rightarrow p = \dfrac{1}{3} \\[1em] \therefore \dfrac{1}{x + 2y} = \dfrac{1}{3} \\[1em] \Rightarrow x + 2y = 3 .......(v)

Substituting value of p in (i) we get,

12×13+53q=3216+53q=3253q=321653q=91653q=106q=10×36×5q=113x2y=13x2y=12y3x=1......(vi)\Rightarrow \dfrac{1}{2} \times \dfrac{1}{3} + \dfrac{5}{3}q = -\dfrac{3}{2} \\[1em] \Rightarrow \dfrac{1}{6} + \dfrac{5}{3}q = -\dfrac{3}{2} \\[1em] \Rightarrow \dfrac{5}{3}q = -\dfrac{3}{2} - \dfrac{1}{6} \\[1em] \Rightarrow \dfrac{5}{3}q = \dfrac{-9 - 1}{6} \\[1em] \Rightarrow \dfrac{5}{3}q = -\dfrac{10}{6} \\[1em] \Rightarrow q = -\dfrac{10 \times 3}{6 \times 5} \\[1em] \Rightarrow q = -1 \\[1em] \therefore \dfrac{1}{3x - 2y} = -1 \\[1em] \Rightarrow 3x - 2y = -1 \\[1em] \Rightarrow 2y - 3x = 1 ......(vi)

Subtracting (vi) from (v) we get,

⇒ x + 2y - (2y - 3x) = 3 - 1

⇒ x + 3x = 2

⇒ 4x = 2

⇒ x = 12\dfrac{1}{2}.

Substituting value of x from (v) we get,

12+2y=32y=3122y=6122y=52y=54.\Rightarrow \dfrac{1}{2} + 2y = 3 \\[1em] \Rightarrow 2y = 3 - \dfrac{1}{2} \\[1em] \Rightarrow 2y = \dfrac{6 - 1}{2} \\[1em] \Rightarrow 2y = \dfrac{5}{2} \\[1em] \Rightarrow y = \dfrac{5}{4}.

Hence, x = 12 and y=54.\dfrac{1}{2} \text{ and } y = \dfrac{5}{4}.

Multiple Choice Questions

Question 1

If x = 3, y = k is a solution of the equation 3x - 4y + 7 = 0, then the value of k is

  1. 16

  2. -16

  3. 4

  4. -4

Answer

Substituting x = 3 and y = k in 3x - 4y + 7 = 0 we get,

⇒ 3(3) - 4(k) + 7 = 0

⇒ 9 - 4k + 7 = 0

⇒ 4k = 16

⇒ k = 4.

Hence, Option 3 is the correct option.

Question 2

The solution of the pair of linear equations 2x - y = 5 and 5x - y = 11 is

  1. x = -1, y = 2

  2. x = 2, y = -1

  3. x = 0, y = -5

  4. x = 52\dfrac{5}{2}, y = 0

Answer

Given,

2x - y = 5 ......(i)

5x - y = 11 .....(ii)

Subtracting eq. (i) from (ii) we get,

⇒ 5x - y - (2x - y) = 11 - 5

⇒ 5x - y - 2x + y = 6

⇒ 3x = 6

⇒ x = 2.

Substituting value of x in eq. (i),

⇒ 2(2) - y = 5

⇒ 4 - y = 5

⇒ y = 4 - 5

⇒ y = -1.

Hence, Option 2 is the correct option.

Question 3

If x = a, y = b is the solution of the equations x - y = 2 and x + y = 4, then the values of a and b are respectively,

  1. 3 and 5

  2. 5 and 3

  3. 3 and 1

  4. -1 and -3

Answer

Given,

x - y = 2 ......(i)

x + y = 4 ......(ii)

Adding both the equations we get,

⇒ x - y + x + y = 2 + 4

⇒ 2x = 6

⇒ x = 3.

Substituting value of x in (i),

⇒ 3 - y = 2

⇒ y = 3 - 2

⇒ y = 1.

Hence, Option 3 is the correct option.

