The cube of 0.5 is:
1.25
0.125
12.5
0.0125
Answer
( 0.5 ) 3 = 0.5 × 0.5 × 0.5 = 0.125 (0.5)^3\\[1em] = 0.5 \times 0.5 \times 0.5\\[1em] = 0.125 ( 0.5 ) 3 = 0.5 × 0.5 × 0.5 = 0.125
Hence, option 2 is the correct option.
The cube of -4 is:
16
12
-64
64
Answer
( − 4 ) 3 = ( − 4 ) × ( − 4 ) × ( − 4 ) = − 64 (-4)^3\\[1em] = (-4) \times (-4) \times (-4)\\[1em] = -64 ( − 4 ) 3 = ( − 4 ) × ( − 4 ) × ( − 4 ) = − 64
Hence, option 3 is the correct option.
The smallest number by which 72 must be multiplied to obtain a perfect cube is:
3
2
4
6
Answer
Finding prime factors of 72
72 = (2 x 2 x 2) x 3 x 3
Since the prime factor 3 is not in pair.
The given number should be multiplied by 3.
Hence, option 1 is the correct option.
The smallest number by which 81 be divided to obtain a perfect cube is :
1
3
9
none of the above
Answer
Finding prime factors of 81
81 = (3 x 3 x 3) x 3
Since the prime factor 3 is not in pair.
The given number should be divided by 3.
Hence, option 2 is the correct option.
Find the cube of 7.
Answer
( 7 ) 3 = 7 × 7 × 7 = 343 (7)^3\\[1em] = 7 \times 7 \times 7\\[1em] = 343 ( 7 ) 3 = 7 × 7 × 7 = 343
( 7 ) 3 = 343 (7)^3 = 343 ( 7 ) 3 = 343
Find the cube of 11.
Answer
( 11 ) 3 = 11 × 11 × 11 = 1331 (11)^3\\[1em] = 11 \times 11 \times 11\\[1em] = 1331 ( 11 ) 3 = 11 × 11 × 11 = 1331
( 11 ) 3 = 1331 (11)^3 = 1331 ( 11 ) 3 = 1331
Find the cube of 16.
Answer
( 16 ) 3 = 16 × 16 × 16 = 4096 (16)^3\\[1em] = 16 \times 16 \times 16\\[1em] = 4096 ( 16 ) 3 = 16 × 16 × 16 = 4096
( 16 ) 3 = 4096 (16)^3 = 4096 ( 16 ) 3 = 4096
Find the cube of 23.
Answer
( 23 ) 3 = 23 × 23 × 23 = 12167 (23)^3\\[1em] = 23 \times 23 \times 23\\[1em] = 12167 ( 23 ) 3 = 23 × 23 × 23 = 12167
( 23 ) 3 = 12167 (23)^3 = 12167 ( 23 ) 3 = 12167
Find the cube of 31.
Answer
( 31 ) 3 = 31 × 31 × 31 = 29791 (31)^3\\[1em] = 31 \times 31 \times 31\\[1em] = 29791 ( 31 ) 3 = 31 × 31 × 31 = 29791
( 31 ) 3 = 29791 (31)^3 = 29791 ( 31 ) 3 = 29791
Find the cube of 42.
Answer
( 42 ) 3 = 42 × 42 × 42 = 74088 (42)^3\\[1em] = 42 \times 42 \times 42\\[1em] = 74088 ( 42 ) 3 = 42 × 42 × 42 = 74088
( 42 ) 3 = 74088 (42)^3 = 74088 ( 42 ) 3 = 74088
Find the cube of 54.
Answer
( 54 ) 3 = 54 × 54 × 54 = 157464 (54)^3\\[1em] = 54 \times 54 \times 54\\[1em] = 157464 ( 54 ) 3 = 54 × 54 × 54 = 157464
( 54 ) 3 = 157464 (54)^3 = 157464 ( 54 ) 3 = 157464
Find which of the following are perfect cubes?
(i) 243
(ii) 588
(iii) 1331
(iv) 24000
(v) 1728
(vi) 1938
Answer
(i) 243 Finding prime factors of 243
243 = (3 x 3 x 3) x 3 x 3
Since the prime factor 3 is not in triplets,
Hence, 243 is not a perfect cube.
(ii) 588 Finding prime factors of 588
588 = 2 x 2 x 3 x 7 x 7
Since the prime factor 2, 3 and 7 are not in triplets,
Hence, 588 is not a perfect cube.
(iii) 1331 Finding prime factors of 1331
1331 = (11 x 11 x 11)
Since the prime factor 11 forms a triplet,
Hence, 1331 is a perfect cube.
(iv) 24000 Finding prime factors of 24000
24000 = (2 x 2 x 2) x (2 x 2 x 2) x 3 x (5 x 5 x 5)
Since the prime factor 3 is not in triplets,
Hence, 24000 is not a perfect cube.
(v) 1728 Finding prime factors of 1728
1728 = (2 x 2 x 2) x (2 x 2 x 2) x (3 x 3 x 3)
Since the prime factor 2 and 3 are in triplets,
Hence, 1728 is a perfect cube.
(vi) 1938 Finding prime factors of 1938
1938 = 2 x 3 x 17 x 19
Since the prime factor 2, 3, 17 and 19 are not in triplets,
Hence, 1938 is not a perfect cube.
Find the cube of 2.1.
Answer
( 2.1 ) 3 = 2.1 × 2.1 × 2.1 = 9.261 (2.1)^3\\[1em] = 2.1 \times 2.1 \times 2.1\\[1em] = 9.261 ( 2.1 ) 3 = 2.1 × 2.1 × 2.1 = 9.261
( 2.1 ) 3 = 9.261 (2.1)^3 = 9.261 ( 2.1 ) 3 = 9.261
Find the cube of 0.4.
Answer
( 0.4 ) 3 = 0.4 × 0.4 × 0.4 = 0.064 (0.4)^3\\[1em] = 0.4 \times 0.4 \times 0.4\\[1em] = 0.064 ( 0.4 ) 3 = 0.4 × 0.4 × 0.4 = 0.064
( 0.4 ) 3 = 0.064 (0.4)^3 = 0.064 ( 0.4 ) 3 = 0.064
Find the cube of 1.6.
Answer
( 1.6 ) 3 = 1.6 × 1.6 × 1.6 = 4.096 (1.6)^3\\[1em] = 1.6 \times 1.6 \times 1.6\\[1em] = 4.096 ( 1.6 ) 3 = 1.6 × 1.6 × 1.6 = 4.096
( 1.6 ) 3 = 4.096 (1.6)^3 = 4.096 ( 1.6 ) 3 = 4.096
Find the cube of 2.5.
Answer
( 2.5 ) 3 = 2.5 × 2.5 × 2.5 = 15.625 (2.5)^3\\[1em] = 2.5 \times 2.5 \times 2.5\\[1em] = 15.625 ( 2.5 ) 3 = 2.5 × 2.5 × 2.5 = 15.625
( 2.5 ) 3 = 15.625 (2.5)^3 = 15.625 ( 2.5 ) 3 = 15.625
Find the cube of 0.12.
Answer
( 0.12 ) 3 = 0.12 × 0.12 × 0.12 = 0.001728 (0.12)^3\\[1em] = 0.12 \times 0.12 \times 0.12\\[1em] = 0.001728 ( 0.12 ) 3 = 0.12 × 0.12 × 0.12 = 0.001728
( 0.12 ) 3 = 0.001728 (0.12)^3 = 0.001728 ( 0.12 ) 3 = 0.001728
Find the cube of 0.02.
Answer
( 0.02 ) 3 = 0.02 × 0.02 × 0.02 = 0.000008 (0.02)^3\\[1em] = 0.02 \times 0.02 \times 0.02\\[1em] = 0.000008 ( 0.02 ) 3 = 0.02 × 0.02 × 0.02 = 0.000008
( 0.02 ) 3 = 0.000008 (0.02)^3 = 0.000008 ( 0.02 ) 3 = 0.000008
Find the cube of 0.8.
