KnowledgeBoat Logo
|
OPEN IN APP

Chapter 8

Logarithms

Class - 9 ML Aggarwal Understanding ICSE Mathematics



Exercise 8.1

Question 1

Convert the following to logarithmic form:

(i) 52 = 25

(ii) a5 = 64

(iii) 7x = 100

(iv) 90 = 1

(v) 61 = 6

(vi) 3-2 = 19\dfrac{1}{9}

(vii) 10-2 = 0.01

(viii) (81)34(81)^{\dfrac{3}{4}} = 27.

Answer

(i) 52 = 25

⇒ log5 25 = 2.

(ii) a5 = 64

⇒ loga 64 = 5.

(iii) 7x = 100

⇒ log7 100 = x.

(iv) 90 = 1

⇒ log9 1 = 0.

(v) 61 = 6

⇒ log6 6 = 1.

(vi) 3-2 = 19\dfrac{1}{9}

⇒ log3 19\dfrac{1}{9} = -2.

(vii) 10-2 = 0.01

⇒ log10 0.01 = -2.

(viii) (81)34(81)^{\dfrac{3}{4}} = 27

⇒ log81 27 = 34\dfrac{3}{4}

Question 2

Convert the following into exponential form:

(i) log232 = 5

(ii) log381 = 4

(iii) log313\dfrac{1}{3} = -1

(iv) log84 = 23\dfrac{2}{3}

(v) log832 = 53\dfrac{5}{3}

(vi) log10 (0.001) = -3

(vii) log2 0.25 = -2

(viii) loga (1a)\Big(\dfrac{1}{a}\Big) = -1

Answer

(i) log232 = 5

⇒ 25 = 32

(ii) log381 = 4

⇒ 34 = 81

(iii) log313\dfrac{1}{3} = -1

⇒ 3-1 = 13\dfrac{1}{3}

(iv) log84 = 23\dfrac{2}{3}

(8)23(8)^{\dfrac{2}{3}} = 4

(v) log8 32 = 53\dfrac{5}{3}

(8)53=32(8)^{\dfrac{5}{3}} = 32

(vi) log10 (0.001) = -3

⇒ 10-3 = 0.001

(vii) log2 0.25 = -2

⇒ (2)-2 = 0.25

(viii) loga (1a)\Big(\dfrac{1}{a}\Big) = -1

⇒ a-1 = 1a\dfrac{1}{a}.

Question 3

By converting to exponential form, find the values of :

(i) log216

(ii) log5125

(iii) log48

(iv) log927

(v) log10 (0.01)

(vi) log7 17\dfrac{1}{7}

(vii) log0.5 256

(viii) log2 0.25

Answer

(i) log216 = x

⇒ 2x = 16

⇒ 2x = 24

∴ x = 4.

Hence, log216 = 4.

(ii) log5125 = x

⇒ 5x = 125

⇒ 5x = 53

∴ x = 3.

Hence, log5125 = 3.

(iii) log48 = x

⇒ 4x = 8

⇒ (22)x = 23

⇒ 22x = 23

⇒ 2x = 3

⇒ x = 32.\dfrac{3}{2}.

Hence, log48 = 32\dfrac{3}{2}.

(iv) log927 = x

⇒ 9x = 27

⇒ (32)x = 33

⇒ 32x = 33

⇒ 2x = 3

⇒ x = 32.\dfrac{3}{2}.

Hence, log927 = 32\dfrac{3}{2}.

(v) log10 (0.01) = x

⇒ 10x = 0.01

⇒ 10x = 10-2

∴ x = -2.

Hence, log10 (0.01) = -2.

(vi) log717\dfrac{1}{7} = x

⇒ 7x = 17\dfrac{1}{7}

⇒ 7x = 7-1

∴ x = -1.

Hence, log717\dfrac{1}{7} = -1.

(vii) log0.5 256 = x

⇒ (0.5)x = 256

(510)x\Big(\dfrac{5}{10}\Big)^x = (2)8

(12)x\Big(\dfrac{1}{2}\Big)^x = (2)8

⇒ (2)-x = (2)8

∴ -x = 8 ⇒ x = -8.

Hence, log0.5256 = -8.

(viii) log2 0.25 = x

⇒ 2x = 0.25

⇒ 2x = 25100\dfrac{25}{100}

⇒ 2x = 14=122\dfrac{1}{4} = \dfrac{1}{2^2}

⇒ 2x = 2-2

⇒ x = -2.

Hence, log2 0.25 = -2.

Question 4(i)

Solve the following equation for x:

log3x = 2

Answer

Given,

⇒ log3x = 2

⇒ x = 32 = 9.

Hence, x = 9.

Question 4(ii)

Solve the following equation for x:

logx25 = 2

Answer

Given,

⇒ logx25 = 2

⇒ 25 = x2

⇒ 52 = x2

⇒ x = 5.

Hence, x = 5.

Question 4(iii)

Solve the following equation for x:

log10x = -2

Answer

Given,

⇒ log10x = -2

⇒ x = 10-2

⇒ x = 1102=1100\dfrac{1}{10^2} = \dfrac{1}{100} = 0.01.

Hence, x = 0.01.

Question 4(iv)

Solve the following equation for x:

log4x = 12\dfrac{1}{2}

Answer

Given,

⇒ log4x = 12\dfrac{1}{2}

⇒ x = 412=44^{\dfrac{1}{2}} = \sqrt{4} = 2.

Hence, x = 2.

Question 4(v)

Solve the following equation for x:

logx11 = 1

Answer

Given,

⇒ logx11 = 1

⇒ x1 = 11

⇒ x = 11.

Hence, x = 11.

Question 4(vi)

Solve the following equation for x:

logx14\dfrac{1}{4} = -1

Answer

Given,

⇒ logx14\dfrac{1}{4} = -1

x1=141x=14x=4.\Rightarrow x^{-1} = \dfrac{1}{4} \\[1em] \Rightarrow \dfrac{1}{x} = \dfrac{1}{4} \\[1em] \Rightarrow x = 4.

Hence, x = 4.

Question 4(vii)

Solve the following equation for x:

log81x = 32\dfrac{3}{2}

Answer

Given,

⇒ log81x = 32\dfrac{3}{2}

x=(81)32x=(9)232x=93=729.\Rightarrow x = (81)^{\dfrac{3}{2}} \\[1em] \Rightarrow x = (9)^2{\dfrac{3}{2}} \\[1em] \Rightarrow x = 9^3 = 729.

Hence, x = 729.

Question 4(viii)

Solve the following equation for x:

log9x = 2.5

Answer

Given,

⇒ log9x = 2.5

⇒ x = 92.5

⇒ x = (32)52=32×52(3^2)^{\dfrac{5}{2}} = 3^{2 \times \dfrac{5}{2}}

⇒ x = 35 = 243.

Hence, x = 243.

Question 4(ix)

Solve the following equation for x:

log4x = -1.5

Answer

Given,

⇒ log4x = -1.5

⇒ x = 4-1.5

⇒ x = 432=(22)324^{-\dfrac{3}{2}} = (2^2)^{-\dfrac{3}{2}}

⇒ x = 2-3 = 123=18\dfrac{1}{2^3} = \dfrac{1}{8}.

Hence, x = 18\dfrac{1}{8}.

Question 4(x)

Solve the following equation for x:

log√5x = 2

Answer

Given,

⇒ log√5x = 2

x = (5)2(\sqrt{5})^2 = 5.

Hence, x = 5.

Question 4(xi)

Solve the following equation for x:

logx 0.001 = -3

Answer

Given,

⇒ logx 0.001 = -3

⇒ x-3 = 0.001

⇒ x-3 = 11000=1103\dfrac{1}{1000} = \dfrac{1}{10^3}

⇒ x-3 = 10-3

⇒ x = 10.

Hence, x = 10.

Question 4(xii)

Solve the following equation for x:

log√3(x + 1) = 2

Answer

Given,

⇒ log√3(x + 1) = 2

⇒ (x + 1) = (3)2(\sqrt{3})^2

⇒ (x + 1) = 3

⇒ x = 2.

Hence, x = 2.

Question 4(xiii)

Solve the following equation for x:

log4(2x + 3) = 32\dfrac{3}{2}

Answer

Given,

⇒ log4(2x + 3) = 32\dfrac{3}{2}

⇒ 2x + 3 = 4324^{\dfrac{3}{2}}

⇒ 2x + 3 = (22)32(2^2)^{\dfrac{3}{2}}

⇒ 2x + 3 = 23

⇒ 2x + 3 = 8

⇒ 2x = 5

⇒ x = 52\dfrac{5}{2}.

Hence, x = 52\dfrac{5}{2}.

Question 4(xiv)

Solve the following equation for x:

log23\text{log}_{\sqrt[3]{2}}x = 3

Answer

Given,

log23x=3x=(23)3x=(213)3x=2.\Rightarrow \text{log}_{\sqrt[3]{2}}x = 3 \\[1em] \Rightarrow x = (\sqrt[3]{2})^3 \\[1em] \Rightarrow x = (2^{\dfrac{1}{3}})^3 \\[1em] \Rightarrow x = 2.

Hence, x = 2.

Question 4(xv)

Solve the following equation for x:

log2(x2 - 1) = 3

Answer

Given,

log2(x21)\text{log}_2(x^2 - 1) = 3

⇒ x2 - 1 = 23

⇒ x2 - 1 = 8

⇒ x2 = 9

⇒ x = 9=±3\sqrt{9} = \pm3.

Hence, x = ±3.

Question 4(xvi)

Solve the following equation for x:

log x = -1

Answer

Given,

⇒ log x = -1

⇒ x = 10-1

⇒ x = 110.\dfrac{1}{10}.

Hence, x = 110\dfrac{1}{10}.

Question 4(xvii)

Solve the following equation for x:

log(2x - 3) = 1

Answer

Given,

⇒ log(2x - 3) = 1

⇒ 2x - 3 = 101

⇒ 2x - 3 = 10

⇒ 2x = 13

⇒ x = 132=612.\dfrac{13}{2} = 6\dfrac{1}{2}.

Hence, x = 612.6\dfrac{1}{2}.

Question 4(xviii)

Solve the following equation for x:

log x = -2, 0, 13\dfrac{1}{3}.

Answer

Given,

⇒ log x = -2

⇒ x = 10-2 = 1102=1100\dfrac{1}{10^2} = \dfrac{1}{100}.

⇒ log x = 0

⇒ x = 100 = 1.

⇒ log x = 13\dfrac{1}{3}

⇒ x = 1013=103.10^{\dfrac{1}{3}} = \sqrt[3]{10}.

Hence, x = 1100,1,103.\dfrac{1}{100}, 1, \sqrt[3]{10}.

Question 5

Given log10a = b, express 102b - 3 in terms of a.

Answer

Given,

⇒ log10a = b

∴ a = 10b.

Simplifying 102b - 3 we get,

⇒ 102b - 3 = 102b.10-3

= 102b103=(10b)2103\dfrac{10^{2b}}{10^3} = \dfrac{(10^b)^2}{10^3}

= a2103=a21000\dfrac{a^2}{10^3} = \dfrac{a^2}{1000}.

Hence, 102b - 3 = a21000.\dfrac{a^2}{1000}.

Question 6

Given log10x = a, log10y = b and log10z = c,

(i) write down 102a - 3 in terms of x.

(ii) write down 103b - 1 in terms of y.

(iii) if log10P = 2a + b2\dfrac{b}{2} - 3c, express P in terms of x, y and z.

Answer

(i) Given,

⇒ log10x = a

∴ x = 10a.

Simplifying 102a - 3 we get,

⇒ 102a - 3 = 102a.10-3

= 102a103=(10a)2103\dfrac{10^{2a}}{10^3} = \dfrac{(10^a)^2}{10^3}

= x2103=x21000\dfrac{x^2}{10^3} = \dfrac{x^2}{1000}.

Hence, 102a - 3 = x21000.\dfrac{x^2}{1000}.

(ii) Given,

⇒ log10y = b

∴ y = 10b.

Simplifying 103b - 1 we get,

⇒ 103b - 1 = 103b.10-1

= 103b101=(10b)310\dfrac{10^{3b}}{10^1} = \dfrac{(10^b)^3}{10}

= y310\dfrac{y^3}{10}.

Hence, 103b - 1 = y310.\dfrac{y^3}{10}.

(iii) Given,

log10z = c

⇒ z = 10c.

log10P = 2a + b2\dfrac{b}{2} - 3c

P=102a+b23c=102a.10b2.103c=(10a)2.(10b)12.(10c)3=(x)2.(y)12.(z)3=x2yz3.\Rightarrow P = 10^{2a + \frac{b}{2} - 3c} \\[1em] = 10^{2a}.10^{\frac{b}{2}}.10^{-3c} \\[1em] = (10^a)^2.(10^b)^{\frac{1}{2}}.(10^c)^{-3} \\[1em] = (x)^2.(y)^{\frac{1}{2}}.(z)^{-3} \\[1em] = \dfrac{x^2\sqrt{y}}{z^3}.

Hence, P = x2yz3.\dfrac{x^2\sqrt{y}}{z^3}.

Question 7

If log10 x = a and log10 y = b, find the value of xy.

Answer

Given,

log10x = a

⇒ x = 10a.

log10y = b

⇒ y = 10b

xy = 10a.10b = 10a + b.

Hence, xy = 10a + b.