Question 4

The solution of the system of equations 4x+5y=7 and 3x+4y=5\dfrac{4}{x} + 5y = 7 \text{ and } \dfrac{3}{x} + 4y = 5 is

  1. x=13,y=1x = \dfrac{1}{3}, y = -1

  2. x=13,y=1x = -\dfrac{1}{3}, y = 1

  3. x = 3, y = -1

  4. x = -3, y = 1

Answer

Given,

4x+5y=7\dfrac{4}{x} + 5y = 7 .......(i)

3x+4y=5\dfrac{3}{x} + 4y = 5 .......(ii)

Multiplying eq. (i) by 4 and eq. (ii) by 5 we get,

16x+20y=28\dfrac{16}{x} + 20y = 28 .......(iii)

15x+20y=25\dfrac{15}{x} + 20y = 25 .......(iv)

Subtracting eq. (iv) from (iii) we get,

16x+20y(15x+20y)=282516x15x=31x=3x=13.\Rightarrow \dfrac{16}{x} + 20y - \Big(\dfrac{15}{x} + 20y\Big) = 28 - 25 \\[1em] \Rightarrow \dfrac{16}{x} - \dfrac{15}{x} = 3 \\[1em] \Rightarrow \dfrac{1}{x} = 3 \\[1em] \Rightarrow x = \dfrac{1}{3}.

Substituting value of x in (ii),

313+4y=59+4y=54y=594y=4y=1.\Rightarrow \dfrac{3}{\dfrac{1}{3}} + 4y = 5 \\[1em] \Rightarrow 9 + 4y = 5 \\[1em] \Rightarrow 4y = 5 - 9 \\[1em] \Rightarrow 4y = -4 \\[1em] \Rightarrow y = -1.

Hence, Option 1 is the correct option.

Question 5

A pair of linear equations which has a unique solution x = 2, y = -3 is

  1. x + y = -1
    2x - 3y = -5

  2. 2x + 5y = -11
    4x + 10y = -22

  3. 2x - y = 1
    3x + 2y = 0

  4. x - 4y - 14 = 0
    5x - y - 13 = 0

Answer

Substituting x = 2, y = -3 in x - 4y - 14 = 0 we get,

= 2 - 4(-3) - 14

= 2 + 12 - 14

= 0.

Substituting x = 2, y = -3 in 5x - y - 13 = 0 we get,

= 5(2) - (-3) - 13

= 10 + 3 - 13

= 13 - 13

= 0.

Hence, Option 4 is the correct option.

Question 6

Consider the following two statements.

Statement 1: A solution to linear equation 5x - 2y = 1 is x = 3, y = 7.

Statement 2: The linear equation 5x - 2y = 1 has a unique solution.

Which of the following is valid?

  1. Both the statements are true.

  2. Both the statements are false.

  3. Statement 1 is true, and Statement 2 is false.

  4. Statement 1 is false, and Statement 2 is true.

Answer

If we substitute x = 3 and y = 7 into the equation 5x - 2y = 1, we get

Taking L.H.S.

⇒ 5.(3) - 2.(7)

⇒ 15 - 14

⇒ 1.

Since, L.H.S. = R.H.S.

This confirms that (3, 7) is indeed a solution.

∴ Statement 1 is true.

A single linear equation with two variables (like x and y) represents a line in a coordinate plane.

A line has infinitely many points on it, and each point corresponds to a solution of the equation.

Therefore, a single linear equation has infinitely many solutions, not just one.

∴ Statement 2 is false.

∴ Statement 1 is true, and Statement 2 is false.

Hence, option 3 is the correct option.

Assertion Reason Type Questions

Question 1

Assertion (A): A solution of x - y = 1, 2x + y = 72\dfrac{7}{2} is x = 32\dfrac{3}{2}, y = 12\dfrac{1}{2}.

Reason (R): One of the methods of solving a pair of linear equations is elimination method.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

One of the methods of solving a pair of linear equations is elimination method.

∴ Reason (R) is true.