Answer
( 0.8 ) 3 = 0.8 × 0.8 × 0.8 = 0.512 (0.8)^3\\[1em] = 0.8 \times 0.8 \times 0.8\\[1em] = 0.512 ( 0.8 ) 3 = 0.8 × 0.8 × 0.8 = 0.512
( 0.8 ) 3 = 0.512 (0.8)^3 = 0.512 ( 0.8 ) 3 = 0.512
Find the cube of 3 7 \dfrac{3}{7} 7 3
Answer
( 3 7 ) 3 = ( 3 7 × 3 7 × 3 7 ) = 27 343 \Big(\dfrac{3}{7}\Big)^3\\[1em] = \Big(\dfrac{3}{7} \times \dfrac{3}{7} \times \dfrac{3}{7}\Big)\\[1em] = \dfrac{27}{343} ( 7 3 ) 3 = ( 7 3 × 7 3 × 7 3 ) = 343 27
( 3 7 ) 3 = 27 343 \Big(\dfrac{3}{7}\Big)^3 = \dfrac{27}{343} ( 7 3 ) 3 = 343 27
Find the cube of 8 9 \dfrac{8}{9} 9 8
Answer
( 8 9 ) 3 = ( 8 9 × 8 9 × 8 9 ) = 512 729 \Big(\dfrac{8}{9}\Big)^3\\[1em] = \Big(\dfrac{8}{9} \times \dfrac{8}{9} \times \dfrac{8}{9}\Big)\\[1em] = \dfrac{512}{729} ( 9 8 ) 3 = ( 9 8 × 9 8 × 9 8 ) = 729 512
( 8 9 ) 3 = 512 729 \Big(\dfrac{8}{9}\Big)^3 = \dfrac{512}{729} ( 9 8 ) 3 = 729 512
Find the cube of 10 13 \dfrac{10}{13} 13 10
Answer
( 10 13 ) 3 = ( 10 13 × 10 13 × 10 13 ) = 1000 2197 \Big(\dfrac{10}{13}\Big)^3\\[1em] = \Big(\dfrac{10}{13} \times \dfrac{10}{13} \times \dfrac{10}{13}\Big)\\[1em] = \dfrac{1000}{2197} ( 13 10 ) 3 = ( 13 10 × 13 10 × 13 10 ) = 2197 1000
( 10 13 ) 3 = 1000 2197 \Big(\dfrac{10}{13}\Big)^3 = \dfrac{1000}{2197} ( 13 10 ) 3 = 2197 1000
Find the cube of 1 2 7 1\dfrac{2}{7} 1 7 2
Answer
( 1 2 7 ) 3 = ( 9 7 ) 3 = ( 9 7 × 9 7 × 9 7 ) = 729 343 = 2 43 343 \Big(1\dfrac{2}{7}\Big)^3\\[1em] = \Big(\dfrac{9}{7}\Big)^3\\[1em] = \Big(\dfrac{9}{7} \times \dfrac{9}{7} \times \dfrac{9}{7}\Big)\\[1em] = \dfrac{729}{343}\\[1em] = 2\dfrac{43}{343} ( 1 7 2 ) 3 = ( 7 9 ) 3 = ( 7 9 × 7 9 × 7 9 ) = 343 729 = 2 343 43
( 1 2 7 ) 3 = 2 43 343 \Big(1\dfrac{2}{7}\Big)^3 = 2\dfrac{43}{343} ( 1 7 2 ) 3 = 2 343 43
Find the cube of 2 1 2 2\dfrac{1}{2} 2 2 1
Answer
( 2 1 2 ) 3 = ( 5 2 ) 3 = ( 5 2 × 5 2 × 5 2 ) = 125 8 = 15 5 8 \Big(2\dfrac{1}{2}\Big)^3\\[1em] = \Big(\dfrac{5}{2}\Big)^3\\[1em] = \Big(\dfrac{5}{2} \times \dfrac{5}{2} \times \dfrac{5}{2}\Big)\\[1em] = \dfrac{125}{8}\\[1em] = 15\dfrac{5}{8} ( 2 2 1 ) 3 = ( 2 5 ) 3 = ( 2 5 × 2 5 × 2 5 ) = 8 125 = 15 8 5
( 2 1 2 ) 3 = 15 5 8 \Big(2\dfrac{1}{2}\Big)^3 = 15\dfrac{5}{8} ( 2 2 1 ) 3 = 15 8 5
Find the cube of -3.
Answer
( − 3 ) 3 = ( − 3 ) × ( − 3 ) × ( − 3 ) = ( − 27 ) (-3)^3\\[1em] = (-3) \times (-3) \times (-3)\\[1em] = (-27) ( − 3 ) 3 = ( − 3 ) × ( − 3 ) × ( − 3 ) = ( − 27 )
( − 3 ) 3 = − 27 (-3)^3 = -27 ( − 3 ) 3 = − 27
Find the cube of -7.
Answer
( − 7 ) 3 = ( − 7 ) × ( − 7 ) × ( − 7 ) = ( − 343 ) (-7)^3\\[1em] = (-7) \times (-7) \times (-7)\\[1em] = (-343) ( − 7 ) 3 = ( − 7 ) × ( − 7 ) × ( − 7 ) = ( − 343 )
( − 7 ) 3 = − 343 (-7)^3 = -343 ( − 7 ) 3 = − 343
Find the cube of -12.
Answer
( − 12 ) 3 = ( − 12 ) × ( − 12 ) × ( − 12 ) = ( − 1728 ) (-12)^3\\[1em] = (-12) \times (-12) \times (-12)\\[1em] = (-1728) ( − 12 ) 3 = ( − 12 ) × ( − 12 ) × ( − 12 ) = ( − 1728 )
( − 12 ) 3 = − 1728 (-12)^3 = -1728 ( − 12 ) 3 = − 1728
Find the cube of -18
Answer
( − 18 ) 3 = ( − 18 ) × ( − 18 ) × ( − 18 ) = ( − 5832 ) (-18)^3\\[1em] = (-18) \times (-18) \times (-18)\\[1em] = (-5832) ( − 18 ) 3 = ( − 18 ) × ( − 18 ) × ( − 18 ) = ( − 5832 )
( − 18 ) 3 = − 5832 (-18)^3 = -5832 ( − 18 ) 3 = − 5832
Find the cube of -25
Answer
( − 25 ) 3 = ( − 25 ) × ( − 25 ) × ( − 25 ) = ( − 15625 ) (-25)^3\\[1em] = (-25) \times (-25) \times (-25)\\[1em] = (-15625) ( − 25 ) 3 = ( − 25 ) × ( − 25 ) × ( − 25 ) = ( − 15625 )
( − 25 ) 3 = − 15625 (-25)^3 = -15625 ( − 25 ) 3 = − 15625
Find the cube of -30
Answer
( − 30 ) 3 = ( − 30 ) × ( − 30 ) × ( − 30 ) = ( − 27000 ) (-30)^3\\[1em] = (-30) \times (-30) \times (-30)\\[1em] = (-27000) ( − 30 ) 3 = ( − 30 ) × ( − 30 ) × ( − 30 ) = ( − 27000 )
( − 30 ) 3 = − 27000 (-30)^3 = -27000 ( − 30 ) 3 = − 27000
Find the cube of -50
Answer
( − 50 ) 3 = ( − 50 ) × ( − 50 ) × ( − 50 ) = ( − 125000 ) (-50)^3\\[1em] = (-50) \times (-50) \times (-50)\\[1em] = (-125000) ( − 50 ) 3 = ( − 50 ) × ( − 50 ) × ( − 50 ) = ( − 125000 )
( − 50 ) 3 = − 125000 (-50)^3 = -125000 ( − 50 ) 3 = − 125000
Which of the following are cubes of:
(i) an even number
(ii) an odd number.
216, 729, 3375, 8000, 125, 343, 4096 and 9261.
Answer
(i) 216, 8000 and 4096 are the cubes of an even number
Reason — Cubes of even natural numbers are even.
(ii) 729, 3375, 125, 343 and 9261 are the cubes of an odd number.
Reason — Cubes of odd natural numbers are odd.
Find the least number by which 1323 must be multiplied so that the product is a perfect cube.
Answer
Finding prime factors of 1323
1323 = ( 3 × 3 × 3 ) × 7 × 7 1323 = (3 \times 3 \times 3) \times 7 \times 7 1323 = ( 3 × 3 × 3 ) × 7 × 7
Since the prime factor 7 does not form a triplet,
Hence, 1323 should be multiplied with 7 so that the product is a perfect cube.
Find the smallest number by which 8768 must be divided so that the quotient is a perfect cube.
Answer
Finding prime factors of 8768
8768 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × 137 8768 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 137 8768 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × 137
Since the prime factor 137 is not in triplet,
8768 will be divided by 137 so that the quotient is a perfect cube.
Find the smallest number by which 27783 should be multiplied to get a perfect cube number.
Answer
Finding prime factors of 27783
27783 = ( 3 × 3 × 3 ) × 3 × ( 7 × 7 × 7 ) 27783 = (3 \times 3 \times 3) \times 3 \times (7 \times 7 \times 7) 27783 = ( 3 × 3 × 3 ) × 3 × ( 7 × 7 × 7 )
Since the prime factor 3 is not in triplets,
3 x 3 = 9 should be multiplied with 27783 so that the product is a perfect cube.
With what least number should 8640 be divided so that the quotient is a perfect cube?
Answer
Finding prime factors of 8640
8640 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) × 5 8640 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (3 \times 3 \times 3)\times 5 8640 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) × 5
Since the prime factor 5 is not in triplets,
8640 will be divided by 5 so that the product is a perfect cube.
Which is the smallest number that should be multiplied to 77175 to make it a perfect cube?
Answer
Finding prime factors of 77175
77175 = 3 × 3 × 5 × 5 × ( 7 × 7 × 7 ) 77175 = 3 \times 3 \times 5 \times 5 \times (7 \times 7 \times 7) 77175 = 3 × 3 × 5 × 5 × ( 7 × 7 × 7 )
Since the prime factors 3 and 5 are not in triplets,
3 x 5 = 15 should be multiplied with 77175 so that the product is a perfect cube.
The cube root of 0.000027 is :
0.03
0.003
0.3
0.00003
Answer
0.000027 3 = 27 1000000 3 = 27 3 1000000 3 = 3 × 3 × 3 3 100 × 100 × 100 3 = 3 100 = 0.03 \sqrt[3]{0.000027}\\[1em] = \sqrt[3]{\dfrac{27}{1000000}}\\[1em] = {\dfrac{\sqrt[3]{27}}{\sqrt[3]{1000000}}}\\[1em] = {\dfrac{\sqrt[3]{3 \times 3 \times 3}}{\sqrt[3]{100 \times 100 \times 100}}}\\[1em] = {\dfrac{3}{100}}\\[1em] = 0.03 3 0.000027 = 3 1000000 27 = 3 1000000 3 27 = 3 100 × 100 × 100 3 3 × 3 × 3 = 100 3 = 0.03
Hence, option 1 is the correct option.
The cube root of -0.064 is:
-0.8
0.8
0.4
-0.4
Answer
− 0.064 3 = − 64 1000 3 = − 64 3 1000 3 = − 4 × 4 × 4 3 10 × 10 × 10 3 = − 4 10 = − 0.4 \sqrt[3]{-0.064}\\[1em] = \sqrt[3]{-\dfrac{64}{1000}}\\[1em] = {-\dfrac{\sqrt[3]{64}}{\sqrt[3]{1000}}}\\[1em] = {-\dfrac{\sqrt[3]{4 \times 4 \times 4}}{\sqrt[3]{10 \times 10 \times 10}}}\\[1em] = {-\dfrac{4}{10}}\\[1em] = -0.4 3 − 0.064 = 3 − 1000 64 = − 3 1000 3 64 = − 3 10 × 10 × 10 3 4 × 4 × 4 = − 10 4 = − 0.4
Hence, option 4 is the correct option.
Find the cube-root of 64.