Question 8

Given log10a = m and log10b = n, express a3b2\dfrac{a^3}{b^2} in terms of m and n.

Answer

Given,

log10a = m

⇒ a = 10m

log10b = n

⇒ b = 10n

a3b2=(10m)3(10n)2=103m102n=103m2n.\Rightarrow \dfrac{a^3}{b^2} = \dfrac{(10^m)^3}{(10^n)^2} \\[1em] = \dfrac{10^{3m}}{10^{2n}} = 10^{3m - 2n}.

Hence, a3b2\dfrac{a^3}{b^2} = 103m - 2n.

Question 9

Given log10x = 2a and log10y = b2\dfrac{b}{2},

(i) write 10a in terms of x.

(ii) write 102b + 1 in terms of y.

(iii) if log10P = 3a - 3b, express P in terms of x and y.

Answer

(i) Given,

log10x = 2a

⇒ x = 102a

⇒ x = (10a)2

⇒ 10a = x\sqrt{x}.

Hence, 10a = x\sqrt{x}.

(ii) Given,

log10y = b2\dfrac{b}{2}

y=10b2y=(10b)12\Rightarrow y = 10^{\dfrac{b}{2}} \\[1em] \Rightarrow y = (10^b)^{\dfrac{1}{2}} \\[1em]

Squaring both sides we get,

⇒ y2 = 10b

Simplifying 102b + 1 we get,

102b + 1 = 102b.10

= (10b)2.10

= (y2)2.10

= 10y4.

Hence, 102b + 1 = 10y4.

(iii) Given,

log10P = 3a - 2b

⇒ P = 103a - 2b

⇒ P = 103a.10-2b

= (10a)3.(10b)-2

=(x)3×(y2)2=(x3)12×1(y2)2=x32y4= (\sqrt{x})^3 \times (y^2)^{-2} \\[1em] = (x^3)^{\dfrac{1}{2}} \times \dfrac{1}{(y^2)^2} \\[1em] = \dfrac{x^{\dfrac{3}{2}}}{y^4}

Hence, P = x32y4\dfrac{x^{\dfrac{3}{2}}}{y^4}.

Question 10

If log2y = x and log3z = x, find 72x in terms of y and z.

Answer

Given,

log2y = x and log3z = x

⇒ y = 2x and z = 3x.

(72)x = (23.32)x

= (2)3x.(3)2x

= (2x)3.(3x)2

= (y)3.(z)2

Hence, (72)x = y3.z2.

Question 11

If log2x = a and log5y = a, write 1002a - 1 in terms of x and y.

Answer

Given,

log2x = a and log5y = a

⇒ x = 2a and y = 5a

1002a - 1 = 1002a.100-1

= (100a)2.100-1

= [(22.52)a]2.100-1

= [(22a).(52a)]2.100-1

= [(2a)2.(5a)2]2.(100)-1

= [x2.y2]2.100-1

= x4y4100\dfrac{x^4y^4}{100}.

Hence, 1002a - 1 = x4y4100\dfrac{x^4y^4}{100}.

Exercise 8.2

Question 1(i)

Simplify the following :

log a3 - log a2

Answer

Given,

⇒ log a3 - log a2

⇒ 3log a - 2log a

⇒ log a.

Hence, log a3 - log a2 = log a

Question 1(ii)

Simplify the following :

log a3 ÷ log a2

Answer

Given,

log a3 ÷ log a2

log a3log a23log a2log a32.\Rightarrow \dfrac{\text{log a}^3}{\text{log a}^2} \\[1em] \Rightarrow \dfrac{3\text{log a}}{2\text{log a}} \\[1em] \Rightarrow \dfrac{3}{2}.

Hence, log a3 ÷ log a2 = 32.\dfrac{3}{2}.

Question 1(iii)

Simplify the following :

log4log2\dfrac{\text{log} 4}{\text{log} 2}

Answer

Given,

log 4log 2log 22log 22 log 2log 22.\Rightarrow \dfrac{\text{log 4}}{\text{log 2}} \\[1em] \Rightarrow \dfrac{\text{log 2}^2}{\text{log 2}} \\[1em] \Rightarrow \dfrac{\text{2 log 2}}{\text{log 2}} \\[1em] \Rightarrow 2.

Hence, log4log2\dfrac{\text{log} 4}{\text{log} 2} = 2.

Question 1(iv)

Simplify the following :

log 8 log 9log 27\dfrac{\text{log 8 log 9}}{\text{log 27}}

Answer

Given,

log 8 log 9log 27log 23log 32log 333log 2. 2log 33log36log 2.log 33log 32log 2=log 22=log 4.\Rightarrow \dfrac{\text{log 8 log 9}}{\text{log 27}} \\[1em] \Rightarrow \dfrac{\text{log 2}^3 \text{log 3}^2}{\text{log 3}^3} \\[1em] \Rightarrow \dfrac{\text{3log 2. 2log 3}}{3\text{log} 3} \\[1em] \Rightarrow \dfrac{\text{6log 2.log 3}}{\text{3log 3}} \\[1em] \Rightarrow 2\text{log 2} = \text{log 2}^2 \\[1em] = \text{log 4}.

Hence, log 8 log 9log 27\dfrac{\text{log 8 log 9}}{\text{log 27}} = log 4.

Question 1(v)

Simplify the following :

log 27log 3\dfrac{\text{log 27}}{\text{log } \sqrt{3}}

Answer

Given,

log 27log 3log 33log 3123log 312log 33126.\Rightarrow \dfrac{\text{log 27}}{\text{log }\sqrt{3}} \\[1em] \Rightarrow \dfrac{\text{log 3}^3}{\text{log 3}^{\dfrac{1}{2}}} \\[1em] \Rightarrow \dfrac{\text{3log 3}}{\dfrac{1}{2}\text{log 3}} \\[1em] \Rightarrow \dfrac{3}{\dfrac{1}{2}} \\[1em] \Rightarrow 6.

Hence, log 27log 3\dfrac{\text{log 27}}{\text{log }\sqrt{3}} = 6.

Question 1(vi)

Simplify the following :

log 9 - log 3 log 27\dfrac{\text{log 9 - log 3}}{\text{ log 27}}

Answer

Given,

log 9 - log 3log 27log 32log 3log 332log 3 - log 33log 3log 33log 313.\Rightarrow \dfrac{\text{log 9 - log 3}}{\text{log 27}} \\[1em] \Rightarrow \dfrac{\text{log 3}^2 - \text{log 3}}{\text{log 3}^3} \\[1em] \Rightarrow \dfrac{\text{2log 3 - log 3}}{\text{3log 3}} \\[1em] \Rightarrow \dfrac{\text{log 3}}{\text{3log 3}} \\[1em] \Rightarrow \dfrac{1}{3}.

Hence, log 9 - log 3log 27=13.\dfrac{\text{log 9 - log 3}}{\text{log 27}} = \dfrac{1}{3}.

Question 2(i)

Evaluate the following:

log(10÷103)(10 ÷ \sqrt[3]{10})

Answer

Given,

log(10÷103)log(10103)log(101013)log(10)113log(10)2323log 1023.\Rightarrow \text{log}(10 ÷ \sqrt[3]{10}) \\[1em] \Rightarrow \text{log}\Big(\dfrac{10}{\sqrt[3]{10}}\Big) \\[1em] \Rightarrow \text{log}\Big(\dfrac{10}{10^{\dfrac{1}{3}}}\Big) \\[1em] \Rightarrow \text{log}(10)^{1 - \dfrac{1}{3}} \\[1em] \Rightarrow \text{log}(10)^{\dfrac{2}{3}} \\[1em] \Rightarrow \dfrac{2}{3}\text{log 10} \\[1em] \Rightarrow \dfrac{2}{3}.

Hence, log(10÷103)=23\text{log}(10 ÷ \sqrt[3]{10}) = \dfrac{2}{3}.

Question 2(ii)

Evaluate the following:

2 + 12\dfrac{1}{2}log (10)-3

Answer

Given,

2+12log(10)32+32log10232×1232=12.\Rightarrow 2 + \dfrac{1}{2}\text{log} (10)^{-3} \\[1em] \Rightarrow 2 + \dfrac{-3}{2}\text{log}10 \\[1em] \Rightarrow 2 - \dfrac{3}{2} \times 1 \\[1em] \Rightarrow 2 - \dfrac{3}{2} = \dfrac{1}{2}.

Hence, 2+12log(10)3=122 + \dfrac{1}{2}\text{log} (10)^{-3} = \dfrac{1}{2}.

Question 2(iii)

Evaluate the following:

2log 5 + log 8 - 12\dfrac{1}{2}log 4

Answer

Given,

2log 5 + log 812log 4log 52+log 812×log 22log 25 + log 812×2log 2log 25 + log 8 - log 2log25×82log 100log102=2log 102×1=2.\Rightarrow \text{2log 5 + log 8} - \dfrac{1}{2}\text{log 4} \\[1em] \Rightarrow \text{log 5}^2 + \text{log 8} - \dfrac{1}{2} \times \text{log 2}^2 \\[1em] \Rightarrow \text{log 25 + log 8} - \dfrac{1}{2} \times 2\text{log 2} \\[1em] \Rightarrow \text{log 25 + log 8 - log 2} \\[1em] \Rightarrow \text{log} \dfrac{25 \times 8}{2} \\[1em] \Rightarrow \text{log 100} \\[1em] \Rightarrow \text{log} 10^2 = 2\text{log 10} \Rightarrow 2 \times 1 = 2.

Hence, 2log 5 + log 812log 4=2.\text{2log 5 + log 8} - \dfrac{1}{2}\text{log 4} = 2.

Question 2(iv)

Evaluate the following:

2log 103 + 3log 10-2 - 13log 53+12log 4\dfrac{1}{3}\text{log 5}^{-3} + \dfrac{1}{2}\text{log 4}

Answer

Given,

2log103+3log10213log 53+12log 42×3log 10+3×2log 1013×(3)log 5+12log 222×3×1+3×(2)×1(1)log 5+12×2×log 266+log 5+log 2log 5 × 2log 101.\Rightarrow 2\text{log} 10^3 + 3\text{log} 10^{-2} - \dfrac{1}{3}\text{log 5}^{-3} + \dfrac{1}{2}\text{log 4} \\[1em] \Rightarrow 2 \times 3\text{log 10} + 3 \times -2\text{log 10} - \dfrac{1}{3} \times (-3) \text{log 5} + \dfrac{1}{2}\text{log 2}^2 \\[1em] \Rightarrow 2 \times 3 \times 1 + 3 \times (-2) \times 1 - (-1)\text{log 5} + \dfrac{1}{2} \times 2 \times \text{log 2} \\[1em] \Rightarrow 6 - 6 + \text{log 5} + \text{log 2} \\[1em] \Rightarrow \text{log 5 × 2} \\[1em] \Rightarrow \text{log 10} \\[1em] 1.

Hence, 2log103+3log10213log 53+12log 42\text{log} 10^3 + 3\text{log} 10^{-2} - \dfrac{1}{3}\text{log 5}^{-3} + \dfrac{1}{2}\text{log 4} = 1.

Question 2(v)

Evaluate the following:

2log 2 + log 5 - 12log 36log130\dfrac{1}{2}\text{log 36} - \text{log}\dfrac{1}{30}

Answer

Given,

2log 2 + log 512log 36 - log1302log 2 + log 512log 62(log 1 - log 30)2log 2 + log 512×2×log 6 - log 1 + log 302log 2+log 5log 60+log (5×6)log 22+log 5 - log 6 + log 5 + log 6log 4 + log 5 + log 5log (4×5×5)log 100=2.\Rightarrow \text{2log 2 + log 5} - \dfrac{1}{2}\text{log 36 - log}\dfrac{1}{30} \\[1em] \Rightarrow \text{2log 2 + log 5} - \dfrac{1}{2} \text{log 6}^2 - \text{(log 1 - log 30)} \\[1em] \Rightarrow \text{2log 2 + log 5} - \dfrac{1}{2} \times 2 \times \text{log 6 - log 1 + log 30} \\[1em] \Rightarrow 2\text{log } 2 + \text{log } 5 - \text{log } 6 - 0 + \text{log } (5 \times 6) \\[1em] \Rightarrow \text{log } 2^2 + \text{log 5 - log 6 + log 5 + log 6} \\[1em] \Rightarrow \text{log 4 + log 5 + log 5} \\[1em] \Rightarrow \text{log } (4 \times 5 \times 5) \\[1em] \Rightarrow \text{log 100} = 2.

Hence, 2log 2 + log 512log 36 - log130\text{2log 2 + log 5} - \dfrac{1}{2}\text{log 36 - log}\dfrac{1}{30} = 2.

Question 2(vi)

Evaluate the following:

2log 5 + log 3 + 3log 2 - 12\dfrac{1}{2} log 36 - 2log 10

Answer

Given,

⇒ 2log 5 + log 3 + 3log 2 - 12\dfrac{1}{2} log 36 - 2log 10

⇒ log 52 + log 3 + log 23 - 12\dfrac{1}{2} log 62 - log 102

⇒ log 25 + log 3 + log 8 - 12×2\dfrac{1}{2} \times 2 log 6 - log 100

⇒ log 25 + log 3 + log 8 - log 6 - log 100

⇒ log 25×3×86×100\dfrac{25 \times 3 \times 8}{6 \times 100}

⇒ log 600600\dfrac{600}{600}

⇒ log 1

⇒ 0.