Given, x - y = 1 .................(1)

2x + y = 72\dfrac{7}{2} ..................(2)

Adding equation (1) and (2) we get

(xy)+(2x+y)=1+72xy+2x+y=22+723x=92x=92×3x=32\Rightarrow (x - y) + (2x + y) = 1 + \dfrac{7}{2}\\[1em] \Rightarrow x - y + 2x + y = \dfrac{2}{2} + \dfrac{7}{2}\\[1em] \Rightarrow 3x = \dfrac{9}{2}\\[1em] \Rightarrow x = \dfrac{9}{2 \times 3}\\[1em] \Rightarrow x = \dfrac{3}{2}

Substituting the value of x in equation (1), we get :

⇒ x - y = 1

32y=1321=y322=yy=12.\Rightarrow \dfrac{3}{2} - y = 1\\[1em] \Rightarrow \dfrac{3}{2} - 1 = y\\[1em] \Rightarrow \dfrac{3 - 2}{2} = y\\[1em] \Rightarrow y = \dfrac{1}{2}.

So, x = 32\dfrac{3}{2}, y = 12\dfrac{1}{2}

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason (or explanation) for Assertion (A).

Hence, option 3 is the correct option.

Question 2

Assertion (A): Solving 2x3y\sqrt{2}x - \sqrt{3}y = 0, 3x+2y\sqrt{3}x + \sqrt{2}y = 5 yields x = 3\sqrt{3}, y = 2\sqrt{2}.

Reason (R): We can use cross-multiplication method to solve a pair of linear equations.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

We can use cross-multiplication method to solve a pair of linear equations.

∴ Reason (R) is true.

Given, equations can be written as :

2x3y0\sqrt{2}x - \sqrt{3}y - 0 = 0 .................(1)

3x+2y\sqrt{3}x + \sqrt{2}y - 5 = 0................(2)

By cross multiplication method,

Solving √2 x − √3 y = 0, √3 x + √2 y = 5 Simultaneous Linear Equations, ML Aggarwal Understanding Mathematics Solutions ICSE Class 9.

x3×(5)2×0=y0×3(5)×2=12×23×(3)x530=y0+52=12+3x53=y52=15x53=15 and y52=15x=535 and y=525x=3 and y=2.\therefore \dfrac{x}{-\sqrt{3} \times (-5) - \sqrt{2} \times 0} = \dfrac{y}{0 \times \sqrt{3} - (-5) \times \sqrt{2}} = \dfrac{1}{\sqrt{2} \times \sqrt{2} - \sqrt{3} \times (-\sqrt{3})}\\[1em] \Rightarrow \dfrac{x}{5\sqrt{3} - 0} = \dfrac{y}{0 + 5 \sqrt{2}} = \dfrac{1}{2 + 3}\\[1em] \Rightarrow \dfrac{x}{5\sqrt{3}} = \dfrac{y}{5 \sqrt{2}} = \dfrac{1}{5}\\[1em] \Rightarrow \dfrac{x}{5\sqrt{3}} = \dfrac{1}{5} \text{ and } \dfrac{y}{5 \sqrt{2}} = \dfrac{1}{5} \\[1em] \Rightarrow x = \dfrac{5\sqrt{3}}{5} \text{ and } y = \dfrac{5\sqrt{2}}{5}\\[1em] \Rightarrow x = \sqrt{3} \text{ and } y = \sqrt{2}.

So, the solution are x = 3\sqrt{3}, y = 2\sqrt{2}

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

Hence, option 3 is the correct option.

Chapter Test

Question 1(i)

Solve the following simultaneous linear equations:

2x - 34y\dfrac{3}{4}y = 3

5x - 2y = 7

Answer

Given,

2x - 34y\dfrac{3}{4}y = 3 .........(i)

5x - 2y = 7 ..........(ii)

Multiplying eq. (i) by 5 and (ii) by 2 we get,

10x - 154y\dfrac{15}{4}y = 15 .......(iii)

10x - 4y = 14 ........(iv)

Subtracting eq. (iv) from (iii),

10x154y(10x4y)=15144y154y=116y15y4=1y4=1y=4.\Rightarrow 10x - \dfrac{15}{4}y - (10x - 4y) = 15 - 14 \\[1em] \Rightarrow 4y - \dfrac{15}{4}y = 1 \\[1em] \Rightarrow \dfrac{16y - 15y}{4} = 1 \\[1em] \Rightarrow \dfrac{y}{4} = 1 \\[1em] \Rightarrow y = 4.