Answer
Finding prime factors of 64:
64 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 = 2 × 2 = 4 \sqrt[3]{64}\\[1em] = \sqrt[3]{(2 \times 2 \times 2)\times (2 \times 2 \times 2)}\\[1em] = 2 \times 2\\[1em] = 4 3 64 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = 2 × 2 = 4
Hence, 64 3 = 4 \sqrt[3]{64} = 4 3 64 = 4
Find the cube-root of 343.
Answer
Finding prime factors of 343:
343 3 = 7 × 7 × 7 3 = 7 \sqrt[3]{343}\\[1em] = \sqrt[3]{7 \times 7 \times 7}\\[1em] = 7 3 343 = 3 7 × 7 × 7 = 7
Hence, 343 3 = 7 \sqrt[3]{343} = 7 3 343 = 7
Find the cube-root of 729.
Answer
Finding prime factors of 729:
729 3 = ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) 3 = 3 × 3 = 9 \sqrt[3]{729}\\[1em] = \sqrt[3]{(3 \times 3 \times 3)\times(3 \times 3 \times 3)}\\[1em] = 3\times3\\[1em] = 9 3 729 = 3 ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) = 3 × 3 = 9
Hence, 729 3 = 9 \sqrt[3]{729} = 9 3 729 = 9
Find the cube-root of 1728.
Answer
Finding prime factors of 1728:
1728 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) 3 = 2 × 2 × 3 = 12 \sqrt[3]{1728}\\[1em] = \sqrt[3]{(2 \times 2 \times 2)\times (2 \times 2 \times 2)\times (3 \times 3 \times 3)}\\[1em] = 2 \times 2 \times 3\\[1em] = 12 3 1728 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) = 2 × 2 × 3 = 12
Hence, 1728 3 = 12 \sqrt[3]{1728} = 12 3 1728 = 12
Find the cube-root of 9261.
Answer
Finding prime factors of 9261:
9261 3 = ( 3 × 3 × 3 ) × ( 7 × 7 × 7 ) 3 = 3 × 7 = 21 \sqrt[3]{9261}\\[1em] = \sqrt[3]{(3 \times 3 \times 3)\times (7 \times 7 \times 7)}\\[1em] = 3 \times 7\\[1em] = 21 3 9261 = 3 ( 3 × 3 × 3 ) × ( 7 × 7 × 7 ) = 3 × 7 = 21
Hence, 9261 3 = 21 \sqrt[3]{9261} = 21 3 9261 = 21
Find the cube-roots of 4096.
Answer
Finding prime factors of 4096:
4096 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 = 2 × 2 × 2 × 2 = 16 \sqrt[3]{4096}\\[1em] = \sqrt[3]{(2 \times 2 \times 2)\times (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (2 \times 2 \times 2)}\\[1em] = 2 \times 2 \times 2 \times 2\\[1em] = 16 3 4096 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = 2 × 2 × 2 × 2 = 16
Hence, 4096 3 = 16 \sqrt[3]{4096} = 16 3 4096 = 16
Find the cube-roots of 8000.
Answer
Finding prime factors of 8000:
8000 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) 3 = 2 × 2 × 5 = 20 \sqrt[3]{8000}\\[1em] = \sqrt[3]{(2 \times 2 \times 2)\times (2 \times 2 \times 2) \times (5 \times 5 \times 5)}\\[1em] = 2 \times 2 \times 5\\[1em] = 20 3 8000 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) = 2 × 2 × 5 = 20
Hence, 8000 3 = 20 \sqrt[3]{8000} = 20 3 8000 = 20
Find the cube-roots of 3375.
Answer
Finding prime factors of 3375:
3375 3 = ( 3 × 3 × 3 ) × ( 5 × 5 × 5 ) 3 = 3 × 5 = 15 \sqrt[3]{3375}\\[1em] = \sqrt[3]{(3 \times 3 \times 3)\times (5 \times 5 \times 5)}\\[1em] = 3 \times 5\\[1em] = 15 3 3375 = 3 ( 3 × 3 × 3 ) × ( 5 × 5 × 5 ) = 3 × 5 = 15
Hence, 3375 3 = 15 \sqrt[3]{3375} = 15 3 3375 = 15
Find the cube-roots of 27 64 \dfrac{27}{64} 64 27
Answer
Prime factors of 27:
Prime factors of 64:
27 64 3 = 27 3 64 3 = 3 × 3 × 3 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 = 3 2 × 2 = 3 4 \sqrt[3]{\dfrac{27}{64}}\\[1em] = {\dfrac{\sqrt[3]{27}}{\sqrt[3]{64}}}\\[1em] = {\dfrac{\sqrt[3]{3 \times 3 \times 3}}{\sqrt[3]{(2 \times 2 \times 2)\times(2 \times 2 \times 2)}}}\\[1em] = {\dfrac{3}{2 \times 2}}\\[1em] = \dfrac{3}{4} 3 64 27 = 3 64 3 27 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 3 × 3 × 3 = 2 × 2 3 = 4 3
Hence, 27 64 3 = 3 4 \sqrt[3]{\dfrac{27}{64}} = {\dfrac{3}{4}} 3 64 27 = 4 3
Find the cube-roots of 125 216 \dfrac{125}{216} 216 125
Answer
Prime factors of 125:
Prime factors of 216:
125 216 3 = 125 3 216 3 = 5 × 5 × 5 3 ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) 3 = 5 2 × 3 = 5 6 \sqrt[3]{\dfrac{125}{216}}\\[1em] = {\dfrac{\sqrt[3]{125}}{\sqrt[3]{216}}}\\[1em] = {\dfrac{\sqrt[3]{5 \times 5 \times 5}}{\sqrt[3]{(2 \times 2 \times 2)\times(3 \times 3 \times 3)}}}\\[1em] = {\dfrac{5}{2 \times 3}}\\[1em] = \dfrac{5}{6} 3 216 125 = 3 216 3 125 = 3 ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) 3 5 × 5 × 5 = 2 × 3 5 = 6 5
Hence, 125 216 3 = 5 6 \sqrt[3]{\dfrac{125}{216}} = {\dfrac{5}{6}} 3 216 125 = 6 5
Find the cube-roots of 343 512 \dfrac{343}{512} 512 343
Answer
Prime factors of 343:
Prime factors of 512:
343 512 3 = 343 3 512 3 = 7 × 7 × 7 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 = 7 2 × 2 × 2 = 7 8 \sqrt[3]{\dfrac{343}{512}}\\[1em] = {\dfrac{\sqrt[3]{343}}{\sqrt[3]{512}}}\\[1em] = {\dfrac{\sqrt[3]{7 \times 7 \times 7}}{\sqrt[3]{(2 \times 2 \times 2)\times(2 \times 2 \times 2)\times(2 \times 2 \times 2)}}}\\[1em] = {\dfrac{7}{2\times 2 \times 2}}\\[1em] = {\dfrac{7}{8}} 3 512 343 = 3 512 3 343 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 7 × 7 × 7 = 2 × 2 × 2 7 = 8 7
Hence, 343 512 3 = 7 8 \sqrt[3]{\dfrac{343}{512}} = {\dfrac{7}{8}} 3 512 343 = 8 7
Find the cube-roots of 64 x 729
Answer
Prime factors of 64:
Prime factors of 729:
64 × 729 3 = 64 3 × 729 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) 3 = ( 2 × 2 ) × ( 3 × 3 ) = ( 4 ) × ( 9 ) = 36 \sqrt[3]{64 \times 729}\\[1em] = \sqrt[3]{64}\times{\sqrt[3]{729}}\\[1em] = \sqrt[3]{(2 \times 2 \times 2)\times(2 \times 2 \times 2)}\times{\sqrt[3]{(3 \times 3 \times 3)\times (3 \times 3 \times 3)}}\\[1em] = (2 \times 2)\times(3 \times 3)\\[1em] = (4)\times(9)\\[1em] = 36 3 64 × 729 = 3 64 × 3 729 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × 3 ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) = ( 2 × 2 ) × ( 3 × 3 ) = ( 4 ) × ( 9 ) = 36
Hence, 64 × 729 3 = 36 \sqrt[3]{64 \times 729} = 36 3 64 × 729 = 36
Find the cube-roots of 64 x 27
Answer
Prime factors of 64:
Prime factors of 27:
64 × 27 3 = 64 3 × 27 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 × ( 3 × 3 × 3 ) 3 = ( 2 × 2 ) × ( 3 ) = 4 × 3 = 12 \sqrt[3]{64 \times 27}\\[1em] = \sqrt[3]{64}\times{\sqrt[3]{27}}\\[1em] = \sqrt[3]{(2 \times 2 \times 2)\times(2 \times 2 \times 2)}\times{\sqrt[3]{(3 \times 3 \times 3)}}\\[1em] = (2 \times 2)\times(3)\\[1em] = 4\times3\\[1em] = 12 3 64 × 27 = 3 64 × 3 27 = 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × 3 ( 3 × 3 × 3 ) = ( 2 × 2 ) × ( 3 ) = 4 × 3 = 12
Hence, 64 × 27 3 = 12 \sqrt[3]{64 \times 27} = 12 3 64 × 27 = 12
Find the cube-roots of 729 x 8000
Answer
Prime factors of 729:
Prime factors of 8000:
729 × 8000 3 = 729 3 × 8000 3 = ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) 3 × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) 3 = ( 3 × 3 ) × ( 2 × 2 × 5 ) = 9 × 20 = 180 \sqrt[3]{729 \times 8000}\\[1em] = \sqrt[3]{729}\times\sqrt[3]{8000}\\[1em] = \sqrt[3]{(3 \times 3 \times 3 )\times(3 \times 3 \times 3)}\times{\sqrt[3]{(2 \times 2 \times 2)\times (2 \times 2 \times 2) \times (5 \times 5 \times 5)}}\\[1em] = (3 \times 3)\times(2 \times 2 \times 5)\\[1em] = 9\times 20\\[1em] = 180 3 729 × 8000 = 3 729 × 3 8000 = 3 ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) = ( 3 × 3 ) × ( 2 × 2 × 5 ) = 9 × 20 = 180
Hence, 729 × 8000 3 = 180 \sqrt[3]{729 \times 8000} = 180 3 729 × 8000 = 180
Find the cube-roots of 3375 x 512
Answer
Prime factors of 3375:
Prime factors of 512:
3375 × 512 3 = 3375 3 × 512 3 = ( 3 × 3 × 3 ) × ( 5 × 5 × 5 ) 3 × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 = ( 3 × 5 ) × ( 2 × 2 × 2 ) = ( 15 ) × ( 8 ) = 120 \sqrt[3]{3375 \times 512}\\[1em] = \sqrt[3]{3375}\times{\sqrt[3]{512}}\\[1em] = \sqrt[3]{(3 \times 3 \times 3)\times(5 \times 5 \times 5)}\times{\sqrt[3]{(2 \times 2 \times 2)\times (2 \times 2 \times 2) \times (2 \times 2 \times 2)}}\\[1em] = (3 \times 5)\times(2 \times 2 \times 2)\\[1em] = (15)\times(8)\\[1em] = 120 3 3375 × 512 = 3 3375 × 3 512 = 3 ( 3 × 3 × 3 ) × ( 5 × 5 × 5 ) × 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = ( 3 × 5 ) × ( 2 × 2 × 2 ) = ( 15 ) × ( 8 ) = 120
Hence, 3375 × 512 3 = 120 \sqrt[3]{3375 \times 512} = 120 3 3375 × 512 = 120
Find the cube-roots of -216.