Hence, 2log 5 + log 3 + 3log 2 - 12\dfrac{1}{2} log 36 - 2log 10 = 0.

Question 2(vii)

Evaluate the following:

log 2 + 16log 1615+12log 2524+7log 8180\dfrac{16}{15} + 12\text{log } \dfrac{25}{24} + 7\text{log }\dfrac{81}{80}

Answer

Given,

log 2 + 16log 1615+12log 2524+7log 8180log 2 + 16(log 16 - log 15) + 12(log 25 - log 24) + 7(log 81 - log 80)log 2 + 16log 16 - 16log 15 + 12log 25 - 12log 24 + 7log 81 - 7log 80log 2 + 16log 2416log 3.5 + 12log 5212log 23.3+7log 347log 24.5log 2 + 16.4log 2 - 16(log 3 + log 5) + 12.2log 5 - 12(log 23+log 3) + 7.4log 37(log 24+log 5)log 2 + 64log 2 - 16log 3 - 16log 5 + 24log 5 - 12.3log 2 - 12log 3 + 28log 3 - 28log 2 - 7log 565log 2 - 36log 2 - 28log 2 - 16log 3 - 12log 3 + 28log 3 - 16log 5 + 24log 5 - 7log 5log 2 + log 5log 2.5log 10=1.\Rightarrow \text{log 2 + 16log }\dfrac{16}{15} + 12\text{log } \dfrac{25}{24} + 7\text{log }\dfrac{81}{80} \\[1em] \Rightarrow \text{log 2 + 16(log 16 - log 15) + 12(log 25 - log 24) + 7(log 81 - log 80)} \\[1em] \Rightarrow \text{log 2 + 16log 16 - 16log 15 + 12log 25 - 12log 24 + 7log 81 - 7log 80} \\[1em] \Rightarrow \text{log 2 + 16log 2}^4 - \text{16log 3.5 + 12log 5}^2 - \text{12log 2}^3.3 + \text{7log 3}^4 - \text{7log 2}^4.5 \\[1em] \Rightarrow \text{log 2 + 16.4log 2 - 16(log 3 + log 5) + 12.2log 5 - 12(log 2}^3 + \text{log 3) + 7.4log 3} - \text{7(log 2}^4 + \text{log 5)} \\[1em] \Rightarrow \text{log 2 + 64log 2 - 16log 3 - 16log 5 + 24log 5 - 12.3log 2 - 12log 3 + 28log 3 - 28log 2 - 7log 5} \\[1em] \Rightarrow \text{65log 2 - 36log 2 - 28log 2 - 16log 3 - 12log 3 + 28log 3 - 16log 5 + 24log 5 - 7log 5} \\[1em] \Rightarrow \text{log 2 + log 5} \\[1em] \Rightarrow \text{log 2.5} \\[1em] \Rightarrow \text{log 10} = 1.

Hence, log 2 + 16log 1615+12log 2524+7log 8180=1\text{log 2 + 16log }\dfrac{16}{15} + 12\text{log } \dfrac{25}{24} + 7\text{log }\dfrac{81}{80} = 1.

Question 2(viii)

Evaluate the following:

2log105 + log108 - 12\dfrac{1}{2}log104

Answer

Given,

⇒ 2log105 + log108 - 12\dfrac{1}{2}log104

⇒ log1052 + log108 - log10412\text{log}_{10}4^{\dfrac{1}{2}}

⇒ log1025 + log108 - log102

⇒ log1025×82\dfrac{25 \times 8}{2}

⇒ log10100

⇒ log10102

⇒ 2log1010

⇒ 2.

Hence, 2log105 + log108 - 12\dfrac{1}{2}log104 = 2.

Question 3(i)

Express the following as a single logarithm:

2log 3 - 12\dfrac{1}{2}log 16 + log 12

Answer

Given,

2log 312log 24+log 22.32log 312×4×log 2+log 22+log 32log 32log 2+2log 2+log 32log 3 + log 33log 3log 33=log 27.\Rightarrow \text{2log 3} - \dfrac{1}{2}\text{log 2}^4 + \text{log 2}^2.3 \\[1em] \Rightarrow \text{2log 3} - \dfrac{1}{2} \times 4 \times \text{log 2} + \text{log 2}^2 + \text{log 3} \\[1em] \Rightarrow \text{2log 3} - 2\text{log 2} + 2\text{log 2} + \text{log 3} \\[1em] \Rightarrow \text{2log 3 + log 3} \\[1em] \Rightarrow \text{3log 3} \\[1em] \Rightarrow \text{log 3}^3 = \text{log 27}.

Hence, 2log 3 - 12\dfrac{1}{2}log 16 + log 12 = log 27.

Question 3(ii)

Express the following as a single logarithm:

2log105 - log102 + 3log104 + 1

Answer

Given,

⇒ 2log105 - log102 + 3log104 + 1

⇒ log1052 - log102 + log1043 + log1010

⇒ log1025 + log1064 + log1010 - log102

⇒ log1025×64×102\dfrac{25 \times 64 \times 10}{2}

⇒ log10160002=log108000\dfrac{16000}{2} = \text{log}_{10}8000.

Hence, 2log105 - log102 + 3log104 + 1 = log108000.

Question 3(iii)

Express the following as a single logarithm:

12\dfrac{1}{2}log 36 + 2log 8 - log 1.5

Answer

Given,

12log 36 + 2log 8 - log 1.512log 62+log 82log151012×2×log 6 + log 64 - (log 15 - log 10)log 6 + log 64 - log 15 + log 10log6×64×1015log 256.\Rightarrow \dfrac{1}{2}\text{log 36 + 2log 8 - log 1.5} \\[1em] \Rightarrow \dfrac{1}{2}\text{log 6}^2 + \text{log 8}^2 - \text{log} \dfrac{15}{10} \\[1em] \Rightarrow \dfrac{1}{2} \times 2 \times \text{log 6 + log 64 - (log 15 - log 10)} \\[1em] \Rightarrow \text{log 6 + log 64 - log 15 + log 10} \\[1em] \Rightarrow \text{log} \dfrac{6 \times 64 \times 10}{15} \\[1em] \Rightarrow \text{log 256}.

Hence, 12log 36 + 2log 8 - log 1.5\dfrac{1}{2}\text{log 36 + 2log 8 - log 1.5} = log 256.

Question 3(vi)

Express the following as a single logarithm:

12\dfrac{1}{2}log 25 - 2log 3 + 1

Answer

Given,

12log 25 - 2log 3 + 112log 522log 3 + log 1012×2log 5log 32+log 10log 5 - log 9 + log 10log 5×109log 509.\Rightarrow \dfrac{1}{2}\text{log 25 - 2log 3 + 1} \\[1em] \Rightarrow \dfrac{1}{2}\text{log 5}^2 - \text{2log 3 + log 10} \\[1em] \Rightarrow \dfrac{1}{2} \times 2\text{log 5} - \text{log 3}^2 + \text{log 10} \\[1em] \Rightarrow \text{log 5 - log 9 + log 10} \\[1em] \Rightarrow \text{log }\dfrac{5 \times 10}{9} \\[1em] \Rightarrow \text{log }\dfrac{50}{9}.

Hence, 12log 25 - 2log 3 + 1=log 509.\dfrac{1}{2}\text{log 25 - 2log 3 + 1} = \text{log }\dfrac{50}{9}.

Question 3(v)

Express the following as a single logarithm:

12\dfrac{1}{2}log 9 + 2log 3 - log 6 + log 2 - 2

Answer

Given,

12log 9 + 2log 3 - log 6 + log 2 - 212log 32+log 32log 6 + log 2 - 2log 1012×2×log 3 + log 9 - log 6 + log 2 - log 102log 3 + log 9 + log 2 - log 6 - log 100log 3×9×26×100log 9100.\Rightarrow \dfrac{1}{2}\text{log 9 + 2log 3 - log 6 + log 2 - 2} \\[1em] \Rightarrow \dfrac{1}{2}\text{log 3}^2 + \text{log 3}^2 - \text{log 6 + log 2 - 2log 10} \\[1em] \Rightarrow \dfrac{1}{2} \times 2 \times \text{log 3 + log 9 - log 6 + log 2 - log 10}^2 \\[1em] \Rightarrow \text{log 3 + log 9 + log 2 - log 6 - log 100} \\[1em] \Rightarrow \text{log }\dfrac{3 \times 9 \times 2}{6 \times 100} \\[1em] \Rightarrow \text{log } \dfrac{9}{100}.

Hence, 12log 9 + 2log 3 - log 6 + log 2 - 2=log 9100\dfrac{1}{2}\text{log 9 + 2log 3 - log 6 + log 2 - 2} = \text{log }\dfrac{9}{100}.

Question 4(i)

Prove the following:

log104 ÷ log102 = log39

Answer

Given,

log104 ÷ log102 = log39

Simplifying L.H.S. we get,

⇒ log104 ÷ log102 = log1022 ÷ log102

= 2log102log102\dfrac{2\text{log}_{10}2}{\text{log}_{10}2}

= 2.

Simplifying R.H.S. we get,

⇒ log39 = log332

= 2log33

= 2.

Since, L.H.S. = R.H.S.

Hence, proved that log104 ÷ log102 = log39.

Question 4(ii)

Prove the following:

log1025+ log104 = log525

Answer

Given,

log1025+ log104 = log525

Simplifying L.H.S. we get,

⇒ log1025+ log104 = log10(25 × 4)

= log10100

= log10102

= 2log1010 = 2.

Simplifying R.H.S. we get,

⇒ log525 = log552

= 2log55

= 2(1) = 2.

Since, L.H.S. = R.H.S.,

Hence, proved that log1025+ log104 = log525.

Question 5

If x = (100)a, y = (10000)b and z = (10)c, express log 10yx2z3\dfrac{10\sqrt{y}}{x^2z^3} in terms of a, b, c.

Answer

Given,

x = (100)a = (102)a = 102a,

y = (10000)b = (104)b = 104b,

z = (10)c.

log 10yx2z3log 10ylog x2.z3log 10 + log y(log x2+log z3)1+log y122log x - 3log z1+12log 104b2 log 102a3 log 10c1+12×4b×log 10 - 4a.log 10 - 3c.log 101+2b(1)4a(1)3c(1)1+2b4a3c.\Rightarrow \text{log }\dfrac{10\sqrt{y}}{x^2z^3} \\[1em] \Rightarrow \text{log 10}\sqrt{y} - \text{log x}^2.z^3 \\[1em] \Rightarrow \text{log 10 + log }\sqrt{y} - \text{(log x}^2 + \text{log z}^3) \\[1em] \Rightarrow 1 + \text{log y}^{\dfrac{1}{2}} - \text{2log x - 3log z} \\[1em] \Rightarrow 1 + \dfrac{1}{2}\text{log 10}^{4b} - \text{2 log 10}^{2a} - \text{3 log 10}^c \\[1em] \Rightarrow 1 + \dfrac{1}{2} \times 4b \times \text{log 10 - 4a.log 10 - 3c.log 10} \\[1em] \Rightarrow 1 + 2b(1) - 4a(1) - 3c(1) \\[1em] \Rightarrow 1 + 2b - 4a - 3c.

Hence, log 10yx2z3\dfrac{10\sqrt{y}}{x^2z^3} = 1 - 4a + 2b - 3c.

Question 6

If a = log10x, find the following in terms of a:

(i) x

(ii) log10x25\sqrt[5]{x^2}

(iii) log10 3x

Answer

(i) Given,

a = log10x

⇒ x = 10a.

(ii) Given,

log10(x2)1515×2log10x15×2log1010a2a5log10102a5×12a5.\Rightarrow \text{log}_{10}(x^2)^{\dfrac{1}{5}} \\[1em] \Rightarrow \dfrac{1}{5} \times 2\text{log}_{10}x \\[1em] \Rightarrow \dfrac{1}{5} \times 2\text{log}_{10}10^a \\[1em] \Rightarrow \dfrac{2a}{5}\text{log}_{10}10 \\[1em] \Rightarrow \dfrac{2a}{5} \times 1 \\[1em] \Rightarrow \dfrac{2a}{5}.

Hence, log10x25=2a5\sqrt[5]{x^2} = \dfrac{2a}{5}.

(iii) Given,

a = log10 x

Now,

⇒ log10 3x

⇒ log10 (3 × x)

⇒ log10 3 + log10 x

⇒ log10 3 + a.

Hence, log10 3x = log10 3 + a.

Question 7

If a = log23\dfrac{2}{3}, b = log35\dfrac{3}{5} and c = 2log52\sqrt{\dfrac{5}{2}}, find the value of

(i) a + b + c

(ii) 5a + b + c

Answer

(i) Given,

a+b+c=log 23+log 35+2log 52=log 2 - log 3 + log 3 - log 5+2×log(52)12=log 2log 5+2×12×(log 5 - log 2)=log 2 - log 5 + log 5 - log 2=0.\Rightarrow a + b + c = \text{log }\dfrac{2}{3} + \text{log }\dfrac{3}{5} + 2\text{log }\sqrt{\dfrac{5}{2}} \\[1em] = \text{log 2 - log 3 + log 3 - log 5} + 2 \times \text{log}\Big(\dfrac{5}{2}\Big)^{\dfrac{1}{2}} \\[1em] = \text{log } 2 - \text{log } 5 + 2 \times \dfrac{1}{2} \times \text{(log 5 - log 2)} \\[1em] = \text{log 2 - log 5 + log 5 - log 2} \\[1em] = 0.