Substituting value of y in eq. (ii) we get,

⇒ 5x - 2(4) = 7

⇒ 5x - 8 = 7

⇒ 5x = 15

⇒ x = 3.

Hence, x = 3 and y = 4.

Question 1(ii)

Solve the following simultaneous linear equations:

2(x - 4) = 9y + 2

x - 6y = 2.

Answer

Given,

2(x - 4) = 9y + 2 ......(i)

x - 6y = 2 or x = 2 + 6y......(ii)

Substituting value of x from eq. (ii) in (i),

⇒ 2[(2 + 6y) - 4] = 9y + 2

⇒ 2[6y - 2] = 9y + 2

⇒ 12y - 4 = 9y + 2

⇒ 12y - 9y = 2 + 4

⇒ 3y = 6

⇒ y = 2.

x = 2 + 6y = 2 + 6(2) = 2 + 12 = 14.

Hence, x = 14 and y = 2.

Question 2(i)

Solve the following simultaneous linear equations:

97x + 53y = 177

53x + 97y = 573

Answer

Given,

97x + 53y = 177 .......(i)

53x + 97y = 573 .......(ii)

Multiplying eq. (i) by 53 and (ii) by 97,

5141x + 2809y = 9381 .......(iii)

5141x + 9409y = 55581 ......(iv)

Subtracting eq. (iii) from (iv) we get,

⇒ 5141x + 9409y - (5141x + 2809y) = 55581 - 9381

⇒ 6600y = 46200

⇒ y = 462006600\dfrac{46200}{6600} = 7.

Substituting value of y in (ii) we get,

⇒ 53x + 97(7) = 573

⇒ 53x + 679 = 573

⇒ 53x = 573 - 679

⇒ 53x = -106

⇒ x = -2.

Hence, x = -2 and y = 7.

Question 2(ii)

67x - 58y = 192

58x - 67y = 183

Answer

Given,

Equations :

67x - 58y = 192 ........(1)

58x - 67y = 183 ........(2)

Multiplying equation (1) by 58, we get :

⇒ 58(67x - 58y) = 192 × 58

⇒ 3886x - 3364y = 11136 ........(3)

Multiplying equation (2) by 67, we get :

⇒ 67(58x - 67y) = 183 × 67

⇒ 3886x - 4489y = 12261 .........(4)

Subtracting equation (3) from (4), we get :

⇒ 3886x - 4489y - (3886x - 3364y) = 12261 - 11136

⇒ 3886x - 3886x - 4489y + 3364y = 1125

⇒ -1125y = 1125

⇒ y = 11251125-\dfrac{1125}{1125} = -1.

Substituting value of y in equation (1), we get :

⇒ 67x - 58(-1) = 192

⇒ 67x + 58 = 192

⇒ 67x = 192 - 58

⇒ 67x = 134

⇒ x = 13467\dfrac{134}{67} = 2.

Hence, x = 2 and y = -1.

Question 3(i)

Solve the following simultaneous linear equations:

x + y = 7xy

2x - 3y + xy = 0

Answer

Given,

x + y = 7xy

2x - 3y + xy = 0

First we note that x = 0, y = 0 is a solution of equations.

Now when x ≠ 0 and y ≠ 0.

Dividing x + y = 7xy by xy,

xxy+yxy=7xyxy1y+1x=7......(i)\Rightarrow \dfrac{x}{xy} + \dfrac{y}{xy} = \dfrac{7xy}{xy} \\[1em] \Rightarrow \dfrac{1}{y} + \dfrac{1}{x} = 7 ......(i)

Dividing 2x - 3y + xy = 0 by xy,

2xxy3yxy+xyxy=02y3x+1=02y3x=1......(ii)\Rightarrow \dfrac{2x}{xy} - \dfrac{3y}{xy} + \dfrac{xy}{xy} = 0 \\[1em] \Rightarrow \dfrac{2}{y} - \dfrac{3}{x} + 1 = 0 \\[1em] \Rightarrow \dfrac{2}{y} - \dfrac{3}{x} = -1 ......(ii)