Answer
Prime factors of 216:
− 216 3 = − ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) 3 = − ( 2 × 3 ) = − 6 \sqrt[3]{-216}\\[1em] = -\sqrt[3]{(2 \times 2 \times 2) \times (3 \times 3 \times 3)}\\[1em] = -(2 \times 3)\\[1em] = -6 3 − 216 = − 3 ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) = − ( 2 × 3 ) = − 6
Hence, − 216 3 = − 6 \sqrt[3]{-216} = -6 3 − 216 = − 6
Find the cube-roots of -512.
Answer
Prime factors of 512:
− 512 3 = − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 = − ( 2 × 2 × 2 ) = − 8 \sqrt[3]{-512}\\[1em] = -\sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (2 \times 2 \times 2)}\\[1em] = -(2 \times 2 \times 2)\\[1em] = -8 3 − 512 = − 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = − ( 2 × 2 × 2 ) = − 8
Hence, − 512 3 = − 8 \sqrt[3]{-512} = -8 3 − 512 = − 8
Find the cube-roots of -1331
Answer
Prime factors of 1331:
− 1331 3 = − ( 11 × 11 × 11 ) 3 = − 11 \sqrt[3]{-1331}\\[1em] = -\sqrt[3]{(11 \times 11 \times 11)}\\[1em] = -11 3 − 1331 = − 3 ( 11 × 11 × 11 ) = − 11
Hence, − 1331 3 = − 11 \sqrt[3]{-1331} = -11 3 − 1331 = − 11
Find the cube-roots of − 27 125 -\dfrac{27}{125} − 125 27
Answer
Prime factors of 27:
Prime factors of 125:
− 27 125 3 = − 27 3 125 3 = − ( 3 × 3 × 3 ) 3 ( 5 × 5 × 5 ) 3 = − 3 5 \sqrt[3]{-\dfrac{27}{125}}\\[1em] = {-\dfrac{\sqrt[3]{27}}{\sqrt[3]{125}}}\\[1em] = {-\dfrac{\sqrt[3]{(3 \times 3 \times 3)}}{\sqrt[3]{(5 \times 5 \times 5)}}}\\[1em] = -{\dfrac{3}{5}} 3 − 125 27 = − 3 125 3 27 = − 3 ( 5 × 5 × 5 ) 3 ( 3 × 3 × 3 ) = − 5 3
Hence, − 27 125 3 = − 3 5 \sqrt[3]{-\dfrac{27}{125}} = {-\dfrac{3}{5}} 3 − 125 27 = − 5 3
Find the cube-roots of − 64 343 -\dfrac{64}{343} − 343 64
Answer
Prime factors of 64:
Prime factors of 343:
− 64 343 3 = − 64 3 343 3 = − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 ( 7 × 7 × 7 ) 3 = − 2 × 2 7 = − 4 7 \sqrt[3]{-\dfrac{64}{343}}\\[1em] = {-\dfrac{\sqrt[3]{64}}{\sqrt[3]{343}}}\\[1em] = {-\dfrac{\sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2)}}{\sqrt[3]{(7 \times 7 \times 7)}}}\\[1em] = -{\dfrac{2 \times 2}{7}}\\[1em] = -{\dfrac{4}{7}} 3 − 343 64 = − 3 343 3 64 = − 3 ( 7 × 7 × 7 ) 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = − 7 2 × 2 = − 7 4
Hence, − 64 343 3 = − 4 7 \sqrt[3]{-\dfrac{64}{343}} = {-\dfrac{4}{7}} 3 − 343 64 = − 7 4
Find the cube-roots of − 512 343 -\dfrac{512}{343} − 343 512
Answer
Prime factors of 512:
Prime factors of 343:
− 512 343 3 = − 512 3 343 3 = − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 ( 7 × 7 × 7 ) 3 = − 2 × 2 × 2 7 = − 8 7 = − 1 1 7 \sqrt[3]{-\dfrac{512}{343}}\\[1em] = {-\dfrac{\sqrt[3]{512}}{\sqrt[3]{343}}}\\[1em] = {-\dfrac{\sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (2 \times 2 \times 2)}}{\sqrt[3]{(7 \times 7 \times 7)}}}\\[1em] = -{\dfrac{2 \times 2 \times 2}{7}}\\[1em] = -{\dfrac{8}{7}}\\[1em] = -1{\dfrac{1}{7}} 3 − 343 512 = − 3 343 3 512 = − 3 ( 7 × 7 × 7 ) 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = − 7 2 × 2 × 2 = − 7 8 = − 1 7 1
Hence, − 512 343 3 = − 1 1 7 \sqrt[3]{-\dfrac{512}{343}} = {-1\dfrac{1}{7}} 3 − 343 512 = − 1 7 1
Find the cube-roots of -2197
Answer
Prime factors of 2197:
− 2197 3 = − ( 13 × 13 × 13 ) 3 = − 13 \sqrt[3]{-2197}\\[1em] = -\sqrt[3]{(13 \times 13 \times 13)}\\[1em] = -13 3 − 2197 = − 3 ( 13 × 13 × 13 ) = − 13
Hence, − 2197 3 = − 13 \sqrt[3]{-2197} = -13 3 − 2197 = − 13
Find the cube-roots of -5832
Answer
Prime factors of 5832:
− 5832 3 = − ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) 3 = − ( 2 × 3 × 3 ) = − 18 \sqrt[3]{-5832}\\[1em] = -\sqrt[3]{(2 \times 2 \times 2) \times (3 \times 3 \times 3) \times (3 \times 3 \times 3)}\\[1em] = -(2 \times 3 \times 3)\\[1em] = - 18 3 − 5832 = − 3 ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) = − ( 2 × 3 × 3 ) = − 18
Hence, − 5832 3 = − 18 \sqrt[3]{-5832} = -18 3 − 5832 = − 18
Find the cube-roots of -2744000
Answer
Prime factors of 2744000:
− 2744000 3 = − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) × ( 7 × 7 × 7 ) 3 = − ( 2 × 2 × 5 × 7 ) = − 140 \sqrt[3]{-2744000}\\[1em] = -\sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (5 \times 5 \times 5) \times (7 \times 7 \times 7)}\\[1em] = -(2 \times 2 \times 5 \times 7)\\[1em] = - 140 3 − 2744000 = − 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) × ( 7 × 7 × 7 ) = − ( 2 × 2 × 5 × 7 ) = − 140
Hence, − 2744000 3 = − 140 \sqrt[3]{-2744000} = -140 3 − 2744000 = − 140
Find the cube-roots of 2.744
Answer
2.744 3 = 2744 1000 3 = 2744 3 1000 3 \sqrt[3]{2.744}\\[1em] = \sqrt[3]{\dfrac{2744}{1000}}\\[1em] = \dfrac{\sqrt[3]{2744}}{\sqrt[3]{1000}} 3 2.744 = 3 1000 2744 = 3 1000 3 2744
Prime factors of 2744:
∴ 2744 3 1000 3 = ( 2 × 2 × 2 ) × ( 7 × 7 × 7 ) 3 10 × 10 × 10 3 = ( 2 × 7 ) 10 = 14 10 = 1.4 \therefore \dfrac{\sqrt[3]{2744}}{\sqrt[3]{1000}} = \dfrac{\sqrt[3]{(2 \times 2\times 2)\times(7\times 7\times 7)}}{\sqrt[3]{10 \times 10\times 10}}\\[1em] = \dfrac{(2 \times 7)}{10}\\[1em] = \dfrac{14}{10}\\[1em] = 1.4 ∴ 3 1000 3 2744 = 3 10 × 10 × 10 3 ( 2 × 2 × 2 ) × ( 7 × 7 × 7 ) = 10 ( 2 × 7 ) = 10 14 = 1.4
Hence, 2.744 3 = 1.4 \sqrt[3]{2.744} = 1.4 3 2.744 = 1.4
Find the cube-roots of 9.261
Answer
9.261 3 = 9261 1000 3 = 9261 3 1000 3 \sqrt[3]{9.261}\\[1em] = \sqrt[3]{\dfrac{9261}{1000}}\\[1em] = \dfrac{\sqrt[3]{9261}}{\sqrt[3]{1000}} 3 9.261 = 3 1000 9261 = 3 1000 3 9261
Prime factors of 9261:
∴ 9261 3 1000 3 = ( 3 × 3 × 3 ) × ( 7 × 7 × 7 ) 3 10 × 10 × 10 3 = ( 3 × 7 ) 10 = 21 10 = 2.1 \therefore \dfrac{\sqrt[3]{9261}}{\sqrt[3]{1000}} = \dfrac{\sqrt[3]{(3 \times 3\times 3)\times(7\times 7\times 7)}}{\sqrt[3]{10 \times 10\times 10}}\\[1em] = \dfrac{(3 \times 7)}{10}\\[1em] = \dfrac{21}{10}\\[1em] = 2.1 ∴ 3 1000 3 9261 = 3 10 × 10 × 10 3 ( 3 × 3 × 3 ) × ( 7 × 7 × 7 ) = 10 ( 3 × 7 ) = 10 21 = 2.1
Hence, 9.261 3 = 2.1 \sqrt[3]{9.261} = 2.1 3 9.261 = 2.1
Find the cube-roots of 0.000027
Answer
0.000027 3 = 27 1000000 3 = 27 3 1000000 3 \sqrt[3]{0.000027}\\[1em] = \sqrt[3]{\dfrac{27}{1000000}}\\[1em] = \dfrac{\sqrt[3]{27}}{\sqrt[3]{1000000}} 3 0.000027 = 3 1000000 27 = 3 1000000 3 27