Hence, a + b + c = 0.

(ii) Given,

⇒ 5a + b + c = 50 = 1.

Hence, 5a + b + c = 1.

Question 8

If x = log 35, y = log 54 and z = 2log 32\dfrac{3}{5}, \text{ y = log }\dfrac{5}{4}\text{ and z = 2log }\dfrac{\sqrt{3}}{2}, find the values of

(i) x + y - z

(ii) 3x + y - z

Answer

Given,

x+yz=log 35+log 542log 32=log 3 - log 5 + log 5 - log 4 - 2(log 3log 2)=log 3 - log 4 - 2log 312+2log 2=log 3 - log 222×12log 3 + 2log 2=log 3 - 2log 2 - log 3 + 2log 2=0.\Rightarrow x + y - z = \text{log }\dfrac{3}{5} + \text{log }\dfrac{5}{4} - 2\text{log }\dfrac{\sqrt{3}}{2} \\[1em] = \text{log 3 - log 5 + log 5 - log 4 - 2(log }\sqrt{3} - \text{log 2)} \\[1em] = \text{log 3 - log 4 - 2log 3}^{\dfrac{1}{2}} + \text{2log 2} \\[1em] = \text{log 3 - log 2}^2 - 2 \times \dfrac{1}{2}\text{log 3 + 2log 2} \\[1em] = \text{log 3 - 2log 2 - log 3 + 2log 2} \\[1em] = 0.

Hence, x + y - z = 0.

(ii) Given,

3x + y - z = 30 = 1.

Hence, 3x + y - z = 1.

Question 9

If x = log1012, y = log42 × log109 and z = log100.4, find the values of

(i) x - y - z

(ii) 7x - y - z

Answer

(i) Given,

x - y - z = log10 12 - log4 2 × log10 9 - log10 0.4

=log10 3.4log4 (4)12×log10 32log10 410=log10 3+log10 412log44 ×2log10 3(log10 4log10 10)=log10 3+log10 41×log10 3log10 4+log10 10=log10 3log10 3+1=1.= \text{log}_{10} \space 3.4 - \text{log}_{4} \space (4)^{\dfrac{1}{2}} \times \text{log}_{10} \space 3^2 - \text{log}_{10} \space \dfrac{4}{10} \\[1em] = \text{log}_{10} \space 3 + \text{log}_{10} \space 4 - \dfrac{1}{2}\text{log}_{4}4 \space \times 2\text{log}_{10} \space 3 - (\text{log}_{10} \space 4 - \text{log}_{10} \space 10) \\[1em] = \text{log}_{10} \space 3 + \text{log}_{10} \space 4 - 1 \times \text{log}_{10} \space 3 - \text{log}_{10} \space 4 + \text{log}_{10} \space 10 \\[1em] = \text{log}_{10} \space 3 - \text{log}_{10} \space 3 + 1 \\[1em] = 1.

Hence, x - y - z = 1.

(ii) Given,

7x - y - z = 71 = 7.

Hence, 7x - y - z = 1.

Question 10

If log V + log 3 = log π + log 4 + 3log r, find V in terms of other quantities.

Answer

Given,

log V + log 3 = log π + log 4 + 3log r

⇒ log V = log π + log 4 + 3log r - log 3

⇒ log V = log π + log 4 + log r3 - log 3

⇒ log V = log π4r33\dfrac{π4r^3}{3}

⇒ V = 43πr3\dfrac{4}{3}πr^3.

Question 11

Given 3(log 5 - log 3) - (log 5 - 2log 6) = 2 - log n, find n.

Answer

Given,

3(log 5 - log 3) - (log 5 - 2log 6) = 2 - log n

⇒ 3log 5 - 3log 3 - log 5 + 2log 6 = 2 - log n

⇒ 2log 5 - log 33 + log 62 = 2 - log n

⇒ log 52 - log 27 + log 36 = 2 - log n

⇒ log 25 - log 27 + log 36 = 2log 10 - log n

⇒ log25×3627\dfrac{25 \times 36}{27} = log 102 - log n

⇒ log1003\dfrac{100}{3} = log 100 - log n

⇒ log 100 - log 3 = log 100 - log n

⇒ log n = log 3

⇒ n = 3.

Hence, n = 3.

Question 12

Given that log10y + 2log10x = 2, express y in terms of x.

Answer

Given,

log10y + 2log10x = 2

⇒ log10y + log10x2 = 2

⇒ log10yx2 = 2log1010

⇒ log10yx2 = log10102

⇒ log10yx2 = log10100

⇒ yx2 = 100

⇒ y = 100x2.\dfrac{100}{x^2}.

Hence, y = 100x2\dfrac{100}{x^2}.

Question 13

Express log102 + 1 in the form of log10x.

Answer

Given,

⇒ log102 + 1

⇒ log102 + log1010

⇒ log102 × 10

⇒ log1020

Hence, log102 + 1 = log1020.

Question 14

If a2 = log10x, b3 = log10y and a22b33\dfrac{a^2}{2} - \dfrac{b^3}{3} = log10z, express z in terms of x and y.

Answer

Given,

a2 = log10x

b3 = log10y

Substituting above values in a22b33=log10z\dfrac{a^2}{2} - \dfrac{b^3}{3} = \text{log}_{10}z we get,

log10x2log10y3=log10z3log10x2log10y6=log10zlog10x3log10y26=log10z16log10x3y2=log10zlog10(x3y2)16=log10zlog10(x12y13)=log10zlog10xy3=log10zz=xy3.\Rightarrow \dfrac{\text{log}_{10}x}{2} - \dfrac{\text{log}_{10}y}{3} = \text{log}_{10}z \\[1em] \Rightarrow \dfrac{3\text{log}_{10}x - 2\text{log}_{10}y}{6} = \text{log}_{10}z \\[1em] \Rightarrow \dfrac{\text{log}_{10}x^3 - \text{log}_{10}y^2}{6} = \text{log}_{10}z \\[1em] \Rightarrow \dfrac{1}{6}\text{log}_{10}\dfrac{x^3}{y^2} = \text{log}_{10}z \\[1em] \Rightarrow \text{log}_{10}\Big(\dfrac{x^3}{y^2}\Big)^{\dfrac{1}{6}} = \text{log}_{10}z \\[1em] \Rightarrow \text{log}_{10}\Big(\dfrac{x^\dfrac{1}{2}}{y^\dfrac{1}{3}}\Big) = \text{log}_{10}z \\[1em] \Rightarrow \text{log}_{10}\dfrac{\sqrt{x}}{\sqrt[3]y} = \text{log}_{10}z \\[1em] \Rightarrow z = \dfrac{\sqrt{x}}{\sqrt[3]y}.

Hence, z=xy3.z = \dfrac{\sqrt{x}}{\sqrt[3]y}.

Question 15

Given that log m = x + y and log n = x - y, express the value of log m2n in terms of x and y.

Answer

Given,

log m = x + y .......(i)

log n = x - y ........(ii)

Multiplying (i) by 2 we get,

2log m = log m2 = 2x + 2y ......(iii)

Adding (ii) and (iii) we get,

⇒ log m2 + log n = 2x + 2y + (x - y)

⇒ log m2n = 3x + y.

Hence, log m2n = 3x + y.

Question 16

Given that log x = m + n and log y = m - n, express the value of log(10xy2)\Big(\dfrac{10x}{y^2}\Big) in terms of m and n.

Answer

Given,

log (10xy2)=log 10xlog y2\Rightarrow \text{log }\Big(\dfrac{10x}{y^2}\Big) = \text{log }10x - \text{log } y^2

= log 10 + log x - 2log y

= 1 + m + n - 2(m - n)

= 1 + m + n - 2m + 2n

= 1 - m + 3n.

Hence, log(10xy2)\Big(\dfrac{10x}{y^2}\Big) = 1 - m + 3n.

Question 17

If log x2=log y3\dfrac{\text{log x}}{2} = \dfrac{\text{log y}}{3}, find the value of y4x6\dfrac{y^4}{x^6}.

Answer

Given,

log x2=log y3\dfrac{\text{log x}}{2} = \dfrac{\text{log y}}{3}

⇒ 3log x = 2log y

⇒ log x3 = log y2

⇒ x3 = y2

Squaring both sides we get,

⇒ x6 = y4

x6y4=1\dfrac{x^6}{y^4} = 1.

Hence, x6y4=1\dfrac{x^6}{y^4} = 1.

Question 18(i)

Solve for x:

log x + log 5 = 2log 3

Answer

Given,

⇒ log x + log 5 = 2log 3

⇒ log x = log 32 - log 5

⇒ log x = log 9 - log 5

⇒ log x = log 95\dfrac{9}{5}

⇒ x = 95\dfrac{9}{5}.

Hence, x=95x = \dfrac{9}{5}.

Question 18(ii)

Solve for x:

log3x - log32 = 1

Answer

Given,

⇒ log3x - log32 = 1

log3x2=log33\text{log}_3 \dfrac{x}{2} = \text{log}_3 3

x2=3\dfrac{x}{2} = 3

⇒ x = 6.

Hence, x = 6.

Question 18(iii)

Solve for x:

x = log 125log 25\dfrac{\text{log 125}}{\text{log 25}}

Answer

Given,

x=log 125log 25x=log 53log 52x=3log 52log 5x=32.\Rightarrow x = \dfrac{\text{log 125}}{\text{log 25}} \\[1em] \Rightarrow x = \dfrac{\text{log 5}^3}{\text{log 5}^2} \\[1em] \Rightarrow x = \dfrac{\text{3log 5}}{\text{2log 5}} \\[1em] \Rightarrow x = \dfrac{3}{2}.

Hence, x = 32\dfrac{3}{2}.

Question 18(iv)

Solve for x:

log 8log 2×log 3log3=2logx\dfrac{\text{log 8}}{\text{log 2}} \times \dfrac{\text{log 3}}{\text{log}\sqrt{3}} = 2\text{log} x

Answer

Given,

log 8log 2×log 3log3=2logxlog 23log 2×log 3log312=2logx3log 2log 2×log 312log 3=2 log x3×2=2log xlog x=62log x=3x=103=1000.\Rightarrow \dfrac{\text{log 8}}{\text{log 2}} \times \dfrac{\text{log 3}}{log\sqrt{3}} = 2log x \\[1em] \Rightarrow \dfrac{\text{log 2}^3}{\text{log 2}} \times \dfrac{\text{log 3}}{\text{log} 3^{\dfrac{1}{2}}} = 2log x \\[1em] \Rightarrow \dfrac{\text{3log 2}}{\text{log 2}} \times \dfrac{\text{log 3}}{\dfrac{1}{2}\text{log 3}} = \text{2 log x} \\[1em] \Rightarrow 3 \times 2 = 2\text{log } x \\[1em] \Rightarrow \text{log } x = \dfrac{6}{2} \\[1em] \Rightarrow \text{log } x = 3 \\[1em] \Rightarrow x = 10^3 = 1000.

Hence, x = 1000.

Question 19

Given 2log10x + 1 = log10250, find

(i) x

(ii) log102x

Answer

(i) Given,

2log10x + 1 = log10250

⇒ log10x2 + log1010 = log10250

⇒ log10x2 = log10250 - log1010

⇒ log10x2 = log1025010\text{log}_{10}\dfrac{250}{10}

⇒ log10x2 = log1025

⇒ x2 = 25

⇒ x = 5.

Hence, x = 5.

(ii) Given,

log102x

⇒ log102(5) = log1010 = 1.

Hence, log102x = 1.

Question 20

If log xlog 5=log y2log 2=log 9log13\dfrac{\text{log x}}{\text{log 5}} = \dfrac{\text{log y}^2}{\text{log 2}} = \dfrac{\text{log 9}}{\text{log}\dfrac{1}{3}}, find x and y.

Answer

Given,

log xlog 5=log y2log 2=log 9log13\dfrac{\text{log x}}{\text{log 5}} = \dfrac{\text{log y}^2}{\text{log 2}} = \dfrac{\text{log 9}}{\text{log}\dfrac{1}{3}}

Considering,

log xlog 5=log 9log13log x=log 9 × log 5log13log x=log 9 × log 5log 1 - log 3log x=log 32×log 50 - log 3log x=2log 3 × log 5-log 3log x=-2log 5log x=log 52x=52=125.\Rightarrow \dfrac{\text{log x}}{\text{log 5}} = \dfrac{\text{log 9}}{\text{log}\dfrac{1}{3}} \\[1em] \Rightarrow \text{log x} = \dfrac{\text{log 9 × log 5}}{\text{log}\dfrac{1}{3}} \\[1em] \Rightarrow \text{log x} = \dfrac{\text{log 9 × log 5}}{\text{log 1 - log 3}} \\[1em] \Rightarrow \text{log x} = \dfrac{\text{log 3}^2 × \text{log } 5}{\text{0 - log 3}} \\[1em] \Rightarrow \text{log x} = \dfrac{\text{2log 3 × log 5}}{\text{-log 3}} \\[1em] \Rightarrow \text{log x} = \text{-2log 5} \\[1em] \Rightarrow \text{log x} = \text{log 5}^{-2} \\[1em] \Rightarrow x = 5^{-2} = \dfrac{1}{25}.