Substituting 1x\dfrac{1}{x} as p and 1y\dfrac{1}{y} as q we get,

q + p = 7 .......(iii)

2q - 3p = -1 ......(iv)

Multiplying (iii) by 3 we get,

3q + 3p = 21 .......(v)

Adding (iv) and (v) we get,

⇒ 2q - 3p + (3q + 3p) = -1 + 21

⇒ 2q + 3q = 20

⇒ 5q = 20

⇒ q = 205\dfrac{20}{5}

⇒ q = 4.

1y=4 or y=14\therefore \dfrac{1}{y} = 4 \text{ or } y = \dfrac{1}{4}.

Substituting value of q in (iii) we get,

⇒ 4 + p = 7

⇒ p = 3.

1x=3 or x=13\therefore \dfrac{1}{x} = 3 \text{ or } x = \dfrac{1}{3}.

Hence, x = 0, y = 0 and x = 13,y=14\dfrac{1}{3}, y = \dfrac{1}{4}.

Question 3(ii)

Solve the following simultaneous linear equations:

30xy+44x+y=10\dfrac{30}{x - y} + \dfrac{44}{x + y} = 10

40xy+55x+y=13\dfrac{40}{x - y} + \dfrac{55}{x + y} = 13

Answer

Substituting 1xy=a and 1x+y=b\dfrac{1}{x - y} = a \text{ and } \dfrac{1}{x + y} = b in above equations we get,

30a + 44b = 10 .......(i)

40a + 55b = 13 .......(ii)

Multiplying (i) by 4 and (ii) by 3 we get,

120a + 176b = 40 .......(iii)

120a + 165b = 39 .......(iv)

Subtracting eq. (iii) from (iv) we get,

⇒ 120a + 165b - (120a + 176b) = 39 - 40

⇒ 165b - 176b = -1

⇒ -11b = -1

⇒ b = 111\dfrac{1}{11}.

1x+y=111x+y=11.........(v)\therefore \dfrac{1}{x + y} = \dfrac{1}{11} \\[1em] \Rightarrow x + y = 11 .........(v)

Substituting value of b in (iv),

⇒ 120a + 165×111165 \times \dfrac{1}{11} = 39

⇒ 120a + 15 = 39

⇒ 120a = 24

⇒ a = 24120=15\dfrac{24}{120} = \dfrac{1}{5}.

1xy=15xy=5........(vi)\therefore \dfrac{1}{x - y} = \dfrac{1}{5} \\[1em] \Rightarrow x - y = 5 ........(vi)

Adding eq. (v) and (vi) we get,

⇒ x + y + (x - y) = 11 + 5

⇒ 2x = 16

⇒ x = 8.

Substituting value of x in (v)

⇒ x + y = 11

⇒ 8 + y = 11

⇒ y = 11 - 8 = 3.

Hence, x = 8 and y = 3.

Question 4(i)

Solve the following simultaneous linear equations:

ax + by = a - b

bx - ay = a + b

Answer

Given,

ax + by = a - b .......(i)

bx - ay = a + b .......(ii)

Multiplying eq. (i) by b and (ii) by a we get,

abx + b2y = ab - b2 ......(iii)

abx - a2y = a2 + ab .......(iv)

Subtracting eq. (iv) from (iii),

⇒ abx + b2y - (abx - a2y) = ab - b2 - (a2 + ab)

⇒ b2y + a2y = -b2 - a2

⇒ y(b2 + a2) = -(b2 + a2)

⇒ y = -1.

Substituting value of y in (i),

⇒ ax + b(-1) = a - b

⇒ ax - b = a - b

⇒ ax = a - b + b

⇒ ax = a

⇒ x = 1.

Hence, x = 1 and y = -1.