Prime factors of 27:
∴ 27 3 1000000 3 = ( 3 × 3 × 3 ) 3 100 × 100 × 100 3 = 3 100 = 0.03 \therefore \dfrac{\sqrt[3]{27}}{\sqrt[3]{1000000}} = \dfrac{\sqrt[3]{(3 \times 3\times 3)}}{\sqrt[3]{100 \times 100\times 100}}\\[1em] = \dfrac{3}{100}\\[1em] = 0.03 ∴ 3 1000000 3 27 = 3 100 × 100 × 100 3 ( 3 × 3 × 3 ) = 100 3 = 0.03
Hence, 0.000027 3 = 0.03 \sqrt[3]{0.000027} = 0.03 3 0.000027 = 0.03
Find the cube-roots of -0.512
Answer
− 0.512 3 = − 512 1000 3 = − 512 3 1000 3 \sqrt[3]{-0.512}\\[1em] = \sqrt[3]{-\dfrac{512}{1000}}\\[1em] = -\dfrac{\sqrt[3]{512}}{\sqrt[3]{1000}} 3 − 0.512 = 3 − 1000 512 = − 3 1000 3 512
Prime factors of 512:
∴ − 512 3 1000 3 = − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 10 × 10 × 10 3 = − ( 2 × 2 × 2 ) 10 = − 8 10 = − 0.8 \therefore -\dfrac{\sqrt[3]{512}}{\sqrt[3]{1000}} = -\dfrac{\sqrt[3]{(2 \times 2\times 2)\times(2\times 2\times 2)\times (2\times 2\times 2)}}{\sqrt[3]{10 \times 10\times 10}}\\[1em] = -\dfrac{(2 \times 2 \times 2)}{10}\\[1em] = -\dfrac{8}{10}\\[1em] = - 0.8 ∴ − 3 1000 3 512 = − 3 10 × 10 × 10 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = − 10 ( 2 × 2 × 2 ) = − 10 8 = − 0.8
Hence, − 0.512 3 = − 0.8 \sqrt[3]{-0.512} = -0.8 3 − 0.512 = − 0.8
Find the cube-roots of -15.625
Answer
− 15.625 3 = − 15625 1000 3 = − 15625 3 1000 3 \sqrt[3]{-15.625}\\[1em] = \sqrt[3]{-\dfrac{15625}{1000}}\\[1em] = -\dfrac{\sqrt[3]{15625}}{\sqrt[3]{1000}} 3 − 15.625 = 3 − 1000 15625 = − 3 1000 3 15625
Prime factors of 15625:
= − ( 5 × 5 × 5 ) × ( 5 × 5 × 5 ) 3 10 × 10 × 10 3 = − ( 5 × 5 ) 10 = − 25 10 = − 2.5 = -\dfrac{\sqrt[3]{(5 \times 5\times 5)\times(5\times 5\times 5)}}{\sqrt[3]{10 \times 10\times 10}}\\[1em] = -\dfrac{(5 \times 5)}{10}\\[1em] = -\dfrac{25}{10}\\[1em] = - 2.5 = − 3 10 × 10 × 10 3 ( 5 × 5 × 5 ) × ( 5 × 5 × 5 ) = − 10 ( 5 × 5 ) = − 10 25 = − 2.5
Hence, − 15.625 3 = − 2.5 \sqrt[3]{-15.625} = -2.5 3 − 15.625 = − 2.5
Find the cube-roots of -125 x 1000
Answer
− 125 × 1000 3 = − 125 3 × 1000 3 \sqrt[3]{-125 \times 1000}\\[1em] = -\sqrt[3]{125}\times{\sqrt[3]{1000}} 3 − 125 × 1000 = − 3 125 × 3 1000
Prime factors of 125:
∴ − 125 3 × 1000 3 = − ( 5 × 5 × 5 ) 3 × ( 10 × 10 × 10 ) 3 = − 5 × 10 = − 50 \therefore -\sqrt[3]{125}\times{\sqrt[3]{1000}} = -\sqrt[3]{(5 \times 5 \times 5)}\times{\sqrt[3]{(10 \times 10 \times 10)}}\\[1em] = -5\times 10\\[1em] = -50 ∴ − 3 125 × 3 1000 = − 3 ( 5 × 5 × 5 ) × 3 ( 10 × 10 × 10 ) = − 5 × 10 = − 50
Hence, − 125 × 1000 3 = − 50 \sqrt[3]{-125 \times 1000} = -50 3 − 125 × 1000 = − 50
Find the smallest number by which 26244 should be divided so that the quotient is a perfect cube.
Answer
Finding prime factors of 26244:
26244 = 2 × 2 × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × 3 × 3 26244 = 2 \times 2 \times (3 \times 3 \times 3) \times (3\times 3 \times 3) \times 3\times 3 26244 = 2 × 2 × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × 3 × 3
Since the prime factor 2 and 3 are not in triplets.
26244 should be divided by 36 (2 x 2 x 3 x 3) so that the quotient is a perfect cube.
What is the least number by which 30375 should be multiplied to get a perfect cube ?
Answer
Finding prime factors of 30375
30375 = ( 3 × 3 × 3 ) × 3 × 3 × ( 5 × 5 × 5 ) 30375 = (3\times 3 \times 3) \times 3 \times 3 \times (5 \times 5 \times 5) 30375 = ( 3 × 3 × 3 ) × 3 × 3 × ( 5 × 5 × 5 )
Since the prime factor 3 is not in triplets.
3 should be multiplied with 30375 so that the product is a perfect cube.
Find the cube-roots of 700 x 2 x 49 x 5
Answer
700 × 2 × 49 × 5 3 = 7 × 49 × 100 × 2 × 5 3 = ( 7 × 7 × 7 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) 3 = 7 × 2 × 5 = 70 \sqrt[3]{700 \times 2 \times 49 \times 5}\\[1em] = \sqrt[3]{7 \times 49 \times 100 \times 2 \times 5}\\[1em] = \sqrt[3]{(7 \times 7 \times 7) \times (2 \times 2 \times 2) \times (5 \times 5 \times 5)}\\[1em] = 7 \times 2 \times 5\\[1em] = 70 3 700 × 2 × 49 × 5 = 3 7 × 49 × 100 × 2 × 5 = 3 ( 7 × 7 × 7 ) × ( 2 × 2 × 2 ) × ( 5 × 5 × 5 ) = 7 × 2 × 5 = 70
700 × 2 × 49 × 5 3 = 70 \sqrt[3]{700 \times 2 \times 49 \times 5} = 70 3 700 × 2 × 49 × 5 = 70
Find the cube-roots of -216 x 1728
Answer
Prime factors of 216:
Finding prime factors of 1728:
− 216 × 1728 3 = − 216 3 × 1728 3 = − ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) 3 × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) 3 = − ( 2 × 3 ) × ( 2 × 2 × 3 ) = − 6 × 12 = − 72 \sqrt[3]{-216 \times 1728}\\[1em] = \sqrt[3]{-216} \times \sqrt[3]{1728}\\[1em] = -\sqrt[3]{(2 \times 2 \times 2) \times (3 \times 3 \times 3)} \times \sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (3 \times 3 \times 3)}\\[1em] = -(2 \times 3) \times (2 \times 2 \times 3)\\[1em] = -6 \times 12\\[1em] = -72 3 − 216 × 1728 = 3 − 216 × 3 1728 = − 3 ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) × 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) = − ( 2 × 3 ) × ( 2 × 2 × 3 ) = − 6 × 12 = − 72
− 216 × 1728 3 = − 72 \sqrt[3]{-216 \times 1728} = -72 3 − 216 × 1728 = − 72
Find the cube-roots of -64 x -125
Answer
Prime factors of 64:
Prime factors of 125:
− 64 × − 125 3 = − 64 3 × − 125 3 = − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 × − ( 5 × 5 × 5 ) 3 = ( 2 × 2 ) × ( 5 ) = 4 × 5 = 20 \sqrt[3]{-64 \times -125}\\[1em] = \sqrt[3]{-64} \times \sqrt[3]{-125}\\[1em] = -\sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2)} \times -\sqrt[3]{(5 \times 5 \times 5)}\\[1em] = (2 \times 2) \times (5)\\[1em] = 4 \times 5\\[1em] = 20 3 − 64 × − 125 = 3 − 64 × 3 − 125 = − 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × − 3 ( 5 × 5 × 5 ) = ( 2 × 2 ) × ( 5 ) = 4 × 5 = 20
− 64 × − 125 3 = 20 \sqrt[3]{-64 \times -125} = 20 3 − 64 × − 125 = 20
Find the cube-roots of − 27 343 -\dfrac{27}{343} − 343 27
Answer
Prime factors of 27:
Prime factors of 343:
− 27 343 3 = − 27 3 343 3 = − 3 × 3 × 3 3 ( 7 × 7 × 7 ) 3 = − 3 7 \sqrt[3]{-\dfrac{27}{343}}\\[1em] = -\dfrac{\sqrt[3]{27}}{\sqrt[3]{343}}\\[1em] = -{\dfrac{\sqrt[3]{3 \times 3 \times 3}}{\sqrt[3]{(7 \times 7 \times 7)}}}\\[1em] = -\dfrac{3}{7} 3 − 343 27 = − 3 343 3 27 = − 3 ( 7 × 7 × 7 ) 3 3 × 3 × 3 = − 7 3