Considering,

log y2log 2=log 9log13log y2=log 9×log 2log 1 - log 3log y2=log 32×log 20 - log 3log y2=2log 3×log 2-log 3log y2=-2log 2log y2=log 22y2=22y=122=12.\Rightarrow \dfrac{\text{log y}^2}{\text{log 2}} = \dfrac{\text{log 9}}{\text{log}\dfrac{1}{3}} \\[1em] \Rightarrow \text{log y}^2 = \dfrac{\text{log 9} \times \text{log 2}}{\text{log 1 - log 3}} \\[1em] \Rightarrow \text{log y}^2 = \dfrac{\text{log 3}^2 \times \text{log 2}}{\text{0 - log 3}} \\[1em] \Rightarrow \text{log y}^2 = \dfrac{\text{2log 3} \times \text{log 2}}{\text{-log 3}} \\[1em] \Rightarrow \text{log y}^2 = \text{-2log 2} \\[1em] \Rightarrow \text{log y}^2 = \text{log 2}^{-2} \\[1em] \Rightarrow y^2 = 2^{-2} \\[1em] \Rightarrow y = \sqrt{\dfrac{1}{2^2}} = \dfrac{1}{2}.

Hence, x=125and y=12.x = \dfrac{1}{25} \text{and y} = \dfrac{1}{2}.

Question 21(i)

Prove the following:

3log 4 = 4log 3

Answer

Given,

3log 4 = 4log 3

Taking log on both sides we get,

⇒ log 3log 4 = log 4log 3

⇒ log 4.log 3 = log 3.log 4

Since, L.H.S. = R.H.S.,

Hence, proved that 3log 4 = 4log 3.

Question 21(ii)

Prove the following:

27log 2 = 8log 3

Answer

Given,

27log 2 = 8log 3

Taking log on both sides we get,

⇒ log 27log 2 = log 8log 3

⇒ log 2.log 27 = log 3.log 8

⇒ log 2.log 33 = log 3.log 23

⇒ 3.log 2.log 3 = 3log 3.log 2

Since, L.H.S. = R.H.S. hence proved,

Hence, proved that 27log 2 = 8log 3.

Question 22(i)

Solve the following equation:

log(2x + 3) = log 7

Answer

Given,

⇒ log(2x + 3) = log 7

⇒ 2x + 3 = 7

⇒ 2x = 4

⇒ x = 2.

Hence, x = 2.

Question 22(ii)

Solve the following equation:

log(x + 1) + log(x - 1) = log 24

Answer

Given,

⇒ log(x + 1) + log(x - 1) = log 24

⇒ log((x + 1)(x - 1)) = log 24

⇒ log(x2 - 1) = log 24

⇒ x2 - 1 = 24

⇒ x2 = 25

⇒ x = 5.

Hence, x = 5.

Question 22(iii)

Solve the following equation:

log(10x + 5) - log(x - 4) = 2

Answer

Given,

log(10x + 5) - log(x - 4) = 2

log(10x+5)log(x4)=2log 10log10x+5x4=log 10210x+5x4=10010x+5=100(x4)10x+5=100x400100x10x=40590x=405x=40590x=4.5\Rightarrow \text{log}(10x + 5) - \text{log}(x - 4) = 2\text{log } 10 \\[1em] \Rightarrow \text{log}\dfrac{10x + 5}{x - 4} = \text{log } 10^2 \\[1em] \Rightarrow \dfrac{10x + 5}{x - 4} = 100 \\[1em] \Rightarrow 10x + 5 = 100(x - 4) \\[1em] \Rightarrow 10x + 5 = 100x - 400 \\[1em] \Rightarrow 100x - 10x = 405 \\[1em] \Rightarrow 90x = 405 \\[1em] \Rightarrow x = \dfrac{405}{90} \\[1em] \Rightarrow x = 4.5

Hence, x = 4.5

Question 22(iv)

Solve the following equation:

log105 + log10(5x + 1) = log10(x + 5) + 1

Answer

Given,

⇒ log105 + log10(5x + 1) = log10(x + 5) + 1

⇒ log105(5x + 1) = log10(x + 5) + log1010

⇒ log10(25x + 5) = log1010(x + 5)

⇒ log10(25x + 5) = log10(10x + 50)

⇒ 25x + 5 = 10x + 50

⇒ 25x - 10x = 50 - 5

⇒ 15x = 45

⇒ x = 3.

Hence, x = 3.

Question 22(v)

Solve the following equation:

log(4y - 3) = log(2y + 1) - log 3

Answer

Given,

⇒ log(4y - 3) = log(2y + 1) - log 3

log(4y3)=log2y+13\text{log}(4y - 3) = \text{log}\dfrac{2y + 1}{3}

2y+13=4y3\dfrac{2y + 1}{3} = 4y - 3

⇒ 2y + 1 = 3(4y - 3)

⇒ 2y + 1 = 12y - 9

⇒ 12y - 2y = 1 + 9

⇒ 10y = 10

⇒ y = 1.

Hence, y = 1.

Question 22(vi)

Solve the following equation:

log10(x + 2) + log10(x - 2) = log103 + 3log104

Answer

Given,

⇒ log10 (x + 2) + log10 (x - 2) = log10 3 + 3log10 4

⇒ log10 (x + 2)(x - 2) = log10 3 + log10 43

⇒ log10 (x2 - 4) = log10 3 + log10 64

⇒ log10 (x2 - 4) = log10 (3 × 64)

⇒ log10 (x2 - 4) = log10 192

⇒ x2 - 4 = 192

⇒ x2 = 196

⇒ x = 196\sqrt{196} = 14.

Hence, x = 14.

Question 22(vii)

Solve the following equation:

log(3x + 2) + log(3x - 2) = 5log 2

Answer

Given,

⇒ log(3x + 2) + log(3x - 2) = 5log 2

⇒ log(3x + 2)(3x - 2) = log 25

⇒ log(9x2 - 4) = log 32

⇒ 9x2 - 4 = 32

⇒ 9x2 = 36

⇒ x2 = 4

⇒ x = 2.

Hence, x = 2.

Question 23

Solve for x: log3(x + 1) - 1 = 3 + log3(x - 1)

Answer

Given,

log3(x + 1) - 1 = 3 + log3(x - 1)

Since log33 = 1, the above equation can be written as

⇒ log3(x + 1) - log33 = 3log33 + log3(x - 1)

⇒ log3(x + 1) - log33 = log333 + log3(x - 1)

log3(x+1)3=log3 [33×(x1)]\text{log}_3\dfrac{(x + 1)}{3} = \text{log}_3\space[3^3 \times (x - 1)]

log3(x+1)3=log3 [27(x1)]\text{log}_3\dfrac{(x + 1)}{3} = \text{log}_3\space[27(x - 1)]

x+13=27(x1)\dfrac{x + 1}{3} = 27(x - 1)

⇒ x + 1 = 81(x - 1)

⇒ x + 1 = 81x - 81

⇒ 81x - x = 1 + 81

⇒ 80x = 82

⇒ x = 8280=4140=1140.\dfrac{82}{80} = \dfrac{41}{40} = 1\dfrac{1}{40}.

Hence, x = 11401\dfrac{1}{40}.

Question 24

Solve for x: 5log x + 3log x = 3log x + 1 - 5log x - 1.

Answer

Given,

5log x + 3log x = 3log x + 1 - 5log x - 1

⇒ 5log x + 3log x = 3log x.31 - 5log x.5-1

⇒ 5log x + 5log x.5-1 = 3log x.31 - 3log x

⇒ 5log x(1 + 5-1) = 3log x(3 - 1)

⇒ 5log x(1+15)\Big(1 + \dfrac{1}{5}\Big) = 2.3log x

⇒ 5log x.65\dfrac{6}{5} = 2.3log x

5log x3log x=5×26(53)log x=53log x=1log x=log 10x=10.\Rightarrow \dfrac{5^{\text{log } x}}{3^{\text{log } x}} = \dfrac{5 \times 2}{6} \\[1em] \Rightarrow \Big(\dfrac{5}{3}\Big)^{\text{log } x} = \dfrac{5}{3} \\[1em] \Rightarrow \text{log } x = 1 \\[1em] \Rightarrow \text{log } x = \text{log } 10 \\[1em] \Rightarrow x = 10.

Hence, x = 10.

Question 25

If logxy2=12\dfrac{x - y}{2} = \dfrac{1}{2}(log x + log y), prove that x2 + y2 = 6xy.

Answer

Given,

logxy2=12(log x + log y)2logxy2=log xy(xy2)2=xy(xy)2=4xyx2+y22xy=4xyx2+y2=6xy.\Rightarrow \text{log}\dfrac{x - y}{2} = \dfrac{1}{2}(\text{log x + log y}) \\[1em] \Rightarrow 2\text{log}\dfrac{x - y}{2} = \text{log xy} \\[1em] \Rightarrow \Big(\dfrac{x - y}{2}\Big)^2 = xy \\[1em] \Rightarrow (x - y)^2 = 4xy \\[1em] \Rightarrow x^2 + y^2 - 2xy = 4xy \\[1em] \Rightarrow x^2 + y^2 = 6xy.

Hence, proved that x2 + y2 = 6xy.

Question 26

If x2 + y2 = 23xy, prove that logx+y5=12\dfrac{x + y}{5} = \dfrac{1}{2}(log x + log y).

Answer

Given,

x2 + y2 = 23xy

Above equation can be written as,

x2+y2=25xy2xyx2+y2+2xy=25xyx2+y2+2xy25=xy(x+y5)2=xy\Rightarrow x^2 + y^2 = 25xy - 2xy \\[1em] \Rightarrow x^2 + y^2 + 2xy = 25xy \\[1em] \Rightarrow \dfrac{x^2 + y^2 + 2xy}{25} = xy \\[1em] \Rightarrow \Big(\dfrac{x + y}{5}\Big)^2 = xy

Taking log on both sides we get,

log (x+y5)2=log xy2log x+y5=log x + log ylog x+y5=12(log x + log y)\Rightarrow \text{log }\Big(\dfrac{x + y}{5}\Big)^2 = \text{log }xy \\[1em] \Rightarrow 2\text{log }\dfrac{x + y}{5} = \text{log x + log y} \\[1em] \Rightarrow \text{log }\dfrac{x + y}{5} = \dfrac{1}{2}(\text{log x + log y}) \\[1em]

Hence, proved that logx+y5=12(log x + log y)\text{log}\dfrac{x + y}{5} = \dfrac{1}{2}(\text{log x + log y}).

Question 27

If p = log10 20 and q = log10 25, find the value of x if

2log10 (x + 1) = 2p - q

Answer

Given,

2log10(x + 1) = 2p - q

⇒ 2log10(x + 1) = 2log1020 - log1025

⇒ log10(x + 1)2 = log10202 - log1025

⇒ log10(x + 1)2 = log10400 - log1025

⇒ log10(x + 1)2 = log10 40025\text{log}_{10}\space\dfrac{400}{25}

⇒ log10(x + 1)2 = log1016

⇒ (x + 1)2 = 16

⇒ x2 + 1 + 2x = 16

x2 + 2x - 15 = 0

x2 + 5x - 3x - 15 = 0

x(x + 5) - 3(x + 5) = 0

(x - 3)(x + 5) = 0

x = 3 or -5.

But x ≠ -5 as then (x + 1) will be negative.

Hence, x = 3.

Question 28(i)

Show that:

1log2 42+1log3 42+1log7 42=1\dfrac{1}{\text{log}_2\space42} + \dfrac{1}{\text{log}_3\space42} + \dfrac{1}{\text{log}_7\space42} = 1

Answer

Given,

1log2 42+1log3 42+1log7 42=1\dfrac{1}{\text{log}_2\space42} + \dfrac{1}{\text{log}_3\space42} + \dfrac{1}{\text{log}_7\space42} = 1

Simplifying L.H.S. we get,

1log2 42+1log3 42+1log7 42\dfrac{1}{\text{log}_2\space42} + \dfrac{1}{\text{log}_3\space42} + \dfrac{1}{\text{log}_7\space42} = log42 2 + log42 3 + log42 7

= log42 (2 × 3 × 7)

= log42 42

= 1.

Since, L.H.S. = R.H.S.,

Hence, proved that 1log2 42+1log3 42+1log7 42=1\dfrac{1}{\text{log}_2\space42} + \dfrac{1}{\text{log}_3\space42} + \dfrac{1}{\text{log}_7\space42} = 1

Question 28(ii)

Show that:

1log8 36+1log9 36+1log18 36=2\dfrac{1}{\text{log}_8\space36} + \dfrac{1}{\text{log}_9\space36} + \dfrac{1}{\text{log}_{18}\space36} = 2

Answer

Given,

1log8 36+1log9 36+1log18 36=2\dfrac{1}{\text{log}_8\space36} + \dfrac{1}{\text{log}_9\space36} + \dfrac{1}{\text{log}_{18}\space36} = 2

Simplifying L.H.S. we get,

1log8 36+1log9 36+1log18 36\dfrac{1}{\text{log}_8\space36} + \dfrac{1}{\text{log}_9\space36} + \dfrac{1}{\text{log}_{18}\space36} = log36 8 + log36 9 + log36 18

= log36 (8 × 9 × 18)

= log36 (36)2

= 2log36 36

= 2.