Question 4(ii)

Solve the following simultaneous linear equations:

3x + 2y = 2xy

1x+2y=116\dfrac{1}{x} + \dfrac{2}{y} = 1\dfrac{1}{6}

Answer

Given,

3x + 2y = 2xy .......(i)

1x+2y=116\dfrac{1}{x} + \dfrac{2}{y} = 1\dfrac{1}{6} ......(ii)

Dividing eq. (i) by xy we get,

3y+2x=2\dfrac{3}{y} + \dfrac{2}{x} = 2 .......(iii)

Substituting 1x\dfrac{1}{x} as p and 1y\dfrac{1}{y} as q in (ii) and (iii) we get,

p + 2q = 76\dfrac{7}{6} ......(iv)

3q + 2p = 2 ........(v)

Multiplying (iv) by 6 and (v) by 3 we get,

6p + 12q = 7 ........(vi)

9q + 6p = 6 .......(vii)

Subtracting (vii) from (vi) we get,

6p + 12q - (9q + 6p) = 7 - 6

3q = 1

q = 13\dfrac{1}{3}.

1y=13 or y=3.\therefore \dfrac{1}{y} = \dfrac{1}{3} \text{ or } y = 3.

Substituting value of q in (iv) we get,

p+2×13=76p+23=76p=7623p=746p=361x=36x=63=2.\Rightarrow p + 2 \times \dfrac{1}{3} = \dfrac{7}{6} \\[1em] \Rightarrow p + \dfrac{2}{3} = \dfrac{7}{6} \\[1em] \Rightarrow p = \dfrac{7}{6} - \dfrac{2}{3} \\[1em] \Rightarrow p = \dfrac{7 - 4}{6} \\[1em] \Rightarrow p = \dfrac{3}{6} \\[1em] \therefore \dfrac{1}{x} = \dfrac{3}{6} \\[1em] \Rightarrow x = \dfrac{6}{3} = 2.

Hence, x = 2 and y = 3.

Question 5

23(2xy)+12(x+2y)=512,12xy2x+2y=16\dfrac{2}{3(2x - y)} + \dfrac{1}{2(x + 2y)} = \dfrac{5}{12}, \dfrac{1}{2x - y} - \dfrac{2}{x + 2y} = \dfrac{1}{6}

Answer

Substituting 12xy\dfrac{1}{2x - y} = a and 1x+2y\dfrac{1}{x + 2y} = b in above equations, we get :

23a+12b=512\dfrac{2}{3}a + \dfrac{1}{2}b = \dfrac{5}{12} ..........(1)

⇒ a - 2b = 16\dfrac{1}{6} .........(2)

Multiplying equation (1) by 32\dfrac{3}{2} we get :

32(23a+12b)=32×512a+34b=58 ...........(3)\Rightarrow \dfrac{3}{2}\Big(\dfrac{2}{3}a + \dfrac{1}{2}b\Big) = \dfrac{3}{2} \times \dfrac{5}{12} \\[1em] \Rightarrow a + \dfrac{3}{4}b = \dfrac{5}{8} \text{ ...........(3)}

Subtracting equation (2) from (3), we get :

a+34b(a2b)=5816aa+34b+2b=154243b+8b4=112411b4=1124b=1124×411=16.1x+2y=16x+2y=6x=62y ............(4)\Rightarrow a + \dfrac{3}{4}b - (a - 2b) = \dfrac{5}{8} - \dfrac{1}{6} \\[1em] \Rightarrow a - a + \dfrac{3}{4}b + 2b = \dfrac{15 - 4}{24} \\[1em] \Rightarrow \dfrac{3b + 8b}{4} = \dfrac{11}{24} \\[1em] \Rightarrow \dfrac{11b}{4} = \dfrac{11}{24} \\[1em] \Rightarrow b = \dfrac{11}{24} \times \dfrac{4}{11} = \dfrac{1}{6}. \\[1em] \therefore \dfrac{1}{x + 2y} = \dfrac{1}{6} \\[1em] \Rightarrow x + 2y = 6 \\[1em] \Rightarrow x = 6 - 2y \text{ ............(4)}