Hence,− 27 343 3 = − 3 7 \sqrt[3]{-\dfrac{27}{343}} = -\dfrac{3}{7} 3 − 343 27 = − 7 3
Find the cube-roots of 729 − 1331 \dfrac{729}{-1331} − 1331 729
Answer
Prime factors of 729:
Prime factors of 1331:
729 − 1331 3 = − 729 3 − 1331 3 = − ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) 3 ( 11 × 11 × 11 ) 3 = − 3 × 3 11 = − 9 11 \sqrt[3]{\dfrac{729}{-1331}}\\[1em] = -\dfrac{\sqrt[3]{729}}{\sqrt[3]{-1331}}\\[1em] = -\dfrac{\sqrt[3]{(3 \times 3 \times 3)\times (3 \times 3 \times 3)}}{{\sqrt[3]{(11 \times 11 \times 11)}}}\\[1em] = -\dfrac{3 \times 3}{11}\\[1em] = -\dfrac{9}{11} 3 − 1331 729 = − 3 − 1331 3 729 = − 3 ( 11 × 11 × 11 ) 3 ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) = − 11 3 × 3 = − 11 9
Hence, 729 − 1331 3 = − 9 11 \sqrt[3]{\dfrac{729}{-1331}} = {-\dfrac{9}{11}} 3 − 1331 729 = − 11 9
Find the cube-roots of 250.047
Answer
250.047 3 = 250047 1000 3 = 250047 3 1000 3 \sqrt[3]{250.047}\\[1em] = \sqrt[3]{\dfrac{250047}{1000}}\\[1em] = \dfrac{\sqrt[3]{250047}}{\sqrt[3]{1000}} 3 250.047 = 3 1000 250047 = 3 1000 3 250047
Prime factors of 250047:
∴ 250047 3 1000 3 = ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × ( 7 × 7 × 7 ) 3 ( 10 × 10 × 10 ) 3 = 3 × 3 × 7 10 = 63 10 = 6.3 \therefore \dfrac{\sqrt[3]{250047}}{\sqrt[3]{1000}} = \dfrac{\sqrt[3]{(3 \times 3 \times 3) \times (3 \times 3 \times 3) \times(7 \times 7 \times 7)}}{\sqrt[3]{(10 \times 10 \times 10)}}\\[1em] = \dfrac{{3 \times 3 \times 7}}{{10}}\\[1em] = \dfrac{{63}}{{10}}\\[1em] = 6.3 ∴ 3 1000 3 250047 = 3 ( 10 × 10 × 10 ) 3 ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × ( 7 × 7 × 7 ) = 10 3 × 3 × 7 = 10 63 = 6.3
Hence, 250.047 3 = 6.3 \sqrt[3]{250.047} = 6.3 3 250.047 = 6.3
Find the cube-roots of -175616
Answer
Prime factors of 175616:
− 175616 3 = − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 7 × 7 × 7 ) 3 = − 2 × 2 × 2 × 7 = − 56 \sqrt[3]{-175616}\\[1em] = -\sqrt[3]{(2 \times 2 \times 2)\times (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (7 \times 7 \times 7)}\\[1em] = -2 \times 2 \times 2 \times 7\\[1em] = -56 3 − 175616 = − 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 7 × 7 × 7 ) = − 2 × 2 × 2 × 7 = − 56
Hence, − 175616 3 = − 56 \sqrt[3]{-175616} = -56 3 − 175616 = − 56
64 x 6 64\sqrt{x^6} 64 x 6 - 64 × x 6 \sqrt{64 \times x^6} 64 × x 6 is equal to :
72x3
56x2
128x3
56x3
Answer
64 x 6 − 64 × x 6 = 64 × x 3 − 64 × x 6 = 64 × x 3 − 8 × x 3 = ( 64 − 8 ) × x 3 = 56 × x 3 64\sqrt{x^6} - \sqrt{64 \times x^6}\\[1em] = 64\times x^3 - \sqrt{64} \times \sqrt{x^6}\\[1em] = 64\times x^3 - 8 \times x^3\\[1em] = (64 - 8) \times x^3\\[1em] = 56 \times x^3\\[1em] 64 x 6 − 64 × x 6 = 64 × x 3 − 64 × x 6 = 64 × x 3 − 8 × x 3 = ( 64 − 8 ) × x 3 = 56 × x 3
Hence, option 4 is the correct option.
If a number is multiplied by 3, its square will be multiplied by :
9
3
27
81
Answer
Lets the number be x x x .
Number multiplied by 3 = 3 x 3x 3 x .
Square of 3 x 3x 3 x = ( 3 x ) 2 (3x)^2 ( 3 x ) 2
= ( 3 × x ) 2 = 3 2 × x 2 = 9 × x 2 = (3 \times x)^2 \\[1em] = 3^2 \times x^2\\[1em] = 9 \times x^2 = ( 3 × x ) 2 = 3 2 × x 2 = 9 × x 2
Hence, option 1 is the correct option.
Two numbers are in the ratio 5 : 4. If the difference of their cubes is 61; the numbers are :
5 and 4
25 and 16
10 and 18
none of these
Answer
Ratio of two numbers are 5:4.
Lets the numbers be 5 x 5x 5 x and 4 x 4x 4 x . Hence,
( 5 x ) 3 − ( 4 x ) 3 = 61 ⇒ 125 x 3 − 64 x 3 = 61 ⇒ ( 125 − 64 ) x 3 = 61 ⇒ 61 x 3 = 61 ⇒ x 3 = 61 61 ⇒ x 3 = 1 ⇒ x = 1 3 ⇒ x = 1 (5x)^3 - (4x)^3 = 61\\[1em] ⇒ 125x^3 - 64x^3 = 61\\[1em] ⇒ (125 - 64)x^3 = 61\\[1em] ⇒ 61x^3 = 61\\[1em] ⇒ x^3 = \dfrac{61}{61}\\[1em] ⇒ x^3 = 1\\[1em] ⇒ x = \sqrt[3]{1}\\[1em] ⇒ x = 1 ( 5 x ) 3 − ( 4 x ) 3 = 61 ⇒ 125 x 3 − 64 x 3 = 61 ⇒ ( 125 − 64 ) x 3 = 61 ⇒ 61 x 3 = 61 ⇒ x 3 = 61 61 ⇒ x 3 = 1 ⇒ x = 3 1 ⇒ x = 1 So the numbers are 5 and 4.
Hence, option 1 is the correct option.
The value of 27 3 + 0.008 3 + 0.064 3 \sqrt[3]{27} + \sqrt[3]{0.008} + \sqrt[3]{0.064} 3 27 + 3 0.008 + 3 0.064 is :
27.072 3 \sqrt[3]{27.072} 3 27.072
3.72
3.6
3.06
Answer
27 3 + 0.008 3 + 0.064 3 = ( 3 × 3 × 3 ) 3 + 8 1000 3 + 64 1000 3 = 3 + 2 10 + 4 10 = 3 + 0.2 + 0.4 = 3.6 \sqrt[3]{27} + \sqrt[3]{0.008} + \sqrt[3]{0.064}\\[1em] = \sqrt[3]{(3 \times 3 \times 3)} + \sqrt[3]{\dfrac{8}{1000}} + \sqrt[3]{\dfrac{64}{1000}}\\[1em] = 3 + \dfrac{2}{10} + \dfrac{4}{10}\\[1em] = 3 + 0.2 + 0.4\\[1em] = 3.6 3 27 + 3 0.008 + 3 0.064 = 3 ( 3 × 3 × 3 ) + 3 1000 8 + 3 1000 64 = 3 + 10 2 + 10 4 = 3 + 0.2 + 0.4 = 3.6
Hence, option 3 is the correct option.
The value of ( − 3 ) 3 × 8 3 \sqrt[3]{(-3)^3 \times 8} 3 ( − 3 ) 3 × 8 is :
-27
-6
6
none of these
Answer
( − 3 ) 3 × 8 3 = ( − 3 ) 3 3 × 8 3 = − 3 × 2 = − 6 \sqrt[3]{(-3)^3 \times 8}\\[1em] = \sqrt[3]{(-3)^3} \times \sqrt[3]{8}\\[1em] = -3 \times 2\\[1em] = -6 3 ( − 3 ) 3 × 8 = 3 ( − 3 ) 3 × 3 8 = − 3 × 2 = − 6
Hence, option 2 is the correct option.
Statement 1: Cubes of all odd natural numbers are odd.
Statement 2: Cubes of negative integers are positive or negative integers.
Which of the following options is correct?
Both the statements are true.
Both the statements are false.
Statement 1 is true, and statement 2 is false.
Statement 1 is false, and statement 2 is true.
Answer
An odd number can be represented as 2n + 1, where n is an integer.
Cube of odd number = (2n + 1)3
⇒ (2n)3 + 13 + 3 x 2n x 1 x (2n + 1)
⇒ 8n3 + 1 + 6n(2n + 1)
⇒ 8n3 + 1 + 12n2 + 6n
⇒ 8n3 + 12n2 + 6n + 1 ........(1)
If any no. odd or even is multiplied by an even number it becomes an even number.
Since, 8, 12 and 6 are even numbers so first three terms of equation (1) are even, and adding 1 at the end ensures the result is odd.
So, statement 1 is true.
Let's take some negative number, -2 and -3.
Cube of -2 = (-2)3 = -8
Cube of -3 = (-3)3 = -27
The cube of a negative integer is always a negative integer.
So, statement 2 is false.
Hence, Option 3 is the correct option.
Assertion (A) : The smallest number by which 1323 may be multiplied so that the product is a perfect cube of 7.