Since, L.H.S. = R.H.S.,

Hence, proved that 1log8 36+1log9 36+1log18 36=2\dfrac{1}{\text{log}_8\space36} + \dfrac{1}{\text{log}_9\space36} + \dfrac{1}{\text{log}_{18}\space36} = 2.

Question 29(i)

Prove the following identities:

1loga abc+1logb abc+1logc abc=1\dfrac{1}{\text{log}_a\text{ abc}} + \dfrac{1}{\text{log}_b\text{ abc}} + \dfrac{1}{\text{log}_c\text{ abc}} = 1

Answer

Given,

1loga abc+1logb abc+1logc abc=1\dfrac{1}{\text{log}_a\text{ abc}} + \dfrac{1}{\text{log}_b\text{ abc}} + \dfrac{1}{\text{log}_c\text{ abc}} = 1

Simplifying L.H.S. we get,

1loga abc+1logb abc+1log_c abclogabc a+logabc b+logabc clogabc (××c)logabc abc1.\Rightarrow \dfrac{1}{\text{log}_a\text{ abc}} + \dfrac{1}{\text{log}_b\text{ abc}} + \dfrac{1}{\text{log}\_c\text{ abc}} \\[1em] \Rightarrow \text{log}_\text{abc}\text{ a} + \text{log}_\text{abc}\text{ b} + \text{log}_\text{abc}\text{ c} \\[1em] \Rightarrow \text{log}_\text{abc}\space(\text{a }\times \text{b } \times \text{c}) \\[1em] \Rightarrow \text{log}_\text{abc}\text{ abc} \\[1em] \Rightarrow 1.

Since, L.H.S. = R.H.S.,

Hence, proved that 1loga abc+1logb abc+1logc abc=1\dfrac{1}{\text{log}_a\text{ abc}} + \dfrac{1}{\text{log}_b\text{ abc}} + \dfrac{1}{\text{log}_c\text{ abc}} = 1.

Question 29(ii)

Prove the following identities:

logb a . logc b . logd c = logd a

Answer

Given,

logba . logcb . logdc = logda

Simplifying L.H.S. we get,

logb a . logc b . logd clog alog b×log blog c×log clog dlog alog dlog_d a.\Rightarrow \text{log}_\text{b}\text{ a}\space.\space\text{log}_\text{c}\text{ b}\space.\space\text{log}_\text{d}\text{ c} \\[1em] \Rightarrow \dfrac{\text{log a}}{\text{log b}} \times \dfrac{\text{log b}}{\text{log c}} \times \dfrac{\text{log c}}{\text{log d}} \\[1em] \Rightarrow \dfrac{\text{log a}}{\text{log d}} \\[1em] \Rightarrow \text{log}\_\text{d}\text{ a}.

Hence, proved that logb a . logc b . logd c = logd a.

Question 30

Given that loga x = 1α\dfrac{1}{α}, logb x = 1β\dfrac{1}{β}, logc x = 1γ\dfrac{1}{γ}, find logabc x.

Answer

Given,

1α=loga x=log xlog alog a=αlog x1β=logb x=log xlog blog b=βlog x1γ=logc x=log xlog clog c=γlog x\Rightarrow \dfrac{1}{α} = \text{log}_a\space x = \dfrac{\text{log x}}{\text{log a}} \\[1em] \Rightarrow \text{log a} = α\text{log x} \\[1em] \\[1em] \Rightarrow \dfrac{1}{β} = \text{log}_b\space x = \dfrac{\text{log x}}{\text{log b}} \\[1em] \Rightarrow \text{log b} = β\text{log x} \\[1em] \\[1em] \Rightarrow \dfrac{1}{γ} = \text{log}_c\space x = \dfrac{\text{log x}}{\text{log c}} \\[1em] \Rightarrow \text{log c} = γ\text{log x} \\[1em] \\[1em]

Solving logabc x we get,

logabc x=log xlog abc=log xlog a + log b + log c=log xαlog x + βlog x + γlog x=log xlog x(α + β + γ)=1(α+β+γ).\Rightarrow \text{log}_\text{abc}\space x = \dfrac{\text{log x}}{\text{log abc}} \\[1em] = \dfrac{\text{log x}}{\text{log a + log b + log c}} \\[1em] = \dfrac{\text{log x}}{\text{αlog x + βlog x + γlog x}} \\[1em] = \dfrac{\text{log x}}{\text{log x(α + β + γ)}} \\[1em] = \dfrac{1}{(\text{α} + \text{β} + \text{γ})}.

Hence, logabc x = 1(α+β+γ)\dfrac{1}{(\text{α} + \text{β} + \text{γ})}.

Question 31(i)

Solve for x:

log3 x + log9 x + log81 x = 74\dfrac{7}{4}

Answer

Given,

log3 x+log9 x+log81 x=741logx 3+1logx 9+1logx 81=741logx 3+1logx 32+1logx 34=741logx 3+12logx 3+14logx 3=741logx 3[1+12+14]=741logx 3×74=741logx 3=74×471logx 3=1log3 x=log3 3x=3.\Rightarrow \text{log}_3\space x + \text{log}_9\space x + \text{log}_{81} \space x = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x\space 3} + \dfrac{1}{\text{log}_x\space 9} + \dfrac{1}{\text{log}_x\space 81} = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x\space 3} + \dfrac{1}{\text{log}_x\space 3^2} + \dfrac{1}{\text{log}_x\space 3^4} = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x\space 3} + \dfrac{1}{2\text{log}_x\space 3} + \dfrac{1}{4\text{log}_x\space 3} = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x\space 3}\Big[1 + \dfrac{1}{2} + \dfrac{1}{4}\Big] = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x\space 3} \times \dfrac{7}{4} = \dfrac{7}{4} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x\space 3} = \dfrac{7}{4} \times \dfrac{4}{7} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x\space 3} = 1 \\[1em] \Rightarrow \text{log}_3\space x = \text{log}_3\space 3 \\[1em] \Rightarrow x = 3.

Hence, x = 3.

Question 31(ii)

Solve for x:

log2 x + log8 x + log32 x = 2315\dfrac{23}{15}

Answer

Given,

log2 x+log8 x+log32 x=23151logx 2+1logx 8+1logx 32=23151logx 2+1logx 23+1logx 25=23151logx 2+13logx 2+15logx 2=23151logx 2[1+13+15]=2315log2 x[15+5+315]=2315log2 x×2315=2315log2 x=2315×1523log2 x=1log2 x=log2 2x=2.\Rightarrow \text{log}_2 \space x + \text{log}_8 \space x + \text{log}_{32} \space x = \dfrac{23}{15} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x \space 2} + \dfrac{1}{\text{log}_x \space 8} + \dfrac{1}{\text{log}_x \space 32} = \dfrac{23}{15} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x \space 2} + \dfrac{1}{\text{log}_x \space 2^3} + \dfrac{1}{\text{log}_x \space 2^5} = \dfrac{23}{15} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x \space 2} + \dfrac{1}{3\text{log}_x \space 2} + \dfrac{1}{5\text{log}_x \space 2} = \dfrac{23}{15} \\[1em] \Rightarrow \dfrac{1}{\text{log}_x \space 2}\Big[1 + \dfrac{1}{3} + \dfrac{1}{5}\Big] = \dfrac{23}{15} \\[1em] \Rightarrow \text{log}_2 \space x\Big[\dfrac{15 + 5 + 3}{15}\Big] = \dfrac{23}{15} \\[1em] \Rightarrow \text{log}_2 \space x \times \dfrac{23}{15} = \dfrac{23}{15} \\[1em] \Rightarrow \text{log}_2 \space x = \dfrac{23}{15} \times \dfrac{15}{23} \\[1em] \Rightarrow \text{log}_2 \space x = 1 \\[1em] \Rightarrow \text{log}_2 \space x = \text{log}_2 \space 2 \\[1em] \Rightarrow x = 2.

Hence, x = 2.

Multiple Choice Questions

Question 1

If log3 27=x\text{log}_{\sqrt{3}} \space 27 = x, then the value of x is

  1. 3

  2. 4

  3. 6

  4. 9

Answer

Given,

x=log3 27=log10 27log10 3=log10 33log10 312=3log10 312log10 3=312=3×2=6.\Rightarrow x = \text{log}_{\sqrt{3}} \space 27 \\[1em] = \dfrac{\text{log}_{10} \space 27}{\text{log}_{10} \space \sqrt{3}} \\[1em] = \dfrac{\text{log}_{10} \space 3^3}{\text{log}_{10} \space 3^{\dfrac{1}{2}}} \\[1em] = \dfrac{3\text{log}_{10} \space 3}{\dfrac{1}{2}\text{log}_{10} \space 3} \\[1em] = \dfrac{3}{\dfrac{1}{2}} \\[1em] = 3 \times 2 = 6.

Hence, Option 3 is the correct option.

Question 2

If log5 (0.04) = x, then the value of x is

  1. 2

  2. 4

  3. -4

  4. -2

Answer

Given,

log5 (0.04) = x

⇒ 5x = 0.04

⇒ 5x = 4100=125\dfrac{4}{100} = \dfrac{1}{25}

⇒ 5x = 152\dfrac{1}{5^2}

⇒ 5x = 5-2

⇒ x = -2.

Hence, Option 4 is the correct option.

Question 3

If log0.5 64 = x, then the value of x is

  1. -4

  2. -6

  3. 4

  4. 6

Answer

Given,

log0.5 64 = x

(0.5)x=64(510)x=64(12)x=(2)6(21)x=(2)62x=(2)6x=6x=6.\Rightarrow (0.5)^x = 64 \\[1em] \Rightarrow \Big(\dfrac{5}{10}\Big)^x = 64 \\[1em] \Rightarrow \Big(\dfrac{1}{2}\Big)^x = (2)^6 \\[1em] \Rightarrow (2^{-1})^x = (2)^6 \\[1em] \Rightarrow 2^{-x} = (2)^6 \\[1em] \Rightarrow -x = 6 \\[1em] \Rightarrow x = -6.

Hence, Option 2 is the correct option.

Question 4

If log53 x\text{log}_{\sqrt[3]{5}} \space x = -3, then the value of x is

  1. 15\dfrac{1}{5}

  2. 15-\dfrac{1}{5}

  3. -1

  4. 5

Answer

Given,

log53 x=3x=(53)3x=[(5)13]3x=(5)13×(3)x=(5)1=15.\Rightarrow \text{log}_{\sqrt[3]{5}} \space x = -3 \\[1em] \Rightarrow x = (\sqrt[3]{5})^{-3} \\[1em] \Rightarrow x = [(5)^{\dfrac{1}{3}}]^{-3} \\[1em] \Rightarrow x = (5)^{\dfrac{1}{3} \times (-3)} \\[1em] \Rightarrow x = (5)^{-1} = \dfrac{1}{5}.

Hence, Option 1 is the correct option.

Question 5

If log (3x + 1) = 2, then the value of x is

  1. 13\dfrac{1}{3}

  2. 99

  3. 33

  4. 193\dfrac{19}{3}

Answer

Given,

log (3x + 1) = 2

⇒ 102 = 3x + 1

⇒ 100 = 3x + 1

⇒ 3x = 100 - 1

⇒ 3x = 99

⇒ x = 33.

Hence, Option 3 is the correct option.

Question 6

The value of 2 + log10 (0.01) is

  1. 4

  2. 3

  3. 1

  4. 0

Answer

Given,

2 + log10 (0.01)

⇒ 2 + log10 (10-2)

⇒ 2 + (-2)log10 10

⇒ 2 + (-2)1

⇒ 2 + (-2)

⇒ 0

Hence, Option 4 is the correct option.

Question 7

The value of log 8log 2log 32\dfrac{\text{log} \space 8 - \text{log} \space 2}{\text{log} \space 32} is

  1. 25\dfrac{2}{5}

  2. 14\dfrac{1}{4}

  3. 25-\dfrac{2}{5}

  4. 13\dfrac{1}{3}

Answer

Given,

log 8log 2log 32log 23log 2log 253log 2log 25log 22log 25log 225.\Rightarrow \dfrac{\text{log} \space 8 - \text{log} \space 2}{\text{log} \space 32} \\[1em] \Rightarrow \dfrac{\text{log} \space 2^3 - \text{log} \space 2}{\text{log} \space 2^5} \\[1em] \Rightarrow \dfrac{3\text{log} \space 2 - \text{log} \space 2}{5\text{log} \space 2} \\[1em] \Rightarrow \dfrac{2 \text{log} \space 2}{5\text{log} \space 2} \\[1em] \Rightarrow \dfrac{2}{5}.

Hence, Option 1 is the correct option.

Question 8

Consider the following two statements :

Statement 1: log5 150 = log5 25 + log5 125

Statement 2: loga (b + c) = loga b + loga c

Which of the following is valid?

  1. Both the statements are true.

  2. Both the statements are false.

  3. Statement 1 is true, and Statement 2 is false.

  4. Statement 1 is false, and Statement 2 is true.

Answer

According to statement 1; log5 150 = log5 25 + log5 125

Solving R.H.S.,

⇒ log5 25 + log5 125

⇒ log5 (25 x 125)

⇒ log5 3125.

As, log5 150 ≠ log5 3125

∴ Statement 1 is false.

According to statement 2; loga (b + c) = loga b + loga c

Solving R.H.S.

⇒ loga b + loga c

⇒ loga (b x c)

⇒ loga bc.

As, loga (b + c) ≠ loga bc

∴ Statement 2 is false.