Substituting b = 16\dfrac{1}{6} in equation (2), we get :

a2×16=16a13=16a=16+13a=1+26a=36a=1212xy=122xy=2 ......(5)\Rightarrow a - 2 \times \dfrac{1}{6} = \dfrac{1}{6} \\[1em] \Rightarrow a - \dfrac{1}{3} = \dfrac{1}{6} \\[1em] \Rightarrow a = \dfrac{1}{6} + \dfrac{1}{3} \\[1em] \Rightarrow a = \dfrac{1 + 2}{6} \\[1em] \Rightarrow a = \dfrac{3}{6} \\[1em] \Rightarrow a = \dfrac{1}{2} \\[1em] \therefore \dfrac{1}{2x - y} = \dfrac{1}{2}\\[1em] \Rightarrow 2x - y = 2 \text{ ......(5)}

Substituting value of x from equation (4) in (5), we get :

⇒ 2(6 - 2y) - y = 2

⇒ 12 - 4y - y = 2

⇒ 12 - 5y = 2

⇒ -5y = 2 - 12

⇒ -5y = -10

⇒ y = 105\dfrac{-10}{-5} = 2.

Substituting y = 2 in equation (4), we get :

⇒ x = 6 - 2y

⇒ x = 6 - 2(2) = 6 - 4 = 2.

Hence, x = 2 and y = 2.

Question 6

Solve 2x3y=9,3x+7y=2.2x - \dfrac{3}{y} = 9, 3x + \dfrac{7}{y} = 2. Hence, find the value of k if x = ky + 5.

Answer

Given,

2x3y=92x - \dfrac{3}{y} = 9 .......(i)

3x+7y=23x + \dfrac{7}{y} = 2 .......(ii)

Multiplying (i) by 3 and (ii) by 2 we get,

6x9y=276x - \dfrac{9}{y} = 27 .......(iii)

6x+14y=46x + \dfrac{14}{y} = 4 .......(iv)

Subtracting (iii) from (iv) we get,

6x+14y(6x9y)=42714y+9y=2323y=23y=1.\Rightarrow 6x + \dfrac{14}{y} - \Big(6x - \dfrac{9}{y}\Big) = 4 - 27 \\[1em] \Rightarrow \dfrac{14}{y} + \dfrac{9}{y} = -23 \\[1em] \Rightarrow \dfrac{23}{y} = -23 \\[1em] \Rightarrow y = -1.

Substituting value of y in (iv),

6x+141=46x14=46x=18x=3.\Rightarrow 6x + \dfrac{14}{-1} = 4 \\[1em] \Rightarrow 6x - 14 = 4 \\[1em] \Rightarrow 6x = 18 \\[1em] \Rightarrow x = 3.

Substituting values of x and y in x = ky + 5 we get,

⇒ 3 = k(-1) + 5

⇒ 3 = -k + 5

⇒ k = 5 - 3 = 2.

Hence, x = 3, y = -1 and k = 2.

Question 7

Solve 1x+y12x=130,5x+y+1x=43.\dfrac{1}{x + y} - \dfrac{1}{2x} = \dfrac{1}{30}, \dfrac{5}{x + y} + \dfrac{1}{x} = \dfrac{4}{3}. Hence, find the value of 2x2 - y2.

Answer

Given,

1x+y12x=130\dfrac{1}{x + y} - \dfrac{1}{2x} = \dfrac{1}{30}

5x+y+1x=43\dfrac{5}{x + y} + \dfrac{1}{x} = \dfrac{4}{3}

Substituting 1x+y=a and 1x=b\dfrac{1}{x + y} = a \text{ and } \dfrac{1}{x} = b in above equations,

ab2=130a - \dfrac{b}{2} = \dfrac{1}{30} ........(i)

5a+b=435a + b = \dfrac{4}{3} ........(ii)

Multiplying eq. (i) by 5 we get,

5a5b2=165a - \dfrac{5b}{2} = \dfrac{1}{6} .......(iii)

Subtracting eq. (iii) from (ii) we get,

5a+b(5a5b2)=4316b+5b2=8162b+5b2=767b2=76b=131x=13x=3.\Rightarrow 5a + b - \Big(5a - \dfrac{5b}{2}\Big) = \dfrac{4}{3} - \dfrac{1}{6} \\[1em] \Rightarrow b + \dfrac{5b}{2} = \dfrac{8 - 1}{6} \\[1em] \Rightarrow \dfrac{2b + 5b}{2} = \dfrac{7}{6} \\[1em] \Rightarrow \dfrac{7b}{2} = \dfrac{7}{6} \\[1em] \Rightarrow b = \dfrac{1}{3} \\[1em] \therefore \dfrac{1}{x} = \dfrac{1}{3} \\[1em] \Rightarrow x = 3.