Reason (R) : A given natural number is a perfect cube if in its prime factorization every prime occurs three times.
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
Prime Factorization of 1323 = (3 x 3 x 3) x 7 x 7 = 33 x 72
On multiplying by 1323 by 7, we get :
⇒ 1323 x 7 = (3 x 3 x 3) x 7 x 7 x 7
⇒ 1323 x 7 = 33 x 73
⇒ 1323 x 7 = (3 x 7)3
⇒ 1323 x 7 = 213
∴ On multiplying 1323 by 7, it becomes a perfect cube.
So, assertion (A) is true.
In the prime factorization of a perfect cube, each prime must appear with an exponent that is a multiple of 3, it is not necessary that every prime number occurs only three times.
So, reason (R) is false.
Hence, option 3 is the correct option.
Assertion (A) : 4 12 125 3 = 1 3 5 \sqrt[3]{4\dfrac{12}{125}} = 1\dfrac{3}{5} 3 4 125 12 = 1 5 3
Reason (R) : If p and q are two whole numbers (p ≠ 0), then p q 3 = p 3 q 3 \sqrt[3]{\dfrac{p}{q}} = \dfrac{\sqrt[3]p}{\sqrt[3]q} 3 q p = 3 q 3 p .
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
If p and q are two whole numbers (p ≠ 0), then p q 3 = p 3 q 3 \sqrt[3]{\dfrac{p}{q}} = \dfrac{\sqrt[3]p}{\sqrt[3]q} 3 q p = 3 q 3 p .
This is a fundamental property of radicals.
So, reason (R) is true.
Solving,
⇒ 4 12 125 3 ⇒ 4 × 125 + 12 125 3 ⇒ 500 + 12 125 3 ⇒ 512 125 3 ⇒ 512 3 125 3 ⇒ 8 5 ⇒ 1 3 5 \Rightarrow \sqrt[3]{4\dfrac{12}{125}}\\[1em] \Rightarrow \sqrt[3]{\dfrac{4 \times 125 + 12}{125}}\\[1em] \Rightarrow \sqrt[3]{\dfrac{500 + 12}{125}}\\[1em] \Rightarrow \sqrt[3]{\dfrac{512}{125}}\\[1em] \Rightarrow \dfrac{\sqrt[3]{512}}{\sqrt[3]{125}}\\[1em] \Rightarrow \dfrac{8}{5}\\[1em] \Rightarrow 1\dfrac{3}{5} ⇒ 3 4 125 12 ⇒ 3 125 4 × 125 + 12 ⇒ 3 125 500 + 12 ⇒ 3 125 512 ⇒ 3 125 3 512 ⇒ 5 8 ⇒ 1 5 3
So, assertion (A) is true and reason (R) clearly explains assertion.
Hence, option 1 is the correct option.
Assertion (A) : − 125 3 = ± 25 \sqrt[3]{-125} = \pm 25 3 − 125 = ± 25
Reason (R) : The cube root of a negative perfect cube is negative.
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
⇒ -125 = -5 x -5 x -5
⇒ -125 = (-5)3
⇒ − 125 3 = − 5 \sqrt[3]{-125} = -5 3 − 125 = − 5 .
So, assertion (A) is false.
We know that,
The cube root of a negative perfect cube is always a negative number.
So, reason (R) is true.
Hence, option 4 is the correct option.
Assertion (A) : 968 3 × 1375 3 = 110 \sqrt[3]{968} \times \sqrt[3]{1375} = 110 3 968 × 3 1375 = 110
Reason (R) : If p and q are two whole numbers, then p 3 × q 3 = p q 3 \sqrt[3]{p} \times \sqrt[3]{q} = \sqrt[3]{pq} 3 p × 3 q = 3 pq .
Both A and R are correct, and R is the correct explanation for A.
Both A and R are correct, and R is not the correct explanation for A.
A is true, but R is false.
A is false, but R is true.
Answer
If p and q are two whole numbers, then p 3 × q 3 = p × q 3 = p q 3 \sqrt[3]{p} \times \sqrt[3]{q} = \sqrt[3]{p \times q} = \sqrt[3]{pq} 3 p × 3 q = 3 p × q = 3 pq .
So, reason (R) is true.
Solving,
⇒ 968 3 × 1375 3 ⇒ 968 × 1375 3 ⇒ 1331000 3 ⇒ 110. \Rightarrow \sqrt[3]{968} \times \sqrt[3]{1375} \\[1em] \Rightarrow \sqrt[3]{968 \times 1375}\\[1em] \Rightarrow \sqrt[3]{1331000}\\[1em] \Rightarrow 110. ⇒ 3 968 × 3 1375 ⇒ 3 968 × 1375 ⇒ 3 1331000 ⇒ 110.
So, assertion (A) is true and reason (R) clearly explains assertion.
Hence, option 1 is the correct option.
State true or false :
(i) Cube of an odd number can be even.
(ii) A perfect cube does not end with two zeroes.
(iii) If square of a number ends with 5, its cube will end with 25.
(iv) The cube of a two digit number may be a three digit number.
(v) Cube of a natural number is called perfect cube.
Answer
(i) False.Reason — Cube of an odd number are odd.
(ii) True.Reason — A perfect cube always end in the number of zeroes that is a multiple of 3.
(iii) False.Reason — It is not necessary that if square of a number ends with 5, its cube will end with 25. Example- The square of 15 is 225 but its cube is 3375. The square of 5 is 25 and its cube is 125.
(iv) False.Reason — Cube of two digit number may have four digits to six digits.
(v) True.Reason — The cube of a number is called a perfect cube.
Find the cube root of 110.592
Answer
110.592 3 = 110592 1000 3 = 110592 3 1000 3 \sqrt[3]{110.592}\\[1em] = \sqrt[3]{\dfrac{110592}{1000}}\\[1em] = \dfrac{\sqrt[3]{110592}}{\sqrt[3]{1000}} 3 110.592 = 3 1000 110592 = 3 1000 3 110592
Prime factors of 110592:
∴ 110592 3 1000 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) 3 ( 10 × 10 × 10 ) 3 = 2 × 2 × 2 × 2 × 3 10 = 48 10 = 4.8 \therefore \dfrac{\sqrt[3]{110592}}{\sqrt[3]{1000}} = \dfrac{\sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2) \times(2 \times 2 \times 2) \times (2 \times 2 \times 2)\times (3 \times 3 \times 3)}}{\sqrt[3]{(10 \times 10 \times 10)}}\\[1em] = \dfrac{{2 \times 2 \times 2 \times 2 \times 3}}{{10}}\\[1em] = \dfrac{{48}}{{10}}\\[1em] = 4.8 ∴ 3 1000 3 110592 = 3 ( 10 × 10 × 10 ) 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) = 10 2 × 2 × 2 × 2 × 3 = 10 48 = 4.8
Hence, 110.592 3 = 4.8 \sqrt[3]{110.592} = 4.8 3 110.592 = 4.8
Find the cube root of 0.064
Answer
0.064 3 = 64 1000 3 = 64 3 1000 3 \sqrt[3]{0.064}\\[1em] = \sqrt[3]{\dfrac{64}{1000}}\\[1em] = \dfrac{\sqrt[3]{64}}{\sqrt[3]{1000}} 3 0.064 = 3 1000 64 = 3 1000 3 64
Prime factors of 64:
∴ 64 3 1000 3 = ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 ( 10 × 10 × 10 ) 3 = 2 × 2 10 = 4 10 = 0.4 \therefore \dfrac{\sqrt[3]{64}}{\sqrt[3]{1000}} = \dfrac{\sqrt[3]{(2 \times 2 \times 2) \times (2 \times 2 \times 2)}}{\sqrt[3]{(10 \times 10 \times 10)}}\\[1em] = \dfrac{{2 \times 2}}{{10}}\\[1em] = \dfrac{{4}}{{10}}\\[1em] = 0.4 ∴ 3 1000 3 64 = 3 ( 10 × 10 × 10 ) 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = 10 2 × 2 = 10 4 = 0.4
Hence, 0.064 3 = 0.4 \sqrt[3]{0.064} = 0.4 3 0.064 = 0.4
Find the volume of a cubical box whose surface area is 486 cm2 .
Answer
Let a be the length of cubical box.
Surface area of cubical box = 6a2
6 a 2 = 486 ⇒ a 2 = 486 6 ⇒ a 2 = 81 ⇒ a = 81 ⇒ a = 9 6a^2 = 486\\[1em] ⇒ a^2 = \dfrac{486}{6}\\[1em] ⇒ a^2 = 81\\[1em] ⇒ a = \sqrt{81}\\[1em] ⇒ a = 9 6 a 2 = 486 ⇒ a 2 = 6 486 ⇒ a 2 = 81 ⇒ a = 81 ⇒ a = 9
Volume of cubical box = a 3 a^3 a 3
( 9 ) 3 = 9 × 9 × 9 = 729 (9)^3\\[1em] = 9 \times 9 \times 9\\[1em] = 729 ( 9 ) 3 = 9 × 9 × 9 = 729
The volume of cubical box is 729 cm3 .