∴ Both statements are false.

Hence, option 2 is the correct option.

Assertion Reason Type Questions

Question 1

Assertion (A): log2 16 = 4.

Reason (R): loga (bc) = loga b + loga c

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

loga (bc) = loga b + loga c

This is a fundamental property of logarithms, known as the product rule. It states that the logarithm of a product is the sum of the logarithms of the individual factors.

∴ Reason (R) is true.

Given, log2 16

⇒ log2 (4 x 4)

⇒ log2 4 + log2 4

⇒ log2 22 + log2 22

⇒ 2log2 2 + 2log2 2

⇒ 2 + 2

⇒ 4.

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason (or explanation) for Assertion (A).

Hence, option 3 is the correct option.

Question 2

Assertion (A): log3 (19)\Big(\dfrac{1}{9}\Big) = -2.

Reason (R): loga (1b)\Big(\dfrac{1}{b}\Big) = -loga b.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

Given,

⇒ loga (1b)\Big(\dfrac{1}{b}\Big)

⇒ loga b-1

⇒ (-1) x loga b

⇒ -loga b

∴ Reason (R) is true.

Given, log3 (19)\Big(\dfrac{1}{9}\Big)

⇒ log3 (132)\Big(\dfrac{1}{3^2}\Big)

⇒ log3 3-2

⇒ -2log3 3

⇒ -2 x 1

⇒ -2.

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason (or explanation) for Assertion (A).

Hence, option 3 is the correct option.

Question 3

Assertion (A): log225log_{\sqrt{2}} 2^5 = 10.

Reason (R): log am bn = nm\dfrac{n}{m} log a b.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

Given,

log am bn

By changing the base, we get :

 log bn log amn log bm log anm log ab\Rightarrow \dfrac{\text{ log } b^n}{\text{ log } a^m}\\[1em] \Rightarrow \dfrac{n\text{ log } b}{m\text{ log } a}\\[1em] \Rightarrow \dfrac{n}{m} \text{ log } _a b

∴ Reason (R) is true.

Given,

log 225log 25log 2log 25log 2125× log 212× log 2101×110.\Rightarrow \text{log }_{\sqrt{2} } 2^5\\[1em] \Rightarrow \dfrac{\text{log } 2^5}{\text{log }\sqrt{2}} \\[1em] \Rightarrow \dfrac{\text{log } 2^5}{\text{log }2^{\dfrac{1}{2}}} \\[1em] \Rightarrow \dfrac{5 \times \text{ log } 2}{\dfrac{1}{2} \times \text{ log } 2} \\[1em] \Rightarrow \dfrac{10}{1} \times 1\\[1em] \Rightarrow 10.

∴ Assertion (A) is true.

∴ Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason (or explanation) for Assertion (A).

Hence, option 3 is the correct option.

Question 4

Assertion (A): If log x =  log 8 log 0.25\dfrac{\text{ log } 8}{\text{ log } 0.25}, then x = -6.

Reason (R): If log a b = log a c, then b = c.

  1. Assertion (A) is true, Reason (R) is false.

  2. Assertion (A) is false, Reason (R) is true.

  3. Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct reason for Assertion (A).

  4. Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct reason (or explanation) for Assertion (A).

Answer

According to reason,

If log a b = log a c, then b = c.

If the logarithms of two numbers are equal, and they share the same base, then the numbers themselves must be equal.

∴ Reason (R) is true.

According to assertion,

log x= log 8 log 0.25log x= log 8 log (25100)log x= log 23 log (14)log x= log 23 log (122)log x= log 23 log 22log x=3 log 22 log 2log x=32x=(10)32.\Rightarrow \text{log x} = \dfrac{\text{ log } 8}{\text{ log } 0.25}\\[1em] \Rightarrow \text{log x} = \dfrac{\text{ log } 8}{\text{ log } \Big(\dfrac{25}{100}\Big)}\\[1em] \Rightarrow \text{log x} = \dfrac{\text{ log } 2^3}{\text{ log } \Big(\dfrac{1}{4}\Big)}\\[1em] \Rightarrow \text{log x} = \dfrac{\text{ log } 2^3}{\text{ log } \Big(\dfrac{1}{2^2}\Big)}\\[1em] \Rightarrow \text{log x} = \dfrac{\text{ log } 2^3}{\text{ log } 2^{-2}}\\[1em] \Rightarrow \text{log x} = \dfrac{3\text{ log } 2}{-2\text{ log } 2}\\[1em] \Rightarrow \text{log x} = \dfrac{-3}{2} \\[1em] \Rightarrow x = (10)^{-\dfrac{3}{2}}.

∴ Assertion (A) is false.

∴ Assertion (A) is false, Reason (R) is true.

Hence, option 2 is the correct option.

Chapter Test

Question 1

Expand loga x7y8÷z43\text{log}_a \space {\sqrt[3]{x^7y^8 ÷ \sqrt[4]{z}}}

Answer

Given,

loga x7y8÷z43loga (x7y8÷z4)1313loga (x7y8÷z4)13[loga x7y8loga z4]13[loga x7+loga y8loga z14]13[7loga x+8loga y14loga z]73loga x+83loga y112loga z.\Rightarrow \text{log}_a \space {\sqrt[3]{x^7y^8 ÷ \sqrt[4]{z}}} \\[1em] \Rightarrow \text{log}_a \space {(x^7y^8 ÷ \sqrt[4]{z})^{\dfrac{1}{3}}} \\[1em] \Rightarrow \dfrac{1}{3}\text{log}_a \space {(x^7y^8 ÷ \sqrt[4]{z})} \\[1em] \Rightarrow \dfrac{1}{3}[\text{log}_a \space x^7y^8 - \text{log}_a \space \sqrt[4]{z}] \\[1em] \Rightarrow \dfrac{1}{3}[\text{log}_a \space x^7 + \text{log}_a \space y^8 - \text{log}_a \space z^{\dfrac{1}{4}}] \\[1em] \Rightarrow \dfrac{1}{3}[7\text{log}_a \space x + 8\text{log}_a \space y - \dfrac{1}{4}\text{log}_a \space z] \\[1em] \Rightarrow \dfrac{7}{3}\text{log}_a \space x + \dfrac{8}{3}\text{log}_a \space y - \dfrac{1}{12}\text{log}_a \space z.

Hence, loga x7y8÷z43=73loga x+83loga y112loga z.\text{log}_a \space {\sqrt[3]{x^7y^8 ÷ \sqrt[4]{z}}} = \dfrac{7}{3}\text{log}_a \space x + \dfrac{8}{3}\text{log}_a \space y - \dfrac{1}{12}\text{log}_a \space z.

Question 2

Find the value of log3 33log5 (0.04).\text{log}_{\sqrt{3}} \space 3\sqrt{3} - \text{log}_5 \space (0.04).

Answer

Given,

log3 33log5 (0.04)log3 (3)3log5 (4100)3log33log5(125)3(1)log5(5)23(2)log553+2(1)5.\Rightarrow \text{log}_{\sqrt{3}} \space 3\sqrt{3} - \text{log}_5 \space (0.04) \\[1em] \Rightarrow \text{log}_{\sqrt{3}} \space (\sqrt{3})^3 - \text{log}_5 \space \Big(\dfrac{4}{100}\Big) \\[1em] \Rightarrow 3\text{log}_{\sqrt{3}}\sqrt{3} - \text{log}_5\Big(\dfrac{1}{25}\Big) \\[1em] \Rightarrow 3(1) - \text{log}_5(5)^{-2} \\[1em] \Rightarrow 3 - (-2)\text{log}_55 \\[1em] \Rightarrow 3 + 2(1) \\[1em] \Rightarrow 5.

Hence, log3 33log5 (0.04)\text{log}_{\sqrt{3}} \space 3\sqrt{3} - \text{log}_5 \space (0.04) = 5.

Question 3(i)

Prove the following:

(log x)2(log y)2=log xy.log xy(\text{log} \space x)^2 - (\text{log} \space y)^2 = \text{log} \space \dfrac{x}{y}.\text{log} \space xy

Answer

Given,

(log x)2(log y)2=log xy.log xy(\text{log} \space x)^2 - (\text{log} \space y)^2 = \text{log} \space \dfrac{x}{y}.\text{log} \space xy

Simplifying L.H.S. of above equation we get,

(log x)2(log y)2(log xlog y)(log x+log y)log xy.log xy\Rightarrow (\text{log} \space x)^2 - (\text{log} \space y)^2 \\[1em] \Rightarrow (\text{log} \space x - \text{log} \space y)(\text{log} \space x + \text{log} \space y) \\[1em] \Rightarrow \text{log} \space\dfrac{x}{y}.\text{log} \space xy

Since, L.H.S. = R.H.S.,

Hence, proved that (log x)2(log y)2=log xy.log xy(\text{log} \space x)^2 - (\text{log} \space y)^2 = \text{log} \space \dfrac{x}{y}.\text{log} \space xy

Question 3(ii)

Prove the following:

2log 1113+log 13077log 5591=log 2.2\text{log} \space \dfrac{11}{13} + \text{log} \space \dfrac{130}{77} - \text{log} \space \dfrac{55}{91} = \text{log} \space 2.

Answer

Given,

2log 1113+log 13077log 5591=log 2.2\text{log} \space \dfrac{11}{13} + \text{log} \space \dfrac{130}{77} - \text{log} \space \dfrac{55}{91} = \text{log} \space 2.

Simplifying L.H.S. of the above equation we get,

2log 1113+log 13077log 55912(log 11log 13)+(log 130log 77)(log 55log 91)2(log 11log 13)+(log 13.10log 11.7)(log 11.5log 13.7)2(log 11log 13)+(log 13+log 10(log 11+log 7)(log 11+log 5(log 13+log 7)))2log 112log 13+log 13+log 10log 11log 7log 11log 5+log 13+log 72log 112log 11+2log 132log 13+log 10log 5log 10log 5log 2.5log 5log 2+log 5log 5log 2.\Rightarrow 2\text{log} \space \dfrac{11}{13} + \text{log} \space \dfrac{130}{77} - \text{log} \space \dfrac{55}{91} \\[1em] \Rightarrow 2(\text{log} \space 11 - \text{log} \space 13) + (\text{log} \space 130 - \text{log} \space 77) - (\text{log} \space 55 - \text{log} \space 91) \\[1em] \Rightarrow 2(\text{log} \space 11 - \text{log} \space 13) + (\text{log} \space 13.10 - \text{log} \space 11.7) - (\text{log} \space 11.5 - \text{log} \space 13.7) \\[1em] \Rightarrow 2(\text{log} \space 11 - \text{log} \space 13) + (\text{log} \space 13 + \text{log} \space 10 - (\text{log} \space 11 + \text{log} \space 7) - (\text{log} \space 11 + \text{log} \space 5 - (\text{log} \space 13 + \text{log} \space 7))) \\[1em] \Rightarrow 2\text{log} \space 11 - 2\text{log} \space 13 + \text{log} \space 13 + \text{log} \space 10 - \text{log} \space 11 - \cancel{\text{log} \space 7} - \text{log} \space 11 - \text{log} \space 5 + \text{log} \space 13 + \cancel{\text{log} \space 7} \\[1em] \Rightarrow \cancel{2\text{log} \space 11} - \cancel{2\text{log} \space 11} + \cancel{2\text{log} \space 13} - \cancel{2\text{log} \space 13} + \text{log} \space 10 - \text{log} \space 5 \\[1em] \Rightarrow \text{log} \space 10 - \text{log} \space 5 \\[1em] \Rightarrow \text{log} \space 2.5 - \text{log} \space 5 \\[1em] \Rightarrow \text{log} \space 2 + \cancel{\text{log} \space 5} - \cancel{\text{log} \space 5} \\[1em] \Rightarrow \text{log} \space 2.

Since, L.H.S. = R.H.S.,

Hence, proved that 2log 1113+log 13077log 5591=log 2.2\text{log} \space \dfrac{11}{13} + \text{log} \space \dfrac{130}{77} - \text{log} \space \dfrac{55}{91} = \text{log} \space 2.

Question 4

If log (m + n) = log m + log n, show that n = mm1.\dfrac{m}{m - 1}.

Answer

Given,

log (m + n) = log m + log n

⇒ log (m + n) = log mn

⇒ m + n = mn

⇒ m = mn - n

⇒ m = n(m - 1)

⇒ n = mm1\dfrac{m}{m - 1}.

Hence, proved that n = mm1\dfrac{m}{m - 1}.

Question 5

If log x+y2=12(log x+log y)\text{log} \space \dfrac{x + y}{2} = \dfrac{1}{2}(\text{log} \space x + \text{log} \space y), prove that x = y.

Answer

Given,

log x+y2=12(log x+log y)log x+y2=12(log xy)log x+y2=log (xy)12x+y2=(xy)12x+y=2(xy)12\Rightarrow \text{log} \space \dfrac{x + y}{2} = \dfrac{1}{2}(\text{log} \space x + \text{log} \space y) \\[1em] \Rightarrow \text{log} \space \dfrac{x + y}{2} = \dfrac{1}{2}(\text{log} \space xy) \\[1em] \Rightarrow \text{log} \space \dfrac{x + y}{2} = \text{log} \space (xy)^{\dfrac{1}{2}} \\[1em] \Rightarrow \dfrac{x + y}{2} = (xy)^{\dfrac{1}{2}} \\[1em] \Rightarrow x + y = 2(xy)^{\dfrac{1}{2}} \\[1em]

Squaring both sides we get,

(x+y)2=4(xy)(x2+y2+2xy)=4xyx2+y2+2xy4xy=0x2+y22xy=0(xy)2=0xy=0x=y.\Rightarrow (x + y)^2 = 4(xy) \\[1em] \Rightarrow (x^2 + y^2 + 2xy) = 4xy \\[1em] \Rightarrow x^2 + y^2 + 2xy - 4xy = 0 \\[1em] \Rightarrow x^2 + y^2 - 2xy = 0 \\[1em] \Rightarrow (x - y)^2 = 0 \\[1em] \Rightarrow x - y = 0 \\[1em] \Rightarrow x = y.