Substituting value of b in eq. (i) we get,

a132=130a16=130a=130+16a=1+530a=630a=151x+y=15x+y=53+y=5y=2.\Rightarrow a - \dfrac{\dfrac{1}{3}}{2} = \dfrac{1}{30} \\[1em] \Rightarrow a - \dfrac{1}{6} = \dfrac{1}{30} \\[1em] \Rightarrow a = \dfrac{1}{30} + \dfrac{1}{6} \\[1em] \Rightarrow a = \dfrac{1 + 5}{30} \\[1em] \Rightarrow a = \dfrac{6}{30} \\[1em] \Rightarrow a = \dfrac{1}{5} \\[1em] \therefore \dfrac{1}{x + y} = \dfrac{1}{5} \\[1em] \Rightarrow x + y = 5 \\[1em] \Rightarrow 3 + y = 5 \\[1em] \Rightarrow y = 2.

Substituting values of x and y in 2x2 - y2 we get,

⇒ 2x2 - y2

= 2(3)2 - (2)2

= 2(9) - 4

= 18 - 4 = 14.

Hence, x = 3, y = 2 and 2x2 - y2 = 14.

Question 8

Can x, y be found to satisfy the following equations simultaneously?

2y+5x=19,5y3x=1\dfrac{2}{y} + \dfrac{5}{x} = 19, \dfrac{5}{y} - \dfrac{3}{x} = 1, 3x + 8y = 5.

If so, find them.

Answer

Given,

2y+5x=19\dfrac{2}{y} + \dfrac{5}{x} = 19 ......(i)

5y3x=1\dfrac{5}{y} - \dfrac{3}{x} = 1 .......(ii)

3x + 8y = 5 .......(iii)

Multiplying eq. (i) by 5 and eq. (ii) by 2 we get,

10y+25x=95\dfrac{10}{y} + \dfrac{25}{x} = 95 ......(iii)

10y6x=2\dfrac{10}{y} - \dfrac{6}{x} = 2 .......(iv)

Subtracting (iv) from (iii) we get,

10y+25x(10y6x)=95225x+6x=9331x=93x=3193=13.\Rightarrow \dfrac{10}{y} + \dfrac{25}{x} - \Big(\dfrac{10}{y} - \dfrac{6}{x}\Big) = 95 - 2 \\[1em] \Rightarrow \dfrac{25}{x} + \dfrac{6}{x} = 93 \\[1em] \Rightarrow \dfrac{31}{x} = 93 \\[1em] \Rightarrow x = \dfrac{31}{93} = \dfrac{1}{3}.

Substituting value of x in (i) we get,

2y+513=192y+15=192y=4y=12.\Rightarrow \dfrac{2}{y} + \dfrac{5}{\dfrac{1}{3}} = 19 \\[1em] \Rightarrow \dfrac{2}{y} + 15 = 19 \\[1em] \Rightarrow \dfrac{2}{y} = 4 \\[1em] \Rightarrow y = \dfrac{1}{2}.

Substituting values of x and y in eq. (iii),

3×13+8×12=51+4=55=5.\Rightarrow 3 \times \dfrac{1}{3} + 8 \times \dfrac{1}{2} = 5 \\[1em] \Rightarrow 1 + 4 = 5 \\[1em] \Rightarrow 5 = 5.

Since, L.H.S. = R.H.S. hence, x=13 and y=12x = \dfrac{1}{3} \text{ and } y = \dfrac{1}{2} satisfies the equation.

Hence, equations can be satisfied simultaneously with x=13 and y=12x = \dfrac{1}{3} \text{ and } y = \dfrac{1}{2}.

PrevNext