Find cube root of 125 x -64
Answer
Prime factors of 125:
Prime factors of 64:
125 × − 64 3 = 125 3 × − 64 3 = ( 5 × 5 × 5 ) 3 × − ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) 3 = ( 5 ) × − ( 2 × 2 ) = 5 × − 4 = − 20 \sqrt[3]{125 \times -64}\\[1em] = \sqrt[3]{125}\times{\sqrt[3]{-64}}\\[1em] = \sqrt[3]{(5\times 5 \times 5)}\times-\sqrt[3]{(2 \times 2 \times 2)\times(2 \times 2 \times 2)}\\[1em] = (5)\times -(2 \times 2)\\[1em] = 5 \times -4\\[1em] = -20 3 125 × − 64 = 3 125 × 3 − 64 = 3 ( 5 × 5 × 5 ) × − 3 ( 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = ( 5 ) × − ( 2 × 2 ) = 5 × − 4 = − 20
Hence, 125 × − 64 3 = − 20 \sqrt[3]{125 \times -64} = -20 3 125 × − 64 = − 20
Find cube root of − 125 343 \dfrac{-125}{343} 343 − 125
Answer
Prime factors of 125:
Prime factors of 343:
− 125 343 3 = − 125 3 343 3 = − ( 5 × 5 × 5 ) 3 ( 7 × 7 × 7 ) 3 = − 5 7 \sqrt[3]{\dfrac{-125}{343}}\\[1em] = {\dfrac{\sqrt[3]{-125}}{\sqrt[3]{343}}}\\[1em] = {-\dfrac{\sqrt[3]{(5 \times 5 \times 5)}}{\sqrt[3]{(7 \times 7 \times 7)}}}\\[1em] = -\dfrac{5}{7} 3 343 − 125 = 3 343 3 − 125 = − 3 ( 7 × 7 × 7 ) 3 ( 5 × 5 × 5 ) = − 7 5
Hence, − 125 343 3 = − 5 7 \sqrt[3]{\dfrac{-125}{343}} = {-\dfrac{5}{7}} 3 343 − 125 = − 7 5
Three numbers are in the ratio 2 : 3 : 1. The sum of their cubes is 288. Find the numbers.
Answer
Three numbers are in the ratio 2 : 3 : 1. So the three numbers are 2 x , 3 x 2x,3x 2 x , 3 x and 1 x 1x 1 x . Hence,
( 2 x ) 3 + ( 3 x ) 3 + ( 1 x ) 3 = 288 ⇒ 8 x 3 + 27 x 3 + 1 x 3 = 288 ⇒ 36 x 3 = 288 ⇒ x 3 = 288 36 ⇒ x 3 = 8 ⇒ x = 8 3 ⇒ x = 2 × 2 × 2 3 ⇒ x = 2 (2x)^3 + (3x)^3 + (1x)^3 = 288\\[1em] ⇒ 8x^3 + 27x^3 + 1x^3 = 288\\[1em] ⇒ 36x^3 = 288\\[1em] ⇒ x^3 = \dfrac{288}{36}\\[1em] ⇒ x^3 = 8\\[1em] ⇒ x = \sqrt[3]{8}\\[1em] ⇒ x = \sqrt[3]{2 \times 2 \times 2}\\[1em] ⇒ x = 2\\[1em] ( 2 x ) 3 + ( 3 x ) 3 + ( 1 x ) 3 = 288 ⇒ 8 x 3 + 27 x 3 + 1 x 3 = 288 ⇒ 36 x 3 = 288 ⇒ x 3 = 36 288 ⇒ x 3 = 8 ⇒ x = 3 8 ⇒ x = 3 2 × 2 × 2 ⇒ x = 2
2x = 2 x 2 = 4
3x = 3 x 2 = 6
Hence, the three numbers are 4, 6 and 2
Find the smallest number by which 14,580 must be multiplied to make a perfect cube. Also, find the cube root of the perfect cube number obtained.
Answer
Finding prime factors of 14580
14580 = 2 × 2 × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × 5 14580 = 2\times 2 \times (3 \times 3 \times 3) \times (3 \times 3 \times 3) \times 5 14580 = 2 × 2 × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × 5
Since the prime factor 2 and 5 are not in triplets,
Hence, 14,580 must be multiplied with 2 x 5 x 5 = 50
14580 × 50 = 729000 729000 3 = ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × ( 5 × 5 × 5 ) 3 729000 3 = 2 × 3 × 3 × 50 3 729000 3 = 90 14580 \times 50 = 729000\\[1em] \sqrt[3]{729000} = \sqrt[3]{(2 \times 2\times 2) \times (3 \times 3 \times 3) \times (3 \times 3 \times 3) \times (5 \times 5 \times 5)}\\[1em] \sqrt[3]{729000} = \sqrt[3]{2 \times 3 \times 3 \times 50}\\[1em] \sqrt[3]{729000} = 90 14580 × 50 = 729000 3 729000 = 3 ( 2 × 2 × 2 ) × ( 3 × 3 × 3 ) × ( 3 × 3 × 3 ) × ( 5 × 5 × 5 ) 3 729000 = 3 2 × 3 × 3 × 50 3 729000 = 90
14,580 should be multiplied with 50 so that the product is a perfect cube. The cube root of 729000 is 90.
Find the smallest number by which 8,232 must be divided to make it a perfect cube. Also, find the cube root of the perfect cube so obtained.
Answer
Finding prime factors of 8232
8232 = ( 2 × 2 × 2 ) × 3 × ( 7 × 7 × 7 ) 8232 = (2\times 2 \times 2) \times 3 \times(7 \times 7 \times 7) 8232 = ( 2 × 2 × 2 ) × 3 × ( 7 × 7 × 7 )
Since the prime factor 3 is not in triplet, so 8,232 must be divided by 3 to make it a perfect cube.
8232 3 = 2744 \dfrac{8232}{3} = 2744 3 8232 = 2744
Finding prime factors of 2744
2744 3 = ( 2 × 2 × 2 ) × ( 7 × 7 × 7 ) 3 2744 3 = 2 × 7 3 2744 3 = 14 \sqrt[3]{2744} = \sqrt[3]{(2\times 2 \times 2) \times(7 \times 7 \times 7)}\\[1em] \sqrt[3]{2744} = \sqrt[3]{2 \times 7}\\[1em] \sqrt[3]{2744} = 14 3 2744 = 3 ( 2 × 2 × 2 ) × ( 7 × 7 × 7 ) 3 2744 = 3 2 × 7 3 2744 = 14
2744 must be divided by 3 so that the quotient is a perfect cube. The cube root of 2744 is 14.
Evaluate [ ( 12 2 + 5 2 ) 1 2 ] 3 \Big[(12^2 + 5^2)^{\dfrac{1}{2}}\Big]^3 [ ( 1 2 2 + 5 2 ) 2 1 ] 3
Answer
[ ( 12 2 + 5 2 ) 1 2 ] 3 = [ ( 144 + 25 ) 1 2 ] 3 = [ ( 169 ) 1 2 ] 3 = [ ( 13 2 ) 1 2 ] 3 = [ ( 13 ) 2 2 ] 3 = [ ( 13 ) ] 3 = 13 × 13 × 13 = 2197 \Big[(12^2 + 5^2)^{\dfrac{1}{2}}\Big]^3\\[1em] = \Big[(144 + 25)^{\dfrac{1}{2}}\Big]^3\\[1em] = \Big[(169)^{\dfrac{1}{2}}\Big]^3\\[1em] = \Big[(13^2)^{\dfrac{1}{2}}\Big]^3\\[1em] = \Big[(13)^{\dfrac{2}{2}}\Big]^3\\[1em] = [(13)]^3\\[1em] = 13 \times 13 \times 13\\[1em] = 2197 [ ( 1 2 2 + 5 2 ) 2 1 ] 3 = [ ( 144 + 25 ) 2 1 ] 3 = [ ( 169 ) 2 1 ] 3 = [ ( 1 3 2 ) 2 1 ] 3 = [ ( 13 ) 2 2 ] 3 = [( 13 ) ] 3 = 13 × 13 × 13 = 2197
Hence, [ ( 12 2 + 5 2 ) 1 2 ] 3 = 2197 \Big[(12^2 + 5^2)^{\dfrac{1}{2}}\Big]^3 = 2197 [ ( 1 2 2 + 5 2 ) 2 1 ] 3 = 2197
Evaluate ( 10 3 − 6 3 ) 3 (\sqrt{10^3 - 6^3})^3 ( 1 0 3 − 6 3 ) 3
Answer
( 10 3 − 6 3 ) 3 = ( 1000 − 216 ) 3 = ( 784 ) 3 (\sqrt{10^3 - 6^3})^3\\[1em] = (\sqrt{1000 - 216})^3\\[1em] = (\sqrt{784})^3 ( 1 0 3 − 6 3 ) 3 = ( 1000 − 216 ) 3 = ( 784 ) 3
Finding prime factors of 784
∴ ( 784 ) 3 = ( ( 2 × 2 ) × ( 2 × 2 ) × ( 7 × 7 ) ) 3 = ( 2 × 2 × 7 ) 3 = ( 28 ) 3 = 21952 \therefore (\sqrt{784})^3 = (\sqrt{(2\times 2)\times (2\times 2)\times (7\times 7)})^3\\[1em] = (2 \times 2 \times 7)^3\\[1em] = (28)^3\\[1em] = 21952 ∴ ( 784 ) 3 = ( ( 2 × 2 ) × ( 2 × 2 ) × ( 7 × 7 ) ) 3 = ( 2 × 2 × 7 ) 3 = ( 28 ) 3 = 21952
Hence, ( 10 3 − 6 3 ) 3 = 21952 (\sqrt{10^3 - 6^3})^3 = 21952 ( 1 0 3 − 6 3 ) 3 = 21952
Difference of two perfect cubes is 387. If the cube root of the greater of the two numbers is 8, find the cube root of the smaller number.
Answer
Cube root of greater number = 8.
Let the cube root of smaller number be x x x .
Hence,
8 3 − x 3 = 387 ⇒ 512 − x 3 = 387 ⇒ 512 − 387 = x 3 ⇒ 125 = x 3 ⇒ x = 125 3 ⇒ x = 5 × 5 × 5 3 ⇒ x = 5 8^3 - x^3 = 387\\[1em] ⇒ 512 - x^3 = 387\\[1em] ⇒ 512 - 387 = x^3\\[1em] ⇒ 125 = x^3\\[1em] ⇒ x = \sqrt[3]{125}\\[1em] ⇒ x = \sqrt[3]{5\times 5\times 5}\\[1em] ⇒ x = 5 8 3 − x 3 = 387 ⇒ 512 − x 3 = 387 ⇒ 512 − 387 = x 3 ⇒ 125 = x 3 ⇒ x = 3 125 ⇒ x = 3 5 × 5 × 5 ⇒ x = 5
Hence, the cube root of the smaller number is 5