Hence, proved that x = y.

Question 6

If a, b are positive real numbers, a > b and a2 + b2 = 27ab, prove that

log (ab5)=12(log a+log b)\text{log} \space\Big(\dfrac{a - b}{5}\Big) = \dfrac{1}{2}(\text{log} \space a + \text{log} \space b)

Answer

Given,

a2 + b2 = 27ab

⇒ a2 + b2 = 2ab + 25ab

⇒ a2 + b2 - 2ab = 25ab

ab=a2+b22ab25=(ab5)2\Rightarrow ab = \dfrac{a^2 + b^2 - 2ab}{25} = \Big(\dfrac{a - b}{5}\Big)^2

Taking log on both sides:

log ab=log (ab5)2log a+log b=2log (ab5)log (ab5)=12(log a+log b).\Rightarrow \text{log} \space ab = \text{log} \space \Big(\dfrac{a - b}{5}\Big)^2 \\[1em] \Rightarrow \text{log} \space a + \text{log} \space b = 2 \text{log} \space \Big(\dfrac{a - b}{5}\Big) \\[1em] \Rightarrow \text{log} \space \Big(\dfrac{a - b}{5}\Big) = \dfrac{1}{2}(\text{log} \space a + \text{log} \space b).

Hence, proved that log (ab5)=12(log a+log b).\text{log} \space \Big(\dfrac{a - b}{5}\Big) = \dfrac{1}{2}(\text{log} \space a + \text{log} \space b).

Question 7(i)

Solve the following equation for x:

logx 149\dfrac{1}{49} = -2

Answer

Given,

logx 149=2172=x272=x2x=7.\Rightarrow \text{log}_x \space \dfrac{1}{49} = -2 \\[1em] \Rightarrow \dfrac{1}{7^2} = x^{-2} \\[1em] \Rightarrow 7^{-2} = x^{-2} \\[1em] \Rightarrow x = 7.

Hence, x = 7.

Question 7(ii)

Solve the following equation for x:

logx 142=5\text{log}_x \space \dfrac{1}{4\sqrt{2}} = -5

Answer

Given,

logx 142=5logx 122.212=515logx 122+12=115logx 1252=115logx 252=115×52logx 2=112logx 2=1logx 2=2x2=2x=2.\Rightarrow \text{log}_x \space \dfrac{1}{4\sqrt{2}} = -5 \\[1em] \Rightarrow \text{log}_x \space \dfrac{1}{2^2.2^{\dfrac{1}{2}}} = -5 \\[1em] \Rightarrow -\dfrac{1}{5}\text{log}_x \space \dfrac{1}{2^{2 + \frac{1}{2}}} = 1 \\[1em] \Rightarrow -\dfrac{1}{5}\text{log}_x \space \dfrac{1}{2^{\dfrac{5}{2}}} = 1 \\[1em] \Rightarrow -\dfrac{1}{5}\text{log}_x \space 2^{-\dfrac{5}{2}} = 1 \\[1em] \Rightarrow -\dfrac{1}{5} \times -\dfrac{5}{2} \text{log}_x \space 2 = 1 \\[1em] \Rightarrow \dfrac{1}{2}\text{log}_x \space 2 = 1 \\[1em] \Rightarrow \text{log}_x \space 2 = 2 \\[1em] \Rightarrow x^2 = 2 \\[1em] \Rightarrow x = \sqrt{2}.

Hence, x = 2\sqrt{2}.

Question 7(iii)

Solve the following equation for x:

logx 1243=10\text{log}_x \space \dfrac{1}{243} = 10

Answer

Given,

logx 1243=10logx 1logx 243=100logx (3)5=105logx 3=10logx 3=105logx 3=2x2=31x2=31x=3x=13.\Rightarrow \text{log}_x \space \dfrac{1}{243} = 10 \\[1em] \Rightarrow \text{log}_x \space 1 - \text{log}_x \space 243 = 10 \\[1em] \Rightarrow 0 - \text{log}_x \space (3)^5 = 10 \\[1em] \Rightarrow -5\text{log}_x \space 3 = 10 \\[1em] \Rightarrow -\text{log}_x \space 3 = \dfrac{10}{5} \\[1em] \Rightarrow \text{log}_x \space 3 = -2 \\[1em] \Rightarrow x^{-2} = 3 \\[1em] \Rightarrow \dfrac{1}{x^2} = 3 \\[1em] \Rightarrow \dfrac{1}{x} = \sqrt{3} \\[1em] \Rightarrow x = \dfrac{1}{\sqrt{3}}.

Hence, x = 13\dfrac{1}{\sqrt{3}}.

Question 7(iv)

Solve the following equation for x:

log4 32 = x - 4

Answer

Given,

⇒ log4 32 = x - 4

⇒ 4x - 4 = 32

⇒ (22)x - 4 = 25

⇒ 22x - 8 = 25

⇒ 2x - 8 = 5

⇒ 2x = 13

⇒ x = 132=612\dfrac{13}{2} = 6\dfrac{1}{2}.

Hence, x = 6126\dfrac{1}{2}.

Question 7(v)

Solve the following equation for x:

log7 (2x2 - 1) = 2

Answer

Given,

⇒ log7 (2x2 - 1) = 2

⇒ 2x2 - 1 = 72

⇒ 2x2 - 1 = 49

⇒ 2x2 = 50

⇒ x2 = 25

⇒ x = 5, -5.

Hence, x = 5, -5.

Question 7(vi)

Solve the following equation for x:

log (x2 - 21) = 2

Answer

Given,

⇒ log (x2 - 21) = 2

⇒ x2 - 21 = 102

⇒ x2 = 100 + 21

⇒ x2 = 121

⇒ x = 11, -11.

Hence, x = 11, -11.

Question 7(vii)

Solve the following equation for x:

log6 (x - 2)(x + 3) = 1

Answer

Given,

⇒ log6 (x - 2)(x + 3) = 1

⇒ (x - 2)(x + 3) = 61

⇒ (x2 + 3x - 2x - 6) = 6

⇒ x2 + x - 6 = 6

⇒ x2 + x - 12 = 0

⇒ x2 + 4x - 3x - 12 = 0

⇒ x(x + 4) - 3(x + 4) = 0

⇒ (x - 3)(x + 4) = 0

⇒ x - 3 = 0 or x + 4 = 0

⇒ x = 3 or x = -4.

Hence, x = 3, -4.

Question 7(viii)

Solve the following equation for x:

log6 (x - 2) + log6 (x + 3) = 1

Answer

Given,

⇒ log6 (x - 2) + log6 (x + 3) = 1

⇒ log6 (x - 2)(x + 3) = 1

⇒ (x - 2)(x + 3) = 61

⇒ (x2 + 3x - 2x - 6) = 6

⇒ x2 + x - 6 = 6

⇒ x2 + x - 12 = 0

⇒ x2 + 4x - 3x - 12 = 0

⇒ x(x + 4) - 3(x + 4) = 0

⇒ (x - 3)(x + 4) = 0

⇒ x - 3 = 0 or x + 4 = 0

⇒ x = 3 or x = -4.

In this case x ≠ -4 as (x + 3) and (x - 2) will be negative and log of only positive numbers are defined.

Hence, x = 3.

Question 7(ix)

Solve the following equation for x:

log (x + 1) + log (x - 1) = log 11 + 2log 3

Answer

Given,

⇒ log (x + 1) + log (x - 1) = log 11 + 2log 3

⇒ log (x + 1)(x - 1) = log 11 + log 32

⇒ log (x2 - 1) = log (11 x 9)

⇒ log (x2 - 1) = log 99

⇒ (x2 - 1) = 99

⇒ x2 = 99 + 1

⇒ x2 = 100

⇒ x = 10, -10

In this case x ≠ -10 as (x + 1) and (x - 1) will be negative and log of only positive numbers are defined.

Hence, x = 10.

Question 8

Solve for x and y:

log x3=log y2\dfrac{\text{log} \space x}{3} = \dfrac{\text{log} \space y}{2} and log (xy)=5\text{log} \space (xy) = 5.

Answer

Given,

log x3=log y2\dfrac{\text{log} \space x}{3} = \dfrac{\text{log} \space y}{2}

⇒ 2 log x = 3 log y

⇒ 2 log x - 3 log y = 0 .......(i)

Given,

log (xy) = 5

⇒ log x + log y = 5 ......(ii)

Multiplying (ii) by 2 we get,

⇒ 2 log x + 2 log y = 10 ......(iii)

Subtracting (i) from (iii) we get,

⇒ 2 log x + 2 log y - (2 log x - 3 log y) = 10 - 0

⇒ 2 log x - 2 log x + 2 log y + 3 log y = 10

⇒ 5 log y = 10

⇒ log y = 2

⇒ y = 102 = 100.

Substituting value of y in (ii) we get,

⇒ log x + log 100 = 5

⇒ log x + 2 = 5

⇒ log x = 3

⇒ x = 103 = 1000.

Hence, x = 1000 and y = 100.

Question 9

If a = 1 + logx yz, b = 1 + logy zx and c = 1 + logz xy, then show that

ab + bc + ca = abc.

Answer

a = 1 + logx yz = logx x + logx yz = logx xyz.

1a=logxyz x\therefore \dfrac{1}{a} = \text{log}_{xyz} \space x

b = 1 + logy zx = logy y + logy zx = logy xyz.

1b=logxyz y\therefore \dfrac{1}{b} = \text{log}_{xyz} \space y

c = 1 + logz xy = logz z + logz xy = logz xyz.

1c=logxyz z\therefore \dfrac{1}{c} = \text{log}_{xyz} \space z

1a+1b+1c=logxyz x+logxyz y+logxyz zbc+ac+ababc=log xlog xyz+log ylog xyz+log zlog xyzbc+ac+ababc=log x + log y + log zlog xyzbc+ac+ababc=log xyzlog xyzbc+ac+ababc=1ab+bc+ca=abc.\Rightarrow \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = \text{log}_{xyz} \space x + \text{log}_{xyz} \space y + \text{log}_{xyz} \space z \\[1em] \Rightarrow \dfrac{bc + ac + ab}{abc} = \dfrac{\text{log x}}{\text{log xyz}} + \dfrac{\text{log y}}{\text{log xyz}} + \dfrac{\text{log z}}{\text{log xyz}} \\[1em] \Rightarrow \dfrac{bc + ac + ab}{abc} = \dfrac{\text{log x + log y + log z}}{\text{log xyz}} \\[1em] \Rightarrow \dfrac{bc + ac + ab}{abc} = \dfrac{\text{log xyz}}{\text{log xyz}} \\[1em] \Rightarrow \dfrac{bc + ac + ab}{abc} = 1 \\[1em] \Rightarrow ab + bc + ca = abc.

Hence, proved that ab + bc + ca = abc.

Question 10

If 1 log ax+1 log bx=2 log cx\dfrac{1}{\text{ log }_a x} + \dfrac{1}{\text{ log }_b x} = \dfrac{2}{\text{ log }_c x}, prove that c2 = ab.

Answer

Given,

1 log ax+1 log bx=2 log cx1log xlog a+1log xlog b=2log xlog c log a log x+ log b log x=2 log c log x log a+ log b log x=2 log c log x log (a×b) log x=2 log c log x log ab log x=2 log c log x log ab=2 log c log ab= log c2ab=c2.\Rightarrow \dfrac{1}{\text{ log }_a x} + \dfrac{1}{\text{ log }_b x} = \dfrac{2}{\text{ log }_c x}\\[1em] \Rightarrow \dfrac{1}{\dfrac{\text{log }x}{\text{log }a}} + \dfrac{1}{\dfrac{\text{log } x}{\text{log } b}} = \dfrac{2}{\dfrac{\text{log }x}{\text{log }c}} \\[1em] \Rightarrow \dfrac{\text{ log } a}{\text{ log } x} + \dfrac{\text{ log } b}{\text{ log } x} = \dfrac{2\text{ log } c}{\text{ log } x}\\[1em] \Rightarrow \dfrac{\text{ log } a + \text{ log } b}{\text{ log } x} = \dfrac{2\text{ log } c}{\text{ log } x}\\[1em] \Rightarrow \dfrac{\text{ log } (a \times b)}{\text{ log } x} = \dfrac{2\text{ log } c}{\text{ log } x}\\[1em] \Rightarrow \dfrac{\text{ log } ab}{\text{ log } x} = \dfrac{2\text{ log } c}{\text{ log } x}\\[1em] \Rightarrow \text{ log } ab = 2\text{ log } c\\[1em] \Rightarrow \text{ log } ab = \text{ log } c^2\\[1em] \Rightarrow ab = c^2.

Hence, proved that c2 = ab.

PrevNext